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Abstract. We prove that the inference problem of propositional cir-
cumscription for affine formulas is coNP-complete, settling this way a
longstanding open question in the complexity of nonmonotonic reason-
ing. We also show that the considered problem becomes polynomial-time
decidable if only a single literal has to be inferred from an affine formula.

1 Introduction and Summary of Results

Various formalisms of nonmonotonic reasoning have been investigated during
the last twenty-five years. Circumscription, introduced by McCarthy [McC80],
is a well-developed formalism of common-sense reasoning extensively studied by
the artificial intelligence community. It has a simple and clear semantics, and
benefits from high expressive power, that makes it suitable for modeling many
problems involving nonmonotonic reasoning. The key idea behind circumscrip-
tion is that we are interested only in the minimal models of formulas, since they
are the ones with as few “exceptions” as possible, and embody therefore com-
mon sense. Moreover, propositional circumscription inference has been shown
by Gelfond et al. [GPP89] to coincide with reasoning under the extended closed
world assumption, which is one of the main formalisms for reasoning with in-
complete information. In the context of Boolean logic, circumscription amounts
to the study of models of Boolean formulas that are minimal with respect to the
pointwise partial order on models.

Several algorithmic problems have been studied in connection with proposi-
tional circumscription: among them the model checking and the inference prob-
lems. Given a propositional formula ¢ and a truth assignment s, the model
checking problem asks whether s is a minimal model of ¢. Given two proposi-
tional formulas ¢ and ¢, the inference problem asks whether 1 is true in every
minimal model of ¢. Cadoli proved in [Cad92] the model checking problem to
be coNP-complete, whereas Kirousis and Kolaitis settled in [KK01la] the ques-
tion of the dichotomy theorem for this problem. The inference problem was
proved II,P-complete by Eiter and Gottlob in [EG93]. Cadoli and Lenzerini
proved in [CL94] that the inference problem becomes coNP-complete if ¢ is a



Krom or a dual Horn formula. See also [CMMO1] for an exhaustive overview
of existing complexity results in nonmonotonic reasoning and circumscription.
The complexity of the inference problem for affine formulas remained open for
ten years. It was known that the problem is in coNP, but there was no proved
coNP-hardness lower bound.

This paper is a partial result of our effort to find an output-polynomial algo-
rithm for enumerating the minimal models of affine formulas, an open problem
stated in [KSS00]. Following the result of Berlekamp et al. [BMvT78], it is clear
that we cannot develop an output-polynomial algorithm for this enumeration
problem by producing consecutive minimal models of the affine system with in-
creasing Hamming weight, unless P = NP. Another natural approach consists
of producing partial assignments to the variables that are extended to minimal
models afterwards. However, as our result indicates, this new approach does not,
lead to an output-polynomial algorithm either, unless the same collapse occurs.

We settle in this paper the complexity of the inference problem for the propo-
sitional circumscription of affine formulas, proving that the problem is coNP-
complete. First, we prove a new criterion for determining whether a given partial
solution of an affine system can be extended to a minimal one. This criterion,
which is interesting on its own, is then extensively used in the subsequent coNP-
hardness proof of the inference problem for affine formulas. More precisely, we
prove the NP-hardness of the problem, given a partial solution s of an affine
system S, whether it can be extended to a minimal solution 5. To our knowl-
edge, this proof uses a new approach combining matroid theory, combinatorics,
and computational complexity techniques. The inference problem for affine cir-
cumscription is then the dual problem to minimal extension, what proves the
former to be coNP-complete. Finally, we prove that the restriction of the affine
inference problem with ¢ being a single literal is decidable in polynomial time.

2 Preliminaries

Let s = (s1,...,8n) and s’ = (s},...,s),) be two Boolean vectors from {0,1}".
We write s < s’ to denote that s # s’ and s; < s} holds for every i < n. Let
@(x1,...,z,) be a Boolean formula having zi,...,x, as its variables and let

s € {0,1}™ be a truth assignment. We say that s is a minimal model of ¢ if s is
a satisfying truth assignment of ¢ and there is no satisfying truth assignment s’
of ¢ that satisfies the relation s’ < s. This relation is called the pointwise partial
order on models.

