
The Inferene Problem for PropositionalCirumsription of AÆne Formulas isoNP-ompleteArnaud Durand1 and Miki Hermann21 LACL Paris 12 and LAMSADE Paris 9 (CNRS UMR 7024), Dept. of ComputerSiene, Universit�e Paris 12, 94010 Cr�eteil, Frane. durand�univ-paris12.fr2 LIX (CNRS, UMR 7650), �Eole Polytehnique, 91128 Palaiseau edex, Frane.hermann�lix.polytehnique.frAbstrat. We prove that the inferene problem of propositional ir-umsription for aÆne formulas is oNP-omplete, settling this way alongstanding open question in the omplexity of nonmonotoni reason-ing. We also show that the onsidered problem beomes polynomial-timedeidable if only a single literal has to be inferred from an aÆne formula.1 Introdution and Summary of ResultsVarious formalisms of nonmonotoni reasoning have been investigated duringthe last twenty-�ve years. Cirumsription, introdued by MCarthy [MC80℄,is a well-developed formalism of ommon-sense reasoning extensively studied bythe arti�ial intelligene ommunity. It has a simple and lear semantis, andbene�ts from high expressive power, that makes it suitable for modeling manyproblems involving nonmonotoni reasoning. The key idea behind irumsrip-tion is that we are interested only in the minimal models of formulas, sine theyare the ones with as few \exeptions" as possible, and embody therefore om-mon sense. Moreover, propositional irumsription inferene has been shownby Gelfond et al. [GPP89℄ to oinide with reasoning under the extended losedworld assumption, whih is one of the main formalisms for reasoning with in-omplete information. In the ontext of Boolean logi, irumsription amountsto the study of models of Boolean formulas that are minimal with respet to thepointwise partial order on models.Several algorithmi problems have been studied in onnetion with proposi-tional irumsription: among them the model heking and the inferene prob-lems. Given a propositional formula ' and a truth assignment s, the modelheking problem asks whether s is a minimal model of '. Given two proposi-tional formulas ' and  , the inferene problem asks whether  is true in everyminimal model of '. Cadoli proved in [Cad92℄ the model heking problem tobe oNP-omplete, whereas Kirousis and Kolaitis settled in [KK01a℄ the ques-tion of the dihotomy theorem for this problem. The inferene problem wasproved �2P-omplete by Eiter and Gottlob in [EG93℄. Cadoli and Lenzeriniproved in [CL94℄ that the inferene problem beomes oNP-omplete if ' is a1



Krom or a dual Horn formula. See also [CMM01℄ for an exhaustive overviewof existing omplexity results in nonmonotoni reasoning and irumsription.The omplexity of the inferene problem for aÆne formulas remained open forten years. It was known that the problem is in oNP, but there was no provedoNP-hardness lower bound.This paper is a partial result of our e�ort to �nd an output-polynomial algo-rithm for enumerating the minimal models of aÆne formulas, an open problemstated in [KSS00℄. Following the result of Berlekamp et al. [BMvT78℄, it is learthat we annot develop an output-polynomial algorithm for this enumerationproblem by produing onseutive minimal models of the aÆne system with in-reasing Hamming weight, unless P = NP. Another natural approah onsistsof produing partial assignments to the variables that are extended to minimalmodels afterwards. However, as our result indiates, this new approah does notlead to an output-polynomial algorithm either, unless the same ollapse ours.We settle in this paper the omplexity of the inferene problem for the propo-sitional irumsription of aÆne formulas, proving that the problem is oNP-omplete. First, we prove a new riterion for determining whether a given partialsolution of an aÆne system an be extended to a minimal