Survey Document for a CP 2001 Tutorial
Complexity of Constraint Satisfaction Problems

Nadia Creignou Miki Hermann
LIM (CNRS, FRE 2246), LORIA (CNRS, UMR 7503)
Université de la Méditerranée BP 239
Marseille 54506 Vandceuvre-les-Nancy
France France
Nadia.Creignou@lim.univ-mrs.fr Miki.Hermann@loria.fr

Reinhard Pichler
Technische Universitat Wien
and
Siemens AG Austria
Wien
Austria
reini@logic.at

Remark: This document is an overview, from a computational complexity standpoint, of several
constraint satisfaction problems. We assume that the reader is familiar with the usual notions and
definitions used in the complexity theory, like polynomial time, NP-complete or coNP-complete
problems. We also use some necessary notions from counting complexity, like the classes FP or
#P, or from approximation theory, that became largely known in the recent years. Therefore we do
not recall the definitions of these notions in this document. However, a reader who is not familiar
with these concepts can find more information in the book [Pap94] or in the survey [Joh90].

1 Complexity of Constraint Satisfaction Problems on Boolean and
Finite Domains

Constraint satisfaction problems occur commonly in practice, optimization and in settings arising
from artificial intelligence. This section is devoted to complexity results for such problems on
Boolean and finite domains. The question of identifying restrictions to the general problem that
are sufficient to ensure tractability is important for both a practical and a theoretical viewpoint and
has been extensively studied. Such restrictions may either involve the structure of the constraints or
they may involve the “nature” of the constraints. Here we take the second approach and we study
the complexity of deciding satisfiability of a given constraint satisfaction problem as a function of
the “nature” of the constraints.

We are interested in an infinite class of constraint satisfaction problems. Informally speaking, a
problem in this class is characterized by a finite collection of finitely specified constraint templates,
say F. An instance of such a problem, called the CSP(F) problem, consists of n variables and m
constraints applied to various subsets of the given variables such that each constraint is drawn from

the collection F. The computational objective is to determine whether there is an assignment to
the input variables which satisfies all the given constraints.

Example 1.1

e An instance of 2-SAT is a collection of Boolean binary constraints on n variables. Each clause
is a constraint that rules out certain assignments to the variables.

e An instance of 3-colorability is a graph which can be seen as a collection of binary constraints
(#) over the finite domain D = {0, 1,2}.

We are interested in studying the complexity of answering the above question for every problem
CSP(F). In view of the two examples above it becomes clear that this class captures polynomially
solvable problems as well as intractable (NP-complete) ones. There are at least two different
motivations to do such a study. On the one hand a complete complexity classification for an infinite
family of problems is important for the design of good algorithms since it delineates the boundary
between tractable and intractable cases. We will see that the classifications obtained highlight some
problems as central when it comes to propose an efficient algorithm. On the other hand, constraint
satisfaction problems are an excellent testbed for abstracting some global inferences about the
nature of computation and may provide very useful hints at the ultimate goal of complexity theory:
identify what renders some problems hard whereas some others seemingly very similar are easy.

1.1 Constraint satisfaction problems over Boolean and finite domains

As we have seen above two examples of constraint satisfaction problems are (1) 2-SAT and (2) 3-
colorability. The difference between these two problems is the nature of the underlying constraints.
In order to specify a computational problem in term of its underlying constraint structure, one
needs a finite specification of the set of the constraints. In order to achieve this objective, we
distinguish constraints from their applications. For example there are (n?) different clauses of
length 2, when applied to n Boolean variables. However it is clear that the underlying template
only needs to include all the different constraints on 2 variables; and the rest can be achieved
by specifying to which ordered subset of variables is a basic constraint applied. This distinction
between constraints and their applications is formalized in [CKS01] and reproduced next. Once
we formalize this distinction, we present the class of constraint satisfaction problems that we will
study.

Throughout this section D denotes a finite domain of cardinality r, r > 2, D = {0,1,...,r — 1}.

Definition 1.2 [Constraint] A constraint is a Boolean function f: D¥ — {0,1}, where k is a
non-negative integer called the arity of f.

Definition 1.3 [Constraint application] Given a constraint f: D¥ — {0,1} and (iy,...,), the

pair (f, (i1,...,4;))) is referred to as an application of the constraint f to z;,,...,z;,.
Definition 1.4 [Satisfiable constraint application] Every assignment ¢: {z1,...,z,} — D natu-
rally extends itself to any constraint application C' = (f, (41,...,%x)), we have

An assignment ¢ satisfies a constraint application C if ¢(C) = 1.

Throughout this section, F will denote a finite set of constraints over the domain D.

Definition 1.5 [F-collection of constraint applications] Let F be a finite collection of constraints.
A constraint application of the form (f, (i1,...,ix)) where f € F is referred to as an F-constraint
application. A collection of m such constraints applications is called an F-collection of m constraint
applications. Such a collection is satisfiable if there exists an assignment which satisfies all of its
constraint applications.

Definition 1.6 [Constraint Satisfaction Problem (CSP(F))] The constraint satisfaction problem
CSP(F) is to decide whether there exists an assignment that satisfies a given F-collection of con-
straint applications.

Example 1.7

e The classical 2-SAT problem is the same as CSP({ fo, f1, f2}), where f;: {0,1}? — {0,1} for
i—0,....2and
fo(z,y) = 0 if and only if (z,y) = (0,0),
fi(z,y) = 0 if and only if (x,y) = (1,0),
fa(z,y) = 0 if and only if (z,y) = (1,1).

e The 3-colorability problem can be seen as CSP({g})

where g:{0,1,2}2 —— {0,1} and g~ (1) = {(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)}. Each edge
of the graph given in input consists of the constraint g applied to its two endpoints.

1.2 Complexity of Boolean Constraint Satisfaction Problems

A significant amount of research effort was oriented towards studying the constraint satisfac-
tion problems on Boolean domain (which are nothing else but generalized satisfiability problems,
see [CKSO01] for a uniform survey). There is now a growing body of complexity classification re-
sults for problems derived from Boolean constraint satisfaction. Schaefer [Sch78] began this line
of research in 1978. In seek of a didactical presentation we will focus our attention on Schaefer’s
remarkable result and few of its extensions in giving the gist of the proof.

Throughout this subsection CSP(F) problems will be denoted by SAT(F) in order to remind
the reader that we are dealing with Boolean domains.

Schaefer was interested in the complexity of deciding whether an instance of SAT(F) is satisfiable
for every problem SAT(F). His study led to a strikingly simple answer: every problem in this class
is either in P or NP-complete. This result is surprising and unexpected for several reasons. First
prior to this result NP-completeness was established on a problem by problem basis. Schaefer’s
result gives a uniform proof to establish NP-completeness for an infinite collection of problems.
Furthermore, rarely in complexity theory one comes across an infinite class of problems where
every problem belongs to a finite collection of computational equivalence classes.

Let us now give some definitions in order to state his result.
Definition 1.8 A constraint f is said to be
0-valid if f(0,...,0) = 1.

1-valid if f(1,...,1) = 1.

weakly positive (weakly negative) if f is expressible as a CNF-formula having at most one
negated (unnegated') variable in each clause.

bijunctive if f is expressible as a 2CNF-formula.

affine if f is expressible as a system of linear equations over GF(2); that is, it is equivalent to a
system of linear equations of the forms v1 ® - ® v, = 0 and v1 & --- ® v, = 1, where &
denotes the exclusive or connective.

Theorem 1.9 [Sch78] Given a constraint set F, the problem SAT(F) is in P if F satisfies one of
the conditions below, and SAT(F) is NP-complete, otherwise.

1. Every constraint in F is 0-valid (1-valid).

2. FEvery constraint in F is bijunctive.

3. Ewvery constraint in F is weakly positive (weakly negative).
4. Fvery constraint in F is affine.

Let us now analyze this result. A quick look to its statement leads to the following observation:
easy problems are well-known! Indeed the central problems for the polynomial cases are the classical
tractable satisfiability problems: 2-SAT, Horn SAT and deciding the consistency of a linear system
over GF(2). For instance if every constraint in F is bijunctive then every collection of constraints
applications can be expressed as a 2-CNF-formula, whose satisfiability can be decided in linear
time [APT79]. On the other hand intractable cases need the most effort. If 7 does not satisfy any
of the above conditions then Schaefer proved that one can “encode” the NP-hard constraint One-
In-Three with F-constraints (this “encoding”, which has to preserve the satisfiability, is rigorously
formalized in [CKSO01] as perfect implementation). The proof is based on algebraic characterizations
of the properties described above. For instance it is well-known that a constraint f is weakly
negative (i.e. Horn) if and only it is closed under direct product, that is to say if and only for all 33
and S5 such that f(s7) = 1 and f(83) = 1, the direct product §; N &5 is also satisfying. Bijunctive
and affine constraints are characterized by similar algebraic closure properties.

Schaefer’s concise characterization allows us to determine whether for a given F, SAT(F) is in
P or is NP-complete. Then, a natural question is: what is the complexity of identifying tractable
problems. In other words, how difficult is it to recognize that the problem specified by a given
constraint set is indeed tractable. The question was settled in [CKS01].

Proposition 1.10 [CKS01] Let F be a constraints set. Suppose that each constraint in F is
specified by a CNF-formula. Then the problem of deciding whether SAT(F) is in P is coNP-hard.

Many results extend Schaefer’s study and explore different kinds of complexity classes restricted
to Constraint Satisfaction Problems. Their authors have shown classification results for a variety
of computational tasks where the goal of the computation varies while the instance remains the
same. For instance we studied the counting version of the Boolean constraint satisfaction problems
where the objective is to count the number of assignments satisfying all constraints. We obtained a
dichotomy result FP/ #P (where #P is the counting counterpart of NP, see [Pap94, Chapter 18]).

!Such clauses are usually called Horn clauses.

Theorem 1.11 [CHY96] Given a constraint set F, if every constraint in F is affine then the problem
#SAT(F) is in FP, and #SAT(F) is #P-complete, otherwise.

Let us compare this result to Schaefer’s one. Most of the central tractable problems for the decision
task become hard when it comes to counting. Indeed, while the decision problems 2-SAT and Horn-
SAT are in P, the corresponding counting problems #2-SAT and #Horn-SAT are #P-complete
(see [Val79]). Only counting the number of solutions of a linear system over a finite field is as
easy as deciding its consistency via Gaussian elimination. So, once more this result reveals that
easy problems are well-known. The #P-complete case is obtained by an “encoding” preserving the
number of solutions (referred to as faithful reduction in [CKS01]) from the problems Positive-2-
SAT [Val79] and Implicative-2-SAT [PB83] which are known to be #P-complete.

As a corollary observe that NP-completeness for a satisfiability problem implies the #P-comple-
teness of the corresponding counting problem. this result confirms for an infinite and general class
of problems the intuitive opinion that each NP-complete problem leads to a corresponding #P-
complete counting problem.