Let @(z1,...,2,) be a propositional formula in conjunctive normal form. We
say that (z) is Horn if ¢ has at most one positive literal per clause, dual Horn
if o has at most one negative literal per clause, Krom if ¢ has at most two literals
per clause, and affine if ¢ is a conjunction of clauses of the type z; &---&x, =0
or 1 @ --- ®x, = 1, where & is the exclusive-or logical connective, what is
equivalent to an affine system of equations S: Az = b over Zs.

Let ¢ and v be two propositional formulas in conjunctive normal form. We
say that ¢ follows from ¢ in propositional circumscription, denoted by ¢ Emin ¥,



if ¢ is true in every minimal model of ¢. Since 1 is a conjunction ¢; A --- A ¢k
of clauses ¢;, then ¢ =i ¢ if and only if ¢ Emin ¢ for each i. Hence we can
restrict ourselves to consider only a single clause instead of a formula ¢ at the
right-hand side of the propositional inference problem ¢ =i, ¢. We can further
restrict the clause ¢ to one containing only negative literals ¢ = —uy V -+ -V =y,
as it was showed in [KKO01b].

If z and y are two vectors, we denote by z = zy the vector obtained by
concatenation of = and y. Let S: Az = b be a k x n affine system of equations
over Zso. Without loss of generality, we assume that the system S is in stan-
dard form, i.e., that the matrix A has the form (I B), where I is the k x k
identity matrix and B is an arbitrary k& x (n — k) matrix of full column rank.
For convenience, we denote by z the variables from z associated with I and
by y the ones associated with B. Hence, we consider affine systems of the form
S: (I B)(zy) =h.

If Ais a kxn matrix, we denote by A(, j) the element of A positioned at row i
and column j. The vector forming the row i of the matrix A is denoted by A(i, —),
whereas the column vector j of A is denoted by A(—,j). Let I C {1,...,k} and
J C {1,...,n} be two index sets. Then A(I,—) denotes the submatrix of A
restricted to the rows I. Similarly, A(—, J) is then the submatrix of A restricted
to the columns J, whereas A(I,J) stands for the submatrix of A restricted to
the rows I and columns J. There are also two matrices with a special notation:
the k£ x k identity matrix I and the k x n all-zero matrix O}.

For a k x n affine system S: Az = b over Zs, an index set J = {j1,...,im} C
{1,...,n} of cardinality |J| = m, and a Boolean vector v = (v1,...,v,,) of
length m, we denote by S[J/v] the new system S’: A’z = b’ formed by replacing
each variable z;, by the value v;. We also denote by one(v) = {i | v; = 1} and
zero(v) = {i | v; = 0} the positions in the vector v assigned to the values 1
and 0, respectively. The Hamming weight wt(v) of a vector v is equal to the

cardinality of the set one(v), i.e., wt(v) = |one(v)|.

Each affine system S: Az = b’ can be transformed to the standard form
(I B)(zy) = b by means of Gaussian elimination in polynomial time. without
changing the ordering of solutions. Indeed, a row permutation or addition does
not change the solutions of S. A column permutation permutes the variables
and therefore also the positions in each solution uniformly. However, for each
column permutation m and a couple of solutions s, s, the relation s < s’ holds
if and only if 7(s) < 7(s’). This allows us to consider affine systems in the form
S: (I B)(zy) = b without loss of generality.

