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R�esum�eNous prouvons que les probl�emes #1-in-3Sat, #Not-All-Equal 3Sat et #3-Colorabilit�e, dontles probl�emes de d�e
ision 
orrespondants font partie des probl�emes les plus fr�equemmentutilis�es pour prouver la NP-
ompl�etude de nouveaux probl�emes, sont #P-
omplets. D'unepart, la preuve expli
ite de la #P-
ompl�etude de #1-in-3Sat pourrait être utile dans le
adre des preuves de 
omplexit�e en uni�
ation �equationnelle. D'autre part, le fait que la#3-Colorabilit�e est #P-
ompl�ete nous permet de d�eduire imm�ediatement que de nombreuxprobl�emes NP-
omplets ont une version �enum�erative #P-
ompl�ete.De plus, 
e travail met une nouvelle fois en �eviden
e l'int�erêt d'exhiber des r�edu
tionslin�eaires entre probl�emes de la 
lasse NP.Abstra
tWe prove that the 
ounting problems #1-in-3Sat, #Not-All-Equal 3Sat and #3-Colorability,whose de
ision 
ounterparts have been the most frequently used in proving NP-hardness ofnew de
ision problems, are #P-
omplete. On one hand, the expli
it #P-
ompleteness proofof #1-in-3Sat 
ould be useful to prove 
omplexity results within uni�
ation theory. On theother hand, the fa
t that #3-Colorability is #P-
omplete allows us to dedu
e immediatelythat the enumerative versions of a large 
lass of NP-
omplete problems are #P-
omplete.Moreover, our proofs shed some new light on the interest of exhibiting linear redu
tionsbetween NP problems.Keywords: 
ounting 
lass, 
ounting problem, #P-
ompleteness, parsimonious redu
tion,satis�ability.�Partially supported by Institut National Polyte
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1 IntrodutionCounting problems represent the quantitative 
ounterpart to de
ision problems. The 
om-plexity 
lass NP and NP-
omplete de
ision problems have been exhaustively studied in theliterature (see [GJ79℄ for an overview). Valiant [Val79a, Val79b℄ introdu
ed the 
omplexity
lass #P and proved several 
ounting problems to be #P-
omplete. The 
lass #P is de�nedas the 
lass of 
ounting problems whose de
ision problem is in NP, that is, f 2 #P if andonly if there is a nondeterministi
 Turing ma
hine M that runs in polynomial time with theproperty that f(x) equals the number of a

epting 
omputation paths of M on input x. If Ais a de
ision problem, let us denote the 
orresponding 
ounting problem by #A.The 
ounting problem #Sat (the number of satisfying assignments of a propositionalCNF formula) is known to be #P-
omplete, mainly be
ause Cook's generi
 transformationis parsimonious in the sense that the number of satisfying assignments to the Boolean for-mula 
orresponds exa
tly to the number of a

epting 
omputations of the nondeterministi
Turing ma
hine being simulated. The redu
tion from Sat to 3Sat 
an be made parsimo-nious [Koz92℄, thus proving the #P-hardness part of #3Sat. Intuitively, it seems that almostfor ea
h NP-
omplete problem the 
orresponding 
ounting problem is #P-
omplete. Thisis often repeated in the literature [Joh90, page 107℄[PB83, page 779℄[Sim77, page 484℄, butthe expli
ite proofs are omitted. In fa
t, it is sometimes not straightforward to �nd an ap-propriate redu
tion [Val79b, Gal74℄. Moreover, not all NP de
ision problems have 
ounting
ounterparts that belong to the 
lass #P. For example, AC-uni�
ation as a de
ision problemis NP-
