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R�esum�eNous prouvons que les probl�emes #1-in-3Sat, #Not-All-Equal 3Sat et #3-Colorabilit�e, dontles probl�emes de d�eision orrespondants font partie des probl�emes les plus fr�equemmentutilis�es pour prouver la NP-ompl�etude de nouveaux probl�emes, sont #P-omplets. D'unepart, la preuve expliite de la #P-ompl�etude de #1-in-3Sat pourrait être utile dans leadre des preuves de omplexit�e en uni�ation �equationnelle. D'autre part, le fait que la#3-Colorabilit�e est #P-ompl�ete nous permet de d�eduire imm�ediatement que de nombreuxprobl�emes NP-omplets ont une version �enum�erative #P-ompl�ete.De plus, e travail met une nouvelle fois en �evidene l'int�erêt d'exhiber des r�edutionslin�eaires entre probl�emes de la lasse NP.AbstratWe prove that the ounting problems #1-in-3Sat, #Not-All-Equal 3Sat and #3-Colorability,whose deision ounterparts have been the most frequently used in proving NP-hardness ofnew deision problems, are #P-omplete. On one hand, the expliit #P-ompleteness proofof #1-in-3Sat ould be useful to prove omplexity results within uni�ation theory. On theother hand, the fat that #3-Colorability is #P-omplete allows us to dedue immediatelythat the enumerative versions of a large lass of NP-omplete problems are #P-omplete.Moreover, our proofs shed some new light on the interest of exhibiting linear redutionsbetween NP problems.Keywords: ounting lass, ounting problem, #P-ompleteness, parsimonious redution,satis�ability.�Partially supported by Institut National Polytehnique de Lorraine grant 910 0146 R1.



1 IntrodutionCounting problems represent the quantitative ounterpart to deision problems. The om-plexity lass NP and NP-omplete deision problems have been exhaustively studied in theliterature (see [GJ79℄ for an overview). Valiant [Val79a, Val79b℄ introdued the omplexitylass #P and proved several ounting problems to be #P-omplete. The lass #P is de�nedas the lass of ounting problems whose deision problem is in NP, that is, f 2 #P if andonly if there is a nondeterministi Turing mahine M that runs in polynomial time with theproperty that f(x) equals the number of aepting omputation paths of M on input x. If Ais a deision problem, let us denote the orresponding ounting problem by #A.The ounting problem #Sat (the number of satisfying assignments of a propositionalCNF formula) is known to be #P-omplete, mainly beause Cook's generi transformationis parsimonious in the sense that the number of satisfying assignments to the Boolean for-mula orresponds exatly to the number of aepting omputations of the nondeterministiTuring mahine being simulated. The redution from Sat to 3Sat an be made parsimo-nious [Koz92℄, thus proving the #P-hardness part of #3Sat. Intuitively, it seems that almostfor eah NP-omplete problem the orresponding ounting problem is #P-omplete. Thisis often repeated in the literature [Joh90, page 107℄[PB83, page 779℄[Sim77, page 484℄, butthe expliite proofs are omitted. In fat, it is sometimes not straightforward to �nd an ap-propriate redution [Val79b, Gal74℄. Moreover, not all NP deision problems have ountingounterparts that belong to the lass #P. For example, AC-uni�ation as a deision problemis NP-omplete [KN92℄ but there are AC-uni�ation problems whose minimal omplete setof uni�ers (see [FH86℄ for the de�nition) has double exponential ardinality [Dom92℄. Thissituation is due to the fat that the deision problem asks for the existene of a uni�er,not neessarily a member of the minimal omplete set. On the other hand, omputing the(minimal) omplete set of uni�ers is a ruial problem in automated dedution in partiularand arti�ial intelligene in general to guarantee the ompleteness of many proedures oralgorithms whih use AC-uni�ation. Thus, the AC-uni�ation ounting problem annotbelong to the ounting lass #P, sine eah ounting problem belonging to #P ontains, byde�nition, only a simple exponential number of di�erent solutions.A polynomial redution from 1-in-3Sat is the NP-hardness proof of many interestingproblems, espeially in automated dedution. Uni�ation modulo idempotene [KN92℄ andmodulo unit [TA87℄ are proved NP-omplete by a redution from 1-in-3Sat. Within theuni�ation theory, we are interested not only in deision problems (whether two terms areuni�able in a given theory) but also in ounting problems (how many substitutions ontainsthe minimal omplete set of uni�ers), therefore the interest in ounting lasses. We ouldperhaps adapt the polynomial redutions from NP-hardness proofs to parsimonious ones fromthe ounting problems #1-in-3Sat or #Mono 1-in-3Sat, proving this way the #P-hardnessof the orresponding ounting problems, provided #1-in-3Sat and #Mono 1-in-3Sat areproved #P-omplete. The deision problem 1-in-3Sat was proved to be NP-omplete byShaefer [Sh78℄ but the orresponding ounterpart was not proved to be #P-omplete.The purpose of our paper is to prove the #P-ompleteness of several ounting problemssuh as #1-in-3Sat, #Not-All-Equal 3Sat (and their variants) and #3-Colorability. In thisway we give an e�etive proof of the #P-ompleteness of the ounting versions of some1



