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.atRemark: This do
ument is an overview, from a 
omputational 
omplexity standpoint, of several
onstraint satisfa
tion problems. We assume that the reader is familiar with the usual notions andde�nitions used in the 
omplexity theory, like polynomial time, NP-
omplete or 
oNP-
ompleteproblems. We also use some ne
essary notions from 
ounting 
omplexity, like the 
lasses FP or#P, or from approximation theory, that be
ame largely known in the re
ent years. Therefore we donot re
all the de�nitions of these notions in this do
ument. However, a reader who is not familiarwith these 
on
epts 
an �nd more information in the book [Pap94℄ or in the survey [Joh90℄.1 Complexity of Constraint Satisfa
tion Problems on Boolean andFinite DomainsConstraint satisfa
tion problems o

ur 
ommonly in pra
ti
e, optimization and in settings arisingfrom arti�
ial intelligen
e. This se
tion is devoted to 
omplexity results for su
h problems onBoolean and �nite domains. The question of identifying restri
tions to the general problem thatare suÆ
ient to ensure tra
tability is important for both a pra
ti
al and a theoreti
al viewpoint andhas been extensively studied. Su
h restri
tions may either involve the stru
ture of the 
onstraints orthey may involve the \nature" of the 
onstraints. Here we take the se
ond approa
h and we studythe 
omplexity of de
iding satis�ability of a given 
onstraint satisfa
tion problem as a fun
tion ofthe \nature" of the 
onstraints.We are interested in an in�nite 
lass of 
onstraint satisfa
tion problems. Informally speaking, aproblem in this 
lass is 
hara
terized by a �nite 
olle
tion of �nitely spe
i�ed 
onstraint templates,say F . An instan
e of su
h a problem, 
alled the CSP(F) problem, 
onsists of n variables and m
onstraints applied to various subsets of the given variables su
h that ea
h 
onstraint is drawn from1



the 
olle
tion F . The 
omputational obje
tive is to determine whether there is an assignment tothe input variables whi
h satis�es all the given 
onstraints.Example 1.1� An instan
e of 2-SAT is a 
olle
tion of Boolean binary 
onstraints on n variables. Ea
h 
lauseis a 
onstraint that rules out 
ertain assignments to the variables.� An instan
e of 3-
olorability is a graph whi
h 
an be seen as a 
olle
tion of binary 
onstraints(6=) over the �nite domain D = f0; 1; 2g.We are interested in studying the 
omplexity of answering the above question for every problemCSP(F). In view of the two examples above it be
omes 
lear that this 
lass 
aptures polynomiallysolvable problems as well as intra
table (NP-
omplete) ones. There are at least two di�erentmotivations to do su
h a study. On the one hand a 
omplete 
omplexity 
lassi�
ation for an in�nitefamily of problems is important for the design of good algorithms sin
e it delineates the boundarybetween tra
table and intra
table 
ases. We will see that the 
lassi�
ations obtained highlight someproblems as 
entral when it 
omes to propose an eÆ
ient algorithm. On the other hand, 
onstraintsatisfa
tion problems are an ex
ellent testbed for abstra
ting some global inferen
es about thenature of 
omputation and may provide very useful hints at the ultimate goal of 
omplexity theory:identify what renders some problems hard whereas some others seemingly very similar are easy.1.1 Constraint satisfa
tion problems over Boolean and �nite domainsAs we have seen above two examples of 
onstraint satisfa
tion problems are (1) 2-SAT and (2) 3-
olorability. The di�eren
e between these two problems is the nature of the underlying 
onstraints.In order to spe
ify a 
omputational problem in term of its underlying 
onstraint stru
ture, oneneeds a �nite spe
i�
ation of the set of the 
onstraints. In order to a
hieve this obje
tive, wedistinguish 
onstraints from their appli
ations. For example there are 
(n2) di�erent 
lauses oflength 2, when applied to n Boolean variables. However it is 
lear that the underlying templateonly needs to in
lude all the di�erent 
onstraints on 2 variables; and the rest 
an be a
hievedby spe
ifying to whi
h ordered subset of variables is a basi
 
onstraint applied. This distin
tionbetween 
onstraints and their appli
ations is formalized in [CKS01℄ and reprodu
ed next. On
ewe formalize this distin
tion, we present the 
lass of 
onstraint satisfa
tion problems that we willstudy.Throughout this se
tion D denotes a �nite domain of 
ardinality r, r � 2, D = f0; 1; : : : ; r � 1g.De�nition 1.2 [Constraint℄ A 
onstraint is a Boolean fun
tion f :Dk �! f0; 1g, where k is anon-negative integer 
alled the arity of f .De�nition 1.3 [Constraint appli
ation℄ Given a 
onstraint f :Dk �! f0; 1g and (i1; : : : ; ik), thepair hf; (i1; : : : ; ik)i) is referred to as an appli
ation of the 
onstraint f to xi1 ; : : : ; xik .De�nition 1.4 [Satis�able 
onstraint appli
ation℄ Every assignment �: fx1; : : : ; xng �! D natu-rally extends itself to any 
onstraint appli
ation C = hf; (i1; : : : ; ik)i, we have�(C) := f(�(xi1); : : : ; �(xik)):An assignment � satis�es a 
onstraint appli
ation C if �(C) = 1.2



Throughout this se
tion, F will denote a �nite set of 
onstraints over the domain D.De�nition 1.5 [F -
olle
tion of 
onstraint appli
ations℄ Let F be a �nite 
olle
tion of 
onstraints.A 
onstraint appli
ation of the form hf; (i1; : : : ; ik)i where f 2 F is referred to as an F-
onstraintappli
ation. A 
olle
tion of m su
h 
onstraints appli
ations is 
alled an F-
olle
tion of m 
onstraintappli
ations. Su
h a 
olle
tion is satis�able if there exists an assignment whi
h satis�es all of its
onstraint appli
ations.De�nition 1.6 [Constraint Satisfa
tion Problem (CSP(F))℄ The 
onstraint satisfa
tion problemCSP(F) is to de
ide whether there exists an assignment that satis�es a given F -
olle
tion of 
on-straint appli
ations.Example 1.7� The 
lassi
al 2-SAT problem is the same as CSP(ff0; f1; f2g), where fi: f0; 1g2 �! f0; 1g fori = 0; : : : ; 2 andf0(x; y) = 0 if and only if (x; y) = (0; 0),f1(x; y) = 0 if and only if (x; y) = (1; 0),f2(x; y) = 0 if and only if (x; y) = (1; 1).� The 3-
olorability problem 
an be seen as CSP(fgg)where g: f0; 1; 2g2 �! f0; 1g and g�1(1) = f(0; 1); (0; 2); (1; 0); (1; 2); (2; 0); (2; 1)g. Ea
h edgeof the graph given in input 
onsists of the 
onstraint g applied to its two endpoints.1.2 Complexity of Boolean Constraint Satisfa
tion ProblemsA signi�
ant amount of resear
h e�ort was oriented towards studying the 
onstraint satisfa
-tion problems on Boolean domain (whi
h are nothing else but generalized satis�ability problems,see [CKS01℄ for a uniform survey). There is now a growing body of 
omplexity 
lassi�
ation re-sults for problems derived from Boolean 
onstraint satisfa
tion. S
haefer [S
h78℄ began this lineof resear
h in 1978. In seek of a dida
ti
al presentation we will fo
us our attention on S
haefer'sremarkable result and few of its extensions in giving the gist of the proof.Throughout this subse
tion CSP(F) problems will be denoted by SAT(F) in order to remindthe reader that we are dealing with Boolean domains.S
haefer was interested in the 
omplexity of de
iding whether an instan
e of SAT(F) is satis�ablefor every problem SAT(F). His study led to a strikingly simple answer: every problem in this 
lassis either in P or NP-
omplete. This result is surprising and unexpe
ted for several reasons. Firstprior to this result NP-
ompleteness was established on a problem by problem basis. S
haefer'sresult gives a uniform proof to establish NP-
ompleteness for an in�nite 
olle
tion of problems.Furthermore, rarely in 
omplexity theory one 
omes a
ross an in�nite 
lass of problems whereevery problem belongs to a �nite 
olle
tion of 
omputational equivalen
e 
lasses.Let us now give some de�nitions in order to state his result.De�nition 1.8 A 
onstraint f is said to be0-valid if f(0; : : : ; 0) = 1.1-valid if f(1; : : : ; 1) = 1. 3



weakly positive (weakly negative) if f is expressible as a CNF-formula having at most onenegated (unnegated1) variable in ea
h 
lause.bijun
tive if f is expressible as a 2CNF-formula.aÆne if f is expressible as a system of linear equations over GF(2); that is, it is equivalent to asystem of linear equations of the forms v1 � � � � � vn = 0 and v1 � � � � � vn = 1, where �denotes the ex
lusive or 
onne
tive.Theorem 1.9 [S
h78℄ Given a 
onstraint set F , the problem SAT(F) is in P if F satis�es one ofthe 
onditions below, and SAT(F) is NP-
omplete, otherwise.1. Every 
onstraint in F is 0-valid (1-valid).2. Every 
onstraint in F is bijun
tive.3. Every 
onstraint in F is weakly positive (weakly negative).4. Every 
onstraint in F is aÆne.Let us now analyze this result. A qui
k look to its statement leads to the following observation:easy problems are well-known! Indeed the 
entral problems for the polynomial 
ases are the 
lassi
altra
table satis�ability problems: 2-SAT, Horn SAT and de
iding the 
onsisten
y of a linear systemover GF(2). For instan
e if every 
onstraint in F is bijun
tive then every 
olle
tion of 
onstraintsappli
ations 
an be expressed as a 2-CNF-formula, whose satis�ability 
an be de
ided in lineartime [APT79℄. On the other hand intra
table 
ases need the most e�ort. If F does not satisfy anyof the above 
onditions then S
haefer proved that one 
an \en
ode" the NP-hard 
onstraint One-In-Three with F -
onstraints (this \en
oding", whi
h has to preserve the satis�ability, is rigorouslyformalized in [CKS01℄ as perfe
t implementation). The proof is based on algebrai
 
hara
terizationsof the properties des
ribed above. For instan
e it is well-known that a 
onstraint f is weaklynegative (i.e. Horn) if and only it is 
losed under dire
t produ
t, that is to say if and only for all ~s1and ~s2 su
h that f(~s1) = 1 and f(~s2) = 1, the dire
t produ
t ~s1 \ ~s2 is also satisfying. Bijun
tiveand aÆne 
onstraints are 
hara
terized by similar algebrai
 
losure properties.S
haefer's 
on
ise 
hara
terization allows us to determine whether for a given F , SAT(F) is inP or is NP-
omplete. Then, a natural question is: what is the 
omplexity of identifying tra
tableproblems. In other words, how diÆ
ult is it to re
ognize that the problem spe
i�ed by a given
onstraint set is indeed tra
table. The question was settled in [CKS01℄.Proposition 1.10 [CKS01℄ Let F be a 
onstraints set. Suppose that ea
h 
onstraint in F isspe
i�ed by a CNF-formula. Then the problem of de
iding whether SAT(F) is in P is 
oNP-hard.Many results extend S
haefer's study and explore di�erent kinds of 
omplexity 
lasses restri
tedto Constraint Satisfa
tion Problems. Their authors have shown 
lassi�
ation results for a varietyof 
omputational tasks where the goal of the 
omputation varies while the instan
e remains thesame. For instan
e we studied the 
ounting version of the Boolean 
onstraint satisfa
tion problemswhere the obje
tive is to 
ount the number of assignments satisfying all 
onstraints. We obtained adi
hotomy result FP/ #P (where #P is the 
ounting 
ounterpart of NP, see [Pap94, Chapter 18℄).1Su
h 
lauses are usually 
alled Horn 
lauses. 4



