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Abstract. Experimental data is often given as bit vectors, with vec-
tors corresponding to observations, and coordinates to attributes, with a
bit being true if the corresponding attribute was observed. Observations
are usually grouped, e.g. into positive and negative samples. Among the
essential tasks on such data, we have compression, the construction of
classifiers for assigning new data, and information extraction.

Our system, MCP, approaches these tasks by propositional logic. For
each group of observations, MCP constructs a (usually small) conjunc-
tive formula that is true for the observations of the group, and false
for the others. Depending on the settings, the formula consists of Horn,
dual-Horn, bijunctive or general clauses. To reduce its size, only relevant
subsets of the attributes are considered. The formula is a (lossy) represen-
tation of the original data and generalizes the observations, as it is usually
satisfied by more bit vectors than just the observations. It thus may serve
as a classifier for new data. Moreover, (dual-)Horn clauses, when read as
if-then rules, make dependencies between attributes explicit. They can
be regarded as an explanation for classification decisions.

Keywords: Data classification · Bit vectors · Information extraction ·
Explainable AI · Machine learning

1 Introduction and Related Work

Since several years, computer science applications are challenged by very large
amounts of data, commonly referred to as Big Data, that must be understood,
captured, treated, and transformed. There exist several approaches to cope with
this challenge, mainly from the field of Artificial Intelligence. One of these
approaches is Logical Analysis of Data. This document presents a tool called
MCP, performing logical analysis of big data, producing a propositional for-
mula. The basic idea behind this tool programmed in C++ is to describe a very
large data set by a propositional formula.

Partially developed within the ACCA Project.
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Logical Analysis of Data is a part of Machine Learning, which has been
developed by Hammer and his colleagues [5,9]. There also exists another app-
roach through mechanized hypothesis formation, the GUHA Project developed
in Prague by Hájek and his colleagues [12,14].

2 Preliminaries

We recall the main structures of Boolean algebra. A literal is either a variable,
called positive literal, or its negation, called negative literal. A clause is a dis-
junction of literals. A formula in conjunctive normal form is a conjunction of
clauses. A Horn clause is a clause with at most one positive literal. A dual Horn
clause is a clause with at most one negative literal. A bijunctive clause is a clause
consisting of at most two literals. An affine clause is a linear equation of the form
x1 + · · · + xk = b, where xi are variables, + is the exclusive-or operator, and
b ∈ {0, 1} is a Boolean value. A Horn, dual Horn, bijunctive, or affine formula is
a conjunction of only Horn, dual Horn, bijunctive, or affine clauses, respectively.

We will work with vectors, also called tuples, of finite arity over a domain D.
This domain is either Boolean, i.e., D = {0, 1}, or finite, i.e., |D| = n for some
natural number n ≥ 2. Vectors (a1, . . . , ak) of arity k will be shortened to a1 · · · ak

when the elements ai are clear.
Let a = a1 · · · ak, b = b1 · · · bk, and c = c1 · · · ck be Boolean vectors of the

same arity k. There exist different closures of these Boolean vectors.

– Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai ∧ bi;
– Dual Horn closure of a and b is the vector d = d1 · · · dk, such that di = ai∨bi;
– Bijunctive closure of a, b, and c is the vector d = d1 · · · dk, such that ci =

maj(ai, bi, ci), where maj is the associative-commutative majority operator;
– Affine closure of a, b, and c is the vector d = d1 · · · dk, such that di =

ai + bi + ci,where + is the exclusive-or operator in the Boolean ring Z2;

all for each i = 1, . . . , k. Given a set of Boolean vectors S of arity k, we denote
by 〈S〉C the C-closure of S for C being Horn, dual Horn, bijunctive, or affine.
A basic result from universal algebra states that for an arbitrary set of Boolean
vectors S of the same arity k, the C-closure is the set of satisfying assignments
for some C-formula ϕ [3,4].

