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Abstract

In the incremental version of the well-known k-median problem the objective is to compute
an incremental sequence of facility sets F1 ⊆ F2 ⊆ .... ⊆ Fn, where each Fk contains at most k
facilities. We say that this incremental medians sequence is R-competitive if the cost of each Fk

is at most R times the optimum cost of k facilities. The smallest such R is called the competitive
ratio of the sequence {Fk}. Mettu and Plaxton [6, 7] presented a polynomial-time algorithm
that computes an incremental sequence with competitive ratio ≈ 30. They also showed a lower
bound of 2. The upper bound on the ratio was improved to 8 in [5] and [4]. We improve both
bounds in this paper. We first show that no incremental sequence can have competitive ratio
better than 2.01 and we give a probabilistic construction of a sequence whose competitive ratio
is at most 2 + 4

√
2 ≈ 7.656. We also propose a new approach to the problem that for instances

that we refer to as equable achieves an optimal ratio of 2.

keywords Incremental medians, approximation algorithm, online algorithm, analysis of algo-
rithme

1 Introduction

The k-median problem is one of the most studied facility location problems. We are given two
sets: a set C of customers and a set F of n facilities, with a metric function d that specifies the
distance dxy between any two points x, y ∈ C ∪ F . The cost of a facility set F ⊆ F , denoted by
cost(F ), is defined as the minimum sum, over all customers c ∈ C, of dcF , where dcF = minf∈F dcf

is the minimum distance from c to F . Given k, the objective is to compute a set of k facilities with
minimum cost.

Not surprisingly, the k-median problem is NP-hard. A number of polynomial-time approxima-
tion algorithms have been proposed, with the latest one, by Arya et al. [1, 2] achieving the ratio of
3 + ε, for any ε > 0.

Mettu and Plaxton [6, 7] introduced the incremental medians problem, where the permitted
number k of facilities is not specified in advance. Starting with the empty set, an algorithm
receives authorizations for new facilities over time, and after each authorization it is allowed to
add another facility to the existing ones. As a result, such an algorithm produces an incremental
sequence of facility sets F1 ⊆ F2 ⊆ ... ⊆ Fn, where |Fk| ≤ k for all k. This sequence {Fk} is said
to be R-competitive if cost(Fk) is at most R times the optimum cost of k facilities, for each k. The
smallest such R is called the competitive ratio of {Fk}.
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Mettu and Plaxton [6, 7] gave a polynomial-time algorithm that computes such an incremental
sequence with competitive ratio ≈ 30. This result is quite remarkable, for there is no apparent
reason why an incremental sequence {Fk} of facility sets, with each cost(Fk) within a constant
factor of the the optimum, would even exist – let alone be computed efficiently.

It is thus natural to address the issue of existence separately from computational complexity,
and this is what we focus on in this paper. As shown by Mettu and Plaxton [6, 7], no ratio better
than 2 is possible, that is, for each ε > 0 there is a metric space where each incremental facility
sequence has competitive ratio at least 2 − ε. The upper bound on the ratio was improved to 8
by Lin et al. [5] and, independently, by Chrobak et al. [4]. In [5], the authors also show that a
16-competitive incremental median sequence can be computed in polynomial time.
Our results. We improve both the lower and upper bounds for incremental medians. For the
lower bound, we show that, in general, no competitive ratio better than 2.01 is possible. We also
prove, via a probabilistic argument, that each instance has an incremental medians sequence with
competitive ratio at most 2 + 4

√
2 ≈ 7.656.

In numerical terms, the improvement of the lower bound is mostly symbolic, as it implies that
2 is not the “right” ratio. For the upper bound, our result shows that the doubling method from
[5, 4] (see also [3]) is not optimal – even though it gives the optimal ratio of 4 for the closely related
“resource augmentation” version of incremental medians [4]. As discussed in Section 6, we believe
that our methods can be refined to further improve both the lower and upper bounds.