Theorem 1.11 [CH96℄ Given a 
onstraint set F , if every 
onstraint in F is aÆne then the problem#SAT(F) is in FP, and #SAT(F) is #P-
omplete, otherwise.Let us 
ompare this result to S
haefer's one. Most of the 
entral tra
table problems for the de
isiontask be
ome hard when it 
omes to 
ounting. Indeed, while the de
ision problems 2-SAT and Horn-SAT are in P, the 
orresponding 
ounting problems #2-SAT and #Horn-SAT are #P-
omplete(see [Val79℄). Only 
ounting the number of solutions of a linear system over a �nite �eld is aseasy as de
iding its 
onsisten
y via Gaussian elimination. So, on
e more this result reveals thateasy problems are well-known. The #P-
omplete 
ase is obtained by an \en
oding" preserving thenumber of solutions (referred to as faithful redu
tion in [CKS01℄) from the problems Positive-2-SAT [Val79℄ and Impli
ative-2-SAT [PB83℄ whi
h are known to be #P-
omplete.As a 
orollary observe that NP-
ompleteness for a satis�ability problem implies the #P-
omple-teness of the 
orresponding 
ounting problem. this result 
on�rms for an in�nite and general 
lassof problems the intuitive opinion that ea
h NP-
omplete problem leads to a 
orresponding #P-
omplete 
ounting problem.In this line of resear
h Juban [Jub99℄ proved a di
hotomy theorem for the Unique Satis�abilityproblem. Another 
losely related aspe
t is that of enumerating all solutions (without dupli
ate).Creignou and H�ebrard re�ned S
haefer's result in identifying satis�ability problems for whi
h allsolutions 
an be generated in polynomial delay (see [JYP88℄).Theorem 1.12 [CH97℄ Given a 
onstraint set F , the problem of generating all models for anygiven F -
olle
tion of 
onstraints has a polynomial spa
e, polynomial delay algorithm if F satis�esone of the 
onditions below, and otherwise, no su
h algorithm exists unless P=NP.1. Every 
onstraint in F is weakly positive (weakly negative).2. Every 
onstraint in F is aÆne.3. Every 
onstraint in F is bijun
tive.Another problem of interest is to evaluate a quanti�ed 
olle
tion of 
onstraint appli
ations. Su
ha quanti�ed 
olle
tion is of the form Q1x1 � � � QnxnC, where C is an F-
olle
tion of 
onstraints overthe set of variables fx1; : : : ; xng and Qi is either the quanti�er \for all" or \exists", for i = 1; : : : ; n.The quanti�ed satis�ability problem, QSAT(F) is to de
ide whether a given quanti�ed F-
olle
tionof 
onstraints appli
ation is true. Quanti�ed satis�ability problems form a natural sub
lass ofPSPACE problems; and in
lude some PSPACE-
omplete problems. There is also a di
hotomy resultfor quanti�ed 
onstraint satisfa
tion problems (whi
h was �rst stated in [S
h78℄ and independentlyproved in [CKS01℄ and in [Dal97℄).Theorem 1.13 Given a 
onstraint set F , if F satis�es one of the following three 
onditions thenQSAT(F) is in P otherwise it is PSPACE-
omplete1. Every 
onstraint in F is weakly positive (weakly negative).2. Every 
onstraint in F is aÆne.3. Every 
onstraint in F is bijun
tive. 5



Many other results deal with optimization problems. Creignou [Cre95℄ and, Khanna and Su-dan [KS96℄ independently studied optimization problems where the obje
tive is to maximize thenumber of satis�ed 
onstraints. They showed that every problem MaxSAT(F) is either in P or APX-
omplete. In this result the 
entral problem for the polynomial 
ase is the s,t-Min-Cut problem,whereas the APX-
omplete 
ase is obtained by an approximation-preserving en
oding (referred toas stri
t implementation in [CKS01℄) from the Max-Cut problem. Khanna et al. [KSW97, KSL97℄studied other forms of 
ommonly o

urring optimization tasks in the 
onstraint satis�ability settingand obtained 
lassi�
ation results. Their results [KSW97, KSL97℄ are somewhat di�erent from theothers above in that the resulting 
lassi�
ation theorems do not exhibit di
hotomies but rather apartition into a larger but �nite number of equivalen
e 
lasses. Reith and Vollmer [RV00℄ stud-ied the 
lass of optimization problems where the obje
tive is to �nd a lexi
ographi
ally minimal(maximal) satisfying assignment.Other people studied similar aspe
ts of 
onstraint satisfa
tion problems. Kavvadias and Sideristudied in [KS98℄ the inverse satis�ability problem where the goal is to �nd an F-
olle
tion of
onstraint appli
ations su
h that a given set of truth assignments 
onstitutes its set of feasiblesolutions. Cadoli [Cad92℄ proved that testing for truth assignment minimality of a given propo-sitional formula is 
oNP-
omplete, whereas Kirousis and Kolaitis [KK00, KK01℄ presented a di-
hotomy theorem for propositional 
ir
ums
ription. They investigated the 
lass of de
ision prob-lems Min-SAT(F) that ask whether a satisfying truth assignment for an F -
olle
tion of 
onstraintappli
ations is minimal with respe
t to the 
oordinate-wise partial order. Their di
hotomy theoremseparates 
oNP-
omplete instan
es from instan
es in P. Durand, Hermann, and Kolaitis [DHK00℄proved that 
ounting the number of minimal truth assignments of a propositional formula is a#NP-
omplete problem. B�ohler, Hemaspaandra, Reith and Vollmer 
onsidered the problem ofdetermining whether two given F -
olle
tions of 
onstraint appli
ations are equivalent in the sensethat they possess the same set of satisfying assignments [BHRV01℄.1.3 Complexity of Constraint Satisfa
tion Problems on non-Boolean �nite do-mainsA 
omplete 
omplexity 
lassi�
ation for all 
onstraint satisfa
tion problems over arbitrary �nitedomains is an open problem and is a highly 
hallenging task of mu
h more than te
hni
al interest(see [FV98℄).There are some 
omplete 
lassi�
ation results when we restri
t our attention to binary 
onstraintsatisfa
tion problems. First Hell and Ne�set�ril [HN90℄ obtained a di
hotomy theorem for the H-
oloring problem, in whi
h the question is that of de
iding whether there exists any homomorphismfrom a given graph G to the �xed graph H. They showed that the de
ision problem is in P if Hhas a loop or is bipartite; otherwise it is NP-
omplete. Dyer and Greenhill [DG00℄ 
onsidered theproblem of exa
tly 
ounting su
h homomorphisms and gave a similar 
omplete 
hara
terization.They showed that 
ounting is in FP if every 
onne
ted 
omponent of H is an isolated vertexwithout loop, or a 
omplete graph with all loops present or a 
omplete unlooped bipartite graph;otherwise it is #P-
omplete. Cooper, Cohen and Jeavons [CCJ94℄ studied the 
omplexity of CSP(F)when F is a set of binary 
onstraints under the additional hypothesis that F is 
losed undertwo operations, domain restri
tion and label permutation. They proved that satis�ability 
anbe de
ided in polynomial time if all 
onstraints belong to a spe
ial 
lass of 
onstraints, 
alled0/1/all or impli
ational 
onstraint, and is NP-
omplete in all other 
ases. Their work was extendedby Istrate [Ist97℄ who, under the same 
onditions, obtained a di
hotomy 
lassi�
ation for both6



the 
orresponding 
ounting problems (FP/#P-
omplete) and the optimization problems (P/APX-
omplete).In a more general framework Jeavons, Cohen and Gyssens [JCG97℄ brought to the fore the linkbetween the algebrai
 
losure properties of the 
onstraints and the 
omplexity of the 
orresponding
onstraint satisfa
tion problem. It appears that when restri
ted to Boolean domain algebrai

losure properties of the 
onstraints (see [CKS01, Chapter 4, Se
tion 4.4 and Chapter 6℄) exa
tly
hara
terizes the 
omplexity of the 
orresponding 
onstraint satisfa
tion problem. Jeavons, Cohenand Gyssens proved that any set of 
onstraints that does not give rise to an NP-
omplete 
lassof problems must satisfy a 
ertain type of algebrai
 
losure 
ondition. Then, they investigatedall the di�erent possible forms of the algebrai
 
