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the olletion F . The omputational objetive is to determine whether there is an assignment tothe input variables whih satis�es all the given onstraints.Example 1.1� An instane of 2-SAT is a olletion of Boolean binary onstraints on n variables. Eah lauseis a onstraint that rules out ertain assignments to the variables.� An instane of 3-olorability is a graph whih an be seen as a olletion of binary onstraints(6=) over the �nite domain D = f0; 1; 2g.We are interested in studying the omplexity of answering the above question for every problemCSP(F). In view of the two examples above it beomes lear that this lass aptures polynomiallysolvable problems as well as intratable (NP-omplete) ones. There are at least two di�erentmotivations to do suh a study. On the one hand a omplete omplexity lassi�ation for an in�nitefamily of problems is important for the design of good algorithms sine it delineates the boundarybetween tratable and intratable ases. We will see that the lassi�ations obtained highlight someproblems as entral when it omes to propose an eÆient algorithm. On the other hand, onstraintsatisfation problems are an exellent testbed for abstrating some global inferenes about thenature of omputation and may provide very useful hints at the ultimate goal of omplexity theory:identify what renders some problems hard whereas some others seemingly very similar are easy.1.1 Constraint satisfation problems over Boolean and �nite domainsAs we have seen above two examples of onstraint satisfation problems are (1) 2-SAT and (2) 3-olorability. The di�erene between these two problems is the nature of the underlying onstraints.In order to speify a omputational problem in term of its underlying onstraint struture, oneneeds a �nite spei�ation of the set of the onstraints. In order to ahieve this objetive, wedistinguish onstraints from their appliations. For example there are 
(n2) di�erent lauses oflength 2, when applied to n Boolean variables. However it is lear that the underlying templateonly needs to inlude all the di�erent onstraints on 2 variables; and the rest an be ahievedby speifying to whih ordered subset of variables is a basi onstraint applied. This distintionbetween onstraints and their appliations is formalized in [CKS01℄ and reprodued next. Onewe formalize this distintion, we present the lass of onstraint satisfation problems that we willstudy.Throughout this setion D denotes a �nite domain of ardinality r, r � 2, D = f0; 1; : : : ; r � 1g.De�nition 1.2 [Constraint℄ A onstraint is a Boolean funtion f :Dk �! f0; 1g, where k is anon-negative integer alled the arity of f .De�nition 1.3 [Constraint appliation℄ Given a onstraint f :Dk �! f0; 1g and (i1; : : : ; ik), thepair hf; (i1; : : : ; ik)i) is referred to as an appliation of the onstraint f to xi1 ; : : : ; xik .De�nition 1.4 [Satis�able onstraint appliation℄ Every assignment �: fx1; : : : ; xng �! D natu-rally extends itself to any onstraint appliation C = hf; (i1; : : : ; ik)i, we have�(C) := f(�(xi1); : : : ; �(xik)):An assignment � satis�es a onstraint appliation C if �(C) = 1.2



Throughout this setion, F will denote a �nite set of onstraints over the domain D.De�nition 1.5 [F -olletion of onstraint appliations℄ Let F be a �nite olletion of onstraints.A onstraint appliation of the form hf; (i1; : : : ; ik)i where f 2 F is referred to as an F-onstraintappliation. A olletion of m suh onstraints appliations is alled an F-olletion of m onstraintappliations. Suh a olletion is satis�able if there exists an assignment whih satis�es all of itsonstraint appliations.De�nition 1.6 [Constraint Satisfation Problem (CSP(F))℄ The onstraint satisfation problemCSP(F) is to deide whether there exists an assignment that satis�es a given F -olletion of on-straint appliations.Example 1.7� The lassial 2-SAT problem is the same as CSP(ff0; f1; f2g), where fi: f0; 1g2 �! f0; 1g fori = 0; : : : ; 2 andf0(x; y) = 0 if and only if (x; y) = (0; 0),f1(x; y) = 0 if and only if (x; y) = (1; 0),f2(x; y) = 0 if and only if (x; y) = (1; 1).� The 3-olorability problem an be seen as CSP(fgg)where g: f0; 1; 2g2 �! f0; 1g and g�1(1) = f(0; 1); (0; 2); (1; 0); (1; 2); (2; 0); (2; 1)g. Eah edgeof the graph given in input onsists of the onstraint g applied to its two endpoints.1.2 Complexity of Boolean Constraint Satisfation ProblemsA signi�ant amount of researh e�ort was oriented towards studying the onstraint satisfa-tion problems on Boolean domain (whih are nothing else but generalized satis�ability problems,see [CKS01℄ for a uniform survey). There is now a growing body of omplexity lassi�ation re-sults for problems derived from Boolean onstraint satisfation. Shaefer [Sh78℄ began this lineof researh in 1978. In seek of a didatial presentation we will fous our attention on Shaefer'sremarkable result and few of its extensions in giving the gist of the proof.Throughout this subsetion CSP(F) problems will be denoted by SAT(F) in order to remindthe reader that we are dealing with Boolean domains.Shaefer was interested in the omplexity of deiding whether an instane of SAT(F) is satis�ablefor every problem SAT(F). His study led to a strikingly simple answer: every problem in this lassis either in P or NP-omplete. This result is surprising and unexpeted for several reasons. Firstprior to this result NP-ompleteness was established on a problem by problem basis. Shaefer'sresult gives a uniform proof to establish NP-ompleteness for an in�nite olletion of problems.Furthermore, rarely in omplexity theory one omes aross an in�nite lass of problems whereevery problem belongs to a �nite olletion of omputational equivalene lasses.Let us now give some de�nitions in order to state his result.De�nition 1.8 A onstraint f is said to be0-valid if f(0; : : : ; 0) = 1.1-valid if f(1; : : : ; 1) = 1. 3



weakly positive (weakly negative) if f is expressible as a CNF-formula having at most onenegated (unnegated1) variable in eah lause.bijuntive if f is expressible as a 2CNF-formula.aÆne if f is expressible as a system of linear equations over GF(2); that is, it is equivalent to asystem of linear equations of the forms v1 � � � � � vn = 0 and v1 � � � � � vn = 1, where �denotes the exlusive or onnetive.Theorem 1.9 [Sh78℄ Given a onstraint set F , the problem SAT(F) is in P if F satis�es one ofthe onditions below, and SAT(F) is NP-omplete, otherwise.1. Every onstraint in F is 0-valid (1-valid).2. Every onstraint in F is bijuntive.3. Every onstraint in F is weakly positive (weakly negative).4. Every onstraint in F is aÆne.Let us now analyze this result. A quik look to its statement leads to the following observation:easy problems are well-known! Indeed the entral problems for the polynomial ases are the lassialtratable satis�ability problems: 2-SAT, Horn SAT and deiding the onsisteny of a linear systemover GF(2). For instane if every onstraint in F is bijuntive then every olletion of onstraintsappliations an be expressed as a 2-CNF-formula, whose satis�ability an be deided in lineartime [APT79℄. On the other hand intratable ases need the most e�ort. If F does not satisfy anyof the above onditions then Shaefer proved that one an \enode" the NP-hard onstraint One-In-Three with F -onstraints (this \enoding", whih has to preserve the satis�ability, is rigorouslyformalized in [CKS01℄ as perfet implementation). The proof is based on algebrai haraterizationsof the properties desribed above. For instane it is well-known that a onstraint f is weaklynegative (i.e. Horn) if and only it is losed under diret produt, that is to say if and only for all ~s1and ~s2 suh that f(~s1) = 1 and f(~s2) = 1, the diret produt ~s1 \ ~s2 is also satisfying. Bijuntiveand aÆne onstraints are haraterized by similar algebrai losure properties.Shaefer's onise haraterization allows us to determine whether for a given F , SAT(F) is inP or is NP-omplete. Then, a natural question is: what is the omplexity of identifying tratableproblems. In other words, how diÆult is it to reognize that the problem spei�ed by a givenonstraint set is indeed tratable. The question was settled in [CKS01℄.Proposition 1.10 [CKS01℄ Let F be a onstraints set. Suppose that eah onstraint in F isspei�ed by a CNF-formula. Then the problem of deiding whether SAT(F) is in P is oNP-hard.Many results extend Shaefer's study and explore di�erent kinds of omplexity lasses restritedto Constraint Satisfation Problems. Their authors have shown lassi�ation results for a varietyof omputational tasks where the goal of the omputation varies while the instane remains thesame. For instane we studied the ounting version of the Boolean onstraint satisfation problemswhere the objetive is to ount the number of assignments satisfying all onstraints. We obtained adihotomy result FP/ #P (where #P is the ounting ounterpart of NP, see [Pap94, Chapter 18℄).1Suh lauses are usually alled Horn lauses. 4