In addition, we consider a special case of the incremental medians problem where for any fixed
value of k, each customer has the same distance to the optimal k-median. We refer to such instances
as equable. (See Section 5 for a formal definition.) For this case, we show a construction of a 2-
competitive incremental medians sequence, matching the lower bound from [6, 7]. Our method
for this case is very different from previous constructions and we believe that it will be useful in
improving the upper bound for general spaces. In fact, this result implies that if there is a constant
γ ≥ 1 such that for each fixed k all customers’ optimal costs are within factor γ of each other, then
our construction achieves ratio at most 2γ – improving our own bound above if γ < 1 + 2

√
2.

2 Preliminaries

Let (F , C) be an instance of the medians problem, where F is a set of n facilities, C is the set of
customers, and F∪C forms a metric space. By dxy or d(x, y) we denote the distance between points
x, y. If Y is a set, we also write dxY = miny∈Y dxy for the minimum distance from x to Y . For a
facility set F ⊆ F , denote by cost(F ) the cost of F , that is

∑
x∈C dxF .

For a point x and a set Y , denote by ΓY (x) the point y ∈ Y that is closest to x, that is
dxy = dxY (if this point is not unique, then break the tie arbitrarily.) If X is a set, we also define
ΓY (X) = {ΓY (x) | x ∈ X}. Clearly, |ΓY (X)| ≤ |X|. Note that if F is a facility set and X is a set
of customers, then ΓF (X) is exactly the set of facilities in F that serve customers in X if F is the
facility set under consideration.

By optk we denote the optimum cost of k facilities, that is

optk = min {cost(F ) | F ⊆ F & |F | = k}. (1)

By F ∗
k ⊆ F we will denote the optimal set of k facilities, that is, the k-median. (As before, ties are

broken arbitrarily.) Thus cost(F ∗
k ) = optk.
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Figure 1: Metric space used in the lower bound.

3 A New Lower Bound

In this section we prove our lower bound of 2.01 on the competitive ratio for incremental medians,
improving slightly the previous bound of 2 from [6, 7].

Theorem 1. There is an instance (C,F) for which no incremental median sequence has competitive
ratio smaller than 2.01.

Proof. The set of customers is C = U∪V ∪W , where U , V , W are disjoint sets with |U |+|V |+|W | =
n − 3, where n is a large integer. The set of facilities is F = {f, g, h} ∪ C. The distances between
customers and facilities are shown in Figure 1. For each set U , V , W , all customers in a set have
the same distance to each facility. For example, the distance from f to all u ∈ U is a, the distance
from h to all v ∈ V is b, etc. Other distances are measured along the shortest paths in the graph
from Figure 1. This is also true for two customers from a same set (they are not at distance 0 from
one-another). For example, if v, v′ ∈ V and v′ 6= v then the distance from v to v′ is 2b.

Since for k = n−3 the optimal cost is 0, the first n−3 facilities in any competitive incremental
sequence must be chosen from C. In fact, we will only use only three values of k: k = 1, 2 and n−3.

To prove that there is no incremental median with ratio better than R, we only need to give
some values a, b, c, c′, |U |, |V | and |W | such that:

min {cost(v), cost(w)} ≥ R · cost(f), and (2)
min {cost(u, v), cost(u, w)} ≥ R · cost(g, h). (3)

These inequalities imply the lower bound of R, for (2) implies that, for k = 1, to beat ratio R we
must pick some u ∈ U as the first facility, and (3) implies that, for k = 2, it is not possible to add
to u another facility and preserve ratio R.

In order to simplify calculations, we slightly modify the way we compute the costs. If a facility
at some point x ∈ U ∪V ∪W serves a customer z 6= x then the cost of z is the length of the shortest
path from z to x via one facility f , g, or h, while the cost of z = x is 0. Our first modification is
that we will charge this z = x the cost of such a shortest path as well, that is, c cannot serve itself
directly at cost 0. For example, if there is a facility at x ∈ U , then we will charge x the cost of 2a
to get to this facility. Since this increases the cost by a factor of at most 1 + Θ(1/n), by taking n
large enough in the proof below, the argument remains valid for the true cost values.