deision problems that are among those that have been most frequently used to get proofs ofNP-ompleteness. Finally, a prior work on the lass of problems that are linearly equivalentto Satis�ability enables us to prove that a the ounting versions of a large lass of problemsare #P-omplete.2 Counting problemsWe onsider the following ounting problems.#1-in-3Sat (#Mono-1-in-3Sat)Instane: Set V of Boolean variables, a Boolean formula B over V in onjuntive normalform where eah lause of B has exatly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with exatly one true literal ineah lause ?The problem #2-in-3Sat (respetively #Mono-2-in-3Sat) requires exatly two true literalsin eah lause.#Not-Exatly-One 3Sat (#Not-Exatly-One Horn-3Sat)Instane: Set V of Boolean variables, a Boolean formula B over V in onjuntive normalform where eah lause of B has exatly three literals (and at most one unegated variable).Question: How many truth assignments for V satisfy B with no lause having exatly onetrue literal ?#Not-All-Equal 3Sat (#Mono-Not-All-Equal 3Sat)Instane: Set V of Boolean variables, a Boolean formula B over V in onjuntive normalform where eah lause of B has exatly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with at least one true and one falseliteral in eah lause ?#3-ColorabilityInstane: Graph G = (V;E).Question: How many 3-olorings de�ned on V exist for G ? In another words, how manyfuntions ol:V ! f1; 2; 3g exist suh that ol(u) 6= ol(v) whenever (u; v) 2 E ?Let us reall also the ounting problems whih were proved #P-omplete before andwhih will be redued to previously mentioned problems.Positive 2Sat (#Pos-2Sat) proved #P-omplete (alled monotone) by Valiant [Val79b℄Instane: Set V of Boolean variables, a Boolean formula B over V in onjuntive normalform where eah lause of B has exatly two positive literals.Question: How many truth assignments for V satisfy B ?2



Bipartite positive 2Sat (#BPos-2Sat) proved #P-omplete by Provan and Ball [PB83℄Instane: Two disjoint sets of variablesX = fx1; : : : ; xkg, Y = fy1; : : : ; ylg and the Booleanformula B = (xi1 _ yj1) ^ � � � ^ (xin _ yjn).Question: How many truth assignments for V satisfy B ?Impliative 2Sat (#Impl-2Sat) proved #P-omplete by Linial [Lin86℄Instane: Set V of Boolean variables, a Boolean formula B over V in onjuntive normalform where eah lause of B has exatly one positive and one negative literal.Question: How many truth assignments for V satisfy B ?In the sequel, a k-lause means a lause ontaining k literals. An impliative lause meansa lause ontaining exatly one positive and one negative literal.3 Counting lass #PLet � and � be nonempty alphabets. Let w: �� ! P(��), where P(��) denotes the powerset of ��, and let x 2 ��. We refer to the elements of w(x) as witnesses for x.For satis�ability problem, let x 2 �� be an enoding of the Boolean formula B and y 2 ��an enoding of a truth assignment. The witness set isw(x) = ftruth assignments y satisfying x and Q(x; y)gwhere Q(x; y) is a prediate on x and y, expressing e.g. that eah lause of B has exatlythree literals, or that eah satisfying assignment for B has exatly one true value, et.For #3-Colorability, let x 2 �� be an enoding of the graph G = (V;E) and y 2 �� anenoding of a oloring funtion ol:V ! f0; 1; 2g. The witness set isw(G) = fol:V ! f0; 1; 2g j (ol(u) 6= ol(v)) � ((u; v) 2 E)gN denotes the natural numbers, jxj is the size of the string x, and jSj is the ardinalityof a set S.De�nition 3.1 ([Koz92℄) The lass #P is the lass of witness funtions w suh that:1. there is a polynomial-time algorithm to determine, for given x and y, if y 2 w(x);2. there exists a onstant k 2 N suh that for all y 2 w(x), jyj � jxjk.(The onstant k an depend on w).Using this de�nition it is lear that all the problems proposed here are in the ountinglass #P.
