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Abstract. Cut elimination is a central result of the proof theory. This
paper proposes a new approach for proving the theorem for Gentzen’s
intuitionistic sequent calculus LJ, that relies on completeness of the cut-
free calculus with respect to Kripke Models. The proof defines a general
framework to extend the cut elimination result to other intuitionistic de-
duction systems, in particular to deduction modulo provided the rewrite
system verifies some properties. We also give an example of rewrite sys-
tem for which cut elimination holds but that doesn’t enjoys proof nor-
malization.
Keywords: intuitionistic sequent calculus, Kripke Structure, semantic,
deduction modulo, cut admissibility, cut elimination property 1

1 Introduction

Since Gentzen’s result [1], the cut elimination theorem has been a central result
of Proof Theory. Proving the cut elimination theorem is the key to the good
properties of deduction systems, such as consistency, or the disjunction and the
witness property for the intuitionistic framework. It allows also to prove the de-
cidability of some logical fragments (as the propositional case), and is essential
for proving completeness of proof search methods such as tableaux or resolution
[2–4].

Two main approaches can be used to establish the result. One way is a
syntactic one, proving termination of a certain cut-elimination process, as in the
original proof of Gentzen [1]. A modern way to prove the result uses proof terms
[5] and reducibility method.

The other way is to prove the admissibility (or redundancy) of the cut rule
[6–8], proving completeness of the cut-free calculus with respect to some notion
of model. This is known since Beth, Hintikka and others [9], and this has been
recently used by De Marco and Lipton [10] to prove cut elimination of the
Intuitionistic Higher-Order Logic, and by Okada [11] for intuitionistic Linear
Logic (first and higher-order).
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An interesting field of research is to try to understand the links between
these two methods. In particular, one may ask if all formalisms verifying cut
admissibility are normalizing under proof reduction.

A first difficulty for this study is that intuitionistic logic seems to be a better
framework for proof normalization, whereas classical logic is easier to use when
dealing with semantic methods. There are two manners to bridge the gap: either
study proof normalization for a classical logic, either, as we do here, establish
semantic methods for the intuitionistic logic.

In this paper, we thus describe a semantic method to prove cut admissibility
in the intuitionistic sequent calculus. Although the result is not new, the method
seems not to have been used yet. Moreover, it extends easily to sequent calculus
modulo several congruences, as we will see in the last part of the paper. This is
an important extension for two reasons. First, it shows cut-elimination for many
axiomatic theories, without considering ad-hoc axiomatic cuts. Then, Deduction
Modulo is a good framework to understand the links between semantic and syn-
tactic approaches, since Dowek and Werner have defined in [5] general syntactic
methods for proving termination of proof reduction, based on pre-models and
reducibility candidates.

Our model construction is obtained by transforming Gödel’s completeness
theorem for first-order classical logic. We prove completeness of the cut-free se-
quent calculus with respect to some notion of model. The construction is similar
in many aspects to Gödel’s, but differs on several important points. First, we
consider here intuitionistic logic instead of classical logic, thus our models will
have a different form. Then - and this is the most important point - we con-
sider a cut-free calculus. This leads to many technical difficulties. In particular
it requires to introduce new definitions of consistency and completeness of a
theory.

Unlike classical logic, intuitionistic logic has many different notions of models,
among which Kripke Structure [12] and Heyting Algebras [13]. Recently, an
extension of Heyting Algebra have been used by De Marco and Lipton [10] to
prove cut redundancy for Intuitionistic Higher-Order Sequent Calculus. Okada,
in [11], uses phase semantics, that reduce to Heyting Algebra in the Intuitionistic
Logic subcase. In this paper, we will use Kripke Structure. We believe that Kripke
Structures lead to much simpler proofs, in particular they seem to extend rather
straightforwardly techniques already used in classical logic ([14, 8]).

In the last section, we discuss shortly the extension of the result to the Deduc-
tion Modulo. An example is given, where the cut-elimination proof appears to be
a very simple modification of the former. We also present a terminating, conflu-
ent rewrite system such that deduction modulo this rule enjoys cut-elimination,
although the cut-elimination process using reduction of proof-terms fails [5].