Theorem 1.11 [CH96℄ Given a onstraint set F , if every onstraint in F is aÆne then the problem#SAT(F) is in FP, and #SAT(F) is #P-omplete, otherwise.Let us ompare this result to Shaefer's one. Most of the entral tratable problems for the deisiontask beome hard when it omes to ounting. Indeed, while the deision problems 2-SAT and Horn-SAT are in P, the orresponding ounting problems #2-SAT and #Horn-SAT are #P-omplete(see [Val79℄). Only ounting the number of solutions of a linear system over a �nite �eld is aseasy as deiding its onsisteny via Gaussian elimination. So, one more this result reveals thateasy problems are well-known. The #P-omplete ase is obtained by an \enoding" preserving thenumber of solutions (referred to as faithful redution in [CKS01℄) from the problems Positive-2-SAT [Val79℄ and Impliative-2-SAT [PB83℄ whih are known to be #P-omplete.As a orollary observe that NP-ompleteness for a satis�ability problem implies the #P-omple-teness of the orresponding ounting problem. this result on�rms for an in�nite and general lassof problems the intuitive opinion that eah NP-omplete problem leads to a orresponding #P-omplete ounting problem.In this line of researh Juban [Jub99℄ proved a dihotomy theorem for the Unique Satis�abilityproblem. Another losely related aspet is that of enumerating all solutions (without dupliate).Creignou and H�ebrard re�ned Shaefer's result in identifying satis�ability problems for whih allsolutions an be generated in polynomial delay (see [JYP88℄).Theorem 1.12 [CH97℄ Given a onstraint set F , the problem of generating all models for anygiven F -olletion of onstraints has a polynomial spae, polynomial delay algorithm if F satis�esone of the onditions below, and otherwise, no suh algorithm exists unless P=NP.1. Every onstraint in F is weakly positive (weakly negative).2. Every onstraint in F is aÆne.3. Every onstraint in F is bijuntive.Another problem of interest is to evaluate a quanti�ed olletion of onstraint appliations. Suha quanti�ed olletion is of the form Q1x1 � � � QnxnC, where C is an F-olletion of onstraints overthe set of variables fx1; : : : ; xng and Qi is either the quanti�er \for all" or \exists", for i = 1; : : : ; n.The quanti�ed satis�ability problem, QSAT(F) is to deide whether a given quanti�ed F-olletionof onstraints appliation is true. Quanti�ed satis�ability problems form a natural sublass ofPSPACE problems; and inlude some PSPACE-omplete problems. There is also a dihotomy resultfor quanti�ed onstraint satisfation problems (whih was �rst stated in [Sh78℄ and independentlyproved in [CKS01℄ and in [Dal97℄).Theorem 1.13 Given a onstraint set F , if F satis�es one of the following three onditions thenQSAT(F) is in P otherwise it is PSPACE-omplete1. Every onstraint in F is weakly positive (weakly negative).2. Every onstraint in F is aÆne.3. Every onstraint in F is bijuntive. 5



Many other results deal with optimization problems. Creignou [Cre95℄ and, Khanna and Su-dan [KS96℄ independently studied optimization problems where the objetive is to maximize thenumber of satis�ed onstraints. They showed that every problem MaxSAT(F) is either in P or APX-omplete. In this result the entral problem for the polynomial ase is the s,t-Min-Cut problem,whereas the APX-omplete ase is obtained by an approximation-preserving enoding (referred toas strit implementation in [CKS01℄) from the Max-Cut problem. Khanna et al. [KSW97, KSL97℄studied other forms of ommonly ourring optimization tasks in the onstraint satis�ability settingand obtained lassi�ation results. Their results [KSW97, KSL97℄ are somewhat di�erent from theothers above in that the resulting lassi�ation theorems do not exhibit dihotomies but rather apartition into a larger but �nite number of equivalene lasses. Reith and Vollmer [RV00℄ stud-ied the lass of optimization problems where the objetive is to �nd a lexiographially minimal(maximal) satisfying assignment.Other people studied similar aspets of onstraint satisfation problems. Kavvadias and Sideristudied in [KS98℄ the inverse satis�ability problem where the goal is to �nd an F-olletion ofonstraint appliations suh that a given set of truth assignments onstitutes its set of feasiblesolutions. Cadoli [Cad92℄ proved that testing for truth assignment minimality of a given propo-sitional formula is oNP-omplete, whereas Kirousis and Kolaitis [KK00, KK01℄ presented a di-hotomy theorem for propositional irumsription. They investigated the lass of deision prob-lems Min-SAT(F) that ask whether a satisfying truth assignment for an F -olletion of onstraintappliations is minimal with respet to the oordinate-wise partial order. Their dihotomy theoremseparates oNP-omplete instanes from instanes in P. Durand, Hermann, and Kolaitis [DHK00℄proved that ounting the number of minimal truth assignments of a propositional formula is a#NP-omplete problem. B�ohler, Hemaspaandra, Reith and Vollmer onsidered the problem ofdetermining whether two given F -olletions of onstraint appliations are equivalent in the sensethat they possess the same set of satisfying assignments [BHRV01℄.1.3 Complexity of Constraint Satisfation Problems on non-Boolean �nite do-mainsA omplete omplexity lassi�ation for all onstraint satisfation problems over arbitrary �nitedomains is an open problem and is a highly hallenging task of muh more than tehnial interest(see [FV98℄).There are some omplete lassi�ation results when we restrit our attention to binary onstraintsatisfation problems. First Hell and Ne�set�ril [HN90℄ obtained a dihotomy theorem for the H-oloring problem, in whih the question is that of deiding whether there exists any homomorphismfrom a given graph G to the �xed graph H. They showed that the deision problem is in P if Hhas a loop or is bipartite; otherwise it is NP-omplete. Dyer and Greenhill [DG00℄ onsidered theproblem of exatly ounting suh homomorphisms and gave a similar omplete haraterization.They showed that ounting is in FP if every onneted omponent of H is an isolated vertexwithout loop, or a omplete graph with all loops present or a omplete unlooped bipartite graph;otherwise it is #P-omplete. Cooper, Cohen and Jeavons [CCJ94℄ studied the omplexity of CSP(F)when F is a set of binary onstraints under the additional hypothesis that F is losed undertwo operations, domain restrition and label permutation. They proved that satis�ability anbe deided in polynomial time if all onstraints belong to a speial lass of onstraints, alled0/1/all or impliational onstraint, and is NP-omplete in all other ases. Their work was extendedby Istrate [Ist97℄ who, under the same onditions, obtained a dihotomy lassi�ation for both6



the orresponding ounting problems (FP/#P-omplete) and the optimization problems (P/APX-omplete).In a more general framework Jeavons, Cohen and Gyssens [JCG97℄ brought to the fore the linkbetween the algebrai losure properties of the onstraints and the omplexity of the orrespondingonstraint satisfation problem. It appears that when restrited to Boolean domain algebrailosure properties of the onstraints (see [CKS01, Chapter 4, Setion 4.4 and Chapter 6℄) exatlyharaterizes the omplexity of the orresponding onstraint satisfation problem. Jeavons, Cohenand Gyssens proved that any set of onstraints that does not give rise to an NP-omplete lassof problems must satisfy a ertain type of algebrai losure ondition. Then, they investigatedall the di�erent possible forms of the algebrai losure property and established whih of these aresuÆient to ensure tratability. A number of tratable onstraint lasses have also been identi�ed byFeder and Vardi [FV98℄. In a highly nontrivial proof they pointed out that onstraint satisfationproblems over non-Boolean domains are omputationally equivalent to problems in \monotonemonadi SNP", a syntatially restrited lass of languages within NP whih is, in some sense, thelargest lass within NP that may show dihotomy results.Despite all these e�orts the omplexity lassi�ation of onstraint satisfation problems over�nite domains is still inomplete.2 Complexity of Equational Constraint ProblemsEquational problems are �rst-order formulas with quanti�er pre�x 9� 8�, whose only prediatesymbol is syntati equality. They are an important tool in many areas of omputer siene.In automated dedution, equational onstraints an be used to restrit the set of ground instanesof a lause. It is thus possible to de�ne stronger redundany riteria and hene, in general, moreeÆient theorem provers (f. [CZ90, CP95b, CP95a℄). In automated model building, equationalproblems an be used in several ways, e.g.: for model onstrution, for model representation, forthe evaluation of lauses in a given model, et (f. [CZ90, FL96℄). Complement problems are animportant speial ase of equational problems with appliations in logi programming, funtionalprogramming, mahine learning, et. (f. [LM87, LMM91, Lug89, SM91℄).Equational problems over �nite universes an be used to enode queries over relational databases.Finally, note that also the onstraint satisfation problems on Boolean and �nite domains treated inSetion 1 an be easily enoded as equational problems over �nite universes. Let D = fa1; : : : ; aKgbe a �nite domain and let C = fhf1; (i11; : : : ; i1k1)i; : : : ; hfm; (im1; : : : ; imkm)ig denote a �nite setof onstraint appliations over D, suh that every fj is a onstraint of the form fj:Dkj �! f0; 1g.Moreover, let ~x denote the set of all variables xi�� ourring in C. Then C is satis�able, if andonly if the equational problemP � (9~x) 264 m̂j=1 _(b1;:::;bkj )2(fj )�1(1)(xij1 = b1 ^ � � � ^ xijkj = bkj ) 375over the Herbrand universe H = fa1; : : : ; aKg is satis�able. A good overview of the wide range ofappliations of equational problems an be found in [CL89℄.In many of these appliations, testing the satis�ability of an equational problem is even moreimportant than atually omputing the solutions. In this setion, we present a survey of omplex-ity results for this satis�ability problem, where we onsider several restritions on the equational7