3 Core of the MCP System

MCP has a modular architecture. It is composed of several modules, which
perform designated tasks. The core of the system is composed of different variants
of the module generating a propositional formula from sets of binary tuples. The
main task of the MCP system, solved by its core modules, is defined as follows:

Problem 1 (MCP Problem). Given two sets of Boolean vectors (tuples) of arity k
over the Boolean domain D = {0, 1}k, representing positive examples T ⊆ D and
negative examples F ⊆ D, compute a Horn, dual Horn, bijunctive, or general
CNF formula ϕ, respectively, such that (1) T |= ϕ and (2) for each f ∈ F , f 	|= ϕ.
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There are several reasons why we focus on the aforementioned four subcases
of propositional formulas. Horn, dual Horn, bijunctive, and affine formulas are
the four families of Boolean formulas, whose satisfiability problem can be decided
in polynomial time. Horn formulas represent a theoretical background of Prolog
programs. Horn clauses (implications of the form antecedent → consequent)
represent a natural explanation pattern—easy to explain also to a non-expert in
computer science or logic. The posed problem is an instance of PAC-learning.

There are several caveats for this problem we must deal with, namely what
to do if (1) T ∩ F 	= ∅, (2) 〈T 〉C ∩ F 	= ∅, (3) {0, 1}k

� (〈T 〉C ∪ F ) 	= ∅. There is
no solution for the first two cases, since we cannot satisfy the basic requirements
of the MCP Problem. The third caveat is solved by means of strategy.

3.1 Strategies for Computing the Closure

Depending on how we want to treat the vectors absent from 〈T 〉C ∪ F , we have
two available strategies, depending on whether we consider the largest or the
smallest closure of the set of positive examples T .

The large strategy, which is the default, computes the largest C-closure
containing T that does not intersect with F . The computed formula ϕ satisfies
the condition f 	|= ϕ for each f ∈ F . The exact strategy computes the smallest
C-closure containing T . It satisfies the conditions 〈T 〉C |= ϕ and f 	|= ϕ for each
f ∈ {0, 1}k

� 〈T 〉C .

3.2 Minimal Section

We want to keep the sets 〈T 〉C and F disjunct on the smallest number of coor-
dinates, to keep the number of variables of the produced formula as small as
possible. Given the sets of vectors 〈T 〉C and F or T and F as binary codes,
composed of codewords over Boolean domain, we want to compute their mini-
mal section, i.e. their restriction to a maximal set of coordinates A, such that
〈T 〉C |A∩F |A = ∅ or T |A∩F |A = ∅. Computing the optimal minimal section is an
NP-complete problem. Therefore we adopt several approximation approaches by
means of direction, always skipping coordinates whose removal would render
the problem unsolvable. Following directions are available:

begin: Prefer coordinates to the left (at the begin) of the codewords by removing
coordinates from the right. This direction is the default.

end: Prefer coordinates to the right (at the end) of the codewords by removing
coordinates from the left.

lowcard: Prefer coordinates with a lower Hamming weight, by removing coor-
dinates with high Hamming weight.

highcard: Prefer coordinates with a higher Hamming weight, by removing coor-
dinates with small Hamming weight.

random: Removing coordinates in random order.

There also exists the nosect option, where no minimal section is computed and
all coordinates considered.



210 M. Hermann and G. Salzer

3.3 Effective Learning of Formulas

The MCP system learns Horn formulas by the following procedure. For each
f ∈ F it determines if f ∈ 〈T 〉Horn efficiently, without computing the Horn
closure. Then it computes the minimal section of 〈T 〉Horn and F , followed by
the computation of the corresponding Horn formula according to the chosen
direction and strategy on the (approximate) minimal section of 〈T 〉Horn and F .
It uses different algorithms for the strategies: that of Angluin et al. [1] for the
large strategy and another of Hébrard and Zanuttini [13] for the exact strategy.

Learning of dual Horn formulas is done very easily. MCP system first swaps
the polarity of the Boolean vectors in T and F , producing the new sets T ′ and F ′,
respectively. Then it computes the Horn formula ϕ′ for T ′ and F ′, followed by
swapping the polarity of literals in ϕ′, producing the dual Horn formula ϕ.

