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Abstract. We study the minimum Hamming distance between distinct
satisfying assignments of a conjunctive input formula over a given set
of Boolean relations (MinSolutionDistance, MSD). We present a complete
classification of the complexity of this optimization problem with respect
to the relations admitted in the formula. We give polynomial time algo-
rithms for several classes of constraint languages. For all other cases we
prove hardness or completeness with respect to poly-APX, or NPO, or
equivalence to a well-known hard optimization problem.

1 Introduction

We study the following optimization problem related to Boolean constraint
satisfaction problems (CSPs): Given a formula built from atomic constraint rela-
tions by means of conjunction and variable identification, the task is to produce
two satisfying assignments having minimal Hamming distance among all dis-
tinct pairs in the solution space of the CSP instance represented by the formula
(MinSolutionDistance, MSD). Note that the dual problem MaxHammingDistance
has been studied in [9].

As usual our problem is parametrized by the set of atomic constraints allowed
to occur in the conjunctive formulas. With respect to this parametrization we com-
pletely classify the complexity of the minimization problemMSD: It turns out that
it is either polynomial-time solvable, or that it is complete for a well-known opti-
mization class, or else equivalent to some classical hard optimization problem.

Restricting the allowed relations to affine Boolean relations, our prob-
lem MSD becomes the well-known problem MinDistance of computing the mini-
mum distance of a linear code. As this quantity determines the number of errors
such a code can detect and correct, it is of central importance in coding theory.
Our work can thus be seen as a generalization of these questions from affine to
arbitrary relations.
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In the course of investigations it appears that MSD lacks compatibility with
existential quantification, preventing classical clone theory from being applica-
ble. Consequently, we are lead to weak co-clones that need only be closed under
conjunction and equality. To deal with such structures we make use of the the-
ory established in [15], as well as the minimal weak bases of Boolean co-clones
described in [13].

This paper is part of a more general program to understand the Hamming
distance between solutions of constraint satisfaction problems. The results of
this program up to now, including those from this paper and some on other
problems, can be found in [4,5].

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or
an atom, is an expression R(x), where R is an n-ary relation and x is an n-
tuple of variables from V. Let L be the collection of all non-empty finite sets of
Boolean relations, also called constraint languages. A (conjunctive) Γ -formula is
a finite conjunction of atoms R1(x1) ∧ · · · ∧ Rk(xk), where the Ri are relations
from Γ ∈ L and the xi are variable tuples of suitable arity.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)
to each variable x ∈ V. If we arrange the variables in some arbitrary but fixed
order, say as a vector (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1 − m[i].

Table 1. Some relevant Boolean co-clones with bases

iD2 {x ⊕ y, x → y} iN {dup3}
iL {even4} iN2 {nae3}
iL2 {even4,¬x, x} iI {even4, x → y}
iV2 {x ∨ y ∨ ¬z,¬x, x} iI0 {even4, x → y,¬x}
iE2 {¬x ∨ ¬y ∨ z,¬x, x} iI1 {even4, x → y, x}

An assignment m satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,
m(xn)) ∈ R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m
is said to be a model or solution of ϕ in this case. We use [ϕ] to denote the
Boolean relation containing all models of ϕ. In sets of relations represented this
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way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1 − m(v).

The following Boolean functions and relations are of particular relevance to
us: we write x ⊕ y for addition modulo 2 and x ≡ y for x ⊕ y ⊕ 1. Further, we
define the relations nae3 := {0, 1}3

� {000, 111}, dup3 := {0, 1}3
� {010, 101}

and even4 := {(a1, a2, a3, a4) ∈ {0, 1}4 | ⊕4
i=1ai = 0}.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [14] (see also [6,8]). A Boolean relation R is (1)
1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R, (2) Horn (dual Horn) if R
can be represented by a formula in conjunctive normal form (CNF) having at
most one unnegated (negated) variable in each clause, (3) monotone if it is both
Horn and dual Horn, (4) bijunctive if it can be represented by a CNF having
at most two variables in each clause, (5) affine if it can be represented by an
affine system of equations Ax = b over Z2, (6) complementive if for each m ∈ R
also m ∈ R. A set Γ of Boolean relations is called 0-valid (1-valid, Horn, dual
Horn, monotone, affine, bijunctive, complementive) if every relation in Γ has
the respective property.

We denote by 〈Γ 〉 the set of all relations that can be expressed using relations
from Γ ∪ {=}, conjunction, variable identification (and permutation), cylindrifi-
cation and existential quantification. The set 〈Γ 〉 is called the co-clone generated
by Γ . A base of a co-clone B is a set of relations Γ such that 〈Γ 〉 = B. The set of
all co-clones constitutes a lattice with regard to set inclusion. Their bases were
studied in [7]; those relevant in this paper are listed in Table 1. In particular the
sets of relations being 0-valid, 1-valid, complementive, Horn, dual Horn, affine,
and bijunctive each form a co-clone denoted by iI0, iI1, iN2, iE2, iV2, iL2, and
iD2, respectively.

