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Abstract. Deduction modulo is a theoretical framework designed to
introduce computational steps in deductive systems. This approach is
well suited to automated theorem proving and a tableau method for first-
order classical deduction modulo has been developed. We reformulate
this method and give an (almost constructive) semantic completeness
proof. This new proof allows us to extend the completeness theorem to
several classes of rewrite systems used for computations in deduction
modulo. We are then able to build a counter-model when a proof fails
for these systems.

1 Introduction

Efficient treatment of equality and equational theories is still a challenging prob-
lem to tackle in the domain of automated theorem proving. The proof of as simple
a statement as (a + b) + ((c + d) + e) = a + ((b + c) + (d + e)) might take a long
time within a theory with the usual associativity and identity axioms if one uses
an ineffective strategy. The resolving process should eventually be a determin-
istic and terminating method where we only have to check if the two terms are
indeed the same modulo our theory. We would like to use computation (blind
execution) instead of deduction (non-deterministic search), thus expressing the
associativity axiom as a rewrite rule on terms.

Orienting equational theories through rewriting is not unusual, but rewrite
rules on propositions are almost never considered. However it can be useful to
allow them. One framework to handle such rewrite rules is deduction modulo
[9]. The axiom ∀x ∀y (x ∗ y = 0 ⇐⇒ (x = 0 ∨ y = 0)) yields by orientation
the rewrite rule x ∗ y = 0→ x = 0 ∨ y = 0 , which is useful to prove ∃z(a ∗ a =
z ⇒ a = z) by adapted automated deduction methods (see [2, 9]) which handle
propositional rewriting by extended narrowing.

The use of both propositional and term rewrite rules in deduction modulo
instead of unoriented axioms should result in a speed up in the proof search.
However, deduction modulo has other interesting consequences: propositional
rewrite rules like P (a) → ∀xP (x) can be used to restart the deductive process.
The deduction modulo is powerful enough to express axiomatic theories such
as arithmetic [11] or HOL [10] as sets of rewrite rules. Deduction modulo also
produces shorter (regarding the size of the proof tree), more readable, proofs



containing only purely deductive steps (the “important” ones to humans) and
no computational details anymore.

In [2], a syntactic completeness proof of a tableau method for deduction
modulo (TaMeD) is given. Our semantic completeness proof sheds.

– We first recall in Sec. 2 the sequent calculus modulo as the setting of our
proof-search procedure.

– Then we define in Sec. 3 a new free-variable tableau calculus with constraints
as a basis for a systematic tableau construction algorithm upon which we
build a completeness proof. The need for a model construction forced us to
give this proof-search algorithm. This is an improvement over [2].

– Section 4 eventually presents this new semantic completeness proof. The use
of general semantic methods allows us to precisely give some categories of
rewrite systems for which the completeness theorem holds. It is an improve-
ment over both [2, 9] and [19]. The completeness proofs of the first two papers
assume that certain properties such as cut elimination in the sequent calculus
modulo are enjoyed by the considered rewrite systems, without describing
any possible candidate. More precise conditions than just cut elimination are
given in this paper. The classes of rewrite systems described in Sec. 4 also
subsumes those generated by the order condition of the completeness proof
of [19].

– We finally illustrate our systematic tableau procedure on an example in Sec.
5 and discuss further (mainly practical) improvements.

2 Deduction modulo for first-order classical logic

We present the sequent calculus modulo we use as a basis for the tableau method.
We consider first-order classical logic without equality where formulas are built
using atoms, connectors (∧,∨,¬,⇒) and quantifiers (∀,∃). In the rest of the
paper, formulas are denoted by capital letters such as A,B, P, Q, ..., (multi)sets
of formulas by Γ,∆, constants by a, b, c, ..., function symbols by f, g, h, ..., terms
by t, u, v, ..., variables by x, y, z, .., free variables by X, Y, Z, ... ; the usual sub-
stitution avoiding capture of x by t in P is denoted P [x := t]. A constraint is an
equation t ≈ u where t and u are terms to unify. An immediate subformula is
defined as usual : P (t) is an immediate subformula of ∀xP (x) for any t. Similarly,
A is an immediate subformula of A∧B, and so on. We consider confluent rewrite
systems (R) formed by term rewrite rules and propositional rewrite rules where
left members are atomic propositions. We use the single arrow for rewriting:
−→R is a single step, −→n

R n steps, −→?
R is the reflexive and transitive closure

of −→R. A↓R represents the normal form of A by a rewrite system R. P ≡R Q
if they have a common reduct.

