Algorithms and Complexity of Constraint Satisfaction Problems (course number 5)

Nicolas (Miki) Hermann

LIX, École Polytechnique

hermann@lix.polytechnique.fr
We need first to determine which are the generic NP-complete constraint satisfaction problems. We already saw that

\[\text{CSP}(or_0, or_3) = \text{CSP}(or_0, or_1, or_2, or_3) = 3\text{SAT} \]

is NP-complete, but they contain too many relations. We would need an NP-complete CSP generated by a single relation. A good candidate to generate NP-complete CSP is the relation

1-in-3 \[= \{001, 010, 100\}. \]
Theorem

\[\text{CSP}(\text{1-in-3}) \text{ is NP-complete.} \]

Proof.

We need to construct from the relation \text{1-in-3} a set of relations \(S \) such that \(\text{CSP}(S) \) is NP-complete. We already know that \(\text{CSP}(\text{neq, or}_0) = 3\text{SAT} \), therefore it is sufficient to implement the relations

\[
\begin{align*}
\text{neq} & = \{01, 10\} \\
\text{or}_0 & = \{001, 010, 011, 100, 101, 110, 111\}
\end{align*}
\]

by the relation \text{1-in-3}. .../...
Proof (cont).

1. We will produce first the constraints 0 and 1 by variable identification. Note that

\[[1\text{-in-}3(x_T, x_F, x_F)] = \{100\} \]

hence by the constraint $1\text{-in-}3(x_T, x_F, x_F)$ we force the variable x_T to represent 1 and the variable x_F to represent 0. [pinning]

2. Note also that

\[[1\text{-in-}3(x, y, 0)] = \{01, 10\} \]

which gives us the possibility to produce the relation neq. This way we have the implementation of the constraint

\[neq(x, y) = \exists x_T \exists x_F 1\text{-in-}3(x, y, x_F) \land 1\text{-in-}3(x_T, x_F, x_F) \]

.../...
Proof.

It is a little bit more complicated to implement or_0, but we can do it.

$$or_0(x_1, x_2, x_3) = \exists y_2 \exists y_3 \exists z_1 \exists z_2 \exists z_3 \exists z_4 \exists z_5$$

$$\exists 1-in-3(x_1, z_1, z_2) \land 1-in-3(y_2, z_1, z_3)$$

$$\land \exists 1-in-3(y_3, z_2, z_4) \land 1-in-3(z_2, z_3, z_5)$$

$$\land \exists neq(x_2, y_2) \land neq(x_3, y_3)$$

It is easy now to implement the relations or_1, or_2 and or_3 by or_0 and neq. This proves that the relation $1-in-3$ implements the necessary relations for the problem $3SAT$.

To prove that the relation \textit{nae} generates NP-complete \textit{CSP}, we need first some lemmas.

\textbf{Lemma}

The formula $\varphi(x_1, \ldots, x_k)$ is satisfiable if and only if the disjunction $\varphi(x_1, \ldots, x_k) \lor \varphi(\neg x_1, \ldots, \neg x_k)$ is satisfiable.

\textbf{Proof.}

If $\varphi(x_1, \ldots, x_k)$ is satisfiable then $\varphi(x_1, \ldots, x_k) \lor \varphi(\neg x_1, \ldots, \neg x_k)$ is also satisfiable,

If $\varphi(x_1, \ldots, x_k) \lor \varphi(\neg x_1, \ldots, \neg x_k)$ then there exists a model m satisfying the disjunction. Either $m \models \varphi(x_1, \ldots, x_k)$, and in this case the proof is finished, or $m \models \varphi(\neg x_1, \ldots, \neg x_k)$ and in this case $\neg m \models \varphi(x_1, \ldots, x_k)$.
The relations 1-in-3 and nae contain the following vectors:

\[
1\text{-in-3} = \{ \begin{array}{c} 001, 010, 100 \end{array} \}
\]
\[
nae = \{ \begin{array}{c} 001, 010, 100, 110, 101, 011 \end{array} \}
\]

Therefore we have the identity

\[
1\text{-in-3}(x, y, z) \lor 1\text{-in-3}(\neg x, \neg y, \neg z) = nae(x, y, z)
\]

Note that the relation nae implements neq by diagonalisation.

\[
[\text{neq}(x, y)] = [\text{nae}(x, y, y)] = \{01, 10\}.
\]

For each boolean vector \(m \in \{0, 1\}^k \), the function \(w(m) \) denotes its Hamming weight.
Theorem

\(\text{CSP}(\text{nae}) \) is NP-complete.

