
Vademecum of Divergent Term Rewriting Systems�Miki HERMANNCentre de Recherche en Informatique de NancyCNRS and INRIA-LorraineCampus Scienti�que, BP 239,54506 Vand÷uvre-lès-Nancy, Francee-mail: hermann@loria.crin.frAbstractThis paper presents two structural patterns to detectdivergence of the completion procedure, followed bya detailed overview of di�erent examples of diver-gent rewrite systems. Further it introduces �ve dif-ferent empirical methods to avoid divergence, appli-cable during a session with a rewrite rule laboratory.1 IntroductionApplying the Knuth�Bendix procedure [36] to com-plete a given term rewriting system may result inproducing the canonical term rewriting system orfailure, if it halts, or in a diverging process trying togenerate an in�nite set of rewrite rules. The �rst re-sult concerning structural properties of an in�nite setof rules generated by the Knuth�Bendix completionprocedure is due to Huet [26]. Further attempts tostudy the reasons of Knuth�Bendix procedure diver-gence through investigation of the structural prop-erties of the generated rules were initiated in [22],and more developed in [20]. The notion of crossedterm rewriting systems as a su�cient criterion forproving divergence of the Knuth�Bendix procedureemerged from these investigations. Recently, a com-plementary research focused on the �nite descrip-�Research report CRIN 88-R-022. Appeared in �Avancéesen Programation� � Journées AFCET-GROPLAN , Nice(France), BIGRE, volume 70, January 1990.

tion of in�nite sets of rules generated by divergingKnuth�Bendix procedure, developing the notion ofmeta�rules, is due to Kirchner [35].This paper has a twofold purpose. First, it servesas a comprehensive collection of examples for diver-gent rewrite systems. Second, it presents a possibleinstruction kit for dealing with divergent rewrite sys-tems. The proposed remedies are strictly empiricaland can be divided mainly into �ve categories:1. changes within an ordering class to obtain a newparticular ordering of the same type (e.g. in theclass of recursive path orderings change the op-erator precedence), to order an equation in theopposite direction,2. choosing another ordering class (e.g. instead ofrecursive path ordering choose recursive decom-position ordering, polynomial ordering or trans-formation ordering) in order to get the right di-rection of rewrite rules,3. separating the rule that causes divergence intoa sequence of less complex equations, if the con-structor(s) in the equational theory are pro-vided,4. dividing the rule that causes divergence into tworules,5. enriching the system by new rewrite rules toavoid divergence originated from underspeci�-cation.

These actions are to be taken into account dur-ing sessions with a rewrite rule laboratory such asREVE [39], when a decision must be met quickly inorder to obtain a canonical (i.e. con�uent, terminat-ing, and interreduced) rewrite system. Of course,these suggestions need not to produce the desired ef-fect, mostly for the reason that the changed rewritesystem does not correspond with the user's ideas. Inthis case the user is proposed to upgrade to formalmethods developed by Kirchner [35].2 Completion of term rewritingsystemsFor completeness, the notation used in the termrewriting system theory is introduced in the �rst partof this section. The second part contains the basicde�nitions concerning term rewriting systems in gen-eral with references to related work, and introduces areview of notions from background papers which arefrequently referred to in this paper. The last partcontains a de�nition of a completion procedure in ageneral framework.2.1 Basic notation and de�nitionsWe adopt the notation of [12].Let F be a �nite or enumerable set of functionsymbols graded by arity (signature). F0 denotes theconstants. Let X be an enumerable set of variablessuch that F \ X = ;. Denote by T (F ;X) the set ofall terms (free algebra) over variables X and symbolsF . Var(t) denotes the set of all variables in the termt. Denote by G(F) the set of all ground terms withfunction symbols F .Let N� be the set of strings of natural numberswith a special symbol � 2 N� for the empty stringand a concatenation operation on N�. Using theelements of N� as labels, the terms can be viewedas labeled trees. A term t is a partial functionN� ! F [X such that its domain Pos(t) satis�esthe following properties:1. if t 2 F0 [X then Pos(t) = f�g,2. if t = f(t1; : : : ; tn) then Pos(t) = f�g [fi:a ji = 1; : : : ; n and a 2 Pos(ti)gPos(t) is the set of positions of the term t. Thesubset of non-variable positions of t is denoted byFPos(t).A subterm of t at a position a 2 Pos(t) is denotedby tja. If t = f(t1; : : : ; tn) then tj� = t and tjia = tijafor all i = 1; : : : ; n. Denote by s[t]a a new term ob-tained from the term s after replacing its subterm

sja by t. For properties of replacement see the arti-cle [47].A substitution is a function �: X ! T (F ;X) suchthat x� = x holds for all but a �nite number of vari-ables. Denote a substitution � by [x1 7! t1; : : : ; xn 7!tn]when the terms ti are substituted for the variablesxi and xi 6= ti, for i = 1; : : : ; n. An empty substi-tution is denoted by []. Substitutions have a homo-morphic extension on the terms. Denote by Dom(�),Ran(�), and Var(�) the domain, range, and all vari-ables of a substitution �, respectively. A substitution�, such that x� 2 X and x� = y� implies x = y forall x; y 2 Dom(�), is a variable renaming . Substitu-tions need not be idempotent in our approach.Two terms s and t are uni�able if, and only if, thereis an idempotent substitution � such that s� = t�.The substitution � is called a uni�er . The substitu-tion � is called the most general uni�er (up to vari-able renaming) for s and t if for all uni�ers ' of sand t there exists a substitution , such that ' = � .The substitution � on term t is a substitution in ownvariables of t if it does not introduce new variables,i.e. Var(t�) � Var(t), and does not contain a vari-able renaming. This notion can be enlarged to a setof substitutions.An equation is a pair of terms e = (s; t). For con-venience, the equations are written as s ' t withundistinguished left and right hand side. A rewriterule is an ordered pair of terms r = (s; t) such thatVar(t) � Var(s). The rules are written s ! t. Aterm rewriting system (or rewrite system for short)is a �nite set of rules R = fs! t j s; t 2 T (F ;X)g.A rewriting relation �!R (or �! when R is ob-vious) is the smallest relation containing R, closedunder substitution and replacement. The relation��! denotes the re�exive and transitive closure of�!, the relation � denotes the relation symmetricto �!, the equivalence relation � ! denotes the re-�exive, symmetric, and transitive closure of �!. Anordering � is compatible with R if ��!R � �.A term t is reducible by the rule l ! r if thereexists an position a 2 Pos(t) and a substitution �such that tja = l�. A term is R-reducible if it isreducible by some rule from R. On the contrary, aterm is R-irreducible if it is not reducible by any rulefrom R. A term t is a R-normal form of a term s ifs ��! t and t is R-irreducible. A rewrite system R isinterreduced if for all rules l ! r 2 R the left-handside l is R � fl ! rg-irreducible and the right-handside r is R-irreducible.149