With this convention in mind, we set a = 5/4, b = 1, c = 211/100, c′ = 141/100, |U | = 295λ,
|V | = 25λ, and |W | = 149λ, for some large integer λ. (Thus n = 469λ+3.) Note that b ≤ a ≤ c ≤ c′.
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Then, for k = 1 we have

cost(f) = |U |a + |V |(b + 2a) + |W |c
cost(v) = |U |(a + b) + |V |(2b) + |W |(b + 2a + c)
cost(w) = |U |(a + c) + |V |(b + 2a + c) + |W |(2c′)

and for k = 2 we have

cost(g, h) = |U |a + |V |b + |W |c′

cost(u, v) = |U |(a + b) + |V |(2b) + |W |(a + c)
cost(u, w) = |U |(2a) + |V |(a + b) + |W |(2c′)

Then

min {cost(v), cost(w)}
cost(f)

=
2039
1014

≥ 2.01, and

min {cost(u, v), cost(u, w)}
cost(g, h)

=
121393
60384

≥ 2.01.

This implies that inequalities (2), (3) hold with R = 2.01, and the lower bound follows.

4 A New Upper Bound

In this section we construct an incremental medians sequence with competitive ratio R = 2 + 4
√

2.
First, we show that, given a facility set H we can find subsets F ⊆ G ⊆ H of specified sizes and of
appropriately small cost. We then use this result to construct our incremental medians sequence.

4.1 Choosing Two Nested Facility Sets

Let 1 ≤ k ≤ l ≤ m ≤ n. (Recall that n = |F| is the number of facilities.) Throughout this
section we consider three facility sets: H of cardinality m, U of cardinality k, and V of cardinality
l. Intuitively, U and V represent optimal k− and l− medians. We use a probabilistic argument to
show that there exist two sets F and G, with |F | = k, |G| = l and F ⊆ G ⊆ H, such that cost(F )
and cost(G) are bounded in terms of cost(U), cost(V ) and cost(H).

Lemma 2. Let 1 ≤ k ≤ l ≤ m ≤ n, and let U , V and H be facility sets with |H| = m, |V | = l and
|U | = k. Then there is a set T ⊆ V with |T | = k such that, denoting T̄ = V − T , we have

cost(ΓH(T )) + cost(ΓH(U ∪ T̄ )) ≤ 2 · cost(H) + 4 · cost(V ) + 2 · cost(U). (4)

Proof. We use a probabilistic argument, by defining a probability distribution on subsets T ⊆ V
and proving that inequality (4) holds in expectation.

Define a random mapping Φ : U → C, where Φ(u) is chosen uniformly from the set Cu =
{x ∈ C | ΓU (x) = u}. In other words, Φ(u) is a random customer of u when U is the facility set.
Order arbitrarily the elements of V , and for any given Φ define TΦ as the subset of V that consists
of ΓV (Φ(U)) and k− |ΓV (Φ(U))| smallest elements of V that are not in ΓV (Φ(U)). Thus |TΦ| = k.
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Figure 2: Notations.

For each point x in C, let ux = ΓU (x), vx = ΓV (x) and hx = ΓH(x) be the points serving
x respectively in U , V and H. The corresponding distances from x are denoted ax = d(x, ux),
bx = d(x, vx) and cx = d(x, hx). Let also u′x = ΓH(ux) and v′x = ΓH(vx). (See Figure 4.1.)

We now temporarily fix the mapping Φ and a customer x ∈ C. To simplify notation, we write
TΦ = T and u = ux. We claim that

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u). (5)

To prove the claim, we consider two cases, for vx ∈ T and vx ∈ T̄ .
Case 1: vx ∈ T̄ . This case is illustrated in Figure 3.

Since v′Φ(u) ∈ ΓH(T ), using the definition of v′Φ(u) and several applications of the triangle
inequality, we have d(x,ΓH(T )) ≤ d(x, v′Φ(u)) ≤ ax + d(u, vΦ(u)) + d(vΦ(u), v

′
Φ(u)) ≤ ax + [aΦ(u) +

bΦ(u)] + d(vΦ(u), hΦ(u)) ≤ ax + aΦ(u) + 2bΦ(u) + cΦ(u).
Since v′x ∈ ΓH(U ∪ T̄ ), using the definition of v′x and triangle inequality, d(x,ΓH(U ∪ T̄ )) ≤

d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.
Combining the two bounds, we get

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u).