A similar sequent calculus is presented in [9]. Therefore we will only exhibit a
representative fragment of the rules (see Fig. 1). Extending the transformations
(i.e. adding side conditions) to the whole set of rules of LK is not more difficult
than what we have in Fig. 1. Notice that the side condition is not a constraint:
it liberalizes the corresponding rule of LK.



axiom if P ≡R Q
P `R Q

Γ, P `R ∆ Γ `R Q, ∆
cut if P ≡R Q

Γ `R ∆

Γ, Q[t/x] `R ∆
∀-l if P ≡R ∀x Q

Γ, P `R ∆

Γ, P `R ∆ Γ, Q `R ∆
∨-l if R ≡R P ∨Q

Γ, R `R ∆

Fig. 1: Some inference rules of sequent calculus modulo

3 Tableaux modulo revisited

We introduce in this section a new version of the tableaux modulo of [2]. We
use constrained a form of constrained tableaux which borrows ideas from those
of [5, 6, 7, 13]. We represent tableaux as multisets of branches. A branch is thus
a multiset of formulas written Γ,∆.... Γ, P denotes the multiset Γ ∪ {P}; T |Γ
stands for T ∪ {Γ}. A constrained tableau is a pair T · C of a tableau T and
a set of unification constraints C. A branch can be closed when two opposite
unifiable formulas can be found on it (the base case consists in having P and
¬P ). A tableau is closed when all its branches can be (simultaneously) closed,
i.e. there is a unifier closing all branches simultaneously.

Tableaux for deduction modulo We present tableaux for deduction mod-
ulo as an extension of first-order classical tableaux. We define an alternate non-
destructive version which combines the usual tableau expansion rules (see [12, 18]
for details) on formulas — called α (conjunction), β (disjunction), γ (universal)
and δ (existential) — with a rule handling explicitly rewriting on terms and
propositions.. Our tableau calculus works more precisely on constrained labelled
formulas: every formula has an added label storing variables used in δ-rule for
skolemization and a local constraint store which keeps track of unification con-
straints produced by rewriting steps. Hence formulas are written P l

c where c is
the constraint and l is the label. Note that there are two type of constraints:
local constraints (attached to formulas) and global ones (attached to a tableau)
which interfere only in the case of the closure rule. We also assume that variables
of input formulas are renamed in order to avoid unification problems between
syntactically equal but semantically independent variables.

In a γ-rule, a globally fresh free variable is substituted for the universally
quantified variable x. This free variable is also added to the label of the formula.

In a δ-rule, the skolemization is done as follows: sko is a fresh Skolem function
symbol whose arguments are the variables in the label of the formula. This δ-rule
guarantees for example if we have the rewrite rule x∗0 −→R 0, the two equivalent
(with respect to the rewrite rules) formulas ∀x∃yP (0, y) and ∀x∃yP (x∗0, y) are
skolemized in the same way.

In the rw rule, we add a constraint to formulas resulting of rewriting steps.
It keeps track of the needed unification between the originating occurrence ω of
a rewritable formula in P (P|ω) and the left part of the applied rewrite rule (l)
if we are to use the rewritten formula (P [r]|ω) later in our tableau. There is still
no need to put the constraints globally as we are unable to guess if the formula



Γ1, β(P, Q)l
c | ... | Γn

Γ1, β(P, Q)l
c, P

l
c | Γ1, β(P, Q)l

c, Q
l
c | ... | Γn

β
Γ1, α(P, Q)l

c | ... | Γn

Γ1, α(P, Q)l
c, P

l
c , Q

l
c | ... | Γn

α

Γ1, γ(x, P )l
c | ... | Γn

Γ1, P (x := X)
l∪{X}
c , γ(x, P )l

c | ... | Γn

γ
Γ1, δ(x, P )l

c | ... | Γn

Γ1, P
l
c [x:=sko(l)], δ(x, P )l

c | ... | Γn

δ

Γ1, P
l
c | ... | Γn · C

Γ1, P
l
c , P

l
K[r]ω | ... | Γn · C

rw if l −→R r, and K = (c ∪ {P|ω ≈ l}

Γ1, P
l1
c1 ,¬P l2

c2 | ... | Γn · C
(Γ2 | ... | Γn) · C ∪ c1 ∪ c2 ∪ {P l1 ≈ P l2}

closure (�)

Fig. 2: Tableau modulo expansion and closure rules.

will be used in a closure rule. Note that no new variables are created during
rewriting in deduction modulo, so there is no risk of capture.

