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t. We prove that the inferen
e problem of propositional 
ir-
ums
ription for aÆne formulas is 
oNP-
omplete, settling this way alongstanding open question in the 
omplexity of nonmonotoni
 reason-ing. We also show that the 
onsidered problem be
omes polynomial-timede
idable if only a single literal has to be inferred from an aÆne formula.1 Introdu
tion and Summary of ResultsVarious formalisms of nonmonotoni
 reasoning have been investigated duringthe last twenty-�ve years. Cir
ums
ription, introdu
ed by M
Carthy [M
C80℄,is a well-developed formalism of 
ommon-sense reasoning extensively studied bythe arti�
ial intelligen
e 
ommunity. It has a simple and 
lear semanti
s, andbene�ts from high expressive power, that makes it suitable for modeling manyproblems involving nonmonotoni
 reasoning. The key idea behind 
ir
ums
rip-tion is that we are interested only in the minimal models of formulas, sin
e theyare the ones with as few \ex
eptions" as possible, and embody therefore 
om-mon sense. Moreover, propositional 
ir
ums
ription inferen
e has been shownby Gelfond et al. [GPP89℄ to 
oin
ide with reasoning under the extended 
losedworld assumption, whi
h is one of the main formalisms for reasoning with in-
omplete information. In the 
ontext of Boolean logi
, 
ir
ums
ription amountsto the study of models of Boolean formulas that are minimal with respe
t to thepointwise partial order on models.Several algorithmi
 problems have been studied in 
onne
tion with proposi-tional 
ir
ums
ription: among them the model 
he
king and the inferen
e prob-lems. Given a propositional formula ' and a truth assignment s, the model
he
king problem asks whether s is a minimal model of '. Given two proposi-tional formulas ' and  , the inferen
e problem asks whether  is true in everyminimal model of '. Cadoli proved in [Cad92℄ the model 
he
king problem tobe 
oNP-
omplete, whereas Kirousis and Kolaitis settled in [KK01a℄ the ques-tion of the di
hotomy theorem for this problem. The inferen
e problem wasproved �2P-
omplete by Eiter and Gottlob in [EG93℄. Cadoli and Lenzeriniproved in [CL94℄ that the inferen
e problem be
omes 
oNP-
omplete if ' is a1



Krom or a dual Horn formula. See also [CMM01℄ for an exhaustive overviewof existing 
omplexity results in nonmonotoni
 reasoning and 
ir
ums
ription.The 
omplexity of the inferen
e problem for aÆne formulas remained open forten years. It was known that the problem is in 
oNP, but there was no proved
oNP-hardness lower bound.This paper is a partial result of our e�ort to �nd an output-polynomial algo-rithm for enumerating the minimal models of aÆne formulas, an open problemstated in [KSS00℄. Following the result of Berlekamp et al. [BMvT78℄, it is 
learthat we 
annot develop an output-polynomial algorithm for this enumerationproblem by produ
ing 
onse
utive minimal models of the aÆne system with in-
reasing Hamming weight, unless P = NP. Another natural approa
h 
onsistsof produ
ing partial assignments to the variables that are extended to minimalmodels afterwards. However, as our result indi
ates, this new approa
h does notlead to an output-polynomial algorithm either, unless the same 
ollapse o

urs.We settle in this paper the 
omplexity of the inferen
e problem for the propo-sitional 
ir
ums
ription of aÆne formulas, proving that the problem is 
oNP-
omplete. First, we prove a new 
riterion for determining whether a given partialsolution of an aÆne system 
an be extended to a minimal one. This 
riterion,whi
h is interesting on its own, is then extensively used in the subsequent 
oNP-hardness proof of the inferen
e problem for aÆne formulas. More pre
isely, weprove the NP-hardness of the problem, given a partial solution s of an aÆnesystem S, whether it 
an be extended to a minimal solution �s. To our knowl-edge, this proof uses a new approa
h 
ombining matroid theory, 
ombinatori
s,and 
omputational 
omplexity te
hniques. The inferen
e problem for aÆne 
ir-
ums
ription is then the dual problem to minimal extension, what proves theformer to be 
oNP-
omplete. Finally, we prove that the restri
tion of the aÆneinferen
e problem with  being a single literal is de
idable in polynomial time.2 PreliminariesLet s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) be two Boolean ve
tors from f0; 1gn.We write s < s0 to denote that s 6= s0 and si � s0i holds for every i � n. Let'(x1; : : : ; xn) be a Boolean formula having x1; : : : ; xn as its variables and lets 2 f0; 1gn be a truth assignment. We say that s is a minimal model of ' if s isa satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' that satis�es the relation s0 < s. This relation is 
alled the pointwise partialorder on models.Let '(x1; : : : ; xn) be a propositional formula in 
onjun
tive normal form. Wesay that '(x) is Horn if ' has at most one positive literal per 
lause, dual Hornif ' has at most one negative literal per 
lause, Krom if ' has at most two literalsper 
lause, and aÆne if ' is a 
onjun
tion of 
lauses of the type x1�� � ��xn = 0or x1 � � � � � xn = 1, where � is the ex
lusive-or logi
al 
onne
tive, what isequivalent to an aÆne system of equations S : Ax = b over Z2.Let ' and  be two propositional formulas in 
onjun
tive normal form. Wesay that  follows from ' in propositional 
ir
ums
ription, denoted by ' j=min  ,2