2.2 Term rewriting systemsThe following de�nitions review basic notions fromterm rewriting systems theory used in this paper.For details and related theorems see the references.De�nition 2.1 A term rewriting system R (andalso the rewriting relation ��!R) is� terminating if there is no in�nite rewrite se-quence t1 �! t2 �! : : :,� con�uent if � �R : ��!R � ��!R : � �R,� convergent if it is con�uent and terminating,� canonical if it is convergent and interreduced.Both basic properties, con�uence and terminationof a rewrite system, are undecidable in general. Forissues on termination and reduction orderings(well-founded orderings on terms closed under termreplacement and substitution) see the review by Der-showitz [10]. For issues concerning con�uence see thearticle by Huet [25].The following notion of critical pairs as overlap in-stances of rewrite rules was introduced by Knuth andBendix [36]. Their production and orientation intonew rewrite rules is the backbone of their completionprocedure.De�nition 2.2 Let s1 ! t1 and s2 ! t2 be tworewrite rules such that s1ja� = s2� holds for amost general uni�er �, and nonvariable position a 2FPos(s1). Then hs1�[t2�]a; t1�i is called a criticalpair of terms. Denote the set of all critical pairsgenerated from a rewrite system R by cp(R). A crit-ical pair ht; ti, for some term t, is called trivial.The following construction was originated byLankford and Musser [38] and comes from Guttag,Kapur and Musser [18]. They are mentioned also byDershowitz [10].De�nition 2.3 Let R be an arbitrary set of rules.The set of overlap closures OC(R) of R is induc-tively de�ned as follows:1. Every rule s ! t from R is an overlap closures� t.2. Let s1� t1, s2� t2 be two overlap clo-sures. If t1ja� = s2� holds for a most gen-eral uni�er � and position a 2 FPos(t1), thens1�� t1�[t2�]a is an overlap closure.3. Let s1� t1, s2� t2 be two overlap clo-sures. If t1� = s2ja� holds for a most gen-eral uni�er � and position a 2 FPos(s2), thens2�[s1�]a� t2� is an overlap closure.

An overlap closure s� s with the same terms onboth sides is called re�exive.This notion is related to the narrowing process, asde�ned by Fay [15], Hullot [29], Lankford [37] andSlagle [50], and to the superposition process de�nedin [18]. The overlap closure provides the essence ofa speci�c method for proving termination of termrewriting systems. A survey of related results can befound in [10].To de�ne better the divergence patterns let us in-troduce the following relation between substitutions.It was actually de�ned in [19].De�nition 2.4 The substitutions ' and are co-herent (denote it by ' ?) if Dom(')\Var() = ;or Var(') \Dom() = ;.2.3 Completion procedureGiven a �nite set E of equations presenting a the-ory and a program for (possibly incremental) com-puting a reduction ordering � , a completion pro-cedure deduces consequences of E in its attempt to�nd a convergent (con�uent and terminating) rewritesystem R1 for E. The central idea of comple-tion is to limit attention to the critical pair deduc-tions obtained from overlappings of left-hand sidesof rules. These critical pair overlappings are usedto generate new rules. The �rst completion proce-dure was proposed by Knuth and Bendix [36], andcompletely proved correct by Huet [26]. Bachmair,Dershowitz and Hsiang [5] have put completion ina more abstract framework, based on the notion ofinference rules (see also [4] and [11]). An inferencerule (for this purpose) is a binary relation betweenpairs (E;R), where E is a set of equations and R is aset of rewrite rules. The generalized Knuth�Bendixcompletion procedure is based on the set KB of sixinference rules, presented in Figure 1.A completion procedure is a control strategyfor applying inference rules of KB to given inputequations and rewrite rules, using a reduction or-dering compatible with these rewrite rules. Theresult of a (possibly in�nite) completion sequence(E0;R0) `KB (E1;R1) `KB � � � are the set E1 =limn!1En of persisting equations and the set R1 =limn!1Rn of persisting rules.This inference rule based completion proceduremust be fair (processing of each critical pair cannotbe postponed in�nitely many times), correct (when-ever the procedure �nishes successfully, it produces aconvergent rewrite system), and sound (the smallestequivalence relation generated by E [R remains the150

Delete: (E [fs ' sg;R) ` (E;R)Compose: (E;R [fs! tg) ` (E;R [fs! ug) if t �!R uSimplify: (E [fs ' tg;R) ` (E [fu ' tg;R) if s �!R uOrient: (E [fs ' tg;R) ` (E;R [fs! tg) if s � tCollapse: (E;R [fs! tg) ` (E [fu ' tg;R) if s �!R u by l! r 2 R with s �� lDeduce: (E;R) ` (E [fs ' tg;R) if s ' t 2 cp(R) �Ewhere �� denotes a proper encompassment ordering.Figure 1: Inference rules of the completion proceduresame through the completion process). Formal de�-nitions of these three concepts can be found in [11].The inference rules KB can be applied in many dif-ferent ways, but all of them fair, correct, and sound.We choose two of them. The �rst is a general com-pletion procedure complete as it was presented e.g.by Huet [26] or in a more sophisticated way by Les-canne [41], the second is a nonreducing completionprocess nr-complete, generating all critical pair con-sequences without interreduction. For correspondingcontrol strategies see [20].Summarizing the possible performances, the com-pletion procedure can succeed in generating a �niteconvergent/canonical rewrite system R1, fail due toan equation unorientable in a reduction ordering �,or diverge trying to produce an in�nite rewrite sys-tem R1.3 Divergent term rewriting sys-temsThis section recalls the theoretical notions and re-sults from the paper [20], with a collection of exam-ples presenting the divergence patterns.For given rewrite rules R (or equations E), thecompletion procedure performance depends on theapplied control expression and the input ordering �.Therefore, more hierarchically ordered types of di-vergence can be observed.De�nition 3.1 Let R be a term rewriting system.R is divergent in the ordering � if complete(R)is in�nite. R is weakly divergent in the order-ing � if nr-complete(R) is in�nite. R is inherently(weakly) divergent if R is (weakly) divergent forall orderings including ��!R.Whether a rewrite system is inherently divergent itdepends on the structure of its rules. Each divergent

rewrite system is also weakly divergent. A connec-tion between divergent and weakly divergent rewritesystems is established by the following proposition.Fact 3.2 Let R be a weakly divergent rewrite systemand let R0 � R be a subsystem which is also weaklydivergent. If nr-complete(R0) � complete(R), thenR is divergent.In establishing conditions for detection of diver-gence there arises a question how large is the actualclass of divergent systems described by them, and/orif it covers all possible divergent systems. Unfortu-nately, the divergence problem is undecidable in gen-eral even if it contains only monadic function sym-bols and constants, as it was proved in [20] by a mod-i�cation of the proof method used by Narendran andStillman [45].From the undecidability of divergence follows thatit is reasonable to search only for su�cient condi-tions to detect divergent rewrite systems. The restof this section introduces as su�ciently general con-ditions of this kind as possible to be able to describethe largest class of divergent systems. The atten-tion is oriented on examples actually presenting thedivergence patterns.3.1 Forward crossed systemsThe following de�nition describes a divergence pat-tern for the class of rewrite systems with forwardoriented critical pairs. This pattern represents a fur-ther generalization of the crossed rules notion de�nedin [21, 22]. It also comprises the divergence types(�;
) (actually crossed rules) and (�;�=
) (self-crossed rule) described by Mong and Purdom [44].For the technical description we refer to [20]. Thepresentation here is focused more on the examples.De�nition 3.3 The rewrite rule s1 ! t1 and thenonre�exive overlap closure s2� t2 (with supposeddisjoint variables) form a forward crossed rewrite151

