
Chain Properties of Rule ClosuresMiki HERMANNCentre de Recherche en Informatique de NancyCNRS and INRIA-LorraineCampus Scienti�que, BP 239,54506 Vand÷uvre-les-Nancy, Francee-mail: hermann@loria.crin.frAbstractThis article presents an introduction to the generalization of the crossed rule approach to thedetection of Knuth�Bendix completion procedure divergence. It introduces the closure chains,which are special rule closures constructed by means of particular substitution operations andoperators, as a suitable formalism for a progress in this direction. Supporting substitutionalgebra is developed �rst, followed by considerations concerning rule closures in general, andconcluded by investigation of closure chain properties.1 IntroductionIn [4] the importance of forward closures and later also backward closures for the de�nition of crossedrules has been discovered. During the attempts to generalize the crossed rule notion it becameapparent that their construction is strictly dependent on special forward or backward rule closures,called forward/backward chains. These closure chains are derived from rule closures by substitutionvariable constraints, and are constructed by means of special substitution operations and iterativeoperators. It is for this iterative construction way of the closure chains, that makes them mostsuitable for the description of the Knuth�Bendix procedure divergence. Therefore the attention isfocused on a su�ciently general de�nition with the potential to describe the largest class of possiblecases by their structural entities.2 Basic notation and de�nitions2.1 Term rewriting systemsLet F be a �nite or enumerable set of function symbols graded by arity (signature). F0 denotes theset of constants. Let X be an enumerable set of variables such that F \X = ;. Denote T (F;X) theset of all terms (free algebra) over variables X and symbols F . The terms containing no variablesare called ground terms. V ar(t) denotes the set of all variables in the term t.Let N� be a set of strings of natural numbers with a special symbol " 2 N� for the empty string.Suppose the existence of string concatenation operation on N�. Using the elements of N� as labels,the terms can be viewed as labeled trees. A term t is a partial function N� ! F [X such that itsdomain D(t) satis�es the following properties: if t 2 F0 [ X then D(t) = f"g; if t = f(t1; : : : ; tn)then D(t) = f"g [ fi:a j i = 1; : : : ; n and a 2 D(ti)g. D(t) is the set of occurrences of the term t.The subset of non-variable occurrences of t is denoted as Ds(t).A subterm of t at an occurrence a 2 D(t) is denoted t=a. If t = f(t1; : : : ; tn) then t=" = t andt=ia = ti=a for all i = 1; : : : ; n. Denote s[a t] a new term obtained from the term s by replacingits subterm s=a by t. For properties of replacement see the article [8].1



A substitution is a function � : X ! T (F;X) such that �x = x holds for all but a �nite numberof variables. Denote a substitution � by [x1 t1; : : : ; xn  tn] when the terms ti are substituted forthe variables xi and xi 6= ti, for i = 1; : : : ; n. Substitutions have a homomorphic extension on terms.A substitution is ground if, and only if, its range is a set of ground terms. A substitution �, suchthat �(x) 2 X for all x 2 Lvar(�), is a variable renaming. Substitutions need not to be idempotentin our approach.Two terms s and t are uni�able if, and only if, there is an idempotent substitution � such that�s = �t. The substitution � is called a uni�er . The substitution � is called the most general uni�erfor s and t if there are no substitutions ' and  such that � =  :' and, 's = 't, and  is not avariable renaming.The sets Lvar('),Rvar('), V ar(') denote the domain, range, and all variables of the substitution', respectively. For iteration reasons, standard uni�cation with variable renaming cannot take place,therefore the substitution in own variables must be de�ned. The substitution � on term t is asubstitution in own variables of t if it does not introduce new variables, i.e. V ar(�t) � V ar(t), anddoes not contain a variable renaming. This notion can be enlarged to a set of substitutions.A rewrite rule is an ordered pair of terms r = (s; t) (written s! t) such that V ar(t) � V ar(s).A term rewriting system is a �nite set of rules