In the later, we will consider, unless specified, the cut-free intuitionistic se-
quent calculus, this is the calculus as defined in figure 1 minus the cut rule. In
a sequent Γ ` P , Γ is a finite multiset of proposition (a proposition can appear
several times). So we can always find a fresh constant (provided the language
has a countable set of constants) to introduce in the rules ∀-right and ∃-left.



Γ, P ` P
axiom

Γ, P ` Q Γ ` P

Γ ` Q
cut

Γ, P, P ` Q

Γ, P ` Q
contr-l

Γ,⊥ ` Q
⊥-l

Γ ` Q

Γ, P ` Q
weak-l

Γ `
Γ ` P

weak-r

Γ, P, Q ` R

Γ, P ∧Q ` R
∧ -l

Γ ` P Γ ` Q

Γ ` P ∧Q
∧ -r

Γ, P ` R Γ, Q ` R

Γ, P ∨Q ` R
∨ -l

Γ ` P

Γ ` P ∨Q
∨ -r

Γ ` Q

Γ ` P ∨Q
∨ -r

Γ ` P Γ, Q ` R

Γ, P ⇒ Q ` R
⇒ -l

Γ, P ` Q

Γ ` P ⇒ Q
⇒ -r

Γ ` P

Γ,¬P `¬-l
Γ, P `
Γ ` ¬P

¬-r

Γ, {t/x}P ` Q

Γ,∀xP ` Q
∀-l Γ ` {c/x}P

Γ ` ∀xP
∀-r, c fresh constant

Γ, {c/x}P ` Q

Γ,∃xP ` Q
∃-l, c fresh constant

Γ ` {t/x}P
Γ ` ∃xP

∃-r

Fig. 1. Deduction rule of intuitionistic sequent calculus (with the cut rule)

These two rules are usually (equivalently) formulated with fresh variables in-
stead of constants. Here we prefer this formulation, that avoid considerations
over α-equivalence of propositions.

To recall that we are working in the cut-free sequent calculus, we will write
a sequent Γ `cf P

2 Definitions

In [10], De Marco and Lipton discuss the reason why Henkin’s completion process
[12] fails when we disallow the use of the cut rule. This is the case because the
completion process is done with a heavy use of the cut rule. Then, the authors
discard the usual completeness notion, and build downward complete sets (with
respect to the subformula property), in defining a very nice tableau construction
for intuitionistic logic.

Here, we propose a different approach, that keeps the notion of a complete
theory. In fact, we adapt the notion of complete theory to the cut-free calculus
in a very simple way. The reader can check that when the cut rule is allowed,



the two completeness notions are equivalent. But when it is not, the two notions
split.

Our construction, and the completion process that follows have the advantage
to preserve the maximality of the constructed theories. Moreover, they stick to
more usual completeness construction [12] used to define the semantic of sequent
calculi (with the cut rule).

We also need a larger understanding of completeness and consistency, because
we are in an intuitionistic framework. So, we are led to define A-consistency and
A-completeness, where A is a formula. From these definitions, it becomes simple
to prove the completeness theorem, following the lines of Gödel’s proof, applying
it to Kripke Structures.

Definition 1 (A-consistency). Let A be a proposition. A set of propositions
(theory) Γ is said to be A-consistent iff Γ 0cf A.

Definition 2 (A-completeness). Let A be a proposition. A set of propositions
(theory) Γ is said to be A-complete iff for any proposition P , either Γ, P `cf A,
or P ∈ Γ .

Definition 3 (A-Henkin witnesses). Let A be a proposition. A set of propo-
sitions (theory) Γ is said to admit A-Henkin witnesses if for any proposition
of the form ∃xP such that Γ,∃xP 0cf A, there exists a constant c such that
{c/x}P ∈ Γ .