We will also use a weaker closure than 〈Γ 〉, called conjunctive closure and
denoted by 〈Γ 〉∧, where the constraint language Γ is closed under conjunctive
definitions, but not under existential quantification or addition of explicit equal-
ity constraints.

Minimal weak bases of co-clones are bases with certain additional properties.
Since we rely on only some of them, we shall not define this notion but refer the
reader to [13,15].

Theorem 1 (Schnoor & Schnoor [15]). If Γ is a minimal weak base of a
co-clone, then Γ ⊆ 〈Γ ′〉∧ for any base Γ ′.

Lagerkvist computed minimal weak bases for all Boolean co-clones in [13].
From there we infer that {[even4(x1, x2, x3, x4)∧(x1∧x4 ≡ x2∧x3)]} constitutes
a minimal weak base of the co-clone iN; likewise {[(x1 ≡ x2 ∧ x3) ∧ (¬x4 ≡
¬x2 ∧ ¬x3)]} is one of iI.

We assume that the reader has a basic knowledge of approximation algo-
rithms and complexity theory, see e.g. [2,8]. For reductions among decision
problems we use polynomial-time many-one reduction denoted by ≤m. Many-one
equivalence between decision problems is written as ≡m. For reductions among
optimization problems we employ approximation preserving reductions (AP-
reductions), represented by ≤AP, while AP-equivalence of optimization problems
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is stated as ≡AP. Besides, the following approximation complexity classes in the
hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO occur.

An optimization problem P1 AP-reduces to another optimization problem P2

if there are two polynomial-time computable functions f , g, and a constant α ≥ 1
such that for all r > 1 on any input x for P1 the following holds:

– f(x) is an instance of P2;
– for any solution y of f(x), the result g(x, y) is a solution of x;
– if y is an r-approximate solution for the instance f(x), then the solution

g(x, y) is (1 + (r − 1)α + o(1))-approximate for x.

If P1 AP-reduces to P2 with constant α ≥ 1 and P2 has an f(n)-approximation
algorithm, then there is an αf(n)-approximation algorithm for P1.

To relate our problem to well-known optimization problems we make the
following convention: For optimization problems P and Q we say that P is Q-
complete if P ≡AP Q. We use this notion in particular with respect to the
following well-studied problem.

Problem MinDistance. Given a matrix A ∈ Z
k×l
2 any non-zero vector x ∈ Z

l
2

with Ax = 0 is considered a solution. The objective is to minimize the Hamming
weight hw(x).

MinDistance is known to be NP-hard to approximate within a factor
2Ω(log1−ε(n)) for every ε > 0, see [10]. Thus if a problem P is equivalent to
it, then P /∈ APX unless P = NP.

We also use the classic satisfiability problem SAT(Γ ), asking for a conjunctive
formula ϕ over a constraint language Γ , if ϕ is satisfiable. Schaefer presented
in [14] a complete classification of complexity for SAT. His dichotomy theorem
proves that SAT(Γ ) is polynomial-time decidable if Γ is 0-valid (Γ ⊆ iI0), 1-valid
(Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine
(Γ ⊆ iL2); otherwise it is NP-complete. Moreover, we need the decision prob-
lem AnotherSAT(Γ ), whose complexity was completely classified in [12]. Given
a conjunctive formula ϕ and a satisfying assignment m, it asks if there exists
another satisfying assignment m′ �= m for ϕ.

3 Results

The input to our problem is a conjunctive formula over a constraint language.
The satisfying assignments of the formula, being its solutions, constitute the
codewords of the associated code. The minimization target is the distance of
any two distinct solutions.

Problem MinSolutionDistance(Γ ), MSD(Γ )
Input: A conjunctive formula ϕ over relations from Γ .
Solution: Two satisfying truth assignments m �= m′ to the variables occurring
in ϕ.
Objective: Minimum Hamming distance hd(m,m′).
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Theorem 2. For any constraint language Γ the optimization problem MSD(Γ ) is

(i) in PO if Γ is
(a) bijunctive (Γ ⊆ iD2) or
(b) Horn (Γ ⊆ iE2) or
(c) dual Horn (Γ ⊆ iV2);

(ii) MinDistance-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iii) in poly-APX if Γ is both 0-valid and 1-valid, but does not contain an affine

relation (iN ⊆ 〈Γ 〉 ⊆ iI), where MSD(Γ ) is n-approximable but not (n1−ε)-
approximable unless P = NP; and

(iv) NPO-complete otherwise (iN2 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 or iI1 ⊆ 〈Γ 〉).
Proof. The proof is split into several propositions presented in the remainder of
the paper.