one. This riterion,whih is interesting on its own, is then extensively used in the subsequent oNP-hardness proof of the inferene problem for aÆne formulas. More preisely, weprove the NP-hardness of the problem, given a partial solution s of an aÆnesystem S, whether it an be extended to a minimal solution �s. To our knowl-edge, this proof uses a new approah ombining matroid theory, ombinatoris,and omputational omplexity tehniques. The inferene problem for aÆne ir-umsription is then the dual problem to minimal extension, what proves theformer to be oNP-omplete. Finally, we prove that the restrition of the aÆneinferene problem with  being a single literal is deidable in polynomial time.2 PreliminariesLet s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) be two Boolean vetors from f0; 1gn.We write s < s0 to denote that s 6= s0 and si � s0i holds for every i � n. Let'(x1; : : : ; xn) be a Boolean formula having x1; : : : ; xn as its variables and lets 2 f0; 1gn be a truth assignment. We say that s is a minimal model of ' if s isa satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' that satis�es the relation s0 < s. This relation is alled the pointwise partialorder on models.Let '(x1; : : : ; xn) be a propositional formula in onjuntive normal form. Wesay that '(x) is Horn if ' has at most one positive literal per lause, dual Hornif ' has at most one negative literal per lause, Krom if ' has at most two literalsper lause, and aÆne if ' is a onjuntion of lauses of the type x1�� � ��xn = 0or x1 � � � � � xn = 1, where � is the exlusive-or logial onnetive, what isequivalent to an aÆne system of equations S : Ax = b over Z2.Let ' and  be two propositional formulas in onjuntive normal form. Wesay that  follows from ' in propositional irumsription, denoted by ' j=min  ,2



if  is true in every minimal model of '. Sine  is a onjuntion 1 ^ � � � ^ kof lauses i, then ' j=min  if and only if ' j=min i for eah i. Hene we anrestrit ourselves to onsider only a single lause instead of a formula  at theright-hand side of the propositional inferene problem ' j=min . We an furtherrestrit the lause  to one ontaining only negative literals  = :u1 _ � � � _ :un,as it was showed in [KK01b℄.If x and y are two vetors, we denote by z = xy the vetor obtained byonatenation of x and y. Let S : Az = b be a k � n aÆne system of equationsover Z2. Without loss of generality, we assume that the system S is in stan-dard form, i.e., that the matrix A has the form (I B), where I is the k � kidentity matrix and B is an arbitrary k � (n � k) matrix of full olumn rank.For onveniene, we denote by x the variables from z assoiated with I andby y the ones assoiated with B. Hene, we onsider aÆne systems of the formS : (I B)(xy) = b.If A is a k�nmatrix, we denote by A(i; j) the element of A positioned at row iand olumn j. The vetor forming the row i of the matrixA is denoted by A(i;�),whereas the olumn vetor j of A is denoted by A(�; j). Let I � f1; : : : ; kg andJ � f1; : : : ; ng be two index sets. Then A(I;�) denotes the submatrix of Arestrited to the rows I . Similarly, A(�; J) is then the submatrix of A restritedto the olumns J , whereas A(I; J) stands for the submatrix of A restrited tothe rows I and olumns J . There are also two matries with a speial notation:the k � k identity matrix Ik and the k � n all-zero matrix Onk .For a k�n aÆne system S : Az = b over Z2, an index set J = fj1; : : : ; jmg �f1; : : : ; ng of ardinality jJ j = m, and a Boolean vetor v = (v1; : : : ; vm) oflength m, we denote by S[J=v℄ the new system S0 : A0z0 = b0 formed by replaingeah variable zji by the value vi. We also denote by one(v) = fi j vi = 1g andzero(v) = fi j vi = 0g the positions in the vetor v assigned