In this line of research Juban [Jub99] proved a dichotomy theorem for the Unique Satisfiability
problem. Another closely related aspect is that of enumerating all solutions (without duplicate).
Creignou and Hébrard refined Schaefer’s result in identifying satisfiability problems for which all
solutions can be generated in polynomial delay (see [JYP88]).

Theorem 1.12 [CH97] Given a constraint set F, the problem of generating all models for any
given F-collection of constraints has a polynomial space, polynomial delay algorithm if F satisfies
one of the conditions below, and otherwise, no such algorithm exists unless P=NP.

1. Ewvery constraint in F is weakly positive (weakly negative).
2. Bvery constraint in F is affine.

3. Every constraint in F is bijunctive.

Another problem of interest is to evaluate a quantified collection of constraint applications. Such
a quantified collection is of the form Qqz1 - Q,x,C, where C is an F-collection of constraints over
the set of variables {z1,...,z,} and Q; is either the quantifier “for all” or “exists”, fori =1,...,n.
The quantified satisfiability problem, QSAT(F) is to decide whether a given quantified F-collection
of constraints application is true. Quantified satisfiability problems form a natural subclass of
PSPACE problems; and include some PSPACE-complete problems. There is also a dichotomy result
for quantified constraint satisfaction problems (which was first stated in [Sch78] and independently
proved in [CKS01] and in [Dal97]).

Theorem 1.13 Given a constraint set F, if F satisfies one of the following three conditions then
QSAT(F) is in P otherwise it is PSPACE-complete

1. Ewvery constraint in F is weakly positive (weakly negative).
2. Bvery constraint in F is affine.

3. Every constraint in F is bijunctive.

Many other results deal with optimization problems. Creignou [Cre95] and, Khanna and Su-
dan [KS96] independently studied optimization problems where the objective is to maximize the
number of satisfied constraints. They showed that every problem MaxSAT (F) is either in P or APX-
complete. In this result the central problem for the polynomial case is the s,t-Min-Cut problem,
whereas the APX-complete case is obtained by an approximation-preserving encoding (referred to
as strict implementation in [CKS01]) from the Max-Cut problem. Khanna et al. [KSW97, KSL97]
studied other forms of commonly occurring optimization tasks in the constraint satisfiability setting
and obtained classification results. Their results [KSW97, KSL97] are somewhat different from the
others above in that the resulting classification theorems do not exhibit dichotomies but rather a
partition into a larger but finite number of equivalence classes. Reith and Vollmer [RV00] stud-
ied the class of optimization problems where the objective is to find a lexicographically minimal
(maximal) satisfying assignment.

Other people studied similar aspects of constraint satisfaction problems. Kavvadias and Sideri
studied in [KS98] the inverse satisfiability problem where the goal is to find an F-collection of
constraint applications such that a given set of truth assignments constitutes its set of feasible
solutions. Cadoli [Cad92] proved that testing for truth assignment minimality of a given propo-
sitional formula is coNP-complete, whereas Kirousis and Kolaitis [KK00, KKO01] presented a di-
chotomy theorem for propositional circumscription. They investigated the class of decision prob-
lems Min-SAT(F) that ask whether a satisfying truth assignment for an F-collection of constraint
applications is minimal with respect to the coordinate-wise partial order. Their dichotomy theorem
separates coNP-complete instances from instances in P. Durand, Hermann, and Kolaitis [DHKO00]
proved that counting the number of minimal truth assignments of a propositional formula is a
#NP-complete problem. Bohler, Hemaspaandra, Reith and Vollmer considered the problem of
determining whether two given F-collections of constraint applications are equivalent in the sense
that they possess the same set of satisfying assignments [BHRVO01].

1.3 Complexity of Constraint Satisfaction Problems on non-Boolean finite do-
mains

A complete complexity classification for all constraint satisfaction problems over arbitrary finite
domains is an open problem and is a highly challenging task of much more than technical interest
(see [FV98]).

There are some complete classification results when we restrict our attention to binary constraint
satisfaction problems. First Hell and Nesetfil [HN90] obtained a dichotomy theorem for the H-
coloring problem, in which the question is that of deciding whether there exists any homomorphism
from a given graph G to the fixed graph H. They showed that the decision problem is in P if H
has a loop or is bipartite; otherwise it is NP-complete. Dyer and Greenhill [DG00] considered the
problem of exactly counting such homomorphisms and gave a similar complete characterization.
They showed that counting is in FP if every connected component of H is an isolated vertex
without loop, or a complete graph with all loops present or a complete unlooped bipartite graph;
otherwise it is #P-complete. Cooper, Cohen and Jeavons [CCJ94] studied the complexity of CSP(F)
when F is a set of binary constraints under the additional hypothesis that F is closed under
two operations, domain restriction and label permutation. They proved that satisfiability can
be decided in polynomial time if all constraints belong to a special class of constraints, called
0/1/all or implicational constraint, and is NP-complete in all other cases. Their work was extended
by Istrate [Ist97] who, under the same conditions, obtained a dichotomy classification for both

the corresponding counting problems (FP/#P-complete) and the optimization problems (P/APX-
complete).

In a more general framework Jeavons, Cohen and Gyssens [JCG97] brought to the fore the link
between the algebraic closure properties of the constraints and the complexity of the corresponding
constraint satisfaction problem. It appears that when restricted to Boolean domain algebraic
closure properties of the constraints (see [CKS01, Chapter 4, Section 4.4 and Chapter 6]) exactly
characterizes the complexity of the corresponding constraint satisfaction problem. Jeavons, Cohen
and Gyssens proved that any set of constraints that does not give rise to an NP-complete class
of problems must satisfy a certain type of algebraic closure condition. Then, they investigated
all the different possible forms of the algebraic closure property and established which of these are
sufficient to ensure tractability. A number of tractable constraint classes have also been identified by
Feder and Vardi [FV98]. In a highly nontrivial proof they pointed out that constraint satisfaction
problems over non-Boolean domains are computationally equivalent to problems in “monotone
monadic SNP”, a syntactically restricted class of languages within NP which is, in some sense, the
largest class within NP that may show dichotomy results.

Despite all these efforts the complexity classification of constraint satisfaction problems over
finite domains is still incomplete.

2 Complexity of Equational Constraint Problems

Equational problems are first-order formulas with quantifier prefix 3*V*, whose only predicate
symbol is syntactic equality. They are an important tool in many areas of computer science.

In automated deduction, equational constraints can be used to restrict the set of ground instances
of a clause. It is thus possible to define stronger redundancy criteria and hence, in general, more
efficient theorem provers (cf. [CZ90, CP95b, CP95a]). In automated model building, equational
problems can be used in several ways, e.g.: for model construction, for model representation, for
the evaluation of clauses in a given model, etc (cf. [CZ90, FL96]). Complement problems are an
important special case of equational problems with applications in logic programming, functional
programming, machine learning, etc. (cf. [LM87, LMM91, Lug89, SM91]).

Equational problems over finite universes can be used to encode queries over relational databases.
Finally, note that also the constraint satisfaction problems on Boolean and finite domains treated in
Section 1 can be easily encoded as equational problems over finite universes. Let D = {a1,...,ax}
be a finite domain and let C' = {{f1, (411, ,91k))s- -+ (fms (Fm1s- -+ 0mk,,))} denote a finite set
of constraint applications over D, such that every f; is a constraint of the form f;: DFi — {0,1}.
Moreover, let ' denote the set of all variables z;_ , occurring in C. Then C is satisfiable, if and
only if the equational problem

P = (3’?) /\ \/ (.’I}ijl =biA--- A .’I}ijk]_ = bk].)
J=1 (bryenbe)E(S) (1)
over the Herbrand universe H = {aq,...,ax} is satisfiable. A good overview of the wide range of
applications of equational problems can be found in [CL89].
In many of these applications, testing the satisfiability of an equational problem is even more
important than actually computing the solutions. In this section, we present a survey of complex-
ity results for this satisfiability problem, where we consider several restrictions on the equational

problems, namely: quantifier prefix 3* versus 3* V*, CNF versus DNF and, finally, interpretation
of the formula over a finite universe versus an infinite universe.

2.1 Syntax and semantics of equational constraint problems

Equational problems are first-order formulas of the form 3w Vi P(w, Z,4), such that P(,Z,%) is
a quantifier-free formula with variables in , Z and ¥, where syntactic equality “=" is the only
predicate symbol. A disequation s # ¢ is a short-hand notation for a negated equation —(s = t).
The trivially true problem is denoted by T and the trivially false one by L.

In this section, every equational problem P is considered over some fixed Herbrand universe H
(or, equivalently, over some fixed finite signature X consisting of constant symbols and possibly
function symbols). An interpretation over H is given through an H-ground substitution o, whose
domain coincides with the free variables of the equational problem. The trivial problem T evaluates
to “true” in every interpretation. Likewise, | always evaluates to “false”. A single equation s =t
is validated by a ground substitution o, if and only if so and to are syntactically identical. The
connectives A, V, =, 3 and V are interpreted as usual. A ground substitution o which validates a
problem P is called a solution of P. An equational problem is satisfiable, if and only if it has at
least one solution.

As far as the satisfiability of an equational problem is concerned, there is no difference between
free variables and existentially quantified ones. In particular, 3 Vy P(w, 7, §) is satisfiable, if and
only if 373w VY P(w, Z,7) is. Without loss of generality we therefore only consider equational
problems without free variables. In analogy with [CL89], universally quantified variables will be
referred to as parameters.

In order to distinguish between syntactical identity and the equivalence of two equational prob-
lems, we use the notation “=” and “x”, respectively. We shall thus write P = @) to denote that the
two equational problems P and @) are syntactically identical. If the equational problems P and ()
have the same set of solutions, then they are semantically equivalent. In this case, we write P = ().

Term tuples are used as a short-hand notation for a conjunction of equations or a disjunction of
disequations, respectively. For term tuples § = (s1,...,s;) and £ = (t1,...,1;), we shall abbreviate
“si=ti A Asp=1;" and “s; £t V- Vs £t to “§=1" and “5§# 1”7, respectively.

Example 2.1 Let P = (z1 = a Ax1 # x9) V (22 # 23 A z9 = b) be an equational problem over
H = {a,b,c}. Then the following substitutions o and 7 are (examples of) solutions of P:
o={x1 < a,x9 < bxg < c}, T ={x1 b, T2 b, 3 C}.

Let Q = (Jy)(V2)[y = f(z) Ax # f(z)] be an equational problem over H = {a, f(a), f(f(a)),...}.
The only solution of @ is 0 = {z < a}.

Now suppose that @ is interpreted over the universe H = {a, f(a), g(a), f(f(a)), f(g(a)),...} with
signature ¥ = {a, f,¢g}. Then @ has many more solutions, e.g.: 71 = {z < g(a)}, 7 = {z «

g(f(a))}, ete.