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4 Parsimonious redutions and #P-omplete problemsTo prove #P-hardness, we need redutions from already known #P-omplete problems.It is neessary to observe how ounting problems v and w are related under the proessof redution. The notion of ounting redutions and parsimonious redutions have beenintrodued for this purpose.De�nition 4.1 Let w: �� ! P(��) and v: �� ! P(��) be ounting problems. A weaklyparsimonious redution from w to v onsists of a pair of polynomial-time omputable fun-tions �: �� ! �� and � : �� �N ! N suh that jw(x)j = �(x; jv(�(x))j).A ounting redution � is parsimonious if jw(x)j = jv(�(x))j.Let w and v be ounting problems. Note w �! v and w �!! v if there is a weakly parsimoniousand parsimonious redution from v to w, respetively.The #P-omplete problems are the most diÆult problems in the lass #P.De�nition 4.2 A ounting problem w is #P-hard if v �! w for all problems v 2 #P . Aounting problem w is #P-omplete if it is #P-hard and w 2 #P .If w is #P-omplete and there is a weakly parsimonious redution from w to v then v is#P-hard.The redutions in the #P-hardness proofs must preserve the number of solutions, possiblywith a ertain fator. Therefore the neessity to look for parsimonious or weakly parsimo-nious redutions. Note that a omposition of (weakly) parsimonious redutions is a (weakly)parsimonious redution.Theorem 4.3 The ounting problems #1-in-3Sat and #Mono 1-in-3Sat are #P-omplete.Proof: It is lear that these problems are in the lass #P. To show that they are #P-hardit is suÆient to prove that prove that #Mono-1-in-3Sat is #P-hard. For this we �rst showthat there is a parsimonious redution from #Impl-2Sat to #Mono-2-in-3Sat.Suppose that we are given an instane of the #Impl-2Sat problem with the variables Vand the impliative lauses C = f1; : : : ; ng, with the Boolean formula B = 1^� � �^n. LetX = fx12; x13; : : : ; xn2; xn3g and Y = fy12; y13; y14; : : : ; yn2; yn3; yn4g be sets of new variables.Let V 0 = V [X [ Y .To eah impliative lause i = �vi1 _ vi2 we assoiate four new lausesi1 = vi1 _ xi2 _ xi3i2 = vi2 _ xi2 _ yi2 i4 = xi3 _ yi2 _ yi4i3 = vi2 _ xi3 _ yi3Let B0 be the Boolean formula onstruted from B by replaing eah lause i by the on-juntion i1 ^ i2 ^ i3 ^ i4.First, we show that for eah truth assignment for V satisfying B there exists a uniqueenlargement to a truth assignment for V 0 satisfying B0 with exatly two true literals in eahlause. 4



vi1 vi2 xi2 xi3 yi2 yi3 yi40 0 1 1 1 1 00 1 1 1 0 0 11 1 0 1 1 0 0Figure 1: Enlargements of truth assignments from B to B0.Eah truth assignement satisfying B evaluates the variables vi1 and vi2 in eah lause iin one of the following ways: (1) vi1 false and vi2 false; (2) vi1 false and vi2 true; (3) vi1 trueand vi2 true.Case 1: If vi1 and vi2 are evaluated as false, then the variables xi2, xi3, yi2 and yi3 mustbe true. The variables xi3 and yi2 are true, thus yi4 must be false. All variables in thelauses i1, . . . , i4 have been determined.Case 2: If vi1 is evaluated as false and vi2 as true. The variable vi1 is false, thus thevariables xi2 and xi3 are true following lause i1. The variables vi2, xi2, and xi3 are true,thus yi2 and yi3 are false. The variable xi3 is true and yi2 is false, thus yi4 is true. Allvariables in the lauses i1, . . . , i4 have been determined.Case 3: If vi1 and vi2 are evaluated as true. Suppose that xi2 is true, then yi2 must befalse sine vi2 is already true. If vi1 and xi2 are true then xi3 must be false following lause i1.But we have now the situation where xi3 is false and yi2 is false, thus the lause i4 annothave two true literals. Hene, xi2 must be false. The variable vi1 is true and xi2 is false,thus xi3 is true. The variables vi2 and xi3 are true, thus yi3 must be false. The variable vi2is true and xi2 is false, thus yi2 is true. The variables xi3 and yi2 are true, thus yi4 is false.All variables in the lauses i1, . . . , i4 have been determined.We proved that eah truth assignment satisfying B