R. A term rewriting system R is said to be variablepreserving, if for all rules (s ! t) 2 R, V ar(s) = V ar(t). The term rewriting system constructedfrom a variable preserving rewrite system R by turning the rules in the opposite direction is the setof rules Rop = ft! s j s! t 2 Rg, called the opposite term rewriting system to R.2.2 Rule closuresThe following constructions come from Lankford and Musser [6] and also from Guttag, Kapur andMusser [2]. They are mentioned also by Dershowitz [1].De�nition 2.1 Let R be an arbitrary set of rules.The set of forward closures FC(R) of R is inductively de�ned as follows:1. Every rule s! t from R is a forward closure s� t.2. Let s1� t1, s2� t2 be two forward closures and �t1=a = �s2 holds for a most general uni�er�, and occurrence a 2 Ds(t1), then �s1��t1[a �t2] is a forward closure.The set of backward closures BC(R) of R is inductively de�ned as follows:1. Every rule s! t from R is a backward closure s� t.2. Let s1� t1, s2� t2 be two backward closures and �t1 = �s2=a holds for a most general uni�er� and occurrence a 2 Ds(s2), then �s2[a �s1]��t2 is a backward closure.The set of overlap closures OC(R) of R is inductively de�ned as follows:1. Every rule s! t from R is an overlap closure s� t.2. Let s1� t1, s2� t2 be two overlap closures and �t1=a = �s2 holds for a most general uni�er�, and occurrence a 2 Ds(t1), then �s1��t1[a �t2] is an overlap closure.3. Let s1� t1, s2� t2 be two overlap closures and �t1 = �s2=a holds for a most general uni�er� and occurrence a 2 Ds(s2), then �s2[a �s1]��t2 is an overlap closure.3 Substitution operations and operatorsIn the �rst part, two substitution operations � the sum and product � are de�ned, and succes-sively their properties are proved. Upon the sum operation three other substitution operators (theexponent, W� and T�operator) have been built. These three operators are de�ned as iterations ofthe substitution sum on di�erent basic level substitutions.



3.1 Substitution operationsDe�nition 3.1 Let ' and  be arbitrary substitutions.� The sum of ' and  is the substitution  4 ' = [x  ('x) j x 2 Lvar(');  ('x) 6= x].� The product of ' and  is the substitution � ' = ( 4 ') [ [x  (x) j x 2 Lvar( )� Lvar(')].The substitution sum and product are well�de�ned (i.e. they yield a substitution). For thesubstitution sum this can be easily deduced from the de�nition. The substitution product is the well-known substitution composition. This fact automatically implies the substitution product propertiesas they are known for composition. The sum is a composition restricted to the variables of the �rstsubstitution.The substitution product is an associative operation. The substitution sum is in general neithercommutative nor associative. Other properties are cumulated into the following lemma.Lemma 3.2 Let ',  and � be substitutions.1. The identity  � ' =  4 ' holds if, and only if, Lvar( ) � Lvar(').2. The identity  4 ' = ' holds if, and only if, Lvar( ) \ Rvar(') = ;.3. The identity � 4 ('4  ) = (� 4 ')4  holds if Lvar(�) � Lvar(') and �, ',  does notcontain variable renamings.The following lemma is a backbone for proving the theorem 4.10.Lemma 3.3 Let ' and  be substitutions. The identity ( 4 ') �  =  � ' holds if Lvar(') \V ar( ) = ;.The following property presents only a shorthand for a long notation.De�nition 3.4 The substitutions ' and  are coherent (denote it by ' ?  ) ifLvar(') \ V ar( ) = ; or V ar(') \ Lvar( ) = ;.The coherence relation is symmetric.3.2 Substitution operatorsOn the basis of substitution sum we de�ne three iterative substitution operators � the exponent,W�operator and T�operator. For convenience and to remember their names, we can call the last twoWhale, and Turtle. Applying these iterative operators on basic level substitution yields a gradedsequence of new derived substitutions. The �rst two operators are necessary for closure chain de�ni-tions, the third one will be used in the crossed rule generalization.De�nition 3.5 Let ' and  be substitutions. We de�ne the iterative exponent operator on asubstitution ' inductively:1. '0 = [ ]2. 'n+1 = ' � 'nThere is a generalization of the lemma 3.3 for the exponent operator.Lemma 3.6 Let ' and  be substitutions. If Lvar(') \ V ar( ) = ; then ( n 4 ') �  n =  n � 'holds for all n.



