Vademecum of Divergent Term Rewriting Systems”

Abstract

This paper presents two structural patterns to detect
divergence of the completion procedure, followed by
a detailed overview of different examples of diver-
gent rewrite systems. Further it introduces five dif-
ferent empirical methods to avoid divergence, appli-
cable during a session with a rewrite rule laboratory.

1 Introduction

Applying the Knuth-Bendix procedure [36] to com-
plete a given term rewriting system may result in
producing the canonical term rewriting system or
failure, if it halts, or in a diverging process trying to
generate an infinite set of rewrite rules. The first re-
sult concerning structural properties of an infinite set
of rules generated by the Knuth-Bendix completion
procedure is due to Huet [26]. Further attempts to
study the reasons of Knuth-Bendix procedure diver-
gence through investigation of the structural prop-
erties of the generated rules were initiated in [22],
and more developed in [20]. The notion of crossed
term rewriting systems as a sufficient criterion for
proving divergence of the Knuth—Bendix procedure
emerged from these investigations. Recently, a com-
plementary research focused on the finite descrip-

Research report CRIN 88-R-022. Appeared in “Avancées
en Programation” - Journées AFCET-GROPLAN, Nice
(France), BIGRE, volume 70, January 1990.

Miki HERMANN
Centre de Recherche en Informatique de Nancy

CNRS and INRIA-Lorraine
Campus Scientifique, BP 239,
545006 Vandeeuvre-lés-Nancy, France

e-mail: hermann@loria.crin.fr

tion of infinite sets of rules generated by diverging
Knuth-Bendix procedure, developing the notion of
meta-rules, is due to Kirchner [35].

This paper has a twofold purpose. First, it serves
as a comprehensive collection of examples for diver-
gent rewrite systems. Second, it presents a possible
instruction kit for dealing with divergent rewrite sys-
tems. The proposed remedies are strictly empirical
and can be divided mainly into five categories:

1. changes within an ordering class to obtain a new
particular ordering of the same type (e.g. in the
class of recursive path orderings change the op-
erator precedence), to order an equation in the
opposite direction,

2. choosing another ordering class (e.g. instead of
recursive path ordering choose recursive decom-
position ordering, polynomial ordering or trans-
formation ordering) in order to get the right di-
rection of rewrite rules,

3. separating the rule that causes divergence into
a sequence of less complex equations, if the con-
structor(s) in the equational theory are pro-

vided,

4. dividing the rule that causes divergence into two
rules,

5. enriching the system by new rewrite rules to
avoid divergence originated from underspecifi-
cation.

These actions are to be taken into account dur-
ing sessions with a rewrite rule laboratory such as
REVE [39], when a decision must be met quickly in
order to obtain a canonical (i.e. confluent, terminat-
ing, and interreduced) rewrite system. Of course,
these suggestions need not to produce the desired ef-
fect, mostly for the reason that the changed rewrite
system does not correspond with the user’s ideas. In
this case the user is proposed to upgrade to formal
methods developed by Kirchner [35].

2 Completion of term rewriting
systems

For completeness, the notation used in the term
rewriting system theory is introduced in the first part
of this section. The second part contains the basic
definitions concerning term rewriting systems in gen-
eral with references to related work, and introduces a
review of notions from background papers which are
frequently referred to in this paper. The last part
contains a definition of a completion procedure in a
general framework.

2.1 Basic notation and definitions

We adopt the notation of [12].

Let F be a finite or enumerable set of function
symbols graded by arity (signature). Fy denotes the
constants. Let A" be an enumerable set of variables
such that Z N A = §. Denote by 7 (F, X) the set of
all terms (free algebra) over variables X' and symbols
F. Var(t) denotes the set of all variables in the term
t. Denote by G(F) the set of all ground terms with
function symbols F.

Let N* be the set of strings of natural numbers
with a special symbol A € N* for the empty string
and a concatenation operation on N*. Using the
elements of N* as labels, the terms can be viewed
as labeled trees. A term t is a partial function
N* - FU X such that its domain Pos(t) satisfies
the following properties:

1. if t € Fy U X then Pos(t) = {A},

2.if t = f(t1,...,1n) then Pos(t) = {A} U {i.a |
i=1,...,nand a € Pos(t;)}

Pos(t) is the set of positions of the term ¢. The
subset of non-variable positions of ¢ is denoted by
FPos(t).

A subterm of t at a position a € Pos(t) is denoted
by t|q. Ift = f(t1,...,t,) then t|y =t and t|;q = ;)4
for all i =1,...,n. Denote by s[t], a new term ob-
tained from the term s after replacing its subterm

149

s|a by t. For properties of replacement see the arti-

cle [47].

A substitution is a function o: X — T (F, X) such
that zo = « holds for all but a finite number of vari-
ables. Denote a substitution o by [#1 — 11,..., 2, —
t,,] when the terms ¢; are substituted for the variables
z; and z; £ t;, for ¢ = 1,....,n. An empty substi-
tution is denoted by []. Substitutions have a homo-
morphic extension on the terms. Denote by Dom(o),
Ran(c), and Var(o) the domain, range, and all vari-
ables of a substitution o, respectively. A substitution
o, such that xo € X and xo = yo 1implies © = y for
all #,y € Dom(c), is a variable renaming. Substitu-
tions need not be idempotent in our approach.

Two terms s and ¢ are unifiable if, and only if, there
is an idempotent substitution ¢ such that soc = to.
The substitution o is called a unifier. The substitu-
tion o is called the most general unifier (up to vari-
able renaming) for s and ¢ if for all unifiers ¢ of s
and ¢ there exists a substitution ¢, such that ¢ = o).
The substitution o on term ¢ is a substitution in own
variables of t if it does not introduce new variables,
i.e. Var(to) C Var(t), and does not contain a vari-
able renaming. This notion can be enlarged to a set
of substitutions.

An equation is a pair of terms e = (s,¢). For con-
venience, the equations are written as s ~ ¢t with
undistinguished left and right hand side. A rewrite
rule is an ordered pair of terms r = (s,1) such that
Var(t) C Var(s). The rules are written s — t. A
term rewriting system (or rewrite system for short)
is a finite set of rules R ={s = ¢ | s,t € T(F, X)}.

A rewriting relation — g (or — when R is ob-
vious) is the smallest relation containing R, closed
under substitution and replacement. The relation
—5 denotes the reflexive and transitive closure of
—, the relation +— denotes the relation symmetric
to —», the equivalence relation «—s denotes the re-
flexive, symmetric, and transitive closure of —. An
ordering > is compatible with R if = C ».

A term t is reducible by the rule | — r if there
exists an position a € Pos(t) and a substitution o
such that ¢|, = lo. A term is R-reducible if it is
reducible by some rule from R. On the contrary, a
term is R-irreducible if it is not reducible by any rule
from R. A term t is a R-normal form of a term s if
s — t and t is R-irreducible. A rewrite system R is
wnterreduced if for all rules I — r € R the left-hand
side [is R — {l — r}-irreducible and the right-hand

side r 1s R-irreducible.

2.2 Term rewriting systems

The following definitions review basic notions from
term rewriting systems theory used in this paper.
For details and related theorems see the references.

Definition 2.1 A term rewriting system R (and
also the rewriting relation L>B) 15

e terminating if there is no infinite rewrite se-
quence 11 — to — ..,

e confluent if & p SR C R LR,
e convergent if it is confluent and terminating,
e canonical if it is convergent and interreduced.