to the values 1and 0, respetively. The Hamming weight wt(v) of a vetor v is equal to theardinality of the set one(v), i.e., wt(v) = jone(v)j.Eah aÆne system S : Az = b0 an be transformed to the standard form(I B)(xy) = b by means of Gaussian elimination in polynomial time. withouthanging the ordering of solutions. Indeed, a row permutation or addition doesnot hange the solutions of S. A olumn permutation permutes the variablesand therefore also the positions in eah solution uniformly. However, for eaholumn permutation � and a ouple of solutions s, s0, the relation s < s0 holdsif and only if �(s) < �(s0). This allows us to onsider aÆne systems in the formS : (I B)(xy) = b without loss of generality.Suppose that s is a variable assignment for the variables y, i.e., for eahyi 2 y there exists a value s(yi) 2 Z2. The vetor s is a partial assignment forvariables z = xy. An extension of the vetor s is a variable assignment �s for eahvariable from z, i.e., for eah zi 2 z there exists a value �s(zi) 2 Z2, suh thats(yi) = �s(yi) for eah yi. If s is a variable assignment for the variables y in theaÆne system S : (I B)(xy) = b then the extension �s to a solution of the system Sis unique. If the variables y in the system S : (I B)(xy) = b have been assigned,then the values for the variables x are already determined. In onnetion with3



the previous notions we de�ne the following two index setseq(s) = fi j (Bs)i = big and neq(s) = fi j (Bs)i 6= big;where b = (b1; : : : ; bk) and (Bs)i means the i-th position of the vetor obtainedafter multipliation of the matrix B by the vetor s. The set eq(s) (resp. neq(s))is the subset of row indies i for whih the unique extension �s satis�es theequality �s(xi) = 0 (resp. �s(xi) = 1). It is lear that eq(s) \ neq(s) = ; andeq(s) [ neq(s) = f1; : : : ; kg hold for eah s.3 A New Criterion For AÆne MinimalityThere exists a straightforward method to determine in polynomial time whethera solution s is minimal for an aÆne system S over Z2. However, this method isunsuitable for testing whether a partial solution s an be extended to a minimalsolution �s of S. We propose here a ompletely new method well-suited to deidewhether an extension �s is a minimal solution of S.Proposition 1. Let S : (I B)(xy) = b be an aÆne k � n system over Z2 andlet s be a Boolean vetor of length n� k. The extension �s is a minimal solutionof S if and only if B(eq(s); one(s)) is a matrix of olumn rank wt(s), i.e., all itsolumns are linearly independent.Proof. Suppose that �s is minimal and the matrix B(eq(s); one(s)) has the ol-umn rank smaller than wt(s). This means that the olumns of B(eq(s); one(s))are linearly dependent, therefore there exists a subset J � one(s), suh thatPj2J B(eq(s); j) = 0 holds. Let t be a Boolean vetor satisfying the onditionone(t) = one(s)r J . The olumns of the matrix B(eq(s); one(s)) an be parti-tioned into two sets: those in J and those in one(t). Knowing that the olumnsin J add up to the zero vetor 0, we derive the following equality.Xj2one(s)B(eq(s); j) = Xj2one(t)B(eq(s); j) +Xj2J B(eq(s); j) = Xj2one(t)B(eq(s); j)The vetor t is smaller than s in the pointwise order. We will show that alsothe extensions �s and �t satisfy the relation �t < �s. For eah row i 2 eq(s),the oeÆients B(i; j) sum up to the value bi, i.e., that Pj2one(s)B(i; j) =Pj2one(t)B(i; j) = bi. Reall that eah variable in the vetor x ours in thesystem S exatly one, beause of the assoiated identity matrix Ik. Sine alreadythe assignments s and t to the variables y sum up to the value bi, this determinesthe value of the variable xi in the extensions �s and �t to be �s(xi) = �t(xi) = 0 foreah row i 2 eq(s). In the same spirit, the assignment s to the variables y sumsup to the value 1� bi for eah row i 2 neq(s), what determines the value of thevariable xi in the extension �s to be �s(xi) = 1. Therefore we have �t(xi) � �s(xi) = 1for eah row i 2 neq(s). This shows that �t is a solution of S smaller than �s, whatontradits our assumption that �s is minimal.4