omplete [KN92℄ but there are AC-uni�
ation problems whose minimal 
omplete setof uni�ers (see [FH86℄ for the de�nition) has double exponential 
ardinality [Dom92℄. Thissituation is due to the fa
t that the de
ision problem asks for the existen
e of a uni�er,not ne
essarily a member of the minimal 
omplete set. On the other hand, 
omputing the(minimal) 
omplete set of uni�ers is a 
ru
ial problem in automated dedu
tion in parti
ularand arti�
ial intelligen
e in general to guarantee the 
ompleteness of many pro
edures oralgorithms whi
h use AC-uni�
ation. Thus, the AC-uni�
ation 
ounting problem 
annotbelong to the 
ounting 
lass #P, sin
e ea
h 
ounting problem belonging to #P 
ontains, byde�nition, only a simple exponential number of di�erent solutions.A polynomial redu
tion from 1-in-3Sat is the NP-hardness proof of many interestingproblems, espe
ially in automated dedu
tion. Uni�
ation modulo idempoten
e [KN92℄ andmodulo unit [TA87℄ are proved NP-
omplete by a redu
tion from 1-in-3Sat. Within theuni�
ation theory, we are interested not only in de
ision problems (whether two terms areuni�able in a given theory) but also in 
ounting problems (how many substitutions 
ontainsthe minimal 
omplete set of uni�ers), therefore the interest in 
ounting 
lasses. We 
ouldperhaps adapt the polynomial redu
tions from NP-hardness proofs to parsimonious ones fromthe 
ounting problems #1-in-3Sat or #Mono 1-in-3Sat, proving this way the #P-hardnessof the 
orresponding 
ounting problems, provided #1-in-3Sat and #Mono 1-in-3Sat areproved #P-
omplete. The de
ision problem 1-in-3Sat was proved to be NP-
omplete byS
haefer [S
h78℄ but the 
orresponding 
ounterpart was not proved to be #P-
omplete.The purpose of our paper is to prove the #P-
ompleteness of several 
ounting problemssu
h as #1-in-3Sat, #Not-All-Equal 3Sat (and their variants) and #3-Colorability. In thisway we give an e�e
tive proof of the #P-
ompleteness of the 
ounting versions of some1



de
ision problems that are among those that have been most frequently used to get proofs ofNP-
ompleteness. Finally, a prior work on the 
lass of problems that are linearly equivalentto Satis�ability enables us to prove that a the 
ounting versions of a large 
lass of problemsare #P-
omplete.2 Counting problemsWe 
onsider the following 
ounting problems.#1-in-3Sat (#Mono-1-in-3Sat)Instan
e: Set V of Boolean variables, a Boolean formula B over V in 
onjun
tive normalform where ea
h 
lause of B has exa
tly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with exa
tly one true literal inea
h 
lause ?The problem #2-in-3Sat (respe
tively #Mono-2-in-3Sat) requires exa
tly two true literalsin ea
h 
lause.#Not-Exa
tly-One 3Sat (#Not-Exa
tly-One Horn-3Sat)Instan
e: Set V of Boolean variables, a Boolean formula B over V in 
onjun
tive normalform where ea
h 
lause of B has exa
tly three literals (and at most one unegated variable).Question: How many truth assignments for V satisfy B with no 
lause having exa
tly onetrue literal ?#Not-All-Equal 3Sat (#Mono-Not-All-Equal 3Sat)Instan
e: Set V of Boolean variables, a Boolean formula B over V in 
onjun
tive normalform where ea
h 
lause of B has exa
tly three (all positive or all negative) literals.Question: How many truth assignments for V satisfy B with at least one true and one falseliteral in ea
h 
lause ?#3-ColorabilityInstan