if  is true in every minimal model of '. Sin
e  is a 
onjun
tion 
1 ^ � � � ^ 
kof 
lauses 
i, then ' j=min  if and only if ' j=min 
i for ea
h i. Hen
e we 
anrestri
t ourselves to 
onsider only a single 
lause instead of a formula  at theright-hand side of the propositional inferen
e problem ' j=min 
. We 
an furtherrestri
t the 
lause 
 to one 
ontaining only negative literals 
 = :u1 _ � � � _ :un,as it was showed in [KK01b℄.If x and y are two ve
tors, we denote by z = xy the ve
tor obtained by
on
atenation of x and y. Let S : Az = b be a k � n aÆne system of equationsover Z2. Without loss of generality, we assume that the system S is in stan-dard form, i.e., that the matrix A has the form (I B), where I is the k � kidentity matrix and B is an arbitrary k � (n � k) matrix of full 
olumn rank.For 
onvenien
e, we denote by x the variables from z asso
iated with I andby y the ones asso
iated with B. Hen
e, we 
onsider aÆne systems of the formS : (I B)(xy) = b.If A is a k�nmatrix, we denote by A(i; j) the element of A positioned at row iand 
olumn j. The ve
tor forming the row i of the matrixA is denoted by A(i;�),whereas the 
olumn ve
tor j of A is denoted by A(�; j). Let I � f1; : : : ; kg andJ � f1; : : : ; ng be two index sets. Then A(I;�) denotes the submatrix of Arestri
ted to the rows I . Similarly, A(�; J) is then the submatrix of A restri
tedto the 
olumns J , whereas A(I; J) stands for the submatrix of A restri
ted tothe rows I and 
olumns J . There are also two matri
es with a spe
ial notation:the k � k identity matrix Ik and the k � n all-zero matrix Onk .For a k�n aÆne system S : Az = b over Z2, an index set J = fj1; : : : ; jmg �f1; : : : ; ng of 
ardinality jJ j = m, and a Boolean ve
tor v = (v1; : : : ; vm) oflength m, we denote by S[J=v℄ the new system S0 : A0z0 = b0 formed by repla
ingea
h variable zji by the value vi. We also denote by one(v) = fi j vi = 1g andzero(v) = fi j vi = 0g the positions in the ve
tor v assigned to the values 1and 0, respe
tively. The Hamming weight wt(v) of a ve
tor v is equal to the
ardinality of the set one(v), i.e., wt(v) = jone(v)j.Ea
h aÆne system S : Az = b0 
an be transformed to the standard form(I B)(xy) = b by means of Gaussian elimination in polynomial time. without
hanging the ordering of solutions. Indeed, a row permutation or addition doesnot 
hange the solutions of S. A 
olumn permutation permutes the variablesand therefore also the positions in ea
h solution uniformly. However, for ea
h
olumn permutation � and a 
ouple of solutions s, s0, the relation s < s0 holdsif and only if �(s) < �(s0). This allows us to 
onsider aÆne systems in the formS : (I B)(xy) = b without loss of generality.Suppose that s is a variable assignment for the variables y, i.e., for ea
hyi 2 y there exists a value s(yi) 2 Z2. The ve
tor s is a partial assignment forvariables z = xy. An extension of the ve
tor s is a variable assignment �s for ea
hvariable from z, i.e., for ea
h zi 2 z there exists a value �s(zi) 2 Z2, su
h thats(yi) = �s(yi) for ea
h yi. If s is a variable assignment for the variables y in theaÆne system S : (I B)(xy) = b then the extension �s to a solution of the system Sis unique. If the variables y in the system S : (I B)(xy) = b have been assigned,then the values for the variables x are already determined. In 
onne
tion with3