system if there are substitutions �2, '1, '2 in ownvariables of s2, an idempotent substitution �1, andpositions a 2 FPos(s1), b 2 FPos(t2) such that1. s1ja �1 = s2�22. t2jb'1 = s2'23. '1 ? ('2 [�2)The second condition plus the coherence relation'1 ? '2 de�ne s2� t2 to be a forward chain [19].The previous de�nition supplies the static part ofconditions to detect forward divergent systems. Thedynamic part of conditions, introduced in the follow-ing de�nition, puts requirements on the ordering ofgenerated critical pairs.De�nition 3.4 The rewrite system R is LR-persistent in the ordering � if for each nontrivialcritical pair of terms hs1�[t2�]a; t1�i 2 cp(R1) fol-lows s1�[t2�]a � t1�.The pre�x LR- indicates that the produced criticalpairs are oriented in the straight direction, from leftto right .From these two notions the following propositionwas proved in [20], which guarantees that the pre-vious conditions are su�cient for weak divergence.Of course, interreduction is not admitted, but formany examples the Fact 3.2 can be applied, so thatdivergence of these systems is implied as well. Forconditions on interreduction in divergence see [20].Theorem 3.5 If R contains a LR-persistent for-ward crossed rewrite system then R is weakly diver-gent.Let us consider now the examples that belong tothe forward crossed divergence pattern. It is a collec-tion of divergent systems observed during real speci-�cations as well as arti�cial cases constructed in thee�ort to �nd more and more complex conditions thatwould cover even a greater class of divergent systems.Example 3.6 It has been almost a common folklore(this example was mentioned among others by Fri-bourg [16] and by Göbel [17]) that if you extract therules (x0 + y0) + z ! x0 + (y0 + z) (1)x+ s(y) ! s(x + y) (2)from a rewrite system specifying natural numberswith addition and you try to complete them, usingrecursive path ordering RPO with the precedence+ > s and a left-to-right status of +, the result

will be a divergent process. The rule (2) forms theforward chain, the positions are a = 1 and b = 1,and the substitutions are �1 = [x0 7! x; y0 7! s(y)],�2 = [], '1 = [y 7! s(y)], '2 = []. The completionprocedure generates the in�nite family of rulessn(x+ y) + z ! x+ (sn(y) + z)from them. This is also the reason why the proofby consistency [32] of the associativity in the rewritesystem x+ 0 ! xx+ s(y) ! s(x + y)using an unappropriate reduction ordering (RPOwith the precedence + > s in this case) results inan in�nite loop, as described by Dershowitz [11] andFribourg [16].In [21] the rewrite systemx+ 0 ! x (3)x+ s(y) ! s(x + y) (4)gcd(x; 0) ! xgcd(0; x) ! xgcd(x0 + y0; y0) ! gcd(x0; y0) (5)specifying the greatest common divisor of two nat-ural numbers was proved as divergent. It containsa forward crossed system consisting of the rules (4)and (5). The rule (4) forms the forward chain, thepositions are a = 1 and b = 1, and the substi-tutions are �1 = [x0 7! x; y0 7! s(y)], �2 = [],'1 = [y 7! s(y)], '2 = [], as in the previouscase. The completion procedure, using RPO withthe precedence + > s, generates the in�nite familyof rulesgcd(sn(x+ y); sn(y)) ! gcd(x; sn(y))from rules (4) and (5), plus another in�nite familygcd(sn(x); sn(0)) ! gcd(x; sn(0))derived from the �rst one by the rule (3). Thesecond in�nite family cannot be produced inde-pendently because the underlying overlap closurex+s(0)� s(x), constructed consecutively from therules (4) and (3), does not form a forward chain.To show that divergence problems are not causedonly by natural number speci�cations, let us consideralso other algebraic structures.Example 3.7 A very simple and elegant exampleof a forward crossed system is Associativity & En-domorphism. It was considered by Bellegarde [7],152

BenCherifa with Lescanne [9], and Martin [43]. Therewrite system(x0 + y0) + z ! x0 + (y0 + z)f(x) + f(y) ! f(x + y)under completion, using RPO with the precedence+ > f and the left-to-right status of +, producesa forward crossed divergent system. The Endomor-phism rule forms the forward chain, the positionsare a = 1 and b = 1, and the substitutions are�1 = [x0 7! f(x); y0 7! f(y)], �2 = [], '1 = [x 7!f(x); y 7! f(y)], '2 = []. The completion proceduregenerates the in�nite family of rulesfn(x+ y) + z ! fn(x) + (fn(y) + z)from it.Similar to the previous system is Associativity &Distributivity studied by Lescanne [40], and men-tioned also by Martin [43] and Mong together withPurdom [44]. The rewrite system(x0 + y0) + z0 ! x0 + (y0 + z0)(x � y) + (x � z) ! x � (y + z)under completion, using RPO with the precedence+ > � and a left-to-right status of +, produces a di-vergent system. It is actually a forward crossed sys-tem with the Distributivity rule forming the forwardchain, and the substitutions �1 = [x0 7! x � y; y0 7!x�z], �2 = [], '1 = [y 7! x�y; z 7! x�z], '2 = []. Asa matter of fact, it is a variation of the previous di-vergent system, where the operation f is interpretedas a curried multiplication.A divergent system need not consist of only tworules, as the previous examples were. The cardinal-ity of divergent systems is not even bound. On theother hand, one rule can be su�cient to produce adivergent system.Example 3.8 There exists a one-rule forwardcrossed systemf(g(f(x))) ! g(f(x))introduced by Ardis [1], and observed among oth-ers by Dershowitz with Marcus [13, 14] and Kirch-ner [35]. This only rule stands for both objectsrequired by the De�nition 3.3. The positions area = 1:1 and b = 1, the substitutions are �1 = [x 7!g(f(x))]1, �2 = [], '1 = [x 7! g(f(x))], '2 = []. The1The ambiguity in variables can be resolved by doublingthe rewrite rule and splitting the variables.

completion procedure generates the in�nite family ofrules f(gn(f(x))) ! gn(f(x))from it.This one-rule divergent system bears another phe-nomenon. If we want to assure termination of rewrit-ing by the generated system, its rules cannot be or-dered in the opposite direction. Therefore the diver-gence of this system is inherent .There exists also a forward crossed rewrite systemconsisting of a given number of rules, where the pres-ence of all rules is necessary to maintain the diver-gence. As it was proved in [21], the rewrite systemfn+1(fn�1(x0)) ! x0fi(fn(x)) ! fi�1(x) for i = 2; : : : ; n� 1f1(fn(x)) ! f0(fn�1(x))ordered by RPO based on the precedence fi > fjfor i > j, is divergent for all n, but each propersubset of it can be completed to a �nite canon-ical system. The �rst rule presents the basis ofdivergence and the rest forms the forward chainfn�1(fn�1n (x))� f0(fn�1(x)). The substitutionsare �1 = [x0 7! fn�1n (x)], �2 = [], '1 = [x 7!fn�1n (x)], '2 = []. The completion procedure gener-ates the in�nite family of rulesfn+1(fk0 (fn�1(x))) ! fk(n�1)n (x)from it, plus all the intermediate in�nite families ac-cording to the rules that participate in forming theforward chain.When someone looks properly on the previouslypresented examples, he or she may ask why the Def-inition 3.3 is so complicated. Not the de�nition istoo complicated, but the examples were too easy.They all satisfy the simpler conditions from [22].Let us analyze more sophisticated systems where allthe conditions of De�nition 3.3 must be applied andwhere the conditions from [22] appear not to be su�-cient enough. The only drawback of these examplesis that they are arti�cially constructed and do notre�ect any reasonable algebraic structure. Neverthe-less, when they are divergent, they should be coveredby the de�nition, as it is also true in our case.Example 3.9 A more general forward crossedrewrite system is2d(x0 � h(y0)) ! y0(x
 y) � y ! k(x� k(y))2The circled operators are to be considered only as syntac-tic objects, and not as real operators.153