There is no known possibility to determine if f ∈ 〈T 〉bijunctive for each f ∈ F
without computing the bijunctive closure 〈T 〉bijunctive. Moreover, the bijunctive
closure 〈T 〉bijunctive can be (and usually also is) very much time and space con-
suming. We adopted the following solution to produce bijunctive formulas by
MCP system: It computes the minimal section using an intersection test, fol-
lowed by application of the Baker-Pixley Theorem [2] (projection on every pair
of coordinates), which implicitly guarantees the bijunctive closure.

Learning a general CNF formula presents several challenges. Its advantage
is that We get a propositional formula in any case, provided that T ∩ F = ∅.
Its drawback is that the produced formula is usually very big. We adopted two
different approaches in the MCP system, depending on the applied strategy. In
case of large strategy, for each false element f ∈ F the MCP system produces
the unique clause cf which falsifies f . The resulting formula ϕ is the conjunction
of all falsification clauses cf . In case of exact strategy, the MCP system uses an
algorithm producing a CNF formula in time O(|T | k2), where k is the arity of
vectors in T , using a Boolean restriction of a larger algorithm from [11].

Learning affine formulas reveals more from linear computer algebra than
from logic, therefore we did not implement it in the MCP system for the time
being. We may implement it in a further version if there is demand.

3.4 First Postprocessing: Redundancy Elimination

The inferred formula ϕ can contain redundant literals and clauses, which can
and must be eliminated to produce the smallest possible formula. There are
several stages, which can be applied for redundancy elimination, called cooking
inside the MCP system, with the following options: raw performs no redundancy
elimination, bleu performs unit resolution, medium performs unit resolution
and clause subsumption, and finally well done, which is the default, performs
unit resolution, clause subsumption, and implied clause removal. Moreover, the
exact strategy includes a primality step, reducing the clauses by elimination of
unnecessary literals, using an algorithm from [11].
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3.5 Second Postprocessing: Set Cover

In case of the large strategy, we are mainly interested in producing a formula ϕ
falsified by each tuple f ∈ F . However, the inferred formula ϕ may contain
more clauses than necessary, even after full redundancy elimination. Our task
is to keep the smallest number of clauses in ϕ which are necessary to guarantee
falsification by all tuples f ∈ F . For this purpose in the MCP system, we use
Set Cover where a clause c ∈ ϕ covers a vector f ∈ F if f falsifies c. Set Cover is
a well-known NP-complete problem, therefore we use Johnson’s approximation
algorithm (see e.g. [10]), where the measure of a clause is the number of covered
tuples. Of course, this approach is inapplicable for the exact strategy.

3.6 Input Format and Action Possibilities

The input file of the MCP system core, is a Boolean matrix, one Boolean vector
per row. Each vector is prefixed by a string g, identifying a group to which
the vector belongs. The MCP system core collects first the vectors from the
input matrix and distributes them into the identified groups. Each input file
starts with an indication line, containing two boolean values. If both values
are equal to 0, the following lines are the rows of the Boolean matrix with
leading group indicators. If the first value is equal to 1, the following line contains
the variable names ordered by coordinates. If the second value is equal to 1,
there is one more line of supplementary information before the matrix. However,
this supplementary information is unused by the MCP system, but it is still
maintained for compatibility reasons with data sets used in [7,8].

Let G be the set of identified groups. The actual computation is determined
by the action, which determines how the sets of positive examples T and nega-
tive examples F are constituted. The are two options, one and all.

The option one consecutively selects two groups g, g′ ∈ G, determines the
vectors belonging to the group g as the positive examples T and the vectors
belonging to the group g′ as the negative examples F , then starts the computa-
tion of the corresponding formula with minimal section. If there are n groups in
the set G, this action proceeds with the computation of n(n − 1) formulas.

The option all, which is the default, consecutively selects a group g ∈ G,
determines the vectors belonging to the group g as the positive examples T and
all vectors belonging to any group from G�{g} as the negative examples F , then
starts the computation of the corresponding formula with minimal section. For n
groups in the set G, this action proceeds with the computation of n formulas.