problems, namely: quanti�er pre�x 9� versus 9� 8�, CNF versus DNF and, �nally, interpretationof the formula over a �nite universe versus an in�nite universe.2.1 Syntax and semantis of equational onstraint problemsEquational problems are �rst-order formulas of the form 9~w 8~y P (~w; ~x; ~y ), suh that P (~w; ~x; ~y ) isa quanti�er-free formula with variables in ~w, ~x and ~y, where syntati equality \=" is the onlyprediate symbol. A disequation s 6= t is a short-hand notation for a negated equation :(s = t).The trivially true problem is denoted by > and the trivially false one by ?.In this setion, every equational problem P is onsidered over some �xed Herbrand universe H(or, equivalently, over some �xed �nite signature � onsisting of onstant symbols and possiblyfuntion symbols). An interpretation over H is given through an H-ground substitution �, whosedomain oinides with the free variables of the equational problem. The trivial problem > evaluatesto \true" in every interpretation. Likewise, ? always evaluates to \false". A single equation s = tis validated by a ground substitution �, if and only if s� and t� are syntatially idential. Theonnetives ^, _, :, 9 and 8 are interpreted as usual. A ground substitution � whih validates aproblem P is alled a solution of P . An equational problem is satis�able, if and only if it has atleast one solution.As far as the satis�ability of an equational problem is onerned, there is no di�erene betweenfree variables and existentially quanti�ed ones. In partiular, 9~w 8~y P (~w; ~x; ~y ) is satis�able, if andonly if 9~x9~w 8~y P (~w; ~x; ~y ) is. Without loss of generality we therefore only onsider equationalproblems without free variables. In analogy with [CL89℄, universally quanti�ed variables will bereferred to as parameters.In order to distinguish between syntatial identity and the equivalene of two equational prob-lems, we use the notation \�" and \�", respetively. We shall thus write P � Q to denote that thetwo equational problems P and Q are syntatially idential. If the equational problems P and Qhave the same set of solutions, then they are semantially equivalent. In this ase, we write P � Q.Term tuples are used as a short-hand notation for a onjuntion of equations or a disjuntion ofdisequations, respetively. For term tuples ~s = (s1; : : : ; sk) and ~t = (t1; : : : ; tk), we shall abbreviate\s1 = t1 ^ � � � ^ sk = tk" and \s1 6= t1 _ � � � _ sk 6= tk" to \~s = ~t " and \~s 6= ~t ", respetively.Example 2.1 Let P � (x1 = a ^ x1 6= x2) _ (x2 6= x3 ^ x2 = b) be an equational problem overH = fa; b; g. Then the following substitutions � and � are (examples of) solutions of P :� = fx1  a; x2  b; x3  g, � = fx1  b; x2  b; x3  g.Let Q � (9y)(8z)[y = f(x) ^ x 6= f(z)℄ be an equational problem over H = fa; f(a); f(f(a)); : : :g.The only solution of Q is � = fx ag.Now suppose that Q is interpreted over the universe H = fa; f(a); g(a); f(f(a)); f(g(a)); : : :g withsignature � = fa; f; gg. Then Q has many more solutions, e.g.: �1 = fx  g(a)g, �2 = fx  g(f(a))g, et.Uni�ation problems are equational problems without universal quanti�ers and without negation.It is well known that the set S of solutions of a onjuntion P � s1 = t1 ^ : : : ^ sn = tn an berepresented by a single substitution �, whih is alled the mgu (= most general uni�er) of P . Forevery solution � of P , there exists a substitution �, suh that � is the omposition of � and � (whihwe denote by � = ��). Reall that the mgu is unique up to variable renaming. Moreover, it anbe deided eÆiently whether the mgu exists (or, equivalently, whether P is satis�able). Likewise,the atual omputation of the mgu an be done eÆiently (f. [BS94, BS01, MM82℄).8



2.2 Transformation rules of Comon and LesanneIn [CL89℄, a rule system is provided whih terminates on every equational problem and whihtransforms the original problem into an equivalent one in the so-alled \de�nition with onstraintsform", whih is basially a purely existentially quanti�ed equational formula in DNF. Below someof the rules of [CL89℄ are realled, namely the replaement rules R1, R2, the leaning rule CR2,the universality of parameter rules U2, U4, U5 and the explosion rule E. Note that many morerules of [CL89℄ (like the deomposition rule, the lash rule, the our hek, et.), whih are notmentioned expliitly here, are \hidden" in the uni�ation steps.(R1) z = t ^ P ! z = t ^ P (z  t)(R2) z 6= t _ P ! z 6= t _ P (z  t)(CR2) 9(~w;w)(w = t ^ P ) ! (9~w )Pif w 62 Var (P ) and w 62 Var(t)(U2) (8~y )[P ^ (y 6= t _R)℄ ! (8~y )[P ^R(y  t)℄if y 2 ~y and y 62 Var(t).(E) (8~y )P ! Wf2� (9~w )(8~y )[P ^ s = f(w1; : : : ; w�(f))℄if the following onditions hold:1. Eah f is a (onstant or funtion) symbol from the signature �with arity �(f) � 0,2. the wi's are fresh, pairwise distint variables.The following rule is only orret in ase of an in�nite universe :(U4) (8~y )[P ^ (z1 = u1 _ � � � _ zn = un _R)℄ ! (8~y )[P ^R℄if the following onditions hold:1. Every zi is a variable syntatially di�erent from ui,2. every equation zi = ui ontains at least one parameter from ~y,3. R ontains no parameter from ~y.The following rule an only be applied in ase of a �nite universe.(U5) (8~y )[P ^Q℄ ! (8~y )[P ^Q(y  a1) ^ � � � ^Q(y  aK)℄if the universe H is of the form H = fa1; : : : ; aKg.Rule system 2.1: Comon and LesanneThe orretness of the rule R1 is obvious. The rule R2 follows from the equivalene [A _ B℄ �[(A ^ :B) _ B℄, whih holds for any logial formulas A and B. The orretness of the U2-ruleessentially follows from the R2-rule and the unsatis�ability of the disequation (8~y )(y 6= t) over anynontrivial universe.The explosion rule E (and, analogously, the U5-rule) is sometimes also referred to as the domainlosure axiom. Its idea is the following: Let H be the Herbrand universe of terms over some �nitesignature �. Then every ground term t 2 H has one of the symbols in � as its leading symbol.Hene the formula Wf2� (9~w )[s = f(w1; : : : ; w�(f))℄ is learly valid for any term s.Finally, the rule U4 is mainly due to the so-alled independene of inequations of [Col84℄,that an be stated in the following way.Every purely existentially quanti�ed onjuntion of disequations over an in�nite universe9



has at least one solution, if and only if eah of the onjunts has a solution.Moreover, the latter ondition is always ful�lled unless one of the onjunts is a trivial disequationof the form t 6= t. Then the orretness of the U4-rule follows from the fat that the subformula(z1 = u1 _ � � � _ zn = un) annot be true for all values of the variables in ~y.2.3 Equational problems with 9�-pre�xIn this setion we reall several omplexity results on equational problems with purely existentialquanti�er pre�x. For CNF, the omplexity in ase of an in�nite universe is the same as in ase of a�nite universe, even though the proof of the upper bound on the omplexity will di�er signi�antly.In ontrast, for DNF, we de�nitely have di�erent omplexity lassi�ations. Surprisingly enough,the ase of a �nite universe will turn out to have a higher omplexity than an in�nite universe(provided that P 6= NP holds).Theorem 2.2 [9�-CNF over a nontrivial H℄ The satis�ability problem of equational problems in9�-CNF over an arbitrary (�nite or in�nite) Herbrand universe H with jHj � 2 is NP-omplete.Proof: The NP-hardness an be shown by the obvious redution from the 3-SAT-problem. LetE = (l11_ l12_ l13)^ � � �^ (ln1_ ln2_ ln3) be a Boolean formula, suh that the lij 's are propositionalliterals over the propositional variables in P = fp1; : : : ; pkg. Moreover, let a 2 H be an arbitraryonstant in H. Then we de�ne the equational problemP � 9~x [(l011 _ l012 _ l013) ^ � � � ^ (l0n1 _ l0n2 _ l0n3)℄in 9�-CNF with ~x = (x1; : : : ; xk), suh that the literals l0ij in P are either of the form x = a (if lijis a positive literal p) or of the form x 6= a (if lij is a negative literal :p). It is easy to hekthat E is satis�able, if and only if P is satis�able.The NP-membership in ase of a �nite universe is easy. In an NP-algorithm for deiding thesatis�ability of an equational problem P � 9~xP 0, we �rst guess a ground substitution � withdomain ~x and then hek that P 0� evaluates to true.Note that this NP-algorithm does not work in ase of an in�nite universe, unless we an �nd apolynomial bound on the size of the terms in the range of �. However, the NP-membership in aseof an in�nite universe an be shown via a di�erent NP-algorithm. LetP � 9~x [(l11 _ � � � _ l1k1) ^ � � � ^ (ln1 _ � � � _ lnkn)℄be an equational problem in 9�-CNF, where the lij 's are equations or disequations. We an deidethe satis�ability of P by �rst guessing for every i 2 f1; : : : ; ng a literal (an equation or a disequation)liji from the i-th lause. Then we hek in polynomial time that the resulting existentially quanti�edonjuntion of equations and disequations is satis�able. In Lemma 2.3 below, we show that thelatter hek an indeed be done in polynomial time. 2Lemma 2.3 [parameter-free onjuntions℄ LetP � (9~x) [e1 ^ � � � ^ ek ^ d1 ^ � � � ^ dl℄be a onjuntion of equations ei and disequations dj over some in�nite universe H. Then thesatis�ability of P an be tested as follows. 10