The closure rule erases the closable branch provided its constraints are
unifiable. It is the usual binary closure rule. Note that the labels of P and ¬P
need not be same (this would be the case of P (X) and ¬P (a)), therefore we
must unify some subterms of the two formulas (this is denoted by P l1 ≈ P l2)
and apply the substitution to the whole tableau. The local formula constraints
are transferred to the global store in closure. In the global constraint store,
syntactically equal variables are semantically the same: what looked like possible
separate branch closure might be non unifiable globally due to rigid free-variables
introduced in the calculus.

There are some differences between TaMeD in [2] and these tableaux: TaMeD
combines in effect a normalization procedure (yielding a kind of disjunctive
normal form) of the formula which occurs before any application of extended
narrowing and branch closure rules. Our tableau calculus here mixes formula
decomposition (α, β, γ and δ rules) with closure and rewriting steps — and this
allows non-atomic closure. The extended closure rule with RE-unification of[2]
constraints is now a binary closure with first-order unification constraints as
R-unification is encoded in the application of rw. The rw rule rewriting propo-
sitions do not necessitate an immediate post-decomposition of the branch it is
applied on : for example, if we use P −→R Q ∧ R on the branch Γ, P , we keep
the rewritten form Γ,Q ∧R instead of requiring to immediately have Γ,Q,R .

The soundness theorem holds for the following notion of model, that is a
natural extension of the usual boolean model definition to deduction modulo:

Definition 1. A boolean model is said to be a model of a rewrite system R if
and only if for any propositions P ≡R Q, |P | = |Q|. |.| is then noted |.|R.

As usual, a boolean model is mainly a total interpretation function from propo-
sitions into {0, 1} satisfying the conditions of Def. 2. In the later, the term model
will always mean a boolean model of the considered rewrite system R (clear
from context).



Theorem 1 (Soundness). If Γ has a model, then we can not derive the closed
tableau � from Γ using the rules of Fig. 2.

Proof. The proof is standard: we check by induction on the tableau derivation
that any tableau rooted at Γ , at least one branch remains true in the model. ut

Systematic tableau generation We now define a systematic tableau proce-
dure which resembles the incremental closure of [13] as the first step towards our
semantic completeness proof. We must ensure that our strategy is fair, which is
now more complicated due to the addition of rewriting steps. We construct step
by step an approximation of a complete tableau (if Γ is not provable).

First, attach a boolean (of value true) to the input branch. Its value will
be used to alternatively use γ-rules or rw: ensuring completeness forces us to
use them infinitely many times while remaining fair. Two orderings are used
to select the formula to expand: on branches, B1 �B B2 if size(B1) ≤ size(B2)
where size(B) returns the number of formulas on B and on formulas on a given
branch B, �f is defined as α ≺f δ ≺f β ≺f rw ≺f γ if boolean(B) =true, and
α ≺f δ ≺f β ≺f γ ≺f rw otherwise. Now proceed as follows:

1. Tag every formula of the input branch as unused. If we apply α, β, δ: the
considered formula becomes used — to forbid the same expansion again
as in a destructive method — and the branch boolean is inherited by the
produced branch(es). In the case of rw for a given rewrite rule r ∈ R used on
formula P on branch B, P is tagged as used(r) to forbid applying twice the
same rewrite rule to it. Name b the boolean of the expanded branch, then
b← ¬boolean(B). In any case, produced formulas are unused.

2. (a) On each branch, generate from unifiable formulas on it the set of con-
straints which can close it. Take the intersection of these local sets to
get the global set of constraints which could simultaneously close the
tableau. If a unifier exist for the global store then return ’unsatisfiable’.
Otherwise if a branch can be closed without unification, remove it from
the tableau as in the closure rule (and its set of constraints is also
removed from the global set).

(b) Then select the smallest expandable branch (according to ≺B) and its
set S of smallest formulas according to ≺f. Apply the related expansion
rule on every unused (or unused(r) if we apply rw with r) formulas of S.
If we could not apply any expansion return ’satisfiable’, else go to 2a.

We do not rewrite formulas when we know (we check it) that we cannot unify
them with the left part of the rewrite rule. More generally we do not add in the
constraint stores provably non-unifiable terms.

4 Semantic completeness

In this section, we prove that the systematic tableau procedure of Sec. 3 is
complete with respect to the models of Def. 1.



We will need to define a model interpretation for all propositions, even those
that do not appear in the tableau. We also will need some conditions on R, since
the method cannot be complete for all confluent terminating rewrite systems, as
shown in [10, 16]. Two of them are presented in Sec. 4.6.