Both basic properties, confluence and termination
of a rewrite system, are undecidable in general. For
issues on termination and reduction orderings
(well-founded orderings on terms closed under term
replacement and substitution) see the review by Der-
showitz [10]. For issues concerning confluence see the
article by Huet [25].

The following notion of eritical pairs as overlap in-
stances of rewrite rules was introduced by Knuth and
Bendix [36]. Their production and orientation into
new rewrite rules is the backbone of their completion
procedure.

Definition 2.2 Let 51 — t1 and s3 — t3 be two
rewrite rules such that si|,0 = so0 holds for a
most general unifier o, and nonvariable position a €
FPos(s1). Then (s10[tac]q,t10) is called a critical
pair of terms. Denote the set of all critical pairs
generated from a rewrite system R by ep(R). A crit-
ical pair (t,1), for some term t, is called trivial.

The following construction was originated by
Lankford and Musser [38] and comes from Guttag,
Kapur and Musser [18]. They are mentioned also by
Dershowitz [10].

Definition 2.3 Let R be an arbitrary set of rules.
The set of overlap closures OC(R) of R is induc-
tively defined as follows:

1. EBvery rule s — t from R is an overlap closure
sr—>1.

2. Let sy »—» 1y, sy»»ty be two overlap clo-
If t1|a0 = se0 holds for a most gen-
eral unifier o and position a € FPos(t1), then

s10» > 110[la0], is an overlap closure.

sures.

3. Let sy »—» 1y, sy»»ty be two overlap clo-
If tic = s2]qs0 holds for a most gen-
eral unifier o and position a € FPos(sa), then

$20[s10]a »» too is an overlap closure.

sures.

150

An overlap closure sw»—» s with the same terms on
both sides is called reflexive.

This notion is related to the narrowing process, as
defined by Fay [15], Hullot [29], Lankford [37] and
Slagle [50], and to the superposition process defined
in [18]. The overlap closure provides the essence of
a specific method for proving termination of term
rewriting systems. A survey of related results can be
found in [10].

To define better the divergence patterns let us in-
troduce the following relation between substitutions.
It was actually defined in [19].

Definition 2.4 The substitutions ¢ and ¥ are co-
herent (denote it by ¢ —) if Dom(p)NVar(y) =0
or Var(p) N Dom(y) = 0.

2.3 Completion procedure

Given a finite set E of equations presenting a the-
ory and a program for (possibly incremental) com-
puting a reduction ordering = , a completion pro-
cedure deduces consequences of F in its attempt to
find a convergent (confluent and terminating) rewrite
system R™ for E. The central idea of comple-
tion is to limit attention to the eritical pair deduc-
tions obtained from overlappings of left-hand sides
of rules. These critical pair overlappings are used
to generate new rules. The first completion proce-
dure was proposed by Knuth and Bendix [36], and
completely proved correct by Huet [26]. Bachmair,
Dershowitz and Hsiang [5] have put completion in
a more abstract framework, based on the notion of
inference rules (see also [4] and [11]). An inference
rule (for this purpose) is a binary relation between
pairs (I; R), where F is a set of equations and R is a
set of rewrite rules. The generalized Knuth—Bendix
completion procedure is based on the set KB of six
inference rules, presented in Figure 1.

A completion procedure is a control strategy
for applying inference rules of KB to given input
equations and rewrite rules, using a reduction or-
dering compatible with these rewrite rules. The
result of a (possibly infinite) completion sequence
(Eo; Ro) Frxp (F1; R1) Frp -+ are the set E® =
limy, o Fy, of persisting equations and the set R> =
lim,, o R, of persisting rules.

This inference rule based completion procedure
must be fair (processing of each critical pair cannot
be postponed infinitely many times), correct (when-
ever the procedure finishes successfully, it produces a
convergent rewrite system), and sound (the smallest
equivalence relation generated by F'U R remains the

Delete:
Compose:

R)
E;RU{s = u})

) (E;

) F
Simplify: (FU{s~t};R) F (EU{u~1};R)
Orient: (EU{s~t};R) - (E;RU{s =>1})
Collapse: (E;RU{s —>1t}) F (FU{u~1};R)
Deduce: (E;R) F (EU{s~1};R)

where s denotes a proper encompassment ordering.

ift—)Ru

ifs —gpu

ifs>1t

ifs —pubyl—ré&R with st
ifs~teep(R)—F

Figure 1: Inference rules of the completion procedure

same through the completion process). Formal defi-
nitions of these three concepts can be found in [11].

The inference rules KB can be applied in many dif-
ferent ways, but all of them fair, correct, and sound.
We choose two of them. The first is a general com-
pletion procedure complete as it was presented e.g.
by Huet [26] or in a more sophisticated way by Les-
canne [41], the second is a nonreducing completion
process nr-complete, generating all critical pair con-
sequences without interreduction. For corresponding
control strategies see [20].

Summarizing the possible performances, the com-
pletion procedure can succeed in generating a finite
convergent /canonical rewrite system R, fail due to
an equation unorientable in a reduction ordering >,
or diverge trying to produce an infinite rewrite sys-
tem R°.

3 Divergent term rewriting sys-
tems

This section recalls the theoretical notions and re-
sults from the paper [20], with a collection of exam-
ples presenting the divergence patterns.

For given rewrite rules R (or equations F), the
completion procedure performance depends on the
applied control expression and the input ordering .
Therefore, more hierarchically ordered types of di-
vergence can be observed.

Definition 3.1 Let R be a term rewriting system.
R is divergent in the ordering = if complete(R)
is infinite. R is weakly divergent in the order-
ing = if nr-complete(R) is infinite. R is inherently
(weakly) divergent if R is (weakly) divergent for
all orderings including ——g.

Whether a rewrite system is inherently divergent it
depends on the structure of its rules. Each divergent

151

rewrite system is also weakly divergent. A connec-
tion between divergent and weakly divergent rewrite
systems is established by the following proposition.

Fact 3.2 Let R be a weakly divergent rewrite system
and let R' C R be a subsystem which is also weakly
divergent. If nr-complete(R') C complete(R), then
R s divergent.

In establishing conditions for detection of diver-
gence there arises a question how large is the actual
class of divergent systems described by them, and/or
if 1t covers all possible divergent systems. Unfortu-
nately, the divergence problem s undecidable in gen-
eral even if it contains only monadic function sym-
bols and constants, as it was proved in [20] by a mod-
ification of the proof method used by Narendran and
Stillman [45].

From the undecidability of divergence follows that
it 18 reasonable to search only for sufficient condi-
tions to detect divergent rewrite systems. The rest
of this section introduces as sufficiently general con-
ditions of this kind as possible to be able to describe
the largest class of divergent systems. The atten-
tion is oriented on examples actually presenting the
divergence patterns.

3.1 Forward crossed systems

The following definition describes a divergence pat-
tern for the class of rewrite systems with forward
oriented critical pairs. This pattern represents a fur-
ther generalization of the crossed rules notion defined
n [21, 22]. Tt also comprises the divergence types
(A,v) (actually crossed rules) and (A, A/y) (self-
crossed rule) described by Mong and Purdom [44].
For the technical description we refer to [20]. The
presentation here is focused more on the examples.

Definition 3.3 The rewrite rule s1 — t1 and the
nonreflerive overlap closure sy »—» 5 (with supposed
disjoint variables) form a forward crossed rewrite

system «f there are substitutions o2, @1, ©a in own
variables of sa, an idempotent substitution o1, and
positions a € FPos(s1), b € FPos(ta) such that

1. 81|a 01 = 89209
2. talp 1 = S22
3. 1 — (gpz UO’Q)

The second condition plus the coherence relation
©1 — o define so »» 15 to be a forward chain [19].