losure property and established whi
h of these aresuÆ
ient to ensure tra
tability. A number of tra
table 
onstraint 
lasses have also been identi�ed byFeder and Vardi [FV98℄. In a highly nontrivial proof they pointed out that 
onstraint satisfa
tionproblems over non-Boolean domains are 
omputationally equivalent to problems in \monotonemonadi
 SNP", a synta
ti
ally restri
ted 
lass of languages within NP whi
h is, in some sense, thelargest 
lass within NP that may show di
hotomy results.Despite all these e�orts the 
omplexity 
lassi�
ation of 
onstraint satisfa
tion problems over�nite domains is still in
omplete.2 Complexity of Equational Constraint ProblemsEquational problems are �rst-order formulas with quanti�er pre�x 9� 8�, whose only predi
atesymbol is synta
ti
 equality. They are an important tool in many areas of 
omputer s
ien
e.In automated dedu
tion, equational 
onstraints 
an be used to restri
t the set of ground instan
esof a 
lause. It is thus possible to de�ne stronger redundan
y 
riteria and hen
e, in general, moreeÆ
ient theorem provers (
f. [CZ90, CP95b, CP95a℄). In automated model building, equationalproblems 
an be used in several ways, e.g.: for model 
onstru
tion, for model representation, forthe evaluation of 
lauses in a given model, et
 (
f. [CZ90, FL96℄). Complement problems are animportant spe
ial 
ase of equational problems with appli
ations in logi
 programming, fun
tionalprogramming, ma
hine learning, et
. (
f. [LM87, LMM91, Lug89, SM91℄).Equational problems over �nite universes 
an be used to en
ode queries over relational databases.Finally, note that also the 
onstraint satisfa
tion problems on Boolean and �nite domains treated inSe
tion 1 
an be easily en
oded as equational problems over �nite universes. Let D = fa1; : : : ; aKgbe a �nite domain and let C = fhf1; (i11; : : : ; i1k1)i; : : : ; hfm; (im1; : : : ; imkm)ig denote a �nite setof 
onstraint appli
ations over D, su
h that every fj is a 
onstraint of the form fj:Dkj �! f0; 1g.Moreover, let ~x denote the set of all variables xi�� o

urring in C. Then C is satis�able, if andonly if the equational problemP � (9~x) 264 m̂j=1 _(b1;:::;bkj )2(fj )�1(1)(xij1 = b1 ^ � � � ^ xijkj = bkj ) 375over the Herbrand universe H = fa1; : : : ; aKg is satis�able. A good overview of the wide range ofappli
ations of equational problems 
an be found in [CL89℄.In many of these appli
ations, testing the satis�ability of an equational problem is even moreimportant than a
tually 
omputing the solutions. In this se
tion, we present a survey of 
omplex-ity results for this satis�ability problem, where we 
onsider several restri
tions on the equational7



problems, namely: quanti�er pre�x 9� versus 9� 8�, CNF versus DNF and, �nally, interpretationof the formula over a �nite universe versus an in�nite universe.2.1 Syntax and semanti
s of equational 
onstraint problemsEquational problems are �rst-order formulas of the form 9~w 8~y P (~w; ~x; ~y ), su
h that P (~w; ~x; ~y ) isa quanti�er-free formula with variables in ~w, ~x and ~y, where synta
ti
 equality \=" is the onlypredi
ate symbol. A disequation s 6= t is a short-hand notation for a negated equation :(s = t).The trivially true problem is denoted by > and the trivially false one by ?.In this se
tion, every equational problem P is 
onsidered over some �xed Herbrand universe H(or, equivalently, over some �xed �nite signature � 
onsisting of 
onstant symbols and possiblyfun
tion symbols). An interpretation over H is given through an H-ground substitution �, whosedomain 
oin
ides with the free variables of the equational problem. The trivial problem > evaluatesto \true" in every interpretation. Likewise, ? always evaluates to \false". A single equation s = tis validated by a ground substitution �, if and only if s� and t� are synta
ti
ally identi
al. The
onne
tives ^, _, :, 9 and 8 are interpreted as usual. A ground substitution � whi
h validates aproblem P is 
alled a solution of P . An equational problem is satis�able, if and only if it has atleast one solution.As far as the satis�ability of an equational problem is 
on
erned, there is no di�eren
e betweenfree variables and existentially quanti�ed ones. In parti
ular, 9~w 8~y P (~w; ~x; ~y ) is satis�able, if andonly if 9~x9~w 8~y P (~w; ~x; ~y ) is. Without loss of generality we therefore only 
onsider equationalproblems without free variables. In analogy with [CL89℄, universally quanti�ed variables will bereferred to as parameters.In order to distinguish between synta
ti
al identity and the equivalen
e of two equational prob-lems, we use the notation \�" and \�", respe
tively. We shall thus write P � Q to denote that thetwo equational problems P and Q are synta
ti
ally identi
al. If the equational problems P and Qhave the same set of solutions, then they are semanti
ally equivalent. In this 
ase, we write P � Q.Term tuples are used as a short-hand notation for a 
onjun
tion of equations or a disjun
tion ofdisequations, respe
tively. For term tuples ~s = (s1; : : : ; sk) and ~t = (t1; : : : ; tk), we shall abbreviate\s1 = t1 ^ � � � ^ sk = tk" and \s1 6= t1 _ � � � _ sk 6= tk" to \~s = ~t " and \~s 6= ~t ", respe
tively.Example 2.1 Let P � (x1 = a ^ x1 6= x2) _ (x2 6= x3 ^ x2 = b) be an equational problem overH = fa; b; 
g. Then the following substitutions � and � are (examples of) solutions of P :� = fx1  a; x2  b; x3  
g, � = fx1  b; x2  b; x3  
g.Let Q � (9y)(8z)[y = f(x) ^ x 6= f(z)℄ be an equational problem over H = fa; f(a); f(f(a)); : : :g.The only solution of Q is � = fx ag.Now suppose that Q is interpreted over the universe H = fa; f(a); g(a); f(f(a)); f(g(a)); : : :g withsignature � = fa; f; gg. Then Q has many more solutions, e.g.: �1 = fx  g(a)g, �2 = fx  g(f(a))g, et
.Uni�
ation problems are equational problems without universal quanti�ers and without negation.It is well known that the set S of solutions of a 
onjun
tion P � s1 = t1 ^ : : : ^ sn = tn 
an berepresented by a single substitution �, whi
h is 
alled the mgu (= most general uni�er) of P . Forevery solution � of P , there exists a substitution �, su
h that � is the 
omposition of � and � (whi
hwe denote by � = ��). Re
all that the mgu is unique up to variable renaming. Moreover, it 
anbe de
ided eÆ
iently whether the mgu exists (or, equivalently, whether P is satis�able). Likewise,the a
tual 
omputation of the mgu 
an be done eÆ
iently (
f. [BS94, BS01, MM82℄).8



2.2 Transformation rules of Comon and Les
anneIn [CL89℄, a rule system is provided whi
h terminates on every equational problem and whi
htransforms the original problem into an equivalent one in the so-
alled \de�nition with 
onstraintsform", whi
h is basi
ally a purely existentially quanti�ed equational formula in DNF. Below someof the rules of [CL89℄ are re
alled, namely the repla
ement rules R1, R2, the 
leaning rule CR2,the universality of parameter rules U2, U4, U5 and the explosion rule E. Note that many morerules of [CL89℄ (like the de
omposition rule, the 
lash rule, the o

ur 
he
k, et
.), whi
h are notmentioned expli
itly here, are \hidden" in the uni�
ation steps.(R1) z = t ^ P ! z = t ^ P (z  t)(R2) z 6= t _ P ! z 6= t _ P (z  t)(CR2) 9(~w;w)(w = t ^ P ) ! (9~w )Pif w 62 Var (P ) and w 62 Var(t)(U2) (8~y )[P ^ (y 6= t _R)℄ ! (8~y )[P ^R(y  t)℄if y 2 ~y and y 62 Var(t).(E) (8~y )P ! Wf2� (9~w )(8~y )[P ^ s = f(w1; : : : ; w�(f))℄if the following 
onditions hold:1. Ea
h f is a (
onstant or fun
tion) symbol from the signature �with arity �(f) � 0,2. the wi's are fresh, pairwise distin
t variables.The following rule is only 
orre
t in 
ase of an in�nite universe :(U4) (8~y )[P ^ (z1 = u1 _ � � � _ zn = un _R)℄ ! (8~y )[P ^R℄if the following 
onditions hold:1. Every zi is a variable synta
ti
ally di�erent from ui,2. every equation zi = ui 
ontains at least one parameter from ~y,3. R 
ontains no parameter from ~y.The following rule 
an only be applied in 
ase of a �nite universe.(U5) (8~y )[P ^Q℄ ! (8~y )[P ^Q(y  a1) ^ � � � ^Q(y  aK)℄if the universe H is of the form H = fa1; : : : ; aKg.Rule system 2.1: Comon and Les
anneThe 
orre
tness of the rule R1 is obvious. The rule R2 follows from the equivalen
e [A _ B℄ �[(A ^ :B) _ B℄, whi
h holds for any logi
al formulas A and B. The 
orre
tness of the U2-ruleessentially follows from the R2-rule and the unsatis�ability of the disequation (8~y )(y 6= t) over anynontrivial universe.The explosion rule E (and, analogously, the U5-rule) is sometimes also referred to as the domain
losure axiom. Its idea is the following: Let H be the Herbrand universe of terms over some �nitesignature �. Then every ground term t 2 H has one of the symbols in � as its leading symbol.Hen
e the formula Wf2� (9~w )[s = f(w1; : : : ; w�(f))℄ is 
learly valid for any term s.Finally, the rule U4 is mainly due to the so-
alled independen
e of inequations of [Col84℄,that 
an be stated in the following way.Every purely existentially quanti�ed 
onjun
tion of disequations over an in�nite universe9



has at least one solution, if and only if ea
h of the 
onjun
ts has a solution.Moreover, the latter 
ondition is always ful�lled unless one of the 
onjun
ts is a trivial disequationof the form t 6= t. Then the 
orre
tness of the U4-rule follows from the fa
t that the subformula(z1 = u1 _ � � � _ zn = un) 
annot be true for all values of the variables in ~y.2.3 Equational problems with 9�-pre�xIn this se
tion we re
all several 
omplexity results on equational problems with purely existentialquanti�er pre�x. For CNF, the 
omplexity in 
ase of an in�nite universe is the same as in 
ase of a�nite universe, even though the proof of the upper bound on the 
omplexity will di�er signi�
antly.In 
ontrast, for DNF, we de�nitely have di�erent 
omplexity 
lassi�
ations. Surprisingly enough,the 
ase of a �nite universe will turn out to have a higher 
omplexity than an in�nite universe(provided that P 6= NP holds).Theorem 2.2 [9�-CNF over a nontrivial H℄ The satis�ability problem of equational problems in9�-CNF over an arbitrary (�nite or in�nite) Herbrand universe H with jHj � 2 is NP-
omplete.Proof: The NP-hardness 
an be shown by the obvious redu
tion from the 3-SAT-problem. LetE = (l11_ l12_ l13)^ � � �^ (ln1_ ln2_ ln3) be a Boolean formula, su
h that the lij 's are propositionalliterals over the propositional variables in P = fp1; : : : ; pkg. Moreover, let a 2 H be an arbitrary
onstant in H. Then we de�ne the equational problemP � 9~x [(l011 _ l012 _ l013) ^ � � � ^ (l0n1 _ l0n2 _ l0n3)℄in 9�-CNF with ~x = (x1; : : : ; xk), su
h that the literals l0ij in P are either of the form x
 = a (if lijis a positive literal p
) or of the form x
 6= a (if lij is a negative literal :p
). It is easy to 
he
kthat E is satis�able, if and only if P is satis�able.The NP-membership in 
ase of a �nite universe is easy. In an NP-algorithm for de
iding thesatis�ability of an equational problem P � 9~xP 0, we �rst guess a ground substitution � withdomain ~x and then 
he
k that P 0� evaluates to true.Note that this NP-algorithm does not work in 
ase of an in�nite universe, unless we 
an �nd apolynomial bound on the size of the terms in the range of �. However, the NP-membership in 
aseof an in�nite universe 
an be shown via a di�erent NP-algorithm. LetP � 9~x [(l11 _ � � � _ l1k1) ^ � � � ^ (ln1 _ � � � _ lnkn)℄be an equational problem in 9�-CNF, where the lij 's are equations or disequations. We 
an de
idethe satis�ability of P by �rst guessing for every i 2 f1; : : : ; ng a literal (an equation or a disequation)liji from the i-th 
lause. Then we 
he
k in polynomial time that the resulting existentially quanti�ed
onjun
tion of equations and disequations is satis�able. In Lemma 2.3 below, we show that thelatter 
he
k 
an indeed be done in polynomial time. 2Lemma 2.3 [parameter-free 
onjun
tions℄ LetP � (9~x) [e1 ^ � � � ^ ek ^ d1 ^ � � � ^ dl℄be a 
onjun
tion of equations ei and disequations dj over some in�nite universe H. Then thesatis�ability of P 
an be tested as follows. 10