4.1 Preliminaries

Semi-valuations have first been defined by Schütte, and correspond to Hintikka
sets. The idea is that they correspond to open branches of the systematic tableau,
and this is the first step toward a model. Partial valuations are a bottom-up
extension of them. They differ from model interpretations by the fact that both
are partial functions.

Definition 2 (Semi-valuation(Partial valuation)). An interpretation is a
partial function V : P 7→ {0, 1}. It is called semi- (resp. partial) valuation iff:

– if V (¬P ) = 0 then (resp. iff) V (P ) = 1
– if V (¬P ) = 1 then (resp. iff) V (P ) = 0
– if V (P ∨Q) = 0 then (resp. iff) V (P ) = V (Q) = 0
– if V (P ∨Q) = 1 then (resp. iff) V (P ) = 1 or V (Q) = 1
– if V (P ∧Q) = 0 then (resp. iff) V (P ) = 0 or V (Q) = 0
– if V (P ∧Q) = 1 then (resp. iff) V (P ) = V (Q) = 1
– if V (P ⇒ Q) = 0 then (resp. iff) V (P ) = 1 and V (Q) = 0
– if V (P ⇒ Q) = 1 then (resp. iff) V (P ) = 0 or V (Q) = 1
– if V (∀xP ) = 0 then (resp. iff) for some ground term t, V (P [x := t]) = 0
– if V (∀xP ) = 1 then (resp. iff) for any ground term t, V (P [x := t]) = 1
– if V (∃xP ) = 0 then (resp. iff) for any ground term t, V (P [x := t]) = 0
– if V (∃xP ) = 1 then (resp. iff) for some ground term t, V (P [x := t]) = 1

Definition 3 (Semi-valuation in deduction modulo). A semi-valuation
(resp. partial valuation) V is said to be compatible with a rewrite system R
iff when P ≡R Q and V (P ) is defined, we have V (Q) = V (P ).

This definition is a natural extension to deduction modulo of the previous
one. The next four sections deal with the construction of a partial valuation in
the sense of Def. 3.

4.2 Defining a semi-valuation from a complete branch of a tableau

Because of the free variables, the construction of a semi-valuation from an open
complete branch is not so easy: their meaning is not determined once and for all,
and an open branch might be closed by some unifier θ. A tableau is non closable
when at any step n of our tableau construction no (finite) unifier θ can be found
such that all branches can be closed at the same time.

We have to generate a σ, that enumerates all γ-terms. Remark that if a
γ-formula P appears in a non closed branch of a complete tableau, then for
infinitely many fresh variables Xn, P [x := Xn] appears (the γ rule is infinitely



repeated). Since in the open branch γ-formulas are countable, and free variables
are new when introduced, we define an enumeration of 〈γi, X

i
j〉, the couples of a

γ-formula (indexed by i) and its corresponding free variables (indexed by j). We
fix also an enumeration of the terms of the full language (including the Skolem
symbols introduced). Then, we define successive approximations of the needed
substitution σ:

– σ0 is the empty substitution.
– σn+1 = σn + 〈Xin

jn
:= tjn〉

Section 3 describes a process to construct T0, ..., Tn, ... that represent succes-
sive approximations to a complete tableau, that is a tableau where all possible
rules have been applied. We supposed it non closable: hence for any n, there
exists some open branch B of Tn under σn. Moreover, we can choose this branch
such that for any further step of the systematic tableau procedure, it is never
closed by any σp.

Given a formula γ, a term t, for some step n of the systematic tableau
generation, γ(t) appears on this branch, since it is also open under σn with
n such that t = tjn and γ = γin (from the enumeration).

We obtain a complete open branch under σ that possesses all the needed
properties, and we define our semi-valuation V :

– if a proposition Pc with free variables and constraints c appears on the
branch, and if σ satisfies c, set V (Pσ) = 1.

– if ¬Pc appear with constraints c, and if σ satisfies c, set V (Pσ) = 0.
– if the constraints are not satisfiable, drop the proposition.

It is easy to prove that all properties of Def. 2 for a semi-valuation hold: the
constraints are not modified by the application of any of the α-, β-, γ-, δ-rules so
if, say, an α-formula is interpreted by V , so are its two immediate subformulas.
The semi-valuation hereby defined is well defined. Forcing a proposition to have
two different interpretations, means that σ closes the branch: we cannot have
V (Pσ) 6= V (P ′σ) for Pσ = P ′σ.

4.3 Basic results on V

We must have that V is a semi-valuation for the rewrite system R. This is not
yet the case (think about A→ B, V (B) defined although V (A) is not defined),
so it has to be extended. We first need to prove some technical properties of V .