Suppose that s is a variable assignment for the variables y, i.e., for each
y; € y there exists a value s(y;) € Z,. The vector s is a partial assignment for
variables z = xy. An eztension of the vector s is a variable assignment s for each
variable from z, i.e., for each z; € z there exists a value §(z;) € Zs, such that
s(y;) = 5(y;) for each y;. If s is a variable assignment for the variables y in the
affine system S: (I B)(zy) = b then the extension s to a solution of the system S
is unique. If the variables y in the system S: (I B)(zy) = b have been assigned,
then the values for the variables z are already determined. In connection with



the previous notions we define the following two index sets
eq(s) ={i| (Bs); = b;} and neq(s) = {i | (Bs); # bi},

where b = (by,...,b;) and (Bs); means the i-th position of the vector obtained
after multiplication of the matrix B by the vector s. The set eq(s) (resp. neq(s))
is the subset of row indices ¢ for which the unique extension 3 satisfies the
equality 5(z;) = 0 (resp. 3(z;) = 1). It is clear that eq(s) N neq(s) = § and
eq(s) U neq(s) = {1,...,k} hold for each s.

3 A New Criterion For Affine Minimality

There exists a straightforward method to determine in polynomial time whether
a solution s is minimal for an affine system S over Zs. However, this method is
unsuitable for testing whether a partial solution s can be extended to a minimal
solution s of S. We propose here a completely new method well-suited to decide
whether an extension § is a minimal solution of S.

Proposition 1. Let S: (I B)(zy) = b be an affine k x n system over Zs and
let s be a Boolean vector of length n — k. The extension § is a minimal solution
of S if and only if B(eq(s), one(s)) is a matrix of column rank wt(s), i.e., all its
columns are linearly independent.

Proof. Suppose that s is minimal and the matrix B(eq(s), one(s)) has the col-
umn rank smaller than wt(s). This means that the columns of B(eq(s), one(s))
are linearly dependent, therefore there exists a subset J C one(s), such that
> jes Bleq(s),j) = 0 holds. Let ¢ be a Boolean vector satisfying the condition
one(t) = one(s) ~ J. The columns of the matrix B(eq(s), one(s)) can be parti-
tioned into two sets: those in J and those in one(t). Knowing that the columns
in J add up to the zero vector 0, we derive the following equality.

Y Blea(s).))= Y Blea(s),j)+ ) Blea(s).j)= Y Blea(s). )

jEone(s) jEone(t) JjeTJ jEone(t)

The vector ¢ is smaller than s in the pointwise order. We will show that also
the extensions 5 and  satisfy the relation ¢ < 5. For each row i € eq(s),
the coefficients B(i,j) sum up to the value b;, i.e., that Zje(me(s) B(i,j) =
2 jcone(r) B(i,J) = bi. Recall that each variable in the vector z occurs in the
system S exactly once, because of the associated identity matrix Iy . Since already
the assignments s and ¢ to the variables y sum up to the value b;, this determines
the value of the variable z; in the extensions s and # to be §(z;) = #(z;) = 0 for
each row i € eq(s). In the same spirit, the assignment s to the variables y sums
up to the value 1 — b; for each row i € neq(s), what determines the value of the
variable z; in the extension § to be 3(z;) = 1. Therefore we have #(x;) < 3(z;) =1
for each row i € neq(s). This shows that # is a solution of S smaller than s, what
contradicts our assumption that § is minimal.



Conversely, suppose that the matrix B(eq(s), one(s)) has the column rank
wt(s) but § is not minimal. The latter condition implies that there exists a
variable assignment ¢, such that the extension # is a solution of S satisfying the
relation ¢ < 5. Let J = one(3)\ one(t) be the set of positions on which the exten-
sions 5 and ¢ differ. Both extensions s and ¢ are solutions of S, therefore we have
(I B)s+(I B)t =3_,c;(I B)(—,j) = 0. The index set .J can be partitioned into
two disjoint sets J; containing the positions smaller or equal to &, that are asso-
ciated with the identity matrix I, and the set J, containing the positions greater
than k, that are associated with the matrix B. Hence the inclusion J; C one(s)
holds. The columns of the identity matrix I are linearly independent, therefore
the set J, must be nonempty in order to get the above sum equal to 0. The parti-
tion of J implies the equality >, ; I(—,j)+>;c s, B(—.j) = 0. The restriction
of this equality to the rows in eq(s) yields =, ; I(eq(s), )+>_;c,, Bleq(s), ) =
0. The vector 5 is a solution of S and for each row i € eq(s) we have s(z;) = 0,
since already the values s(y;) with j € Jo sum up to b;. This implies together
with the previous equation that i ¢ .Ji, since i < k holds, and for all indices
j € Ji the column I(eq(s),j) is the all-zero vector. This yields the equality

3

Zjeh I(eq(s),7) = 0, what implies the final equality Z_ing B(eq(s),7) = 0.