Case 1: If e1 ^ � � � ^ ek is unsatis�able, then P is also unsatis�able.Case 2: Let e1^� � �^ek be satis�able with mgu #. Then P is satis�able, if and only if d1#^� � �^dl#
ontains no trivial disequation of the form t 6= t.Proof: Case 1 is trivial. For Case 2, let # = fxi1  s1; : : : ; xi�  s�g denote the mgu of theequations e1 ^ � � � ^ ek. Note that the variables xij are pairwise distin
t and do not o

ur in therange of #.By the de�nition of the mgu, the 
onjun
tions e1 ^ � � � ^ ek and xi1 = s1 ^ � � � ^ xi� = s� areequivalent. Moreover, by multiple appli
ations of the R2-rule of [CL89℄ (see also Se
tion 2.2), #may be applied to the disequations. Thus P � (9~x )[xi1 = s1 ^ � � � ^ xi� = s� ^ d1# ^ � � � ^ dl#℄holds. But then, sin
e all variables xi1 ; : : : ; xi� o

ur only on
e, the equations may be eliminatedby the CR2-rule of [CL89℄. We thus have P � P 0 � (9~x )[d1# ^ � � � ^ dl#℄. By the independen
eof inequations re
alled in Se
tion 2.2, any 
onjun
tion of nontrivial disequations over an in�niteuniverse has at least one solution. Therefore, P 0 (and, hen
e, also P ) is indeed satis�able, if andonly if P 0 
ontains no disequation of the form t 6= t. 2We now turn our attention to parameter-free equational problems in DNF. As has already beenmentioned above, the 
ases of a �nite universe and an in�nite universe lead to di�erent 
omplexityresults. The reason for this is the \independen
e of inequations" re
alled in Se
tion 2.2, whi
h onlyholds in 
ase of an in�nite universe. This e�e
t is illustrated by the following example.Example 2.4 Let the equational problem P be de�ned as follows.P � (9y) (x1 6= y) ^ (x2 6= y) ^ (x3 6= y) ^ (x1 6= x2) ^ (x1 6= x3) ^ (x2 6= x3)If P is interpreted over H = fa; b; 
g, then P is unsatis�able.On the other hand, over the in�nite universe H = fa; f(a); f2(a); : : :g, the problem P is satis-�able, where � = fx1  a; x2  f(a); x2  f2(a); : : :g is a solution.We thus get the following 
omplexity results for equational problems in 9�-DNF.Theorem 2.5 [9�-DNF over an in�nite H℄ The satis�ability problem of equational problems in9�-DNF over an in�nite H is in P.Proof: Let P � (9~x )P1 _ � � � _ Pn with Pi � (ei1 ^ � � � ^ eiki ^ di1 ^ � � � ^ dili), su
h that theeij 's are equations and the dij's are disequations. Then P is satis�able, if and only if at leastone disjun
t (9~x )Pi is satis�able. Moreover, by Lemma 2.3, (9~x )Pi is satis�able, if and only if� = mgu(ei1 ^ � � � ^ eiki) exists and (di1 ^ � � � ^ dili)� 
ontains no trivial disequation of the formt 6= t. 2Theorem 2.6 [9�-DNF over a �nite H with jHj � 3℄ The satis�ability problem for equationalproblems in 9�-DNF over a �nite H with jHj � 3 is NP-
omplete.Proof: The NP-hardness is shown by a redu
tion from the well-known NP-
omplete problemK-
olorability with K � 3: Let G = (V;E) be a graph with verti
es V = fv1; : : : ; vng and edges E.Then G is K-
olorable (there exists a fun
tion f :V ! f1; : : : ;Kg, su
h that f(vi) 6= f(vj) holdsfor every edge fvi; vjg 2 E), if and only if the equational problem(9~v ) ^fvi ;vjg2E vi 6= vj11



�nite universe H in�nite universejHj = 2 jHj � 3DNF in P NP-
omplete in PCNF NP-
omplete NP-
omplete NP-
ompleteFigure 1: 9�-formulasover H = fa1; : : : ; aKg with ~v = (v1; : : : ; vn) is satis�able. 2Re
all from [GJ79℄ that the K-
olorability problem is NP-
omplete for any K � 3, whereas it is inP for K = 2. Consequently, the redu
tion in the above proof does not work for K = 2. In fa
t, itis straightforward to show that the satis�ability problem for equational problems in 9�-DNF overH with jHj = 2 is in P. Figure 1 summarizes the results for 9�-formulas.2.4 Equational problems with 9� 8�-pre�xNow we 
onsider equational problems with 9� 8�-pre�x. It will turn out that this alternation ofquanti�ers pushes the 
omplexity one level higher in the polynomial hierar
hy. Moreover, the rôlesof CNF and DNF are 
hanged with respe
t to the 
ase of a purely existential quanti�er pre�x, sin
enow the innermost quanti�er is 8. Thus, for DNF, we get the following 
omplexity 
lassi�
ation.Theorem 2.7 [9� 8�-DNF over a nontrivial H℄ The satis�ability problem of equational problemsin 9� 8�-DNF over an arbitrary (�nite or in�nite) Herbrand universe H with jHj � 2 is �2P-hard.Moreover, if H is �nite, then this problem is �2P-
omplete.Proof: The �2P-hardness is proven via a redu
tion from the well-known �2P-
omplete 3-QSAT2problem (
f. [Sto76℄). This proof follows exa
tly the same pattern as the NP-hardness proof inTheorem 2.2. Let an instan
e of the 3-QSAT2 problem be given through two disjoint sets P =fp1; : : : ; pkg and R = fr1; : : : ; rlg of propositional variables and the Boolean formulaE = (l11 ^ l12 ^ l13) _ � � � _ (ln1 ^ ln2 ^ ln3)su
h that the lij 's are literals over the propositional variables in P [ R. Moreover, let a be anarbitrary 
onstant in H. Then we de�ne the equational problem P � 9~x8~y [C1 ^ � � � ^ Cn℄ overH in su
h a way that every literal of the form p
 or :p
 in E is en
oded by the literal x
 = a orx
 6= a, respe
tively, in P . Likewise, y� = a and y� 6= a are used to en
ode literals of the form r� or:r�, respe
tively. Again, this redu
tion 
an be 
learly done in polynomial time and its 
orre
tnessis trivial.To prove the �2P-membership in 
ase of a �nite universe H is easy. Guess values for theexistentially quanti�ed variables and 
he
k the satis�ability of the resulting formula by means ofan NP-ora
le. 2It is not 
lear, how the �2P-algorithm from the above proof should be extended to the 
ase ofan in�nite universe. In parti
ular, we do not know if there exists a polynomial bound on the termsthat have to be guessed for the existentially quanti�ed variables. In Theorem 2.9, we shall showthat the satis�ability problem of equational problems in 9� 8�-CNF over an in�nite universe is in12



NP. Hen
e, the obvious upper bound on the 
omplexity of equational problems in 9� 8�-DNF overan in�nite universe is NEXPTIME, sin
e we 
an of 
ourse �rst transform the DNF into CNF viathe distributivity of ^ and _ (in general, at the expense of an exponential blow-up) and then applythe NP-algorithm sket
hed in Theorem 2.9. The exa
t 
omplexity of 9� 8�-DNF over an in�niteuniverse is an open problem.Theorem 2.8 [9� 8�-CNF over a �nite H with jHj � 3℄ The satis�ability problem for equationalproblems in 9� 8�-CNF over a �nite H with jHj � 3 is �2P-
omplete.Proof: (Sket
h) The �2P-membership 
an be shown in exa
tly the same way as in Theorem 2.7.Guess values for the existentially quanti�ed variables and 
he
k the satis�ability of the resultingformula by means of an NP-ora
le.The proof of the �2P-hardness is quite involved. It goes by a redu
tion from some kind of\parameterized K-
olorability problem". For details, see [Pi
00℄ and [Pi
01℄. 2Analogously to equational problems in 9�-DNF over a �nite universe, the 
omplexity of 9� 8�-CNFover a �nite H be
omes one level lower in the polynomial hierar
hy, if H has only two elements.In fa
t, in [Pi
01℄, it is shown that the satis�ability problem for equational problems in 9� 8�-CNFover a H with jHj = 2 is NP-
omplete.Now it only remains to 
onsider the 
ase of 9� 8�-CNF over an in�nite universe. Analogouslyto the 9�-DNF, this satis�ability problem is one level lower in the polynomial hierar
hy than for a�nite universe.Theorem 2.9 [9� 8�-CNF over an in�nite universe℄ The satis�ability problem of equational prob-lems in 9� 8�-CNF over an in�nite H is NP-
omplete.Proof: (Sket
h) The NP-hardness is 
lear, sin
e even the 
ase of 9�-CNF is NP-hard. As for theNP-membership, we give a (very rough) sket
h of an NP-algorithm, whi
h works as follows (fordetails, refer to [Pi
99℄ and [Pi
01℄).(1) Elimination of the parameters from the equations and simpli�
ation of the disequations: Let Pbe an arbitrary equational problem in 9� 8�-CNF. Then P 
an be transformed in polynomial timeinto the following formP 0 � (9~x )(8~y )[E1 _ (~x 6= ~t1)℄ ^ � � � ^ [En _ (~x 6= ~tn)℄;where the Ei's are parameter-free disjun
tions of equations and the ~ti's are term tuples with vari-ables only in ~y.(2) Elimination of the parameters from the disequations: Of 
ourse, the universal quanti�ers 
anbe shifted in front of the disequations, sin
e the subformulas Ei no longer 
ontain any universallyquanti�ed variables. Moreover, a universally quanti�ed disequation of the form (8~y )(~x 6= ~ti) 
anbe transformed by su

essive appli
ations of the explosion rule re
alled in Se
tion 2.2 into a purelyexistentially quanti�ed disjun
tion of the form (9~w )[di1 _ � � � _ dini ℄, where ea
h dij is either anequation or a 
onjun
tion of an equation and a disequation. Note that the number of su
h disjun
tsdij is basi
ally k � p, where k = j�j denotes the number of symbols in the signature � of H and pdenotes the number of positions in the term tuple ~ti.(3) Guess and 
he
k : After the above two transformation steps, we (almost) have an equationalproblem in 9�8�-CNF. Hen
e, in prin
iple, we 
an pro
eed as in the proof of Theorem 2.2 via13