the previous notions we de�ne the following two index setseq(s) = fi j (Bs)i = big and neq(s) = fi j (Bs)i 6= big;where b = (b1; : : : ; bk) and (Bs)i means the i-th position of the ve
tor obtainedafter multipli
ation of the matrix B by the ve
tor s. The set eq(s) (resp. neq(s))is the subset of row indi
es i for whi
h the unique extension �s satis�es theequality �s(xi) = 0 (resp. �s(xi) = 1). It is 
lear that eq(s) \ neq(s) = ; andeq(s) [ neq(s) = f1; : : : ; kg hold for ea
h s.3 A New Criterion For AÆne MinimalityThere exists a straightforward method to determine in polynomial time whethera solution s is minimal for an aÆne system S over Z2. However, this method isunsuitable for testing whether a partial solution s 
an be extended to a minimalsolution �s of S. We propose here a 
ompletely new method well-suited to de
idewhether an extension �s is a minimal solution of S.Proposition 1. Let S : (I B)(xy) = b be an aÆne k � n system over Z2 andlet s be a Boolean ve
tor of length n� k. The extension �s is a minimal solutionof S if and only if B(eq(s); one(s)) is a matrix of 
olumn rank wt(s), i.e., all its
olumns are linearly independent.Proof. Suppose that �s is minimal and the matrix B(eq(s); one(s)) has the 
ol-umn rank smaller than wt(s). This means that the 
olumns of B(eq(s); one(s))are linearly dependent, therefore there exists a subset J � one(s), su
h thatPj2J B(eq(s); j) = 0 holds. Let t be a Boolean ve
tor satisfying the 
onditionone(t) = one(s)r J . The 
olumns of the matrix B(eq(s); one(s)) 
an be parti-tioned into two sets: those in J and those in one(t). Knowing that the 
olumnsin J add up to the zero ve
tor 0, we derive the following equality.Xj2one(s)B(eq(s); j) = Xj2one(t)B(eq(s); j) +Xj2J B(eq(s); j) = Xj2one(t)B(eq(s); j)The ve
tor t is smaller than s in the pointwise order. We will show that alsothe extensions �s and �t satisfy the relation �t < �s. For ea
h row i 2 eq(s),the 
oeÆ
ients B(i; j) sum up to the value bi, i.e., that Pj2one(s)B(i; j) =Pj2one(t)B(i; j) = bi. Re
all that ea
h variable in the ve
tor x o

urs in thesystem S exa
tly on
e, be
ause of the asso
iated identity matrix Ik. Sin
e alreadythe assignments s and t to the variables y sum up to the value bi, this determinesthe value of the variable xi in the extensions �s and �t to be �s(xi) = �t(xi) = 0 forea
h row i 2 eq(s). In the same spirit, the assignment s to the variables y sumsup to the value 1� bi for ea
h row i 2 neq(s), what determines the value of thevariable xi in the extension �s to be �s(xi) = 1. Therefore we have �t(xi) � �s(xi) = 1for ea
h row i 2 neq(s). This shows that �t is a solution of S smaller than �s, what
ontradi
ts our assumption that �s is minimal.4