Since Jy is a subset of the columns one(s), this contradicts the fact that the
matrix B(eq(s), one(s)) has the column rank wi(s). O

4 Extension and Inference Problems

In this paper we will be interested in the complexity of the inference problem
of propositional circumscription with affine formulas. Since affine propositional
formulas are equivalent to affine systems S: Az = b over Zs, this problem can
be formulated as follows.

Problem: AFFINF

Input: An affine system S: Az = b over Zy with a Boolean k x n matrix A4, a
Boolean vector b of length k, a variable vector z = (21, ..., 2,), and a negative
clause ¢ = —uy V - - - V —u,,, where u; € z holds for each 1.

Question: Does S |=,i, ¢ hold?

Another interesting problem, closely related to the previous one, is the prob-
lem of extending a Boolean vector to a minimal solution of an affine system.

Problem: MINEXT

Input: An affine system S: Az = b over Z, with a Boolean k x n matrix 4, a
Boolean vector b of length k, a variable vector z = (z1,...,2,), and a partial
assignment s for the variables y, where z = zy.

Question: Can s be extended to a vector s, such that § is a minimal solution
of the system S?

The minimal extension problem appears naturally within algorithms enumerat-
ing minimal solutions. For any given class of propositional formulas, when the
corresponding minimal extension problem is polynomial-time decidable, then
there exists an algorithm that enumerates each consecutive pair of minimal so-
lutions with polynomial delay.



To derive the lower bound of the complexity of the latter problem, we need
to consider the following well-known NP-complete problem.

Problem: POSITIVE 1-IN-3 SAT

Input: A propositional formula ¢ in conjunctive normal form with three positive
literals per clause.

Question: Is there a truth assignment to the variable of ¢, such that exactly
one literal is assigned to true and the two others are assigned to false in every
clause?

Theorem 2. MINEXT is NP-complete even if the partial assignment s contains
no (0.

Proof. Membership of MINEXT in NP is obvious. For the lower bound, we con-
struct a polynomial reduction from the problem POSITIVE 1-IN-3 SAT.

Let ¢(x1,...,2,) be a propositional formula in conjunctive normal form
c1 A -+ A ¢y with the clauses ¢; = z} V 27 V z7. We construct an affine system
S: (I B)(zzy) = b, where I is the (4m + n) x (4m + n) identity matrix, z, z,
and y are variable vectors of respective lengths 4m + n, n, and 3m, and B is a
special (4m 4+ n) x (3m + n) matrix encoding the formula . We also construct a
partial assignment s and show that the formula ¢ has a model satisfying exactly
one variable per clause if and only if s can be extended to a minimal solution
of S.