Conversely, suppose that the matrix B(eq(s); one(s)) has the olumn rankwt(s) but �s is not minimal. The latter ondition implies that there exists avariable assignment t, suh that the extension �t is a solution of S satisfying therelation �t < �s. Let J = one(�s)rone(�t) be the set of positions on whih the exten-sions �s and �t di�er. Both extensions �s and �t are solutions of S, therefore we have(I B)�s+(I B)�t =Pj2J (I B)(�; j) = 0. The index set J an be partitioned intotwo disjoint sets J1 ontaining the positions smaller or equal to k, that are asso-iated with the identity matrix I , and the set J2 ontaining the positions greaterthan k, that are assoiated with the matrix B. Hene the inlusion J2 � one(s)holds. The olumns of the identity matrix I are linearly independent, thereforethe set J2 must be nonempty in order to get the above sum equal to 0. The parti-tion of J implies the equalityPj2J1 I(�; j)+Pj2J2 B(�; j) = 0. The restritionof this equality to the rows in eq(s) yieldsPj2J1 I(eq(s); j)+Pj2J2 B(eq(s); j) =0. The vetor �s is a solution of S and for eah row i 2 eq(s) we have �s(xi) = 0,sine already the values s(yj) with j 2 J2 sum up to bi. This implies togetherwith the previous equation that i 62 J1, sine i � k holds, and for all indiesj 2 J1 the olumn I(eq(s); j) is the all-zero vetor. This yields the equalityPj2J1 I(eq(s); j) = 0, what implies the �nal equality Pj2J2 B(eq(s); j) = 0.Sine J2 is a subset of the olumns one(s), this ontradits the fat that thematrix B(eq(s); one(s)) has the olumn rank wt(s). ut4 Extension and Inferene ProblemsIn this paper we will be interested in the omplexity of the inferene problemof propositional irumsription with aÆne formulas. Sine aÆne propositionalformulas are equivalent to aÆne systems S : Az = b over Z2, this problem anbe formulated as follows.Problem: affinfInput: An aÆne system S : Az = b over Z2 with a Boolean k � n matrix A, aBoolean vetor b of length k, a variable vetor z = (z1; : : : ; zn), and a negativelause  = :u1 _ � � � _ :um, where ui 2 z holds for eah i.Question: Does S j=min  hold?Another interesting problem, losely related to the previous one, is the prob-lem of extending a Boolean vetor to a minimal solution of an aÆne system.Problem: minextInput: An aÆne system S : Az = b over Z2 with a Boolean k � n matrix A, aBoolean vetor b of length k, a variable vetor z = (z1; : : : ; zn), and a partialassignment s for the variables y, where z = xy.Question: Can s be extended to a vetor �s, suh that �s is a minimal solutionof the system S?The minimal extension problem appears naturally within algorithms enumerat-ing minimal solutions. For any given lass of propositional formulas, when theorresponding minimal extension problem is polynomial-time deidable, thenthere exists an algorithm that enumerates eah onseutive pair of minimal so-lutions with polynomial delay. 5



To derive the lower bound of the omplexity of the latter problem, we needto onsider the following well-known NP-omplete problem.Problem: positive 1-in-3 satInput: A propositional formula ' in onjuntive normal form with three positiveliterals per lause.Question: Is there a truth assignment to the variable of ', suh that exatlyone literal is assigned to true and the two others are assigned to false in everylause?Theorem 2. minext is NP-omplete even if the partial assignment s ontainsno 0.Proof. Membership of minext in NP is obvious. For the lower bound, we on-strut