Conversely, suppose that the matrix B(eq(s); one(s)) has the 
olumn rankwt(s) but �s is not minimal. The latter 
ondition implies that there exists avariable assignment t, su
h that the extension �t is a solution of S satisfying therelation �t < �s. Let J = one(�s)rone(�t) be the set of positions on whi
h the exten-sions �s and �t di�er. Both extensions �s and �t are solutions of S, therefore we have(I B)�s+(I B)�t =Pj2J (I B)(�; j) = 0. The index set J 
an be partitioned intotwo disjoint sets J1 
ontaining the positions smaller or equal to k, that are asso-
iated with the identity matrix I , and the set J2 
ontaining the positions greaterthan k, that are asso
iated with the matrix B. Hen
e the in
lusion J2 � one(s)holds. The 
olumns of the identity matrix I are linearly independent, thereforethe set J2 must be nonempty in order to get the above sum equal to 0. The parti-tion of J implies the equalityPj2J1 I(�; j)+Pj2J2 B(�; j) = 0. The restri
tionof this equality to the rows in eq(s) yieldsPj2J1 I(eq(s); j)+Pj2J2 B(eq(s); j) =0. The ve
tor �s is a solution of S and for ea
h row i 2 eq(s) we have �s(xi) = 0,sin
e already the values s(yj) with j 2 J2 sum up to bi. This implies togetherwith the previous equation that i 62 J1, sin
e i � k holds, and for all indi
esj 2 J1 the 
olumn I(eq(s); j) is the all-zero ve
tor. This yields the equalityPj2J1 I(eq(s); j) = 0, what implies the �nal equality Pj2J2 B(eq(s); j) = 0.Sin
e J2 is a subset of the 
olumns one(s), this 
ontradi
ts the fa
t that thematrix B(eq(s); one(s)) has the 
olumn rank wt(s). ut4 Extension and Inferen
e ProblemsIn this paper we will be interested in the 
omplexity of the inferen
e problemof propositional 
ir
ums
ription with aÆne formulas. Sin
e aÆne propositionalformulas are equivalent to aÆne systems S : Az = b over Z2, this problem 
anbe formulated as follows.Problem: affinfInput: An aÆne system S : Az = b over Z2 with a Boolean k � n matrix A, aBoolean ve
tor b of length k, a variable ve
tor z = (z1; : : : ; zn), and a negative
lause 
 = :u1 _ � � � _ :um, where ui 2 z holds for ea
h i.Question: Does S j=min 
 hold?Another interesting problem, 
losely related to the previous one, is the prob-lem of extending a Boolean ve
tor to a minimal solution of an aÆne system.Problem: minextInput: An aÆne system S : Az = b over Z2 with a Boolean k � n matrix A, aBoolean ve
tor b of length k, a variable ve
tor z = (z1; : : : ; zn), and a partialassignment s for the variables y, where z = xy.Question: Can s be extended to a ve
tor �s, su
h that �s is a minimal solutionof the system S?The minimal extension problem appears naturally within algorithms enumerat-ing minimal solutions. For any given 
lass of propositional formulas, when the
orresponding minimal extension problem is polynomial-time de
idable, thenthere exists an algorithm that enumerates ea
h 
onse
utive pair of minimal so-lutions with polynomial delay. 5



To derive the lower bound of the 
omplexity of the latter problem, we needto 
onsider the following well-known NP-
omplete problem.Problem: positive 1-in-3 satInput: A propositional formula ' in 
onjun
tive normal form with three positiveliterals per 
lause.Question: Is there a truth assignment to the variable of ', su
h that exa
tlyone literal is assigned to true and the two others are assigned to false in every
lause?Theorem 2. minext is NP-
omplete even if the partial assignment s 
ontainsno 0.Proof. Membership of minext in NP is obvious. For the lower bound, we 
on-stru
t a polynomial redu
tion from the problem positive 1-in-3 sat.Let '(x1; : : : ; xn) be a propositional formula in 
onjun
tive normal form
1 ^ � � � ^ 
m with the 
lauses 
i = x1i _ x2i _ x3i . We 
onstru
t an aÆne systemS : (I B)(zxy) = b, where I is the (4m + n) � (4m + n) identity matrix, z, x,and y are variable ve
tors of respe
tive lengths 4m+ n, n, and 3m, and B is aspe
ial (4m+n)� (3m+n) matrix en
oding the formula '. We also 
onstru
t apartial assignment s and show that the formula ' has a model satisfying exa
tlyone variable per 
lause if and only if s 
an be extended to a minimal solutionof S.The matrix B is 
omposed from six blo
ks as follows0�B11 B21B12 B22B13 B231AThe matrix B11 of size m � n is the 
lause-variable in
iden
e matrix of theformula ', i.e., B11(i; j) = 1 holds if and only if xj 2 
i. The matrix B21 ofsize m � 3m is the identity matrix Im with ea
h 
olumn tripled, i.e., it veri�esthe 
onditions B21(i; 3(i � 1) + 1) = B21(i; 3(i � 1) + 2) = B21(i; 3i) = 1 forall i and B21(i; j) = 0 otherwise. The matrix B12 of size 3m � n en
odes thepolynomials x1i +x2i , x2i +x3i , and x3i +x1i over Z2 for ea
h 
lause 
i = x1i _x2i _x3i .This en
oding is done for ea
h i = 1; : : : ;m in three 
onse
utive rows. Hen
e,we have B12(3i; i1) = B12(3i; i2) = 1, B12(3i + 1; i2) = B12(3i + 1; i3) = 1, andB12(3i+ 2; i3) = B12(3i+ 2; i1) = 1, where ij is the position of the variable xji inthe ve
tor x = (x1; : : : ; xn). Otherwise we have B12(3i+ q; j) = 0 for q = 0; 1; 2and j 6= i1; i2; i3. In another words, the rows B12(3i;�), B12(3i + 1;�), andB12(3i+2;�) are the in
iden
e ve
tors of the polynomials x1i + x2i , x2i + x3i , andx3i +x1i , respe
tively. The matrix B22 of size 3m� 3m is the identity matrix I3m.The matrix B13 of size n�n is the identity matrix In, whereas the matrix B23 ofsize n� 3m is the all-zero matrix O3mn . Note that due to the blo
ks B22 and B13 ,that are identity matri
es, as well as the blo
k B23 that is an all-zero matrix,the matrix B has the 
olumn rank n + 3m. Denote by B1 the submatrix of Brestri
ted to the �rstm rows, i.e., B1 = B(f1; : : : ;mg;�). Analogously, we de�ne6



