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Abstract
This article presents an introduction to the generalization of the crossed rule approach to the
detection of Knuth—Bendix completion procedure divergence. It introduces the closure chains,
which are special rule closures constructed by means of particular substitution operations and
operators, as a suitable formalism for a progress in this direction. Supporting substitution
algebra is developed first, followed by considerations concerning rule closures in general, and
concluded by investigation of closure chain properties.

1 Introduction

In [4] the importance of forward closures and later also backward closures for the definition of crossed
rules has been discovered. During the attempts to generalize the crossed rule notion it became
apparent that their construction is strictly dependent on special forward or backward rule closures,
called forward /backward chains. These closure chains are derived from rule closures by substitution
variable constraints, and are constructed by means of special substitution operations and iterative
operators. It is for this iterative construction way of the closure chains, that makes them most
suitable for the description of the Knuth—Bendix procedure divergence. Therefore the attention is
focused on a sufficiently general definition with the potential to describe the largest class of possible
cases by their structural entities.

2 Basic notation and definitions

2.1 Term rewriting systems

Let F' be a finite or enumerable set of function symbols graded by arity (signature). Fy denotes the
set of constants. Let X be an enumerable set of variables such that F'N X = . Denote T'(F, X) the
set of all terms (free algebra) over variables X and symbols F. The terms containing no variables
are called ground terms. Var(t) denotes the set of all variables in the term t.

Let N* be a set of strings of natural numbers with a special symbol ¢ € N* for the empty string.
Suppose the existence of string concatenation operation on N*. Using the elements of N* as labels,
the terms can be viewed as labeled trees. A term ¢ is a partial function N* — F' U X such that its
domain D(t) satisfies the following properties: if ¢ € Fy U X then D(t) = {e}; if t = f(t1,...,1n)
then D(t) ={e}U{i.a|i=1,....,nand a € D(t;)}. D(t) is the set of occurrences of the term t.
The subset of non-variable occurrences of ¢ is denoted as D;(t).

A subterm of t at an occurrence a € D(t) is denoted t/a. If t = f(t1,...,t,) then t/e = ¢ and
t/ia = t;/a for all « = 1,...,n. Denote s[a < t] a new term obtained from the term s by replacing
its subterm s/a by t. For properties of replacemei?t see the article [8].
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A substitution is ground if, and only if, its range is a set of ground terms. A substitution o, such
that o(x) € X for all © € Lvar(c), is a variable renaming. Substitutions need not to be idempotent
in our approach.

Two terms s and t are unifiable if, and only if, there is an idempotent substitution o such that
os = ot. The substitution o is called a unifier. The substitution o is called the most general unifier
for s and ¢ if there are no substitutions ¢ and % such that ¢ = ¥.¢ and, ps = ¢t, and % is not a
variable renaming.

The sets Lvar(p), Rvar(y), Var(y) denote the domain, range, and all variables of the substitution
@, respectively. For iteration reasons, standard unification with variable renaming cannot take place,
therefore the substitution in own variables must be defined. The substitution o on term ¢ is a
substitution in own variables of t if it does not introduce new variables, i.e. Var(ot) C Var(t), and
does not contain a variable renaming. This notion can be enlarged to a set of substitutions.

A rewrite rule is an ordered pair of terms r = (s,t) (written s — ) such that Var(t) C Var(s).
A term rewriting system is a finite set of rules R. A term rewriting system R is said to be variable
preserving, if for all rules (s — t) € R, Var(s) = Var(t). The term rewriting system constructed
from a variable preserving rewrite system R by turning the rules in the opposite direction is the set
of rules R? = {t — s | s =t € R}, called the opposite term rewriting system to R.

2.2 Rule closures

The following constructions come from Lankford and Musser [6] and also from Guttag, Kapur and
Musser [2|. They are mentioned also by Dershowitz [1].