The previous definition supplies the static part of
conditions to detect forward divergent systems. The
dynamic part of conditions, introduced in the follow-
ing definition, puts requirements on the ordering of
generated critical pairs.

Definition 3.4 The rewrite system R is LR-
persistent in the ordering > if for each nontrivial
eritical pair of terms (s10[t20]q,t10) € ep(R*) fol-
lows s10[tao]y > ti0.

The prefix LR- indicates that the produced critical
pairs are oriented in the straight direction, from left
to right.

From these two notions the following proposition
was proved in [20], which guarantees that the pre-
vious conditions are sufficient for weak divergence.
Of course, interreduction is not admitted, but for
many examples the Fact 3.2 can be applied, so that
divergence of these systems i1s implied as well. For
conditions on interreduction in divergence see [20].

Theorem 3.5 If R contains a LR-persistent for-
ward crossed rewrite system then R is weakly diver-
gent.

Let us consider now the examples that belong to
the forward crossed divergence pattern. It is a collec-
tion of divergent systems observed during real speci-
fications as well as artificial cases constructed in the
effort to find more and more complex conditions that
would cover even a greater class of divergent systems.

Example 3.6 It has been almost a common folklore
(this example was mentioned among others by Fri-
bourg [16] and by Gobel [17]) that if you extract the
rules

- 24+ +2)
= s(z+vy)

(2 +y)+ =
z+ s(y)

(1)
(2)

from a rewrite system specifying natural numbers
with addition and you try to complete them, using
recursive path ordering RPO with the precedence
4+ > s and a left-to-right status of 4, the result

152

will be a divergent process. The rule (2) forms the
forward chain, the positions are ¢ = 1 and & = 1,
and the substitutions are o1 = [¢' — 2,y — s(y)],
o2 =[], o1 = [y = s(¥)], 2 = []. The completion
procedure generates the infinite family of rules

sf(e+y)+2z = xz+(s"(y) +2)

from them. This is also the reason why the proof
by consistency [32] of the associativity in the rewrite
system

r+0 — =

r+s(y) — s(e+y)

using an unappropriate reduction ordering (RPO
with the precedence + > s in this case) results in
an infinite loop, as described by Dershowitz [11] and
Fribourg [16].

In [21] the rewrite system

r+0 — = (3)

z+s(y) — s(x+vy) (4)
ged(2,0) — =
ged(0,2) — «

ged(@' +y',y") — ged(2,y) (5)

specifying the greatest common divisor of two nat-
ural numbers was proved as divergent. It contains
a forward crossed system consisting of the rules (4)
and (5). The rule (4) forms the forward chain, the
positions are ¢ = 1 and b = 1, and the substi-
tutions are o1 = [’ — z, ¥ — s(y)], o2 = [],
1 = [y = s(¥)], 2 = [], as in the previous
case. The completion procedure, using RPO with
the precedence + > s, generates the infinite family
of rules

ged(s" (x +y),s"(y)) — ged(z,s"(y))

from rules (4) and (5), plus another infinite family
ged(s™ (x), s"(0))

derived from the first one by the rule (3). The
second infinite family cannot be produced inde-
pendently because the underlying overlap closure
z+s(0) »—> s(x), constructed consecutively from the
rules (4) and (3), does not form a forward chain.

— ged(z,s"(0))

To show that divergence problems are not caused
only by natural number specifications, let us consider
also other algebraic structures.

Example 3.7 A very simple and elegant example
of a forward crossed system is Associativity & En-
domorphism. Tt was considered by Bellegarde [7],

BenCherifa with Lescanne [9], and Martin [43]. The
rewrite system

f@) + f(y)

- 24+ +2)
- flz+y)

under completion, using RPO with the precedence
4+ > f and the left-to-right status of 4, produces
a forward crossed divergent system. The Endomor-
phism rule forms the forward chain, the positions
are ¢« = 1 and b = 1, and the substitutions are
o= [o f@) o f@) o = (e = [0 o
fx),y = f(¥)], 2 = []. The completion procedure
generates the infinite family of rules

Me+y) +2 — o)+ (" (y) +2)

from it.

Similar to the previous system is Associativity &
Distributivity studied by Lescanne [40], and men-
tioned also by Martin [43] and Mong together with
Purdom [44]. The rewrite system

N $/+(y/+z/)
- zx*(y+2)

(x/+y/)+zl
(xxy)+ (v *x2)

under completion, using RPO with the precedence
4+ > % and a left-to-right status of +, produces a di-
vergent system. It is actually a forward crossed sys-
tem with the Distributivity rule forming the forward
chain, and the substitutions o1 = [¢' — z *xy, ¢y —
zxz], 00 =[], 01 = [y xxy, 2 — xxz], 2 = []. As
a matter of fact, it is a variation of the previous di-
vergent system, where the operation f is interpreted
as a curried multiplication.

A divergent system need not consist of only two
rules, as the previous examples were. The cardinal-
ity of divergent systems is not even bound. On the
other hand, one rule can be sufficient to produce a
divergent system.

Example 3.8 There exists a one-rule forward

crossed system

Flg(f(x)))

introduced by Ardis [1], and observed among oth-
ers by Dershowitz with Marcus [13, 14] and Kirch-
ner [35]. This only rule stands for both objects
required by the Definition 3.3. The positions are
a = 1.1 and b = 1, the substitutions are o1 = [z —

g(f(l‘))]l, 02 = []a 1= [l‘ = g(f(l‘))], Y2 = [] The

I The ambiguity in variables can be resolved by doubling
the rewrite rule and splitting the variables.

- g(f(=))

153

completion procedure generates the infinite family of
rules

flg"(f(@) — ¢"(f(2))

from it.

This one-rule divergent system bears another phe-
nomenon. If we want to assure termination of rewrit-
ing by the generated system, its rules cannot be or-
dered in the opposite direction. Therefore the diver-
gence of this system is inherent.

There exists also a forward crossed rewrite system
consisting of a given number of rules, where the pres-
ence of all rules is necessary to maintain the diver-
gence. As it was proved in [21], the rewrite system

fav1(fna (@) — &
fi(fa(2)) = fica(2)
Filla(2)) = fo(fa-r(2))

ordered by RPO based on the precedence f; > f;
for ¢ > 7, is divergent for all n, but each proper
subset of it can be completed to a finite canon-
ical system. The first rule presents the basis of
divergence and the rest forms the forward chain
Joo1(f2=H(x)) »> fo(fa-1(z)). The substitutions
are 01 = [¢/ — A7 2)], 00 =[], ¢1 = [z =
I7~Y)], w2 = []. The completion procedure gener-
ates the infinite family of rules

Pt (5 (fami(@) = £ ()

from it, plus all the intermediate infinite families ac-
cording to the rules that participate in forming the
forward chain.

fore=2,...,n—1

When someone looks properly on the previously
presented examples, he or she may ask why the Def-
inition 3.3 is so complicated. Not the definition is
too complicated, but the examples were too easy.
They all satisfy the simpler conditions from [22].
Let us analyze more sophisticated systems where all
the conditions of Definition 3.3 must be applied and
where the conditions from [22] appear not to be suffi-
cient enough. The only drawback of these examples
is that they are artificially constructed and do not
reflect any reasonable algebraic structure. Neverthe-
less, when they are divergent, they should be covered
by the definition, as it i1s also true in our case.

Example 3.9 A more general forward crossed
rewrite system is?

diz®h(y) — o
(zoy) @y — kir®k(y)

2The circled operators are to be considered only as syntac-
tic objects, and not as real operators.