If we try to complete this system, using RPO basedon the operator precedence
 > � and
 > k, weget a divergent process. The second rule forms theforward chain. The substitutions are �1 = [x0 7!x
 h(y); y0 7! y], �2 = [y 7! h(y)], '1 = [x 7! x
k(y)], '2 = [y 7! k(y)]. The completion proceduregenerates the in�nite family of rulesd(kn(x� kn(h(y)))) ! yfrom it.A similar case presents the forward crossed rewritesystem d(x0 � (x0
 y0)) ! y0g(x) � y ! g(x� (x� y))only that it is of the second type. If we try to com-plete it, using RPO based on the operator precedence� > �, � > g and a left-to-right status of �, weget a divergent process. The second rule forms theforward chain. The substitutions are �1 = [x0 7!g(x); y0 7! y], �2 = [y 7! g(x)
 y], '1 = [x 7! g(x)],'2 = [y 7! g(x) � y]. The completion proceduregenerates the in�nite family of rulesd(gn(x� (x� (g(x)� : : : (gn(x)
 y))))) ! yfrom it.Of course, not all systems are so clear to analyze.There can be systems with more than one forwardchain or systems with multiple overlap positions. Letus look at such system which has been encounteredas a practical case.Example 3.10 The following rewrite system spec-i�es the signed binary trees theory [34]. It is pre-sented here as an extract from a (canonical) rewritesystem specifying groups. It is the systemi(i(x)) ! xi(x � y) ! i(y) � i(x)(y � x) � i(x) ! yi(x) � (x � y) ! yIf we try to complete this system, using RPO basedon the operator precedence i > �, we get a divergentprocess. First, the rules(y � i(x)) � x ! yx � (i(x) � y) ! yare produced, then the in�nite iterative process be-gins. The clue here is that the underlying rewritesystem i(i(x)) ! xi(x � y) ! i(y) � i(x)

generates an in�nite set of independent forwardchains. Therefore an in�nite set of in�nite familiesof rules is produced. Although it is a little bit sur-prising, it is coherent with the theories in [20] andin [35]. The forward chain producing rewrite systemis canonical, thus decidable, so that every computa-tion modulo whichever forward chain is also decid-able.3.2 Backward crossed systemsThe following de�nitions describe another divergencepattern for the class of rewrite systems with back-ward oriented critical pairs. This pattern was in-troduced in [22] only by an example, and was nottreated formally. Its de�nition covers the divergencetypes (
;�) (reverse crossed rules) and (�=
;�) (re-verse self-crossed rule) described by Mong and Pur-dom [44], but it is more compact. For its technicaldescription we refer once more to [20]. Here we focusour attention more on the examples actually present-ing the divergence pattern.De�nition 3.11 The overlap closure s1� t1 andthe nonre�exive rewrite rule s2 ! t2 (with sup-posed disjoint variables) form a backward crossedrewrite system if t1 is not a variable, there are sub-stitutions �1, '1, '2 in own variables of s1, an idem-potent substitution �2, and position b 2 FPos(s1)such that1. s1jb �1 = s2�22. t1'1 = s1jb'23. '1 ? ('2 [�1)The second condition plus the coherence relation'1 ? '2 de�ne s1� t1 to be a backward chain [19].The previous de�nition supplies the static part ofconditions to detect backward divergent systems. Ifit was only for the static parts, a duality principlecould be established between forward and backwardcrossed rewrite systems, originating from a similarone between forward and backward chains [19]. Thedynamic part of conditions, introduced in the follow-ing de�nition, which puts requirements on the order-ing of generated critical pairs, is the main di�erencebetween the notions de�ned in 3.3 and 3.11, makingthem to two completely di�erent divergence patterns.De�nition 3.12 The rewrite system R is RL-persistent in the ordering � if for each nontrivialcritical pair of terms hs1�[t2�]a; t1�i 2 cp(R1) fol-lows t1� � s1�[t2�]a.154

The pre�x RL- indicates that the produced criti-cal pairs are oriented in the opposite direction, fromright to left .From the previously de�ned notions the followingproposition was proved in [20], which guarantees thatthe previous conditions are su�cient for weak diver-gence. The same discussion concerning interreduc-tion as in the case of forward crossed systems appliesin this case, too.Theorem 3.13 If R contains a RL-persistent back-ward crossed rewrite system then R is weakly diver-gent.Let us consider the examples that belong to thebackward crossed divergence pattern. This diver-gence type is not so common as the previous one,at least not so many real cases of it are known yet.Example 3.14 An elegant example of a backwardcrossed system is the (decidable) theory of bands(idempotent semigroups)(x � y) � z ! x � (y � z)x0 � x0 ! x0studied by Siekmann with Szabó [49], and in connec-tion with divergence by Dershowitz [11] and Kirch-ner [35]. The Associativity rule produces an in�nitenumber of independent backward chains, dependingon the multiple choice of overlap positions.As a marginal remark, it should be mentioned alsothat there exists no canonical unconditional rewritesystem for idempotent semigroups [49].Also in this type there exist multiple rule divergentsystems as well as a one-rule divergent system. Theone-rule system is an extract from a real example inthis case.Example 3.15 Extracting the rule(xny)nz ! yn(i(x)nz)from a rewrite system for deciding groups with leftdivision, studied by Lescanne in [42], and orderingit by RPO based on the precedence n > i and theleft-to-right status of n, presents a backward crossedsystem. Once more, an in�nite number of indepen-dent backward chains is produced from the startingrule.There exists also a backward crossed rewrite sys-tem consisting of a given number of rules, where thepresence of all of them is necessary to maintain thedivergence. It is the rewrite systemf1(f0(x0)) ! x0fn(fi�1(x)) ! fi(fn(x)) for i = 2; : : : ; n� 1fn(fn�1(x)) ! f1(fn(x))

oriented by RPO based on the precedence fi > fjfor i > j. It is divergent for all n, but each propersubset of it can be completed to a �nite canon-ical system. The �rst rule presents the basis ofdivergence and the rest forms the backward chainfn�1n (f1(x))� f1(fn�1n (x)). The substitutions are�1 = [x 7! f0(x)], �2 = [x0 7! x], '1 = [],'2 = [x 7! fn�1n (x)]. The completion proceduregenerates the in�nite family of rulesf1(fk(n�1)n (f0(x))) ! fk(n�1)n (x)from it, plus all the intermediate in�nite families ac-cording to the rules that participate in forming thebackward chain.Also in this divergence type arti�cially constructedsystems can be presented that re�ect very well theconditions required by the De�nition 3.11.Example 3.16 Consider the rewrite systemf(x _ g(y)) ! f(x) _ y(x0 ^ y0) _ y0 ! y0If we try to complete this system, using RPO basedon the operator precedence f > _, we get a divergentprocess. The �rst rule forms the backward chain.The substitutions are �1 = [x 7! x ^ g(y)], �2 =[y0 7! g(y)], '1 = [y 7! g(y)], '2 = [x 7! f(x)]. Thecompletion procedure generates the in�nite family ofrules fn(x ^ gn(y)) _ y ! fn(gn(y))from it.A similar case presents the backward crossedrewrite system(x
 f(y)) � y ! (x� y)
 y(x0 � y0)
 y0 ! x0If we try to complete this system, using RPO basedon the operator precedence � >
, we get a di-vergent process. The �rst rule forms the backwardchain. The substitutions are �1 = [x 7! x � f(y)],�2 = [x0 7! x; y0 7! f(y)], '1 = [y 7! f(y)],'2 = [x 7! x � f(y)]. The completion proceduregenerates the in�nite family of rules((((x � fn+1(y)) � fn(y)) � : : :� f(y)) � y)
 y !((x � fn(y))) � : : :� f(y) � yfrom it.155