These definitions are different from from those used in the classical case
[14], because we are now in the intuitionistic framework: in particular, we don’t
have symmetry between the left and the right parts of a sequent, so we lose
symmetry between ∀ and ∃ quantifiers, and we can’t have Henkin witnesses for
both of them. Another point is that instead of considering only consistency, we
have to consider A-consistency, so sets of propositions become smaller, although
they still possess all the good properties we need, as shown in section 3.2

Definition 4 (Kripke Structure).
A Kripke Structure K is a quadruple 〈K,≤, D,
〉, such that K is a set (the

set of nodes, or worlds), ≤ is a partial order on K, D a function (called the
domain) from K to non empty sets, that is monotone w.r.t. ≤ (if α ≤ β then
D(α) ⊆ D(β)). And 
 is a relation between elements α ∈ K and the closed
propositions over D(α), such that:

1. for any A(x1, ..., xn) atomic, any worlds α ≤ β, any a1, ..., an ∈ D(α),
α 
 A(a1, ..., an) implies β 
 A(a1, ..., an)

2. α 
 A ∨B iff α 
 A or α 
 B.
3. α 
 A ∧B iff α 
 A and α 
 B.
4. α 
 A ⇒ B iff for any β ≥ α, β 
 A implies β 
 B.
5. α 
 ¬A iff for any β ≥ α, β 1 A.
6. α 
 ∃xA iff there exists a ∈ D(α) such that α 
 {a/x}A.
7. α 
 ∀xA iff for any β ≥ α, for any a ∈ D(β), β 
 {a/x}A.



With respect to Kripke Structures, we should first prove soundness of the
Intuitionistic Sequent Calculus with cut.

Theorem 5 (Soundness). Let Γ be a set of propositions, and P be a proposi-
tion. If Γ ` P (with possible use of the cut rule), then for any Kripke Structure
〈K,≤, D, 
〉, for any node α ∈ K, if α 
 Γ then α 
 P .
We write Γ |= P if P is valid at any node that validates Γ .

Proof. We check that all the derivation rules are valid as in [15]. The result holds
also for the cut-free sequent calculus, but this is not relevant here. 2

The difficult part is to prove the converse, namely the completeness theorem.
In our case, we have to prove completeness of the cut-free calculus with respect
to Kripke Structures.

3 Completion of a theory and basic results

First, given a theory T and a proposition A such that T is A-consistent, we
describe how to get an A-complete, A-consistent set Γ containing T , admitting
A-Henkin witnesses. Then, we will describe the properties of Γ .

3.1 Completion

Let L be a language, T a theory in L, and A a proposition such that T 0cf A. We
consider an infinite set of constants C disjoint from L, and we define L′ = L∪C.

We consider an enumeration of the propositions of L′: P0, ..., Pn, ... and we
let Γ0 = T . We define Γn by induction:

– if Γn, Pn 0cf A and Pn is not of the form ∃xQ we let Γn+1 = Γn ∪ {Pn}.
– if Γn, Pn 0cf A and Pn is of the form ∃xQ, we let Γn+1 = Γn∪{Pn, {c/x}Q},

where c ∈ C is a constant that doesn’t occur in Γn.
– otherwise we let Γn+1 = Γn

Notice that in the first case, if Pn is of the form ∃xQ,we have Γn, {c/x}Q 0cf

A since c is fresh. So we don’t lose the A-consistency of Γn+1.
Finally, we let Γ =

⋃∞
i=0 Γi.

3.2 Properties of the completed theory

Proposition 6. Γ is A-consistent, A-complete, and admits A-Henkin witnesses.

Proof. Let’s see the proof for A-completeness: suppose Γ is not A-complete, so
there exists a proposition P such that Γ, P 0cf A and P /∈ Γ . By the former
enumeration, there exists a n such that P = Pn. We have Γn ⊆ Γ , so Γn, Pn 0cf

A. We get a contradiction, since by construction Pn ∈ Γn+1 ⊆ Γ .
The two other properties are proved in the same way. 2



An important property of any A-consistent, A-complete theory admitting
A-Henkin witnesses is that it enjoys some form of the subformula property.