Case 1: If e1 ^ � � � ^ ek is unsatis�able, then P is also unsatis�able.Case 2: Let e1^� � �^ek be satis�able with mgu #. Then P is satis�able, if and only if d1#^� � �^dl#ontains no trivial disequation of the form t 6= t.Proof: Case 1 is trivial. For Case 2, let # = fxi1  s1; : : : ; xi�  s�g denote the mgu of theequations e1 ^ � � � ^ ek. Note that the variables xij are pairwise distint and do not our in therange of #.By the de�nition of the mgu, the onjuntions e1 ^ � � � ^ ek and xi1 = s1 ^ � � � ^ xi� = s� areequivalent. Moreover, by multiple appliations of the R2-rule of [CL89℄ (see also Setion 2.2), #may be applied to the disequations. Thus P � (9~x )[xi1 = s1 ^ � � � ^ xi� = s� ^ d1# ^ � � � ^ dl#℄holds. But then, sine all variables xi1 ; : : : ; xi� our only one, the equations may be eliminatedby the CR2-rule of [CL89℄. We thus have P � P 0 � (9~x )[d1# ^ � � � ^ dl#℄. By the independeneof inequations realled in Setion 2.2, any onjuntion of nontrivial disequations over an in�niteuniverse has at least one solution. Therefore, P 0 (and, hene, also P ) is indeed satis�able, if andonly if P 0 ontains no disequation of the form t 6= t. 2We now turn our attention to parameter-free equational problems in DNF. As has already beenmentioned above, the ases of a �nite universe and an in�nite universe lead to di�erent omplexityresults. The reason for this is the \independene of inequations" realled in Setion 2.2, whih onlyholds in ase of an in�nite universe. This e�et is illustrated by the following example.Example 2.4 Let the equational problem P be de�ned as follows.P � (9y) (x1 6= y) ^ (x2 6= y) ^ (x3 6= y) ^ (x1 6= x2) ^ (x1 6= x3) ^ (x2 6= x3)If P is interpreted over H = fa; b; g, then P is unsatis�able.On the other hand, over the in�nite universe H = fa; f(a); f2(a); : : :g, the problem P is satis-�able, where � = fx1  a; x2  f(a); x2  f2(a); : : :g is a solution.We thus get the following omplexity results for equational problems in 9�-DNF.Theorem 2.5 [9�-DNF over an in�nite H℄ The satis�ability problem of equational problems in9�-DNF over an in�nite H is in P.Proof: Let P � (9~x )P1 _ � � � _ Pn with Pi � (ei1 ^ � � � ^ eiki ^ di1 ^ � � � ^ dili), suh that theeij 's are equations and the dij's are disequations. Then P is satis�able, if and only if at leastone disjunt (9~x )Pi is satis�able. Moreover, by Lemma 2.3, (9~x )Pi is satis�able, if and only if� = mgu(ei1 ^ � � � ^ eiki) exists and (di1 ^ � � � ^ dili)� ontains no trivial disequation of the formt 6= t. 2Theorem 2.6 [9�-DNF over a �nite H with jHj � 3℄ The satis�ability problem for equationalproblems in 9�-DNF over a �nite H with jHj � 3 is NP-omplete.Proof: The NP-hardness is shown by a redution from the well-known NP-omplete problemK-olorability with K � 3: Let G = (V;E) be a graph with verties V = fv1; : : : ; vng and edges E.Then G is K-olorable (there exists a funtion f :V ! f1; : : : ;Kg, suh that f(vi) 6= f(vj) holdsfor every edge fvi; vjg 2 E), if and only if the equational problem(9~v ) ^fvi ;vjg2E vi 6= vj11



�nite universe H in�nite universejHj = 2 jHj � 3DNF in P NP-omplete in PCNF NP-omplete NP-omplete NP-ompleteFigure 1: 9�-formulasover H = fa1; : : : ; aKg with ~v = (v1; : : : ; vn) is satis�able. 2Reall from [GJ79℄ that the K-olorability problem is NP-omplete for any K � 3, whereas it is inP for K = 2. Consequently, the redution in the above proof does not work for K = 2. In fat, itis straightforward to show that the satis�ability problem for equational problems in 9�-DNF overH with jHj = 2 is in P. Figure 1 summarizes the results for 9�-formulas.2.4 Equational problems with 9� 8�-pre�xNow we onsider equational problems with 9� 8�-pre�x. It will turn out that this alternation ofquanti�ers pushes the omplexity one level higher in the polynomial hierarhy. Moreover, the rôlesof CNF and DNF are hanged with respet to the ase of a purely existential quanti�er pre�x, sinenow the innermost quanti�er is 8. Thus, for DNF, we get the following omplexity lassi�ation.Theorem 2.7 [9� 8�-DNF over a nontrivial H℄ The satis�ability problem of equational problemsin 9� 8�-DNF over an arbitrary (�nite or in�nite) Herbrand universe H with jHj � 2 is �2P-hard.Moreover, if H is �nite, then this problem is �2P-omplete.Proof: The �2P-hardness is proven via a redution from the well-known �2P-omplete 3-QSAT2problem (f. [Sto76℄). This proof follows exatly the same pattern as the NP-hardness proof inTheorem 2.2. Let an instane of the 3-QSAT2 problem be given through two disjoint sets P =fp1; : : : ; pkg and R = fr1; : : : ; rlg of propositional variables and the Boolean formulaE = (l11 ^ l12 ^ l13) _ � � � _ (ln1 ^ ln2 ^ ln3)suh that the lij 's are literals over the propositional variables in P [ R. Moreover, let a be anarbitrary onstant in H. Then we de�ne the equational problem P � 9~x8~y [C1 ^ � � � ^ Cn℄ overH in suh a way that every literal of the form p or :p in E is enoded by the literal x = a orx 6= a, respetively, in P . Likewise, y� = a and y� 6= a are used to enode literals of the form r� or:r�, respetively. Again, this redution an be learly done in polynomial time and its orretnessis trivial.To prove the �2P-membership in ase of a �nite universe H is easy. Guess values for theexistentially quanti�ed variables and hek the satis�ability of the resulting formula by means ofan NP-orale. 2It is not lear, how the �2P-algorithm from the above proof should be extended to the ase ofan in�nite universe. In partiular, we do not know if there exists a polynomial bound on the termsthat have to be guessed for the existentially quanti�ed variables. In Theorem 2.9, we shall showthat the satis�ability problem of equational problems in 9� 8�-CNF over an in�nite universe is in12



NP. Hene, the obvious upper bound on the omplexity of equational problems in 9� 8�-DNF overan in�nite universe is NEXPTIME, sine we an of ourse �rst transform the DNF into CNF viathe distributivity of ^ and _ (in general, at the expense of an exponential blow-up) and then applythe NP-algorithm skethed in Theorem 2.9. The exat omplexity of 9� 8�-DNF over an in�niteuniverse is an open problem.Theorem 2.8 [9� 8�-CNF over a �nite H with jHj � 3℄ The satis�ability problem for equationalproblems in 9� 8�-CNF over a �nite H with jHj � 3 is �2P-omplete.Proof: (Sketh) The �2P-membership an be shown in exatly the same way as in Theorem 2.7.Guess values for the existentially quanti�ed variables and hek the satis�ability of the resultingformula by means of an NP-orale.The proof of the �2P-hardness is quite involved. It goes by a redution from some kind of\parameterized K-olorability problem". For details, see [Pi00℄ and [Pi01℄. 2Analogously to equational problems in 9�-DNF over a �nite universe, the omplexity of 9� 8�-CNFover a �nite H beomes one level lower in the polynomial hierarhy, if H has only two elements.In fat, in [Pi01℄, it is shown that the satis�ability problem for equational problems in 9� 8�-CNFover a H with jHj = 2 is NP-omplete.Now it only remains to onsider the ase of 9� 8�-CNF over an in�nite universe. Analogouslyto the 9�-DNF, this satis�ability problem is one level lower in the polynomial hierarhy than for a�nite universe.Theorem 2.9 [9� 8�-CNF over an in�nite universe℄ The satis�ability problem of equational prob-lems in 9� 8�-CNF over an in�nite H is NP-omplete.Proof: (Sketh) The NP-hardness is lear, sine even the ase of 9�-CNF is NP-hard. As for theNP-membership, we give a (very rough) sketh of an NP-algorithm, whih works as follows (fordetails, refer to [Pi99℄ and [Pi01℄).(1) Elimination of the parameters from the equations and simpli�ation of the disequations: Let Pbe an arbitrary equational problem in 9� 8�-CNF. Then P an be transformed in polynomial timeinto the following formP 0 � (9~x )(8~y )[E1 _ (~x 6= ~t1)℄ ^ � � � ^ [En _ (~x 6= ~tn)℄;where the Ei's are parameter-free disjuntions of equations and the ~ti's are term tuples with vari-ables only in ~y.(2) Elimination of the parameters from the disequations: Of ourse, the universal quanti�ers anbe shifted in front of the disequations, sine the subformulas Ei no longer ontain any universallyquanti�ed variables. Moreover, a universally quanti�ed disequation of the form (8~y )(~x 6= ~ti) anbe transformed by suessive appliations of the explosion rule realled in Setion 2.2 into a purelyexistentially quanti�ed disjuntion of the form (9~w )[di1 _ � � � _ dini ℄, where eah dij is either anequation or a onjuntion of an equation and a disequation. Note that the number of suh disjuntsdij is basially k � p, where k = j�j denotes the number of symbols in the signature � of H and pdenotes the number of positions in the term tuple ~ti.(3) Guess and hek : After the above two transformation steps, we (almost) have an equationalproblem in 9�8�-CNF. Hene, in priniple, we an proeed as in the proof of Theorem 2.2 via13