3.3 Undecidability of crossed systemsIn many rewrite systems the existence of a crossedsubsystem can be shown immediately. Of course, wemay ask if it is decidable that complete(R) containsa crossed system. Unfortunately, it is not.Theorem 3.17 It is undecidable in general whetherthe completion procedure generates a crossed system.Proof: The result was proved by Narendran andStillman [45] for crossed pairs, so that it can be im-mediately applied to forward crossed systems. A mi-nor modi�cation extends it also to backward crossedones. 2The result of Narendran and Stillman [45] hasan immediate implication that all divergence con-ditions, which cover the case of the one-rule systemf(g(f(x))) ! g(f(x)), are undecidable.4 Avoiding divergence of com-pletionA divergent term rewriting system is an unpleasantfact one has to deal with. The intention is directedtowards the goal to obtain a �nite canonical rewritesystem. Therefore something must be done withthe original system to avoid its divergence but tomaintain its semantics. Basically, there exist twoapproaches: a theoretical one and an empirical one.The theoretical approach was formally de�ned andexploited by Kirchner [35]. It is an universal onethat allows describing divergent systems by meta-rules. It is the only complete method that allowsto cope directly with inherently divergent systems.On the other hand, it is not necessary to use the�heavy artillery� immediately when a divergent sys-tem is encountered, because the divergence of mostrewrite systems is a result of speci�cation errors.Also the meta-rule approach is not, to our knowl-edge, yet implemented in existing rewrite rule labo-ratories. Therefore it can be more convenient to useempirical methods which are, of course, not as so-phisticated as the theoretical approach, but can beapplied in the existing rewrite rule laboratories.The following parts describe �ve empirical meth-ods for avoiding divergence of rewrite systems,graded by the complexity of actions provided by theuser. As a matter of fact, there exists one moremethod to avoid divergence, namely upgrading toequational rewriting and thus to equational com-pletion [4, 30]. Although equational term rewritingprovides a powerful generalization which eliminates

many abnormal failure and divergent cases, its func-tionality is based on the premise of existence of acomplete and �nite equational uni�cation algorithm,which rarely exists for an arbitrary set of equationsE. Moreover, the equational term rewriting methodbears another problem, namely the in�nite completeset of uni�ers, which presents another type of diver-gence [35]. Therefore it needs a broader space ofinvestigation. For these reasons it is not analyzedhere. On the other hand, the unfailing completionprocedure, as it was presented in [6, 24], does notavoid the divergence problem. One can prove veryeasily that if the completion procedure with the con-trol complete diverges then the unfailing completionprocedure diverges as well.4.1 Changes within ordering classThe �rst empirical method to attack divergence con-sists of changes within an ordering class to obtaina new concrete ordering. It can be a change of theunderlying operator precedence and/or status in arecursive path ordering [10], in a recursive decompo-sition ordering (with status) [42], or in another re-lated incremental ordering. It can also be a changeof the underlying symbol precedence and/or weightin a Knuth�Bendix ordering [36, 43], or a change ofthe polynomial interpretation in a polynomial order-ing [9].Basically, it is always a (relatively minor) changeto an underlying structure of the used ordering class.Within the incremental orderings it can be per-formed by backtracking. The aim of these changesis to order one or more equations in the oppositedirection, so that the critical overlaps, which werethe starting points of divergence, disappear. Thismethod replaces objects satisfying either the De�ni-tion 3.3 or the De�nition 3.11. The equivalence rela-tion � !, generated by the rewrite system, remainsthe same, but the normal forms obtained by the re-arranged system (under the assumption that it canbe completed to a �nite canonical system) may notcorrespond with the initial intentions. This methodhas also its limits because there need not be enoughpossibilities to choose from during the completionprocess.Example 4.1 One of the possibilities to resolve thedivergence of the natural number rewrite system isto change the precedence to s > + in RPO and thusobtain the canonical system(x+ y) + z ! x+ (y + z)s(x + y) ! x+ s(y)156

where the second rule was ordered in the oppositedirection. Although it is a possible solution, it doesnot satisfy the requirement that the successor oper-ator s should be a constructor, if the rule x+ 0! xwould be added.Another and a better possibility consists of chang-ing only the status of + to right-to-left. In this casewe obtain the canonical systemx+ (y + z) ! (x+ y) + zx+ s(y) ! s(x + y)where now the �rst rule was ordered in the oppo-site direction. The successor operator s can be thendeclared a constructor in the enlarged system.The divergent system presented by Associativity& Endomorphism can be resolved by changing theprecedence to f > + and thus producing the canon-ical system (x+ y) + z ! x+ (y + z)f(x + y) ! f(x) + f(y)where it is also the second rule that has been orderedin the opposite direction. So far it seems to be anacceptable solution, unless you want to reduce thenumber of f operators in terms by the completedrewrite system.In arti�cially constructed divergent systems theorientation of rules does not play a signi�cant role,therefore this method can be fully applied in Exam-ples 3.9 and 3.16. We get consecutively the canonicalsystems d(x� h(y)) ! yk(x� k(y)) ! (x
 y) � yby changing the precedence to k >
 and k > �,d(x� (x
 y)) ! yg(x � (x� y)) ! g(x)� yby changing the precedence to g > �,f(x) _ y ! f(x _ g(y))(x ^ y) _ y ! yby changing the precedence to _ > f , _ > g, and aleft-to-right status of _, and last but not least(x� y)
 y ! (x
 f(y)) � y(x� y)
 y ! xby changing the precedence to3
 > �,
 > f , anda left-to-right status of �.3There are also other possible changes of precedence.

Let us consider also rewrite systems ordered byother ordering classes, in particular the Knuth�Bendix ordering and the polynomial ordering.Example 4.2 As it was pointed out in [36], the clas-sical presentation of group theory by the rewrite sys-tem e � x ! xi(x) � x ! e(x � y) � z ! x � (y � z)ordered by the Knuth�Bendix ordering with theprecedence i > � > e, the weight w(�) = 0, andthe weight of the inverse operator being w(i) > 0,causes divergence under completion. As analyzed byMong and Purdom [44], the completion procedureproduces two crossed subsystems. It is the forwardcrossed systemx � i(y � x) ! i(y) (6)(x � y) � z ! x � (y � z)and the backward crossed systemi(x) � i(y) ! i(y � x) (7)i(x � i(y)) ! y � i(x)The rule (7) in the second system is the real culpritas indicated in [36], therefore it has to be reoriented.As a consequence, the rule (6) is not generated anymore. The reorientation can be achieved by changingthe weight of the operator i to w(i) = 0. After thatthe standard ten-rule canonical rewrite system forgroups is generated under completion [43].Example 4.3 The Associativity & Endomorphismrewrite system in Example 3.7 can be ordered inthe same sense by the polynomial interpretation[f](X) = 2X and [+](X;Y) = X2 + Y . It still re-mains divergent, producing the same in�nite familyof rules [9]. Fortunately, this system can be provedto be terminating also using the polynomial interpre-tation [f](X) = 2X and [+](X;Y) = XY +X. Thenice property of this interpretation is that it makespossible to complete the rules to the canonical sys-tem (x+ y) + z ! x+ (y + z)f(x) + f(y) ! f(x + y)f(x) + (f(y) + z) ! f(x + y) + zwhere the number of f operators in terms can bereduced by the completed system.157