If we try to complete this system, using RPO based
on the operator precedence @ > @ and ® > k, we
get a divergent process. The second rule forms the
forward chain. The substitutions are o1 = [2/ —
@ h(y),y =yl os =y =yl pp=lr—r0
k(y)], v2 = [y — k(y)]. The completion procedure
generates the infinite family of rules

d(k"(z @ k" (h(y)))) — v

from it.
A similar case presents the forward crossed rewrite
system

dz' @ (' @y)) — o
glr)dy — glr®(r0y))

only that it is of the second type. If we try to com-
plete 1t, using RPO based on the operator precedence
& >, ® > g and a left-to-right status of &, we
get a divergent process. The second rule forms the
forward chain. The substitutions are o1 = [2/ —
g(@),y =yl o2 = [y g(2) © Y], o1 =[x g(2)],
w2 = [y — g(x) @ y]. The completion procedure
generates the infinite family of rules

(9" () @ y)))))

d(g"(z @ (x 0 (9(z) O ... Sy

from 1it.

Of course, not all systems are so clear to analyze.
There can be systems with more than one forward
chain or systems with multiple overlap positions. Let
us look at such system which has been encountered
as a practical case.

Example 3.10 The following rewrite system spec-
ifies the signed binary trees theory [34]. It is pre-
sented here as an extract from a (canonical) rewrite
system specifying groups. It is the system

(yxz)*xi(z) — y
i)« (xxy) — vy

If we try to complete this system, using RPO based
on the operator precedence i > %, we get a divergent
process. First, the rules

(yxi(z))xz — y
ek (i(z)xy) — vy
are produced, then the infinite iterative process be-

gins. The clue here is that the underlying rewrite
system

154

generates an infinite set of independent forward
chains. Therefore an infinite set of infinite families
of rules is produced. Although it i1s a little bit sur-
prising, it is coherent with the theories in [20] and
in [35]. The forward chain producing rewrite system
1s canonical, thus decidable, so that every computa-
tion modulo whichever forward chain is also decid-

able.

3.2 Backward crossed systems

The following definitions describe another divergence
pattern for the class of rewrite systems with back-
ward oriented critical pairs. This pattern was in-
troduced in [22] only by an example, and was not
treated formally. Its definition covers the divergence
types (v, A) (reverse crossed rules) and (A/v, A) (re-
verse self-crossed rule) described by Mong and Pur-
dom [44], but it is more compact. For its technical
description we refer once more to [20]. Here we focus
our attention more on the examples actually present-
ing the divergence pattern.

Definition 3.11 The overlap closure s; »—» 11 and
the nonreflexive rewrite rule sa — to (with sup-
posed disjoint variables) form a backward crossed
rewrite system ift| is not a variable, there are sub-
stitutions o1, ©1, 2 tn own variables of s1, an idem-
potent substitution oo, and position b € FPos(s1)
such that

1. 81|bO'1 = 8202
2. tipr = s1]p 2
3. 1 — (gpz UO’1)

The second condition plus the coherence relation
©1 — o define 51 »=» 11 to be a backward chain [19)].

The previous definition supplies the static part of
conditions to detect backward divergent systems. If
it was only for the static parts, a duality principle
could be established between forward and backward
crossed rewrite systems, originating from a similar
one between forward and backward chains [19]. The
dynamic part of conditions, introduced in the follow-
ing definition, which puts requirements on the order-
ing of generated critical pairs, is the main difference
between the notions defined in 3.3 and 3.11, making
them to two completely different divergence patterns.

Definition 3.12 The rewrite system R is RL-
persistent in the ordering > if for each nontrivial
eritical pair of terms (s10[t20]q,t10) € ep(R™) fol-
lows 110 > s10[l20],-

The prefix RL- indicates that the produced criti-
cal pairs are oriented in the opposite direction, from
right to left.

From the previously defined notions the following
proposition was proved in [20], which guarantees that
the previous conditions are sufficient for weak diver-
gence. The same discussion concerning interreduc-
tion as in the case of forward crossed systems applies
in this case, too.

Theorem 3.13 If R contains a RL-persistent back-
ward crossed rewrite system then R is weakly diver-
gent.

Let us consider the examples that belong to the
backward crossed divergence pattern. This diver-
gence type 1s not so common as the previous one,
at least not so many real cases of it are known yet.

Example 3.14 An elegant example of a backward
crossed system is the (decidable) theory of bands
(idempotent semigroups)

(xxy)xz — x*x(yx2)

l‘/ * l‘/ — l‘/

studied by Siekmann with Szabé [49], and in connec-
tion with divergence by Dershowitz [11] and Kirch-
ner [35]. The Associativity rule produces an infinite
number of independent backward chains, depending
on the multiple choice of overlap positions.

As a marginal remark, it should be mentioned also
that there exists no canonical unconditional rewrite
system for idempotent semigroups [49].

Also in this type there exist multiple rule divergent
systems as well as a one-rule divergent system. The
one-rule system is an extract from a real example in
this case.

Example 3.15 Extracting the rule

(@\y\z = y\(i(2)\2)

from a rewrite system for deciding groups with left
division, studied by Lescanne in [42], and ordering
it by RPO based on the precedence \ > i and the
left-to-right status of \, presents a backward crossed
system. Once more, an infinite number of indepen-
dent backward chains is produced from the starting
rule.

There exists also a backward crossed rewrite sys-
tem consisting of a given number of rules, where the
presence of all of them is necessary to maintain the
divergence. It is the rewrite system

Si(fo(")) —
Fn(fici(2)) — filfu(z)) fori=2,...,n—1
falfam1(2)) = filfa(2))

155

oriented by RPO based on the precedence f; > f;
for ¢ > j. It is divergent for all n, but each proper
subset of it can be completed to a finite canon-
ical system. The first rule presents the basis of
divergence and the rest forms the backward chain
2= fi(x)) »=> f1(f7~Y(z)). The substitutions are
fo= o fola)], o = [o 2l e = [,
w2 = [x — f?~Yz)]. The completion procedure
generates the infinite family of rules

APV (Ho@) = £V ()

from it, plus all the intermediate infinite families ac-
cording to the rules that participate in forming the
backward chain.

Also in this divergence type artificially constructed
systems can be presented that reflect very well the
conditions required by the Definition 3.11.

Example 3.16 Consider the rewrite system

f(xVg(y)
(x/ /\ y/) \/ y/

— flz)Vy
-

If we try to complete this system, using RPO based
on the operator precedence f > V, we get a divergent
process. The first rule forms the backward chain.
The substitutions are o1 = [— # A ¢(y)], 02 =
[= 9(W)], 1 =y = 9(Y)], 2 = [¢ = f(z)]. The
completion procedure generates the infinite family of
rules

"Eng" W) vy — (9" (y)

from it.
A similar case presents the backward crossed
rewrite system

(zdy) @y

-

(o fly) 8y —
(x/®y/) ®y/

If we try to complete this system, using RPO based
on the operator precedence & > ®, we get a di-
vergent process. The first rule forms the backward
chain. The substitutions are o1 = [z — 2 @ f(y)],
oy = [= xy = W], e = [y = FW]
pa = [t = = ® f(y)]. The completion procedure
generates the infinite family of rules

(ot W) e y)e.. . efly) oy oy —
(W) & ... fly) Dy

from 1it.

3.3 Undecidability of crossed systems

In many rewrite systems the existence of a crossed
subsystem can be shown immediately. Of course, we
may ask if it is decidable that complete(R) contains
a crossed system. Unfortunately, it is not.

Theorem 3.17 [t is undecidable in general whether
the completion procedure generates a crossed system.

