
An Algebraic Approach to the

Complexity of Generalized Conjunctive Queries⋆

Michael Bauland1, Philippe Chapdelaine2,
Nadia Creignou3, Miki Hermann4, and Heribert Vollmer1

1 Theoretische Informatik, Universität Hannover, Germany.
bauland|vollmer@thi.uni-hannover.de

2 GREYC (UMR 6072), Université de Caen, France. pchapdel@info.unicaen.fr
3 LIF (UMR 6166), Univ. de la Méditerranée, France. creignou@lif.univ-mrs.fr
4 LIX (FRE 2653), École Polytechnique, France. hermann@lix.polytechnique.fr

Abstract. Conjunctive-query containment is considered as a fundamen-
tal problem in database query evaluation and optimization. Kolaitis and
Vardi pointed out that constraint satisfaction and conjunctive query con-
tainment are essentially the same problem. We study the Boolean con-
junctive queries under a more detailed scope, where we investigate their
counting problem by means of the algebraic approach through Galois
theory, taking advantage of Post’s lattice. We prove a trichotomy the-
orem for the generalized conjunctive query counting problem, showing
this way that, contrary to the corresponding decision problems, con-
straint satisfaction and conjunctive-query containment differ for other
computational goals. We also study the audit problem for conjunctive
queries asking whether there exists a frozen variable in a given query.
This problem is important in databases supporting statistical queries.
We derive a dichotomy theorem for this audit problem that sheds more
light on audit applicability within database systems.

1 Introduction

Constraint satisfaction is recognized as a fundamental problem in artificial in-
telligence, in automated deduction, in computer-aided verification, in opera-
tions research, etc. At the same time conjunctive-query containment is con-
sidered as a fundamental problem in database query evaluation and optimiza-
tion [1]. Recent research points out that query containment is a central prob-
lem in several database and knowledge base applications, including data ware-
housing [26], data integration [15], query optimization, and (materialized) view
maintenance [28]. Kolaitis and Vardi pointed out in [13] that constraint sat-
isfaction and conjunctive-query containment are essentially the same problem.
Constraints are usually specified by means of relations. The standard constraint
satisfaction problem can therefore be parameterized by restricting the set of
allowed relations. In particular, given a finite set S of Boolean relations, we con-
sider conjunctive propositional formulas consisting of clauses built over relations

⋆ Supported by ÉGIDE 05835SH, DAAD D/0205776 and DFG VO 630/5-1.

from S, also called S-formulas. Deciding the satisfiability of such an S-formula
is known as the generalized satisfiability problem, denoted by sat(S), and was
first investigated by Schaefer [20]. It turns out that the complexity of sat(S)
can be characterized by closure properties of S. This correspondence is obtained
through a generalization of Galois theory. In order to get complexity results via
this algebraic approach, conjunctive queries coq(S) over a set of relations S
turn out to be useful. Roughly speaking, a conjunctive query from coq(S) is
an S-formula with distinguished variables, where all non-distinguished variables
are existentially quantified. These queries play an important role in database
theory, since they represent a broad class of queries and their expressive power
is equivalent to select-join-project queries in relational algebra. Thus they are
also of interest in their own right and we study the complexity of some related
computational problems. The algebraic approach is particularly well adapted to
this study, yielding short and elegant proofs.

We focus here on the counting and the audit problems for conjunctive queries.
In the former the problem is to count the number of entries in the database that
match the query, i.e., the number of satisfying assignments. In the latter the
problem is to audit a database to ensure protection of sensitive data, where the
goal is to decide whether the conjunctive query evaluates to false or whether
there is some distinguished variable that is frozen, i.e., that takes the same value
in all satisfying assignments. This frozen variable would then be considered as not
protected. This is a generalization of the audit problem for Boolean attributes
defined in [11] (see also [14]), which is particularly interesting in databases sup-
porting statistical queries. For both considered problems we obtain a complete
complexity classification that indicates a difference with respect to satisfiabil-
ity problems of Boolean constraints. Peter Jonsson and Andrei Krokhin ([10]
manuscript, submitted for publication) independently examined a variant of our
audit problem. Our results can be shown to follow from theirs.