�nite universe H in�nite universejHj = 2 jHj � 3CNF NP-omplete �2P-omplete NP-ompleteDNF �2P-omplete �2P-omplete �2P-hard,in NEXPTIMEFigure 2: 9� 8�-formulasLemma 2.3. However, there is a subtle problem with this. As has already been mentioned above,the size of the disjuntions obtained in Step (2) of this algorithm is linear with respet to thenumber of positions of the term tuples ~ti. Moreover, by the uni�ation steps performed in Step(1), this number of positions may beome exponential, even though their representation as diretedayli graphs is of ourse polynomially bounded. Hene, the transformation in Step (2) must notbe arried out expliitly. Instead, the guess of a ertain disjunt dij has to be done diretly byinspeting the term tuple ~ti. 2Figure 2 summarizes the results for 9� 8�-formulas.2.5 Equational formulas with arbitrary quanti�er pre�xAlgorithms for deiding the satis�ability of arbitrary equational formulas (in partiular, wherethe quanti�er pre�x is not restrited to the form 9� 8�), usually work by quanti�er elimination(f. [CL89, Mah88℄). To this end, the transformation of an equational problem with 9� 8�-pre�xinto an equivalent one with 9�-pre�x is applied to equational formulas with arbitrary quanti�erpre�x in order to redue the number of quanti�er alternations. Let P be an equational formulaof the form P � (9~x1)(8~x2) � � � (9~xn�1)(8~xn)Q: Moreover, suppose that we an e�etively omputea purely existentially quanti�ed formula (9~y )R that is equivalent to (9~xn�1)(8~xn)Q. Then P isequivalent to P 0 � (9~x1)(8~x2) � � � (8~xn�2)(9~y )R:Likewise, if P is of the form P � (9~x1)(8~x2) � � � (8~xn�1)(9~xn)Q; then we learly have the fol-lowing hain of equivalenes.P � (9~x1)(8~x2) � � � (8~xn�1)(9~xn)Q� (9~x1)(8~x2) � � � ::(8~xn�1)(9~xn)Q� (9~x1)(8~x2) � � � :(9~xn�1)(8~xn)(:Q):Hene, also in this ase, the innermost quanti�ers have been brought into the form 9� 8� and wean transform (9~xn�1)(8~xn)(:Q) into an equivalent formula of the form (9~y )R. We thus get theequational formulaP 0 � (9~x1)(8~x2) � � � (9~xn�2):(9~y )R � (9~x1)(8~x2) � � � (9~xn�2)(8~y ):R;whih is equivalent to P .In other words, it suÆes to provide a transformation of equational formulas from 9� 8�-form into9�-form, in order to solve the satis�ability problem for arbitrary equational formulas. Unfortunately,this quanti�er elimination step has exponential ost. However, by the high inherent omplexity14



of arbitrary equational formulas, this an hardly be helped. Reall from Theorem 1.13, that theQSAT(F) problem is PSPACE-omplete, unless the onstraints under onsideration are subjeted tosome severe restritions. Analogously, it an be shown that the satis�ability problem of equationalformulas over a �nite universe is PSPACE-omplete, if no restritions are imposed on the quanti�erpre�x (f. [Kun87℄). In ase of an in�nite universe, the satis�ability problem of equational formulaswith arbitrary quanti�er pre�x is even non-elementary reursive (f. [Vor96℄).2.6 Open problems and future researhIn Setion 2, we have given a survey of omplexity results for the satis�ability problem of equationalproblems. In almost all of the ases thus onsidered, there is an exat lassi�ation of the omplexity.Only in ase of equational problems in DNF with 9� 8�-pre�x over an in�nite universe, there is agap between the �2P lower bound and the NEXPTIME upper bound (f. Figure 2). Closing thisgap is an interesting open problem for future researh in this area.Reall that we have only onsidered the ase where all terms (and, in partiular, all variables)in an equational problem are interpreted over the same universe. An extension of these results tothe ase of many sorts has not been done expliitly yet. Atually, it seems as though this extensionis not too diÆult. After all, it has turned out that we only have to be areful whether a universe is�nite or in�nite. Nevertheless, the details of suh an extension to many sorts have to be worked outyet. Moreover, little researh e�orts have been made so far, in order to investigate the omplexity,when restritions di�erent from the ones onsidered here are imposed, e.g.: what happens, whenthe number of variables is restrited rather than the quanti�er pre�x, et.As usual, the omplexity analysis of a given problem is not the end of the story. In general, onewill try to apply the theoretial insight into the inherent omplexity of a problem to the onstrutionof new and more eÆient algorithms. A major lesson to be learned from the omplexity resultsrealled here is that | in ontrast to the algorithm of [CL89℄ | one should not try to treat theases of a �nite universe and of an in�nite universe, respetively, in a uniform way. Atually, theNP-membership proof skethed in Theorem 2.9 an be onsidered as an improvement of previousalgorithms in ase of an in�nite universe. Searhing for further improvements is an important goalfor future researh.In this survey, we have onentrated on equational formulae with 9� 8�-pre�x. Moreover, inase of equational problems with 9� 8�-pre�x, we were unable to present a better approah thanthe transformation into CNF followed by the NP-algorithm from the proof sketh of Theorem 2.9.As far as the worst ase omplexity is onerned, this is okay. However, pratial experiene showsthat suh a preproessing step of shifting the quanti�ers to the front and transforming the formulainto CNF are very ostly and sometimes not really neessary. Consequently, in [CD94℄, an algorithmis presented whih neither requires a CNF nor a spei� quanti�er pre�x. Instead, the expensivedistributivity rules are only applied, when there is no alternative. Moreover, a whole olletion ofrules dealing with single quanti�ers and ombinations of quanti�ers are provided. Of ourse, by thehigh inherent omplexity of equational formulae with no restrition on the quanti�er ourrenes (f.Setion 2.5) there is a lear limit up to whih the worst ase omplexity an possibly be improved.Nevertheless, a ombination of the ideas of [CD94℄ with the heap transformations needed for theNP-membership result in Theorem 2.9 may serve as a good starting point for searhing for furtherimprovements.
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3 Complexity of Equational Mathing and Uni�ation ConstraintProblemsMathing and uni�ation in equational theories are the keystones of automated dedution. Theyare used extensively in several areas of omputer siene, inluding theorem proving, databasesystems, natural language proessing, logi programming, omputer algebra, and program veri�-ation. Plotkin [Plo72℄ was the �rst to formulate expliitly the idea that theorem provers shouldhave built-in algorithms for mathing and uni�ation in equational theories. His pioneering artileprovided the impetus for the development of the entire �eld of equational mathing and uni�ation.We briey introdue the basi notions for equational mathing and uni�ation. Additionalmaterial an be found in [BS01℄ or [DJ90℄.A signature F is a set of funtion symbols of designated arities. If F is a signature and X is aountable set of variables, then T (F ;X ) denotes the set of all terms over the signature F and thevariables in X . We also write Var(t) for the set of variables ourring in a term t. The size of term tis its length jtj as a string. As usual, a ground term is a term without variables. A substitution isa mapping �:X �! T (F ;X ) suh that x� = x for all but �nitely many variables x. Consequently,a substitution � an be identi�ed with its restrition to the �nite set dom(�) = fx 2 X j x� 6= xg,whih is alled the domain of �. A substitution � is ground if x� is a ground term for all x 2 dom(�).An equation is a pair of terms l = r. Eah equation is viewed as an equational axiom, namely asthe �rst-order sentene (8x1) : : : (8xm)(l = r) obtained from the equation by universal quanti�ationover all variables ourring in the terms l and r. If E is a set of equational axioms, then the equationaltheory Th(E) presented by E is the smallest ongruene relation over T (F ;X ) ontaining E andlosed under substitutions, i.e., Th(E) is the smallest ongruene ontaining all pairs l� = r�, wherel = r is in E and � is a substitution. By an abuse of terminology, we will often say \the equationaltheory E" instead of the orret \the equational theory Th(E) presented by E". We write s =E tto denote that the pair (s; t) of terms is a member of Th(E).E-equality on terms an be extended to substitutions by setting � =E � if and only if for allvariables x 2 X we have that x� =E x�. If V is a set of variables and �, � are substitutions,we put � =VE � if and only if (8x 2 V )(x� =E x�) holds. We also onsider the preorder �VE onsubstitutions de�ned by the ondition � �VE � if and only if (9�)(�� =VE �) holds. In turn, thispreorder gives rise to the following equivalene relation �VE on substitutions:� �VE � () � �VE � and � �VE �:In general, � �VE � does not imply that � �VE �; similarly, � �VE � does not imply that � =VE �.Nevertheless, these three relations oinide on ground substitutions with the same domain.In the sequel, we will be onerned with equational theories presented by �nite sets E whoseaxioms are among those depited in Figure 3. Moreover, AC(linear) is the restrition of the equa-tional theory AC applied to linear terms and Set is a speial ase of the theory ACI in whih thereis only one ACI-symbol that ours on the top of the onsidered terms.3.1 Complexity of equational mathingLet s be a term, alled pattern, and let t be a ground term, alled subjet. An E-mather of sand t is a substitution � suh that s� =E t. Whenever suh an E-mather exists, we say that thepattern s E-mathes the subjet t.A omplete set of E-mathers of s and t is a set S of substitutions suh that the followingonditions hold: 16



Assoiativity A(f) f(f(x; y); z) = f(x; f(y; z))Commutativity C(f) f(x; y) = f(y; x)Idempotene I(f) f(x; x) = xNilpotene N(f) f(x; x) = 0Existene of Unit U(f) f(x; 1) = x, f(1; x) = xHomomorphism H(f; g; h) f(g(x; y)) = h(f(x); f(y))Abelian group AG(+;�; e) see Figure 4Boolean ring BR(^;�; 0; 1) see Figure 5Figure 3: Equational axioms
x + e = x x + y = y + xx + (�x) = e (x + y) + z = x + (y + z)Figure 4: Abelian group axioms AG

x� 0 = x x� y = y � xx� x = 0 (x� y)� z = x� (y � z)x ^ 0 = 0 x ^ y = y ^ xx ^ 1 = x (x ^ y) ^ z = x ^ (y ^ z)x ^ x = x x ^ (y � z) = (x ^ y)� (x ^ z)Figure 5: Boolean ring axioms BR
17