Unification problems are equational problems without universal quantifiers and without negation.
It is well known that the set S of solutions of a conjunction P = s; = t1 A... As, = t, can be
represented by a single substitution u, which is called the mgu (= most general unifier) of P. For
every solution o of P, there exists a substitution 7, such that o is the composition of y and 1 (which
we denote by o = un). Recall that the mgu is unique up to variable renaming. Moreover, it can
be decided efficiently whether the mgu exists (or, equivalently, whether P is satisfiable). Likewise,
the actual computation of the mgu can be done efficiently (cf. [BS94, BS01, MM82]).

2.2 Transformation rules of Comon and Lescanne

In [CL89], a rule system is provided which terminates on every equational problem and which
transforms the original problem into an equivalent one in the so-called “definition with constraints
form”, which is basically a purely existentially quantified equational formula in DNF. Below some
of the rules of [CL89] are recalled, namely the replacement rules Ry, Rs, the cleaning rule C'Ry,
the universality of parameter rules Us, Uy, Us and the explosion rule £. Note that many more
rules of [CL89] (like the decomposition rule, the clash rule, the occur check, etc.), which are not
mentioned explicitly here, are “hidden” in the unification steps.

(R1) z=tAP — z=tAP(z+1)

(Ry) z#tVP — 2z#tVP(z+1t)

(CRy) F(w,w)(w=tAP) — (JW)P
if w¢ Var(P) and w ¢ Var(t)

(U2) (V)P A(y#IVR)] — (V)P ARy« 1)
ify€yandy¢ Var(t).

(E) (V)P — \/fEZ (F0) (VYY) [P As= f(wy,... ,wa(f))]
if the following conditions hold:
1. Each f is a (constant or function) symbol from the signature %

with arity a(f) > 0,

2. the w;’s are fresh, pairwise distinct variables.

The following rule is only correct in case of an infinite universe :

(Us) (V@HPAN(z1r=u1V---Vz,=u, VR)] — (Y§)[PAR]
if the following conditions hold:
1. Every z; is a variable syntactically different from wu;,
2. every equation z; = u; contains at least one parameter from 7/,
3. R contains no parameter from .

The following rule can only be applied in case of a finite universe.

Us) (VIPAQL = (V)PAQ(y < a)A---AQ(y ax)]
if the universe H is of the form H = {ay,...,ax}.

Rule system 2.1: Comon and Lescanne

The correctness of the rule Ry is obvious. The rule Ry follows from the equivalence [A V B] =
[(A A —B)V B], which holds for any logical formulas A and B. The correctness of the Us-rule
essentially follows from the Rg-rule and the unsatisfiability of the disequation (V¢')(y # t) over any
nontrivial universe.

The explosion rule F (and, analogously, the Us-rule) is sometimes also referred to as the domain
closure aziom. Its idea is the following: Let H be the Herbrand universe of terms over some finite
signature 3. Then every ground term ¢ € H has one of the symbols in ¥ as its leading symbol.
Hence the formula \/ ¢y, (3@)[s = f(w1,..., wa(p)] is clearly valid for any term s.

Finally, the rule Uy is mainly due to the so-called independence of inequations of [Col84],
that can be stated in the following way.

Every purely existentially quantified conjunction of disequations over an infinite universe

has at least one solution, if and only if each of the conjuncts has a solution.

Moreover, the latter condition is always fulfilled unless one of the conjuncts is a trivial disequation
of the form ¢ # ¢t. Then the correctness of the Uy-rule follows from the fact that the subformula
(z1 =u1 V-V z, = u,) cannot be true for all values of the variables in 7.

2.3 Equational problems with 3*-prefix

In this section we recall several complexity results on equational problems with purely existential
quantifier prefix. For CNF, the complexity in case of an infinite universe is the same as in case of a
finite universe, even though the proof of the upper bound on the complexity will differ significantly.
In contrast, for DNF, we definitely have different complexity classifications. Surprisingly enough,
the case of a finite universe will turn out to have a higher complexity than an infinite universe
(provided that P # NP holds).

Theorem 2.2 [F*-CNF over a nontrivial H| The satisfiability problem of equational problems in
3*-CNF over an arbitrary (finite or infinite) Herbrand universe H with |H| > 2 is NP-complete.

Proof: The NP-hardness can be shown by the obvious reduction from the 3-SAT-problem. Let
E = (l11VhaVihiz) A A(lp1 Vipa Vigs) be a Boolean formula, such that the [;;’s are propositional
literals over the propositional variables in P = {p1,..., py}. Moreover, let a € H be an arbitrary
constant in H. Then we define the equational problem

P o= 3F[(I VI Vi) A Al Vg Vigs)]

in 3*-CNF with & = (z1,...,2), such that the literals Ij; in P are either of the form z, = a (if I;;
is a positive literal p,) or of the form z, # a (if [;; is a negative literal —p,). It is easy to check
that E is satisfiable, if and only if P is satisfiable.

The NP-membership in case of a finite universe is easy. In an NP-algorithm for deciding the
satisfiability of an equational problem P = 37 P’, we first guess a ground substitution o with
domain Z and then check that P'c evaluates to true.

Note that this NP-algorithm does not work in case of an infinite universe, unless we can find a
polynomial bound on the size of the terms in the range of 0. However, the NP-membership in case
of an infinite universe can be shown via a different NP-algorithm. Let

P

3Z[(I V- Vig) A Al Voo Vi)

be an equational problem in 3*-CNF, where the /;;’s are equations or disequations. We can decide
the satisfiability of P by first guessing for every i € {1,...,n} aliteral (an equation or a disequation)
l;j; from the i-th clause. Then we check in polynomial time that the resulting existentially quantified
conjunction of equations and disequations is satisfiable. In Lemma 2.3 below, we show that the
latter check can indeed be done in polynomial time. O

Lemma 2.3 [parameter-free conjunctions] Let
P = (3%)[etAN---Neg ANdy A+ Nd]

be a conjunction of equations e; and disequations d; over some infinite universe H. Then the
satisfiability of P can be tested as follows.

10

Case 1: If e A--- A e is unsatisfiable, then P is also unsatisfiable.

Case 2: Let ey A---Ney be satisfiable with mgu 9. Then P is satisfiable, if and only if di9A---Ndpd
contains no trivial disequation of the form t # t.

Proof: Case 1 is trivial. For Case 2, let 9 = {z;, < s1,...,z;, < So} denote the mgu of the
equations ey A -+ A eg. Note that the variables x;; are pairwise distinct and do not occur in the
range of .

By the definition of the mgu, the conjunctions e; A --- Aex and z;; = s1 A--- Ax;, = So are
equivalent. Moreover, by multiple applications of the Ro-rule of [CL89] (see also Section 2.2),
may be applied to the disequations. Thus P ~ (3Z)[z;, = s1 A --- Az, = Sa Nd1I A --- A dj9]
holds. But then, since all variables z;,,...,;, occur only once, the equations may be eliminated
by the CRy-rule of [CL89]. We thus have P ~ P’ = (3Z)[d19 A --- A d;¥]. By the independence
of inequations recalled in Section 2.2, any conjunction of nontrivial disequations over an infinite
universe has at least one solution. Therefore, P’ (and, hence, also P) is indeed satisfiable, if and
only if P’ contains no disequation of the form ¢ # ¢. O

We now turn our attention to parameter-free equational problems in DNF. As has already been
mentioned above, the cases of a finite universe and an infinite universe lead to different complexity
results. The reason for this is the “independence of inequations” recalled in Section 2.2, which only
holds in case of an infinite universe. This effect is illustrated by the following example.

Example 2.4 Let the equational problem P be defined as follows.

P = (Fy)(z1 #y) AN(@a #Fy) AN(z3 #y) A(x1 # 22) A (21 # 23) A (T2 # 23)

If P is interpreted over H = {a,b,c}, then P is unsatisfiable.
On the other hand, over the infinite universe H = {a, f(a), f?(a), ...}, the problem P is satis-
fiable, where 0 = {71 < a, 19 < f(a),x2 < f?(a),...} is a solution.

We thus get the following complexity results for equational problems in F*-DNF.

Theorem 2.5 [F*-DNF over an infinite H]| The satisfiability problem of equational problems in
F*-DNF over an infinite H is in P.

Proof: Let P = (3Z)P, V---V P, with P, = (e;1 A--- ANejg, Ndin A --- Adj,;), such that the
e;jj's are equations and the d;;’s are disequations. Then P is satisfiable, if and only if at least
one disjunct (37)P; is satisfiable. Moreover, by Lemma 2.3, (37)P, is satisfiable, if and only if
p = mgu(e;r A--- A ejk,;) exists and (di1 A --- A dj,) contains no trivial disequation of the form
t #t. O

Theorem 2.6 [3*-DNF over a finite H with |H| > 3] The satisfiability problem for equational
problems in I*-DNF over a finite H with |H| > 3 is NP-complete.

Proof: The NP-hardness is shown by a reduction from the well-known NP-complete problem
K-colorability with K > 3: Let G = (V, E) be a graph with vertices V = {v1,...,v,} and edges E.
Then G is K-colorable (there exists a function f:V — {1,..., K}, such that f(v;) # f(v;) holds
for every edge {v;,v;} € E), if and only if the equational problem

(37) /\ v; # V;

{Ui,’l)j}EE

11

finite universe H infinite universe
H =2 H| >3
DNF in P NP-complete inP
CNF | NP-complete NP-complete NP-complete

Figure 1: 3F*-formulas

over H={ay,...,ax} with ¥ = (v1,...,v,) is satisfiable. O

Recall from [GJ79] that the K-colorability problem is NP-complete for any K > 3, whereas it is in
P for K = 2. Consequently, the reduction in the above proof does not work for K = 2. In fact, it
is straightforward to show that the satisfiability problem for equational problems in 3*-DNF over
H with |H| = 2 is in P. Figure 1 summarizes the results for 3*-formulas.

2.4 Equational problems with 3* V*-prefix

Now we consider equational problems with 3* V*-prefix. It will turn out that this alternation of
quantifiers pushes the complexity one level higher in the polynomial hierarchy. Moreover, the roles
of CNF and DNF are changed with respect to the case of a purely existential quantifier prefix, since
now the innermost quantifier is V. Thus, for DNF, we get the following complexity classification.

Theorem 2.7 [3*V*-DNF over a nontrivial H| The satisfiability problem of equational problems
in 3*V*-DNF over an arbitrary (finite or infinite) Herbrand universe H with |H| > 2 is 39P-hard.
Moreover, if H is finite, then this problem is %9P-complete.