e: Graph G = (V;E).Question: How many 3-
olorings de�ned on V exist for G ? In another words, how manyfun
tions 
ol:V ! f1; 2; 3g exist su
h that 
ol(u) 6= 
ol(v) whenever (u; v) 2 E ?Let us re
all also the 
ounting problems whi
h were proved #P-
omplete before andwhi
h will be redu
ed to previously mentioned problems.Positive 2Sat (#Pos-2Sat) proved #P-
omplete (
alled monotone) by Valiant [Val79b℄Instan
e: Set V of Boolean variables, a Boolean formula B over V in 
onjun
tive normalform where ea
h 
lause of B has exa
tly two positive literals.Question: How many truth assignments for V satisfy B ?2



Bipartite positive 2Sat (#BPos-2Sat) proved #P-
omplete by Provan and Ball [PB83℄Instan
e: Two disjoint sets of variablesX = fx1; : : : ; xkg, Y = fy1; : : : ; ylg and the Booleanformula B = (xi1 _ yj1) ^ � � � ^ (xin _ yjn).Question: How many truth assignments for V satisfy B ?Impli
ative 2Sat (#Impl-2Sat) proved #P-
omplete by Linial [Lin86℄Instan
e: Set V of Boolean variables, a Boolean formula B over V in 
onjun
tive normalform where ea
h 
lause of B has exa
tly one positive and one negative literal.Question: How many truth assignments for V satisfy B ?In the sequel, a k-
lause means a 
lause 
ontaining k literals. An impli
ative 
lause meansa 
lause 
ontaining exa
tly one positive and one negative literal.3 Counting 
lass #PLet � and � be nonempty alphabets. Let w: �� ! P(��), where P(��) denotes the powerset of ��, and let x 2 ��. We refer to the elements of w(x) as witnesses for x.For satis�ability problem, let x 2 �� be an en
oding of the Boolean formula B and y 2 ��an en
oding of a truth assignment. The witness set isw(x) = ftruth assignments y satisfying x and Q(x; y)gwhere Q(x; y) is a predi
ate on x and y, expressing e.g. that ea
h 
lause of B has exa
tlythree literals, or that ea
h satisfying assignment for B has exa
tly one true value, et
.For #3-Colorability, let x 2 �� be an en
oding of the graph G = (V;E) and y 2 �� anen
oding of a 
oloring fun
tion 
ol:V ! f0; 1; 2g. The witness set isw(G) = f
ol:V ! f0; 1; 2g j (
ol(u) 6= 
ol(v)) � ((u; v) 2 E)gN denotes the natural numbers, jxj is the size of the string x, and jSj is the 
ardinalityof a set S.De�nition 3.1 ([Koz92℄) The 
lass #P is the 
lass of witness fun
tions w su
h that:1. there is a polynomial-time algorithm to determine, for given x and y, if y 2 w(x);2. there exists a 
onstant k 2 N su
h that for all y 2 w(x), jyj � jxjk.(The 
onstant k 
an depend on w).Using this de�nition it is 
lear that all the problems proposed here are in the 
ounting
lass #P.
3



4 Parsimonious redu
tions and #P-
omplete problemsTo prove #P-hardness, we need redu
tions from already known #P-
omplete problems.It is ne
essary to observe how 
ounting problems v and w are related under the pro
essof redu
tion. The notion of 
ounting redu
tions and parsimonious redu
tions have beenintrodu
ed for this purpose.De�nition 4.1 Let w: �� ! P(��) and v: �� ! P(��) be 
ounting problems. A weaklyparsimonious redu
tion from w to v 
onsists of a pair of polynomial-time 
omputable fun
-tions �: �� ! �� and � : �� �N ! N su
h that jw(x)j = �(x; jv(�(x))j).A 
ounting redu
tion � is parsimonious if jw(x)j = jv(�(x))j.Let w and v be 
ounting problems. Note w �! v and w �!! v if there is a weakly parsimoniousand parsimonious redu
tion from v to w, respe