Proof: The result was proved by Narendran and
Stillman [45] for crossed pairs, so that it can be im-
mediately applied to forward crossed systems. A mi-
nor modification extends it also to backward crossed
ones. U

The result of Narendran and Stillman [45] has
an immediate implication that all divergence con-
ditions, which cover the case of the one-rule system

Flg(f(x))) = g(f(x)), are undecidable.

4 Avoiding divergence of com-
pletion

A divergent term rewriting system is an unpleasant
fact one has to deal with. The intention is directed
towards the goal to obtain a finite canonical rewrite
system. Therefore something must be done with
the original system to avoid its divergence but to
maintain its semantics. Basically, there exist two
approaches: a theoretical one and an empirical one.
The theoretical approach was formally defined and
exploited by Kirchner [35]. Tt is an universal one
that allows describing divergent systems by meta-
rules. It is the only complete method that allows
to cope directly with inherently divergent systems.
On the other hand, it is not necessary to use the
“heavy artillery” immediately when a divergent sys-
tem is encountered, because the divergence of most
rewrite systems is a result of specification errors.
Also the meta-rule approach is not, to our knowl-
edge, yet implemented in existing rewrite rule labo-
ratories. Therefore it can be more convenient to use
empirical methods which are, of course, not as so-
phisticated as the theoretical approach, but can be
applied in the existing rewrite rule laboratories.
The following parts describe five empirical meth-
ods for avoiding divergence of rewrite systems,
graded by the complexity of actions provided by the
As a matter of fact, there exists one more
method to avoid divergence, namely upgrading to
equational rewriting and thus to equational com-
pletion [4, 30]. Although equational term rewriting
provides a powerful generalization which eliminates

user.

156

many abnormal failure and divergent cases, its func-
tionality is based on the premise of existence of a
complete and finite equational unification algorithm,
which rarely exists for an arbitrary set of equations
E. Moreover, the equational term rewriting method
bears another problem, namely the infinite complete
set of unifiers, which presents another type of diver-
gence [35]. Therefore it needs a broader space of
investigation. For these reasons it 1s not analyzed
here. On the other hand, the unfailing completion
procedure, as it was presented in [6, 24], does not
avoid the divergence problem. One can prove very
easily that if the completion procedure with the con-
trol complete diverges then the unfailing completion
procedure diverges as well.

4.1 Changes within ordering class

The first empirical method to attack divergence con-
sists of changes within an ordering class to obtain
a new concrete ordering. It can be a change of the
underlying operator precedence and/or status in a
recursive path ordering [10], in a recursive decompo-
sition ordering (with status) [42], or in another re-
lated incremental ordering. It can also be a change
of the underlying symbol precedence and/or weight
in a Knuth-Bendix ordering [36, 43], or a change of
the polynomial interpretation in a polynomial order-
ing [9].

Basically, it is always a (relatively minor) change
to an underlying structure of the used ordering class.
Within the incremental orderings it can be per-
formed by backtracking. The aim of these changes
is to order one or more equations in the opposite
direction, so that the critical overlaps, which were
the starting points of divergence, disappear. This
method replaces objects satisfying either the Defini-
tion 3.3 or the Definition 3.11. The equivalence rela-
tion —, generated by the rewrite system, remains
the same, but the normal forms obtained by the re-
arranged system (under the assumption that it can
be completed to a finite canonical system) may not
correspond with the initial intentions. This method
has also its limits because there need not be enough
possibilities to choose from during the completion
process.

Example 4.1 One of the possibilities to resolve the
divergence of the natural number rewrite system is
to change the precedence to s > 4+ in RPO and thus
obtain the canonical system

(x4+y)+=
s(x +y)

= r+(y+=z)
- z+s(y)

where the second rule was ordered in the opposite
direction. Although it is a possible solution, it does
not satisfy the requirement that the successor oper-
ator s should be a constructor, if the rule x +0 — =
would be added.

Another and a better possibility consists of chang-
ing only the status of + to right-to-left. In this case
we obtain the canonical system

z+(y+2)
z+ s(y)

= (r4+y) +=

= s(z+vy)

where now the first rule was ordered in the oppo-
site direction. The successor operator s can be then
declared a constructor in the enlarged system.

The divergent system presented by Associativity
& Endomorphism can be resolved by changing the
precedence to f > 4+ and thus producing the canon-
ical system

(x4+y)+=
fle+y)

= r+(y+=z)
= fx) + f(y)

where it 1s also the second rule that has been ordered
in the opposite direction. So far it seems to be an
acceptable solution, unless you want to reduce the
number of f operators in terms by the completed
rewrite system.

In artificially constructed divergent systems the
orientation of rules does not play a significant role,
therefore this method can be fully applied in Exam-
ples 3.9 and 3.16. We get consecutively the canonical
systems

-y
- (koY sy
by changing the precedence to k > ® and k& > @,

d(z @ (x @ y))
gz ® (z 2 y))

-y
- g(zr)®y

by changing the precedence to g > @,

fE)Vy — fleVg(y)
(xAyY)Vy — y

by changing the precedence to V > f, V > g, and a
left-to-right status of V, and last but not least

(zoy)oy — (t@f(y) Dy
(zoy)yy — =«

by changing the precedence to® @ > &, @ > f, and
a left-to-right status of &.

3There are also other possible changes of precedence.

157

Let us consider also rewrite systems ordered by
other ordering classes, in particular the Knuth—
Bendix ordering and the polynomial ordering.

Example 4.2 As it was pointed out in [36], the clas-
sical presentation of group theory by the rewrite sys-
tem

exxr — =z
ifz)xx — e

(xxy)xz — x*x(yx2)

ordered by the Knuth-Bendix ordering with the
precedence i > % > e, the weight w(x) = 0, and
the weight of the inverse operator being w(i) > 0,
causes divergence under completion. As analyzed by
Mong and Purdom [44], the completion procedure
produces two crossed subsystems. It is the forward
crossed system

%

i(y)

- xx(y*z)

(6)

iy *x)

(x*y)xz

and the backward crossed system

i) xi(y)

i(z xi(y))

The rule (7) in the second system is the real culprit
as indicated in [36], therefore it has to be reoriented.
As a consequence, the rule (6) is not generated any
more. The reorientation can be achieved by changing
the weight of the operator ¢ to w(i) = 0. After that
the standard ten-rule canonical rewrite system for
groups is generated under completion [43].

- (7)

iy *x)
- y#*i(x)

Example 4.3 The Associativity & Endomorphism
rewrite system in Example 3.7 can be ordered in
the same sense by the polynomial interpretation
[f1I(X) = 2X and [+](X,Y) = X? 4+ Y. It still re-
mains divergent, producing the same infinite family
of rules [9]. Fortunately, this system can be proved
to be terminating also using the polynomial interpre-
tation [f](X) = 2X and [+](X,Y) = XY 4+ X. The
nice property of this interpretation is that it makes
possible to complete the rules to the canonical sys-
tem

(z4+y)+2z = 24+(y+2)
f@)+fy) = fle+y)
f@)+(fy)+2) = flea+y) +2

where the number of f operators in terms can be
reduced by the completed system.

The presented method to avoid divergence has its
limits. Changing the precedence to % > ¢ in the
Example 3.10 does not bring anything, and in both
one-rule systems there exists only one choice of prece-
dence in the recursive path ordering. Moreover, the
recursive path ordering remains always too uniformly
persistent, thus 1t orders critical pairs notoriously in
the same direction. Therefore a change of its under-
lying precedence must make the closure chain non-
operational.