�nite universe H in�nite universejHj = 2 jHj � 3CNF NP-
omplete �2P-
omplete NP-
ompleteDNF �2P-
omplete �2P-
omplete �2P-hard,in NEXPTIMEFigure 2: 9� 8�-formulasLemma 2.3. However, there is a subtle problem with this. As has already been mentioned above,the size of the disjun
tions obtained in Step (2) of this algorithm is linear with respe
t to thenumber of positions of the term tuples ~ti. Moreover, by the uni�
ation steps performed in Step(1), this number of positions may be
ome exponential, even though their representation as dire
teda
y
li
 graphs is of 
ourse polynomially bounded. Hen
e, the transformation in Step (2) must notbe 
arried out expli
itly. Instead, the guess of a 
ertain disjun
t dij has to be done dire
tly byinspe
ting the term tuple ~ti. 2Figure 2 summarizes the results for 9� 8�-formulas.2.5 Equational formulas with arbitrary quanti�er pre�xAlgorithms for de
iding the satis�ability of arbitrary equational formulas (in parti
ular, wherethe quanti�er pre�x is not restri
ted to the form 9� 8�), usually work by quanti�er elimination(
f. [CL89, Mah88℄). To this end, the transformation of an equational problem with 9� 8�-pre�xinto an equivalent one with 9�-pre�x is applied to equational formulas with arbitrary quanti�erpre�x in order to redu
e the number of quanti�er alternations. Let P be an equational formulaof the form P � (9~x1)(8~x2) � � � (9~xn�1)(8~xn)Q: Moreover, suppose that we 
an e�e
tively 
omputea purely existentially quanti�ed formula (9~y )R that is equivalent to (9~xn�1)(8~xn)Q. Then P isequivalent to P 0 � (9~x1)(8~x2) � � � (8~xn�2)(9~y )R:Likewise, if P is of the form P � (9~x1)(8~x2) � � � (8~xn�1)(9~xn)Q; then we 
learly have the fol-lowing 
hain of equivalen
es.P � (9~x1)(8~x2) � � � (8~xn�1)(9~xn)Q� (9~x1)(8~x2) � � � ::(8~xn�1)(9~xn)Q� (9~x1)(8~x2) � � � :(9~xn�1)(8~xn)(:Q):Hen
e, also in this 
ase, the innermost quanti�ers have been brought into the form 9� 8� and we
an transform (9~xn�1)(8~xn)(:Q) into an equivalent formula of the form (9~y )R. We thus get theequational formulaP 0 � (9~x1)(8~x2) � � � (9~xn�2):(9~y )R � (9~x1)(8~x2) � � � (9~xn�2)(8~y ):R;whi
h is equivalent to P .In other words, it suÆ
es to provide a transformation of equational formulas from 9� 8�-form into9�-form, in order to solve the satis�ability problem for arbitrary equational formulas. Unfortunately,this quanti�er elimination step has exponential 
ost. However, by the high inherent 
omplexity14



of arbitrary equational formulas, this 
an hardly be helped. Re
all from Theorem 1.13, that theQSAT(F) problem is PSPACE-
omplete, unless the 
onstraints under 
onsideration are subje
ted tosome severe restri
tions. Analogously, it 
an be shown that the satis�ability problem of equationalformulas over a �nite universe is PSPACE-
omplete, if no restri
tions are imposed on the quanti�erpre�x (
f. [Kun87℄). In 
ase of an in�nite universe, the satis�ability problem of equational formulaswith arbitrary quanti�er pre�x is even non-elementary re
ursive (
f. [Vor96℄).2.6 Open problems and future resear
hIn Se
tion 2, we have given a survey of 
omplexity results for the satis�ability problem of equationalproblems. In almost all of the 
ases thus 
onsidered, there is an exa
t 
lassi�
ation of the 
omplexity.Only in 
ase of equational problems in DNF with 9� 8�-pre�x over an in�nite universe, there is agap between the �2P lower bound and the NEXPTIME upper bound (
f. Figure 2). Closing thisgap is an interesting open problem for future resear
h in this area.Re
all that we have only 
onsidered the 
ase where all terms (and, in parti
ular, all variables)in an equational problem are interpreted over the same universe. An extension of these results tothe 
ase of many sorts has not been done expli
itly yet. A
tually, it seems as though this extensionis not too diÆ
ult. After all, it has turned out that we only have to be 
areful whether a universe is�nite or in�nite. Nevertheless, the details of su
h an extension to many sorts have to be worked outyet. Moreover, little resear
h e�orts have been made so far, in order to investigate the 
omplexity,when restri
tions di�erent from the ones 
onsidered here are imposed, e.g.: what happens, whenthe number of variables is restri
ted rather than the quanti�er pre�x, et
.As usual, the 
omplexity analysis of a given problem is not the end of the story. In general, onewill try to apply the theoreti
al insight into the inherent 
omplexity of a problem to the 
onstru
tionof new and more eÆ
ient algorithms. A major lesson to be learned from the 
omplexity resultsre
alled here is that | in 
ontrast to the algorithm of [CL89℄ | one should not try to treat the
ases of a �nite universe and of an in�nite universe, respe
tively, in a uniform way. A
tually, theNP-membership proof sket
hed in Theorem 2.9 
an be 
onsidered as an improvement of previousalgorithms in 
ase of an in�nite universe. Sear
hing for further improvements is an important goalfor future resear
h.In this survey, we have 
on
entrated on equational formulae with 9� 8�-pre�x. Moreover, in
ase of equational problems with 9� 8�-pre�x, we were unable to present a better approa
h thanthe transformation into CNF followed by the NP-algorithm from the proof sket
h of Theorem 2.9.As far as the worst 
ase 
omplexity is 
on
erned, this is okay. However, pra
ti
al experien
e showsthat su
h a prepro
essing step of shifting the quanti�ers to the front and transforming the formulainto CNF are very 
ostly and sometimes not really ne
essary. Consequently, in [CD94℄, an algorithmis presented whi
h neither requires a CNF nor a spe
i�
 quanti�er pre�x. Instead, the expensivedistributivity rules are only applied, when there is no alternative. Moreover, a whole 
olle
tion ofrules dealing with single quanti�ers and 
ombinations of quanti�ers are provided. Of 
ourse, by thehigh inherent 
omplexity of equational formulae with no restri
tion on the quanti�er o

urren
es (
f.Se
tion 2.5) there is a 
lear limit up to whi
h the worst 
ase 
omplexity 
an possibly be improved.Nevertheless, a 
ombination of the ideas of [CD94℄ with the 
heap transformations needed for theNP-membership result in Theorem 2.9 may serve as a good starting point for sear
hing for furtherimprovements.
15



3 Complexity of Equational Mat
hing and Uni�
ation ConstraintProblemsMat
hing and uni�
ation in equational theories are the keystones of automated dedu
tion. Theyare used extensively in several areas of 
omputer s
ien
e, in
luding theorem proving, databasesystems, natural language pro
essing, logi
 programming, 
omputer algebra, and program veri�-
ation. Plotkin [Plo72℄ was the �rst to formulate expli
itly the idea that theorem provers shouldhave built-in algorithms for mat
hing and uni�
ation in equational theories. His pioneering arti
leprovided the impetus for the development of the entire �eld of equational mat
hing and uni�
ation.We brie
y introdu
e the basi
 notions for equational mat
hing and uni�
ation. Additionalmaterial 
an be found in [BS01℄ or [DJ90℄.A signature F is a set of fun
tion symbols of designated arities. If F is a signature and X is a
ountable set of variables, then T (F ;X ) denotes the set of all terms over the signature F and thevariables in X . We also write Var(t) for the set of variables o

urring in a term t. The size of term tis its length jtj as a string. As usual, a ground term is a term without variables. A substitution isa mapping �:X �! T (F ;X ) su
h that x� = x for all but �nitely many variables x. Consequently,a substitution � 
an be identi�ed with its restri
tion to the �nite set dom(�) = fx 2 X j x� 6= xg,whi
h is 
alled the domain of �. A substitution � is ground if x� is a ground term for all x 2 dom(�).An equation is a pair of terms l = r. Ea
h equation is viewed as an equational axiom, namely asthe �rst-order senten
e (8x1) : : : (8xm)(l = r) obtained from the equation by universal quanti�
ationover all variables o

urring in the terms l and r. If E is a set of equational axioms, then the equationaltheory Th(E) presented by E is the smallest 
ongruen
e relation over T (F ;X ) 
ontaining E and
losed under substitutions, i.e., Th(E) is the smallest 
ongruen
e 
ontaining all pairs l� = r�, wherel = r is in E and � is a substitution. By an abuse of terminology, we will often say \the equationaltheory E" instead of the 
orre
t \the equational theory Th(E) presented by E". We write s =E tto denote that the pair (s; t) of terms is a member of Th(E).E-equality on terms 
an be extended to substitutions by setting � =E � if and only if for allvariables x 2 X we have that x� =E x�. If V is a set of variables and �, � are substitutions,we put � =VE � if and only if (8x 2 V )(x� =E x�) holds. We also 
onsider the preorder �VE onsubstitutions de�ned by the 
ondition � �VE � if and only if (9�)(�� =VE �) holds. In turn, thispreorder gives rise to the following equivalen
e relation �VE on substitutions:� �VE � () � �VE � and � �VE �:In general, � �VE � does not imply that � �VE �; similarly, � �VE � does not imply that � =VE �.Nevertheless, these three relations 
oin
ide on ground substitutions with the same domain.In the sequel, we will be 
on
erned with equational theories presented by �nite sets E whoseaxioms are among those depi
ted in Figure 3. Moreover, AC(linear) is the restri
tion of the equa-tional theory AC applied to linear terms and Set is a spe
ial 
ase of the theory ACI in whi
h thereis only one ACI-symbol that o

urs on the top of the 
onsidered terms.3.1 Complexity of equational mat
hingLet s be a term, 
alled pattern, and let t be a ground term, 
alled subje
t. An E-mat
her of sand t is a substitution � su
h that s� =E t. Whenever su
h an E-mat
her exists, we say that thepattern s E-mat
hes the subje
t t.A 
omplete set of E-mat
hers of s and t is a set S of substitutions su
h that the following
onditions hold: 16