tively.The #P-
omplete problems are the most diÆ
ult problems in the 
lass #P.De�nition 4.2 A 
ounting problem w is #P-hard if v �! w for all problems v 2 #P . A
ounting problem w is #P-
omplete if it is #P-hard and w 2 #P .If w is #P-
omplete and there is a weakly parsimonious redu
tion from w to v then v is#P-hard.The redu
tions in the #P-hardness proofs must preserve the number of solutions, possiblywith a 
ertain fa
tor. Therefore the ne
essity to look for parsimonious or weakly parsimo-nious redu
tions. Note that a 
omposition of (weakly) parsimonious redu
tions is a (weakly)parsimonious redu
tion.Theorem 4.3 The 
ounting problems #1-in-3Sat and #Mono 1-in-3Sat are #P-
omplete.Proof: It is 
lear that these problems are in the 
lass #P. To show that they are #P-hardit is suÆ
ient to prove that prove that #Mono-1-in-3Sat is #P-hard. For this we �rst showthat there is a parsimonious redu
tion from #Impl-2Sat to #Mono-2-in-3Sat.Suppose that we are given an instan
e of the #Impl-2Sat problem with the variables Vand the impli
ative 
lauses C = f
1; : : : ; 
ng, with the Boolean formula B = 
1^� � �^
n. LetX = fx12; x13; : : : ; xn2; xn3g and Y = fy12; y13; y14; : : : ; yn2; yn3; yn4g be sets of new variables.Let V 0 = V [X [ Y .To ea
h impli
ative 
lause 
i = �vi1 _ vi2 we asso
iate four new 
lauses
i1 = vi1 _ xi2 _ xi3
i2 = vi2 _ xi2 _ yi2 
i4 = xi3 _ yi2 _ yi4
i3 = vi2 _ xi3 _ yi3Let B0 be the Boolean formula 
onstru
ted from B by repla
ing ea
h 
lause 
i by the 
on-jun
tion 
i1 ^ 
i2 ^ 
i3 ^ 
i4.First, we show that for ea
h truth assignment for V satisfying B there exists a uniqueenlargement to a truth assignment for V 0 satisfying B0 with exa
tly two true literals in ea
h
lause. 4



vi1 vi2 xi2 xi3 yi2 yi3 yi40 0 1 1 1 1 00 1 1 1 0 0 11 1 0 1 1 0 0Figure 1: Enlargements of truth assignments from B to B0.Ea
h truth assignement satisfying B evaluates the variables vi1 and vi2 in ea
h 
lause 
iin one of the following ways: (1) vi1 false and vi2 false; (2) vi1 false and vi2 true; (3) vi1 trueand vi2 true.Case 1: If vi1 and vi2 are evaluated as false, then the variables xi2, xi3, yi2 and yi3 mustbe true. The variables xi3 and yi2 are true, thus yi4 must be false. All variables in the
lauses 
i1, . . . , 
i4 have been determined.Case 2: If vi1 is evaluated as false and vi2 as true. The variable vi1 is false, thus thevariables xi2 and xi3 are true following 
lause 
i1. The variables vi2, xi2, and xi3 are true,thus yi2 and yi3 are false. The variable xi3 is true and yi2 is false, thus yi4 is true. Allvariables in the 
lauses 
i1, . . . , 
i4 have been determined.Case 3: If vi1 and vi2 are evaluated as true. Suppose that xi2 is true, then yi2 must befalse sin
e vi2 is already true. If vi1 and xi2 are true then xi3 must be false following 
lause 
i1.But we have now the situation where xi3 is false and yi2 is false, thus the 
lause 
i4 
annothave two true literals. Hen
e, xi2 must be false. The variable vi1 is true and xi2 is false,thus xi3 is true. The variables vi2 and xi3 are true, thus yi3 must be false. The variable vi2is true and xi2 is false, thus yi2 is true. The variables xi3 and yi2 are true, thus yi4 is false.All variables in the 
lauses 
i1, . . . , 
i4 have been determined.We proved that ea
h truth assignment satisfying B determines a unique enlargementsatisfying B0 with exa