The matrix B is composed from six blocks as follows

The matrix B] of size m x n is the clause-variable incidence matrix of the
formula ¢, i.e., Bi(i,j) = 1 holds if and only if z; € ¢;. The matrix B? of
size m x 3m is the identity matrix I,,, with each column tripled, i.e., it verifies
the conditions B3 (i,3(i — 1) + 1) = B?(i,3(i — 1) + 2) = B}(i,3i) = 1 for
all i and B} (i,j) = 0 otherwise. The matrix B of size 3m x n encodes the
polynomials z} +z?, 7 +?, and z3 + x| over Z, for each clause ¢; = z} Vi V.
This encoding is done for each ¢ = 1,...,m in three consecutive rows. Hence,
we have B(3i,i1) = BY(3i,is) = 1, BY(3i + 1,is) = BL(3i + 1,i3) = 1, and
B3(3i +2,i3) = B3(3i + 2,41) = 1, where 4; is the position of the variable 27 in
the vector © = (z1,...,2,). Otherwise we have B} (3i + ¢,j) = 0 for ¢ = 0,1,2
and j # ii1,i2,i3. In another words, the rows Bj(3i,—), B(3i + 1,—), and
B1(3i +2,—) are the incidence vectors of the polynomials z} + 22, 22 + 23, and
x? +x}, respectively. The matrix B3 of size 3m x 3m is the identity matrix I3,.
The matrix B3 of size n x n is the identity matrix I,,, whereas the matrix B2 of
size n x 3m is the all-zero matrix O3™. Note that due to the blocks B3 and B},
that are identity matrices, as well as the block B3 that is an all-zero matrix,
the matrix B has the column rank n + 3m. Denote by B; the submatrix of B
restricted to the first m rows, i.e., By = B({1,...,m}, —). Analogously, we define



By = B({m+1,...,4m},—) and B3 = B({4m+1,...,4m +n}, —). In the same
spirit, we denote by B! = B(—,{1,...,n}) and B2 = B(—,{n+1,...,n+3m})
the left and the right part of the columns, respectively, of the matrix B.

The vector b of length 4m + n in the system S is a concatenation of three
vectors by, by, and bz, where by is the all-zero vector of length m, b, is the all-zero
vector of length 3m, and b3 is the all-one vector of length m. The parts b; of the
vector b correspond to the row blocks B; of the matrix B for i = 1,2, 3. Figure 1
describes the constructed matrix B and vector b.

B! B>
111 (0]
B ] - m b1
111 0
Vi <m 0]
By $,1 + $,2 I3m 3m bo
xf + xf’
o+ a} 0
1|
Bs I, o3 n | bs
1
n 3m

Fig. 1. Matrix B and the associated vector b

Finally, we set the vector s of size 3m to be equal to 1 in each coordinate, i.e.,
s(y;) = 1 for each i = 1,...,3m and the Hamming weight of s is wt(s) = 3m.

Let v be a model of the formula ¢ satisfying exactly one literal per clause.
We will prove that when we append the all-one vector s to v, forming the vector
t = vs, then the extension ¢ is a minimal solution of S. Let us study the set
eq(t). Since every clause ¢; = z; V 27 V 2} of ¢ is satisfied, the sum of literal
values is equal to v(z}) + v(2?) + v(z}) = 1. Moreover, for each j = 1,...,m we
have s(z;) = 1, therefore all m rows of By belong to eg(t). Exactly two of the
polynomials z} + z?, 7 + x?, and z? + x} are evaluated to 1 for each clause ¢;
and for each j = 1,...,3m we have s(z;) = 1, what implies that exactly 2m
rows from B, belong to the set eq(t). The row ¢ of By and the rows 3(i — 1) + 1,
3(i—1)+42, and 3i of Bs correspond to the clause ¢;. Form the corresponding row
index set I(7) = {i, m+3(i—1)+1, m+3(i—1)+2, m+3i} for a given i. Consider
the restriction of the block B? to the rows I(i). This restriction B*(I(i), —) will
have plenty of all-zero columns. Keep only the columns containing at least one
value 1. These columns will be 3(i — 1) + 1, 3(i — 1) + 2, and 3i. Form the
corresponding column index set J(i) = {n+3(i—1)+1, n+3(i—1)+2, n+3i}



for a given i. The restriction of B to the rows I(i) and columns J(i) is the matrix

111
BUG). () = | 90| =B G).

001

Note that the first row of B*(i) and exactly two out of the three last rows
of B*(i) are also represented in the set eq(t). If we delete one of the last three
rows of B*(i), the resulting square matrix will remain non-singular. Note that
the column index sets J(i) are pairwise disjoint and that their union equals the
index set J* = {n+1,...,n+3m}. Since B(—, J*) = B? holds, we easily see that
the restriction B2({1,...,4m}, —) is equal, modulo a suitable row permutation,
to the block matrix