Proof.

- Let \(\varphi \) be a 1-in-3-formula, i.e., formula constructed from the relation 1-in-3. Let us construct the \(\text{nae} \)-formula \(\varphi' \) by replacement. For each clause \(1\text{-in-3}(x, y, z) \) in \(\varphi \) we add the clause \(\text{nae}(x, y, z) \) in \(\varphi' \). If \(m \models \varphi \) then \(m \models \varphi' \) since \(1\text{-in-3} \subseteq \text{nae} \).

- Let \(\varphi' \) be a \(\text{nae} \)-formula and \(m \) an interpretation such that \(m \models \varphi' \). For each clause \(c = \text{nae}(x_1, x_2, x_3) \) of \(\varphi' \) let \(m_c \) be the restriction of \(m \) to the variables \(\{x_1, x_2, x_3\} \) which satisfies \(c \). We construct a new \(\text{nae} \)-formula \(\varphi'' \) by replacement. If \(w(m_c) = 1 \), we add the clause \(c \) to \(\varphi'' \). If \(w(m_c) = 2 \), we replace the clause \(c \), where \(m(x) = 1 \), by the formula \(\exists y \, \text{nae}(y, x_2, x_3) \land \text{neq}(x_1, y) \). Note that we can implement the relation \(\text{neq} \) by \(\text{nae} \) as well as by 1-in-3.

\[\ldots / \ldots \]
Proof.

- From the nae-formula φ'', we construct the 1-in-3-formula φ by replacement. We replace in φ'' each clause $\text{nae}(x, y, z)$ by $\text{1-in-3}(x, y, z)$ and each clause $\text{neq}(x, y) = \text{nae}(x, y, y)$ by

$$\text{neq}(x, y) = \exists x_T \exists x_F \, 1\text{-in-3}(x, y, x_F) \land 1\text{-in-3}(x_T, x_F, x_F)$$

- This way, for each vector m, if $m \models \varphi'$ then $m \models \varphi$.
We are finally able to prove the result announced at the beginning of this course.

Theorem (Dichotomy Theorem (Schaefer, 1978))

Let S be a set of boolean relations. If S satisfies one of the following conditions

1. S is 0-valid,
2. S is 1-valid,
3. S is Horn,
4. S is dual Horn,
5. S is bijunctive,
6. S is affine,

then $\text{CSP}(S)$ is decidable in polynomial time. Otherwise, $\text{CSP}(S)$ is NP-complete.
Proof.

We perform a case analysis following the 8 interesting clones $I_2, I_0, I_1, N_2, E_2, V_2, L_2$ and D_2, the polynomial cases first.

1. If $\text{Pol}(S) \supseteq I_0$, i.e., S is 0-valid, then each relation in S contains the vector $0 \cdots 0$. Hence each instance of $\text{CSP}(S)$ is satisfiable by the interpretation $0 \cdots 0$.

2. If $\text{Pol}(S) \supseteq I_1$, i.e., S is 1-valid, then each relation in S contains the vector $1 \cdots 1$. Hence each instance of $\text{CSP}(S)$ is satisfiable by the interpretation $1 \cdots 1$.

3. If $\text{Pol}(S) \supseteq E_2$, i.e., S is closed under conjunction, then S is Horn. HornSat is polynomial, hence each instance of $\text{CSP}(S)$ is decidable in polynomial time.

4. If $\text{Pol}(S) \supseteq V_2$, i.e., S is closed under disjunction, then S is dual Horn. Hence $\text{CSP}(S)$ is decidable in polynomial time by duality with the Horn case.

.../...
Proof.