tly two true literals in ea
h 
lause. Figure 1 summarizes the truthassignments.Conversely, we must prove that the restri
tion to the variables V of ea
h 2-in-3 truthassignment satisfying B0 satis�es also the original formula B. Suppose that B0 is evaluatedas true, thus ea
h 
lause 
ij is true. One of the literals in the 
lause 
i1 must be false. If xikis false then the two other literals in the 
lause 
ik, in parti
ular vi2, must be true. If vi1 isfalse then �vi1 is true. Thus, at least one of the literals �vi1 and vi2 in ea
h 
lause 
i is true.Hen
e, B is true.We proved that the redu
tion from #Impl-2Sat to #2-in-3Sat is parsimonious. It issuÆ
ient now to negate all literals in ea
h 
lause to get a parsimonious redu
tion from#Mono-2-in-3Sat to #Mono-1-in-3Sat. The #P-hardness of #1-in-3Sat follows from the#P-
ompleteness of #Mono 1-in-3Sat. 2Theorem 4.4 The 
ounting problem #Not-Exa
tly-one 3Sat is #P-
omplete.Proof: It is 
lear that this problem belongs to #P. To show that it is #P-hard we showthat there is a parsimonious redu
tion from #Pos-2Sat.5



Suppose that we are given an instan
e of the #Pos-2Sat problem with the variables Vand the 2-
lauses C = f
1; : : : ; 
ng, where B = 
1 ^ � � � ^ 
n. Let V 0 = V [ fx; yg, where xand y are new variables.To ea
h 
lause 
i = vi1 _ vi2 we asso
iate the 
lause 
0i = vi1 _ vi2 _ x. Let us 
onsider thenew 
lauses 
0 = x _ �x _ y and d0 = y _ �y _ x and the new formulaB0 = 
01 ^ � � � ^ 
0n ^ 
0 ^ d0The 
ase analysis with 
onstraints for evaluating logi
al variables proves that ea
h truthassignment satisfying B determines a unique enlargment on V 0 with no 
lause in B0 havingexa
tly one true literal. The literals x and y must be evaluated as true following the 
lauses 
0and d0 and 
onversely, the restri
tion to the variables V of ea
h truth assignment on V 0, withno 
lause in B0 having exa
tly one true literal, satis�es the original formula B.Thus, the redu
tion from #Pos-2Sat to #Not-Exa
tly-One 3Sat is parsimonious. 2Remark. Let us noti
e that this redu
tion, in negating all the literals, also provides a proofof the #P-
ompleteness of the same problem restri
ted to Horn 3-
lauses. It is interestingto note that the de
ision problem Not-Exa
tly-One Horn-3Sat is in P (see [S
h78℄). Thus, inthis parti
ular 
ase we show that the 
orresponding 
ounting problem is #P-
omplete, i.e.
onsiderably more diÆ
ult than the original de
ision problem, provided P 6= NP.Theorem 4.5 The 
ounting problems #Not-All-Equal 3Sat and #Mono-Not-All-Equal 3Satare #P-
omplete.Proof: It is 
lear that these problems belong to #P. To show that there are #P-hard weshow that there are weakly parsimonious redu
tions from #1-in-3Sat and #Mono-1-in-3Satrespe
tively.Suppose that we are given an instan
e of the #1-in-3Sat problem with the variables Vand the 
lauses C = f
1; : : : ; 
ng, where B = 
1 ^ � � � ^ 
n. Let V 0 = V [ ftg, where t is anew variable. To ea
h 
lause 
i = li1 _ li2 _ li3 we asso
iate four new 
lauses
i1 = li1 _ li2 _ t
i2 = li2 _ li3 _ t 
i4 = li1 _ li2 _ li3
i3 = li3 _ li1 _ tLet B0 be the Boolean formula 
onstru
ted from B by repla
ing ea
h 
lause 
i by the 
on-jun
tion 
i1 ^ 
i2 ^ 
i3 ^ 
i4.First, we show that for ea
h truth assignment for V , satisfying B with exa
tly onetrue literal in ea
h 