a polynomial redution from the problem positive 1-in-3 sat.Let '(x1; : : : ; xn) be a propositional formula in onjuntive normal form1 ^ � � � ^ m with the lauses i = x1i _ x2i _ x3i . We onstrut an aÆne systemS : (I B)(zxy) = b, where I is the (4m + n) � (4m + n) identity matrix, z, x,and y are variable vetors of respetive lengths 4m+ n, n, and 3m, and B is aspeial (4m+n)� (3m+n) matrix enoding the formula '. We also onstrut apartial assignment s and show that the formula ' has a model satisfying exatlyone variable per lause if and only if s an be extended to a minimal solutionof S.The matrix B is omposed from six bloks as follows0�B11 B21B12 B22B13 B231AThe matrix B11 of size m � n is the lause-variable inidene matrix of theformula ', i.e., B11(i; j) = 1 holds if and only if xj 2 i. The matrix B21 ofsize m � 3m is the identity matrix Im with eah olumn tripled, i.e., it veri�esthe onditions B21(i; 3(i � 1) + 1) = B21(i; 3(i � 1) + 2) = B21(i; 3i) = 1 forall i and B21(i; j) = 0 otherwise. The matrix B12 of size 3m � n enodes thepolynomials x1i +x2i , x2i +x3i , and x3i +x1i over Z2 for eah lause i = x1i _x2i _x3i .This enoding is done for eah i = 1; : : : ;m in three onseutive rows. Hene,we have B12(3i; i1) = B12(3i; i2) = 1, B12(3i + 1; i2) = B12(3i + 1; i3) = 1, andB12(3i+ 2; i3) = B12(3i+ 2; i1) = 1, where ij is the position of the variable xji inthe vetor x = (x1; : : : ; xn). Otherwise we have B12(3i+ q; j) = 0 for q = 0; 1; 2and j 6= i1; i2; i3. In another words, the rows B12(3i;�), B12(3i + 1;�), andB12(3i+2;�) are the inidene vetors of the polynomials x1i + x2i , x2i + x3i , andx3i +x1i , respetively. The matrix B22 of size 3m� 3m is the identity matrix I3m.The matrix B13 of size n�n is the identity matrix In, whereas the matrix B23 ofsize n� 3m is the all-zero matrix O3mn . Note that due to the bloks B22 and B13 ,that are identity matries, as well as the blok B23 that is an all-zero matrix,the matrix B has the olumn rank n + 3m. Denote by B1 the submatrix of Brestrited to the �rstm rows, i.e., B1 = B(f1; : : : ;mg;�). Analogously, we de�ne6



B2 = B(fm+1; : : : ; 4mg;�) and B3 = B(f4m+1; : : : ; 4m+ng;�). In the samespirit, we denote by B1 = B(�; f1; : : : ; ng) and B2 = B(�; fn+1; : : : ; n+3mg)the left and the right part of the olumns, respetively, of the matrix B.The vetor b of length 4m + n in the system S is a onatenation of threevetors b1, b2, and b3, where b1 is the all-zero vetor of length m, b2 is the all-zerovetor of length 3m, and b3 is the all-one vetor of length m. The parts bi of thevetor b orrespond to the row bloks Bi of the matrix B for i = 1; 2; 3. Figure 1desribes the onstruted matrix B and vetor b.B1 B2111 0B1 ' . . . m ... b1111 08i � m 0B2 x1i + x2i I3m 3m ... b2x2i + x3ix3i + x1i 01B3 In O3mn n ... b31n 3mFig. 1. Matrix B and the assoiated vetor bFinally, we set the vetor s of size 3m to be equal to 1 in eah oordinate, i.e.,s(yi) = 1 for eah i = 1; : : : ; 3m and the Hamming weight of s is wt(s) = 3m.Let v be a model of the formula ' satisfying exatly one literal per lause.We will prove that when we append the all-one vetor s to v, forming the vetort = vs, then the extension �t is a minimal solution of S. Let us study the seteq(t). Sine every lause i = x1i _ x2i _ x3i of ' is satis�ed, the sum of literalvalues is equal to v(x1i ) + v(x2i ) + v(x3i ) = 1. Moreover, for eah j = 1; : : : ;m wehave s(xj) = 1, therefore all m rows of B1 belong to eq(t). Exatly two of thepolynomials x1i + x2i , x2i + x3i , and x3i + x1i are evaluated to 1 for eah lause iand for eah j = 1; : : : ; 3m we have s(xj) = 1, what implies that exatly 2mrows from B2 belong to the set eq(t). The row i of B1 and the rows 3(i� 1)+ 1,3(i�1)+2, and 3i of B2 orrespond to the lause i. Form the orresponding rowindex set I(i) = fi; m+3(i�1)+1; m+3(i�1)+2; m+3ig for a given i. Considerthe restrition of the blok B2 to the rows I(i). This restrition B2(I(i);�) willhave plenty of all-zero olumns. Keep only the olumns ontaining at least onevalue 1. These olumns will be 3(i � 1) + 1, 3(i � 1) + 2, and 3i. Form theorresponding olumn index set J(i) = fn+3(i�1)+1; n+3(i�1)+2; n+3ig7