Asso
iativity A(f) f(f(x; y); z) = f(x; f(y; z))Commutativity C(f) f(x; y) = f(y; x)Idempoten
e I(f) f(x; x) = xNilpoten
e N(f) f(x; x) = 0Existen
e of Unit U(f) f(x; 1) = x, f(1; x) = xHomomorphism H(f; g; h) f(g(x; y)) = h(f(x); f(y))Abelian group AG(+;�; e) see Figure 4Boolean ring BR(^;�; 0; 1) see Figure 5Figure 3: Equational axioms
x + e = x x + y = y + xx + (�x) = e (x + y) + z = x + (y + z)Figure 4: Abelian group axioms AG

x� 0 = x x� y = y � xx� x = 0 (x� y)� z = x� (y � z)x ^ 0 = 0 x ^ y = y ^ xx ^ 1 = x (x ^ y) ^ z = x ^ (y ^ z)x ^ x = x x ^ (y � z) = (x ^ y)� (x ^ z)Figure 5: Boolean ring axioms BR
17



1. Ea
h substitution � 2 S is an E-mat
her of s and t, and, moreover, dom(�) � V , whereV = Var(s) is the set of variables of s;2. For every E-mat
her � of s and t, there is a substitution � 2 S su
h that � �VE �.We say that S is a minimal 
omplete set of E-mat
hers of s and t if, in addition, every two distin
tmembers of S are �VE -in
omparable (this means that for all substitutions �; � 2 S the 
ondition� �VE � implies � = �).In general, it may be the 
ase that s E-mat
hes t, but there is no minimal 
omplete set ofE-mat
hers of s and t. On the other hand, it is well known that if a minimal 
omplete set ofE-uni�ers of s and t exists, then it is unique up to �VE .From now on, we assume that E is a set of equational axioms su
h that if s E-mat
hes t, thenthere exists a minimal 
omplete set of E-mat
hers of s and t. We let �CSME(s; t) denote the(unique up to �VE ) minimal 
omplete set of E-mat
hers of s and t, if s E-mat
hes t, or the emptyset, otherwise.E-mat
hing is said to be unitary if for every pattern s and every subje
t t we have thatj�CSME(s; t)j � 1. Similarly, E-mat
hing is said to be �nitary if for every pattern s and everysubje
t t the set �CSME(s; t) is �nite.If E is a set of equational axioms then we asso
iate with E the following E-mat
hing de
isionproblem.E-MATCHINGInput: A pattern s, a subje
t t, and an equational theory E.Question: Can s be E-mat
hed with t, i.e., is there a substitution �, su
h that s� =E t?By examining the signature F over whi
h the terms of mat
hing problems in the theory Th(E)have been built, we distinguish between two di�erent kinds of E-mat
hing. Let sig(E) be the setof all fun
tion and 
onstant symbols o

urring in the equational axioms of E. If the signature F
ontains sig(E) and free 
onstant symbols, but no free fun
tion symbols, then we speak aboutelementary E-mat
hing. If the signature F 
ontains free fun
tion symbols of arbitrary arities, thenwe speak about general E-mat
hing.Most of the equational mat
hing de
ision problems are NP-
omplete. A remarkable ex
eptionis the 
ase of AC(linear)-mat
hing that is proved to be polynomial by means of graph mat
h-ing te
hniques. These 
omplexity results were proved by Benanav et al. [BKN87℄, Kapur andNarendran [KN92℄ Baader [Baa98℄, Kl��ma and Srba [KS00℄, Eker [Eke93℄, and others. Clearly,an NP-hardness result for the elementary 
ase naturally extends to NP-hardness of the generalproblem. In the same spirit, a polynomial result for the general 
ase extends to a polynomial-timede
idable elementary problem.The results on equational mat
hing de
ision problems are summarized in Figure 6.Assume that E is some �nitary equational theory and A is an algorithm su
h that, given twoterms s and t as input, the algorithm A returns a minimal 
omplete set of E-mat
hers of s and t, if sand t 
an be E-mat
hed, or the empty set, otherwise. As a byprodu
t of this algorithm and withinthe same 
omplexity bounds, we 
an solve a related 
ounting problem, namely we 
an 
ompute thenumber of most general E-mat
hers of two given terms. In many respe
ts, this 
ounting problemis 
loser to the problem of 
omputing a 
omplete set of E-mat
hers than the de
ision problem forE-mat
hing. If E is a set of equational axioms su
h that E-mat
hing is �nitary, then we asso
iatewith E the following 
ounting problem. 18



theory 
omplexityelementary general;  � linear [PW78℄A NP-
omplete [Ang80℄ NP-
omplete [BKN87℄C NP-
omplete [BKN87℄AC NP-
omplete [Eke93, BS94℄ NP-
omplete [BKN87℄AC(linear)  � in P [BKN87℄AI NP-
omplete [KS00℄ NP-
ompleteAU NP-
omplete (unpublished) NP-
ompleteACI NP-
omplete [KN92℄ACU NP-
omplete [HK99℄ NP-
omplete [KN92℄I NP-
omplete (unpublished)U NP-
omplete [TA87℄N NP-
omplete [GNW00℄ NP-
ompleteACN NP-
omplete [GNW00℄ NP-
ompleteACUN in P [GNW00℄ NP-
omplete [GNW00℄ACUNH in P [GNW00℄ NP-
omplete [GNW00℄Set NP-
omplete [KN86℄AG in P (Gaussian elimination in Z) NP-
omplete [S
h97℄BR �2P-
omplete [Baa98℄ PSPACE-
omplete [Baa98℄Figure 6: Complexity results for equational mat
hing de
ision problems
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#E-MATCHINGInput: A pattern s, a subje
t t, and an equational theory E.Output: Cardinality of the minimal 
omplete set of E-mat
hers �CSME(s; t).Counting problems for equational mat
hing were 
onsidered by Hermann and Kolaitis in [HK95℄and indire
tly also in [HK00℄. They showed that most of the NP-
ompleteness results 
arry overto #P-
ompleteness results for the 
ounting versions for 
orresponding equational mat
hing prob-lems. However, the 
ase of AC(linear)-mat
hing be
omes #P-
omplete for 
ounting, whereas the
orresponding de
ision problem is in P.Theorem 3.1 ([HK95℄) The general #E-mat
hing problems are #P-
omplete for the equationaltheories A, C, AC, AC(linear), ACH, I, U, IU, ACI, Set, ACU and ACIU.The elementary E-mat
hing problem is the restri
tion of E-mat
hing to signatures with nofree fun
tion symbols. Thus, given a pair (s; t), where s is a term and t is a ground term withfun
tion symbols among those in the equational axioms of E, the question is to de
ide whetherthere is a substitution � su
h that s� =E t. The elementary #E-mat
hing problem is the analogousrestri
tion of #E-mat
hing. The simultaneous elementary E-mat
hing problem is the followingde
ision problem.SIMULTANEOUS ELEMENTARY E-MATCHINGInput: A �nite set S = f(s1; t1); : : : ; (sk; tk)g, where ea
h si is a term and ea
h ti is a ground termwith fun
tion symbols among those in the equational axioms of E.Question: Is there a substitution � su
h that si� =E ti for every i � k?Su
h a substitution is 
alled an E-mat
her of the set f(s1; t1); : : : ; (sk; tk)g. Similarly, the simulta-neous elementary #E-mat
hing problem is the following 
ounting problem.SIMULTANEOUS ELEMENTARY #E-MATCHINGInput: A �nite set S = f(s1; t1); : : : ; (sk; tk)g, where ea
h si is a term and ea
h ti is a ground termwith fun
tion symbols among those in the equational axioms of E.Output: Cardinality of the minimal 
omplete set of E-mat
hers �CSME(S).The notation s1 :=E t1; : : : ; sk :=E tk will be used to represent an instan
e of the simultaneouselementary E-mat
hing (or #E-mat
hing) problem.In e�e
t, the simultaneous elementary E-mat
hing problem asks for the solution of a systemof equations s1 :=E t1; : : : ; sk :=E tk, where the fun
tion symbols of F are exa
tly the fun
tionsymbols o

urring in the equational axioms of E. Of 
ourse, one 
an 
onsider simultaneous E-mat
hing problems over arbitrary signatures. However, the simultaneous E-mat
hing problem overarbitrary signatures is redu
ible to the E-mat
hing problem, be
ause one 
an use free fun
tionsymbols to en
ode a system of equations into a single equation. Indeed, a system of equationss1 :=E t1; : : : ; sk :=E tk 
an be written as a single equation f(s1; : : : ; sk) :=E f(t1; : : : ; tk) with thehelp of a free fun
tion symbol f . We will 
lassify simultaneous elementary mat
hing problems usingtwo parameters, namely the number of equations in a given system, 
alled the length of the system,and the number of free 
onstants in the signature. Note that the number of free 
onstant sym-bols is unimportant for mat
hing problems over signatures with free fun
tion symbols, sin
e a setfC1; C2; : : : ; Cmg of free 
onstant symbols 
an be represented by the set fg(C); g(g(C)); : : : ; gm(C)g,where C is a free 
onstant symbol and g is a free unary fun
tion symbol.20