Proof: The YXyP-hardness is proven via a reduction from the well-known Y9P-complete 3-QSAT5
problem (cf. [Sto76]). This proof follows exactly the same pattern as the NP-hardness proof in
Theorem 2.2. Let an instance of the 3-QSATy problem be given through two disjoint sets P =
{p1,-.., pr} and R = {ry,...,r;} of propositional variables and the Boolean formula

EF = (lu/\llg/\llg)v V(lnl/\lng/\lng})

such that the [;;’s are literals over the propositional variables in P U R. Moreover, let a be an
arbitrary constant in H. Then we define the equational problem P = 3ZVy§[C) A --- A Cy] over
H in such a way that every literal of the form p, or =p, in E is encoded by the literal z, = a or
z, # a, respectively, in P. Likewise, yg = a and yg # a are used to encode literals of the form rg or
—rg, respectively. Again, this reduction can be clearly done in polynomial time and its correctness
is trivial.

To prove the Y9P-membership in case of a finite universe H is easy. Guess values for the
existentially quantified variables and check the satisfiability of the resulting formula by means of
an NP-oracle. O

It is not clear, how the XoP-algorithm from the above proof should be extended to the case of
an infinite universe. In particular, we do not know if there exists a polynomial bound on the terms
that have to be guessed for the existentially quantified variables. In Theorem 2.9, we shall show
that the satisfiability problem of equational problems in 3* V*-CNF over an infinite universe is in

12

NP. Hence, the obvious upper bound on the complexity of equational problems in 3* V*-DNF over
an infinite universe is NEXPTIME, since we can of course first transform the DNF into CNF via
the distributivity of A and V (in general, at the expense of an exponential blow-up) and then apply
the NP-algorithm sketched in Theorem 2.9. The exact complexity of 3* V*-DNF over an infinite
universe is an open problem.

Theorem 2.8 [3*V*-CNF over a finite H with |H| > 3] The satisfiability problem for equational
problems in 3*V*-CNF over a finite H with |[H| > 3 is XoP-complete.

Proof: (Sketch) The ¥yP-membership can be shown in exactly the same way as in Theorem 2.7.
Guess values for the existentially quantified variables and check the satisfiability of the resulting
formula by means of an NP-oracle.

The proof of the ¥9P-hardness is quite involved. It goes by a reduction from some kind of
“parameterized K-colorability problem”. For details, see [Pic00] and [Pic01]. 0

Analogously to equational problems in 3*-DNF over a finite universe, the complexity of 3* V*-CNF
over a finite H becomes one level lower in the polynomial hierarchy, if H has only two elements.
In fact, in [Pic01], it is shown that the satisfiability problem for equational problems in 3* V*-CNF
over a H with |H| = 2 is NP-complete.

Now it only remains to consider the case of 3* V*-CNF over an infinite universe. Analogously
to the 3*-DNF, this satisfiability problem is one level lower in the polynomial hierarchy than for a
finite universe.

Theorem 2.9 [3*V*-CNF over an infinite universe| The satisfiability problem of equational prob-
lems in F*Y*-CNF over an infinite H is NP-complete.

Proof: (Sketch) The NP-hardness is clear, since even the case of 3*-CNF is NP-hard. As for the
NP-membership, we give a (very rough) sketch of an NP-algorithm, which works as follows (for
details, refer to [Pic99] and [Pic01]).

(1) Elimination of the parameters from the equations and simplification of the disequations: Let P
be an arbitrary equational problem in 3* V*-CNF. Then P can be transformed in polynomial time
into the following form

P' = (EF)VP)ELV (T# D) A A V(T # 1)),

where the E;’s are parameter-free disjunctions of equations and the #;’s are term tuples with vari-
ables only in 7.

(2) Elimination of the parameters from the disequations: Of course, the universal quantifiers can
be shifted in front of the disequations, since the subformulas F; no longer contain any universally
quantified variables. Moreover, a universally quantified disequation of the form (V#)(Z # ;) can
be transformed by successive applications of the explosion rule recalled in Section 2.2 into a purely
existentially quantified disjunction of the form (3@)[d;1 V --- V dip,], where each d;; is either an
equation or a conjunction of an equation and a disequation. Note that the number of such disjuncts
d;j is basically k x p, where k = |3| denotes the number of symbols in the signature > of H and p
denotes the number of positions in the term tuple ;.

(3) Guess and check: After the above two transformation steps, we (almost) have an equational
problem in 3*V*-CNF. Hence, in principle, we can proceed as in the proof of Theorem 2.2 via

13

finite universe H infinite universe

H| =2 H >3

CNF NP-complete YoP-complete NP-complete
>9P-hard,
in NEXPTIME

DNF YoP-complete YoP-complete

Figure 2: 3F* V*-formulas

Lemma 2.3. However, there is a subtle problem with this. As has already been mentioned above,
the size of the disjunctions obtained in Step (2) of this algorithm is linear with respect to the
number of positions of the term tuples #;. Moreover, by the unification steps performed in Step
(1), this number of positions may become exponential, even though their representation as directed
acyclic graphs is of course polynomially bounded. Hence, the transformation in Step (2) must not
be carried out explicitly. Instead, the guess of a certain disjunct d;; has to be done directly by
inspecting the term tuple t. O

Figure 2 summarizes the results for 3* V*-formulas.

2.5 Equational formulas with arbitrary quantifier prefix

Algorithms for deciding the satisfiability of arbitrary equational formulas (in particular, where
the quantifier prefix is not restricted to the form 3*V*), usually work by quantifier elimination
(cf. [CL89, Mah88]). To this end, the transformation of an equational problem with 3* V*-prefix
into an equivalent one with 3*-prefix is applied to equational formulas with arbitrary quantifier
prefix in order to reduce the number of quantifier alternations. Let P be an equational formula
of the form P = (37,)(V¥y) - - - (3Z,_1)(VZ,)Q. Moreover, suppose that we can effectively compute
a purely existentially quantified formula (37)R that is equivalent to (37,_1)(V#,)Q. Then P is
equivalent to P’ = (32)(VZs) - - (VZ,_2)(FY) R.

Likewise, if P is of the form P = (3%)(V#y) - - (Vin_1)(3%,)Q, then we clearly have the fol-
lowing chain of equivalences.

P = (Ef])(VfZ) U (anfﬂ(afn)Q
~ T v _‘_‘(anfl)(zlfn)Q
(Hfl)(v-'fQ) Tt _‘(El';:nfl)(v'?n)(_'Q)

0
—~
LLI
=
N—
<C
8
[N}
N—

Hence, also in this case, the innermost quantifiers have been brought into the form 3F* V* and we
can transform (37,_1)(VZ,)(—Q) into an equivalent formula of the form (37)R. We thus get the
equational formula

P = (31)(Via) - (3Fn 2)-(3Y)R = (341) (Vi) -+ (37, 2) (VY)R,

which is equivalent to P.

In other words, it suffices to provide a transformation of equational formulas from 3* V*-form into
F*-form, in order to solve the satisfiability problem for arbitrary equational formulas. Unfortunately,
this quantifier elimination step has exponential cost. However, by the high inherent complexity

14

of arbitrary equational formulas, this can hardly be helped. Recall from Theorem 1.13, that the
QSAT (F) problem is PSPACE-complete, unless the constraints under consideration are subjected to
some severe restrictions. Analogously, it can be shown that the satisfiability problem of equational
formulas over a finite universe is PSPACE-complete, if no restrictions are imposed on the quantifier
prefix (cf. [Kun87]). In case of an infinite universe, the satisfiability problem of equational formulas
with arbitrary quantifier prefix is even non-elementary recursive (cf. [Vor96]).

2.6 Open problems and future research

In Section 2, we have given a survey of complexity results for the satisfiability problem of equational
problems. In almost all of the cases thus considered, there is an exact classification of the complexity.
Only in case of equational problems in DNF with 3* V*-prefix over an infinite universe, there is a
gap between the Y9P lower bound and the NEXPTIME upper bound (cf. Figure 2). Closing this
gap is an interesting open problem for future research in this area.

Recall that we have only considered the case where all terms (and, in particular, all variables)
in an equational problem are interpreted over the same universe. An extension of these results to
the case of many sorts has not been done explicitly yet. Actually, it seems as though this extension
is not too difficult. After all, it has turned out that we only have to be careful whether a universe is
finite or infinite. Nevertheless, the details of such an extension to many sorts have to be worked out
yet. Moreover, little research efforts have been made so far, in order to investigate the complexity,
when restrictions different from the ones considered here are imposed, e.g.: what happens, when
the number of variables is restricted rather than the quantifier prefix, etc.

As usual, the complexity analysis of a given problem is not the end of the story. In general, one
will try to apply the theoretical insight into the inherent complexity of a problem to the construction
of new and more efficient algorithms. A major lesson to be learned from the complexity results
recalled here is that — in contrast to the algorithm of [CL89] — one should not try to treat the
cases of a finite universe and of an infinite universe, respectively, in a uniform way. Actually, the
NP-membership proof sketched in Theorem 2.9 can be considered as an improvement of previous
algorithms in case of an infinite universe. Searching for further improvements is an important goal
for future research.

In this survey, we have concentrated on equational formulae with 3* V*-prefix. Moreover, in
case of equational problems with 3* V*-prefix, we were unable to present a better approach than
the transformation into CNF followed by the NP-algorithm from the proof sketch of Theorem 2.9.
As far as the worst case complexity is concerned, this is okay. However, practical experience shows
that such a preprocessing step of shifting the quantifiers to the front and transforming the formula
into CNF are very costly and sometimes not really necessary. Consequently, in [CD94], an algorithm
is presented which neither requires a CNF nor a specific quantifier prefix. Instead, the expensive
distributivity rules are only applied, when there is no alternative. Moreover, a whole collection of
rules dealing with single quantifiers and combinations of quantifiers are provided. Of course, by the
high inherent complexity of equational formulae with no restriction on the quantifier occurrences (cf.
Section 2.5) there is a clear limit up to which the worst case complexity can possibly be improved.
Nevertheless, a combination of the ideas of [CD94] with the cheap transformations needed for the
NP-membership result in Theorem 2.9 may serve as a good starting point for searching for further
improvements.

15

3 Complexity of Equational Matching and Unification Constraint
Problems

Matching and unification in equational theories are the keystones of automated deduction. They
are used extensively in several areas of computer science, including theorem proving, database
systems, natural language processing, logic programming, computer algebra, and program verifi-
cation. Plotkin [Plo72] was the first to formulate explicitly the idea that theorem provers should
have built-in algorithms for matching and unification in equational theories. His pioneering article
provided the impetus for the development of the entire field of equational matching and unification.

We briefly introduce the basic notions for equational matching and unification. Additional
material can be found in [BS01] or [DJ90].

A signature F is a set of function symbols of designated arities. If F is a signature and X is a
countable set of variables, then T (F, X) denotes the set of all terms over the signature F and the
variables in X. We also write Var(t) for the set of variables occurring in a term ¢. The size of term ¢
is its length |¢| as a string. As usual, a ground term is a term without variables. A substitution is
a mapping p: X — T (F, X) such that zp = x for all but finitely many variables z. Consequently,
a substitution p can be identified with its restriction to the finite set dom(p) = {z € X | xp # =},
which is called the domain of p. A substitution p is ground if xp is a ground term for all z € dom(p).