for a given i. The restrition of B to the rows I(i) and olumns J(i) is the matrixB(I(i); J(i)) = 0BB�1 1 11 0 00 1 00 0 11CCA = B�(i):Note that the �rst row of B�(i) and exatly two out of the three last rowsof B�(i) are also represented in the set eq(t). If we delete one of the last threerows of B�(i), the resulting square matrix will remain non-singular. Note thatthe olumn index sets J(i) are pairwise disjoint and that their union equals theindex set J� = fn+1; : : : ; n+3mg. Sine B(�; J�) = B2 holds, we easily see thatthe restrition B2(f1; : : : ; 4mg;�) is equal, modulo a suitable row permutation,to the blok matrix B21+2 = 0B�B�(1) O OO . . . OO O B�(m)1CA :The restrition B2(eq(t);�) deletes from B21+2 one of the last three rows of eahblok orresponding to B�(i). The matrix B21+2 is non-singular, what impliesthat the restrition B2(eq(t);�) is also non-singular, sine B�(i) with one rowdeleted remains non-singular. Finally, the blok B3 ontributes wt(v) rows toeq(t). Hene, the set eq(t) ontains 3m + wt(v) row indies and the equalitywt(t) = 3m+ wt(v) holds. This means that B(eq(t); one(t)) is a square matrix.Note that B(eq(t); one(t)) is the onatenation of the matries B(eq(t); one(v))and B(eq(t); one(s)), sine t = vs. Beause s is the all-one vetor, the matrixB(eq(t); one(s)) is equal to B2(eq(t);�). Notie that B(eq(t)\f4m+1; : : : ; 4m+ng; one(v)) (i.e. the restrition ofB1(eq(t); one(v)) to rows of B13) is one more anidentity matrix, what makes the blok B1(eq(t); one(v)) = B(eq(t); one(v)) non-singular. Finally, the blok B23 is an all-zero matrix, therefore the onatenationof matries B(eq(t); one(v))B(eq(t); one(s)) = B(eq(t); one(t)) is non-singular,what means that its olumns are linearly independent. Aording to Proposi-tion 1, the extension �t is a minimal solution of S, hene s an be extended to aminimal solution of the system S.Conversely, suppose that s an be extended to a minimal solution of S.Then there exists a partial assignment v to the variables x, forming with s theonatenation t = vs, suh that �t is minimal and wt(t) = 3m + wt(v) holds.Note that independently from the hoie of the values v(x1i ), v(x2i ), and v(x3i ),at most two of the polynomials x1i + x2i , and x2i + x3i , and x3i + x1i evaluate to 1.Hene, at most 2m rows of B2 are evaluated to 0 by the assignment t.Let us analyze the row indies of B that belong to eq(t). The blok B2ontributes always at most 2m elements and the blok B3 ontributes exatlywt(v) elements to eq(t). Suppose that not all indies of B1 belong to eq(t). Inthis ase, the blok B1 ontributes at most m�1 elements to eq(t). This impliesthat the ardinality of the set eq(t) is smaller or equal than 3m� 1+wt(v) and8



B(eq(t); one(t)) is a (3m � 1 + wt(v)) � (3m + wt(v)) matrix. In this ase theolumn rank of the matrix B(eq(t); one(t)) is smaller than 3m+ wt(v), i.e., theolumns are linearly dependent. Following Proposition 1, the extension �t annotbe minimal. Hene, all m row indies of B1 must belong to eq(t).Sine all m rows of B1 belong to eq(t) and s(yj) = 1 holds for eah j, thestruture of B11 , enoding the lauses i = x1i _ x2i _ x3i of ', implies that theequality t(x1i ) + t(x2i ) + t(x3i ) = v(x1i ) + v(x2i ) + v(x3i ) = 1 holds over Z2 foreah i. There are two ases to analyze: (1) either v(x1i ) = v(x2i ) = v(x3i ) = 1 