(i) See Propositions 7 and 8.
(ii) See Proposition 14.
(iii) For Γ ⊆ iI, every formula ϕ over Γ has at least two solutions since it is both

0-valid and 1-valid. Thus 2SolutionSAT(Γ ) is in P, and Proposition 13 yields
that MSD(Γ ) is n-approximable. By Proposition 18 this approximation is
indeed tight.

(iv) According to [12], AnotherSAT(Γ ) is NP-hard for iI0 ⊆ 〈Γ 〉, or iI1 ⊆ 〈Γ 〉. By
Lemma 10 it follows that 2SolutionSAT(Γ ) is NP-hard, too. For iN2 ⊆ 〈Γ 〉
we can reduce the NP-hard problem SAT(Γ ) to 2SolutionSAT(Γ ). Hence
MSD(Γ ) is NPO-complete in all three cases. ��

The optimization problem can be transformed into a decision problem MSDd by
adding a bound k ∈ N to the input and asking if hd(m,m′) ≤ k. We obtain the
following dichotomy:

Corollary 3. MSDd(Γ ) is in P if Γ ∈ L is bijunctive, Horn, or dual-Horn, and
it is NP-complete otherwise.

Proof. This follows immediately from Theorem 2: All cases in PO become
polynomial-time decidable, whereas the other cases, which are APX-hard,
become NP-complete. According to Post’s lattice this classification covers all
finite sets Γ of relations. ��

4 Duality and Inapplicability of Clone Closure

As the optimization problem MSD is not compatible with existential quantifica-
tion, we cannot prove an AP-equivalence result between any two MSD parame-
trized by constraint languages generating the same co-clone. Yet, similar results
hold for weak co-clones.
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Proposition 4. We have MSDd(Γ ′) ≤m MSDd(Γ ) and MSD(Γ ′) ≤AP MSD(Γ )
for Γ, Γ ′ ∈ L satisfying Γ ′ ⊆ 〈Γ 〉∧.

Proof. For similarity it suffices to prove that Γ ′ ⊆ 〈Γ 〉∧ implies MSD(Γ ′) ≤AP

MSD(Γ ).
Let a Γ ′-formula ϕ be an instance of MSD(Γ ′). Since Γ ′ ⊆ 〈Γ 〉∧, every

constraint R(x1, . . . , xk) of ϕ can be written as a conjunction of constraints
upon relations from Γ . Substitute the latter into ϕ, obtaining ϕ′. Now ϕ′ is an
instance of MSD(Γ ), where ϕ′ is only polynomially larger than ϕ. As ϕ and ϕ′

have the same variables and hence the same models, also the closest distinct
models of ϕ and ϕ′ are the same. ��

For a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R}, i.e.,
the relation containing the complements of tuples from R. We naturally extend
this to sets of relations Γ by putting dual(Γ ) = {dual(R) | R ∈ Γ}. Since taking
complements is involutive, duality is a symmetric relation. By inspecting the
bases of co-clones in Table 1, we deduce that many co-clones are duals of each
other, e.g. iE2 and iV2.

We now show that it suffices to consider only one half of Post’s lattice of
co-clones.

Lemma 5. For any set Γ of Boolean relations we have MSDd(Γ ) ≡m

MSDd(dual(Γ )) and MSD(Γ ) ≡AP MSD(dual(Γ )).

Proof. For a Γ -formula ϕ and an assignment m to ϕ we construct a dual(Γ )-
formula ϕ′ by substitution of every atom R(x) by dual(R)(x). Then m satis-
fies ϕ if and only if m satisfies ϕ′, m being the complement of m. Moreover,
hd(m,m′) = hd(m,m′). ��

5 Finding the Minimal Distance Between Solutions

5.1 Polynomial-Time Cases

We use the following result based on a previous theorem of Baker and Pixley [3],
showing that it suffices to consider binary relations when studying bijunctive
constraint languages.

Proposition 6 (Jeavons et al. [11]). Any bijunctive constraint R(x1, . . . , xn)
is equivalent to

∧
1≤i≤j≤n Rij(xi, xj), where Rij is the projection of R to the

coordinates i and j.

Proposition 7. If Γ is bijunctive (Γ ⊆ iD2) then MSD(Γ ) is polynomial-time
solvable.

By Proposition 6, an algorithm for bijunctive Γ can be restricted to at most
binary clauses. We extend the algorithm of Aspvall, Plass, and Tarjan [1].
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Algorithm
Input: An iD2-formula ϕ viewed as a collection of one- or two-element sets of
literals.
Output: “≤ 1 model” or the minimal Hamming distance of any two distinct
models of ϕ.
Method: Let V be the set of variables occurring in ϕ, let L = {v,¬v | v ∈ V}
be the set of corresponding literals, and let ū denote the complementary literal
to u ∈ L.