Measures such as conditional probability (confidence) and correlation have
been used to infer rules of the form “buying diapers causes you to buy beer”.
However, such rules indicate only a statistical relationship between items, but
they do not specify the nature and causality of the relationship. In applications,
knowing such causal relationship is extremely useful for enhancing understanding
and effecting change. While distinguishing causality from correlation is a truly
difficult problem, recent work in statistics and Bayesian learning provide some
promissing directions of attack. In this context, the ideas of Bayesian learning,
where techniques are being developed to infer causal relationships from observa-
tional data, to mining large databases [21] trigger the necessity to study counting
problems in connection with existing database applications. Yet another recent
application of Bayesian learning based on counting is the task of spam elim-
ination. Therefore we think that our results will have an impact on concrete
database implementations and applications, since the considered formulas in our
computational problems correspond better to the model of queries formulated
within existing database systems than the so far mainly studied S-formulas.

2 Preliminaries

Throughout the paper we use the standard correspondence between predicates
and relations. We use the same symbol for a predicate and its corresponding
relation, since the meaning will always be clear from the context, and we say
that the predicate represents the relation.

An n-ary logical relation R is a Boolean relation of arity n. Each element
of a logical relation R is an n-ary Boolean vector m = (m1, . . . ,mn) ∈ {0, 1}n.
Let V be a set of variables. A constraint is an application of R to an n-tuple of
variables from V , i.e., R(x1, . . . , xn). An assignment I : V → {0, 1} satisfies the
constraint R(x1, . . . , xn) if (I(x1), . . . , I(xn)) ∈ R holds.

Example 1. Equivalence is the binary relation defined by Eq = {(0, 0), (1, 1)}.
Given the ternary relations

Rnae = {0, 1}3
r {(0, 0, 0), (1, 1, 1)} and

R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

the constraint Rnae(x, y, z) is satisfied if not all variables are assigned the same
value and the constraint R1/3(x, y, z) is satisfied if exactly one of the variables
x, y, and z is assigned to 1.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [20]. We say that a Boolean relation R is

– 1-valid if (1, . . . , 1) ∈ R and it is 0-valid if (0, . . . , 0) ∈ R,
– Horn (dual Horn) if R can be represented by a conjunctive normal form

(CNF) formula having at most one unnegated (negated) variable in each
clause,

– bijunctive if it can be represented by a CNF formula having at most two
variables in each clause,

– affine if it can be represented by a conjunction of linear functions, i.e., a
CNF formula with ⊕-clauses (XOR-CNF),

– complementive if for each (α1, . . . , αn) ∈ R, also (¬α1, . . . ,¬αn) ∈ R.

A set S of Boolean relations is called 0-valid (1-valid, Horn, dual Horn, affine,
bijunctive, complementive) if every relation in S is 0-valid (1-valid, Horn, dual
Horn, affine, bijunctive, complementive).

Let S be a non-empty finite set of Boolean relations. An S-formula is a
finite conjunction of S-clauses, ϕ = c1 ∧ · · · ∧ ck, where each S-clause ci is a
constraint application of some logical relation R ∈ S. An assignment I satisfies
the formula ϕ if it satisfies all clauses ci. We denote by sol(ϕ) the set of satisfying
assignments of a formula ϕ.

Schaefer in his seminal paper [20] developed a complexity classification of
the satisfiability problem of S-formulas, denoted by sat(S). Conjunctive queries

turn out to be useful in order to obtain this result. Given a set S of Boolean
relations, we denote by coq(S) the set of all formulas of the form

F (x1, . . . , xk) = ∃y1∃y2 · · · ∃yl ϕ(x1, . . . , xk, y1, . . . , yl),

where ϕ is an S-formula. These existentially quantified formulas are called con-

junctive queries over S [13], with x = {x1, . . . , xk} being the distinguished vari-

ables. We denote by sat-coq(S) the satisfiability problem of conjunctive queries
over S.