Definition 2.1 Let R be an arbitrary set of rules.
The set of forward closures FC(R) of R is inductively defined as follows:

1. FEvery rule s — t from R is a forward closure s> t.

2. Let sy 011, sy 1y be two forward closures and oty /a = o3y holds for a most general unifier
o, and occurrence a € Ds(t1), then osy >— oty[a < oty] is a forward closure.

The set of backward closures BC(R) of R is inductively defined as follows:

1. FEvery rule s — t from R is a backward closure s»—>1.

2. Let sy »—> 1y, 89 »—=> 1y be two backward closures and oty = 0s9/a holds for a most general unifier
o and occurrence a € Dy(s3), then osya < os1]»—= oty is a backward closure.

The set of overlap closures OC(R) of R is inductively defined as follows:

1. FEvery rule s — t from R is an overlap closure s»—>t.

2. Let sy v 11, sg»> 1y be two overlap closures and oty/a = oy holds for a most general unifier
o, and occurrence a € Ds(t1), then sy v oti[a « oty] is an overlap closure.

3. Let sy v 11, s3»> 1y be two overlap closures and oty = osy/a holds for a most general unifier
o and occurrence a € Ds(sy), then osyla < os1]»—> oty is an overlap closure.

3 Substitution operations and operators

In the first part, two substitution operations — the sum and product — are defined, and succes-
sively their properties are proved. Upon the sum operation three other substitution operators (the
exponent, W— and T-operator) have been built. These three operators are defined as iterations of
the substitution sum on different basic level substitutions.



o The sum of ¢ and ¢ is the substitution v A o =[x  Y(px) | @ € Lvar(p), Y (px) # x].

o The product of ¢ and ¢ is the substitution
pop=(pAe)Ulr(z)| v e Lvar(y) — Loar(p)].

The substitution sum and product are well-defined (i.e. they yield a substitution). For the
substitution sum this can be easily deduced from the definition. The substitution product is the well-
known substitution composition. This fact automatically implies the substitution product properties
as they are known for composition. The sum is a composition restricted to the variables of the first
substitution.

The substitution product is an associative operation. The substitution sum is in general neither
commutative nor associative. Other properties are cumulated into the following lemma.

Lemma 3.2 Let ¢, ¢ and o be substitutions.
1. The identity i o o = v A holds if, and only if, Lvar(y) C Lvar(p).
2. The identity v A o = ¢ holds if, and only if, Lvar(y¥) N Rvar(y) = 0.
3. The identity o A (o A ) = (0 A o) A holds if Lvar(o) C Lvar(yp) and o, ¢, ¢ does not

contain variable renamings.
The following lemma is a backbone for proving the theorem 4.10.

Lemma 3.3 Let ¢ and v be substitutions. The identity (v A ¢) oy = tp o holds if Lvar(p) N
Var(y) =10.

The following property presents only a shorthand for a long notation.

Definition 3.4 The substitutions ¢ and ¢ are coherent (denote it by o — ) if
Lvar(e) N Var(y) =0 or Var(e) N Lvar(y) = 0.

The coherence relation is symmetric.

3.2 Substitution operators

On the basis of substitution sum we define three iterative substitution operators — the exponent,
W-operator and T—operator. For convenience and to remember their names, we can call the last two
Whale, and Turtle. Applying these iterative operators on basic level substitution yields a graded
sequence of new derived substitutions. The first two operators are necessary for closure chain defini-
tions, the third one will be used in the crossed rule generalization.

Definition 3.5 Let ¢ and i be substitutions. We define the iterative exponent operator on a
substitution @ inductively:

Lo =]
2o =0yt
There is a generalization of the lemma 3.3 for the exponent operator.

Lemma 3.6 Let ¢ and ¢ be substitutions. If Lvar(e) N Var(y) = 0 then (" A @)od™ =" o
holds for all n.
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and ) inductvi;;ely: V
1 Wo(¢, ) =[]
2 Won(¥,90) = A (Wa(,0) &)

Because of their close relation, it would be interesting to know when the exponent and the W—
operator coincide.