4.2 Changing the ordering class

The second empirical method consist of changing
completely the ordering class. It has to be applied
when the previous one does not resolve the problem
of divergence (ordering class is somehow monotone)
or the completed canonical system does not corre-
spond with the user’s intentions. Although there
exist some ordering hierarchies [48], no one order-
ing class is necessarily ‘better’ then another, because
the termination of rewrite systems is undecidable in
general [10, 28]. The aim of this method is to break
a persistence inherent in certain orderings.

The proposed method attacks the conditions of the
Definition 3.4 or of the Definition 3.12. The equiv-
alence relation <— remains again the same. The
user’s contribution to this method is essential, even
if the proposed ordering is implemented in the used
rewrite rule laboratory, hence it is automatized. On
the other hand, one can use also the method of Pur-
dom [46], based on no ordering class, but on checking
the set of rules for looping.

Example 4.4 Let us consider once more the Asso-
ciatwity & Endomorphism rewrite system. Suppose
that f is a costly operator, and this rewrite system is
proposed to optimize the term expressions with re-
spect to f, so that the user can decrease the number
of its uses to minimum. Therefore ordering the rule

f(x) + fy)

forces to use the precedence 4+ > f in RPO.
This causes divergence of completion, as already de-
scribed. Just as we look at the first generated rule

= @)+ ([ly) +2)

we can see that it does not fit our intentions with
decreasing the number of f operators.

The recursive path ordering and also the recursive
decomposition ordering are not suitable for ordering
this rewrite system according to our conditions. As it
was shown already in the Example 4.3, there exists a
polynomial interpretation which allows to produce a

- flr+y)

fle+y) +=

158

finite canonical rewrite system by the polynomial or-
dering. The same finite canonical system can be ob-
tained if using the Knuth-Bendix ordering in which
we set w(f) > 0 [43]. There is also a possibility to
use a lransformation ordering [3, 8].

4.3 Separating closure chains

This method 1s applicable within the enlarged com-
pletion procedure in the sense of Huet and Hul-
lot [27], which takes advantage from an explicit dec-
laration of constructors. The method proposes the
separation of a closure chain into a sequence of less
complex equations. It can be described formally by
the inference rule Separate (see Figure 2). As it can
be seen from the inference rule Separate, the trans-
formation is applicable only to closure chains which
have a common root symbol in the term on both
sides. The chaining process 1s supposed to disappear
after this transformation. The equivalence relation
<, generated by the original system, remains the
same.

Example 4.5 Consider the one-rule backward
crossed rewrite system
fg(f(2))) — [f(h(z)) (8)

ordered by RPO based on the precedence f > h (or
g > h). Trying to complete the system results in
generation of the infinite family of rules

FR™(g(f(x) = f(A"F(x))

Now, if we declare f to be a constructor, the
rule (8) (considered as equation) is separated into
a new equation, which can be ordered to the rule

9(f(z)) = h(z)

choosing the precedence g > h.
presents already a canonical system.

This new rule

4.4 Dividing closure chains

The fourth empirical method is rooted in a process
proposed as early as in the pioneering article [36],
but cannot be considered as completely valid in com-
parison with standard completion, because the term
algebra is changed (the signature is extended dur-
ing the completion by a new function symbol). This
method consists of dividing the underlying closure
chain into two different parts, introducing a new op-
eration symbol, and breaking this way the chaining
process. It can be formally expressed by the inference
rule Divide (see Figure 2). The method is especially
devoted to inherently divergent and one-rule crossed
systems.

Separate: (EU{f(s1,...,8n) >~ f(t1,...

Divide:

(EU{s~t}R) F (FEU{s~ f(x1,...
where f is a new symbol, and Var(s) N Var(t) = {x1, ..

) B R F (BEU{ss~t|i=1,...,n};R)

if f 1s a constructor

’$n)}; R)

ST}

Jp), T~ fla, ...

Figure 2: Additional inference rules

Example 4.6 Consider once more the one-rule for-
ward crossed system

flg(f(=))) = 9(f(2)) (9)

observed in Example 3.8 as inherently divergent. Let
us divide the rule (9) into the (not yet reduced)
rewrite system

flg(f(2)))
9(f(z))

and enrich the precedence with g > h. If we complete
the previous system, we get the canonical system

f(h(z)) = h(z)
9(f(x)) — h(z)
g(h(z)) — h(h(z))

Although it has some successful applications, this
method is fragile. Applying it to the example of the
idempotent semigroup or the one-rule system

(@\y\z = y\(i(2)\2)

does not bring the desired effect.

4.5 Enriching underspecified systems

The last proposed and probably the most power-
ful empirical method to avoid divergence consists
of enriching given systems by new rewrite rules. It
must be applied very carefully, otherwise the original
rewrite system can be compromised and another fi-
nite canonical rewrite system 1s obtained, which does
not correspond with the original rules. It can be ac-
cepted only as a practical method, because the un-
derlying equational theory is changed by the added
rule. This method attacks the conditions of the
Fact 3.2, where the enriched system remains weakly
divergent but not generally divergent any more. The
new rule is added to interfere with interreduction,
that causes a divergence object to disappear in some
completion step.

The probably best way to proceed in this method
is described in following steps:

159

1. remove the divergence basis rule(s) from the sys-
tem R, producing R/,

2. complete the residual set of rules R’ to a fi-
nite canonical rewrite system R; (Recently,
there was a method for proving inductive the-
orems proposed in [23], which does not re-
quire the underlying system to be confluent,
not even on ground terms. Therefore this step
may be skipped when using the just mentioned
method.),

3. prove in Rs by consistency [27, 32], or by in-
ductive reducibility [31, 33], with a possible in-
volvement of Fribourg’s method [16] or even the
more general Bachmair’s one [2], an inductive
theorem, derived from the structure of the gen-
erated infinite family of rules, and add it as a
rule to the existing system Rs, producing RY,

4. add the rules removed in step 1 to R5, forming
an enriched system R, and try to complete it.

Sometimes even a more-cycle iteration of the previ-
ous steps may lead to a desired solution with a finite
canonical system.

The theoretical justification to extend the original
rewrite system by inductive theorems presents the
fact that the extended system R, is ground consistent
with the original system R [32].

Proposition 4.7 [32] For all ground terms s,t €
G(F) the equivalence s g t holds if, and only if,
s QR t.

It means that rewriting ground terms with both the
basic and the extended systems yields the same re-
sult. An open question remains the fact how to infer
the new rule, to be proved as an inductive theorem
of the original system, with which the extension is to
be done.

When we add inductive theorems to the original
system, we are interested in 1its initial model. If
we want to prove an inductive theorem in an initial
model, this model must be nonempty. This requires
the existence of at least one constant. If there is none
so we just introduce a dummy one.

— @z — =z
r@— — =z
(z@y)@Qz — zQ@(yQ@z)
flatten(—=) — —
flatten([z]) — flatten(x)
flatten([z] @Qy) — flatten(z) Q flatten(y) (10)
flatten(flatten(x)) — flatten(x) (11)

ordered by RPO based on the precedence flatten > @ and a left-to-right status of @.

Figure 3: Rewrite system with the operation flatten

Example 4.8 4 Let us consider a rewrite system
specifying lists, with the operators — for an empty
list, [] for an one-element list, and the append oper-
ator @. Let us define a flatten operator that trans-
forms structured lists to lists consisting of only sim-
ple elements. The rewrite system is presented in Fig-
ure 3. If we try to complete this system, we get
a divergent process. The rules (10) and (11) form
a forward crossed rewrite system with the forward
chain (10).