The W�operator represents a structural generalization of the exponent operator.De�nition 3.7 Let ' and  be substitutions. We de�ne the iterative operator W (Whale) on 'and  inductively:1. W0( ;') = [ ]2. Wn+1( ;') =  4 (Wn( ;')4 ')Because of their close relation, it would be interesting to know when the exponent and the W�operator coincide.Lemma 3.8 Let ' and  be substitutions. If Lvar( )\Rvar(') = ; then Wn( ;') = 'n holds forall n.Last but not least, we introduce the T�operator. This operator will not be used in closure chainsbut in crossed systems de�nition [3]. We present here only its de�nition and determine its connectionto the previous operators.De�nition 3.9 Let ',  and � be substitutions. We de�ne the iterative operator T (Turtle) onthem inductively:1. T0('; ; �) = '4 �2. Tn+1('; ; �) = '4 (Tn('; ; �)4  )The T�operator can be regarded as a slight extension of the W�operator. Because of their closerelation it would be interesting to know when do they coincide.Fact 3.10 The identity Tn('; ;  ) = Wn+1('; ) holds for all n.The following proposition determines the connection between the T� and exponent operatorswhen the substitution � sifts upward.Lemma 3.11 Let ',  and � be substitutions. If Lvar(')\(Rvar( )[Rvar(�)) = ; and Lvar(�) �Lvar( ), then Tn('; ; �) = �4  n holds for all n.4 Properties of rule closuresIn the �rst part we investigate the structure and construction of rule closures in general. The secondpart introduces special rule closures, called closure chains, together with the investigation of theirproperties.4.1 Structure and construction of rule closuresAs it can be easily seen from the de�nition 2.1, a duality principle determines the construction offorward and backward closures.Proposition 4.1 (First duality principle) Let R be a variable preserving rewrite system. Thens � t is a forward closure in FC(R) if, and only if, t� s is a backward closure in BC(Rop).



According to this duality principle we do not need to distinguish between forward and backwardclosures in general. If a result is provable for one kind of rule closures then it is provable also for theother kind according to this duality principle. Therefore, if we speak about rule closures we meaneither forward or backward ones without closer distinction. A rule closure without distinction willbe denoted s� t which means either s� t or t� s. A closure set of R without distinction willbe denoted RC(R) which means either FC(R) or BC(Rop).Let us investigate the construction of rule closures in particular. First, we introduce the closureoperations according to the de�nition 2.1.De�nition 4.2 Let R be an arbitrary set of rules. Let p1 = s1� t1, p2 = s2� t2 be two ruleclosures in RC(R) such that �t1=a = �s2 holds with a most general uni�er � and a nonvariableoccurrence a 2 Ds(t1). Then the rule closure �s1��t1[a �t2] is constructible and the operationproducing it is denoted p1 ;a p2.The de�nition 2.1 may imply a brute force procedure for producing the closure set FC(R) orBC(R) from R based on the superposition of all newly produced rule closures to the existing ones.This can result in a rather ine�cient way of producing the closure set (if it is �nite) or decidingthat the produced closure set is in�nite. The following lemma implies a smarter procedure withconsiderably better performance.Lemma 4.3 Let p1, p2 and p3 be rule closures of uniform kind. If the rule closure q = p1 ;a (p2 ;bp3) is