Lemma 3.8 Let ¢ and ¢ be substitutions. If Lvar(y) N Rvar(e) = 0 then W,(¢, p) = ¢ holds for
all n.

Last but not least, we introduce the T—operator. This operator will not be used in closure chains
but in crossed systems definition [3]. We present here only its definition and determine its connection
to the previous operators.

Definition 3.9 Let ¢, ¢ and o be substitutions. We define the iterative operator T (Turtle) on
them inductively:

1. TO(@7¢7U) =¥ AO‘
2. Tn+1(99,77/),0') =@ A (Tn(99777b70-) A ¢)

The T—operator can be regarded as a slight extension of the W—operator. Because of their close
relation it would be interesting to know when do they coincide.

Fact 3.10 The identity T,.(¢,¢¥,v) = Wot1(@, ) holds for all n.

The following proposition determines the connection between the T— and exponent operators
when the substitution o sifts upward.

Lemma 3.11 Let ¢, ¢ and o be substitutions. If Lvar(e)N(Rvar(y)URvar(c)) = 0 and Lvar(o) C
Lvar(v), then T,(p,,0) = o A" holds for all n.

4 Properties of rule closures

In the first part we investigate the structure and construction of rule closures in general. The second
part introduces special rule closures, called closure chains, together with the investigation of their
properties.

4.1 Structure and construction of rule closures

As it can be easily seen from the definition 2.1, a duality principle determines the construction of
forward and backward closures.

Proposition 4.1 (First duality principle) Let R be a variable preserving rewrite system. Then
s > 1 is a forward closure in FC(R) if, and only if, t »—=> s is a backward closure in BC(R).
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either forward or backward ones without closer distinction. A rule closure without distinction will
be denoted s>+t which means either s>+t or ¢ »s. A closure set of R without distinction will
be denoted RC(R) which means either F'C'(R) or BC(R).

Let us investigate the construction of rule closures in particular. First, we introduce the closure
operations according to the definition 2.1.

Definition 4.2 Let R be an arbitrary set of rules. Let pj = sy >>ty, py = s3>ty be two rule
closures in RC(R) such that oti/a = o0sy holds with a most general unifier o and a nonvariable
occurrence a € Ds(t1). Then the rule closure 0s; >—> oti[a « oty is constructible and the operation
producing it is denoted py ~», ps.

The definition 2.1 may imply a brute force procedure for producing the closure set FC(R) or
BC(R) from R based on the superposition of all newly produced rule closures to the existing ones.
This can result in a rather inefficient way of producing the closure set (if it is finite) or deciding
that the produced closure set is infinite. The following lemma implies a smarter procedure with
considerably better performance.

Lemma 4.3 Let p1, p2 and ps be rule closures of uniform kind. If the rule closure g = py ~, (p2 ~
ps) is constructible then g = (p1 ~rq p2) ~rab P3.

The previous lemma proves a semi-associativity of the closure operations. Forward closures are
left—, backward ones are right—associative.

Corollary 4.4 Let R be a variable preserving rewrite system. If p is a rule closure from RC(R)— R
then it can be written as a composition p = ¢ ~ g2 where g1 € RC(R) and gy is a rewrite rule in R,
resp. R°P.

From this corollary follows that a new rule closure can be produced from an already existing one
and a basic rewrite rule. This is the principle of the closure producing procedure 4.5. This procedure
is the same for both forward and backward closure sets, except of the closure producing operation.

Procedure 4.5 (Closure set generation)

Input: R, resp. R
Output: RC(R) if it halts

Method:
var A, B, C': set;
begin
B:=R; A:=0; C:=0;
repeat

for (all p € B) and (all ¢ € R) and (all « € D,(p)) do
if p ~, q is constructible for the occurrence a

then C :=C U {p~,q}

fi
od;
A=AUB;B:=C;C:=10
until B = 0;
RC(R):= A

end



iU UL o u 1(,\/\1(,) 15 \111)11111UC 4o Wi AL VL all AL PLLVL Al y LU vvLIbL oyobiil LL.