5 If $\text{Pol}(S) \supseteq L_2$, i.e., S is closed under affinity then S is affine. AffineSat is polynomial, hence $\text{CSP}(S)$ is decidable in polynomial time.

6 If $\text{Pol}(S) \supseteq D_2$, i.e., S is closed under majority, then S is bijunctif. 2Sat is polynomial, hence $\text{CSP}(S)$ is decidable in polynomial time.

7 If $\text{Pol}(S) = N_2$, i.e., S is closed under negation, then S is complementive. Given that nae is complementive, we have $\text{nae} \in \langle S \rangle$. Therefore $\text{CSP}(S)$ is NP-complete.

8 If $\text{Pol}(S) = I_2$, i.e., S is cosed only under the identity, then S is a set of all boolean relations. Given that $1\text{-in-3} \in \text{Inv}(I_2)$, we have $1\text{-in-3} \in \langle S \rangle$. Therefore $\text{CSP}(S)$ is NP-complete.
Some remarks

- Once Post's lattice as well as Galois correspondence between clones and co-clones known, the proof of the Dichotomy Theorem for boolean CSP is very easy.
- The original proof by Schaefer is totally different and much more difficult to understand.
We can now solve boolean constraint satisfaction problems very easily.

Probleme **Monotone 3neg-2pos Sat**

Input: A set of variables V and a formula φ in CNF on V, where each clause contains either *three* negative literals or *two* positive literals.

Question: Is the formula φ satisfiable?
Monotone 3neg-2pos Sat is NP-complete.

Proof.
The problem corresponds to CSP([¬x ∨ ¬y ∨ ¬z], [x ∨ y]). The relation [¬x ∨ ¬y ∨ ¬z] is Horn, the relation [x ∨ y] is dual Horn and bijunctive. It is therefore easy to see that \(\text{Pol}([\neg x \lor \neg y \lor \neg z], [x \lor y]) = I_2 \). Therefore the problem Monotone 3neg-2pos Sat is NP-complete.
Solution of an Exercise

We can now easily answer aforementioned questions:

1. CSP(or_0, or_1) is polynomial, since $Pol(or_0, or_1) \supseteq V_2$
 (exactly $Pol(or_0, or_1) = V_1$).

2. CSP(or_0, or_3) also called MONOTONE 3SAT is NP-complete, since
 $Pol(or_0, or_3) = I_2$.

3. CSP(or_2, or_3) is polynomial, since $Pol(or_2, or_3) \supseteq E_2$
 (exactly $Pol(or_2, or_3) = E_0$).

4. CSP(or_1, or_2) is NP-complete, since $Pol(or_1, or_2) = I_2$.

Recall the relations

The relations used in the aforementioned CSP are:

\[
\begin{align*}
or_0 & = [x \lor y \lor z] \\
or_1 & = [x \lor y \lor \neg z] \\
or_2 & = [x \lor \neg y \lor \neg z] \\
or_3 & = [\neg x \lor \neg y \lor \neg z]
\end{align*}
\]
Problem \textsc{Another Sat}(S)

\textit{Input:} A boolean formula \(\varphi \) in CNF over \(S \) and a model \(m \) of \(\varphi \).

\textit{Question:} Is there another model \(m' \) satisfying \(\varphi \), where \(m' \neq m \)?
Problem **Fourth SAT(S)**

Input: An S-formula φ and three models $M = \{m_1, m_2, m_3\}$ of φ.

Question: Is there another model $m \notin M$ satisfying φ?
Problem **Yet Another SAT** (Horn)

Input: A Horn formula φ and a nonempty set of models $M \subseteq [\varphi]$.

Question: Is there another model $m \notin M$ satisfying φ?
Exercise

Determine if $\text{CSP}(S)$ are polynomial or NP-complete for the following sets of boolean relations S:

1. $S = \{(x \land \neg y) \equiv z\}$
2. $S = \{(x \neq y) \equiv z, (x \lor y) \equiv z\}$
3. $S = \{(x \neq y) \equiv z, (x \land y) \equiv z\}$
4. $S = \{(x \equiv y) \equiv z, (x \lor y) \land z\}$
It’s all for today.
Do you have questions?