B2 = B(fm+1; : : : ; 4mg;�) and B3 = B(f4m+1; : : : ; 4m+ng;�). In the samespirit, we denote by B1 = B(�; f1; : : : ; ng) and B2 = B(�; fn+1; : : : ; n+3mg)the left and the right part of the 
olumns, respe
tively, of the matrix B.The ve
tor b of length 4m + n in the system S is a 
on
atenation of threeve
tors b1, b2, and b3, where b1 is the all-zero ve
tor of length m, b2 is the all-zerove
tor of length 3m, and b3 is the all-one ve
tor of length m. The parts bi of theve
tor b 
orrespond to the row blo
ks Bi of the matrix B for i = 1; 2; 3. Figure 1des
ribes the 
onstru
ted matrix B and ve
tor b.B1 B2111 0B1 ' . . . m ... b1111 08i � m 0B2 x1i + x2i I3m 3m ... b2x2i + x3ix3i + x1i 01B3 In O3mn n ... b31n 3mFig. 1. Matrix B and the asso
iated ve
tor bFinally, we set the ve
tor s of size 3m to be equal to 1 in ea
h 
oordinate, i.e.,s(yi) = 1 for ea
h i = 1; : : : ; 3m and the Hamming weight of s is wt(s) = 3m.Let v be a model of the formula ' satisfying exa
tly one literal per 
lause.We will prove that when we append the all-one ve
tor s to v, forming the ve
tort = vs, then the extension �t is a minimal solution of S. Let us study the seteq(t). Sin
e every 
lause 
i = x1i _ x2i _ x3i of ' is satis�ed, the sum of literalvalues is equal to v(x1i ) + v(x2i ) + v(x3i ) = 1. Moreover, for ea
h j = 1; : : : ;m wehave s(xj) = 1, therefore all m rows of B1 belong to eq(t). Exa
tly two of thepolynomials x1i + x2i , x2i + x3i , and x3i + x1i are evaluated to 1 for ea
h 
lause 
iand for ea
h j = 1; : : : ; 3m we have s(xj) = 1, what implies that exa
tly 2mrows from B2 belong to the set eq(t). The row i of B1 and the rows 3(i� 1)+ 1,3(i�1)+2, and 3i of B2 
orrespond to the 
lause 
i. Form the 
orresponding rowindex set I(i) = fi; m+3(i�1)+1; m+3(i�1)+2; m+3ig for a given i. Considerthe restri
tion of the blo
k B2 to the rows I(i). This restri
tion B2(I(i);�) willhave plenty of all-zero 
olumns. Keep only the 
olumns 
ontaining at least onevalue 1. These 
olumns will be 3(i � 1) + 1, 3(i � 1) + 2, and 3i. Form the
orresponding 
olumn index set J(i) = fn+3(i�1)+1; n+3(i�1)+2; n+3ig7