Theorem 4.6 [t is undecidable if the closure set RC(R) of a rewrite system R is finite, even if R
has only two rules, one of them a ground rule containing no variables.

4.2 Closure chains

We define a special kind of rule closures called closure chains. As in the case of rule closures, two
types of closure chains may basically appear — forward and backward chains. Actually, our interest
is focused on the closure chains, because, according to their construction, they are responsible for
the divergence of Knuth—-Bendix completion procedure [3].
Let us consider a rule closure
5> 1 (1)

with the requirement that it should be possible to chain it with itself. This means that the term s
must be unifiable with a nonvariable subterm ¢/b. Unification is possible only if the unified terms
have disjoint variables, which is not the case here, therefore we need to perform variable renaming.
If we want to control the chaining iteration, variable renaming must be performed explicitly. These
considerations leed to the split of a unifier into variable renamings and substitutions in own variables.

First, we need a variable renaming po = [v < 2o | # € Var(s)] to rename the variables in (1) by
introducing indexes to them. Now, we can consider the chaining of the rule closures pgs > pot =
sg > tg and s> t. The actual unifier in the superposition of previous rule closures will be split into
the substitutions ¢y and ¢, in own variables of s, such that

1t /b = pas (2)

holds, and the variable renaming mg = [2¢ < @ | ©o € Var(to/b)] canceling some of the indexes
introduced by po, to allow the application of the substitution ¢; on the subterm ¢/b. To assure the
idempotence of the unifier, we apply the variable renaming p; = [ + 21 | * € Var(s)] introducing
new indexes, at the end. Thus, the actual unifier will be o = (p1 A (1 A 7)) U (p1 & ¢2) and the
rule closure yielded in the first iteration step is

(p1 & (1 & mo))so = (p1 & (o1 & 7o) Jtolb <= (p1 & w2)1] (3)

Up to this step there is nothing interesting in this process, except that variable renaming is performed
explicitly. Let us suppose further that the newly created rule closure (3) and the previous rule
closure (1) build another rule closure, and that this process may continue up to infinity: the rule
closure, produced during the n—th iteration step, and the rule closure (1) always build a new rule
closure.

Let us think of the rule closure (3) in the form s; 0— ;. According to the previous assumption,
in the second iteration there must be the substitutions ¢/, ¢} in own variables of s, the occurrence
b € Dy(t1), and the variable renaming m = [y ¢ @ | 21 € Var(t,/V')], such that

(P A m)t /b = pys (4)

holds. Of course, this is only a recall of the condition (2) from the first iteration. It is obvious to
think of & as an iteration of b, i.e. & = b.b, because this occurrence exists in ¢; in each particular
case. This means that (4) can be transformed to

(@] 0 p2)t/b = @hs (5)
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1 = filerp2) (6)
vy = [ap1.92) (7)
Let us now compare the identities (2) and (5). Of course the identity (2) can be extended to

(¥ 0 p1)t/b= (¢ 0a)s

for all substitutions ¢’ according to the composition properties, but such kind of extension does
not give appropriate results and do not suit our goals. We must proceed smarter and extend the
identity (2) to a more general one

(" Ap)t/b= (" A pa)s (8)

It is also obvious to consider the new extending substitution ¢’ in terms of ¢; and 3, introducing
a third substitution function

V' = fa(pr, pa) (9)

Comparing the identities (5) and (8) in terms of the defined substitution functions fi, f> and f3 we
get the following identities

Jilpr,02) 002 = falpr, 92) A wn (10)
falpr,02) = fa(er,02) A o (11)

which express the conditions that must be satisfied in the second iteration step.