3.7 Parallelization

For a set of n groups, the MCP system computes either n or n(n − 1) formu-
las. These computations are independent, therefore they can be performed in
parallel. This is called outer parallelism in the MCP core.

In case of Horn closure of the positive examples T , the MCP core needs to
determine if a given vector f ∈ F from negative examples belongs to 〈T 〉Horn,
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without computing the closure itself. This procedure is quite time consuming
when the set T is quite large. It can be computed in parallel, each time taking
only a determined chunk of T . This is called inner parallelism in the MCP core.

We adopted three types of parallelization within the MCP core: the Mes-
sage Passing Interface (MPI) [15], the POSIX threads (pthreads) [6], and
a hybrid version combining both. These parallelizations are effective only on
very large input data sets. The MPI version is applied only for outer parallelism,
the pthreads version to both, and in the hybrid version MPI is applied for outer
parallelism and pthreads for inner parallelism.

3.8 Invocation

MCP core is called by one of the following commands and options:

sequential version: mcp-seq
MPI version: mcp-mpi
POSIX threads version: mcp-pthread
hybrid version: mcp-hybrid

⎫
⎪⎪⎬

⎪⎪⎭

-i input-file -o output-file
-l formula-prefix -c closure
-d direction -s strategy
--cook cooking --setcover y/n

Each of these core modules produces files formula-prefix g.log containing the
learned formula for each group g inside input-file. Consult the manual pages for
more detailed information.

4 Prequel and Sequel Modules

4.1 Data Binarization

The core of the MCP system accepts only Boolean vectors. However, data
are usually spanning much larger domains: finite, or infinite but countable, or
uncountable. In the latter two cases, every very large finite data set contains
only a finite subset of the domain, but it can be intractable due to the amount
of data to be treated. The MCP system copes with this situation by binarization.

Binarization is the process of transforming data of any domain into binary
vectors to make classifier algorithms, in our case the MCP system core, more
efficient. Its advantage is that we obtain the possibility to treat any data by
propositional formulas. Its drawback is a possible exponential explosion. Bina-
rization concerns both, particular values, especially for finite domains, as well as
intervals, usually used for infinite ones. MCP system adopts both approaches.

Binarization in the MCP system is a two-step procedure. The first step con-
sists of scanning of the CSV file and generating a meta-file template. This step
is performed by the command

mcp-guess -i csv-file -o meta-template

where it is implicitly assumed that the csv-file contains one data vector per line,
the vector elements are separated by commas or semicolons or space or tabs,
vector element can be quoted, missing elements are denoted by a question mark.
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The template generated by mcp-guess cannot be used directly by the next mod-
ule, but it must be manually adapted to a proper meta-file. This command just
creates indications if the values of a given coordinate are Boolean, enumerated
strings, enumerated integers, integers in a range, or floats in a range.

The second step of the binarization process is performed by the command

mcp-trans -i data-file -m meta-file -o binarized-file

which generates a binarized-file, ready to be treated by the MCP system core,
from the original data-file using a meta-file. This meta file consists of transfor-
mation commands. Each transformation command has the following format:

identifier = coordinate : indicator ; {# comment}
where # starts an optional comment stretching until end of line, the symbols =
and : and ; are syntactic sugar, identifier will become the name of the variable
for the given coordinate and the indicator has one of the following forms:

ident group identifier
bool [elem0 elem1] boolean 2-element set
enum [elem0 . . . elem�] enumerated set of � + 1 elements
up [elem0 . . . elem�] enumerated set of increasing � + 1 elements
down [elem0 . . . elem�] enumerated set of decreasing � + 1 elements
int min max integers in the range between min and max
dj n min max interval [min, max ) cut in n disjoint chunks
over n min max � [min, max ) cut in n chunks with overlaps of length �
span � min max [min, max ) cut in disjoint chunks, each of length �
warp �0 min max �1 [min, max ) cut in chunks of length �0, overlaps of �1