– Construct the relation R := {(ū, v), (u, v̄) | {u, v} ∈ ϕ} ∪ {(ū, u) | {u} ∈ ϕ}.
Let ≤ be the reflexive and transitive closure of R, i.e. the least preorder on L
extending R.
Let ∼ := {(u, v) ∈ L2 | u ≤ v ∧ v ≤ u} be the associated equivalence relation.
If v ∼ ¬v holds for some variable v, then return “≤ 1 model” (ϕ is unsatisfi-
able).

– Otherwise, let V0 := {v ∈ V | v ≤ ¬v} and V1 := {v ∈ V | ¬v ≤ v} be sets of
variables being false and true, respectively, in every model of ϕ.
If V0 ∪ V1 = V holds, then return “≤ 1 model” (ϕ has only one model).

– Otherwise, construct the sets
F0 := {L ∈ L/∼ | ∃v ∈ V0 : L ≤ [v]∼} ∪ {L ∈ L/∼ | ∃v ∈ V1 : L ≤ [¬v]∼} and
F1 := {L ∈ L/∼ | ∃v ∈ V0 : [¬v]∼ ≤ L} ∪ {L ∈ L/∼ | ∃v ∈ V1 : [v]∼ ≤ L}.
F0 (F1) is the set of equivalence classes of literals whose value is forced to false
(to true) by backward and forward propagation from variables in V0 and V1.
Let P := (L/∼) � (F0 ∪ F1) be the set of remaining equivalence classes.
Return min{|L| | L ∈ P} as minimal Hamming distance.

Complexity. The size of L is linear in the number of variables, the reflexive
closure can be computed in linear time in |L|, the transitive closure in cubic time
in |L|, see [16]. The equivalence relation ∼ is the intersection of ≤ and its inverse
(quadratic in |L|); from it we can obtain the partition L/∼ in linear time in |L|,
and combining this with the preorder ≤ we can compute the order on L/∼ in
polynomial time, as well. Similarly, the remaining sets from the proof can be
computed with polynomial time complexity.

Correctness. The pairs in R arise from understanding the atomic constraints
in ϕ as implications. Therefore, by transitivity of implication, in every model
of ϕ, literals u, v ∈ L satisfying u ≤ v have to be evaluated so that (m(u),m(v))
does not violate the Boolean order relation, i.e. [x → y]. Hence, literals u ∼ v
from one equivalence class have to share the same value in any model m. More-
over, since literals and their negations have to take on opposite values, we must
have m(v) = 0 for all v ∈ V0 and m(v) = 1 for all v ∈ V1. This proves that the
algorithm gives a correct answer in case there do not exist feasible solutions. Fur-
thermore, by transitivity, we see that literals in equivalence classes in Fi must be
evaluated to i ∈ {0, 1}. So any two models can only differ on the literals belong-
ing to members of P . Therefore, clearly, the return value of the algorithm is a
lower bound for the minimal solution distance. To prove the converse, we shall
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exhibit two models m0 �= m1 of ϕ having the least cardinality of equivalence
classes in P as their Hamming distance.

Let L ∈ P be a class of minimum cardinality. Define m0(u) := 0 for all
literals u ∈ L and likewise, m1(u) := 1. We extend this by m1(w) := m0(w) := 0
for all w ∈ L such that w ≤ u for some u ∈ L, and by m0(w) := m1(w) := 1
for all w ∈ L such that u ≤ w for some u ∈ L. For variables v ∈ V satisfying
v ≤ ¬v or ¬v ≤ v we have [v]∼ /∈ P ; in other words, for [v]∼ ∈ P the classes
[v]∼ and [¬v]∼ are incomparable. Thus, so far, we have not defined m0 and m1

on a variable v ∈ V and on its negation ¬v at the same time. Of course, fixing
a value for a negative literal ¬v to some value implicitly means that we bind
the assignment for v ∈ V to the opposite value. We complete the definition of
m0 and m1 by setting them to 0 on every v ∈ V where [v]∼ ∈ P and they are
not yet defined. Moreover, for v ∈ V where [v]∼ ∈ Fi we put mj(v) := i for
i, j ∈ {0, 1}. Obviously, m0 differs from m1 only in the variables corresponding
to the literals in L, so their Hamming distance is |L| as desired. Besides, both
assignments respect the order constraints in (L,≤). As these faithfully reflect all
original atomic constraints, m0 and m1 are indeed models of ϕ.

Proposition 8. MSD(Γ ) is in PO for Γ ∈ L satisfying Γ ⊆ iE2 or Γ ⊆ iV2.