B*1) 0 0O
Bi ., = O . O
O O B*(m)

The restriction B?(eq(t), —) deletes from B}, one of the last three rows of each
block corresponding to B*(i). The matrix B}, is non-singular, what implies
that the restriction B?(eq(t), —) is also non-singular, since B*(i) with one row
deleted remains non-singular. Finally, the block B3 contributes wt(v) rows to
eq(t). Hence, the set eq(t) contains 3m + wt(v) row indices and the equality
wt(t) = 3m + wt(v) holds. This means that B(eq(t), one(t)) is a square matrix.
Note that B(eq(t), one(t)) is the concatenation of the matrices B(eq(t), one(v))
and B(eq(t), one(s)), since t = vs. Because s is the all-one vector, the matrix
B(eq(t), one(s)) is equal to B?(eq(t), —). Notice that B(eq(t)N{4m+1,...,4m+
n}, one(v)) (i.e. the restriction of B! (eq(t), one(v)) to rows of B}) is once more an
identity matrix, what makes the block B! (eq(t), one(v)) = B(eq(t), one(v)) non-
singular. Finally, the block B3 is an all-zero matrix, therefore the concatenation
of matrices B(eq(t), one(v))B(eq(t), one(s)) = B(eq(t), one(t)) is non-singular,
what means that its columns are linearly independent. According to Proposi-
tion 1, the extension ¢ is a minimal solution of S, hence s can be extended to a
minimal solution of the system S.

Conversely, suppose that s can be extended to a minimal solution of S.
Then there exists a partial assignment v to the variables x, forming with s the
concatenation ¢ = wvs, such that ¢ is minimal and wt(t) = 3m + wt(v) holds.
Note that independently from the choice of the values v(z}), v(z?), and v(z?),
at most two of the polynomials x} + 27, and 27 + 3, and z3 + z} evaluate to 1.
Hence, at most 2m rows of By are evaluated to 0 by the assignment ¢.

Let us analyze the row indices of B that belong to eq(t). The block B,
contributes always at most 2m elements and the block Bjs contributes exactly
wt(v) elements to eq(t). Suppose that not all indices of By belong to eq(t). In
this case, the block B; contributes at most m — 1 elements to eq(t). This implies
that the cardinality of the set eq(t) is smaller or equal than 3m — 1+ wit(v) and



B(eq(t), one(t)) is a (3m — 1 + wt(v)) X (3m + wi(v)) matrix. In this case the
column rank of the matrix B(eq(t), one(t)) is smaller than 3m + wt(v), i.e., the
columns are linearly dependent. Following Proposition 1, the extension ¢ cannot
be minimal. Hence, all m row indices of B; must belong to eq(t).

Since all m rows of By belong to eq(t) and s(y;) = 1 holds for each j, the
structure of Bi, encoding the clauses ¢; = z! V 27 V 27 of ¢, implies that the
equality t(z}) + t(z?) + t(z3) = v(x}) + v(z?) + v(2?) = 1 holds over Zj for
each i. There are two cases to analyze: (1) either v(z}) = v(z?) = v(z}) = 1 or
(2) exactly one of the values v(z}), v(z?), v(2?) is equal to 1 and the two others
are equal to 0. Suppose that there exists an i such that Case 1 is satisfied. Then
the maximal number of row indices in eq(t) contributed by Bj is 2(m — 1). This
is because the equalities v(z}) + v(2?) = v(2?) +v(2?) = v(2}) + v(x}) = 0 hold
over Zs. The cardinality of eq(t) is then bounded by 3m — 2+ wi(v), what implies
once more that the columns of B(eq(t), one(t)) are linearly dependent and this
leads to the same contradiction, implying that the extension ¢ is not minimal, as
in the previous paragraph. Case 2 presents a valid 1-in-3 assignment to . O

Theorem 3. The problem AFFINF is coNP-complete.