Our starting point is: the systematic tableau generation of Sec. 3 ensures
that for any atomic proposition, if P = Rσ appears, then each of its one-step
reduct Q = R′σ appear, since we exhaustively try to apply rewrite rules to any
atomic proposition, and if P → Q, σ unifies the constraints of R′.

Lemma 1. Let P0, Pn atomic formulas such that V (P0) is defined and P0 →1

P1 →1 . . . →1 Pn →1 Pn+1 (Pn+1 atomic or not), with →1 the one-step reduct
relation. For any i ≤ n + 1, V (Pi) is defined.



Proof. By induction on n. We first show that the one-step reduct P1 is inter-
preted under V . The process of Sec. 3 tries to one-step rewrite any literal with all
possible rewrite rules. So if P0 = Rσ →1 P1, with Rc appearing on the tableau,
there exists by construction a R′

c′ such that P ′ = R′σ and the associated con-
straints c′ are satisfied by σ (since σ satisfies c and P → P ′).

Hence V (P1) is defined. If n = 0 we are done, else we apply the induction
hypothesis on P1 →1 ...→1 Pn →1 Pn+1. ut

Lemma 2. Let P,Q be two propositions such that P ≡R Q. V (P ) = V (Q) if
they are defined.

Proof. By confluence there exists a proposition R such that P →n R m ← Q.
We prove Lemma 2 by induction on the pair 〈n + m,min(#P,#Q)〉, where #P
stands for P ’s number of logical connectors.

If n = m = 0, Q = P = R and the result is trivial.
If P or Q is an atomic proposition (suppose it is P , without loss of generality),

then P →p P ′ →1 R′ →q R with P ′ atomic. By Lemma 1, V (R′) is defined. We
use induction hypothesis on R′ and Q, since p2 < n.

If both P and Q are compound propositions, remember that V is a semi-
valuation and apply induction hypothesis.

For instance, if P = ∀xS, confluence implies Q = ∀xS′, and R = ∀xS′′.
Suppose that V (P ) = 1 and V (Q) = 0. Then there exists a t such that V (S′[x :=
t]) = 0. But V (S[x := t]) = 1 by definition 2. We find a contradiction by applying
induction hypothesis on S[x := t]→n S′′[x := t]m ← S′[x := t] ut

4.4 Extending V into a semi-valuation for R

Lemma 2 is not sufficient: to fit with Def. 3 we need to ensure that V (Q) is defined
whenever V (P ) is. So we extend the semi-valuation V into a semi-valuation V
for R. Fix an enumeration Pn of the propositions of the language, such that a
proposition Q is seen infinitely many times (it boils down to an enumeration of
〈Q,n〉 where Q describes the propositions and n describes N).

Set V0 = V . Set Vn+1 = Vn and extend it with Pn if Vn(Pn) is not defined:

1. set Vn+1(Pn) = Vn(Q) if for some Q, Q ≡R Pn and Vn(Q) is defined.
2. if Pn is a compound proposition, look at the interpretation under Vn of its

immediate subformulas. If we have enough information, then set Vn+1(Pn)
accordingly. For instance, if Pn = ∀xR and for any t, Vn(R[x := t]) = 1, set
Vn+1(Pn) = 1. Conversely if there is at least one t such that Vn(R[x := t]) =
0, set Vn+1(Pn) = 0. Even if for some t′,Vn(R[x := t′]) is not defined.

We set V as the limit of the Vn. V(P ) = Vn(P ), if it is defined for some n. We do
not know anything yet about V (a compound proposition can be defined by the
first rule). That’s why we need the following technical lemmas, where we adopt
the convention n− 1 = n if n = 0.

Lemma 3. Let n an integer, P an atomic formula, suppose Vn(P ) defined. Then
there exist Q such that P ≡R Q and either V (Q) is defined, or Q is compound
and Vn−1(Q) is defined. In any case all interpretations are equal.



Proof. By induction on n. If n = 0, V0 = V and we are done. If Vn−1(P ) is
defined, apply induction hypothesis. Else, since P is atomic, Vn(P ) is equal to
Vn−1(P ′) for some P ′ ≡R P . If P ′ is a compound proposition, take Q = P ′. If it
is an atomic formula, then apply the induction hypothesis on Vn−1(P ′), we find
a fitting Q ≡R P ′ ≡R P . ut

Corollary 1. Let P an atomic formula, such that Vn(P ) is defined, and that
there exists a compound formula Q such that P ≡R Q.

Then there exists a compound formula R such that P ≡R R and Vn−1(R) is
defined and equal to Vn(P ).