The presented method to avoid divergence has itslimits. Changing the precedence to � > i in theExample 3.10 does not bring anything, and in bothone-rule systems there exists only one choice of prece-dence in the recursive path ordering. Moreover, therecursive path ordering remains always too uniformlypersistent, thus it orders critical pairs notoriously inthe same direction. Therefore a change of its under-lying precedence must make the closure chain non-operational.4.2 Changing the ordering classThe second empirical method consist of changingcompletely the ordering class. It has to be appliedwhen the previous one does not resolve the problemof divergence (ordering class is somehow monotone)or the completed canonical system does not corre-spond with the user's intentions. Although thereexist some ordering hierarchies [48], no one order-ing class is necessarily `better' then another, becausethe termination of rewrite systems is undecidable ingeneral [10, 28]. The aim of this method is to breaka persistence inherent in certain orderings.The proposed method attacks the conditions of theDe�nition 3.4 or of the De�nition 3.12. The equiv-alence relation � ! remains again the same. Theuser's contribution to this method is essential, evenif the proposed ordering is implemented in the usedrewrite rule laboratory, hence it is automatized. Onthe other hand, one can use also the method of Pur-dom [46], based on no ordering class, but on checkingthe set of rules for looping .Example 4.4 Let us consider once more the Asso-ciativity & Endomorphism rewrite system. Supposethat f is a costly operator, and this rewrite system isproposed to optimize the term expressions with re-spect to f , so that the user can decrease the numberof its uses to minimum. Therefore ordering the rulef(x) + f(y) ! f(x+ y)forces to use the precedence + > f in RPO.This causes divergence of completion, as already de-scribed. Just as we look at the �rst generated rulef(x+ y) + z ! f(x) + (f(y) + z)we can see that it does not �t our intentions withdecreasing the number of f operators.The recursive path ordering and also the recursivedecomposition ordering are not suitable for orderingthis rewrite system according to our conditions. As itwas shown already in the Example 4.3, there exists apolynomial interpretation which allows to produce a

�nite canonical rewrite system by the polynomial or-dering. The same �nite canonical system can be ob-tained if using the Knuth�Bendix ordering in whichwe set w(f) > 0 [43]. There is also a possibility touse a transformation ordering [3, 8].4.3 Separating closure chainsThis method is applicable within the enlarged com-pletion procedure in the sense of Huet and Hul-lot [27], which takes advantage from an explicit dec-laration of constructors. The method proposes theseparation of a closure chain into a sequence of lesscomplex equations. It can be described formally bythe inference rule Separate (see Figure 2). As it canbe seen from the inference rule Separate, the trans-formation is applicable only to closure chains whichhave a common root symbol in the term on bothsides. The chaining process is supposed to disappearafter this transformation. The equivalence relation� !, generated by the original system, remains thesame.Example 4.5 Consider the one-rule backwardcrossed rewrite systemf(g(f(x))) ! f(h(x)) (8)ordered by RPO based on the precedence f > h (org > h). Trying to complete the system results ingeneration of the in�nite family of rulesf(hn(g(f(x)))) ! f(hn+1(x))Now, if we declare f to be a constructor, therule (8) (considered as equation) is separated intoa new equation, which can be ordered to the ruleg(f(x)) ! h(x)choosing the precedence g > h. This new rulepresents already a canonical system.4.4 Dividing closure chainsThe fourth empirical method is rooted in a processproposed as early as in the pioneering article [36],but cannot be considered as completely valid in com-parison with standard completion, because the termalgebra is changed (the signature is extended dur-ing the completion by a new function symbol). Thismethod consists of dividing the underlying closurechain into two di�erent parts, introducing a new op-eration symbol, and breaking this way the chainingprocess. It can be formally expressed by the inferencerule Divide (see Figure 2). The method is especiallydevoted to inherently divergent and one-rule crossedsystems.158

Separate: (E [ff(s1; : : : ; sn) ' f(t1; : : : ; tn)g;R) ` (E [fsi ' ti j i = 1; : : : ; ng;R)if f is a constructorDivide: (E [fs ' tg;R) ` (E [fs ' f(x1; : : : ; xn); t ' f(x1; : : : ; xn)g;R)where f is a new symbol, and Var(s) \ Var(t) = fx1; : : : ; xngFigure 2: Additional inference rulesExample 4.6 Consider once more the one-rule for-ward crossed systemf(g(f(x))) ! g(f(x)) (9)observed in Example 3.8 as inherently divergent. Letus divide the rule (9) into the (not yet reduced)rewrite system f(g(f(x))) ! h(x)g(f(x)) ! h(x)and enrich the precedence with g > h. If we completethe previous system, we get the canonical systemf(h(x)) ! h(x)g(f(x)) ! h(x)g(h(x)) ! h(h(x))Although it has some successful applications, thismethod is fragile. Applying it to the example of theidempotent semigroup or the one-rule system(xny)nz ! yn(i(x)nz)does not bring the desired e�ect.4.5 Enriching underspeci�ed systemsThe last proposed and probably the most power-ful empirical method to avoid divergence consistsof enriching given systems by new rewrite rules. Itmust be applied very carefully, otherwise the originalrewrite system can be compromised and another �-nite canonical rewrite system is obtained, which doesnot correspond with the original rules. It can be ac-cepted only as a practical method, because the un-derlying equational theory is changed by the addedrule. This method attacks the conditions of theFact 3.2, where the enriched system remains weaklydivergent but not generally divergent any more. Thenew rule is added to interfere with interreduction,that causes a divergence object to disappear in somecompletion step.The probably best way to proceed in this methodis described in following steps:

1. remove the divergence basis rule(s) from the sys-tem R, producing R0,2. complete the residual set of rules R0 to a �-nite canonical rewrite system R2 (Recently,there was a method for proving inductive the-orems proposed in [23], which does not re-quire the underlying system to be con�uent,not even on ground terms. Therefore this stepmay be skipped when using the just mentionedmethod.),3. prove in R2 by consistency [27, 32], or by in-ductive reducibility [31, 33], with a possible in-volvement of Fribourg's method [16] or even themore general Bachmair's one [2], an inductivetheorem, derived from the structure of the gen-erated in�nite family of rules, and add it as arule to the existing system R2, producing R02,4. add the rules removed in step 1 to R02, formingan enriched system Re, and try to complete it.Sometimes even a more-cycle iteration of the previ-ous steps may lead to a desired solution with a �nitecanonical system.The theoretical justi�cation to extend the originalrewrite system by inductive theorems presents thefact that the extended system Re is ground consistentwith the original system R [32].Proposition 4.7 [32] For all ground terms s; t 2G(F) the equivalence s � !Re t holds if, and only if,s � !R t.It means that rewriting ground terms with both thebasic and the extended systems yields the same re-sult. An open question remains the fact how to inferthe new rule, to be proved as an inductive theoremof the original system, with which the extension is tobe done.When we add inductive theorems to the originalsystem, we are interested in its initial model. Ifwe want to prove an inductive theorem in an initialmodel, this model must be nonempty. This requiresthe existence of at least one constant. If there is noneso we just introduce a dummy one.159