Proposition 7. Let A be a proposition and Γ an A-complete, A-consistent set
of propositions that admits A-Henkin witnesses. Then:

1. if P ∧Q ∈ Γ then P ∈ Γ and Q ∈ Γ
2. if P ∨Q ∈ Γ then P ∈ Γ or Q ∈ Γ
3. if ∃xP ∈ Γ then {c/x}P ∈ Γ for some c
4. if ∀xP ∈ Γ then {t/x}P ∈ Γ for any t
5. if P ⇒ Q ∈ Γ then either Q ∈ Γ , either Γ 0cf P
6. if ¬P ∈ Γ then Γ 0cf P

7. if Γ 0cf P ∧Q then Γ 0cf P or Γ 0cf Q
8. if Γ 0cf P ∨Q then Γ 0cf P and Γ 0cf Q
9. if Γ 0cf ∃xP then for any term t, Γ 0cf {t/x}P

10. if Γ 0cf P ⇒ Q then Γ, P 0cf Q
11. if Γ 0cf ¬P then Γ, P 0cf

Proof. It relies essentially on the arguments that Γ is A-complete, A-consistent,
admits A-Henkin witnesses, and on the fact that we can use in a reversed way
the rules of sequent calculus of figure 1.

Let’s see some examples:

– 3 is the A-Henkin witnesses property.
– In 5, P ⇒ Q ∈ Γ means in particular that Γ, P ⇒ Q 0cf A. We can not

have at the same time Γ, Q `cf A and Γ `cf P (otherwise we could apply
⇒-left rule). So, we have either Q ∈ Γ (by A-completeness), or Γ 0cf P . 2

Notice that there are already links with Kripke Structures in this definition:
at point 5, Γ 0cf P can be understood as the following: we can (in a richer
language) complete Γ in ∆, P -complete, P -consistent, and that admits P -Henkin
witnesses, in the same way as in section 3.1. So proposition 7 gives us a very
easy way to construct a Kripke Structure, ordered by inclusion. This will be the
object of next section.

4 Completeness theorem and Cut Redundancy

We are now ready to prove the completeness theorem. In fact, we will prove
another equivalent formulation.

Theorem 8 (Completeness). Let T be a theory and A a proposition, both
expressed in some language L0.
If T 0cf A then there exists a Kripke Structure, and a world α such that α 
 T
and α 1 A

Proof. First consider Cn a countable family of countable sets of new constants.
We form the family of languages Ln+1 = Ln ∪ Cn.

In the rest of the proof, we consider the Kripke Structure defined as follows:



– K = {Γ | B-complete, B consistent, B-Henkin, expressed in Li for some i
and B ∈ Li}

– the order over K, ≤ is the large inclusion ⊆
– D(Γ ) is the set of closed terms of the language Li in which is expressed Γ .
– the forcing relation 
 defined by induction on the size of propositions. For

atomic propositions we let Γ 
 C iff C ∈ Γ . We extend this forcing relation
to non atomic propositions thanks to the clauses 2− 7 of definition 4.
It still remains to be checked that the first clause of the forcing relation holds:
for any atom C, if Γ 
 C, let ∆ ⊇ Γ , we have to show that ∆ 
 C. This
is immediate since C ∈ ∆, so we straightforwardly use the forcing relation
definition. Finally, we have checked all the clauses, and 
 is a forcing relation.

By the completion procedure, we know the existence of a world Γ , expressed
in Li, such that T ⊂ Γ , and Γ is A-consistent, A-complete and admits A-Henkin
witnesses. It remains to prove that Γ 
 T and Γ 1 A. More generally, we will
prove the following:

For any proposition P , for any world Γ , P ∈ Γ implies Γ 
 P and Γ 0cf P
implies Γ 1 P .

By an induction on the size of the proposition P :

– the atomic case is immediate: if A ∈ Γ so Γ 
 A. And if Γ 0cf A, then
A /∈ Γ , so by definition of the forcing relation Γ 1 A.

– if A ∨ B ∈ Γ , we use proposition 7 and get A ∈ Γ or B ∈ Γ , hence by
induction hypothesis Γ 
 A or Γ 
 B. Thus Γ 
 A ∨B.
if Γ 0cf A ∨ B, by proposition 7, we have Γ 0cf A and Γ 0cf B, so by
induction hypothesis Γ 1 A and Γ 1 B, hence Γ 1 A ∨B.