Proof. Apply Lemma 3. If we obtain an atomic S ≡R P such that V (S) is
defined, we use confluence and apply Lemma 1 on the following reduction chain,
obtained by confluence:

S →∗ Sq →1 R→∗ Q↓
such that R is the first non-atomic proposition (Q↓ is not atomic). From Lemma
3, Lemma 2, and since every Vp+1 is a conservative extension of Vp, we get:

Vn(P ) = V (S) = V (R) = Vn−1(R)

Else, S is already compound and all interpretations are equal. ut

Lemma 4. Let P ≡R Q be two propositions. Suppose that V(P ) is defined.
Then V(Q) = V(P ).

Proof. Let m the least integer for which Vm(P ) or Vm(Q) is defined, and suppose
without loss of generality that Vm(Q) is defined.

If m = 0 and V0(P ) is also defined, the result comes from Lemma 2.
Else, since the enumeration has infinite repetition, P is considered at some

later step n. And Vn(P ) is defined by the first extension rule, since the conditions
for its application hold. Therefore, V(P ) = Vn(P ) = Vm(Q) = V(Q).

ut

Lemma 5. V is a semi-valuation.

Proof. We prove by induction that if a (compound) proposition P is defined at
step n, then enough of its immediate subformulas are interpreted in V so as to
ensure that V is a semi-valuation.

If n = 0, then this is because V is a semi-valuation.
If P is defined at step n by the second extension rule: it is immediate.
If P is defined at step n by the first rule, let Q be the proposition such that

P ≡R Q and Vn(P ) is defined equal to Vn−1(Q). Corollary 1 allows us to choose
Q non-atomic. By confluence they have the same main connector. By induction
hypothesis, enough immediate subformulas of Q receive an interpretation under
V. Let Ri those subformulas and R′

i their counterparts in P . We have Ri ≡R R′
i.

Applying Lemma 4, we get V(Ri) = V(R′
i), and therefore enough subformulas

of P are interpreted in V. ut

Lemma 6. V is a semi-valuation for the rewrite system R.

Proof. This is the combination of Lemmas 4 and 5. ut



4.5 Extending a semi-valuation into a partial valuation

V is not a partial valuation for R. Indeed, suppose V (∀x (A(x) ∧ B(x))) is not
defined and that for any t, V (A(t)) = V (B(t)) = 1. We would like to have
V(∀x Q) = 1, since V(A(t) ∧ B(t)) = 1 for any t. But we can find no n such
that Vn(A(t)∧B(t)) = 1 for any t, therefore we can never have Vn+1(∀x (A(x)∧
B(x))) = 1. So we need to extend V as in section 4.4. But no finite step of this
process is sufficient.

We define Ṽ as the least fixpoint of this semi-valuation extension operation:
this is possible, since we can define a partial order on the semi-valuations: V ≺ V ′

if V interprets less formulas than V ′, and if V ′ is conservative over V .
It is then immediate to prove the following lemma:

Lemma 7. Ṽ is a partial valuation for R and agrees with V .

Proof. Ṽ is a semi-valuation for R by construction (the extension operation
respects those properties). It is also a partial valuation: if we know enough
information about the subformulas of Q, then the extension operation sets the
interpretation of Q. Since Ṽ is its own extension, Ṽ (Q) is defined. ut

4.6 Transforming a partial valuation into a model for R

We prove the following theorem:

Theorem 2 (Completeness). Let R a terminating confluent rewrite system,
and Γ a set of propositions. If the systematic tableau procedure of Sec. 3 rooted
at Γ does not terminate, then Γ has a model, under both conditions below.

In usual first-order logic, once one has a semi-valuation, one ends the com-
pleteness proof very easily: we extend the semi-valuation into a model by defining
randomly the truth value of uninterpreted atoms by V . This is no more the case
in deduction modulo, since we have to ensure that the model we construct is a
model of R. At this point, we must introduce some more conditions on R, since
model construction differ with respect to those conditions.

An order condition has been introduced by Stuber in [19] and used in [15, 16]
for proving semantic completeness theorems (of the resolution ENAR and the
cut-free sequent calculus). We consider a confluent rewrite system and a well-
founded order ≺ such that:

– if P → Q then Q ≺ P .
– if A is a subformula of B then A ≺ B.

The domain of the model is the set of the ground terms appearing in the partial
valuation Ṽ constructed in the previous section. And we construct the interpre-
tation by induction on the order:

– if A is a normal atom, set |A|R = Ṽ (A), if defined. Else set |A|R arbitrarily.



– if A is not a normal atom, set |A|R = |A↓ |R.
– if P is a compound proposition, set |P |R from the interpretation of its im-

mediate subformulas.