Case 2: vx ∈ T . This case is illustarted in Figure 4.
Since v′x ∈ ΓH(T ), using the triangle inequality and the definition of v′x, we have d(x,ΓH(T )) ≤

d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.
Since u′x ∈ ΓH(U∪T̄ ), using the definition of u′x = ΓH(u), we have d(x,ΓH(U∪T̄ )) ≤ d(x, u′x) ≤

ax + d(u, u′x) ≤ ax + d(u, hΦ(u)) ≤ ax + aΦ(u) + cΦ(u).
Combining the two bounds we get

d(x,ΓH(T )) + d(x,ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + cΦ(u)

≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u),

completing the proof of inequality (5).
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Figure 3: The proof of (5) when vx ∈ T̄ . Figure 4: The proof of (5) when vx ∈ T .

From (5), for a fixed Φ we have

cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ)) ≤
∑
u∈U

∑
x∈Cu

[
ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u)

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · [aΦ(u) + 2bΦ(u) + cΦ(u)]. (6)

For any facility set Z, we have cost(Z) =
∑

u∈U |Cu| · ExpΦ[d(Φ(u), Z)]. Applying it to Z = U ,
V and H, and using the linearity of expectation, inequality (6) yields

ExpΦ

[
cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ))

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · ExpΦ

[
aΦ(u) + 2bΦ(u) + cΦ(u)

]
= 2 · cost(H) + 4 · cost(V ) + 2 · cost(U).

This implies that there is a T = TΦ that satisfies the lemma.

Theorem 3. Let 1 ≤ k ≤ l ≤ m ≤ n. For any facility sets H, U and V with |U | = k, |V | = l,
|H| = m, there exist F ⊆ G ⊆ H with |F | = k, |G| = l such that

(i) cost(F ) ≤ cost(H) + 2 · cost(U) and

(ii) cost(G) ≤ cost(H) + 4 · cost(V ).

Proof. Let U ′ = ΓH(U) and V ′ = ΓH(V ) be the facilities in H that are closest to those in U and
V , respectively. Using the triangle inequality, it is not difficult to show (see [5, 4], for example)
that cost(U ′) ≤ cost(H) + 2 · cost(U) and cost(V ′) ≤ cost(H) + 2 · cost(V ).

Let T ⊆ V be the set from Lemma 2. Then either cost(ΓH(T )) ≤ cost(H) + 2 · cost(U) or
cost(ΓH(U ∪ T̄ )) ≤ cost(H) + 4 · cost(V ). In the first case, we take F = ΓH(T ) and G = V ′, and in
the second case we take F = U ′ and G = ΓH(U ∪ T̄ ). (If |F | < k or |G| < l, we can increase their
cardinalities by adding a sufficient number of elements of H while preserving the inclusion F ⊆ G.)
The theorem then follows from Lemma 2 and the bounds on cost(U ′) and cost(V ′).
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4.2 Competitive Incremental Medians

Recall that n is the number of facilities, F ∗
j is the optimal j-median and optj = cost(F ∗

j ), for each
j = 1, 2, ..., n. Our objective is to construct an incremental medians sequence F1 ⊆ F2 ⊆ ... ⊆ Fn.

The general approach is similar to that in [5, 4]: we construct the sequence backwards, at each
step extracting a smaller set of facilities from among those selected earlier. These sets Fj will be
constructed only for values of j in a predefined sequence {κ(a)} of indices, for which the optimal
costs increase exponentially with a. For the intermediate values of j, we simply let Fj to be Fκ(a),
where a is the smallest index for which κ(a) ≤ j.

The crucial difference between our method and the previous constructions is in how we extract
facilities from Fκ(a) to form Fκ(a+1). The algorithms in [5] and [4] select κ(a + 1) facilities in Fκ(a)

that are closest to those in the optimal set F ∗
κ(a+1). Instead, we use our probabilistic construction

from the previous section to simultaneously extract two facility sets next in the sequence, namely
Fκ(a+1) and Fκ(a+2), with Theorem 3 providing an upper bound on their costs.
Construction of incremental medians. Without loss of generality we can assume that optn = 1,
for otherwise we can normalize the instance by dividing all distances by optn. (If optn = 0, instead
of n, we can start the process with the largest n′ for which optn′ > 0.)