constructible then q = (p1 ;a p2);ab p3.The previous lemma proves a semi�associativity of the closure operations. Forward closures areleft�, backward ones are right�associative.Corollary 4.4 Let R be a variable preserving rewrite system. If p is a rule closure from RC(R)�Rthen it can be written as a composition p = q1 ; q2 where q1 2 RC(R) and q2 is a rewrite rule in R,resp. Rop.From this corollary follows that a new rule closure can be produced from an already existing oneand a basic rewrite rule. This is the principle of the closure producing procedure 4.5. This procedureis the same for both forward and backward closure sets, except of the closure producing operation.Procedure 4.5 (Closure set generation)Input: R, resp. RopOutput: RC(R) if it haltsMethod:var A, B, C: set;beginB := R; A := ;; C := ;;repeatfor (all p 2 B) and (all q 2 R) and (all a 2 Ds(p)) doif p;a q is constructible for the occurrence athen C := C [ fp;a qg�od;A := A [ B; B := C; C := ;until B = ;;RC(R) := Aend



Alas, this procedure is even more prone to produce an in�nite (closure) set than the classicalKnuth�Bendix procedure, as it was de�ned by Huet [5]. Unfortunately, even the fact that theclosure set RC(R) is (in)�nite is undecidable for an arbitrary rewrite system R.Theorem 4.6 It is undecidable if the closure set RC(R) of a rewrite system R is �nite, even if Rhas only two rules, one of them a ground rule containing no variables.4.2 Closure chainsWe de�ne a special kind of rule closures called closure chains. As in the case of rule closures, twotypes of closure chains may basically appear � forward and backward chains. Actually, our interestis focused on the closure chains, because, according to their construction, they are responsible forthe divergence of Knuth�Bendix completion procedure [3].Let us consider a rule closure s� t (1)with the requirement that it should be possible to chain it with itself. This means that the term smust be uni�able with a nonvariable subterm t=b. Uni�cation is possible only if the uni�ed termshave disjoint variables, which is not the case here, therefore we need to perform variable renaming.If we want to control the chaining iteration, variable renaming must be performed explicitly. Theseconsiderations leed to the split of a uni�er into variable renamings and substitutions in own variables.First, we need a variable renaming �0 = [x x0 j x 2 V ar(s)] to rename the variables in (1) byintroducing indexes to them. Now, we can consider the chaining of the rule closures �0s� �0t =s0� t0 and s� t. The actual uni�er in the superposition of previous rule closures will be split intothe substitutions '1 and '2 in own variables of s, such that'1t=b = '2s (2)holds, and the variable renaming �0 = [x0  x j x0 2 V ar(t0=b)] canceling some of the indexesintroduced by �0, to allow the application of the substitution '1 on the subterm t=b. To assure theidempotence of the uni�er, we apply the variable renaming �1 = [x x1 j x 2 V ar(s)] introducingnew indexes, at the end. Thus, the actual uni�er will be � = (�1 4 ('14 �0)) [ (�1 4 '2) and therule closure yielded in the �rst iteration step is(�14 ('14 �0))s0� (�14 ('14 �0))t0[b (�14 '2)t] (3)Up to this step there is nothing interesting in this process, except that variable renaming is performedexplicitly. Let us suppose further that the newly created rule closure (3) and the previous ruleclosure (1) build another rule closure, and