This definition is well-founded. We prove as in [15] the following results (in this
order):

– P 7→ |P |R defines a model interpretation.
– |P |R = |P↓ |R.
– P 7→ |P |R defines a model of R.
– P 7→ |P |R is a conservative extension of Ṽ .

Turning back to the proof of Theorem 2, in the model defined, |P |R = 1, for
any P ∈ Γ . The tableau method is thus proved complete for all rewrite systems
R that verifies this order condition.

A positivity condition. We now suppose that the rewrite system R, besides
confluence and termination, verifies a positivity condition: all propositional
rewrite rules l → r ∈ R are such that all atoms occurring in r occur positively:
they occur under an even times of negations and as left member of an implica-
tion. r will be called a positive formula. For instance, the following rewrite rule
respects the positivity condition: P (0)→ ∀xP (x)

The domain of the model is the ground terms. We define the interpretation
rather differently:

– if A is an atom, and if Ṽ (A) is defined, set |A|R = Ṽ (A).
– if A is an atom, and if Ṽ (A) is not defined, set |A|R = 1.
– if P is a compound proposition, set |P |R accordingly to Def. 2.

Notice that we defined the interpretation of even non-normal atoms, disregarding
rewrite rules (for now).

Lemma 8. P 7→ |P |R defines a model interpretation. Let P be a proposition. If
Ṽ (P ), is defined, then |P |R = Ṽ (P ).

Proof. The first part of the lemma is by construction of the interpretation. The
second part is proved by induction on the structure of P , using the fact that Ṽ
is a partial valuation (Def. 2). ut

So if any tableau rooted at Γ cannot be closed, Γ has a boolean model. But we
have not yet spoken about a needed property of the interpretation | |R: it has
to be a model of R.

If P ≡R Q, and Ṽ (P ) is defined, Ṽ being a partial valuation, and by Lemma
8:

|P |R = Ṽ (P ) = Ṽ (Q) = |Q|R
The problem arises from the propositions that are not defined by the partial
valuation Ṽ . We do not know anything, a priori.



We can restrain ourselves to a simpler subcase: consider only P → Q instead
of its full reflexive-transitive-symmetric closure ≡R. Also, considering P atomic
is not harmful since the rewriting steps proceed always on atoms.

Now, remember that R is a positive rewrite system. Hence Q is a positive
proposition (noted Q+). The crucial point was to define the interpretation |A|R
of an non-valued atom under Ṽ to be the same for all atoms (whatever: we could
have set 0 or 1). Since Q+ is positive, the intuition is that since its atoms will
also be interpreted by 1, Q+ itself will be interpreted by 1.

We however have to be very careful: first, it could have been that Ṽ (Q+)
is defined, and set to 0. Fortunately, Ṽ is a partial valuation, hence if Ṽ (Q) is
defined, so should be Ṽ (P ). But it still might be that some subformulas of Q
are interpreted under Ṽ . We have to generalize a bit the result, in order to be
able to prove it:

Lemma 9. Let P+ a positive and Q− a negative (¬Q− is positive) proposition
that does not receive an interpretation under Ṽ . Then |P+|R = 1 and |Q−|R = 0.

Proof. By induction over the proposition structure. The base case (P atomic) is
immediate from the definition of P 7→ |P |R. There is no base case for Q− since
an atom is positive.

We detail the case of an universally quantified proposition. If P+ = ∀xR+.
Let t be a term. Since Ṽ is a partial valuation, it can not be that Ṽ (R+[x :=
t]) = 0, else Ṽ (P ) would have been defined. Hence, |R+[x := t]|R = 1 either by
Lemma 8 (if Ṽ (R+[x := t]) = 1), or by induction hypothesis (if Ṽ (R+[x := t])
is not defined). Since it is true for any term t, we conclude that |P |R = 1.

If Q− = ∀xR−. Since Ṽ is a partial valuation, it can not be that Ṽ (R−[x :=
t]) = 1 for any ground term t. By hypothesis we can find no t such that
Ṽ (R−[x := t]) = 0. Hence, there is a t0 such that Ṽ (R−[x := t0]) is not de-
fined, and we conclude by induction hypothesis that |R−[x := t0]|R = 0. Hence
|Q−|R = 0. ut

We then can easily prove the lemma:

Lemma 10. The interpretation P 7→ |P |R defines a model for R.

Proof. Let A →1 P . Either Ṽ (A) is defined, and we conclude by Lemma 8, or
it is not, and by the preceding lemma we have that |A|R = |P |R = 1. We then
extend it to compound propositions by structural induction. At last, we extend
it by induction on the number of rewrite steps to the relation ≡R. ut

The tableau method is then proved complete for the positive rewrite systems.