determines a unique enlargementsatisfying B0 with exatly two true literals in eah lause. Figure 1 summarizes the truthassignments.Conversely, we must prove that the restrition to the variables V of eah 2-in-3 truthassignment satisfying B0 satis�es also the original formula B. Suppose that B0 is evaluatedas true, thus eah lause ij is true. One of the literals in the lause i1 must be false. If xikis false then the two other literals in the lause ik, in partiular vi2, must be true. If vi1 isfalse then �vi1 is true. Thus, at least one of the literals �vi1 and vi2 in eah lause i is true.Hene, B is true.We proved that the redution from #Impl-2Sat to #2-in-3Sat is parsimonious. It issuÆient now to negate all literals in eah lause to get a parsimonious redution from#Mono-2-in-3Sat to #Mono-1-in-3Sat. The #P-hardness of #1-in-3Sat follows from the#P-ompleteness of #Mono 1-in-3Sat. 2Theorem 4.4 The ounting problem #Not-Exatly-one 3Sat is #P-omplete.Proof: It is lear that this problem belongs to #P. To show that it is #P-hard we showthat there is a parsimonious redution from #Pos-2Sat.5



Suppose that we are given an instane of the #Pos-2Sat problem with the variables Vand the 2-lauses C = f1; : : : ; ng, where B = 1 ^ � � � ^ n. Let V 0 = V [ fx; yg, where xand y are new variables.To eah lause i = vi1 _ vi2 we assoiate the lause 0i = vi1 _ vi2 _ x. Let us onsider thenew lauses 0 = x _ �x _ y and d0 = y _ �y _ x and the new formulaB0 = 01 ^ � � � ^ 0n ^ 0 ^ d0The ase analysis with onstraints for evaluating logial variables proves that eah truthassignment satisfying B determines a unique enlargment on V 0 with no lause in B0 havingexatly one true literal. The literals x and y must be evaluated as true following the lauses 0and d0 and onversely, the restrition to the variables V of eah truth assignment on V 0, withno lause in B0 having exatly one true literal, satis�es the original formula B.Thus, the redution from #Pos-2Sat to #Not-Exatly-One 3Sat is parsimonious. 2Remark. Let us notie that this redution, in negating all the literals, also provides a proofof the #P-ompleteness of the same problem restrited to Horn 3-lauses. It is interestingto note that the deision problem Not-Exatly-One Horn-3Sat is in P (see [Sh78℄). Thus, inthis partiular ase we show that the orresponding ounting problem is #P-omplete, i.e.onsiderably more diÆult than the original deision problem, provided P 6= NP.Theorem 4.5 The ounting problems #Not-All-Equal 3Sat and #Mono-Not-All-Equal 3Satare #P-omplete.Proof: It is lear that these problems belong to #P. To show that there are #P-hard weshow that there are weakly parsimonious redutions from #1-in-3Sat and #Mono-1-in-3Satrespetively.Suppose that we are given an instane of the #1-in-3Sat problem with the variables Vand the lauses C = f1; : : : ; ng, where B = 1 ^ � � � ^ n. Let V 0 = V [ ftg, where t is anew variable. To eah lause i = li1 _ li2 _ li3 we assoiate four new lausesi1 = li1 _ li2 _ ti2 = li2 _ li3 _ t i4 = li1 _ li2 _ li3i3 = li3 _ li1 _ tLet B0 be the Boolean formula onstruted from B by replaing eah lause i by the on-juntion i1 ^ i2 ^ i3 ^ i4.First, we show that for eah truth assignment for V , satisfying B with exatly onetrue literal in eah lause, there exists a unique enlargement to a truth assignment for V 0satisfying B0 with at least one true and one false literal in eah lause.Let us onsider a truth assignment for V satisfying B with exatly one true literal ineah lause. Sine two of the literals li1, li2, and li3 are false, the variable t must be truefollowing one of the lauses i1, i2 or i3.Conversely, let s0 be a truth assignment satisfying B0 with at least one true and one falseliterals in eah lause. Suh a truth assignment evaluates t either as true or false.6