An equation is a pair of terms [= r. Kach equation is viewed as an equational aziom, namely as
the first-order sentence (Vx1) ... (Vzy,)(l = r) obtained from the equation by universal quantification
over all variables occurring in the terms [and r. If E is a set of equational axioms, then the equational
theory Th(E) presented by E is the smallest congruence relation over 7 (F,X’) containing E and
closed under substitutions, i.e., Th(E) is the smallest congruence containing all pairs [p = rp, where
I =risin E and p is a substitution. By an abuse of terminology, we will often say “the equational
theory E” instead of the correct “the equational theory Th(E) presented by E”. We write s =g ¢
to denote that the pair (s,t) of terms is a member of Th(E).

E-equality on terms can be extended to substitutions by setting p =g o if and only if for all
variables © € X we have that zp =g xo. If V is a set of variables and p, o are substitutions,
we put p =}, o if and only if (V2 € V)(zp =g 7o) holds. We also consider the preorder <}, on
substitutions defined by the condition o <}, p if and only if (3n)(on =}, p) holds. In turn, this
preorder gives rise to the following equivalence relation E]‘;‘{ on substitutions:

p=p o <= p<po and o<} p.
In general, p SK o does not imply that p E]‘;‘{ o; similarly, p E]‘:‘{ o does not imply that p :]‘;{ o.
Nevertheless, these three relations coincide on ground substitutions with the same domain.

In the sequel, we will be concerned with equational theories presented by finite sets E whose
axioms are among those depicted in Figure 3. Moreover, AC(linear) is the restriction of the equa-
tional theory AC applied to linear terms and Set is a special case of the theory ACI in which there
is only one ACI-symbol that occurs on the top of the considered terms.

3.1 Complexity of equational matching

Let s be a term, called pattern, and let t be a ground term, called subject. An E-matcher of s
and ¢ is a substitution p such that sp =g t. Whenever such an E-matcher exists, we say that the
pattern s E-matches the subject ¢.

A complete set of E-matchers of s and t is a set S of substitutions such that the following
conditions hold:

16

Associativity A(f) f(f(z,y),2) = f(=z, f(y,2))
Commutativity — C(f) flz.y) = f(y,z)
Idempotence I(f) flz,z) ==
Nilpotence N(f) flx,2) =0
Existence of Unit U(f) flx, 1) =2, f(1,2) ==
Homomorphism H(f,g,h) Fg(z,y)) = h(f(z), f(y))
Abelian group AG(+,—,e) see Figure 4
Boolean ring BR(A, ®,0,1) see Figure 5

Figure 3: Equational axioms

r+e = T rT+y = y+=x
z+(-x) = e (T+y)+z = z+(y+2)

Figure 4: Abelian group axioms AG

z@0 T rdy = ydu

z®zr = 0 (roy) @z = 26 (YD 2)
zAN0 = 0 TNy = yAzx

zANl = z (xAy)ANz = xNAN(yAz)
TNz x AN (ydz) = (xAy)d(xA2)

Figure 5: Boolean ring axioms BR

17

1. Each substitution p € S is an E-matcher of s and ¢, and, moreover, dom(p) C V, where
V = Var(s) is the set of variables of s;

2. For every E-matcher o of s and ¢, there is a substitution p € S such that p Sl‘;{ 0.

We say that S is a minimal complete set of E-matchers of s and ¢ if, in addition, every two distinct
members of S are Sg—incomparable (this means that for all substitutions o, p € S the condition
o <\ p implies 0 = p).

In general, it may be the case that s E-matches ¢, but there is no minimal complete set of
FE-matchers of s and ¢. On the other hand, it is well known that if a minimal complete set of
E-unifiers of s and ¢ exists, then it is unique up to EK.

From now on, we assume that E is a set of equational axioms such that if s E-matches ¢, then
there exists a minimal complete set of E-matchers of s and . We let uCSMEg(s,t) denote the
(unique up to =Y) minimal complete set of E-matchers of s and ¢, if s E-matches ¢, or the empty
set, otherwise.

E-matching is said to be wunitary if for every pattern s and every subject ¢ we have that
|uCSMg(s,t)| < 1. Similarly, E-matching is said to be finitary if for every pattern s and every
subject ¢ the set yCSMg(s,t) is finite.

If E is a set of equational axioms then we associate with E the following E-matching decision
problem.

E-MATCHING
Input: A pattern s, a subject £, and an equational theory E.
Question: Can s be E-matched with ¢, i.e., is there a substitution p, such that sp =g ¢7

By examining the signature F over which the terms of matching problems in the theory Th(E)
have been built, we distinguish between two different kinds of E-matching. Let sig(E) be the set
of all function and constant symbols occurring in the equational axioms of E. If the signature F
contains sig(E) and free constant symbols, but no free function symbols, then we speak about
elementary E-matching. If the signature F contains free function symbols of arbitrary arities, then
we speak about general E-matching.

Most of the equational matching decision problems are NP-complete. A remarkable exception
is the case of AC(linear)-matching that is proved to be polynomial by means of graph match-
ing techniques. These complexity results were proved by Benanav et al. [BKN87], Kapur and
Narendran [KN92] Baader [Baa98], Klima and Srba [KS00], Eker [Eke93], and others. Clearly,
an NP-hardness result for the elementary case naturally extends to NP-hardness of the general
problem. In the same spirit, a polynomial result for the general case extends to a polynomial-time
decidable elementary problem.

The results on equational matching decision problems are summarized in Figure 6.

Assume that E is some finitary equational theory and A is an algorithm such that, given two
terms s and ¢ as input, the algorithm A returns a minimal complete set of E-matchers of s and ¢, if s
and ¢ can be E-matched, or the empty set, otherwise. As a byproduct of this algorithm and within
the same complexity bounds, we can solve a related counting problem, namely we can compute the
number of most general E-matchers of two given terms. In many respects, this counting problem
is closer to the problem of computing a complete set of E-matchers than the decision problem for
E-matching. If E is a set of equational axioms such that E-matching is finitary, then we associate
with E the following counting problem.

18

theory

complexity

elementary

general

Q » =

AC
AC(linear)
Al

AU

ACI

ACU

ACN
ACUN
ACUNH
Set

AG

BR

%

NP-complete [Ang80]

NP-complete [Eke93, BS94]
H
NP-complete [KSO0]

NP-complete (unpublished)

NP-complete [HK99]

NP-complete [GNWOO]
NP-complete [GNWO00]
in P [GNWOO]
in P [GNWOO]

in P (Gaussian elimination in 7Z)

[IyP-complete [Baa98]

linear [PW78]
NP-complete [BKN87]
NP-complete [BKN87]
NP-complete [BKN87]
in P [BKN87]
NP-complete
NP-complete
NP-complete [KN92]
NP-complete [KN92]
NP-complete (unpublished)
NP-complete [TA87]
NP-complete
NP-complete
NP-complete [GNWO0O]
NP-complete [GNWO0O]
NP-complete [KN86]
NP-complete [Sch97]

PSPACE-complete [Baa98]

Figure 6: Complexity results for equational matching decision problems

19

#E-MATCHING
Input: A pattern s, a subject £, and an equational theory E.
Output: Cardinality of the minimal complete set of E-matchers pyCSMg(s, t).

Counting problems for equational matching were considered by Hermann and Kolaitis in [HK95]
and indirectly also in [HK00]. They showed that most of the NP-completeness results carry over
to #P-completeness results for the counting versions for corresponding equational matching prob-
lems. However, the case of AC(linear)-matching becomes #P-complete for counting, whereas the
corresponding decision problem is in P.

Theorem 3.1 ([HK95]) The general #E-matching problems are #P-complete for the equational
theories A, C, AC, AC(linear), ACH, I, U, TU, ACI, Set, ACU and ACIU.

The elementary E-matching problem is the restriction of E-matching to signatures with no
free function symbols. Thus, given a pair (s,t), where s is a term and ¢ is a ground term with
function symbols among those in the equational axioms of E, the question is to decide whether
there is a substitution p such that sp =g t. The elementary #E-matching problem is the analogous
restriction of #FE-matching. The simultaneous elementary E-matching problem is the following
decision problem.

SIMULTANEOUS ELEMENTARY E-MATCHING

Input: A finite set S = {(s1,t1),-.., (Sk, tx)}, where each s; is a term and each ¢; is a ground term
with function symbols among those in the equational axioms of E.

Question: Is there a substitution p such that s;p =g ¢; for every i < k7

Such a substitution is called an E-matcher of the set {(s1,t1),...,(sg,tx)}. Similarly, the simulta-
neous elementary #E-matching problem is the following counting problem.

SIMULTANEOUS ELEMENTARY #E-MATCHING

Input: A finite set S = {(s1,t1),-.., (Sk, tx)}, where each s; is a term and each ¢; is a ground term
with function symbols among those in the equational axioms of E.

Output: Cardinality of the minimal complete set of E-matchers yCSMg(S).

The notation s; =g t1,...,8; =g t; will be used to represent an instance of the simultaneous
elementary E-matching (or #E-matching) problem.

In effect, the simultaneous elementary E-matching problem asks for the solution of a system
of equations s; =g #1,...,8r =g tr, where the function symbols of F are exactly the function
symbols occurring in the equational axioms of E. Of course, one can consider simultaneous E-
matching problems over arbitrary signatures. However, the simultaneous E-matching problem over
arbitrary signatures is reducible to the E-matching problem, because one can use free function
symbols to encode a system of equations into a single equation. Indeed, a system of equations
$1 =g t1,...,8k =g tp can be written as a single equation f(s1,...,s;) =g f(t1,...,tx) with the
help of a free function symbol f. We will classify simultaneous elementary matching problems using
two parameters, namely the number of equations in a given system, called the length of the system,
and the number of free constants in the signature. Note that the number of free constant sym-
bols is unimportant for matching problems over signatures with free function symbols, since a set
{C4,Cq,...,Cp} of free constant symbols can be represented by the set {g(C), g(g(C)),...,¢™(C)},
where C is a free constant symbol and g is a free unary function symbol.

20

If k and m are two positive integers, then the eE(k, m)-matching problem consists of all instances
of simultaneous elementary E-matching with at most k& equations and at most m free constants.
We also put

(e.0) o
B(k,w) =] eB(k,m) and eE(w,m)= | eE(k,m)
m=1 k=1

Thus, in eE(k,w)-matching the signature has an unbounded number of free constant symbols,
while in €E(w, m)-matching the systems of equations have unbounded length. We define similarly
#eE(k, m)-matching, #€eE(k,w)-matching, and #€eE(w, m)-matching.

Eker [Eke93] established that eAC(1,w)-matching is a NP-complete problem. Similarly, Her-
mann and Kolaitis [HK99] proved that the corresponding counting problem is #P-complete.