We only discuss the Horn case (Γ ⊆ iE2), dual-Horn (Γ ⊆ iV2) being sym-
metric.

Algorithm
Input: A Horn formula ϕ viewed as a set of Horn clauses.
Output: “≤ 1 model” or the minimal Hamming distance of any two distinct
models of ϕ.
Method:

Step 1: For each variable x in ϕ, add the clause (¬x∨x). Apply the following
rules to ϕ until no more clauses and literals can be removed and no new clauses
can be added.
– Unit resolution and unit subsumption: Let ū denote the complement of a
literal u. If the clause set contains a unit clause u, remove all clauses containing
the literal u and remove all literals ū from the remaining clauses.
– Hyper-resolution with binary implications: Resolve all negative literals of a
clause simultaneously with binary implications possessing identical premises.

(¬x ∨ y1) · · · (¬x ∨ yk) (¬y1 ∨ · · · ∨ ¬yk ∨ z)

(¬x ∨ z)

(¬x ∨ y1) · · · (¬x ∨ yk) (¬y1 ∨ · · · ∨ ¬yk)

(¬x)

Let D be the final result of this step. If D is empty or contains the empty clause,
return “≤ 1 model”.

Step 2: Let V be the set of variables occurring in D, and let ∼ ⊆ V2 be the
relation defined by x ∼ y if {¬x∨y,¬y ∨x} ⊆ D. Note that ∼ is an equivalence,
since the tautological clauses ensure reflexivity and resolution of implications
computes their transitive closure. We say that a variable z depends on variables
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y1, . . . , yk, if D contains the clauses ¬y1 ∨ · · · ∨¬yk ∨ z, ¬z ∨ y1, . . . , ¬z ∨ yk and
z �∼ yi holds for all i = 1, . . . , k.

Return min{|X| X ∈ V/∼,X does not contain dependent variables} as min-
imal Hamming distance.

Complexity. The run-time of the algorithm is polynomial in the number of
clauses and the number of variables in ϕ: Unit resolution/subsumption can be
applied at most once for each variable, and hyper-resolution has to be applied at
most once for each variable x and each clause ¬y1∨· · ·∨¬yk∨z and ¬y1∨· · ·∨¬yk.

Correctness. Let U be the set of unit clauses removed by subsumption. Adding
resolvents and removing subsumed clauses maintains logical equivalence, there-
fore D∪U is logically equivalent to ϕ, i.e., both clause sets have the same models.
If D is empty, the unit clauses in U define a unique model of ϕ. If D contains
the empty clause, the sets D and ϕ are unsatisfiable. Otherwise D has at least
two models, as we will show below. As each model m of D uniquely extends to
a model of ϕ by defining m(x) = 1 for (x) ∈ U and m(x) = 0 for (¬x) ∈ U , the
minimal Hamming distances of ϕ and D are the same.

We are thus looking for models m1,m2 of D such that the size of the difference
set Δ(m1,m2) = {x | m1(x) �= m2(x)} is minimal. In fact, since the models of
Horn formulas are closed under minimum, we may assume m1 < m2, i.e., we
have m1(x) = 0 and m2(x) = 1 for all variables x ∈ Δ(m1,m2). Indeed, given
two models m2 and m′

2 of D, m1 = m2 ∧m′
2 is also a model. Since hd(m1,m2) ≤

hd(m2,m
′
2) holds, the minimal Hamming distance will occur between models m1

and m2 satisfying m1 < m2.

Note the following facts regarding the equivalence relation ∼ and dependent
variables.

– If x ∼ y then the two variables must have the same value in every model
of D in order to satisfy the implications ¬x ∨ y and ¬y ∨ x. This means that for
all models m of D and all X ∈ V/∼, we have either m(x) = 0 for all x ∈ X or
m(x) = 1 for all x ∈ X.

– The dependence of variables is acyclic: If zi depends on zi+1 for i = 1, . . . , l
and zl depends on z1, then we have a cycle of binary implications between the
variables and thus zi ∼ zj for all i, j, contradicting the definition of dependence.

– If a variable z depending on y1, . . . , yk belongs to a difference
set Δ(m1,m2), then at least one of the yis also has to belong to Δ(m1,m2):
m2(z) = 1 implies m2(yj) = 1 for all j = 1, . . . , k (because of the clauses
¬z ∨ yi), and m1(z) = 0 implies m1(yi) = 0 for at least one i (because of the
clause ¬y1 ∨ · · · ∨¬yk ∨ z). Therefore Δ(m1,m2) is the union of at least two sets
in V/∼, namely the equivalence class of z and the one of yi.

Hence the difference between any two models cannot be smaller than the
cardinality of the smallest set in V/∼ without dependent variables. It remains
to show that we can indeed find two such models.