? @ x ! xx @ ? ! x(x @ y) @ z ! x @ (y @ z)flatten(?) ! ?flatten([x]) ! flatten(x)flatten([x] @ y) ! flatten(x) @ flatten(y) (10)flatten(flatten(x)) ! flatten(x) (11)ordered by RPO based on the precedence flatten > @ and a left-to-right status of @.Figure 3: Rewrite system with the operation �attenExample 4.8 4 Let us consider a rewrite systemspecifying lists, with the operators ? for an emptylist, [_] for an one-element list, and the append oper-ator @. Let us de�ne a flatten operator that trans-forms structured lists to lists consisting of only sim-ple elements. The rewrite system is presented in Fig-ure 3. If we try to complete this system, we geta divergent process. The rules (10) and (11) forma forward crossed rewrite system with the forwardchain (10).We remove the involution (11) and the residualsystem is already canonical. We are able now toprove the endomorphism ruleflatten(x @ y) ! flatten(x) @ flatten(y)as its inductive theorem. We add it to the systemand take back also the involution rule (11), formingthe extended system. This extended system is com-pletable to the �nite canonical system? @ x ! xx @ ? ! x(x @ y) @ z ! x @ (y @ z)flatten(?) ! ?flatten([x]) ! flatten(x)flatten(x @ y) ! flatten(x) @ flatten(y)flatten(flatten(x)) ! flatten(x)The rule to be removed must be considered care-fully. If we remove the wrong one, it can be evengenerated during completion of the residual system(dragon's head).Example 4.9 Let us consider once more the rewritesystem in Example 3.10 that could not be resolved4This example is constructed from a divergent inductivetheorem proof.

by the previous empirical methods. If we remove theantimorphism rulei(x � y) ! i(y) � i(x)and try to complete the residual system, then thejust removed rule will be generated from the otherrules again.The right way consists of removing the rules(y � x) � i(x) ! yi(x) � (x � y) ! yand the residual systemi(i(x)) ! xi(x � y) ! i(y) � i(x)is already canonical. There is no constant in thesystem so we introduce a dummy one denoted by e.We are able now to prove the associativity rule(x � y) � z ! x � (y � z)as its inductive theorem. We add it to the systemand take back also the removed rules, forming theextended system. If we try to complete it, the criticalpair x � i(x) = i(y) � yis produced, which cannot be ordered because of thedisjoint variables on the left- and right-hand side ofthe equation. It can be regarded as a request for anew operator. Therefore we divide the critical pairto the rules x � i(x) ! ei(y) � y ! eusing the already introduced symbol e as the neu-tral element and extending the precedence with � >160

e. After this action the rules are completable tothe standard ten-rule canonical rewrite system forgroups.It must be admitted that this method has its lim-its, too, especially in the case of one-rule divergentsystems. There is nothing to be removed; if theonly rule is removed then virtually nothing can beproved as an inductive theorem in an empty system.Therefore one has to proceed in another way. One ofthe operators has to be decided as a non-constructorand then the rules to de�ne it completely have to beadded.Example 4.10 Consider once more the extractedrule (xny)nz ! yn(i(x)nz)from the group speci�cation with left division. Let usdecide the inverse operator i to be a non-constructorand therefore to add the rules5i(xny) ! ynxi(i(x)) ! xi(e) ! eto de�ne it completely. To make possible the order-ing of the new rules in the proposed direction, theunderlying precedence must be changed to i � n.The enriched system is already canonical. If we addalso the rule xne ! i(x)we get the �nite canonical system(xny)nz ! yn(i(x)nz)i(xny) ! ynxi(i(x)) ! xi(e) ! exne ! i(x)enx ! x5 ConclusionWe described two basic divergence patterns, the for-ward and backward crossed rewrite systems with LR-or RL-persistence respectively, by their de�nitionfrom [20]. Further we presented in detail a num-ber of examples to make the de�nitions more under-standable and to support them as well. Although the5It is necessary to introduce the neutral element e as aconstant.

divergence property is undecidable in general, thedescribed divergence patterns seem to be su�cientenough to cover a large class of divergent systems,if not all of them. In the last section we introduced�ve empirical methods to avoid divergence of com-pletion, which can be applied by an user during asession with a rewrite rule laboratory.AcknowledgementsI would like to express my warmest thanks to HélèneKirchner, Leo Bachmair, Jieh Hsiang, and PierreLescanne for comments and suggestions which helpedto ameliorate the early versions of this paper.References[1] M.A. Ardis. Data abstraction transformations.Technical report TR-925, University of Mary-land, Maryland (USA), 1980.[2] L. Bachmair. Proof by consistency in equationaltheories. In Proceedings 3rd IEEE Symposiumon Logic in Computer Science (LICS'88), Ed-inburgh (Scotland), pages 228�233, July 1988.[3] L. Bachmair and N. Dershowitz. Commu-tation, transformation and termination. InJ.H. Siekmann, editor, Proceedings 8th Inter-national Conference on Automated Deduction(CADE'86), Oxford (England), volume 230 ofLecture Notes in Computer Science, pages 5�20.Springer-Verlag, July 1986.[4] L. Bachmair and N. Dershowitz. Completionfor rewriting modulo a congruence. Theoreti-cal Computer Science, 67(2-3):173�202,October1989.[5] L. Bachmair, N. Dershowitz, and J. Hsiang. Or-derings for equational proofs. In Proceedings 1stIEEE Symposium on Logic in Computer Science(LICS'86), Cambridge, (Massachusetts, USA),pages 346�357, June 1986.[6] L. Bachmair, N. Dershowitz, and D.A. Plaisted.Completion without failure. In H. Aït-Kaciand M. Nivat, editors, Proceedings of Resolutionof Equations in Algebraic Structures, Lakeway,(Texas, USA); Volume 2: Rewrite Techniques,pages 1�30. MCC Corporation & INRIA, Aca-demic Press, 1989.[7] F. Bellegarde. Rewriting systems on FP expres-sions to reduce the number of sequences yielded.161

Science of Computer Programming, 6(1):11�34,January 1986.[8] F. Bellegarde and P. Lescanne. Transforma-tion ordering. In H. Ehrig, R. Kowalski,G. Levi, and U. Montanari, editors, Proceed-ings of CAAP '87, Pisa (Italy), volume 249 ofLecture Notes in Computer Science, pages 69�80. TAPSOFT '87, volume 1, Springer-Verlag,March 1987.[9] A. BenCherifa and P. Lescanne. Termination ofrewriting systems by polynomial interpretationsand its implementation. Science of ComputerProgramming, 9(2):137�159, October 1987.[10] N. Dershowitz. Termination of rewriting. Jour-nal of Symbolic Computation, 3(1 & 2):69�116,1987. Special issue on Rewriting Techniques andApplications.[11] N. Dershowitz. Completion and its applica-tions. In H. Aït-Kaci and M. Nivat, editors, Pro-ceedings of Resolution of Equations in AlgebraicStructures, Lakeway, (Texas, USA); Volume 2:Rewriting Techniques, pages 31�86. MCC Cor-poration & INRIA, Academic Press, 1989.[12] N. Dershowitz and J.-P. Jouannaud. Notationsfor rewriting. Bulletin of the European Associa-tion for Theoretical Computer Science, 43:162�172, February 1991.[13] N. Dershowitz and L. Marcus. Existence andconstruction of rewrite systems. Technical Re-port ATR-82(8478)-3, Aerospace Corporation,El Segundo, California, 1982.[14] N. Dershowitz, L. Marcus, and A. Tarlecki.Existence, uniqueness, and construction ofrewrite systems. SIAM Journal on Computing,17(4):629�639, August 1988.[15] M. Fay. First-order uni�cation in an equationaltheory. In S. Sickel, editor, Proceedings of the4th Workshop on Automated Deduction, Austin(Texas, USA), pages 161�167, February 1979.[16] L. Fribourg. A strong restriction of the induc-tive completion procedure. Journal of SymbolicComputation, 8(3):253�276, September 1989.[17] R. Göbel. Ground con�uence. In P. Lescanne,editor, Proceedings 2nd Conference on Rewrit-ing Techniques and Applications (RTA'87),Bordeaux (France), volume 256 of Lecture Notesin Computer Science, pages 156�167. Springer-Verlag, May 1987.