Proof. The problem AFFINF is the dual of the problem MINEXT. Note that, given
a formula ¢ and a clause ¢ = —uq V- - -V -y, the condition ¢ =pin —ug Ve - -V —uy
holds if and only if there is no minimal model m of ¢ that satisfies m(u,) =

- = m(ug) = 1. The latter is true if and only if the partial assignment s
with s(uy) = -+ = s(ug) = 1 cannot be extended to a minimal model of ¢, or
equivalently, to a minimal solution of the affine system S corresponding to ¢. O

5 Decompositions and Polynomial-time Decidable Cases

Eiter and Gottlob proved in [EG93] that the inference problem ¢ =i, ¢ for
propositional circumscription remains Il P-complete even if the clause ¢ consists
of a single negative literal —u. However, it is not guaranteed that the complexity
remains the same for one-literal clauses ¢ for the usual subclasses of propositional
formulas. Concerning the considered inference problem, Cadoli and Lenzerini
proved in [CL94] that for dual Horn formulas it remains coNP-complete but for
Krom formulas it becomes polynomial-time decidable for a clause ¢ consisting of
a single negative literal. It is a natural question to ask what happens in the case
of affine formulas in the presence of a single literal. In the rest of the section we
will focus on the restrictions AFFINF; and MINEXT; of the respective problems
AFFINF and MINEXT to a single negative literal clause ¢ = —u.

To be able to investigate the complexity of MINEXT; and AFFINF;, we need
to define a neighborhood and a congruence closure on the columns.

Definition 4. Let B be a kxn matriz over Zo and let j € {1,...,n} be a column
index. The p-neighborhood N, (j) of the column j in B, for p=0,1,...,n, is



defined inductively by

No(j) = {i},
Np1(j) = {m [ (V@)[(g < p) = (m & Ny(5))] A
(3OEI( € Ny()) A (B, £) = B(i,m) = 1]}

The connected component CC(j) of the column j in B is the union of the
p-neighborhoods for all p, i.e., CC(j) = U;’:O N, (7).

Speaking in terms of hypergraphs and matroids, where B is interpreted as the
vertex-hyperedge incidence matrix, the p-neighborhood N, (j) is the set of ver-
tices reachable from the vertex j by a path of length p. The vertex ¢ belongs to
N,(j) if and only if the shortest path from j to £ in B has the length p. The
connected component CC(j) is the set of all reachable vertices from j.

Ezample 5. Consider the following following affine system S: (I B)(zy) = b,
where I, B and b are represented by the successive blocks of the following matrix.

100000[0 1[1][1]olo
010000[1 00 0 0[0
001000[1 11 000
(1516 = 000100[1]o[t] 0 ofo
0000100 0 0 [1]1)1
000001[0 00 0 11

Take j = 7 and compute the p-neighborhood from vertex 7 in the matrix B for
each p = 0,1,...,6. We obtain No(7) = {7}, N1 (7) = {8,9}, N»(7) = {10},
N3(7) = {11}, and N4(7) = N5(7) = Ng(7) = (0. The connected component of
the vertex 7 is CC(7) = {7,8,9,10,11}.

When computing the connected component for all columns of a given ma-
trix B, we may get two or more disjoint sets of vertices. In this case we say that
the matrix B is decomposable. The following lemma shows that we can compute
the problems MINEXT and AFFINF by connected components without increasing
the complexity.

Lemma 6. Let S: (I B)(zy) = b be an affine system over Z,. Suppose that the
matriz B can be decomposed, up to a permutation of rows and columns, into the

components
B, O
O Bs

where By is a ki X ny matriz and Bs is a ko X ny matriz. Let by and by be two
vectors of respective size nq and no, such that b = b1bs. Then the set of minimal
solutions of S is equal, up to a permutation, to the Cartesian product My x My
of the sets of minimal solutions My and My of the systems Sy : (I Bl)(x’y’) = b
and Sy: (I Bs)(x"y") = ba, respectively, where x = x'z" and y = y'y".
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The proof of the following theorem shows that finding a minimal extension §
of a Boolean vector s with wt(s) = 1 can be done by finding a shortest path in a
connected component of the matrix B from a given column to an inhomogeneous
equation in the system S.