Let X be a set in V/∼ which has minimal cardinality among the sets without
dependent variables, and let m1,m2 be interpretations defined as follows: (1)
m1(y) = 0 and m2(y) = 1 if y ∈ X; (2) m1(y) = 1 and m2(y) = 1 if y /∈ X and
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(¬x ∨ y) ∈ D for some x ∈ X; (3) m1(y) = 0 and m2(y) = 0 otherwise. We have
to show that m1 and m2 satisfy all clauses in D. Let m be any of these models.
D contains two types of clauses.

Type 1: Horn clauses with a positive literal ¬y1 ∨ · · · ∨ ¬yk ∨ z. If m(yi) = 0
for any i, we are done. So suppose m(yi) = 1 for all i = 1, . . . , k; we have to show
m(z) = 1. The condition m(yi) = 1 means that either yi ∈ X (for m = m2) or
that there is a clause (¬xi ∨ yi) ∈ D for some xi ∈ X. We distinguish the two
cases z ∈ X and z /∈ X.
Let z ∈ X. If z ∼ yi for any i, we are done for we have m(z) = m(yi) = 1.
So suppose z �∼ yi for all i. As the elements in X, in particular z and the xis,
are equivalent and the binary clauses are closed under resolution, D contains
the clause ¬z ∨ yi for all i. But this would mean that z is a variable depending
on the yis, contradicting the assumption z ∈ X. Let z /∈ X, and let x ∈ X.
As the elements in X are equivalent and the binary clauses are closed under
resolution, D contains ¬x ∨ yi for all i. Closure under hyper-resolution with the
clause ¬y1 ∨ · · · ∨ ¬yk ∨ z means that D also contains ¬x ∨ z, whence m(z) = 1.

Type 2: Horn clauses with only negative literals ¬y1 ∨ · · · ∨ ¬yk. If m(yi) = 0
for any i, we are done. It remains to show that the assumption m(yi) = 1 for all
i = 1, . . . , k leads to a contradiction. The condition m(yi) = 1 means that either
yi ∈ X (for m = m2) or that there is a clause (¬xi ∨ yi) ∈ D for some xi ∈ X. Let
x be some particular element of X. Since the elements in X are equivalent and the
binary clauses are closed under resolution, D contains the clause ¬x ∨ yi for all i.
But then a hyper-resolution step with the clause ¬y1 ∨ · · · ∨ ¬yk would yield the
unit clause ¬x, which by construction does not occur in D. Therefore at least one
yi is neither in X nor part of a clause ¬x ∨ yi with x ∈ X, i.e., m(yi) = 0.

5.2 Hard Cases

Two Solution Satisfiability. In this section we study the feasibility problem of
MSD(Γ ) which is, given a Γ -formula ϕ, to decide if ϕ has two distinct solutions.

Problem: 2SolutionSAT(Γ )
Input: Conjunctive formula ϕ over the relations from Γ .
Question: Are there two satisfying assignments m �= m′ of ϕ?

A priori it is not clear that the tractability of 2SolutionSAT is fully char-
acterized by co-clones. The problem is that the implementation of relations of
some language Γ by another language Γ ′ might not be parsimonious, that is, in
the implementation one solution to a constraint might be blown up into several
ones in the implementation. Fortunately we can still determine the tractability
frontier for 2SolutionSAT by combining the corresponding results for SAT and
AnotherSAT.

Lemma 9. For Γ ∈ L where SAT(Γ ) is NP-hard, 2SolutionSAT(Γ ) is NP-hard.

Proof. Since SAT(Γ ) is NP-hard, there must be a relation R in Γ having more
than one tuple, because every relation containing only one tuple is at the same
time Horn, dual Horn, bijunctive, and affine. Given an instance ϕ for SAT(Γ ),
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construct ϕ′ as ϕ∧R(y1, . . . , y�) where � is the arity of R and y1, . . . , y� are new
variables not appearing in ϕ. Obviously, ϕ has a solution if and only if ϕ′ has at
least two solutions. Hence, we have proved SAT(Γ ) ≤m 2SolutionSAT(Γ ). ��
Lemma 10. If Γ ∈ L and AnotherSAT(Γ ) is NP-hard, 2SolutionSAT(Γ ) is NP-
hard.

Proof. Let a formula ϕ and a satisfying assignment m be an instance of
AnotherSAT(Γ ). Then ϕ has a solution other than m if and only if it has two
distinct solutions. ��
Lemma 11. If SAT(Γ ) and AnotherSAT(Γ ) are in P for Γ ∈ L, then the same
holds for 2SolutionSAT(Γ ).