5 Example

We prove 2 = 2⇒ ∃x (x+x = 2) where = has no special property. Insignificant
formulas are omitted but we list every applied inference. Let R be the following



fragment of Peano’s arithmetic (see [11] for arithmetic as a theory modulo):

x + 0 −→R 0 (1)
x + s(y) −→R s(x + y) (2)

Notice that in the first rewrite step, rule 1 is not applied, since 0 trivially does
not unify with 2 = s(s(0)). Notice also that after that rewrite step, we could
have replaced X1 by s(Y1) yielding a faster solution. As a side comment, the two
formulas under the fourth horizontal bar are produced from the formula over it
using respectively rw(1) and rw(2).

2 = 2,∀x(x + x 6= 2)
γ

X + X 6= 2
rw(2)

s(X1 + Y1) 6= 2 · C := {X ≈ X1, X ≈ s(Y1)} γ
X ′ + X ′ 6= 2

rw(1),rw(2)
s(X2) 6= 2 · C′ := C ∪ {X1 ≈ X2,Y1 ≈ 0}

s(s(X3 + Y3)) 6= 2 · C′′ := C ∪ {X1 ≈ X3, Y1 ≈ s(Y3)}
closure(C′)

� · {X ≈ 1}

6 Conclusion and further work

We have given a new (more liberal) formulation of tableaux for deduction mod-
ulo which is better suited to automated theorem proving. For example, it does
not force atomic closure anymore, which was done in [2] where branches were
fully expanded before eventually applying closure. Moreover, rewriting is not a
separated process anymore and can now occur after any tableau expansion (and
not after all expansions have been done). We have shown its semantic complete-
ness through a systematic generation and detailed the model construction for
specific classes of rewrite systems.

Our systematic tableau construction can be seen as the first step towards an
effective (but not efficient) implementation of the method. Many improvements
are to be made for it to be effective.

For example, labels are an explicit way to store arguments for Skolem func-
tions, but they may contain variables which are not present in the formula we
skolemize. Moreover, if an existential quantifier is inside a universal one (as in
the formula ∀x ∃y P (x, y)), we generate a new Skolem symbol each time we use
δ after a new γ although we could simply use the same one over and over. This
inefficiency could be solved either by removing the rule and preskolemizing the
input formula or by using one of the improved δ-rules: δ+([14]) (or better δ++

([1]) or one of the other ones surveyed in [4]. Our completeness proof should not
be changed by the use of one the two δ+ rules.

Then, the δ-rule in a calculus with free-variables complicates any syntactic
soundness proofs with respect to sequent calculus modulo, especially cut-free.
Indeed, we can no more ensure the freshness condition. So, we are not able to



translate δ-rules into deduction steps in cut-free sequent calculus modulo. The
workaround should be a Skolem theorem for cut-free sequent calculus modulo,
that is yet to be investigated. The link between ground tableaux and a construc-
tive cut elimination theorem is well-known in classical logic, and studied in the
intuitionistic frame in [3].

The completeness proof is not constructive at only one point: we need König’s
lemma to identify an infinite branch. Such a branch is useful only because we
consider boolean models, where truth and falsity are split by construction. The
workaround is well-known ([17]): we should consider models base only on truth:
¬P is true means that if P is true, then every proposition is true in the model.
So, reconsidering the semi-valuation definition from this point of view, we believe
that this work could be shifted in a perfectly constructive framework.

Adding rewrite rules to the tableau already complicates the completeness
proof even with such conditions as confluence or termination of the rewrite sys-
tem. We proved this for an order condition and a positivity condition. In [3, 15]
some more conditions are studied from the point of view of semantic complete-
ness (of cut-free sequent calculus and intuitionistic tableaux) such as a mix of the
two previous conditions or the formulation of HOL in first-order logic modulo
given in [10]. Those results should be easily extendable to the study of tableau
completeness, since we already have a partial valuation.

Concerning deduction modulo, the restriction to atomicity of the left-hand
side of propositional rewrite rules can sometimes be relaxed as shown in [8]
where the (first-order) sequent calculus is presented as (non-atomic) proposi-
tional rewrite rules: the system obtained is similar to a tableau calculus (no
surprise here) and it exhibits the fact that the real deductive process lies within
the quantifiers. Sadly, no criterion exists regarding the safe introduction of non-
atomic propositional rewrite rules: this remains yet another area to be explored,
which could be interesting regarding the implementation of proof-search proce-
dures modulo.
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