for a given i. The restri
tion of B to the rows I(i) and 
olumns J(i) is the matrixB(I(i); J(i)) = 0BB�1 1 11 0 00 1 00 0 11CCA = B�(i):Note that the �rst row of B�(i) and exa
tly two out of the three last rowsof B�(i) are also represented in the set eq(t). If we delete one of the last threerows of B�(i), the resulting square matrix will remain non-singular. Note thatthe 
olumn index sets J(i) are pairwise disjoint and that their union equals theindex set J� = fn+1; : : : ; n+3mg. Sin
e B(�; J�) = B2 holds, we easily see thatthe restri
tion B2(f1; : : : ; 4mg;�) is equal, modulo a suitable row permutation,to the blo
k matrix B21+2 = 0B�B�(1) O OO . . . OO O B�(m)1CA :The restri
tion B2(eq(t);�) deletes from B21+2 one of the last three rows of ea
hblo
k 
orresponding to B�(i). The matrix B21+2 is non-singular, what impliesthat the restri
tion B2(eq(t);�) is also non-singular, sin
e B�(i) with one rowdeleted remains non-singular. Finally, the blo
k B3 
ontributes wt(v) rows toeq(t). Hen
e, the set eq(t) 
ontains 3m + wt(v) row indi
es and the equalitywt(t) = 3m+ wt(v) holds. This means that B(eq(t); one(t)) is a square matrix.Note that B(eq(t); one(t)) is the 
on
atenation of the matri
es B(eq(t); one(v))and B(eq(t); one(s)), sin
e t = vs. Be
ause s is the all-one ve
tor, the matrixB(eq(t); one(s)) is equal to B2(eq(t);�). Noti
e that B(eq(t)\f4m+1; : : : ; 4m+ng; one(v)) (i.e. the restri
tion ofB1(eq(t); one(v)) to rows of B13) is on
e more anidentity matrix, what makes the blo
k B1(eq(t); one(v)) = B(eq(t); one(v)) non-singular. Finally, the blo
k B23 is an all-zero matrix, therefore the 
on
atenationof matri
es B(eq(t); one(v))B(eq(t); one(s)) = B(eq(t); one(t)) is non-singular,what means that its 
olumns are linearly independent. A

ording to Proposi-tion 1, the extension �t is a minimal solution of S, hen
e s 
an be extended to aminimal solution of the system S.Conversely, suppose that s 
an be extended to a minimal solution of S.Then there exists a partial assignment v to the variables x, forming with s the
on
atenation t = vs, su
h that �t is minimal and wt(t) = 3m + wt(v) holds.Note that independently from the 
hoi
e of the values v(x1i ), v(x2i ), and v(x3i ),at most two of the polynomials x1i + x2i , and x2i + x3i , and x3i + x1i evaluate to 1.Hen
e, at most 2m rows of B2 are evaluated to 0 by the assignment t.Let us analyze the row indi
es of B that belong to eq(t). The blo
k B2
ontributes always at most 2m elements and the blo
k B3 
ontributes exa
tlywt(v) elements to eq(t). Suppose that not all indi
es of B1 belong to eq(t). Inthis 
ase, the blo
k B1 
ontributes at most m�1 elements to eq(t). This impliesthat the 
ardinality of the set eq(t) is smaller or equal than 3m� 1+wt(v) and8