1. Eah substitution � 2 S is an E-mather of s and t, and, moreover, dom(�) � V , whereV = Var(s) is the set of variables of s;2. For every E-mather � of s and t, there is a substitution � 2 S suh that � �VE �.We say that S is a minimal omplete set of E-mathers of s and t if, in addition, every two distintmembers of S are �VE -inomparable (this means that for all substitutions �; � 2 S the ondition� �VE � implies � = �).In general, it may be the ase that s E-mathes t, but there is no minimal omplete set ofE-mathers of s and t. On the other hand, it is well known that if a minimal omplete set ofE-uni�ers of s and t exists, then it is unique up to �VE .From now on, we assume that E is a set of equational axioms suh that if s E-mathes t, thenthere exists a minimal omplete set of E-mathers of s and t. We let �CSME(s; t) denote the(unique up to �VE ) minimal omplete set of E-mathers of s and t, if s E-mathes t, or the emptyset, otherwise.E-mathing is said to be unitary if for every pattern s and every subjet t we have thatj�CSME(s; t)j � 1. Similarly, E-mathing is said to be �nitary if for every pattern s and everysubjet t the set �CSME(s; t) is �nite.If E is a set of equational axioms then we assoiate with E the following E-mathing deisionproblem.E-MATCHINGInput: A pattern s, a subjet t, and an equational theory E.Question: Can s be E-mathed with t, i.e., is there a substitution �, suh that s� =E t?By examining the signature F over whih the terms of mathing problems in the theory Th(E)have been built, we distinguish between two di�erent kinds of E-mathing. Let sig(E) be the setof all funtion and onstant symbols ourring in the equational axioms of E. If the signature Fontains sig(E) and free onstant symbols, but no free funtion symbols, then we speak aboutelementary E-mathing. If the signature F ontains free funtion symbols of arbitrary arities, thenwe speak about general E-mathing.Most of the equational mathing deision problems are NP-omplete. A remarkable exeptionis the ase of AC(linear)-mathing that is proved to be polynomial by means of graph math-ing tehniques. These omplexity results were proved by Benanav et al. [BKN87℄, Kapur andNarendran [KN92℄ Baader [Baa98℄, Kl��ma and Srba [KS00℄, Eker [Eke93℄, and others. Clearly,an NP-hardness result for the elementary ase naturally extends to NP-hardness of the generalproblem. In the same spirit, a polynomial result for the general ase extends to a polynomial-timedeidable elementary problem.The results on equational mathing deision problems are summarized in Figure 6.Assume that E is some �nitary equational theory and A is an algorithm suh that, given twoterms s and t as input, the algorithm A returns a minimal omplete set of E-mathers of s and t, if sand t an be E-mathed, or the empty set, otherwise. As a byprodut of this algorithm and withinthe same omplexity bounds, we an solve a related ounting problem, namely we an ompute thenumber of most general E-mathers of two given terms. In many respets, this ounting problemis loser to the problem of omputing a omplete set of E-mathers than the deision problem forE-mathing. If E is a set of equational axioms suh that E-mathing is �nitary, then we assoiatewith E the following ounting problem. 18



theory omplexityelementary general;  � linear [PW78℄A NP-omplete [Ang80℄ NP-omplete [BKN87℄C NP-omplete [BKN87℄AC NP-omplete [Eke93, BS94℄ NP-omplete [BKN87℄AC(linear)  � in P [BKN87℄AI NP-omplete [KS00℄ NP-ompleteAU NP-omplete (unpublished) NP-ompleteACI NP-omplete [KN92℄ACU NP-omplete [HK99℄ NP-omplete [KN92℄I NP-omplete (unpublished)U NP-omplete [TA87℄N NP-omplete [GNW00℄ NP-ompleteACN NP-omplete [GNW00℄ NP-ompleteACUN in P [GNW00℄ NP-omplete [GNW00℄ACUNH in P [GNW00℄ NP-omplete [GNW00℄Set NP-omplete [KN86℄AG in P (Gaussian elimination in Z) NP-omplete [Sh97℄BR �2P-omplete [Baa98℄ PSPACE-omplete [Baa98℄Figure 6: Complexity results for equational mathing deision problems
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#E-MATCHINGInput: A pattern s, a subjet t, and an equational theory E.Output: Cardinality of the minimal omplete set of E-mathers �CSME(s; t).Counting problems for equational mathing were onsidered by Hermann and Kolaitis in [HK95℄and indiretly also in [HK00℄. They showed that most of the NP-ompleteness results arry overto #P-ompleteness results for the ounting versions for orresponding equational mathing prob-lems. However, the ase of AC(linear)-mathing beomes #P-omplete for ounting, whereas theorresponding deision problem is in P.Theorem 3.1 ([HK95℄) The general #E-mathing problems are #P-omplete for the equationaltheories A, C, AC, AC(linear), ACH, I, U, IU, ACI, Set, ACU and ACIU.The elementary E-mathing problem is the restrition of E-mathing to signatures with nofree funtion symbols. Thus, given a pair (s; t), where s is a term and t is a ground term withfuntion symbols among those in the equational axioms of E, the question is to deide whetherthere is a substitution � suh that s� =E t. The elementary #E-mathing problem is the analogousrestrition of #E-mathing. The simultaneous elementary E-mathing problem is the followingdeision problem.SIMULTANEOUS ELEMENTARY E-MATCHINGInput: A �nite set S = f(s1; t1); : : : ; (sk; tk)g, where eah si is a term and eah ti is a ground termwith funtion symbols among those in the equational axioms of E.Question: Is there a substitution � suh that si� =E ti for every i � k?Suh a substitution is alled an E-mather of the set f(s1; t1); : : : ; (sk; tk)g. Similarly, the simulta-neous elementary #E-mathing problem is the following ounting problem.SIMULTANEOUS ELEMENTARY #E-MATCHINGInput: A �nite set S = f(s1; t1); : : : ; (sk; tk)g, where eah si is a term and eah ti is a ground termwith funtion symbols among those in the equational axioms of E.Output: Cardinality of the minimal omplete set of E-mathers �CSME(S).The notation s1 :=E t1; : : : ; sk :=E tk will be used to represent an instane of the simultaneouselementary E-mathing (or #E-mathing) problem.In e�et, the simultaneous elementary E-mathing problem asks for the solution of a systemof equations s1 :=E t1; : : : ; sk :=E tk, where the funtion symbols of F are exatly the funtionsymbols ourring in the equational axioms of E. Of ourse, one an onsider simultaneous E-mathing problems over arbitrary signatures. However, the simultaneous E-mathing problem overarbitrary signatures is reduible to the E-mathing problem, beause one an use free funtionsymbols to enode a system of equations into a single equation. Indeed, a system of equationss1 :=E t1; : : : ; sk :=E tk an be written as a single equation f(s1; : : : ; sk) :=E f(t1; : : : ; tk) with thehelp of a free funtion symbol f . We will lassify simultaneous elementary mathing problems usingtwo parameters, namely the number of equations in a given system, alled the length of the system,and the number of free onstants in the signature. Note that the number of free onstant sym-bols is unimportant for mathing problems over signatures with free funtion symbols, sine a setfC1; C2; : : : ; Cmg of free onstant symbols an be represented by the set fg(C); g(g(C)); : : : ; gm(C)g,where C is a free onstant symbol and g is a free unary funtion symbol.20



If k and m are two positive integers, then the �E(k;m)-mathing problem onsists of all instanesof simultaneous elementary E-mathing with at most k equations and at most m free onstants.We also put �E(k; !) = 1[m=1 �E(k;m) and �E(!;m) = 1[k=1 �E(k;m)Thus, in �E(k; !)-mathing the signature has an unbounded number of free onstant symbols,while in �E(!;m)-mathing the systems of equations have unbounded length. We de�ne similarly#�E(k;m)-mathing, #�E(k; !)-mathing, and #�E(!;m)-mathing.Eker [Eke93℄ established that �AC(1; !)-mathing is a NP-omplete problem. Similarly, Her-mann and Kolaitis [HK99℄ proved that the orresponding ounting problem is #P-omplete.Theorem 3.2 ([Eke93, HK99℄) �AC(1; !)-mathing is NP-omplete and #�AC(1; !)-mathing is#P-omplete.Baader and Siekmann [BS94℄ showed that 1-in-3 sat an be redued to elementary AC-mathing with an unbounded number of equations and two free onstants. A slight re�nementof their redution shows that atually one free onstant suÆes to yield NP-ompleteness, providedthe number of equations is unbounded.Theorem 3.3 ([HK99℄) The deision problem �AC(!; 1)-mathing is NP-omplete and the ount-ing problem #�AC(!; 1)-mathing is #P-omplete.If both the length of the system and the number of free onstants are kept bounded, then theelementary AC-mathing deision and ounting problems are tratable.Theorem 3.4 ([HK99℄) �AC(k;m)-mathing is in P and #�AC(k;m)-mathing is in FP, for allk � 1 and all m � 1.The preeding theorems give a omplete piture of the omputational omplexity of simulta-neous elementary AC-mathing problems. Next, we study the omplexity of elementary mathingfor the equational theory ACU of ommutative monoids and unveil a di�erent piture. Indeed,simultaneous elementary ACU-mathing turns out to be tratable for systems of bounded length,even if the signature ontains an unbounded number of free onstants.Theorem 3.5 ([HK99℄) �ACU(!; 1)-mathing is NP-omplete and #�ACU(!; 1)-mathing is #P-omplete. In ontrast, �ACU(k; !)-mathing is in P and #�ACU(k; !)-mathing is in FP, for everyk � 1.Finally, we examine the omplexity of elementary mathing for the equational theory A ofsemigroups. Angluin [Ang80℄ showed that the problem �A(1; 2)-mathing is NP-omplete; moreover,Benanav et al. [BKN87℄ proved that �A(!; 1)-mathing is NP-omplete. The following result showsthat all other ases of elementary A-mathing are tratable.Theorem 3.6 ([Ang80, BKN87, HK99℄) The �A(1;m)-mathing is NP-omplete and #�A(1;m)-mathing is #P-omplete, for every m � 2. Moreover, �A(!; 1)-mathing is NP-omplete and#�A(!; 1)-mathing is #P-omplete. In ontrast, �A(k; 1)-mathing is in P and #�A(k; 1)-math-ing is in FP, for all k � 1. 21