– if A ⇒ B ∈ Γ , let ∆ ⊇ Γ . Obviously A ⇒ B ∈ ∆. By proposition 7, either
∆ 0cf A, either B ∈ ∆. If the former holds, by induction hypothesis, we must
have Γ 1 A. In the other case, we have ∆ 
 B by induction hypothesis. So
in both cases: ∆ 
 A implies ∆ 
 B.
if Γ 0cf A ⇒ B, then by proposition 7, we have Γ,A 0cf B. Let Lj the
language in which is expressed Γ . By the completion procedure of section
3.1, we can define in the language Lj+1 a theory ∆ ⊇ Γ that is B-consistent,
B-complete and admits B-Henkin witnesses. This ∆ is also a world of the
Kripke Structure considered. And by induction hypothesis, ∆ 
 A and ∆ 1
B, so we must have Γ 1 A ⇒ B.

– if ∃xP ∈ Γ , then by the Henkin witnesses property, we have {c/x}P ∈ Γ ,
so by induction hypothesis, Γ 
 {c/x}P , and then Γ 
 ∃xP .
if Γ 0cf ∃xP , then, for any term t, Γ 0cf {t/x}P , by proposition 7. So for
any t, Γ 1 {t/x}P by induction hypothesis. Hence Γ 1 ∃xP .

– if ∀xP ∈ Γ , then for any ∆ ⊇ Γ , ∀xP ∈ ∆, and we use the same arguments
as in the previous case to prove that ∆ 
 {t/x}P for any t. So Γ 
 ∀xP .
If Γ 0cf ∀xP , then let Li the language of Γ ∪ {∀xP}. Let c ∈ Ci. c is fresh
w.r.t Γ and P by construction of the set Ci. So, we have Γ 0cf {c/x}P . By



the completion procedure of 3.1, we get the existence of a world ∆, {c/x}P -
complete, {c/x}P -consistent admitting P -Henkin witnesses. So by induction
hypothesis, ∆ 1 {c/x}P , hence Γ 1 ∀xP .

– the other cases are treated in a similar way. 2

As a corollary, we get the cut-elimination theorem:

Theorem 9 (Cut-elimination). If Γ ` P , then Γ `cf P .

Proof. Proof: Suppose Γ ` P . By soundness, Γ |= P , so there is no node α of
any Kripke Structure such that α 
 Γ and α 1 P . Hence by the completeness
theorem, we must have Γ `cf P . 2

5 Adding rewrite rules

In this section, we show briefly how the result extends to deduction modulo in
a straightforward way, provided the rewrite system verifies some conditions. We
recall briefly the context of Deduction Modulo, but we suppose that the reader
of this section is familiar with it, or at least with rewrite rules. For further
informations, see for example [5, 4].

Definition 10. A term rewrite rule is a pair of terms l → r such that all the
variables of r appears in l.
A propositional rewrite rule is a pair of propositions l → r such that l is atomic
and all free variables of r appears in l.

An example of a term rewrite rule is:

x× 0 → 0

An example of a propositional rewrite rule is:

x× y = 0 → (x = 0) ∨ (y = 0)

In this case, we notice that an atomic proposition can rewrite on a non-atomic
proposition.

A rewrite system R is a set of propositional and term rewrite rules.
The deduction system is transformed in such a way that active propositions

should be equal modulo the rewrite system considered. For example the new
axiom rule will be:

Γ,A `R B
axiom, with A ≡R B

All definitions are transformed in a straightforward way, using cut-free prov-
ability modulo the rewrite rules `cf

R instead of cut-free provability `cf .

We introduce the notion of the validity of a rewrite system in a Kripke
Structure.



Definition 11. A rewrite system R is valid in a Kripke Structure iff the follow-
ing property for any world α and propositions A,B holds:

if A ≡R B then α 
 A ⇔ α 
 B

When a Kripke Structure validates a rewrite system R, we write the forcing
relation 
R.

We check that, given a confluent rewrite system, the proof of soundness theo-
rem (w.r.t. Kripke Structure in which the rewrite system is valid), the completion
process of section 3.1, and the proposition 7 still hold.