or(2) exatly one of the values v(x1i ), v(x2i ), v(x3i ) is equal to 1 and the two othersare equal to 0. Suppose that there exists an i suh that Case 1 is satis�ed. Thenthe maximal number of row indies in eq(t) ontributed by B2 is 2(m� 1). Thisis beause the equalities v(x1i ) + v(x2i ) = v(x2i ) + v(x3i ) = v(x3i )+ v(x1i ) = 0 holdover Z2. The ardinality of eq(t) is then bounded by 3m�2+wt(v), what impliesone more that the olumns of B(eq(t); one(t)) are linearly dependent and thisleads to the same ontradition, implying that the extension �t is not minimal, asin the previous paragraph. Case 2 presents a valid 1-in-3 assignment to '. utTheorem 3. The problem affinf is oNP-omplete.Proof. The problem affinf is the dual of the problem minext. Note that, givena formula ' and a lause  = :u1_� � �_:uk, the ondition ' j=min :u1_� � �_:ukholds if and only if there is no minimal model m of ' that satis�es m(u1) =� � � = m(uk) = 1. The latter is true if and only if the partial assignment swith s(u1) = � � � = s(uk) = 1 annot be extended to a minimal model of ', orequivalently, to a minimal solution of the aÆne system S orresponding to '. ut5 Deompositions and Polynomial-time Deidable CasesEiter and Gottlob proved in [EG93℄ that the inferene problem ' j=min  forpropositional irumsription remains �2P-omplete even if the lause  onsistsof a single negative literal :u. However, it is not guaranteed that the omplexityremains the same for one-literal lauses  for the usual sublasses of propositionalformulas. Conerning the onsidered inferene problem, Cadoli and Lenzeriniproved in [CL94℄ that for dual Horn formulas it remains oNP-omplete but forKrom formulas it beomes polynomial-time deidable for a lause  onsisting ofa single negative literal. It is a natural question to ask what happens in the aseof aÆne formulas in the presene of a single literal. In the rest of the setion wewill fous on the restritions affinf1 and minext1 of the respetive problemsaffinf and minext to a single negative literal lause  = :u.To be able to investigate the omplexity of minext1 and affinf1, we needto de�ne a neighborhood and a ongruene losure on the olumns.De�nition 4. Let B be a k�n matrix over Z2 and let j 2 f1; : : : ; ng be a olumnindex. The p-neighborhood Np(j) of the olumn j in B, for p = 0; 1; : : : ; n, is9



de�ned indutively byN0(j) = fjg;Np+1(j) = fm j (8q)[(q � p)! (m 62 Nq(j))℄ ^(9`)(9i)[(` 2 Np(j)) ^ (B(i; `) = B(i;m) = 1)℄g:The onneted omponent CC(j) of the olumn j in B is the union of thep-neighborhoods for all p, i.e., CC(j) = Snp=0Np(j).Speaking in terms of hypergraphs and matroids, where B is interpreted as thevertex-hyperedge inidene matrix, the p-neighborhood Np(j) is the set of ver-ties reahable from the vertex j by a path of length p. The vertex ` belongs toNp(j) if and only if the shortest path from j to ` in B has the length p. Theonneted omponent CC(j) is the set of all reahable verties from j.Example 5. Consider the following following aÆne system S : (I B)(xy) = b,where I , B and b are represented by the suessive bloks of the following matrix.(I j B j b) = 0BBBBBB�1 0 0 0 0 0 0 1 1 1 0 00 1 0 0 0 0 1 0 0 0 0 00 0 1 0 0 0 1 1 1 0 0 00 0 0 1 0 0 1 0 1 0 0 00 0 0 0 1 0 0 0 0 1 1 10 0 0 0 0 1 0 0 0 0 1 1