lause, there exists a unique enlargement to a truth assignment for V 0satisfying B0 with at least one true and one false literal in ea
h 
lause.Let us 
onsider a truth assignment for V satisfying B with exa
tly one true literal inea
h 
lause. Sin
e two of the literals li1, li2, and li3 are false, the variable t must be truefollowing one of the 
lauses 
i1, 
i2 or 
i3.Conversely, let s0 be a truth assignment satisfying B0 with at least one true and one falseliterals in ea
h 
lause. Su
h a truth assignment evaluates t either as true or false.6



If the variable t is evaluated as true, then at least one of the two literals in ea
h pair(li1; li2), (li2; li3), and (li3; li1) is false following the 
lauses 
i1, 
i2, and 
i3. But following
lause 
i4, one of the literals li1, li2 or li3 must be true. Therefore, exa
tly one of the threeliterals li1, li2 and li3 is true. Thus, the restri
tion to the variables V of the truth assignment s0satis�es also the original formula B with exa
tly one true literal in ea
h 
lause.If the variable t is evaluated as false, then at least one of the two literals in ea
h pair(li1; li2), (li2; li3), and (li3; li1) is true following the 
lauses 
i1, 
i2, and 
i3. But following
lause 
i4, one of the literals li1, li2 or li3 must be false. Therefore, exa
tly one of these threeliterals is false. Observe that the number of satisfying assignments for B0 with exa
tly onetrue literal in ea
h 
lause is equal to the number of satisfying assignments for B0 with exa
tlytwo true literals in ea
h 
lause. If s is a satisfying assignment with exa
tly one true literalin ea
h 
lause then �s, where �s(v) = 1� s(v) for ea
h v 2 V , is a satisfying assignment withexa
tly two true literals in ea
h 
lause.We showed that if t is evaluated as true then exa
tly one literal in ea
h 
lause in B isevaluated as true, and if t is evaluated as false then exa
tly two literals in ea
h 
lause in B areevaluated as true. Hen
e, ea
h restri
tion of a satisfying assignment for B0 to the variables Vis either 1-in-3 or 2-in-3. There is no restri
tion in whi
h one 
lause of B has exa
tly onetrue literal and another 
lause of B has exa
tly two true literals.From these observations, we 
on
lude that the number of truth assignment satisfying B0with at least one true and one false literals in ea
h 
lause equals two times the numberof truth assignment satisfying the original formula B with exa
tly one true literal in ea
h
lause.We showed that the redu
tion from #1-in-3Sat to #Not-All-Equal 3Sat is weakly par-simonious, thus 
ompleting the proof of the #P-hardness of #Not-All-Equal 3Sat. Thesame redu
tion from #Mono-1-in 3Sat proves that #Mono-Not-All-Equal 3Sat is also #P-
omplete. 2Although the following theorem is subsumed by the Linial's result that the 3-
oloring ofa bipartite graph is #P-
omplete [Lin86℄, we present it here sin
e we prove its #P-hardnessby a weakly parsimonious redu
tion from #Not-All-Equal 3Sat.Theorem 4.6 The 
ounting problem #3-Colorability is #P-
omplete.Proof: It is easy to see that this problem belongs to the 
lass #P. The 
lassi
al linearredu
tion [Dew82℄ from Not-All-Equal 3Sat to 3-Colorability is suitable for proving that#3-Colorability is #P-hard. Let us remind the reader of this transformation and prove thatit is weakly parsimonious.Suppose that we are given an instan
e of the #Not-All-Equal 3Sat problem with thevariables V and the 