We remove the involution (11) and the residual
system is already canonical. We are able now to
prove the endomorphism rule

flatten(z @ y) — flatten(z) Q flatten(y)

as its inductive theorem. We add 1t to the system
and take back also the involution rule (11), forming
the extended system. This extended system is com-
pletable to the finite canonical system

— @z — =z
r@— — =z
(z@Qy) @z — z@(yQ@z)
flatten(—=) — —
flatten([z]) — flatten(x)
flatten(z @ y) — flatten(x) @ flatten(y)
flatten(flatten(x)) — flatten(x)

The rule to be removed must be considered care-
fully. If we remove the wrong one, it can be even
generated during completion of the residual system

(dragon’s head).

Example 4.9 Let us consider once more the rewrite
system in Example 3.10 that could not be resolved

4This example is constructed from a divergent inductive
theorem proof.

160

by the previous empirical methods. If we remove the

antimorphism rule

and try to complete the residual system, then the

iz xy)

just removed rule will be generated from the other
rules again.
The right way consists of removing the rules

i(x) * (z xy)

- Yy
- Yy

and the residual system

i(i(x))

iz xy)

=
i(y) i)

There 1s no constant in the

%

i1s already canonical.
system so we introduce a dummy one denoted by e.
We are able now to prove the associativity rule

(xxy)xz — x*x(yx2)

as its inductive theorem. We add 1t to the system
and take back also the removed rules, forming the
extended system. If we try to complete it, the critical
pair

zki(x) i(y) xy

is produced, which cannot be ordered because of the
disjoint variables on the left- and right-hand side of
the equation. It can be regarded as a request for a
new operator. Therefore we divide the critical pair
to the rules

rxi(z) — e

ily)xy — e

using the already introduced symbol e as the neu-
tral element and extending the precedence with % >

e. After this action the rules are completable to
the standard ten-rule canonical rewrite system for
groups.

It must be admitted that this method has its lim-
its, too, especially in the case of one-rule divergent
systems. There is nothing to be removed; if the
only rule is removed then virtually nothing can be
proved as an inductive theorem in an empty system.
Therefore one has to proceed in another way. One of
the operators has to be decided as a non-constructor
and then the rules to define it completely have to be
added.

Example 4.10 Consider once more the extracted
rule

(@\y\z = y\(i(2)\2)

from the group specification with left division. Let us
decide the inverse operator i to be a non-constructor
and therefore to add the rules®

i(e\y) — y\x
ile) — e

to define it completely. To make possible the order-
ing of the new rules in the proposed direction, the
underlying precedence must be changed to i a \.
The enriched system is already canonical. If we add
also the rule

we get the finite canonical system

(@\y\z = y\(i(z)\2)
i(x\y) — Y\
ile) — e
e — i(x)
e\t — x

5 Conclusion

We described two basic divergence patterns, the for-
ward and backward crossed rewrite systems with LR-
or RL-persistence respectively, by their definition
from [20]. TFurther we presented in detail a num-
ber of examples to make the definitions more under-
standable and to support them as well. Although the

5Tt is necessary to introduce the neutral element e as a
constant.

161

divergence property i1s undecidable in general, the
described divergence patterns seem to be sufficient
enough to cover a large class of divergent systems,
if not all of them. In the last section we introduced
five empirical methods to avoid divergence of com-
pletion, which can be applied by an user during a
session with a rewrite rule laboratory.

Acknowledgements

I would like to express my warmest thanks to Héléne
Kirchner, Leo Bachmair, Jieh Hsiang, and Pierre
Lescanne for comments and suggestions which helped
to ameliorate the early versions of this paper.

References

[1] M.A. Ardis. Data abstraction transformations.
Technical report TR-925, University of Mary-
land, Maryland (USA), 1980.

[2] L. Bachmair. Proof by consistency in equational
theories. In Proceedings 3rd IEEE Symposium
on Logic in Computer Science (LICS’88), Ed-

inburgh (Scotland), pages 228-233, July 1988.

L. Bachmair and N. Dershowitz. Commu-
tation, transformation and termination. In
J.H. Siekmann, editor, Proceedings Sth Inter-
national Conference on Automated Deduction
(CADE’86), Ozford (England), volume 230 of
Lecture Notes in Computer Science, pages 5b—20.
Springer-Verlag, July 1986.

L. Bachmair and N. Dershowitz. Completion
for rewriting modulo a congruence. Theoreti-
cal Computer Science, 67(2-3):173-202, October
1989.

L. Bachmair, N. Dershowitz, and J. Hsiang. Or-
derings for equational proofs. In Proceedings 1st
IEEFE Symposium on Logic in Computer Science
(LICS’86), Cambridge, (Massachusetts, USA),
pages 346-357, June 1986.

L. Bachmair, N. Dershowitz, and D.A. Plaisted.
Completion without failure. In H. Ait-Kaci
and M. Nivat, editors, Proceedings of Resolution
of Equations in Algebraic Structures, Lakeway,
(Texas, USA); Volume 2: Rewrite Techniques,
pages 1-30. MCC Corporation & INRIA, Aca-
demic Press, 1989.

F. Bellegarde. Rewriting systems on FP expres-
sions to reduce the number of sequences yielded.

[11]

[13]

[16]

[17]

Science of Computer Programming, 6(1):11-34,
January 1986.

F. Bellegarde and P. Lescanne. Transforma-
tion ordering. In H. Ehrig, R. Kowalski,
G. Levi, and U. Montanari, editors, Proceed-
ings of CAAP 87, Pisa (Italy), volume 249 of
Lecture Notes in Computer Science, pages 69—
80. TAPSOFT ’87, volume 1, Springer-Verlag,
March 1987.

A. BenCherifa and P. Lescanne. Termination of
rewriting systems by polynomial interpretations
and its implementation. Science of Computer

Programming, 9(2):137-159, October 1987.

N. Dershowitz. Termination of rewriting. Jour-
nal of Symbolic Computation, 3(1 & 2):69-116,
1987. Special issue on Rewriting Techniques and
Applications.

N. Dershowitz. Completion and its applica-
tions. In H. Ait-Kaci and M. Nivat, editors, Pro-
ceedings of Resolution of Equations in Algebraic
Structures, Lakeway, (Texas, USA); Volume 2:
Rewriting Techniques, pages 31-86. MCC Cor-
poration & INRIA, Academic Press, 1989.

N. Dershowitz and J.-P. Jouannaud. Notations
for rewriting. Bulletin of the European Associa-
tion for Theoretical Computer Science, 43:162—
172, February 1991.

N. Dershowitz and L. Marcus.
construction of rewrite systems. Technical Re-
port ATR-82(8478)-3, Aerospace Corporation,
El Segundo, California, 1982.

Existence and

N. Dershowitz, L. Marcus, and A. Tarlecki.
Existence, uniqueness, and construction of
rewrite systems. STAM Journal on Computing,

17(4):629-639, August 1988.

M. Fay. First-order unification in an equational
theory. In S. Sickel, editor, Proceedings of the
4th Workshop on Automated Deduction, Austin
(Texas, USA), pages 161-167, February 1979.

L. Fribourg. A strong restriction of the induc-
tive completion procedure. Journal of Symbolic

Computation, 8(3):253-276, September 1989.

R. Gobel. Ground confluence. In P. Lescanne,
editor, Proceedings 2nd Conference on Rewrit-
ing Techniques and Applications (RTA’87),
Bordeauzr (France), volume 256 of Lecture Notes
wn Computer Science, pages 156-167. Springer-
Verlag, May 1987.