1CCCCCCATake j = 7 and ompute the p-neighborhood from vertex 7 in the matrix B foreah p = 0; 1; : : : ; 6. We obtain N0(7) = f7g, N1(7) = f8; 9g, N2(7) = f10g,N3(7) = f11g, and N4(7) = N5(7) = N6(7) = ;. The onneted omponent ofthe vertex 7 is CC(7) = f7; 8; 9; 10; 11g.When omputing the onneted omponent for all olumns of a given ma-trix B, we may get two or more disjoint sets of verties. In this ase we say thatthe matrix B is deomposable. The following lemma shows that we an omputethe problems minext and affinf by onneted omponents without inreasingthe omplexity.Lemma 6. Let S : (I B)(xy) = b be an aÆne system over Z2. Suppose that thematrix B an be deomposed, up to a permutation of rows and olumns, into theomponents �B1 OO B2�where B1 is a k1 � n1 matrix and B2 is a k2 � n2 matrix. Let b1 and b2 be twovetors of respetive size n1 and n2, suh that b = b1b2. Then the set of minimalsolutions of S is equal, up to a permutation, to the Cartesian produt M1 �M2of the sets of minimal solutions M1 and M2 of the systems S1 : (I B1)(x0y0) = b1and S2 : (I B2)(x00y00) = b2, respetively, where x = x0x00 and y = y0y00.10



The proof of the following theorem shows that �nding a minimal extension �sof a Boolean vetor s with wt(s) = 1 an be done by �nding a shortest path in aonneted omponent of the matrix B from a given olumn to an inhomogeneousequation in the system S.Theorem 7. minext1 and affinf1 are deidable in polynomial time.Proof. (Hint) Suppose without loss of generality that S is a k � n system ofthe form S : (I B)(xy) = b and that the variable assigned by s is y1. Thisan be ahieved through a suitable permutation of rows and olumns. We alsosuppose that the matrix B is indeomposable. Otherwise, we ould apply themethod desribed in this proof to one of the subsystems S1 or S2 separately,following Lemma 6. Sine B is indeomposable, the onneted omponent ofthe �rst olumn is CC(1) = f1; : : : ; ng, i.e., there are no unreahable olumns.The following ondition holds for extensions of vetors with weight 1 to minimalsolutions: There exists a minimal solution �s with �s(y1) = 1 if and only if b 6= 0.If b = 0 then the system S is homogeneous and the all-zero assignment for xyis the unique minimal solution of S, what ontradits the existene of a minimalsolution �s with �s(y1) = 1.Conversely, suppose that b 6= 0. We onstrut a partial assignment s forthe variables y with s(y1) = 1, suh that �s is minimal. We must �nd the �rstinhomogeneous equation reahable from y1. Sine b 6= 0, there exists a shortestpath through p+1 hyperedges j0 = 1, j1, . . . , jp of the hypergraph orrespondingto the matrix B, suh that the following onditions hold: (1) eah hyperedge jq ,q � p, is reahanble from j0 sine eah pair of onseutive hyperedges jq and jq+1has a ommon vertex, (2) the existene of a vertex i in a hyperedge jq , whereq < p, implies bi = 0, and (3) there exists a vertex i in the last hyperedge jp,suh that bi = 1. De�ne the partial assignment s for the variables y by s(yjq ) = 1for eah q � p and set s(yj) = 0 otherwise. This assignment orresponds to theshortest hyperpath starting from a vertex of the hyperedge j0 and �nishing in avertex i of the hyperedge jp, suh that bi = 1. It is easy to see that �s is a minimalsolution of S orresponding to the shortest hyperpath. Eah vertex iq, exept thelast one, ours twie in the shortest hyperpath, what allows us to have biq = 0.The last vertex ip appears only one, what implies bip = 1. The variables x areall set equal to 0. Both a shortest hyperpath and the onneted omponent anbe omputed in polynomial time, therefore both problems minext1 and affinf1are polynomial-time deidable. utExample 8 (Example 5 ontinued). Start with the olumn j0 = 7 and omputea shortest path reahing an inhomogeneous equation. There is a shortest pathfrom the olumn 7 through the olumns j0 = 7, j1 = 9, j2 = 10, reahing theinhomogeneous row 5. The path B(4; 7) ! B(4; 9) ! B(1; 9) ! B(1; 10) !B(5; 10) is indiated in the matrix by boxed values. Hene, we omputed thepartial assignment s = (1; 0; 1; 1; 0) for the variables y and the extension �s =(0; 1; 0; 0; 0; 1; 1; 0; 1; 1; 0) is a minimal solution of the system S.11
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