that this process may continue up to in�nity: the ruleclosure, produced during the n�th iteration step, and the rule closure (1) always build a new ruleclosure.Let us think of the rule closure (3) in the form s1� t1. According to the previous assumption,in the second iteration there must be the substitutions '01, '02 in own variables of s, the occurrenceb0 2 Ds(t1), and the variable renaming �1 = [x1 x j x1 2 V ar(t1=b0)], such that('014 �1)t1=b0 = '02s (4)holds. Of course, this is only a recall of the condition (2) from the �rst iteration. It is obvious tothink of b0 as an iteration of b, i.e. b0 = b:b, because this occurrence exists in t1 in each particularcase. This means that (4) can be transformed to('01 � '2)t=b = '02s (5)



The substitutions '01 and '02 will certainly not be completely new but it is obvious to think of them asfunctions of the previous substitutions '1 and '2. Therefore we introduce the notion of a particularsubstitution function, in this case '01 = f1('1; '2) (6)'02 = f2('1; '2) (7)Let us now compare the identities (2) and (5). Of course the identity (2) can be extended to( 0 � '1)t=b = ( 0 � '2)sfor all substitutions  0 according to the composition properties, but such kind of extension doesnot give appropriate results and do not suit our goals. We must proceed smarter and extend theidentity (2) to a more general one ( 04 '1)t=b = ( 04 '2)s (8)It is also obvious to consider the new extending substitution  0 in terms of '1 and '2, introducinga third substitution function  0 = f3('1; '2) (9)Comparing the identities (5) and (8) in terms of the de�ned substitution functions f1, f2 and f3 weget the following identities f1('1; '2) � '2 = f3('1; '2)4 '1 (10)f2('1; '2) = f3('1; '2)4 '2 (11)which express the conditions that must be satis�ed in the second iteration step.As it was described earlier, we require that it must be possible to iterate this process up toin�nity. This means that an iterated in�nite rule closure sequence sn� tn must be constructiblefrom s� t, together with the iterated sequences of substitutions'(n)1 = f (n)1 ('1; '2)'(n)2 = f (n)2 ('1; '2) (n) = f (n)3 ('1; '2)taking advantage of the explicit variable renaming by a pair of fold/unfold substitutions�n = [xn x j xn 2 V ar(tn=bn+1)]�n = [x xn j x 2 V ar(s)]for each iteration step n, which cancel and introduce indexes. Note thatLvar(�n4 �n) \ V ar(tn=bn+1) = ;The actual uni�er in the iteration step n will be constructed from '(n)1 , '(n)2 , �n, and �n+1 as�n = (�n+1 4 ('(n)1 4 �n)) [ (�n+1 4 '(n)2 )The iterated substitution sequences '(n)1 , '(n)2 and  (n) are derived from the notion of substitutionfunction, introduced by the identities (6), (7) and (9). Therefore the new substitution functions f (n)1 ,f (n)2 and f (n)3 are built up as iterations of the basic ones f1, f2 and f3. Now, the conditions (10)and (11) are to be extended in a similar manner.As it is to be shown in the following propositions, the previously described iterations are grantedby the substitution algebra constructions, especially by the iterative substitution operators exponentand Whale, developed in Section 3. Hence the closure chain de�nitions inherit the conditions of theirsupporting substitution algebra constructions. Particularly, these are the conditions from lemma 3.3,propagated through lemma 3.6. Last but not least, the rule closure (1) can be enlarged to a mixedstructure � to an overlap closure.