The only stage that differs from the former proof of the cut-elimination the-
orem is the construction of the Kripke Structure for A-complete, A-consistent
theories that admit A-Henkin witnesses. Indeed, since the expressiveness of de-
duction modulo goes beyond first-order, we must have a stage in which the logical
complexity appears.

So for different kinds of rewrite systems, we will have different model con-
structions. In some cases, these constructions can directly be derived from that
described in section 4, as we will shall see now.

5.1 An order condition

We will prove the cut-elimination theorem for all the rewrite systems verifying
the following order condition. We consider a confluent rewrite system and a
well-founded order ≺ such that:

– if P →R Q then Q ≺ P .
– if A is a subformula of B then A ≺ B.

This order condition was first introduced by Stuber [3] for proving complete-
ness of Resolution Modulo (ENAR) with respect to Classical Sequent Calculus
Modulo. Since we have this order, we can show that the rewrite system is nor-
malizing, in the sense that every term has a normal form.

The Kripke Structure considered is the same as that of the proof of theorem
8, which worlds are A-complete, A-consistent theories that admit A-Henkin wit-
nesses, ordered by inclusion. The only slight difference is in the definition of the
forcing relation 
R. We first define it on normal atoms:

Γ 
R B iff B ∈ Γ

We extend 
R on propositions following clauses 2−7 of the definition 4, and on
non-normal atoms by Γ 
R B if Γ 
R B ↓. This has to be done simultaneously.

The definition is well founded, since the order is well-founded, and at every
step, we decrease the order.

We yet have to check that we really defined a forcing relation. The only point
to present a difficulty is the first axiom of a forcing relation. Indeed, if an atom A



is non-normal, this is not self-evident to prove that Γ 
R A implies ∆ 
R A for
∆ ⊇ Γ . As usual, we have to show a more general result, that for any proposition
P , for any ∆ ⊇ Γ :

Γ 
R P implies ∆ 
R P

This is done by a straightforward induction over the well-founded order, rewrit-
ing non-normal atoms into their normal form. 2

Once we have the fact that we really have constructed a Kripke Structure,
we remark that this is a Kripke Structure for the rewrite system. This is true
by construction on the atoms, and we extend it to any proposition by induction
over the proposition structure. 2

The last point to prove is that Γ 
R Γ and Γ 1R P (when Γ is P -consistent).
This is done exactly in the same way as in section 4. 2

So, by the very same arguments as in section 4 the cut-elimination theorem
holds for confluent rewrite systems compatible with a well-founded order. As an
example, the following rewrite system is compatible with such an order:

x ∗ y = 0 →R (x = 0) ∨ (y = 0)
x ∗ 0 →R 0
x + 0 →R x

in a general way, all the confluent, terminating, quantifier-free rewrite systems
described in [5] are compatible with such an order. Stuber in [3] gives a more
detailed example.

5.2 A non-normalizing theory

In this section, we transform a result of Dowek and Werner, that found a con-
fluent and terminating rewrite system that doesn’t enjoys the cut-elimination
property. Here, we exhibit a confluent terminating rewrite system that enjoys
cut-elimination, but that doesn’t have proof normalization.

In [5], a non-normalizing confluent terminating rewrite system is presented.
It is defined by the following rule, with y ' z standing for ∀x(y ∈ x ⇒ z ∈ x):

R ∈ R →R ∀y (y ' R ⇒ ¬y ∈ R)

Modulo this rewrite rule, we can prove both sequents R ∈ R `cf
R and `cf

R
R ∈ R, so we can prove, using the cut rule, the sequent `R (the rewrite system
is then inconsistent).

The idea is to modify slightly this rule, to get a consistent rewrite system,
that we call R:

R ∈ R →R ∀y(y ' R ⇒ (y ∈ R ⇒ C)) (1)



The same derivations lead this time to proofs of R ∈ R `cf
R C and of `cf

R
R ∈ R. Proof terms are the same as in [5]. These two proofs can be combined
with a cut and we get a proof of the sequent `R C. We cannot eliminate the
cut by the normalization method, because applying one proof term to the other
leads by reductions to the same proof term. And in fact, any reduction-based
cut-elimination will fail, since `cf

R C is not provable (what kind of rule could be
the first rule, if not the cut rule ?).