Proof. Let ϕ be an instance of 2SolutionSAT(Γ ). All polynomial-time decidable
cases of SAT(Γ ) are constructive, i.e., whenever that problem is polynomial-
time decidable, there exists a polynomial-time algorithm computing a satisfying
assignment. Thus we can compute in polynomial time a satisfying assignment m
of ϕ. Now use the algorithm for AnotherSAT(Γ ) on the instance (ϕ,m) to decide
if there is a second solution to ϕ. ��
Corollary 12. For Γ ∈ L, the problem 2SolutionSAT(Γ ) is polynomial-time
decidable if both SAT(Γ ) and AnotherSAT(Γ ) are polynomial-time decidable. Oth-
erwise, 2SolutionSAT(Γ ) is NP-hard.

Proposition 13. For Γ ∈ L such that 2SolutionSAT(Γ ) is in P, there is a
polynomial-time n-approximation algorithm for MSD(Γ ), where n is the number
of variables.

Proof. Since 2SolutionSAT(Γ ) is in P, both SAT(Γ ) and AnotherSAT(Γ ) must
be in P by Corollary 12. Since SAT(Γ ) is in P, we can compute a model m of the
input ϕ in polynomial time if it exists. Now we check the AnotherSAT(Γ )-instance
(ϕ,m). If it has a solution m′ �= m, it is also polynomial time computable, and
we return (m,m′). If we fail somewhere in this process, then MSD(Γ ) does not
have feasible solutions; otherwise, hd(m,m′) ≤ n ≤ n · OPT(ϕ). ��
MinDistance-Equivalent Cases. In this section we show that, as for the Nearest
Other Solution problem (see [4,5]), the affine cases of MSD are MinDistance-
complete.

Proposition 14. MSD(Γ ) is MinDistance-complete if Γ ∈ L satisfies iL ⊆
〈Γ 〉 ⊆ iL2.

Proof. We prove MSD(Γ ) ≡AP NearestOtherSolution(Γ ), which is MinDistance-
complete by [4]. As Γ ⊆ iL2 = 〈{even4, [x], [¬x]}〉, any Γ -formula ψ is expressible
as ∃y(A1x + A2y = c). The projection of the affine solution space is again an
affine space, so it can be understood as solutions of a system Ax = b. If (ψ,m0)
is an instance of NSol(Γ ), then ψ is an MSD(Γ )-instance, and a feasible solution
m1 �= m2 satisfying ψ gives a feasible solution m3 := m0+(m2−m1) for (ψ,m0),
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where hd(m0,m3) = hd(m2,m1). Conversely, a solution m3 �= m0 to (ψ,m0)
yields a feasible answer to the MSD-instance ψ. Thus, OPT(ψ) = OPT(ψ,m0)
and so NSol(Γ ) ≤AP MSD(Γ ). The other way round, if ψ is an MSD-instance,
then solve the system Ax = b defined by it; let m0 be a model of ψ. As above
we conclude OPT(ψ) = OPT(ψ,m0), and therefore, MSD(Γ ) ≤AP NSol(Γ ). ��

Tightness Results. It will be convenient to consider the following decision
problem, already studied in [5].

Problem: AnotherSAT<n(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m
satisfying ϕ.
Question: Is there another satisfying assignment m′ of ϕ, different from m, such
that hd(m,m′) < n, where n is the number of variables of ϕ?

Note that AnotherSAT<n(Γ ) is not compatible with existential quantifica-
tion. Let ϕ(y, x1, . . . , xn) with the satisfying assignment m be an instance of
AnotherSAT<n(Γ ) and m′ its solution satisfying hd(m,m′) < n + 1. Let m1

and m′
1 be the corresponding vectors to m and m′, respectively, with the first

coordinate truncated. When we existentially quantify the variable y in ϕ, pro-
ducing ϕ1(x1, . . . , xn) = ∃y ϕ(y, x1, . . . , xn), then both m1 and m′

1 are solutions
of ϕ′, but we cannot guarantee that hd(m1,m

′
1) < n. Hence we need the equiv-

alent of Proposition 4 for this problem, whose proof is analogous.

Proposition 15 (Behrisch et al. [4,5]). For Γ, Γ ′ ∈ L with Γ ′ ⊆ 〈Γ 〉∧ we
have the reduction AnotherSAT<n(Γ ′) ≤m AnotherSAT<n(Γ ).

The following proposition presents only a partial result for AnotherSAT<n(Γ )
already proved in [5]. An exhaustive complexity classification of the problem
AnotherSAT<n(Γ ) has been performed in [4].

Proposition 16 (Behrisch et al. [4,5]). AnotherSAT<n(Γ ) is NP-complete
for Γ ∈ L such that iN ⊆ 〈Γ 〉 ⊆ iI.