Simultaneous elementary A-mathingnumber of number of onstantsequations 1 m � 2 !k � 1 P / FP! NP-omplete / #P-ompleteSimultaneous elementary AC-mathingnumber of number of onstantsequations 1 m � 2 !k � 1 P / FP! NP-omplete / #P-ompleteSimultaneous elementary ACU-mathingnumber of number of onstantsequations 1 m � 2 !k � 1 P / FP! NP-omplete / #P-ompleteFigure 7: Complexity results for simultaneous elementary E-mathing
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Hermann and Kolaitis [HK99℄ investigate further the omplexity of simultaneous elementary E-mathing problems for the equational theories AC and ACU with bounded variable ourrene.Figure 7 summarizes the previously mentioned omplexity results for elementary A-, AC-, andACU-mathing3.2 Complexity of equational uni�ationAn E-uni�er of s and t is a substitution � suh that s� =E t� holds. Whenever suh an E-uni�erexists, we say that the terms s and t an be E-uni�ed.A omplete set of E-uni�ers of s and t is a set S of substitutions suh that the following hold:1. Eah substitution � 2 S is an E-uni�er of s and t, and, moreover, dom(�) � V , whereV = Var(s) [Var(t) is the set of variables ourring in s or t;2. For every E-uni�er � of s and t, there is a substitution � 2 S suh that � �VE �.S is a minimal omplete set of E-uni�ers of s and t if, in addition, every two distint members of Sare �VE -inomparable, that is, for all substitutions �; � 2 S the ondition � �VE � implies � = �.It is possible that two terms s and t are E-uni�able, but no minimal omplete set of E-uni�ers ofs and t exists. On the other hand, if a minimal omplete set of E-uni�ers of s and t exists, then it isunique up to �VE . In this ase, we let �CSUE(s; t) denote the (unique up to �VE ) minimal ompleteset of E-uni�ers of s and t, if s and t are uni�able, or the empty set, otherwise. Equational theoriesan be lassi�ed aording to their uni�ation type, whih takes into aount the existene and theardinalities of the sets �CSUE(s; t). In partiular, a theory E is said to be unitary if for every pairof terms (s; t) the set �CSUE(s; t) exists and j�CSUE(s; t)j � 1. Similarly, E is said to be �nitaryif for every pair of terms (s; t) the set �CSUE(s; t) exists and is �nite.With every equational theory E we assoiate the following deision and ounting problems,analogously to equational mathing. Note that for the ounting problem the equational theorymust be �nitary.E-UNIFICATIONInput: Two terms s and a t, and an equational theory E.Question: Can s be E-uni�ed with t, i.e., is there a substitution �, suh that s� =E t�?#E-UNIFICATIONInput: Two terms s and a t, and an equational theory E.Output: Cardinality of the set �CSUE(s; t).By examining the signature F over whih the terms of uni�ation problems in the theory Th(E)have been built, we distinguish between three di�erent kinds of E-uni�ation. Let sig(E) be theset of all funtion and onstant symbols ourring in the equational axioms of E. If F = sig(E)holds, then we speak about elementary E-uni�ation. If the signature F ontains in addition freeonstant symbols, but no free funtion symbols, then we speak about E-uni�ation with onstants.Finally, if the signature F ontains free funtion symbols of arbitrary arities, then we speak aboutgeneral E-uni�ation.The aforementioned equational mathing problems give immediately the lower bounds for theorresponding uni�ation problems. This is, for instane, the ase of A-uni�ation where thelower bound is exatly that of A-mathing, whereas the upper bound is PSPACE. There areequational theories, like Boolean rings or Abelian groups, where the uni�ation problems an be23



theory omplexityelementary with onstants general;  �  � linear [PW78℄A  � NP-hard andin PSPACE [Pla99℄ NP-hardC NP-omplete NP-ompleteAC NP-omplete NP-omplete NP-omplete [KN92℄ACI  � in P NP-omplete [KN92℄ACIU  � in P NP-omplete [Nar96℄AG  � in P NP-ompleteBR NP-omplete �2P-omplete PSPACE-ompleteFigure 8: Complexity results for equational uni�ation deision problemsalways transformed into an equivalent mathing problem, beause of the presene of the nilpoteneaxiom or the inverse axiom. Figure 8 summarizes the omplexity results for some equationaluni�ation deision problems.The work presented here onerning #E-mathing problems suggests that a similar investigationshould be arried out for #E-uni�ation problems. Although the mentioned ounting omplexityresults imply that several #E-uni�ation problems are #P-hard, we already know that there areequational theories E, suh as AC, for whih #E-uni�ation is not a member of #P. Indeed,Domenjoud [Dom92℄ found AC-uni�ation problems with n variables whose minimal omplete setof AC-uni�ers has O(22n) elements. Sine a ounting problem in #P takes values that are boundedby a single exponential in the size of the input, it follows that #AC-uni�ation is not in #P. It isan interesting open problem to analyze the omputational omplexity of #AC-uni�ation and todetermine whether it is omplete for some higher ounting omplexity lass. Results along theselines will delineate the omputational di�erene between mathing and uni�ation in a preisemanner and will on�rm the intuition that uni�ation is harder than mathing.Two interesting results were proved by Hermann and Kolaitis [HK00℄ onerning the di�erenebetween omputing the minimal omplete sets of uni�ers for Boolean rings and Abelian groupsin the ase of uni�ation with onstants on one hand and general uni�ation on the other. Theounting problem #AG-uni�ation with onstants was known to be in FP, sine it an be solvedby polynomial-time methods over the integers Z known from linear algebra. However, the followingtheorem indiates that the general ounting problems for Abelian groups and Boolean rings areintratable.Theorem 3.7 ([HK00℄) The problems general #AG-uni�ation and general #BR-uni�ation areboth #P-hard.This result proves that the ardinality of the orresponding minimal omplete sets of uni�ers for24



Boolean rings and for Abelian groups annot be omputed in polynomial time unless P = NP.3.3 Speial interest for AC and Hilbert basesThe Hilbert basis of a homogeneous system of linear Diophantine equations over the non-negativeintegers is the set of all non-zero vetors that are minimal solutions with respet to the pointwiseorder. This set forms indeed a basis of the spae of solutions of the system, that is, every solutionan be written as a positive linear ombination of vetors from the Hilbert basis, and no memberof the Hilbert basis an be expressed as a positive linear ombination of other members. Moreover,this basis is essentially unique.Computing the Hilbert basis of a homogeneous system of linear Diophantine equations overnon-negative integers has turned out to be one of the key problems in automated dedution. Itsimportane in this area emerged through the work of Stikel [Sti81℄, who designed the �rst algo-rithm for AC-uni�ation. Stikel showed that the minimal omplete set of uni�ers of a simultaneouselementary AC-uni�ation problem an be obtained from the Hilbert basis of an assoiated homo-geneous system of linear Diophantine equations over non-negative integers. Indeed, the minimalomplete set of AC-uni�ers is the set of all ompatible subsets of the Hilbert basis of that system,where ompatible in this ontext means that every variable an be instantiated by a non-zero linearombination of the members of the ompatible subset. Following the publiation of Stikel's algo-rithm [Sti81℄, researhers beame interested in algorithms for omputing the Hilbert basis. Everyalgorithm for omputing the Hilbert basis of a system an also be used to ount at the same timethe number of elements of the Hilbert basis, therefore we onsider the ounting omplexity of theHilbert basis problem.A homogeneous linear Diophantine system over non-negative integers is a system of equationsS:Ax = 0, where A = (aji )nk is a k � n integer matrix and x = (x1; : : : ; xn) is a vetor of variablesranging over non-negative integers. We say that a solution s of S is nontrivial if it is di�erentfrom the all-zero solution (0; : : : ; 0). We say that a solution s = (s1; : : : ; sn) of S is smaller thana solution s0 = (s01; : : : ; s0n), and write s < s0, if s 6= s0 and, for all i = 1; : : : ; n, it is the ase thatsi � s0i. The relation < is alled the pointwise order on solutions. A solution s is minimal if it isnontrivial and there is no smaller nontrivial solution s00, that is, s00 < s is false for every nontrivialsolution s00 of S.The Hilbert basis H(S) of the system S is the set of all minimal solutions of S. This set isindeed a basis for the spae of nontrivial solutions of S, whih means that no minimal solutionan be expressed as a positive linear ombination of the other minimal solutions, whereas everynontrivial solution an be expressed as a positive linear ombination of minimal solutions. TheHilbert basis H(S) is �nite and it is the unique basis of the spae of nontrivial solutions of S.It is well known that Hilbert bases an be used to ompute minimal omplete sets of AC-uni�ers. Indeed, let AX :=AC A0X 0 be a simultaneous elementary AC-uni�ation problem, where Aand A0 are matries over non-negative integers, X = (X1; : : : ;Xj) and X 0 = (Xj+1; : : : ;Xn) arenot neessarily disjuntive vetors of formal variables, and + is the unique AC-symbol. With thisAC-uni�ation problem, assoiate the homogeneous linear Diophantine system S: (A � A0)x = 0,where the arithmeti variable xi orresponds to the formal variable Xi for i = 1; : : : ; n. Considerthe Hilbert basis H(S) of the system S over the variables x1, . . . , xn. Let f�1; : : : ; �mg be a subsetof H(S) and v = (v1; : : : ; vm) be a vetor of new variables. For eah i = 1; : : : ; n, assign the linearexpression �i1v1+ � � �+�imvm to the variable xi, where �ij is the i-th oordinate of the vetor �j . Wesay that f�1; : : : ; �mg is a ompatible subset of H(S) if, for eah variable xi, there exists a vetor �jsuh that �ij 6= 0, that is, the variable xi is not assigned the value 0. The minimal omplete set25