If the variable t is evaluated as true, then at least one of the two literals in eah pair(li1; li2), (li2; li3), and (li3; li1) is false following the lauses i1, i2, and i3. But followinglause i4, one of the literals li1, li2 or li3 must be true. Therefore, exatly one of the threeliterals li1, li2 and li3 is true. Thus, the restrition to the variables V of the truth assignment s0satis�es also the original formula B with exatly one true literal in eah lause.If the variable t is evaluated as false, then at least one of the two literals in eah pair(li1; li2), (li2; li3), and (li3; li1) is true following the lauses i1, i2, and i3. But followinglause i4, one of the literals li1, li2 or li3 must be false. Therefore, exatly one of these threeliterals is false. Observe that the number of satisfying assignments for B0 with exatly onetrue literal in eah lause is equal to the number of satisfying assignments for B0 with exatlytwo true literals in eah lause. If s is a satisfying assignment with exatly one true literalin eah lause then �s, where �s(v) = 1� s(v) for eah v 2 V , is a satisfying assignment withexatly two true literals in eah lause.We showed that if t is evaluated as true then exatly one literal in eah lause in B isevaluated as true, and if t is evaluated as false then exatly two literals in eah lause in B areevaluated as true. Hene, eah restrition of a satisfying assignment for B0 to the variables Vis either 1-in-3 or 2-in-3. There is no restrition in whih one lause of B has exatly onetrue literal and another lause of B has exatly two true literals.From these observations, we onlude that the number of truth assignment satisfying B0with at least one true and one false literals in eah lause equals two times the numberof truth assignment satisfying the original formula B with exatly one true literal in eahlause.We showed that the redution from #1-in-3Sat to #Not-All-Equal 3Sat is weakly par-simonious, thus ompleting the proof of the #P-hardness of #Not-All-Equal 3Sat. Thesame redution from #Mono-1-in 3Sat proves that #Mono-Not-All-Equal 3Sat is also #P-omplete. 2Although the following theorem is subsumed by the Linial's result that the 3-oloring ofa bipartite graph is #P-omplete [Lin86℄, we present it here sine we prove its #P-hardnessby a weakly parsimonious redution from #Not-All-Equal 3Sat.Theorem 4.6 The ounting problem #3-Colorability is #P-omplete.Proof: It is easy to see that this problem belongs to the lass #P. The lassial linearredution [Dew82℄ from Not-All-Equal 3Sat to 3-Colorability is suitable for proving that#3-Colorability is #P-hard. Let us remind the reader of this transformation and prove thatit is weakly parsimonious.Suppose that we are given an instane of the #Not-All-Equal 3Sat problem with thevariables V and the lauses C = f1; : : : ; ng, where B = 1 ^ � � � ^ n. The orrespondinginput for #3-Colorability is the graph G = (V;E) spei�ed as follows. Its set of verties isV = V1 [ V2 where,V1 = fontrolg [ fv; �v j v 2 V gV2 = fsi(l0i ); si(l1i ); si(l2i ) j i = (li0 _ li2 _ li2); 1 � i � ng7



Its set of edges is E = E1 [ E2 where,E1 = fhontrol ; vi; hontrol ; �vi; hv; �vi j v 2 V gE2 = fhl0i ; si(l0i )i; hl1i ; si(l1i )i; hl2i ; si(l2i )i j 1 � i � ng [fhsi(l0i ); si(l1i )i; hsi(l1i ); si(l2i )i; hsi(l2i ); si(l0i )i j 1 � i � ngIn fat, the triangle for eah i in E2 represents the lause i and will be denoted by Ti.Let I be a truth assignment satisfying B with at least one true and one false literal ineah lause. Without loss of generality we an suppose that I(li0) = 0 and I(li1) = 1. So,up to isomorphism we an de�ne a 3-oloring of G by letting ol(ontrol) = 2, ol(v) = I(v)and ol(�v) = 1� I(v) for v 2 V . Then, it is easy too see that for eah triangle Ti there areexatly two di�erent valid olorings of the verties si(l0i ), si(l1i ), and si(l2i ).Conversely, suppose that ol:V ! f0; 1; 2g is a valid 3-oloring of G. Up to isomorphismwe an suppose that ol(ontrol) = 2. Thus, we an de�ne a truth assignment on V byletting I(v) = ol(v). It is easy to see that this truth assignment satisfy B with neessarilyat least one true and one false literal.From these observations we an onlude that the number of valid 3-oloring for G equals3! � 2n times the number of truth assignment satisfying the original formula with at leastone true and one false literal.We showed that the redution from #Not-All-Equal 3Sat to #3-Colorability is weaklyparsimonious, thus ompleting the proof of the #P-hardness of #3-Colorability. 