Remark 17. It is easy to see that AnotherSAT<n(Γ ) is NP-complete for iI0 ⊆ 〈Γ 〉
and iI1 ⊆ 〈Γ 〉, since already AnotherSAT(Γ ) is NP-complete for these cases, as
it was proved in [12]. It is also clear that AnotherSAT<n(Γ ) is polynomial-time
decidable if Γ is Horn (Γ ⊆ iE2), dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2),
or affine (Γ ⊆ iL2), just for the same reason as for AnotherSAT(Γ ). In all these
four Schaefer cases, for each variable xi we flip the value of m[i], substitute
m(xi) for xi, and construct another satisfying assignment if it exists. Consider
now the solutions which we get for every variable xi. Either there is no solution
for any variable, then AnotherSAT<n(Γ ) has no solution; or there are only the
solutions which are the complement of m, then AnotherSAT<n(Γ ) has no solution
as well; or else we get a solution m′ with hd(m,m′) < n, then AnotherSAT<n(Γ )
also has a solution. Hence, there is an easy to prove dichotomy result also for
AnotherSAT<n(Γ ).
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We prove that Proposition 13 is essentially tight.

Proposition 18. For Γ ∈ L such that iN ⊆ 〈Γ 〉 ⊆ iI and any ε > 0 there is no
polynomial-time n1−ε-approximation algorithm for MSD(Γ ), unless P = NP.

Proof. We show that any polynomial time n1−ε-approximation algorithm for
MSD(Γ ) would also allow to decide AnotherSAT<n(Γ ), being NP-complete by
Proposition 16, in polynomial time.

The algorithm works as follows. Given an instance (ϕ,m) for
AnotherSAT<n(Γ ), the algorithm accepts if m is not a constant assignment.
Since Γ is 0-valid (and 1-valid), this output is correct. If ϕ has only one vari-
able, reject because ϕ has only two models; otherwise, proceed as follows.

For each variable x of ϕ, we construct a new formula ϕ′
x as follows. Let k be

the smallest integer greater than 1/ε. Introduce nk − n new variables xi for i =
1, . . . , nk −n. For every i ∈ {1, . . . , nk −n} and every constraint R(y1, . . . , y�) in ϕ,
such that x ∈ {y1, . . . , y�}, construct a new constraint R(zi

1, . . . , z
i
�) by zi

j = xi if
yj = x and zi

j = yj otherwise; add all the newly constructed constraints to ϕ in
order to get ϕ′

x. Note, that we can extend models s of ϕ to models s′ of ϕ′
x by setting

s′(xi) = s(x). Now run then1−ε-approximation algorithm forMSD(Γ ) onϕ′
x. If for

every x the answer is a pair (m1,m2) with m2 = m1, then reject, otherwise accept.
This procedure is a correct polynomial-time algorithm for AnotherSAT<n(Γ ).

For polynomial runtime is clear, it remains to show correctness. If ϕ has only
constant models, then the same is true for every ϕ′

x. Thus each approximation
must result in a pair of complementary constant assignments, and the output
is correct. Assume now that there is a model s of ϕ different from 0 and 1.
Hence, there exists a variable x such that s(x) = m(x). It follows that ϕ′

x has a
model s′ for which hd(s′,m′) < n holds, where n is the number of variables of ϕ.
But then the approximation algorithm must find two distinct models m1 �= m2

of ϕ′
x satisfying hd(m1,m2) < n · (nk)1−ε = nk(1−ε)+1. Since the inequality

k > 1/ε holds, it follows that hd(m1,m2) < nk. Consequently, we have m2 �= m1

and the output of our algorithm is again correct. ��

6 Concluding Remarks

Our problem is in PO for constraints, which are bijunctive, or Horn, or dual
Horn. The next complexity stage of the solution structure is characterized by
affine constraints. In fact, these constraints represent the error correcting codes
used in real-word applications. If we search for arbitrary two satisfying assign-
ments with minimum distance, we can apply standard linear algebra techniques
and perform an affine transformation, where we can enforce one of the assign-
ments to be the zero-vector. This is not surprising, since in linear algebra many
problems in an affine space can be transformed to the same problems in the cor-
responding vector space. The penultimate stage of solution structure complexity
is represented by constraints, for which the existence of a solution is guaranteed
by their definition, but we do not have any other exploitable information. For
MSD we need a guarantee of at least two solutions. Our problem belongs to the
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class poly-APX for these constraints. We can exactly pinpoint the polynomial
(n, i.e. arity of the formula) for which we can get a polynomial-time approxi-
mation. Our complexity results indicate moreover that we cannot get a suitable
approximation for these types of the considered optimization problem. All other
cases are not polynomial-time approximable at all. It is interesting to see that
our results differ considerably from those of [9] for MaxHammingDistance, asking
to produce two satisfying assignments having maximal Hamming distance, even
if the two problems are dual.
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