B(eq(t); one(t)) is a (3m � 1 + wt(v)) � (3m + wt(v)) matrix. In this 
ase the
olumn rank of the matrix B(eq(t); one(t)) is smaller than 3m+ wt(v), i.e., the
olumns are linearly dependent. Following Proposition 1, the extension �t 
annotbe minimal. Hen
e, all m row indi
es of B1 must belong to eq(t).Sin
e all m rows of B1 belong to eq(t) and s(yj) = 1 holds for ea
h j, thestru
ture of B11 , en
oding the 
lauses 
i = x1i _ x2i _ x3i of ', implies that theequality t(x1i ) + t(x2i ) + t(x3i ) = v(x1i ) + v(x2i ) + v(x3i ) = 1 holds over Z2 forea
h i. There are two 
ases to analyze: (1) either v(x1i ) = v(x2i ) = v(x3i ) = 1 or(2) exa
tly one of the values v(x1i ), v(x2i ), v(x3i ) is equal to 1 and the two othersare equal to 0. Suppose that there exists an i su
h that Case 1 is satis�ed. Thenthe maximal number of row indi
es in eq(t) 
ontributed by B2 is 2(m� 1). Thisis be
ause the equalities v(x1i ) + v(x2i ) = v(x2i ) + v(x3i ) = v(x3i )+ v(x1i ) = 0 holdover Z2. The 
ardinality of eq(t) is then bounded by 3m�2+wt(v), what implieson
e more that the 
olumns of B(eq(t); one(t)) are linearly dependent and thisleads to the same 
ontradi
tion, implying that the extension �t is not minimal, asin the previous paragraph. Case 2 presents a valid 1-in-3 assignment to '. utTheorem 3. The problem affinf is 
oNP-
omplete.Proof. The problem affinf is the dual of the problem minext. Note that, givena formula ' and a 
lause 
 = :u1_� � �_:uk, the 
ondition ' j=min :u1_� � �_:ukholds if and only if there is no minimal model m of ' that satis�es m(u1) =� � � = m(uk) = 1. The latter is true if and only if the partial assignment swith s(u1) = � � � = s(uk) = 1 
annot be extended to a minimal model of ', orequivalently, to a minimal solution of the aÆne system S 
orresponding to '. ut5 De
ompositions and Polynomial-time De
idable CasesEiter and Gottlob proved in [EG93℄ that the inferen
e problem ' j=min 
 forpropositional 
ir
ums
ription remains �2P-
omplete even if the 
lause 
 
onsistsof a single negative literal :u. However, it is not guaranteed that the 
omplexityremains the same for one-literal 
lauses 
 for the usual sub
lasses of propositionalformulas. Con
erning the 
onsidered inferen
e problem, Cadoli and Lenzeriniproved in [CL94℄ that for dual Horn formulas it remains 
oNP-
omplete but forKrom formulas it be
omes polynomial-time de
idable for a 
lause 
 
onsisting ofa single negative literal. It is a natural question to ask what happens in the 
aseof aÆne formulas in the presen
e of a single literal. In the rest of the se
tion wewill fo
us on the restri
tions affinf1 and minext1 of the respe
tive problemsaffinf and minext to a single negative literal 
lause 
 = :u.To be able to investigate the 
omplexity of minext1 and affinf1, we needto de�ne a neighborhood and a 
ongruen
e 
losure on the 
olumns.De�nition 4. Let B be a k�n matrix over Z2 and let j 2 f1; : : : ; ng be a 
olumnindex. The p-neighborhood Np(j) of the 
olumn j in B, for p = 0; 1; : : : ; n, is9



de�ned indu
tively byN0(j) = fjg;Np+1(j) = fm j (8q)[(q � p)! (m 62 Nq(j))℄ ^(9`)(9i)[(` 2 Np(j)) ^ (B(i; `) = B(i;m) = 1)℄g:The 
onne
ted 
omponent CC(j) of the 
olumn j in B is the union of thep-neighborhoods for all p, i.e., CC(j) = Snp=0Np(j).Speaking in terms of hypergraphs and matroids, where B is interpreted as thevertex-hyperedge in
iden
e matrix, the p-neighborhood Np(j) is the set of ver-ti
es rea
hable from the vertex j by a path of length p. The vertex ` belongs toNp(j) if and only if the shortest path from j to ` in B has the length p. The
onne
ted 
omponent CC(j) is the set of all rea
hable verti
es from j.Example 5. Consider the following following aÆne system S : (I B)(xy) = b,where I , B and b are represented by the su

essive blo
ks of the following matrix.(I j B j b) = 0BBBBBB�1 0 0 0 0 0 0 1 1 1 0 00 1 0 0 0 0 1 0 0 0 0 00 0 1 0 0 0 1 1 1 0 0 00 0 0 1 0 0 1 0 1 0 0 00 0 0 0 1 0 0 0 0 1 1 10 0 0 0 0 1 0 0 0 0 1 1
1CCCCCCATake j = 7 and 
ompute the p-neighborhood from vertex 7 in the matrix B forea
h p = 0; 1; : : : ; 6. We obtain N0(7) = f7g, N1(7) = f8; 9g, N2(7) = f10g,N3(7) = f11g, and N4(7) = N5(7) = N6(7) = ;. The 
onne
ted 
omponent ofthe vertex 7 is CC(7) = f7; 8; 9; 10; 11g.When 
omputing the 
onne
ted 
omponent for all 
olumns of a given ma-trix B, we may get two or more disjoint sets of verti
es. In this 
ase we say thatthe matrix B is de
omposable. The following lemma shows that we 
an 
omputethe problems minext and affinf by 
onne
ted 
omponents without in
reasingthe 
omplexity.Lemma 6. Let S : (I B)(xy) = b be an aÆne system over Z2. Suppose that thematrix B 
an be de
omposed, up to a permutation of rows and 
olumns, into the
omponents �B1 OO B2�where B1 is a k1 � n1 matrix and B2 is a k2 � n2 matrix. Let b1 and b2 be twove
tors of respe
tive size n1 and n2, su
h that b = b1b2. Then the set of minimalsolutions of S is equal, up to a permutation, to the Cartesian produ
t M1 �M2of the sets of minimal solutions M1 and M2 of the systems S1 : (I B1)(x0y0) = b1and S2 : (I B2)(x00y00) = b2, respe
tively, where x = x0x00 and y = y0y00.10