of uni�ers of the AC-uni�ation problem AX :=AC A0X 0 turns out to be the set of all ompatiblesubsets of H(S) of the system S above, where xi 7! �i1v1 + � � � + �imvm is the substitution of thevariable xi, when f�1; : : : ; �mg is the hosen ompatible subset.Hermann, Juban, and Kolaitis [HJK99℄ onsidered the following ounting problems that har-aterize well the omputational omplexity of generating the Hilbert basis and, subsequently, theAC-uni�ers.#HILBERTInput: A system of homogeneous linear Diophantine equations S:Ax = 0 over non-negative inte-gers.Output: The ardinality of the Hilbert basis H(S) of S.#COMPATIBLE SUBSETSInput: A set T of vetors of non-negative integers that are pairwise inomparable in the pointwiseorder and linearly independent with respet to linear ombinations with non-negative oeÆients.Output: The ardinality of the set of all ompatible subsets of T .Hermann, Juban, and Kolaitis [HJK99℄ proved the following reasonably tight upper and lowerbound for the Hilbert basis ounting problem, even though they do not deisively pin down itsexat omplexity. The #P-hardness proof is done using Hall's theorem.Theorem 3.8 The ounting problem #hilbert is #P-hard and belongs to the lass #NP.The preeding theorem yields upper and lower bounds for the omplexity of ounting the Hilbertbasis. An inspetion of the #P-hardness proof reveals that #hilbert would be in #P, if testing asolution for minimality were solvable in polynomial time. Durand, Hermann, and Juban [DHJ99℄,however, have shown that it is a oNP-omplete problem to tell whether a given solution of ahomogeneous linear Diophantine system is minimal for a homogeneous linear Diophantine system.Thus, assuming P 6= NP, to prove that #hilbert is in #P would require one to ome up with avery di�erent set of witnesses for #hilbert and show that membership in that witness set is inpolynomial time. It is believed that this is not possible and onjetured that #hilbert is not in#P.Let #hilbert(m) be the restrition of #hilbert to systems of equations with at most mourrenes of eah variable. It turns out that #hilbert(3) has the same omplexity as theoriginal problem, what arries over to eah m > 3, whereas #hilbert(1) is learly in FP bya simple ombinatorial argument mentioned in [LC89℄. The ounting problem #hilbert(2) hasbeen proved in [HJK99℄ to be inluded in #P by means of a long ase analysis. However the generallower bound proof does not work for this speial ase any more.Stikel's algorithm [Sti81℄ for simultaneous elementary AC-uni�ation proeeds by �rst �ndingthe Hilbert basis of the assoiated homogeneous linear Diophantine system, and then produingthe set of all ompatible subsets of that basis. To gain insight into the inherent omplexity of thelatter algorithm, Hermann, Juban, and Kolaitis [HJK99℄ examined the omputational omplexityof ounting the number of ompatible subsets of a given set T of linearly independent and pairwiseinomparable vetors of non-negative integers.Theorem 3.9 The ounting problem #ompatible subsets is #P-omplete.26



3.4 Combination of uni�ation algorithmsThe development of ombination algorithms originated with Stikel's algorithm for general AC-uni�ation [Sti81℄. Stikel �rst onstruted an algorithm for elementary AC-uni�ation and thenintrodued a speial-purpose ombination algorithm for general AC-uni�ation that used the al-gorithm for elementary AC-uni�ation and the algorithm for syntati uni�ation as subroutines.Similar work was arried out by others. This triggered the researh on the ombination of uni�-ation algorithms for disjoint equational theories, a problem that was �nally solved by Shmidt-Shau� [SS89℄. Using a new approah, Baader and Shulz [BS96℄ presented a ombination methodfor deision problems in disjoint equational theories; a slight modi�ation gives rise to a methodfor ombining algorithms for uni�ation in two disjoint equational theories.Every known ombination algorithm for equational uni�ation has an exponential running time.In partiular, even if there exist polynomial-time uni�ation algorithms A1 and A2 for the disjointtheories Th(E1) and Th(E2), every known general ombination method will give rise to an ex-ponential algorithm A for uni�ation in the theory Th(E1 [ E2). There was even a quest for apolynomial-time ombination method launhed within the AC-uni�ation ase [BHK+88℄. Her-mann and Kolaitis [HK00℄ showed that this exponential-time behavior is not a de�ieny of theknown ombination algorithms, but rather is aused by the inherent intratability of the ombi-nation problem. More preisely, they show that there is no polynomial-time general ombinationalgorithm for uni�ation in �nitary equational theories, unless the omplexity lass #P of ountingproblems is ontained in the lass FP of funtion problems solvable in polynomial time.Theorem 3.10 ([HK00℄) Unless #P is ontained in FP, there does not exist a ombination algo-rithm A for E1[E2-uni�ation, where E1 and E2 are disjoint equational theories, suh that A runsin polynomial time using orales for the E1-uni�ation problem and the E2-uni�ation problem.The previous result holds already in the presene of a single unary funtion symbol. Based on similarideas, Shulz [Sh00℄ investigated a large lass of tratable and intratable instanes of ombinationproblems for uni�ation and disuni�ation deision problems. Following from his analysis, it seemsthat already very simple and natural onditions on the equational theory E imply NP-hardness ofthe ombination problem for the deision ase of uni�ation, where E is one of the involved disjointtheories.3.5 Open problemsProbably the most interesting problem in the omplexity of equational mathing and uni�ation isthe problem of determining the exat omplexity of A-uni�ation. The upper bound was reentlypushed down from multiple exponential to PSPACE by Plandowski [Pla99℄. The lower bound isstill NP-hard, oming from the lower bound for A-mathing. Is it possible to push the lower boundhigher in the polynomial hierarhy or even to PSPACE? Another possibility would be to pushdown the upper bound even further. However, in the sope of the very simple lower bound proofas opposed to Plandowski's sophistiated method for proving PSPACE membership, it is moreprobable to �nd a higher lower bound, even if there exists a onjeture that A-uni�ation ould beNP-omplete.Another interesting open question onsists of determining the exat omplexity of the problem#hilbert to ount the ardinality of a homogeneous linear Diophantine system of equations overnon-negative integers. The lower bound is #P-hard, whereas the upper bound is #NP, what makesa di�erene of two ounting omplexity lasses. Hermann, Juban, and Kolaitis onjeture that theproblem is #NP-omplete. There are two reasons to believe that the onjeture is right. The �rst27



one is that testing whether a given vetor belongs to the Hilbert basis of a given system is oNP-omplete [DHJ99℄. The seond is that a similar problem of ounting the minimal solutions of apropositional formula has been proved #NP-omplete by Durand, Hermann, and Kolaitis [DHK00℄.Referenes[Ang80℄ D. Angluin. Finding patterns ommon to a set of strings. Journal of Computer andSystem Siene, 21:46{62, 1980.[APT79℄ B. Aspvall, M. R. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truthof ertain quanti�ed Boolean formulas. Information Proessing Letters, 8(3):121{123,1979.[Baa98℄ F. Baader. On the omplexity of Boolean uni�ation. Information Proessing Letters,67(4):215{220, 1998.[BHK+88℄ H.-J. B�urkert, A. Herold, D. Kapur, J. H. Siekmann, M. E. Stikel, M. Tepp, andH. Zhang. Opening the AC-uni�ation rae. Journal of Automated Reasoning, 4(4):465{474, 1988.[BHRV01℄ E. B�ohler, E. Hemaspaandra, S. Reith, and H. Vollmer. Equivalene problems forboolean onstraint satisfation. Tehnial Report 282, Institut f�ur Informatik, Univer-sit�at W�urzburg, 2001.[BKN87℄ D. Benanav, D. Kapur, and P. Narendran. Complexity of mathing problems. Journalof Symboli Computation, 3(1-2):203{216, 1987.[BS94℄ F. Baader and J. H. Siekmann. Uni�ation theory. In D.M. Gabbay, C.J. Hogger,and J.A. Robinson, editors, Handbook of Logi in Arti�ial Intelligene and Logi Pro-gramming, volume 2: Dedution Methodologies, pages 41{125. Oxford University Press,Oxford (UK), 1994.[BS96℄ F. Baader and K. U. Shulz. Uni�ation in the union of disjoint equational theories:Combining deision proedures. Journal of Symboli Computation, 21(2):211{243, 1996.[BS01℄ F. Baader and W. Snyder. Uni�ation theory. In J. A. Robinson and A. Voronkov,editors, Handbook of Automated Reasoning, volume I, pages 447{533. Elsevier, 2001.[Cad92℄ M. Cadoli. The omplexity of model heking for irumsriptive formulae. InformationProessing Letters, 44(3):113{118, 1992.[CCJ94℄ M. C. Cooper, D. A. Cohen, and P. Jeavons. Charaterising tratable onstraints.Arti�ial Intelligene, 65(2):347{361, 1994.[CD94℄ H. Comon and C. Delor. Equational formulae with membership onstraints. Informationand Computation, 112(2):167{216, 1994.[CH96℄ N. Creignou and M. Hermann. Complexity of generalized satis�ability ounting prob-lems. Information and Computation, 125(1):1{12, 1996.[CH97℄ N. Creignou and J-J. H�ebrard. On generating all solutions of generalized satsi�abilityproblems. Informatique Th�eorique et Appliations, 31(6):499{511, 1997.28
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