2Linear equivalene to Satis�ability was studied in [Cre93, Cre92℄. Among deision prob-lems linearly equivalent to Sat we an �nd 3-Domati Number, Path With Forbidden Pairs,Partition into Hamiltonian Subgraphs, 2-Partition into Perfet Mathings, Partition intoPaths of Length 2, 3-Dimensional Mathing, and Partition into TrianglesCorollary 4.7 The ounting versions of the deision problems linearly equivalent to Satis-�ability are #P-omplete.Proof: On one hand, it is easy to verify that all these problems belong to the lass #P. Onthe other hand, one an easily verify that all the linear transformations proposed in [Cre93,Cre92℄, from 3-Colorability to these problems are in fat weakly parsimonious. Thus theorollary follows from Theorem 4.6. 25 ConlusionWe proved here that the problems #Mono-1-in-3Sat, #Mono-Not-All-Equal 3Sat, #3-Co-lorability and a large lass of other problems are #P-omplete. Let us notie that all theredutions provided are omputable in linear time. Besides to the interest of our result to ob-tain new #P-omplete problems, we should notie that this proof strengthens the hypothesisaording to whih the notion of linear redutions between NP-omplete problems is usefuland natural (see [Cre92, Gra93℄). In fat, linear time redutions allow to simplify and tostandardize many proofs of NP-hardness [Cre92℄, they often naturally preserve the approx-imation algorithms for NP-omplete optimization problems (observe for example that the8



L-redutions proposed by Papadimitriou and Yannakakis [PY91℄ are linear time omputable)and �nally they seem to be useful to get parsimonious redutions in a natural way.Referenes[Cre92℄ N. Creignou. The lass of problems that are linearly equuivalent to Satis�ability ora uniform method for proving NP-ompleteness. In E. B�orger, G. J�ager, H. KleineB�uning, S. Martini, and M.M. Rihter, editors, Proeedings 6th Workshop on Com-puter Siene Logi (CSL'92), San Miniato (Italy), volume 702 of Leture Notes inComputer Siene, pages 115{133. Springer-Verlag, 1992. Seleted papers.[Cre93℄ N. Creignou. Temps lin�eaire et probl�emes NP-omplets. PhD thesis, Universit�e deCaen, 1993.[Dew82℄ A. K. Dewdney. Linear transformations between ombinatorial problems. Interna-tional Journal of Computer Mathematis, 11:91{110, 1982.[Dom92℄ E. Domenjoud. Number of minimal uni�ers of the equation �x1 + � � � + �xb =AC�y1 + � � �+ �yq. Journal of Automated Reasoning, 8(1):39{44, 1992.[FH86℄ F. Fages and G. Huet. Complete sets of uni�ers and mathers in equational theories.Theoretial Computer Siene, 43(1):189{200, 1986.[Gal74℄ Z. Galil. On some diret enodings of nondeterministi Turing mahines operatingin polynomial time into P-omplete problems. SIGACT News, 6(1):19{24, January1974.[GJ79℄ M. R. Garey and D. S. Johnson. Computers and intratability: A guide to thetheory of NP-ompleteness. W.H. Freeman and Co, 1979.[Gra93℄ E. Grandjean. Sorting, linear time and satis�ability problem. In M. Nivatand S. Grigorie�, editors, Annals of Mathematis and Arti�ial Intelligene. J.C.Baltzer Sienti� Publishing Co, Suisse, 1993. Speial issue. To appear.[Joh90℄ D. S. Johnson. A atalog of omplexity lasses. In J. van Leeuwen, editor, Handbookof Theoretial Computer Siene, Volume A: Algorithms and Complexity, hapter 2,pages 67{161. North-Holland, Amsterdam, 1990.[KN92℄ D. Kapur and P. Narendran. Complexity of uni�ation problems with assoiative-ommutative operators. Journal of Automated Reasoning, 9:261{288, 1992.[Koz92℄ D. C. Kozen. The design and analysis of algorithms, hapter 26: Counting problemsand #P, pages 138{143. Springer-Verlag, 1992.[Lin86℄ N. Linial. Hard enumeration problems in geometry and ombinatoris. SIAMJournal on Algebrai and Disrete Methods, 7(2):331{335, April 1986.9
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