If k and m are two positive integers, then the �E(k;m)-mat
hing problem 
onsists of all instan
esof simultaneous elementary E-mat
hing with at most k equations and at most m free 
onstants.We also put �E(k; !) = 1[m=1 �E(k;m) and �E(!;m) = 1[k=1 �E(k;m)Thus, in �E(k; !)-mat
hing the signature has an unbounded number of free 
onstant symbols,while in �E(!;m)-mat
hing the systems of equations have unbounded length. We de�ne similarly#�E(k;m)-mat
hing, #�E(k; !)-mat
hing, and #�E(!;m)-mat
hing.Eker [Eke93℄ established that �AC(1; !)-mat
hing is a NP-
omplete problem. Similarly, Her-mann and Kolaitis [HK99℄ proved that the 
orresponding 
ounting problem is #P-
omplete.Theorem 3.2 ([Eke93, HK99℄) �AC(1; !)-mat
hing is NP-
omplete and #�AC(1; !)-mat
hing is#P-
omplete.Baader and Siekmann [BS94℄ showed that 1-in-3 sat 
an be redu
ed to elementary AC-mat
hing with an unbounded number of equations and two free 
onstants. A slight re�nementof their redu
tion shows that a
tually one free 
onstant suÆ
es to yield NP-
ompleteness, providedthe number of equations is unbounded.Theorem 3.3 ([HK99℄) The de
ision problem �AC(!; 1)-mat
hing is NP-
omplete and the 
ount-ing problem #�AC(!; 1)-mat
hing is #P-
omplete.If both the length of the system and the number of free 
onstants are kept bounded, then theelementary AC-mat
hing de
ision and 
ounting problems are tra
table.Theorem 3.4 ([HK99℄) �AC(k;m)-mat
hing is in P and #�AC(k;m)-mat
hing is in FP, for allk � 1 and all m � 1.The pre
eding theorems give a 
omplete pi
ture of the 
omputational 
omplexity of simulta-neous elementary AC-mat
hing problems. Next, we study the 
omplexity of elementary mat
hingfor the equational theory ACU of 
ommutative monoids and unveil a di�erent pi
ture. Indeed,simultaneous elementary ACU-mat
hing turns out to be tra
table for systems of bounded length,even if the signature 
ontains an unbounded number of free 
onstants.Theorem 3.5 ([HK99℄) �ACU(!; 1)-mat
hing is NP-
omplete and #�ACU(!; 1)-mat
hing is #P-
omplete. In 
ontrast, �ACU(k; !)-mat
hing is in P and #�ACU(k; !)-mat
hing is in FP, for everyk � 1.Finally, we examine the 
omplexity of elementary mat
hing for the equational theory A ofsemigroups. Angluin [Ang80℄ showed that the problem �A(1; 2)-mat
hing is NP-
omplete; moreover,Benanav et al. [BKN87℄ proved that �A(!; 1)-mat
hing is NP-
omplete. The following result showsthat all other 
ases of elementary A-mat
hing are tra
table.Theorem 3.6 ([Ang80, BKN87, HK99℄) The �A(1;m)-mat
hing is NP-
omplete and #�A(1;m)-mat
hing is #P-
omplete, for every m � 2. Moreover, �A(!; 1)-mat
hing is NP-
omplete and#�A(!; 1)-mat
hing is #P-
omplete. In 
ontrast, �A(k; 1)-mat
hing is in P and #�A(k; 1)-mat
h-ing is in FP, for all k � 1. 21



Simultaneous elementary A-mat
hingnumber of number of 
onstantsequations 1 m � 2 !k � 1 P / FP! NP-
omplete / #P-
ompleteSimultaneous elementary AC-mat
hingnumber of number of 
onstantsequations 1 m � 2 !k � 1 P / FP! NP-
omplete / #P-
ompleteSimultaneous elementary ACU-mat
hingnumber of number of 
onstantsequations 1 m � 2 !k � 1 P / FP! NP-
omplete / #P-
ompleteFigure 7: Complexity results for simultaneous elementary E-mat
hing
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Hermann and Kolaitis [HK99℄ investigate further the 
omplexity of simultaneous elementary E-mat
hing problems for the equational theories AC and ACU with bounded variable o

urren
e.Figure 7 summarizes the previously mentioned 
omplexity results for elementary A-, AC-, andACU-mat
hing3.2 Complexity of equational uni�
ationAn E-uni�er of s and t is a substitution � su
h that s� =E t� holds. Whenever su
h an E-uni�erexists, we say that the terms s and t 
an be E-uni�ed.A 
omplete set of E-uni�ers of s and t is a set S of substitutions su
h that the following hold:1. Ea
h substitution � 2 S is an E-uni�er of s and t, and, moreover, dom(�) � V , whereV = Var(s) [Var(t) is the set of variables o

urring in s or t;2. For every E-uni�er � of s and t, there is a substitution � 2 S su
h that � �VE �.S is a minimal 
omplete set of E-uni�ers of s and t if, in addition, every two distin
t members of Sare �VE -in
omparable, that is, for all substitutions �; � 2 S the 
ondition � �VE � implies � = �.It is possible that two terms s and t are E-uni�able, but no minimal 
omplete set of E-uni�ers ofs and t exists. On the other hand, if a minimal 
omplete set of E-uni�ers of s and t exists, then it isunique up to �VE . In this 
ase, we let �CSUE(s; t) denote the (unique up to �VE ) minimal 
ompleteset of E-uni�ers of s and t, if s and t are uni�able, or the empty set, otherwise. Equational theories
an be 
lassi�ed a

ording to their uni�
ation type, whi
h takes into a

ount the existen
e and the
ardinalities of the sets �CSUE(s; t). In parti
ular, a theory E is said to be unitary if for every pairof terms (s; t) the set �CSUE(s; t) exists and j�CSUE(s; t)j � 1. Similarly, E is said to be �nitaryif for every pair of terms (s; t) the set �CSUE(s; t) exists and is �nite.With every equational theory E we asso
iate the following de
ision and 
ounting problems,analogously to equational mat
hing. Note that for the 
ounting problem the equational theorymust be �nitary.E-UNIFICATIONInput: Two terms s and a t, and an equational theory E.Question: Can s be E-uni�ed with t, i.e., is there a substitution �, su
h that s� =E t�?#E-UNIFICATIONInput: Two terms s and a t, and an equational theory E.Output: Cardinality of the set �CSUE(s; t).By examining the signature F over whi
h the terms of uni�
ation problems in the theory Th(E)have been built, we distinguish between three di�erent kinds of E-uni�
ation. Let sig(E) be theset of all fun
tion and 
onstant symbols o

urring in the equational axioms of E. If F = sig(E)holds, then we speak about elementary E-uni�
ation. If the signature F 
ontains in addition free
onstant symbols, but no free fun
tion symbols, then we speak about E-uni�
ation with 
onstants.Finally, if the signature F 
ontains free fun
tion symbols of arbitrary arities, then we speak aboutgeneral E-uni�
ation.The aforementioned equational mat
hing problems give immediately the lower bounds for the
orresponding uni�
ation problems. This is, for instan
e, the 
ase of A-uni�
ation where thelower bound is exa
tly that of A-mat
hing, whereas the upper bound is PSPACE. There areequational theories, like Boolean rings or Abelian groups, where the uni�
ation problems 
an be23



theory 
omplexityelementary with 
onstants general;  �  � linear [PW78℄A  � NP-hard andin PSPACE [Pla99℄ NP-hardC NP-
omplete NP-
ompleteAC NP-
omplete NP-
omplete NP-
omplete [KN92℄ACI  � in P NP-
omplete [KN92℄ACIU  � in P NP-
omplete [Nar96℄AG  � in P NP-
ompleteBR NP-
omplete �2P-
omplete PSPACE-
ompleteFigure 8: Complexity results for equational uni�
ation de
ision problemsalways transformed into an equivalent mat
hing problem, be
ause of the presen
e of the nilpoten
eaxiom or the inverse axiom. Figure 8 summarizes the 
omplexity results for some equationaluni�
ation de
ision problems.The work presented here 
on
erning #E-mat
hing problems suggests that a similar investigationshould be 
arried out for #E-uni�
ation problems. Although the mentioned 
ounting 
omplexityresults imply that several #E-uni�
ation problems are #P-hard, we already know that there areequational theories E, su
h as AC, for whi
h #E-uni�
ation is not a member of #P. Indeed,Domenjoud [Dom92℄ found AC-uni�
ation problems with n variables whose minimal 
omplete setof AC-uni�ers has O(22n) elements. Sin
e a 
ounting problem in #P takes values that are boundedby a single exponential in the size of the input, it follows that #AC-uni�
ation is not in #P. It isan interesting open problem to analyze the 
omputational 
omplexity of #AC-uni�
ation and todetermine whether it is 
omplete for some higher 
ounting 
omplexity 
lass. Results along theselines will delineate the 
omputational di�eren
e between mat
hing and uni�
ation in a pre
isemanner and will 
on�rm the intuition that uni�
ation is harder than mat
hing.Two interesting results were proved by Hermann and Kolaitis [HK00℄ 
on
erning the di�eren
ebetween 
omputing the minimal 
omplete sets of uni�ers for Boolean rings and Abelian groupsin the 
ase of uni�
ation with 
onstants on one hand and general uni�
ation on the other. The
ounting problem #AG-uni�
ation with 
onstants was known to be in FP, sin
e it 
an be solvedby polynomial-time methods over the integers Z known from linear algebra. However, the followingtheorem indi
ates that the general 
ounting problems for Abelian groups and Boolean rings areintra
table.Theorem 3.7 ([HK00℄) The problems general #AG-uni�
ation and general #BR-uni�
ation areboth #P-hard.This result proves that the 
ardinality of the 
orresponding minimal 
omplete sets of uni�ers for24