We use two parameters γ = 2 +
√

2/2 ≈ 2.71 and λ = 3
√

2/2 − 1 ≈ 1.16. We now define a
sequence of indices n = κ(0) ≥ κ(1) ≥ ... ≥ κ(h) = 1. For a = 0, 1, ..., let

κ(a) =
{

min {j | optj ≤ γa/2} if a is even
min {j | optj ≤ λγ(a−1)/2} if a is odd

and choose h to be the smallest a for which κ(a) = 1. For simplicity, we will assume that h is even.
Note that we allow some of the elements in the sequence {κ(a)} to be equal.

We first define facility sets Fj for j = κ(0), κ(1), ..., κ(h). Initially, Fκ(0) = F , the set of all
facilities. Suppose that Fκ(a) has been already defined for some even a ≥ 0. In Theorem 3 let
m = κ(a), H = Fκ(a), l = κ(a + 1), k = κ(a + 2), V = F ∗

κ(a+1) and U = F ∗
κ(a+2). We then choose

Fκ(a+2) ⊆ Fκ(a+1) ⊆ Fκ(a) such that

cost(Fκ(a+1)) ≤ cost(Fκ(a)) + 4optκ(a+1), and (7)
cost(Fκ(a+2)) ≤ cost(Fκ(a)) + 2optκ(a+2). (8)

The existence of such sets is guaranteed by Theorem 3; namely take Fκ(a+1) = G and Fκ(a+2) = F .
Next, we extend the sequence to other values of j. If κ(a + 1) < j < κ(a), we simply let

Fj = Fκ(a+1). This completes the construction.

Theorem 4. The incremental sequence {Fj} constructed above is R-competitive, where R = 2 +
4
√

2 ≈ 7.656.

Proof. For each j = 1, ..., n, denote costj = cost(Fj). Using the bounds (7), (8), and the definition
of the sequence {κ(a)}, each value costκ(a) can be estimated as follows: if a is even, then costκ(a) ≤
2

∑a/2
b=1 opt2b ≤ 2

∑a/2
b=1 γb, and if a is odd then costκ(a) ≤ 2

∑(a−1)/2
b=1 γb + 4λγ(a−1)/2. Summing up

the geometric sequences, we thus get

costκ(a) ≤


2γa/2+1

γ − 1
if a is even

2γ(a−1)/2+1

γ − 1
+ 4λγ(a−1)/2 if a is odd
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Fix some number of facilities j, and choose a such that κ(a+1) ≤ j < κ(a). We want to show that
costj ≤ R · optj . By the construction, Fj = Fκ(a+1), so costj = costκ(a+1). We have two cases.

Suppose first that a is even. By the choice of j and the definition of κ(a), we get optj > γa/2.
Since costj = costκ(a+1) ≤ 2γa/2+1/(γ − 1) + 4λγa/2, the ratio is

costj
optj

≤ 2γ

γ − 1
+ 4λ = R.

If a is odd, then by the choice of j and the definition of κ(a), we get optj > λγ(a−1)/2. Since
costj = costκ(a+1) ≤ 2γ(a+1)/2+1/(γ − 1), the ratio is

costj
optj

≤ 2γ2

(γ − 1)λ
= R,

completing the proof.

5 2-Competitive Incremental Medians for Equable Instances

In this section we present a construction of a 2-competitive incremental medians sequence for a
special case where, for any fixed value of k, each customer has the same distance to the optimal
k-median. More formally, suppose (F , C) is an instance of the medians problem with n ≤ |C| such
that (i) for each k = 1, 2, ..., n there exist an optimal k-median F ∗

k such that all distances d(x, F ∗
k )

are the same, for all x ∈ C, and that (ii) for k = n we have d(x, F ∗
n) = 0 for all x ∈ C (or,

equivalently, C ⊆ F .) An instance with this property will be called equable.
Our method is different from previous constructions of incremental medians, including the

one from Section 4. Unlike in these previous approaches, we construct the sequence F1, F2, ..., Fn

forward, maintaining an invariant ensuring that we not only do well at step k, but also that we
make good progress towards obtaining a low-cost l-median for all l > k.