So, the rewrite system R doesn’t normalize.
Let’s now replace in (1) C by a well-known intuitionistic tautology: A ⇒ A.

We get a new set of rewrite rules R∗. Of course, we can prove `cf
R∗ A ⇒ A

without the cut rule. But the former analysis is still valid, any normalization
process fails if we try to eliminate cut from the following proof:

R ∈ R `cf
R∗ A ⇒ A `cf

R∗ R ∈ R

`R∗ A ⇒ A
cut

In fact, a normalization procedure can’t make the difference between the two
rewrite rules (with C and with A ⇒ A), since proof terms are exactly the same
in the two cases.

So this rewrite system doesn’t enjoy normalization, however, we here show
that it has the cut-elimination property, using the completeness method:

Proposition 12. The sequent calculus modulo R∗ admits cut.

Proof. The principle is the same as in previous sections: we first prove the com-
pleteness theorem. Given a B-complete, consistent theory Γ , we construct a
Kripke Structure that validates R∗, and a node forcing Γ and not forcing B.

The Kripke structure is defined as usual: K is the set of all C-complete,
consistent theories admitting C-Henkin witnesses, for some C, both expressed
in one of the languages Li. K is ordered by inclusion, and the domain D(Γ ) is
the closed terms of Li.
The forcing relation is defined on atoms, no matter whether ∆, D `cf

R∗ or not:

∆ 
 D iff ∆ `cf
R∗ D

This is extended over all the propositions. With this method, we are sure that
we define a Kripke Structure. We check, as in section 4, that Γ 
 Γ and that
Γ 1 B (when Γ is B-consistent).

It remains yet to prove that we have defined a Kripke Structure for the
rewrite rule. All we have to check is that the interpretation of R ∈ R and of
∀y(y ' R ⇒ (y ∈ R ⇒ (A ⇒ A))) is the same for any world ∆.

Since `cf
R∗ R ∈ R, we have for any world ∆ 
 R ∈ R (this is an atomic

proposition). It remains to prove that ∆ 
 ∀y(y ' R ⇒ (y ∈ R ⇒ (A ⇒ A))).



Let ∆′ ⊇ ∆, and t ∈ D(∆′). Moreover, suppose ∆′ 
 t ' R. We now have to
prove ∆′ 
 t ∈ R ⇒ (A ⇒ A). This is trivial since Γ ′ 
 A ⇒ A for any Γ ′. 2

So the Kripke Structure constructed is a Kripke Structure for R∗, the com-
pleteness theorem is proved and the announced result holds: this rewrite system
enjoys cut-elimination. 2

The key to understand this result is that while proving the cut-elimination
theorem we strongly need a semantic information, namely: A ⇒ A is an intu-
itionistic tautology. This information is of course not available when defining a
proof reduction process, and when trying to prove the termination of it. Another
point that should be stressed is that the cut-free proof has nothing to do with
the original proof.

6 Conclusion and further work

We have shown how to get the cut-elimination theorem by semantic methods,
proving completeness of the cut-free intuitionistic calculus modulo with respect
to Kripke Structures. Then we showed how this result extends to Deduction
Modulo for an order condition on the rewrite system.

In our study of the links between proof normalization and cut admissibility,we
have found a counterexample to the fact that proof normalization is equivalent
to the redundancy of the cut rule. In [11], Okada gives a hint about a correspon-
dence between his method (for Higher-Order Logic) and Girard’s Reducibility
Candidates, but doesn’t gives any further information. We think that thanks to
our negative result, there is no way to give such a correspondence without giving
more information that we get with our model construction.

We should extend the semantic cut-elimination result to other theories mod-
ulo, such as the positive theories of [5], or to the formulation of Higher-Order
Intuitionistic Sequent Calculus in Deduction Modulo. Then, it seems that one
could add positive rules to the order condition, preserving the cut-elimination
theorem. Finally, we can try to bridge the gap between semantic and syntactic
proofs.
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