As it was described earlier, we require that it must be possible to iterate this process up to
infinity. This means that an iterated infinite rule closure sequence s, >1, must be constructible
from s> t, together with the iterated sequences of substitutions

A= (e, 00)
o = (1, 00)
b = (0, 00)

taking advantage of the explicit variable renaming by a pair of fold /unfold substitutions

T = |v, < 2|2, € Var(t,/b")]
pn =[x a,|x € Var(s)

for each iteration step n, which cancel and introduce indexes. Note that
Lvar(m, N p,) N Var(t,/b") = 0
(n) ()

The actual unifier in the iteration step n will be constructed from ¢, ", ¢35, 7,, and p,11 as

on = (Pt D A ) U (pgs A pY)
(r)

The iterated substitution sequences @y ’, c,o(zn) and 1" are derived from the notion of substitution
function, introduced by the identities (6), (7) and (9). Therefore the new substitution functions fl(n),

fz(n) and f:)()n) are built up as iterations of the basic ones fi, f; and f5. Now, the conditions (10)
and (11) are to be extended in a similar manner.

As it is to be shown in the following propositions, the previously described iterations are granted
by the substitution algebra constructions, especially by the iterative substitution operators exponent
and Whale, developed in Section 3. Hence the closure chain definitions inherit the conditions of their
supporting substitution algebra constructions. Particularly, these are the conditions from lemma 3.3,
propagated through lemma 3.6. Last but not least, the rule closure (1) can be enlarged to a mixed
structure — to an overlap closure.



1. p1t/b = pas
,Q. 991 — 992

Someone may argue that there exist overlap closures which do not satisfy the coherence condition
and, nevertheless, build an infinite iteration sequence. It can be proved that the coherence relation
becomes satisfied after the first iteration step.

Backward chains represent the counterpart to the forward chains. They are constructed from
backward closures in a similar way. Also the same kind of duality according to forward and backward
chains can be observed.

Definition 4.8 An overlap closure s»—>t is a backward chain if there are substitutions p1, @q in
own variables of s and occurrence b € Dy(s) such that

1. 1t = pas/b
,Q. 991 — 992

The same discussion as for the forward chain, concerning the coherence conditions and chaining
property, appears also for the backward chain. Of course, not every rule closure builds a closure
chain.

As with the closure definitions, also in this case there can be observed a very close duality between
both definitions of closure chains.

Proposition 4.9 (Second duality principle) The closure s»—>1 is a forward chain if, and only
if, t »> s is a backward chain.

According to this duality principle, we do not need to distinguish between forward and backward
chains in general. If a result is provable for one kind of closure chains then it is provable also for the
other kind according to this duality principle. Therefore if we speak about closure chains we mean
either forward or backward ones. Let us describe the rule closures s> s with the same terms on
both sides as reflexive.

The next theorem describes closures sets by means of closure chains. Actually, there are two
theorems, one for the forward chain, the other for the backward one, but their proofs are completely
corresponding to each other. Therefore we may take advantage of the duality principle 4.9.

Theorem 4.10 [f RC(R) contains a nonreflexive closure chain then RC(R) is infinite.

Proof: (Sketch)

Let s>+t be a closure chain as in definition 4.7 or 4.8. Let

S0 = pos
Sp+1 = (pn—l—l A ((Wn(@l, 9‘92) A 9‘91) A 7Tn))8n
lo = pol

st = (o1 & (Walpr,92) Dpr) Ama) b < (pngs & (Wi, 02) & ¢2))t]

define a sequence of terms s, and t,. It can be proved that s, 01, is in RC({s — t}) for all n by
induction. O

Theorem 4.11 [t is undecidable in general whether RC(R) contains a closure chain.

The proof consists of a simple modification of the undecidability proof of Narendran and Still-
man [7].
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of completion. After that we studied some properties of rule closures in general, pointing out the
undecidability of the closure set finiteness. Last but not least, we defined a special class of rule
closures, called closure chains, identified them formally as the core reason of divergence, and proved
their iterated generation by means of the previously introduced substitution algebra.

Because the closure chains were identified as the underlying notion for divergence, the determina-
tion of a system as divergent degrades to a search for closure chains. Unfortunately, it is undecidable
in general to determine if eventually a closure chain will be generated.
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