lauses C = f
1; : : : ; 
ng, where B = 
1 ^ � � � ^ 
n. The 
orrespondinginput for #3-Colorability is the graph G = (V;E) spe
i�ed as follows. Its set of verti
es isV = V1 [ V2 where,V1 = f
ontrolg [ fv; �v j v 2 V gV2 = fsi(l0i ); si(l1i ); si(l2i ) j 
i = (li0 _ li2 _ li2); 1 � i � ng7



Its set of edges is E = E1 [ E2 where,E1 = fh
ontrol ; vi; h
ontrol ; �vi; hv; �vi j v 2 V gE2 = fhl0i ; si(l0i )i; hl1i ; si(l1i )i; hl2i ; si(l2i )i j 1 � i � ng [fhsi(l0i ); si(l1i )i; hsi(l1i ); si(l2i )i; hsi(l2i ); si(l0i )i j 1 � i � ngIn fa
t, the triangle for ea
h i in E2 represents the 
lause 
i and will be denoted by Ti.Let I be a truth assignment satisfying B with at least one true and one false literal inea
h 
lause. Without loss of generality we 
an suppose that I(li0) = 0 and I(li1) = 1. So,up to isomorphism we 
an de�ne a 3-
oloring of G by letting 
ol(
ontrol) = 2, 
ol(v) = I(v)and 
ol(�v) = 1� I(v) for v 2 V . Then, it is easy too see that for ea
h triangle Ti there areexa
tly two di�erent valid 
olorings of the verti
es si(l0i ), si(l1i ), and si(l2i ).Conversely, suppose that 
ol:V ! f0; 1; 2g is a valid 3-
oloring of G. Up to isomorphismwe 
an suppose that 
ol(
ontrol) = 2. Thus, we 
an de�ne a truth assignment on V byletting I(v) = 
ol(v). It is easy to see that this truth assignment satisfy B with ne
essarilyat least one true and one false literal.From these observations we 
an 
on
lude that the number of valid 3-
oloring for G equals3! � 2n times the number of truth assignment satisfying the original formula with at leastone true and one false literal.We showed that the redu
tion from #Not-All-Equal 3Sat to #3-Colorability is weaklyparsimonious, thus 
ompleting the proof of the #P-hardness of #3-Colorability. 2Linear equivalen
e to Satis�ability was studied in [Cre93, Cre92℄. Among de
ision prob-lems linearly equivalent to Sat we 
an �nd 3-Domati
 Number, Path With Forbidden Pairs,Partition into Hamiltonian Subgraphs, 2-Partition into Perfe
t Mat
hings, Partition intoPaths of Length 2, 3-Dimensional Mat
hing, and Partition into TrianglesCorollary 4.7 The 
ounting versions of the de
ision problems linearly equivalent to Satis-�ability are #P-
omplete.Proof: On one hand, it is easy to verify that all these problems belong to the 
lass #P. Onthe other hand, one 
an easily verify that all the linear transformations proposed in [Cre93,Cre92℄, from 3-Colorability to these problems are in fa
t weakly parsimonious. Thus the
orollary follows from Theorem 4.6. 25 Con
lusionWe proved here that the problems #Mono-1-in-3Sat, #Mono-Not-All-Equal 3Sat, #3-Co-lorability and a large 
lass of other problems are #P-
omplete. Let us noti
e that all theredu
tions provided are 
omputable in linear time. Besides to the interest of our result to ob-tain new #P-
omplete problems, we should noti
e that this proof strengthens the hypothesisa

ording to whi
h the notion of linear redu
tions between NP-
omplete problems is usefuland natural (see [Cre92, Gra93℄). In fa
t, linear time redu
tions allow to simplify and tostandardize many proofs of NP-hardness [Cre92℄, they often naturally preserve the approx-imation algorithms for NP-
omplete optimization problems (observe for example that the8



L-redu
tions proposed by Papadimitriou and Yannakakis [PY91℄ are linear time 