Throughout this section, (C,F) denotes an equable instance of the medians problem. For each
k = 1, 2, ..., n, let F ∗

k be the optimal k-median such that d(x, F ∗
k ) = δk for all x ∈ C. Thus

optk = |C|δk for all k. Without loss of generality, we can assume that δ1 > δ2 > ... > δn = 0.
Incremental spanners. Suppose that for each k = 1, 2, ..., n we have a family Sk ⊆ 2C of k sets
that forms a partition of C, that is, all sets in Sk are disjoint and

⋃
A∈Sk

A = C. (Our proof can be
modified to work even if the sets in Sk are not disjoint.) For a set X ⊆ C, define its k-span as

Spank(X) =
⋃
{A ∈ Si | i ≥ k & A ∩X 6= ∅}.

A set X ⊆ C is called a k-spanner if Spank(X) = C. Note that if X is a k-spanner then it is also
a j-spanner for any j < k. A sequence X1 ⊆ X2 ⊆ ... ⊆ Xn is called an incremental spanner if for
each k = 1, 2, ..., n, |Xk| ≤ k and Xk is a k-spanner.

We now show how to construct an incremental spanner. For X ⊆ C and any j = 1, 2, ..., n, let
setscovj(X) be the collection of sets in Sj covered by the j-span of X, that is

setscovj(X) = {A ∈ Sj | A ⊆ Spanj(X)}.

Note that |setscovj(X)| = j if and only if X is a j-spanner, because Sj covers C.
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We will construct the sets ∅ = X0 ⊆ X1 ⊆ ... ⊆ Xn so that, for each k = 0, 1, 2, ..., n, we will
have |Xk| ≤ k and the following invariant will hold:

|setscovj(Xk)| ≥ k, for all j = k, k + 1, ..., n. (9)

Initially, for k = 0, we set X0 = ∅, and (9) holds trivially. Suppose we have X0, X1, ..., Xk′ , for some
k′ < n and that (9) holds for k = 0, 1, ..., k′. This implies, in particular, that |setscovk′(Xk′)| ≥ k′,
that is, Xk′ is a k′-spanner. Thus Xk′ is also a k-spanner for all k ≤ k′. Let l be the minimum
index for which Xk′ is not an l-spanner, that is C − Spanl(Xk′) 6= ∅. By the choice of l, we have
l > k′. Pick any x ∈ C − Spanl(Xk′) and take Xk′+1 = Xk′ ∪ {x}. Clearly, |Xk′+1| ≤ k′ + 1.

We now show that (9) holds for k = k′+1. By the choice of l, for j = k′+1, k′+2, ..., l−1, Xk′ is
a j-spanner. Therefore Xk′+1 is also a j-spanner, and thus (9) holds. Consider any j ≥ l ≥ k′ + 1.
Let A ∈ Sj be the set for which x ∈ A. By induction, since x ∈ C − Spanj(Xk′), we have
A /∈ setscovj(Xk′). But now x ∈ Xk′+1, so A ∈ setscovj(Xk′+1), and we get |setscovj(Fk′+1)| ≥
|setscovj(Fk′)|+ 1 ≥ k′ + 1. This completes the proof that our construction preserves invariant (9).

By (9), for each k we have |setscovk(Xk)| ≥ k, and thus Xk is a k-spanner. We can conclude
then that X1, X2, ..., Xn is an incremental spanner.
Incremental medians. We now show how to use incremental spanners to construct incremental
medians. For k = 1, 2, ..., n, assign each customer x ∈ C to its closest facility f ∈ F ∗

k (that is,
dxf = δk), breaking ties arbitrarily. Define Cf

k to be the set of customers assigned to f , and let
Sk = {Cf

k | f ∈ F ∗
k }. Then each Sk contains k sets and forms a partition of C. As we showed above,

for these partitions S1,S2, ...,Sn there exists an incremental spanner F1, F2, ..., Fn.
We claim that F1, F2, ..., Fn is a 2-competitive incremental medians sequence. Consider some

fixed k. Since Fk is a k-spanner, for each customer x ∈ C there is i ≥ k, f ∈ F ∗
i and y ∈ Fk

such that both x, y ∈ Cf
i . Thus d(x, Fk) ≤ dxy ≤ dxf + dyf = 2δi ≤ 2δk. This implies that

cost(Fk) ≤ 2mδk = 2optk, and the claim follows.
Summarizing, we obtain the following result:

Theorem 5. Any equable instance (C,F) of the medians problem has a 2-competitive incremental
medians sequence.

6 Final Comments

We improved both the lower and upper bounds for incremental medians, from 2 to 2.01 and from
8 to 2 + 4

√
2 ≈ 7.656, respectively, thus proving that neither 2 nor 8 are the “right” bounds

for this problem. (By optimizing the the parameters in Section 3 it is possible to improve the
lower bound slightly, to about 2.01053.) In addition to its own independent interest, closing or
significantly reducing the remaining gap would shed more light on the computational hardness of
approximating incremental medians, as it would show to what degree the difficulty of the problem
can be attributed to non-existence of incremental median sequences with small competitive ratios.

The expected values in the proof of Lemma 2 can be computed in polynomial-time, and thus
our probabilistic construction can be derandomized using the method of conditional expectations.
However, since our improvement is relatively minor, we did not pursue this direction of research,
nor possible implications for upper bounds achievable in polynomial time.

We believe that some of the ideas in the paper can be used to prove even better bounds. In the
upper bound proof in Section 4 we construct our sequence backwards, starting with all facilities, and
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gradually extracting smaller and smaller facility sets, two at a time. By extending the probabilistic
construction to more than two steps at a time, we should be able to get a better bound. Even our
two-step method still might have room for improvement, as the two choices for F and G considered
in the proof of Theorem 3 are not “balanced”, that is, the bounds on the cost of F and G in the two
cases are not the same. Also, our construction of a 2-competitive incremental medians sequence
for equable spaces is very different from previous constructions and we believe that its basic idea
will be useful in improving the upper bound for general spaces.

Our lower bound argument uses only three steps, for k = 1, 2, n. It should be possible to
improve our bound by using either k > 2 as the intermediate number of facilities or more (perhaps
an unbounded number of) steps. Both ideas lead to difficulties that we were not able to overcome
at this time. In a three-step strategy using k = 1, k′, n with k′ > 2, an algorithm can place facilities
2, .., k′ optimally (given the choice of the first facility), and thus increasing k′ seems only to help
the algorithm. A strategy that uses additional steps leads to a different problem. Average costs
for the customers must decrease with k, and thus introducing additional steps creates shortcuts via
optimal k′-medians for large k′, reducing the algorithm’s cost for small values of k.

The result from Section 5 may also be useful for lower bound proofs, as it shows that in “hard”
instances, for a fixed k, the optimal customers’ costs should be significantly different.

References

[1] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristic for k-median and facility location problems. In Proc. 33rd Symp.
Theory of Computing (STOC), pages 21–29. ACM, 2001.

[2] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004.

[3] Marek Chrobak and Claire Kenyon. Competitiveness via doubling. SIGACT News, pages
115–126, 2006.

[4] Marek Chrobak, Claire Kenyon, John Noga, and Neal Young. Online medians via online bidding.
In Proc. 7th Latin American Theoretical Informatics Symp. (LATIN), volume 3887 of Lecture
Notes in Comput. Sci., pages 311–322, 2006.

[5] Guolong Lin, Chandrashekha Nagarajan, Rajmohan Rajamaran, and David P. Williamson.
A general approach for incremental approximation and hierarchical clustering. In Proc. 17th
Symp. on Discrete Algorithms (SODA), pages 1147–1156, 2006.

[6] Ramgopal R Mettu and C. Greg Plaxton. The online median problem. In Proc. 41st Symp.
Foundations of Computer Science (FOCS), pages 339–348. IEEE, 2000.

[7] Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM J. Comput.,
32:816–832, 2003.

10