Theorem 3.2 ([Eke93, HK99]) eAC(1,w)-matching is NP-complete and #eAC(1,w)-matching is
#P-complete.

Baader and Siekmann [BS94] showed that 1-IN-3 SAT can be reduced to elementary AC-
matching with an unbounded number of equations and two free constants. A slight refinement
of their reduction shows that actually one free constant suffices to yield NP-completeness, provided
the number of equations is unbounded.

Theorem 3.3 ([HK99]) The decision problem eAC(w, 1)-matching is NP-complete and the count-
ing problem #eAC(w, 1)-matching is #P-complete.

If both the length of the system and the number of free constants are kept bounded, then the
elementary AC-matching decision and counting problems are tractable.

Theorem 3.4 ([HK99]) €AC(k,m)-matching is in P and #eAC(k,m)-matching is in FP, for all
k>1and allm > 1.

The preceding theorems give a complete picture of the computational complexity of simulta-
neous elementary AC-matching problems. Next, we study the complexity of elementary matching
for the equational theory ACU of commutative monoids and unveil a different picture. Indeed,
simultaneous elementary ACU-matching turns out to be tractable for systems of bounded length,
even if the signature contains an unbounded number of free constants.

Theorem 3.5 ([HK99]) eACU(w, 1)-matching is NP-complete and #eACU(w, 1)-matching is #P-
complete. In contrast, eACU(k,w)-matching is in P and #eACU(k,w)-matching is in FP, for every
k> 1.

Finally, we examine the complexity of elementary matching for the equational theory A of
semigroups. Angluin [Ang80] showed that the problem €A (1,2)-matching is NP-complete; moreover,
Benanav et al. [BKN87] proved that eA(w, 1)-matching is NP-complete. The following result shows
that all other cases of elementary A-matching are tractable.

Theorem 3.6 ([Ang80, BKN87, HK99]) The eA(1,m)-matching is NP-complete and #eA(1,m)-
matching is #P-complete, for every m > 2. Moreover, €A(w,1)-matching is NP-complete and
#eA(w, 1)-matching is #P-complete. In contrast, eA(k,1)-matching is in P and #€eA(k,1)-match-
ing s in FP, for all k > 1.

21

Simultaneous elementary A-matching

number of number of constants

equations 1 m > 2 w

k>1 | P/FP

w NP-complete / #P-complete

Simultaneous elementary AC-matching

number of number of constants
equations || 1 | m > 2 w
kE>1 P/ FP
w NP-complete / #P-complete

Simultaneous elementary ACU-matching

number of number of constants
equations || 1 | m > 2 w
kE>1 P/ FP
w NP-complete / #P-complete

Figure 7: Complexity results for simultaneous elementary E-matching

22

Hermann and Kolaitis [HK99] investigate further the complexity of simultaneous elementary E-
matching problems for the equational theories AC and ACU with bounded variable occurrence.

Figure 7 summarizes the previously mentioned complexity results for elementary A-, AC-, and
ACU-matching

3.2 Complexity of equational unification

An E-unifier of s and ¢ is a substitution p such that sp =g tp holds. Whenever such an E-unifier
exists, we say that the terms s and ¢ can be E-unified.
A complete set of E-unifiers of s and t is a set S of substitutions such that the following hold:

1. Each substitution p € S is an E-unifier of s and ¢, and, moreover, dom(p) C V, where
V = Var(s) U Var(t) is the set of variables occurring in s or ¢;

2. For every E-unifier o of s and ¢, there is a substitution p € S such that p S]‘;{ 0.

S is a minimal complete set of E-unifiers of s and t if, in addition, every two distinct members of S
are gg—incomparable, that is, for all substitutions o, p € S the condition o SE p implies 0 = p.

It is possible that two terms s and ¢ are E-unifiable, but no minimal complete set of E-unifiers of
s and t exists. On the other hand, if a minimal complete set of E-unifiers of s and ¢ exists, then it is
unique up to =%. In this case, we let uCSUg(s,?) denote the (unique up to =%) minimal complete
set of E-unifiers of s and ¢, if s and ¢ are unifiable, or the empty set, otherwise. Equational theories
can be classified according to their unification type, which takes into account the existence and the
cardinalities of the sets uCSUg(s,t). In particular, a theory E is said to be unitary if for every pair
of terms (s,t) the set uCSUg(s,t) exists and |uCSUg(s,t)| < 1. Similarly, E is said to be finitary
if for every pair of terms (s,) the set pCSUg(s,t) exists and is finite.

With every equational theory E we associate the following decision and counting problems,
analogously to equational matching. Note that for the counting problem the equational theory
must be finitary.

E-UNIFICATION
Input: Two terms s and a £, and an equational theory E.
Question: Can s be E-unified with ¢, i.e., is there a substitution p, such that sp =g tp?

#E-UNIFICATION
Input: Two terms s and a £, and an equational theory E.
Output: Cardinality of the set uCSUg(s, t).

By examining the signature F over which the terms of unification problems in the theory Th(E)
have been built, we distinguish between three different kinds of E-unification. Let sig(E) be the
set of all function and constant symbols occurring in the equational axioms of E. If F = sig(E)
holds, then we speak about elementary E-unification. If the signature F contains in addition free
constant symbols, but no free function symbols, then we speak about E-unification with constants.
Finally, if the signature F contains free function symbols of arbitrary arities, then we speak about
general E-unification.

The aforementioned equational matching problems give immediately the lower bounds for the
corresponding unification problems. This is, for instance, the case of A-unification where the
lower bound is exactly that of A-matching, whereas the upper bound is PSPACE. There are
equational theories, like Boolean rings or Abelian groups, where the unification problems can be

23

theory complexity

elementary with constants general
0 — — linear [PW78]
A — ippglrzggd[magg] NP-hard
C NP-complete NP-complete
AC NP-complete | NP-complete NP-complete [KN92]
ACI — in P NP-complete [KN92]
ACIU | +— inP NP-complete [Nar96]
AG — in P NP-complete
BR NP-complete | IIyP-complete PSPACE-complete

Figure 8: Complexity results for equational unification decision problems

always transformed into an equivalent matching problem, because of the presence of the nilpotence
axiom or the inverse axiom. Figure 8 summarizes the complexity results for some equational
unification decision problems.

The work presented here concerning #E-matching problems suggests that a similar investigation
should be carried out for #E-unification problems. Although the mentioned counting complexity
results imply that several #E-unification problems are #P-hard, we already know that there are
equational theories E, such as AC, for which #E-unification is not a member of #P. Indeed,
Domenjoud [Dom92] found AC-unification problems with n variables whose minimal complete set
of AC-unifiers has O(2%") elements. Since a counting problem in #P takes values that are bounded
by a single exponential in the size of the input, it follows that #AC-unification is not in #P. It is
an interesting open problem to analyze the computational complexity of #AC-unification and to
determine whether it is complete for some higher counting complexity class. Results along these
lines will delineate the computational difference between matching and unification in a precise
manner and will confirm the intuition that unification is harder than matching.

Two interesting results were proved by Hermann and Kolaitis [HK00] concerning the difference
between computing the minimal complete sets of unifiers for Boolean rings and Abelian groups
in the case of unification with constants on one hand and general unification on the other. The
counting problem #AG-unification with constants was known to be in FP, since it can be solved
by polynomial-time methods over the integers Z known from linear algebra. However, the following
theorem indicates that the general counting problems for Abelian groups and Boolean rings are
intractable.

Theorem 3.7 ([HKO00]) The problems general #AG-unification and general #BR-unification are
both #P-hard.

This result proves that the cardinality of the corresponding minimal complete sets of unifiers for

24

Boolean rings and for Abelian groups cannot be computed in polynomial time unless P = NP.

3.3 Special interest for AC and Hilbert bases

The Hilbert basis of a homogeneous system of linear Diophantine equations over the non-negative
integers is the set of all non-zero vectors that are minimal solutions with respect to the pointwise
order. This set forms indeed a basis of the space of solutions of the system, that is, every solution
can be written as a positive linear combination of vectors from the Hilbert basis, and no member
of the Hilbert basis can be expressed as a positive linear combination of other members. Moreover,
this basis is essentially unique.

Computing the Hilbert basis of a homogeneous system of linear Diophantine equations over
non-negative integers has turned out to be one of the key problems in automated deduction. Its
importance in this area emerged through the work of Stickel [Sti81], who designed the first algo-
rithm for AC-unification. Stickel showed that the minimal complete set of unifiers of a simultaneous
elementary AC-unification problem can be obtained from the Hilbert basis of an associated homo-
geneous system of linear Diophantine equations over non-negative integers. Indeed, the minimal
complete set of AC-unifiers is the set of all compatible subsets of the Hilbert basis of that system,
where compatible in this context means that every variable can be instantiated by a non-zero linear
combination of the members of the compatible subset. Following the publication of Stickel’s algo-
rithm [Sti81], researchers became interested in algorithms for computing the Hilbert basis. Every
algorithm for computing the Hilbert basis of a system can also be used to count at the same time
the number of elements of the Hilbert basis, therefore we consider the counting complexity of the
Hilbert basis problem.

A homogeneous linear Diophantine system over non-negative integers is a system of equations

S: Az = 0, where A = (a!)}? is a k X n integer matrix and z = (z1,...,z,) is a vector of variables
ranging over non-negative integers. We say that a solution s of S is nontrivial if it is different
from the all-zero solution (0,...,0). We say that a solution s = (s1,...,8,) of S is smaller than
a solution s' = (s,...,s)), and write s < ¢, if s # ' and, for all i = 1,...,n, it is the case that

s; < 9; The relation < is called the pointwise order on solutions. A solution s is minimal if it is
nontrivial and there is no smaller nontrivial solution s”, that is, s < s is false for every nontrivial
solution s” of S.

The Hilbert basis H(S) of the system S is the set of all minimal solutions of S. This set is
indeed a basis for the space of nontrivial solutions of S, which means that no minimal solution
can be expressed as a positive linear combination of the other minimal solutions, whereas every
nontrivial solution can be expressed as a positive linear combination of minimal solutions. The
Hilbert basis H(S) is finite and it is the unique basis of the space of nontrivial solutions of S.

It is well known that Hilbert bases can be used to compute minimal complete sets of AC-
unifiers. Indeed, let AX =5c A’X’ be a simultaneous elementary AC-unification problem, where A
and A’ are matrices over non-negative integers, X = (Xy,...,X;) and X' = (X;41,...,X,,) are
not necessarily disjunctive vectors of formal variables, and + is the unique AC-symbol. With this
AC-unification problem, associate the homogeneous linear Diophantine system S: (A — A")z = 0,
where the arithmetic variable z; corresponds to the formal variable X; for i = 1,...,n. Consider
the Hilbert basis H(S) of the system S over the variables z1, ..., z,. Let {a1,...,a;} be a subset
of H(S) and v = (v1,...,vy) be a vector of new variables. For each 1 = 1,...,n, assign the linear
expression o/ vy +- - - +a' v, to the variable z;, where a§ is the i-th coordinate of the vector o;. We
say that {a1,..., am} is a compatible subset of H(S) if, for each variable x;, there exists a vector «;
such that a§ # 0, that is, the variable x; is not assigned the value 0. The minimal complete set

25

of unifiers of the AC-unification problem AX =xc A’X’ turns out to be the set of all compatible
subsets of H(S) of the system S above, where z; — O/ﬁ v+ afnvm is the substitution of the
variable z;, when {aq, ..., ap,} is the chosen compatible subset.