De�nition 4.7 An overlap closure s� t is a forward chain if there are substitutions '1, '2 inown variables of s and occurrence b 2 Ds(t) such that1. '1t=b = '2s2. '1 ? '2Someone may argue that there exist overlap closures which do not satisfy the coherence conditionand, nevertheless, build an in�nite iteration sequence. It can be proved that the coherence relationbecomes satis�ed after the �rst iteration step.Backward chains represent the counterpart to the forward chains. They are constructed frombackward closures in a similar way. Also the same kind of duality according to forward and backwardchains can be observed.De�nition 4.8 An overlap closure s� t is a backward chain if there are substitutions '1, '2 inown variables of s and occurrence b 2 Ds(s) such that1. '1t = '2s=b2. '1 ? '2The same discussion as for the forward chain, concerning the coherence conditions and chainingproperty, appears also for the backward chain. Of course, not every rule closure builds a closurechain.As with the closure de�nitions, also in this case there can be observed a very close duality betweenboth de�nitions of closure chains.Proposition 4.9 (Second duality principle) The closure s� t is a forward chain if, and onlyif, t� s is a backward chain.According to this duality principle, we do not need to distinguish between forward and backwardchains in general. If a result is provable for one kind of closure chains then it is provable also for theother kind according to this duality principle. Therefore if we speak about closure chains we meaneither forward or backward ones. Let us describe the rule closures s� s with the same terms onboth sides as re�exive.The next theorem describes closures sets by means of closure chains. Actually, there are twotheorems, one for the forward chain, the other for the backward one, but their proofs are completelycorresponding to each other. Therefore we may take advantage of the duality principle 4.9.Theorem 4.10 If RC(R) contains a nonre�exive closure chain then RC(R) is in�nite.Proof: (Sketch)Let s� t be a closure chain as in de�nition 4.7 or 4.8. Lets0 = �0ssn+1 = (�n+1 4 ((Wn('1; '2)4 '1)4 �n))snt0 = �0ttn+1 = (�n+1 4 ((Wn('1; '2)4 '1)4 �n))tn[bn+1  (�n+14 (Wn('1; '2)4 '2))t]de�ne a sequence of terms sn and tn. It can be proved that sn� tn is in RC(fs! tg) for all n byinduction. 2Theorem 4.11 It is undecidable in general whether RC(R) contains a closure chain.The proof consists of a simple modi�cation of the undecidability proof of Narendran and Still-man [7].



5 ConclusionFirst, we introduced a special substitution algebra with a connection to the divergence problemof completion. After that we studied some properties of rule closures in general, pointing out theundecidability of the closure set �niteness. Last but not least, we de�ned a special class of ruleclosures, called closure chains, identi�ed them formally as the core reason of divergence, and provedtheir iterated generation by means of the previously introduced substitution algebra.Because the closure chains were identi�ed as the underlying notion for divergence, the determina-tion of a system as divergent degrades to a search for closure chains. Unfortunately, it is undecidablein general to determine if eventually a closure chain will be generated.AcknowledgementsI would like to thank Hélène Kirchner, Leo Bachmair, Laurent Fribourg, Pierre Lescanne, IgorPrívara, and Pierre Réty for comments and suggestions on the early versions of this paper, and ananonimous referee for pointing out a �aw in part 3 in lemma 3.2.References[1] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1 & 2):69�116,1987. Special issue on Rewriting Techniques and Applications.[2] J.V. Guttag, D. Kapur, and D.R. Musser. On proving uniform termination and restricted termi-nation of rewrite systems. SIAM Journal on Computing, 12(1):189�214, February 1983.[3] M. Hermann. Crossed term rewriting systems. Research report 89-R-003, Centre de Rechercheen Informatique de Nancy, 1989. Included in [?].[4] M. Hermann and I. Prívara. On nontermination of Knuth-Bendix algorithm. In L. Kott, editor,Proceedings 13th ICALP Conference, Rennes (France), volume 226 of Lecture Notes in ComputerScience, pages 146�156. Springer-Verlag, July 1986.[5] G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm. Journal ofComputer and System Science, 23(1):11�21, August 1981. Also as: Rapport 25, INRIA, 1980.[6] D.S. Lankford and D.R. Musser. A �nite termination criterion. Unpublished draft, InformationSciences Institute, University of Southern California, Marina-del-Rey, CA, 1978.[7] P. Narendran and J. Stillman. It is undecidable whether the Knuth-Bendix completion proceduregenerates a crossed pair. In B. Monien and R. Cori, editors, Proceedings 6th Symposium onTheoretical Aspects of Computer Science (STACS'89), Paderborn (Germany), volume 349 ofLecture Notes in Computer Science, pages 348�359. Springer-Verlag, February 1989.[8] B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the Associationfor Computing Machinery, 20(1):160�187, January 1973.