Theorem 7. MINEXT; and AFFINF; are decidable in polynomial time.

Proof. (Hint) Suppose without loss of generality that S is a k x n system of
the form S: (I B)(xzy) = b and that the variable assigned by s is y;. This
can be achieved through a suitable permutation of rows and columns. We also
suppose that the matrix B is indecomposable. Otherwise, we could apply the
method described in this proof to one of the subsystems S; or Ss separately,
following Lemma 6. Since B is indecomposable, the connected component of
the first column is CC(1) = {1,...,n}, i.e., there are no unreachable columuns.
The following condition holds for extensions of vectors with weight 1 to minimal
solutions: There exists a minimal solution § with s(y;) = 1 if and only if b # 0.

If b = 0 then the system S is homogeneous and the all-zero assignment, for zy
is the unique minimal solution of S, what contradicts the existence of a minimal
solution s with s(y;) = 1.

Conversely, suppose that b # 0. We construct a partial assignment s for
the variables y with s(y;) = 1, such that 5 is minimal. We must find the first
inhomogeneous equation reachable from y;. Since b # 0, there exists a shortest
path through p+1 hyperedges jo = 1, ji, - .., jp of the hypergraph corresponding
to the matrix B, such that the following conditions hold: (1) each hyperedge jj,,
g < p, is reachanble from j, since each pair of consecutive hyperedges j,; and j,41
has a common vertex, (2) the existence of a vertex i in a hyperedge j,, where
g < p, implies b; = 0, and (3) there exists a vertex i in the last hyperedge jp,
such that b; = 1. Define the partial assignment s for the variables y by s(y;,) = 1
for each ¢ < p and set s(y;) = 0 otherwise. This assignment corresponds to the
shortest hyperpath starting from a vertex of the hyperedge jo and finishing in a
vertex ¢ of the hyperedge j,, such that b; = 1. It is easy to see that 5 is a minimal
solution of S corresponding to the shortest hyperpath. Each vertex i,, except the
last one, occurs twice in the shortest hyperpath, what allows us to have b;, = 0.
The last vertex i, appears only once, what implies b;, = 1. The variables x are
all set equal to 0. Both a shortest hyperpath and the connceted component can
be computed in polynomial time, therefore both problems MINEXT; and AFFINF;
are polynomial-time decidable. O

Ezample 8 (Ezample 5 continued). Start with the column jo = 7 and compute
a shortest path reaching an inhomogeneous equation. There is a shortest path
from the column 7 through the columns jo = 7, j1 = 9, jo» = 10, reaching the
inhomogeneous row 5. The path B(4,7) - B(4,9) — B(1,9) — B(1,10) —
B(5,10) is indicated in the matrix by boxed values. Hence, we computed the
partial assignment s = (1,0,1,1,0) for the variables y and the extension 5 =
(0,1,0,0,0,1,1,0,1,1,0) is a minimal solution of the system S.
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6 Conclusion

formula ¢ clause inference ¢ literal inference ¢
CNF II,P-complete [EG93] II,P-complete [EG93]
Horn in P in P

dual Horn|coNP-complete [CL94] coNP-complete [CL.94]
Krom coNP-complete [CL94] in P [CL94]
affine coNP-complete [Theorem 3]|in P [Theorem 7]

Fig. 2. Complexity of the inference problem of propositional circumscription

We proved that the inference problem of propositional circumscription for affine
formulas is coNP-complete. It also shows that reasoning under the extended
closed world assumption is intractable for affine formulas. In fact, the exact com-
plexity of affine inference was an open problem since the beginning of the 1990s
when several researchers started to investigate the propositional circumscription
from algorithmic point of view. We also proved that the inference problem for
affine formulas becomes polynomial-time decidable when only a single literal has
to be inferred. The complexity classification of the inference problem of proposi-
tional circumscription for the usual classes of formulas is presented in Figure 2.
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