Hermann, Juban, and Kolaitis [HJK99] considered the following counting problems that char-
acterize well the computational complexity of generating the Hilbert basis and, subsequently, the
AC-unifiers.

#HILBERT

Input: A system of homogeneous linear Diophantine equations S: Az = 0 over non-negative inte-
gers.

Output: The cardinality of the Hilbert basis H(S) of S.

#COMPATIBLE SUBSETS

Input: A set T of vectors of non-negative integers that are pairwise incomparable in the pointwise
order and linearly independent with respect to linear combinations with non-negative coefficients.
Output: The cardinality of the set of all compatible subsets of T.

Hermann, Juban, and Kolaitis [HJK99] proved the following reasonably tight upper and lower
bound for the Hilbert basis counting problem, even though they do not decisively pin down its
exact complexity. The #P-hardness proof is done using Hall’s theorem.

Theorem 3.8 The counting problem #HILBERT is #P-hard and belongs to the class #NP.

The preceding theorem yields upper and lower bounds for the complexity of counting the Hilbert
basis. An inspection of the #P-hardness proof reveals that #HILBERT would be in #P, if testing a
solution for minimality were solvable in polynomial time. Durand, Hermann, and Juban [DHJ99],
however, have shown that it is a coNP-complete problem to tell whether a given solution of a
homogeneous linear Diophantine system is minimal for a homogeneous linear Diophantine system.
Thus, assuming P # NP, to prove that #HILBERT is in #P would require one to come up with a
very different set of witnesses for #HILBERT and show that membership in that witness set is in
polynomial time. It is believed that this is not possible and conjectured that #HILBERT is not in
#P.

Let #HILBERT(m) be the restriction of #HILBERT to systems of equations with at most m
occurrences of each variable. It turns out that #HILBERT(3) has the same complexity as the
original problem, what carries over to each m > 3, whereas #HILBERT(1) is clearly in FP by
a simple combinatorial argument mentioned in [LC89]. The counting problem #HILBERT(2) has
been proved in [HJK99] to be included in #P by means of a long case analysis. However the general
lower bound proof does not work for this special case any more.

Stickel’s algorithm [Sti81] for simultaneous elementary AC-unification proceeds by first finding
the Hilbert basis of the associated homogeneous linear Diophantine system, and then producing
the set of all compatible subsets of that basis. To gain insight into the inherent complexity of the
latter algorithm, Hermann, Juban, and Kolaitis [HJK99] examined the computational complexity
of counting the number of compatible subsets of a given set 7" of linearly independent and pairwise
incomparable vectors of non-negative integers.

Theorem 3.9 The counting problem #COMPATIBLE SUBSETS is #P-complete.

26

3.4 Combination of unification algorithms

The development of combination algorithms originated with Stickel’s algorithm for general AC-
unification [Sti81]. Stickel first constructed an algorithm for elementary AC-unification and then
introduced a special-purpose combination algorithm for general AC-unification that used the al-
gorithm for elementary AC-unification and the algorithm for syntactic unification as subroutines.
Similar work was carried out by others. This triggered the research on the combination of unifi-
cation algorithms for disjoint equational theories, a problem that was finally solved by Schmidt-
Schauf} [SS89]. Using a new approach, Baader and Schulz [BS96] presented a combination method
for decision problems in disjoint equational theories; a slight modification gives rise to a method
for combining algorithms for unification in two disjoint equational theories.

Every known combination algorithm for equational unification has an exponential running time.
In particular, even if there exist polynomial-time unification algorithms A; and As for the disjoint
theories Th(E;) and Th(E;), every known general combination method will give rise to an ex-
ponential algorithm A for unification in the theory Th(E; U Es). There was even a quest for a
polynomial-time combination method launched within the AC-unification case [BHK*88]. Her-
mann and Kolaitis [HK00] showed that this exponential-time behavior is not a deficiency of the
known combination algorithms, but rather is caused by the inherent intractability of the combi-
nation problem. More precisely, they show that there is no polynomial-time general combination
algorithm for unification in finitary equational theories, unless the complexity class #P of counting
problems is contained in the class FP of function problems solvable in polynomial time.

Theorem 3.10 ([HKO00]) Unless #P is contained in FP, there does not exist a combination algo-
rithm A for Eq UEq-unification, where Eq and Eq are disjoint equational theories, such that A runs
in polynomial time using oracles for the Ei-unification problem and the Eo-unification problem.

The previous result holds already in the presence of a single unary function symbol. Based on similar
ideas, Schulz [Sch00] investigated a large class of tractable and intractable instances of combination
problems for unification and disunification decision problems. Following from his analysis, it seems
that already very simple and natural conditions on the equational theory E imply NP-hardness of
the combination problem for the decision case of unification, where E is one of the involved disjoint
theories.

3.5 Open problems

Probably the most interesting problem in the complexity of equational matching and unification is
the problem of determining the exact complexity of A-unification. The upper bound was recently
pushed down from multiple exponential to PSPACE by Plandowski [P1a99]. The lower bound is
still NP-hard, coming from the lower bound for A-matching. Is it possible to push the lower bound
higher in the polynomial hierarchy or even to PSPACE? Another possibility would be to push
down the upper bound even further. However, in the scope of the very simple lower bound proof
as opposed to Plandowski’s sophisticated method for proving PSPACE membership, it is more
probable to find a higher lower bound, even if there exists a conjecture that A-unification could be
NP-complete.

Another interesting open question consists of determining the exact complexity of the problem
#HILBERT to count the cardinality of a homogeneous linear Diophantine system of equations over
non-negative integers. The lower bound is #P-hard, whereas the upper bound is #NP, what makes
a difference of two counting complexity classes. Hermann, Juban, and Kolaitis conjecture that the
problem is #NP-complete. There are two reasons to believe that the conjecture is right. The first

27

one is that testing whether a given vector belongs to the Hilbert basis of a given system is coNP-
complete [DHJ99]. The second is that a similar problem of counting the minimal solutions of a
propositional formula has been proved #NP-complete by Durand, Hermann, and Kolaitis [DHKO00].

References

[Ang80]

[APT79]

[Baa98]

[BHK*88]

[BHRV01]

[BKNST]

[BS94]

[BS96]

[BSO1]

[Cad92]

[CCI94]

[CDY4]

[CHY6]

[CHY7]

D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Science, 21:46 62, 1980.

B. Aspvall, M. R. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Information Processing Letters, 8(3):121 123,
1979.

F. Baader. On the complexity of Boolean unification. Information Processing Letters,
67(4):215 220, 1998.

H.-J. Biirckert, A. Herold, D. Kapur, J. H. Siekmann, M. E. Stickel, M. Tepp, and
H. Zhang. Opening the AC-unification race. Journal of Automated Reasoning, 4(4):465—
474, 1988.

E. Bohler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalence problems for
boolean constraint satisfaction. Technical Report 282, Institut fiir Informatik, Univer-
sitat Wirzburg, 2001.

D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journal
of Symbolic Computation, 3(1-2):203 216, 1987.

F. Baader and J. H. Siekmann. Unification theory. In D.M. Gabbay, C.J. Hogger,
and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Pro-

gramming, volume 2: Deduction Methodologies, pages 41 125. Oxford University Press,
Oxford (UK), 1994.

F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. Journal of Symbolic Computation, 21(2):211-243, 1996.

F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, pages 447 533. Elsevier, 2001.

M. Cadoli. The complexity of model checking for circumscriptive formulae. Information
Processing Letters, 44(3):113-118, 1992.

M. C. Cooper, D. A. Cohen, and P. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65(2):347 361, 1994.

H. Comon and C. Delor. Equational formulae with membership constraints. Information
and Computation, 112(2):167 216, 1994.

N. Creignou and M. Hermann. Complexity of generalized satisfiability counting prob-
lems. Information and Computation, 125(1):1-12, 1996.

N. Creignou and J-J. Hébrard. On generating all solutions of generalized satsifiability
problems. Informatique Théorique et Applications, 31(6):499 511, 1997.

28

[CKS01]

[CL8Y]

[Col84]

[CP9Y5al

[CPY5b)]

[Cre95]

[CZ90)

[Dal97]

[DGO0]

[DHJ99]

[DHKO00]

[DJ90]

[Dom92]

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems. STAM Monographs on Discrete Mathematics and Appli-
cations. STAM, Philadelphia (PA), 2001.

H. Comon and P. Lescanne. Equational problems and disunification. Journal of Symbolic
Computation, 7(2 & 3):371-425, 1989.

A. Colmerauer. Equations and inequations on finite and infinite trees. In Proceedings
International Conference on Fifth Generation Computer Systems (FGCS’84), Tokyo
(Japan), pages 85—99. OHMSHA Ltd. Tokyo and North-Holland, 1984.

R. Caferra and N. Peltier. Decision procedures using model building techniques. In
H. Kleine Buning, editor, Proceedings 9th International Workshop on Computer Science
Logic (CSL’96), Paderborn (Germany), volume 1092 of Lecture Notes in Computer
Science, pages 130-144. Springer-Verlag, September 1995.

R. Caferra and N. Peltier. Extending semantic resolution via automated model building:
Applications. In Proceedings 14th International Joint Conference on Artificial Intelli-
gence (IJCAI'95), Montreal (Canada), pages 328 334. Morgan Kaufmann, 1995.

N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems.
Journal of Computer and System Science, 51(3):511 522, 1995.

R. Caferra and N. Zabel. Extending resolution for model construction. In J. van
Eijck, editor, Proceedings Logics in AI, European Workshop (JELIA’90), Amsterdam
(The Netherlands), volume 478 of Lecture Notes in Computer Science (in Artificial
Intelligence), pages 153 169. Springer-Verlag, September 1990.

V. Dalmau. Some dichotomy theorems on constant free boolean formulas. Technical
Report LSI-97-43-R, Departament LSI, Universitat Politécnica de Catalunya, 1997.

M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms.
Random Structures and Algorithms, 17(3-4):260-289, 2000.

A. Durand, M. Hermann, and L. Juban. On the complexity of recognizing the Hilbert
basis of a linear Diophantine system. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors, Proceedings 24th International Symposium on Mathematical Foundations of
Computer Science (MFCS’99), Szklarska Poreba (Poland), volume 1672 of Lecture Notes
in Computer Science, pages 92 102. Springer-Verlag, September 1999.