162

[18]

[23]

[26]

J.V. Guttag, D. Kapur, and D.R. Musser. On
proving uniform termination and restricted ter-
mination of rewrite systems. SIAM Journal on
Computing, 12(1):189-214, February 1983.

M. Hermann. Chain properties of rule clo-
In B. Monien and R. Cori, editors,
Proceedings 6th Symposium on Theoretical As-
pects of Computer Science (STACS’89), Pader-
born (Germany), volume 349 of Lecture Notes
wn Computer Science, pages 339-347. Springer-

Verlag, February 1989.

sures.

M. Hermann. Crossed term rewriting systems.
Research report 89-R-003, Centre de Recherche
en Informatique de Nancy, 1989. Included in [?].

On nontermina-
tion of Knuth-Bendix algorithm. Research re-
port VUSEI-AR-OPS-3/85, Institute of Socio-
Economic Information and Automation in Man-
agement, Bratislava, Czechoslovakia, November

1985.

M. Hermann and I. Privara.

M. Hermann and I. Privara. On nontermination
of Knuth-Bendix algorithm. In L. Kott, editor,
Proceedings 13th ICALP Conference, Rennes
(France), volume 226 of Lecture Notes in Com-
puter Science, pages 146-156. Springer-Verlag,
July 1986.

D. Hofbauer and R.-D. Kutsche. Proving in-
ductive theorems based on term rewriting sys-
tems. In J. Grabowski, P. Lescanne, and
W. Wechler, editors, Proceedings of the Inter-
national Workshop on Algebraic and Logic Pro-
gramming, Gaussig (Germany), volume 343 of
Lecture Notes in Computer Science, pages 180—
190. Springer-Verlag, November 1988.

J. Hsiang and M. Rusinowitch. On word prob-
lems in equational theories. In T. Ottmann,
editor, Proceedings of the 14th ICALP, Karl-
sruhe (Germany), volume 267 of Lecture Notes
. Computer Science, pages 54-71. Springer-
Verlag, July 1987.

G. Huet. Confluent reductions: Abstract prop-
erties and applications to term rewriting sys-
tems. Journal of the Association for Computing

Machinery, 27(4):797-821, 1980.

G. Huet. A complete proof of correctness of the
Knuth-Bendix completion algorithm. Journal of
Computer and System Secience, 23(1):11-21, Au-
gust 1981. Also as: Rapport 25, INRIA, 1980.

[27]

[29]

[31]

[34]

[35]

[36]

[37]

G. Huet and J.-M. Hullot. Proofs by induction
in equational theories with constructors. Jour-
nal of Computer and System Seience, 25(2):239—
266, October 1982.

G. Huet and D.S. Lankford. On the uniform
halting problem for term rewriting systems.
Rapport de recherche 283, Institut de Recherche
en Informatique et en Automatique, Le Ches-
nay, France, 1978.

J.-M. Hullot. Canonical forms and unification.
In W. Bibel and R. Kowalski, editors, Proceed-
wngs 5th International Conference on Automated
Deduction (CADE’80), Les Arcs (France), vol-
ume 87 of Lecture Notes in Computer Science,

pages 318-334. Springer-Verlag, July 1980.

J.-P. Jouannaud and H. Kirchner. Completion
of a set of rules modulo a set of equations.
SIAM Journal on Computing, 15(4):1155-1194,
November 1986.

J.-P. Jouannaud and E. Kounalis. Automatic
proofs by induction in theories without con-
structors. Information and Computation, 82:1—

33, 1989.

D. Kapur and D.R. Musser. Proof by con-
sistency. Artificial Intelligence, 31(2):125-157,
February 1987.

D. Kapur, P. Narendran, and H. Zhang. On
sufficient completeness and related properties
of term rewriting systems. Acta Informatica,

24(4):395-415, August 1987.

C. Kirchner and H. Kirchner. Résolution
d’équations dans les algébres libres et les var-
1étés équationelles d’algébres. Master’s thesis,
Université de Nancy I, 1982.

H. Kirchner. Schematization of infinite sets of
rewrite rules generated by divergent completion
process. Theoretical Computer Science, 67(2-

3):303-332, 1989.

D.E. Knuth and P.B. Bendix. Simple word prob-
lems in universal algebras. In J. Leech, edi-
tor, Computational Problems in Abstract Alge-
bra, pages 263-297. Pergamon Press, Oxford,
1970.

D.S. Lankford. Canonical inference. Research
report ATP-32, Department of Mathematics
and Computer Science, University of Texas,

Austin, Texas (USA), December 1975.

163

[38]

[41]

[43]

[45]

[46]

D.S. Lankford and D.R. Musser. A finite termi-
nation criterion. Unpublished draft, Informa-
tion Sciences Institute, University of Southern

California, Marina-del-Rey, CA, 1978.

P. Lescanne. Computer experiments with the
REVE term rewriting system generator. In Pro-
ceedings of the 10th ACM POPL Symposium,
Austin, (Texas, USA), pages 99-108, January

1983.

P. Lescanne. Divergence of the Knuth-Bendix
completion procedure and termination order-
ings. Bulletin of the Furopean Association for
Theoretical Computer Science, 30:80-83, Octo-
ber 1986.

P. Lescanne. Completion procedures as transi-
tion rules + control. In J. Diaz and F. Orejas,
editors, Proceedings of TAPSOFT ’89, Volume
1: CAAP ’89; Barcelona (Spain), volume 351 of
Lecture Notes in Computer Science, pages 28—

41. Springer-Verlag, March 1989.

P. Lescanne. On the recursive decomposition
ordering with lexicographical status and other
related orderings. Journal of Automaled Rea-

soning, 6:39-49, 1990.

U. Martin. How to choose the weights in the
Knuth-Bendix ordering. In P. Lescanne, edi-
tor, Proceedings 2nd Conference on Rewriting
Techniques and Applications (RTA’87), Bor-
deaur (France), volume 256 of Lecture Notes
. Computer Science, pages 42-53. Springer-
Verlag, May 1987.

C.-T. Mong and P.W. Purdom. Divergence in
the completion of rewriting systems. Technical
report, Dept. of Comp. Science, Indiana Univer-

sity, 1987.

P. Narendran and J. Stillman. It is undecid-
able whether the Knuth-Bendix completion pro-
cedure generates a crossed pair. In B. Monien
and R. Cor, editors, Proceedings 6th Sympo-
stum on Theoretical Aspects of Computer Sci-
ence (STACS’89), Paderborn (Germany), vol-
ume 349 of Lecture Notes in Computer Science,
pages 348-359. Springer-Verlag, February 1989.

P.W. Purdom. Detecting looping simplifica-
tions. In P. Lescanne, editor, Proceedings 2nd
Conference on Rewriting Techniques and Appli-
cations (RTA’87), Bordeauzr (France), volume
256 of Lecture Notes in Computer Science, pages
54-61. Springer-Verlag, May 1987.

[47]

B. K. Rosen. Tree-manipulating systems and
Church-Rosser theorems. Journal of the Associ-
ation for Computing Machinery, 20(1):160-187,
January 1973.

M. Rusinowitch. Path of subterms ordering
and recursive decomposition ordering revisited.
Journal of Symbolic Computation, 3(1 & 2):117-
131, 1987.

J. Siekmann and P. Szabé. A Neetherian and
confluent rewrite system for idempotent semi-
groups. Semigroup Forum, 25:83-110, 1982.

J.R. Slagle. Automated theorem-proving for
theories with simplifiers, commutativity, and as-
sociativity. Journal of the Association for Com-
puting Machinery, 21:622-642, 1974.

164