The proof of the following theorem shows that �nding a minimal extension �sof a Boolean ve
tor s with wt(s) = 1 
an be done by �nding a shortest path in a
onne
ted 
omponent of the matrix B from a given 
olumn to an inhomogeneousequation in the system S.Theorem 7. minext1 and affinf1 are de
idable in polynomial time.Proof. (Hint) Suppose without loss of generality that S is a k � n system ofthe form S : (I B)(xy) = b and that the variable assigned by s is y1. This
an be a
hieved through a suitable permutation of rows and 
olumns. We alsosuppose that the matrix B is inde
omposable. Otherwise, we 
ould apply themethod des
ribed in this proof to one of the subsystems S1 or S2 separately,following Lemma 6. Sin
e B is inde
omposable, the 
onne
ted 
omponent ofthe �rst 
olumn is CC(1) = f1; : : : ; ng, i.e., there are no unrea
hable 
olumns.The following 
ondition holds for extensions of ve
tors with weight 1 to minimalsolutions: There exists a minimal solution �s with �s(y1) = 1 if and only if b 6= 0.If b = 0 then the system S is homogeneous and the all-zero assignment for xyis the unique minimal solution of S, what 
ontradi
ts the existen
e of a minimalsolution �s with �s(y1) = 1.Conversely, suppose that b 6= 0. We 
onstru
t a partial assignment s forthe variables y with s(y1) = 1, su
h that �s is minimal. We must �nd the �rstinhomogeneous equation rea
hable from y1. Sin
e b 6= 0, there exists a shortestpath through p+1 hyperedges j0 = 1, j1, . . . , jp of the hypergraph 
orrespondingto the matrix B, su
h that the following 
onditions hold: (1) ea
h hyperedge jq ,q � p, is rea
hanble from j0 sin
e ea
h pair of 
onse
utive hyperedges jq and jq+1has a 
ommon vertex, (2) the existen
e of a vertex i in a hyperedge jq , whereq < p, implies bi = 0, and (3) there exists a vertex i in the last hyperedge jp,su
h that bi = 1. De�ne the partial assignment s for the variables y by s(yjq ) = 1for ea
h q � p and set s(yj) = 0 otherwise. This assignment 
orresponds to theshortest hyperpath starting from a vertex of the hyperedge j0 and �nishing in avertex i of the hyperedge jp, su
h that bi = 1. It is easy to see that �s is a minimalsolution of S 
orresponding to the shortest hyperpath. Ea
h vertex iq, ex
ept thelast one, o

urs twi
e in the shortest hyperpath, what allows us to have biq = 0.The last vertex ip appears only on
e, what implies bip = 1. The variables x areall set equal to 0. Both a shortest hyperpath and the 
onn
eted 
omponent 
anbe 
omputed in polynomial time, therefore both problems minext1 and affinf1are polynomial-time de
idable. utExample 8 (Example 5 
ontinued). Start with the 
olumn j0 = 7 and 
omputea shortest path rea
hing an inhomogeneous equation. There is a shortest pathfrom the 
olumn 7 through the 
olumns j0 = 7, j1 = 9, j2 = 10, rea
hing theinhomogeneous row 5. The path B(4; 7) ! B(4; 9) ! B(1; 9) ! B(1; 10) !B(5; 10) is indi
ated in the matrix by boxed values. Hen
e, we 
omputed thepartial assignment s = (1; 0; 1; 1; 0) for the variables y and the extension �s =(0; 1; 0; 0; 0; 1; 1; 0; 1; 1; 0) is a minimal solution of the system S.11
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