A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. In M. Nielsen and B. Rovan, editors, Proceed-
ings 25th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2000), Bratislava (Slovakia), volume 1893 of Lecture Notes in Computer Sci-
ence, pages 323-332. Springer-Verlag, August 2000.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science B: Formal Methods and Semantics, chapter 6,
pages 243 309. Elsevier, Amsterdam, 1990.

E. Domenjoud. Number of minimal unifiers of the equation azi; + - + azp =4c
Byi + - - - + Byq. Journal of Automated Reasoning, 8(1):39 44, 1992.

29

[Eke93]

[FL96]

[FV98]

[GJ79]

[GNWOO]

[HIK99]

[HK95]

[HK99]

[HKO00]

[HN90]

[Ist97]

[JCGY7]

[Jea98]

[Joh90]

S. M. Eker. Improving the efficiency of AC matching and unification. Research report
2104, Institut de Recherche en Informatique et en Automatique, November 1993.

C. Fermiiller and A. Leitsch. Hyperresolution and automated model building. Journal
of Logic and Computation, 6(2):173—203, 1996.

T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28(1):57 104, 1998.

M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Co, 1979.

Q. Guo, P. Narendran, and D. A. Wolfram. Unification and matching modulo nilpotence.
Information and Computation, 162(1-2):3-23, 2000.

M. Hermann, L. Juban, and P. G. Kolaitis. On the complexity of counting the Hilbert
basis of a linear Diophantine system. In H. Ganzinger, D. McAllester, and A. Voronkov,
editors, Proceedings 6th International Conference on Logic for Programming and Au-
tomated Reasoning (LPAR’99), Tbhilisi (Republic of Georgia), volume 1705 of Lecture
Notes in Computer Science (in Artificial Intelligence), pages 13-32, September, 1999.
Springer-Verlag.

M. Hermann and P. G. Kolaitis. The complexity of counting problems in equational
matching. Journal of Symbolic Computation, 20(3):343 362, 1995.

M. Hermann and P. G. Kolaitis. Computational complexity of simultaneous elementary
matching problems. Journal of Automated Reasoning, 23(2):107-136, 1999.

M. Hermann and P. G. Kolaitis. Unification algorithms cannot be combined in polyno-
mial time. Information and Computation, 162(1-2):24-42, 2000.

P. Hell and J. Nesetril. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92 110, 1990.

G. Istrate. Counting, structure identification, and maximum consistency for binary con-
straint satisfaction problems. In G. Smolka, editor, Proceedings 3rd International Con-
ference on Principles and Practice of Constraint Programming (CP’97), Linz (Austria),
volume 1330 of Lecture Notes in Computer Science, pages 136 149. Springer-Verlag, Oc-
tober 1997.

P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of
the Association for Computing Machinery, 44(4):527-548, 1997.

P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1-2):185 204, 1998.

D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 2, pages
67-161. North-Holland, Amsterdam, 1990.

30

[Jub99]

[JYPSS]

[KKO00]

[KKO01]

[KN86]

[KN92]

[KS96]

[KS98]

[KS00]

[KSL97]

[KSW97]

[Kun87]

[LC8Y)

L. Juban. Dichotomy theorem for the generalized unique satisfiability problem. In
G. Ciobanu and G. Paun, editors, Proceedings 12th Fundamentals of Computation The-
ory (FCT’99) Iasi (Romania), volume 1684 of Lecture Notes in Computer Science, pages
327 337. Springer-Verlag, August 1999.

D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27(3):119 123, 1988.

L. M. Kirousis and P. G. Kolaitis. The complexity of minimal satisfiability prob-
lems. FElectronic Colloquium on Computational Complezity, 7(TR00-082), 2000. URL
= ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2000/TR00-082/index.html.

L. M. Kirousis and P. G. Kolaitis. The complexity of minimal satisfiability problems. In
A. Ferreira and H. Reichel, editors, Proceedings 18th Symposium on Theoretical Aspects
of Computer Science (STACS 2001), Dresden (Germany), volume 2010 of Lecture Notes
in Computer Science, pages 407 418. Springer-Verlag, February 2001.

D. Kapur and P. Narendran. NP-completeness of the set unification and matching prob-
lems. In J.H. Siekmann, editor, Proceedings 8th International Conference on Automated
Deduction (CADE’86), Ozford (England), volume 230 of Lecture Notes in Computer
Science, pages 489 495. Springer-Verlag, July 1986.

D. Kapur and P. Narendran. Complexity of unification problems with associative-
commutative operators. Journal of Automated Reasoning, 9(2):261 288, 1992.

S. Khanna and M. Sudan. The optimization complexity of constraint satisfaction prob-
lems. Tech. Note STAN-CS-TN-96-29, Stanford University, 1996.

D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28(1):152 163, 1998.

O. Klima and J. Srba. Matching modulo associativity and idempotency is NP-complete.
In M. Nielsen and B. Rovan, editors, Proceedings 25th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2000), Bratislava (Slovakia),
volume 1893 of Lecture Notes in Computer Science, pages 456 466. Springer-Verlag,
August 2000.

S. Khanna, M. Sudan, and L.Trevisan. Constraint satisfaction: The approximability
of minimization problems. In Proceedings 12th IEEE Conference on Computational
Complexity (CCC’97), Ulm (Germany), pages 282-296, June 1997.

S. Khanna, M. Sudan, and D. P. Williamson. A complete classification of the ap-
proximability of maximization problems derived from boolean constraint satisfaction.
In Proceedings 29th Symposium on Theory of Computing (STOC’97), El Paso (Tezas,
USA), pages 11-20, 1997.

K. Kunen. Answer sets and negation-as-failure. In J.-L. Lassez, editor, Proceedings
4th International Conference on Logic Programming (ICLP’87), Melbourne (Australia),
pages 219 228. MIT Press, May 1987.

P. Lincoln and J. Christian. Adventures in associative-commutative unification. Journal
of Symbolic Computation, 8(1-2):217 240, 1989.

31

[L.M87]

[LMMO91]

[Lug89]

[Mah88]

[MM82]

[Nar96]

[Pap94]

[PB83]

[Pic99]

[Pic00]

[Pic01]

[P1a99]

[Plo72]

[PWT8]

J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter ex-
amples. Journal of Automated Reasoning, 3(3):301 317, 1987.

J.-L. Lassez, M. Maher, and K. Marriott. Elimination of negation in term algebras. In
A. Tarlecki, editor, Proceedings 16th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS’91), Kazimierz Dolny (Poland), volume 520 of
Lecture Notes in Computer Science, pages 1 16. Springer-Verlag, September 1991.

D. Lugiez. A deduction procedure for first order programs. In G. Levi and M. Martelli,
editors, Proceedings 6th International Conference on Logic Programming (ICLP’87),
Lisabon (Portugal), pages 585 599. MIT Press, June 1989.

M. J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite
trees. In Proceedings 3rd IEEE Symposium on Logic in Computer Science (LICS’88),
Edinburgh (Scotland), pages 348 357, July 1988.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258 282, 1982.

P. Narendran. Unification modulo ACI+1+0. Fundamenta Informaticae, 25(1):49-57,
1996.

C. H. Papadimitriou. Computational complezxity. Addison-Wesley, 1994.

J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM Journal on Computing, 12(4):777 788,
1983.

R. Pichler. Solving equational problems efficiently. In H. Ganzinger, editor, Proceed-
ings 16th International Conference on Automated Deduction (CADE’99), Trento (Italy),
volume 1632 of Lecture Notes in Computer Science (in Artificial Intelligence), pages 97—
111. Springer-Verlag, July 1999.

R. Pichler. On the complexity of equational problems in CNF over a finite domain.
In P. Baumgartner and H. Zhang, editors, Proceedings 3rd International Workshop
on First-Order Theorem Proving (FTP 2000), St. Andrews (Scotland, UK), Fach-
berichte Informatik der Universitat Koblenz-Landau, pages 183-193, 2000. Available at
http://www.uni-koblenz.de/fb4 /publikationen/gelbereihe/RR-5-2000/.

R. Pichler. On the complexity of equational problems in CNF. Journal of Symbolic
Computation, x(x):xx xx, 2001. To appear.

W. Plandowski. Satisfiability of word equations with constants is in PSPACE. In
Proceedings 40th Symposium on Foundations of Computer Science (FOCS’99), New
York (NY, USA), pages 495 500. IEEE Computer Society, October 1999.

G. D. Plotkin. Building-in equational theories. In B. Meltzer and D. Mitchie, editors,
Machine Intelligence, volume 7, pages 73 90. Edinburgh University Press, Edinburgh,
UK, 1972.

M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer and System
Science, 16(2):158 167, 1978.

32

[RV00]

[Sch78]

[Sch97]

[Sch00]

[SMY1]

[SS89]

[Sti81]

[Sto76]

[TA87]

[Val79]

[Vor96]

S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and constraint
satisfaction problems. In M. Nielsen and B. Rovan, editors, Proceedings 25th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 2000),
Bratislava (Slovakia), volume 1893 of Lecture Notes in Computer Science, pages 640
649. Springer-Verlag, August 2000.

T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th Symposium
on Theory of Computing (STOC’78), San Diego (California, USA), pages 216 226,
1978.

K. U. Schulz. A criterion for intractability of E-unification with free fucntion sym-
bols and its relevance for combination of unification algorithms. In H. Comon, editor,
Proceedings 8th Conference on Rewriting Techniques and Applications (RTA’97), Sitges
(Spain), volume 1232 of Lecture Notes in Computer Science, pages 284-298. Springer-
Verlag, June 1997.

K. U. Schulz. Tractable and intractable instances of combination problems for unification
and disunification. Journal of Logic and Computation, 10(1):105 135, 2000.

T. Sato and F. Motoyoshi. A complete top-down interpreter for first order programs.
In V. A. Saraswat and K. Ueda, editors, Proceedings 8th International Symposium on
Logic Programming (ISLP’91), San Diego (California, USA), pages 35 53. MIT Press,
October 1991.

M. Schmidt-Schaufl. Unification in a combination of arbitrary disjoint equational theo-
ries. Journal of Symbolic Computation, 8:51-99, 1989.

M. Stickel. A unification algorithm for associative-commutative functions. Journal of
the Association for Computing Machinery, 28(3):423 434, 1981.

L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1-
22, 1976.

E. Tidén and S. Arnborg. Unification problems with one-sided distributivity. Journal
of Symbolic Computation, 3(1 & 2):183-202, 1987.

L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410-421, 1979.

S. Vorobyov. An improved lower bound for the elementary theories of trees. In M.A.
McRobbie and J.K. Slaney, editors, Proceedings 13th International Conference on Au-
tomated Deduction (CADE’96), New Brunswick, NJ (USA), volume 1104 of Lecture
Notes in Computer Science (in Artificial Intelligence), pages 275 287. Springer-Verlag,
July/August 1996.

33