omputable)and �nally they seem to be useful to get parsimonious redu
tions in a natural way.Referen
es[Cre92℄ N. Creignou. The 
lass of problems that are linearly equuivalent to Satis�ability ora uniform method for proving NP-
ompleteness. In E. B�orger, G. J�ager, H. KleineB�uning, S. Martini, and M.M. Ri
hter, editors, Pro
eedings 6th Workshop on Com-puter S
ien
e Logi
 (CSL'92), San Miniato (Italy), volume 702 of Le
ture Notes inComputer S
ien
e, pages 115{133. Springer-Verlag, 1992. Sele
ted papers.[Cre93℄ N. Creignou. Temps lin�eaire et probl�emes NP-
omplets. PhD thesis, Universit�e deCaen, 1993.[Dew82℄ A. K. Dewdney. Linear transformations between 
ombinatorial problems. Interna-tional Journal of Computer Mathemati
s, 11:91{110, 1982.[Dom92℄ E. Domenjoud. Number of minimal uni�ers of the equation �x1 + � � � + �xb =AC�y1 + � � �+ �yq. Journal of Automated Reasoning, 8(1):39{44, 1992.[FH86℄ F. Fages and G. Huet. Complete sets of uni�ers and mat
hers in equational theories.Theoreti
al Computer S
ien
e, 43(1):189{200, 1986.[Gal74℄ Z. Galil. On some dire
t en
odings of nondeterministi
 Turing ma
hines operatingin polynomial time into P-
omplete problems. SIGACT News, 6(1):19{24, January1974.[GJ79℄ M. R. Garey and D. S. Johnson. Computers and intra
tability: A guide to thetheory of NP-
ompleteness. W.H. Freeman and Co, 1979.[Gra93℄ E. Grandjean. Sorting, linear time and satis�ability problem. In M. Nivatand S. Grigorie�, editors, Annals of Mathemati
s and Arti�
ial Intelligen
e. J.C.Baltzer S
ienti�
 Publishing Co, Suisse, 1993. Spe
ial issue. To appear.[Joh90℄ D. S. Johnson. A 
atalog of 
omplexity 
lasses. In J. van Leeuwen, editor, Handbookof Theoreti
al Computer S
ien
e, Volume A: Algorithms and Complexity, 
hapter 2,pages 67{161. North-Holland, Amsterdam, 1990.[KN92℄ D. Kapur and P. Narendran. Complexity of uni�
ation problems with asso
iative-
ommutative operators. Journal of Automated Reasoning, 9:261{288, 1992.[Koz92℄ D. C. Kozen. The design and analysis of algorithms, 
hapter 26: Counting problemsand #P, pages 138{143. Springer-Verlag, 1992.[Lin86℄ N. Linial. Hard enumeration problems in geometry and 
ombinatori
s. SIAMJournal on Algebrai
 and Dis
rete Methods, 7(2):331{335, April 1986.9



[PB83℄ J. S. Provan and M. O. Ball. The 
omplexity of 
ounting 
uts and of 
omputing theprobability that a graph is 
onne
ted. SIAM Journal on Computing, 12(4):777{788,November 1983.[PY91℄ C. Papadimitriou and M. Yannakakis. Optimization, approximation, and 
omplex-ity 
lasses. Journal of Computer and System S
ien
e, 43:425{440, 1991.[S
h78℄ T. J. S
haefer. The 
omplexity of satis�ability problems. In Pro
eedings 10thSymposium on Theory of Computing (STOC'78), San Diego (California, USA),pages 216{226, 1978.[Sim77℄ J. Simon. On the di�eren
e between one and many. In A. Salomaa and M. Steinby,editors, Pro
eedings 4th ICALP Conferen
e, Turku (Finland), volume 52 of Le
tureNotes in Computer S
ien
e, pages 480{491. Springer-Verlag, July 1977.[TA87℄ E. Tid�en and S. Arnborg. Uni�
ation problems with one-sided distributivity. Jour-nal of Symboli
 Computation, 3(1 & 2):183{202, 1987.[Val79a℄ L. G. Valiant. The 
omplexity of 
omputing the permanent. Theoreti
al ComputerS
ien
e, 8(2):189{201, 1979.[Val79b℄ L. G. Valiant. The 
omplexity of enumeration and reliability problems. SIAMJournal on Computing, 8(3):410{421, 1979.

10