[18] J.V. Guttag, D. Kapur, and D.R. Musser. Onproving uniform termination and restricted ter-mination of rewrite systems. SIAM Journal onComputing, 12(1):189�214, February 1983.[19] M. Hermann. Chain properties of rule clo-sures. In B. Monien and R. Cori, editors,Proceedings 6th Symposium on Theoretical As-pects of Computer Science (STACS'89), Pader-born (Germany), volume 349 of Lecture Notesin Computer Science, pages 339�347. Springer-Verlag, February 1989.[20] M. Hermann. Crossed term rewriting systems.Research report 89-R-003, Centre de Rechercheen Informatique de Nancy, 1989. Included in [?].[21] M. Hermann and I. Prívara. On nontermina-tion of Knuth-Bendix algorithm. Research re-port VUSEI-AR-OPS-3/85, Institute of Socio-Economic Information and Automation in Man-agement, Bratislava, Czechoslovakia, November1985.[22] M. Hermann and I. Prívara. On nonterminationof Knuth-Bendix algorithm. In L. Kott, editor,Proceedings 13th ICALP Conference, Rennes(France), volume 226 of Lecture Notes in Com-puter Science, pages 146�156. Springer-Verlag,July 1986.[23] D. Hofbauer and R.-D. Kutsche. Proving in-ductive theorems based on term rewriting sys-tems. In J. Grabowski, P. Lescanne, andW. Wechler, editors, Proceedings of the Inter-national Workshop on Algebraic and Logic Pro-gramming, Gaussig (Germany), volume 343 ofLecture Notes in Computer Science, pages 180�190. Springer-Verlag, November 1988.[24] J. Hsiang and M. Rusinowitch. On word prob-lems in equational theories. In T. Ottmann,editor, Proceedings of the 14th ICALP, Karl-sruhe (Germany), volume 267 of Lecture Notesin Computer Science, pages 54�71. Springer-Verlag, July 1987.[25] G. Huet. Con�uent reductions: Abstract prop-erties and applications to term rewriting sys-tems. Journal of the Association for ComputingMachinery, 27(4):797�821, 1980.[26] G. Huet. A complete proof of correctness of theKnuth-Bendix completion algorithm. Journal ofComputer and System Science, 23(1):11�21, Au-gust 1981. Also as: Rapport 25, INRIA, 1980.162

[27] G. Huet and J.-M. Hullot. Proofs by inductionin equational theories with constructors. Jour-nal of Computer and System Science, 25(2):239�266, October 1982.[28] G. Huet and D.S. Lankford. On the uniformhalting problem for term rewriting systems.Rapport de recherche 283, Institut de Rechercheen Informatique et en Automatique, Le Ches-nay, France, 1978.[29] J.-M. Hullot. Canonical forms and uni�cation.In W. Bibel and R. Kowalski, editors, Proceed-ings 5th International Conference on AutomatedDeduction (CADE'80), Les Arcs (France), vol-ume 87 of Lecture Notes in Computer Science,pages 318�334. Springer-Verlag, July 1980.[30] J.-P. Jouannaud and H. Kirchner. Completionof a set of rules modulo a set of equations.SIAM Journal on Computing, 15(4):1155�1194,November 1986.[31] J.-P. Jouannaud and E. Kounalis. Automaticproofs by induction in theories without con-structors. Information and Computation, 82:1�33, 1989.[32] D. Kapur and D.R. Musser. Proof by con-sistency. Arti�cial Intelligence, 31(2):125�157,February 1987.[33] D. Kapur, P. Narendran, and H. Zhang. Onsu�cient completeness and related propertiesof term rewriting systems. Acta Informatica,24(4):395�415, August 1987.[34] C. Kirchner and H. Kirchner. Résolutiond'équations dans les algèbres libres et les var-iétés équationelles d'algèbres. Master's thesis,Université de Nancy I, 1982.[35] H. Kirchner. Schematization of in�nite sets ofrewrite rules generated by divergent completionprocess. Theoretical Computer Science, 67(2-3):303�332, 1989.[36] D.E. Knuth and P.B. Bendix. Simple word prob-lems in universal algebras. In J. Leech, edi-tor, Computational Problems in Abstract Alge-bra, pages 263�297. Pergamon Press, Oxford,1970.[37] D.S. Lankford. Canonical inference. Researchreport ATP-32, Department of Mathematicsand Computer Science, University of Texas,Austin, Texas (USA), December 1975.

[38] D.S. Lankford and D.R. Musser. A �nite termi-nation criterion. Unpublished draft, Informa-tion Sciences Institute, University of SouthernCalifornia, Marina-del-Rey, CA, 1978.[39] P. Lescanne. Computer experiments with theReve term rewriting system generator. In Pro-ceedings of the 10th ACM POPL Symposium,Austin, (Texas, USA), pages 99�108, January1983.[40] P. Lescanne. Divergence of the Knuth-Bendixcompletion procedure and termination order-ings. Bulletin of the European Association forTheoretical Computer Science, 30:80�83, Octo-ber 1986.[41] P. Lescanne. Completion procedures as transi-tion rules + control. In J. Díaz and F. Orejas,editors, Proceedings of TAPSOFT '89, Volume1: CAAP '89; Barcelona (Spain), volume 351 ofLecture Notes in Computer Science, pages 28�41. Springer-Verlag, March 1989.[42] P. Lescanne. On the recursive decompositionordering with lexicographical status and otherrelated orderings. Journal of Automated Rea-soning, 6:39�49, 1990.[43] U. Martin. How to choose the weights in theKnuth-Bendix ordering. In P. Lescanne, edi-tor, Proceedings 2nd Conference on RewritingTechniques and Applications (RTA'87), Bor-deaux (France), volume 256 of Lecture Notesin Computer Science, pages 42�53. Springer-Verlag, May 1987.[44] C.-T. Mong and P.W. Purdom. Divergence inthe completion of rewriting systems. Technicalreport, Dept. of Comp. Science, Indiana Univer-sity, 1987.[45] P. Narendran and J. Stillman. It is undecid-able whether the Knuth-Bendix completion pro-cedure generates a crossed pair. In B. Monienand R. Cori, editors, Proceedings 6th Sympo-sium on Theoretical Aspects of Computer Sci-ence (STACS'89), Paderborn (Germany), vol-ume 349 of Lecture Notes in Computer Science,pages 348�359. Springer-Verlag, February 1989.[46] P.W. Purdom. Detecting looping simpli�ca-tions. In P. Lescanne, editor, Proceedings 2ndConference on Rewriting Techniques and Appli-cations (RTA'87), Bordeaux (France), volume256 of Lecture Notes in Computer Science, pages54�61. Springer-Verlag, May 1987.163

[47] B. K. Rosen. Tree-manipulating systems andChurch-Rosser theorems. Journal of the Associ-ation for Computing Machinery, 20(1):160�187,January 1973.[48] M. Rusinowitch. Path of subterms orderingand recursive decomposition ordering revisited.Journal of Symbolic Computation, 3(1 & 2):117�131, 1987.[49] J. Siekmann and P. Szabó. A N÷therian andcon�uent rewrite system for idempotent semi-groups. Semigroup Forum, 25:83�110, 1982.[50] J.R. Slagle. Automated theorem-proving fortheories with simpli�ers, commutativity, and as-sociativity. Journal of the Association for Com-puting Machinery, 21:622�642, 1974.

164