4.2 Formula Evaluation

If we are interested only in the produced formula, then the output file generated
by the MCP core contains the satisfied formulas for each group of Boolean vec-
tors. However, if we want to evaluate the accuracy of the produced formula, we
must proceed further. The first prerequisite for a possibility to check the accu-
racy of a formula, is to have two sets of vectors: one for learning the formula, the
other for checking its accuracy. Either we have these two sets of vectors already
from the beginning or we need to split the original set of Boolean vectors into
the learning part and the checking part before running the MCP core on the
learning part. The latter is performed by the command

mcp-split -i input-file -l learn-file -c check-file -r ratio

that splits uniformly at random the input-file into a learn-file and check-file,
where ratio is the percentage of vectors from the input-file populating the check-
file. If the options -l or -c are not explicitly stated, the software deduces the
file identifiers from the base name of the input-file and adding the suffix .lrn
or .chk to it, respectively. The ratio default is 10.

The accuracy of the formula for a given group g is checked by the command
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mcp-check -i check-file -l formula-file -o output-file

where formula-file is the file formula-prefix g.log produced by the MCP core.
Its output-file reproduces the formula and reports the following statistical enti-
ties, measured on the vectors from check-file: true positives (tp), true negatives
(tn), false positives (fp), false negatives (fn), sensitivity (tp/(tp + fn)), miss rate
(fn/(fn+tp)), specificity (tn/(tn+fp)), and precision (tp/(tp+fp)). The optimal
situation would be to have neither false positives nor false negatives. If, however,
these values are non-zero, it can be either due to an insufficient cardinality of
learning data, or a wrong binarization, or else the data itself are not precise.

5 System Distribution and Examples

The MCP system is available at the github.com/miki-hermann/mcp. Follow the
instructions in README.md file at the root. It is indispensable to run the instal-
lation instructions described in that file to be able to run the MCP system
properly.

The overall performance of the MCP system is very competitive, both in
terms of time, as well as in terms of quality of the produced formulas. The
performance of the system has been measured on a DELL computer with an
Intel CoreTM i7-9700 CPU @ 3.00 GHz × 8 with 16 GB of memory, running
under Linux Fedora 33. All examples from [7,8] run under one second.

We have been testing the MCP system on several examples from the UCI
Machine Learning Repository (archive.ics.uci.edu/ml). All examples in the sub-
directories are equipped by a Makefile simplifying the application of the MCP
system on them. The directory uci contains the following treated examples:
abalone identifying abalone with 27 rings, balance-scale identifying psychologi-
cal experiments balancing a scale, balloons—a toy example, where specific for-
mulas are required to be produced, breast-cancer-wisconsin identifying benign
and malignant breast cancer cases in Wisconsin, car identifying very good cars,
forest-fire predicting forest fires in July, August, and September, iris identifying
three types of iris flowers, mushroom identifying edible and poisonous mush-
rooms, and vote identifying democrats and republicans in the House of Repre-
sentatives according to the 1984 US Congressional Voting Records.

We would especially drive the readers attention to the mushroom example,
which identifies the edible and poisonous mushrooms always with 100% accuracy.
This illustrates very well the strength of the MCP system.

6 Concluding Remarks

The MCP system consists of more than 7000 lines of C++ code, using only the
standard library. Parallel execution requires installation of the MPI software.
Future versions of MCP will include a web GUI to enhance usability, as well as
support for finite domains [11] to obviate the need for data binarization.

github.com/miki-hermann/mcp
https://github.com/miki-hermann/mcp
archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml/
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9. Crama, Y., Hammer, P.L.: Boolean Functions - Theory, Algorithms, and Appli-
cations, Encyclopedia of Mathematics and its Applications, vol. 142. Cambridge
University Press, Cambridge (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W.H, Freeman and Co (1979)

11. Gil, A., Hermann, M., Salzer, G., Zanuttini, B.: Efficient algorithms for constraint
description problems over finite totally ordered domains. SIAM J. Comput. 38(3),
922–945 (2008)
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13. Hébrard, J.J., Zanuttini, B.: An efficient algorithm for horn description. Inf. Proc.
Lett. 88(4), 177–182 (2003)
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