Boolean rings and for Abelian groups 
annot be 
omputed in polynomial time unless P = NP.3.3 Spe
ial interest for AC and Hilbert basesThe Hilbert basis of a homogeneous system of linear Diophantine equations over the non-negativeintegers is the set of all non-zero ve
tors that are minimal solutions with respe
t to the pointwiseorder. This set forms indeed a basis of the spa
e of solutions of the system, that is, every solution
an be written as a positive linear 
ombination of ve
tors from the Hilbert basis, and no memberof the Hilbert basis 
an be expressed as a positive linear 
ombination of other members. Moreover,this basis is essentially unique.Computing the Hilbert basis of a homogeneous system of linear Diophantine equations overnon-negative integers has turned out to be one of the key problems in automated dedu
tion. Itsimportan
e in this area emerged through the work of Sti
kel [Sti81℄, who designed the �rst algo-rithm for AC-uni�
ation. Sti
kel showed that the minimal 
omplete set of uni�ers of a simultaneouselementary AC-uni�
ation problem 
an be obtained from the Hilbert basis of an asso
iated homo-geneous system of linear Diophantine equations over non-negative integers. Indeed, the minimal
omplete set of AC-uni�ers is the set of all 
ompatible subsets of the Hilbert basis of that system,where 
ompatible in this 
ontext means that every variable 
an be instantiated by a non-zero linear
ombination of the members of the 
ompatible subset. Following the publi
ation of Sti
kel's algo-rithm [Sti81℄, resear
hers be
ame interested in algorithms for 
omputing the Hilbert basis. Everyalgorithm for 
omputing the Hilbert basis of a system 
an also be used to 
ount at the same timethe number of elements of the Hilbert basis, therefore we 
onsider the 
ounting 
omplexity of theHilbert basis problem.A homogeneous linear Diophantine system over non-negative integers is a system of equationsS:Ax = 0, where A = (aji )nk is a k � n integer matrix and x = (x1; : : : ; xn) is a ve
tor of variablesranging over non-negative integers. We say that a solution s of S is nontrivial if it is di�erentfrom the all-zero solution (0; : : : ; 0). We say that a solution s = (s1; : : : ; sn) of S is smaller thana solution s0 = (s01; : : : ; s0n), and write s < s0, if s 6= s0 and, for all i = 1; : : : ; n, it is the 
ase thatsi � s0i. The relation < is 
alled the pointwise order on solutions. A solution s is minimal if it isnontrivial and there is no smaller nontrivial solution s00, that is, s00 < s is false for every nontrivialsolution s00 of S.The Hilbert basis H(S) of the system S is the set of all minimal solutions of S. This set isindeed a basis for the spa
e of nontrivial solutions of S, whi
h means that no minimal solution
an be expressed as a positive linear 
ombination of the other minimal solutions, whereas everynontrivial solution 
an be expressed as a positive linear 
ombination of minimal solutions. TheHilbert basis H(S) is �nite and it is the unique basis of the spa
e of nontrivial solutions of S.It is well known that Hilbert bases 
an be used to 
ompute minimal 
omplete sets of AC-uni�ers. Indeed, let AX :=AC A0X 0 be a simultaneous elementary AC-uni�
ation problem, where Aand A0 are matri
es over non-negative integers, X = (X1; : : : ;Xj) and X 0 = (Xj+1; : : : ;Xn) arenot ne
essarily disjun
tive ve
tors of formal variables, and + is the unique AC-symbol. With thisAC-uni�
ation problem, asso
iate the homogeneous linear Diophantine system S: (A � A0)x = 0,where the arithmeti
 variable xi 
orresponds to the formal variable Xi for i = 1; : : : ; n. Considerthe Hilbert basis H(S) of the system S over the variables x1, . . . , xn. Let f�1; : : : ; �mg be a subsetof H(S) and v = (v1; : : : ; vm) be a ve
tor of new variables. For ea
h i = 1; : : : ; n, assign the linearexpression �i1v1+ � � �+�imvm to the variable xi, where �ij is the i-th 
oordinate of the ve
tor �j . Wesay that f�1; : : : ; �mg is a 
ompatible subset of H(S) if, for ea
h variable xi, there exists a ve
tor �jsu
h that �ij 6= 0, that is, the variable xi is not assigned the value 0. The minimal 
omplete set25



of uni�ers of the AC-uni�
ation problem AX :=AC A0X 0 turns out to be the set of all 
ompatiblesubsets of H(S) of the system S above, where xi 7! �i1v1 + � � � + �imvm is the substitution of thevariable xi, when f�1; : : : ; �mg is the 
hosen 
ompatible subset.Hermann, Juban, and Kolaitis [HJK99℄ 
onsidered the following 
ounting problems that 
har-a
terize well the 
omputational 
omplexity of generating the Hilbert basis and, subsequently, theAC-uni�ers.#HILBERTInput: A system of homogeneous linear Diophantine equations S:Ax = 0 over non-negative inte-gers.Output: The 
ardinality of the Hilbert basis H(S) of S.#COMPATIBLE SUBSETSInput: A set T of ve
tors of non-negative integers that are pairwise in
omparable in the pointwiseorder and linearly independent with respe
t to linear 
ombinations with non-negative 
oeÆ
ients.Output: The 
ardinality of the set of all 
ompatible subsets of T .Hermann, Juban, and Kolaitis [HJK99℄ proved the following reasonably tight upper and lowerbound for the Hilbert basis 
ounting problem, even though they do not de
isively pin down itsexa
t 
omplexity. The #P-hardness proof is done using Hall's theorem.Theorem 3.8 The 
ounting problem #hilbert is #P-hard and belongs to the 
lass #NP.The pre
eding theorem yields upper and lower bounds for the 
omplexity of 
ounting the Hilbertbasis. An inspe
tion of the #P-hardness proof reveals that #hilbert would be in #P, if testing asolution for minimality were solvable in polynomial time. Durand, Hermann, and Juban [DHJ99℄,however, have shown that it is a 
oNP-
omplete problem to tell whether a given solution of ahomogeneous linear Diophantine system is minimal for a homogeneous linear Diophantine system.Thus, assuming P 6= NP, to prove that #hilbert is in #P would require one to 
ome up with avery di�erent set of witnesses for #hilbert and show that membership in that witness set is inpolynomial time. It is believed that this is not possible and 
onje
tured that #hilbert is not in#P.Let #hilbert(m) be the restri
tion of #hilbert to systems of equations with at most mo

urren
es of ea
h variable. It turns out that #hilbert(3) has the same 
omplexity as theoriginal problem, what 
arries over to ea
h m > 3, whereas #hilbert(1) is 
learly in FP bya simple 
ombinatorial argument mentioned in [LC89℄. The 
ounting problem #hilbert(2) hasbeen proved in [HJK99℄ to be in
luded in #P by means of a long 
ase analysis. However the generallower bound proof does not work for this spe
ial 
ase any more.Sti
kel's algorithm [Sti81℄ for simultaneous elementary AC-uni�
ation pro
eeds by �rst �ndingthe Hilbert basis of the asso
iated homogeneous linear Diophantine system, and then produ
ingthe set of all 
ompatible subsets of that basis. To gain insight into the inherent 
omplexity of thelatter algorithm, Hermann, Juban, and Kolaitis [HJK99℄ examined the 
omputational 
omplexityof 
ounting the number of 
ompatible subsets of a given set T of linearly independent and pairwisein
omparable ve
tors of non-negative integers.Theorem 3.9 The 
ounting problem #
ompatible subsets is #P-
omplete.26



3.4 Combination of uni�
ation algorithmsThe development of 
ombination algorithms originated with Sti
kel's algorithm for general AC-uni�
ation [Sti81℄. Sti
kel �rst 
onstru
ted an algorithm for elementary AC-uni�
ation and thenintrodu
ed a spe
ial-purpose 
ombination algorithm for general AC-uni�
ation that used the al-gorithm for elementary AC-uni�
ation and the algorithm for synta
ti
 uni�
ation as subroutines.Similar work was 
arried out by others. This triggered the resear
h on the 
ombination of uni�-
ation algorithms for disjoint equational theories, a problem that was �nally solved by S
hmidt-S
hau� [SS89℄. Using a new approa
h, Baader and S
hulz [BS96℄ presented a 
ombination methodfor de
ision problems in disjoint equational theories; a slight modi�
ation gives rise to a methodfor 
ombining algorithms for uni�
ation in two disjoint equational theories.Every known 
ombination algorithm for equational uni�
ation has an exponential running time.In parti
ular, even if there exist polynomial-time uni�
ation algorithms A1 and A2 for the disjointtheories Th(E1) and Th(E2), every known general 
ombination method will give rise to an ex-ponential algorithm A for uni�
ation in the theory Th(E1 [ E2). There was even a quest for apolynomial-time 
ombination method laun
hed within the AC-uni�
ation 
ase [BHK+88℄. Her-mann and Kolaitis [HK00℄ showed that this exponential-time behavior is not a de�
ien
y of theknown 
ombination algorithms, but rather is 
aused by the inherent intra
tability of the 
ombi-nation problem. More pre
isely, they show that there is no polynomial-time general 
ombinationalgorithm for uni�
ation in �nitary equational theories, unless the 
omplexity 
lass #P of 
ountingproblems is 
ontained in the 
lass FP of fun
tion problems solvable in polynomial time.Theorem 3.10 ([HK00℄) Unless #P is 
ontained in FP, there does not exist a 
ombination algo-rithm A for E1[E2-uni�
ation, where E1 and E2 are disjoint equational theories, su
h that A runsin polynomial time using ora
les for the E1-uni�
ation problem and the E2-uni�
ation problem.The previous result holds already in the presen
e of a single unary fun
tion symbol. Based on similarideas, S
hulz [S
h00℄ investigated a large 
lass of tra
table and intra
table instan
es of 
ombinationproblems for uni�
ation and disuni�
ation de
ision problems. Following from his analysis, it seemsthat already very simple and natural 
onditions on the equational theory E imply NP-hardness ofthe 
ombination problem for the de
ision 
ase of uni�
ation, where E is one of the involved disjointtheories.3.5 Open problemsProbably the most interesting problem in the 
omplexity of equational mat
hing and uni�
ation isthe problem of determining the exa
t 
omplexity of A-uni�
ation. The upper bound was re
entlypushed down from multiple exponential to PSPACE by Plandowski [Pla99℄. The lower bound isstill NP-hard, 
oming from the lower bound for A-mat
hing. Is it possible to push the lower boundhigher in the polynomial hierar
hy or even to PSPACE? Another possibility would be to pushdown the upper bound even further. However, in the s
ope of the very simple lower bound proofas opposed to Plandowski's sophisti
ated method for proving PSPACE membership, it is moreprobable to �nd a higher lower bound, even if there exists a 
onje
ture that A-uni�
ation 
ould beNP-
omplete.Another interesting open question 
onsists of determining the exa
t 
omplexity of the problem#hilbert to 
ount the 
ardinality of a homogeneous linear Diophantine system of equations overnon-negative integers. The lower bound is #P-hard, whereas the upper bound is #NP, what makesa di�eren
e of two 
ounting 
omplexity 
lasses. Hermann, Juban, and Kolaitis 
onje
ture that theproblem is #NP-
omplete. There are two reasons to believe that the 
onje
ture is right. The �rst27



one is that testing whether a given ve
tor belongs to the Hilbert basis of a given system is 
oNP-
omplete [DHJ99℄. The se
ond is that a similar problem of 
ounting the minimal solutions of apropositional formula has been proved #NP-
omplete by Durand, Hermann, and Kolaitis [DHK00℄.Referen
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