3 Closure Properties of Constraints

There exist easy criteria to determine if a given relation is Horn, dual Horn,
bijunctive, or affine. We recall these properties here briefly for completeness.
An interested reader can find a more detailed description with proofs in the
paper [20] or in the monograph [6]. The operations of conjunction, disjunc-
tion, majority, and addition applied coordinate-wise on n-ary Boolean vectors
m,m′,m′′ ∈ {0, 1}n are defined as follows:

m ∧m′ = (m[1] ∧m′[1], . . . ,m[n] ∧m′[n])

m ∨m′ = (m[1] ∨m′[1], . . . ,m[n] ∨m′[n])

maj(m,m′,m′′) = (m ∨m′) ∧ (m′ ∨m′′) ∧ (m′′ ∨m)

m⊕m′ = (m[1] ⊕m′[1], . . . ,m[n] ⊕m′[n])

where m[i] is the i-th coordinate of the vector m and ⊕ is the exclusive-or oper-
ator. Given a logical relation R, the following closure properties fully determine
the structure of R.

– R is Horn if and only if m,m′ ∈ R implies m ∧m′ ∈ R.
– R is dual Horn if and only if m,m′ ∈ R implies m ∨m′ ∈ R.
– R is bijunctive if and only if m,m′,m′′ ∈ R implies maj(m,m′,m′′) ∈ R.
– R is affine if and only if m,m′,m′′ ∈ R implies m⊕m′ ⊕m′′ ∈ R.

The notion of closure property of a Boolean relation has been defined more
generally, see for instance [9, 16]. Let f : {0, 1}k → {0, 1} be a Boolean function
of arity k. We say that R is closed under f , or that f is a polymorphism of R,
if for any choice of k vectors m1, . . . ,mk ∈ R, not necessarily distinct, we have
that

(

f
(

m1[1], . . . ,mk[1]
)

, f
(

m1[2], . . . ,mk[2]
)

, . . . , f
(

m1[n], . . . ,mk[n]
)

)

∈ R,

i.e., that the new vector constructed coordinate-wise from m1, . . . , mk by means
of f belongs to R.

We denote by Pol(R) the set of all polymorphisms of R and by Pol(S) the
set of Boolean functions that are polymorphisms of every relation in S. It turns
out that Pol(S) is a closed set of Boolean functions for every set of relations S.
All closed classes of Boolean functions were identified by Post [19]. Post also
detected the inclusion structure of these classes, which is now referred to as
Post’s lattice, presented in Fig. 2 with the notation from [2]. We did not use the
previously accepted notation for the clones, as in [16, 18], since we think that the

Pol(R) ⊇ E2 ⇔ R is Horn Pol(R) ⊇ V2 ⇔ R is dual Horn
Pol(R) ⊇ D2 ⇔ R is bijunctive Pol(R) ⊇ L2 ⇔ R is affine
Pol(R) ⊇ N2 ⇔ R is complementive Pol(R) ⊇ N ⇔ R is compl., 0- and 1-valid
Pol(R) ⊇ I0 ⇔ R is 0-valid Pol(R) ⊇ I1 ⇔ R is 1-valid
Pol(R) ⊇ I ⇔ R is 0- and 1-valid Pol(R) ⊇ I2 ⇔ R is Boolean

Fig. 1. Polymorphism correspondences

new one used in [2, 3] is better suited mnemotechnically and also scientifically
than the old one. The correspondence of the most studied classes with respect
to the polymorphisms of a relation R is presented in Fig. 1. The class I2 is the
closed class of Boolean functions generated by the identity function, thus for
every Boolean relation R we have Pol(R) ⊇ I2.

An interesting Galois correspondence has been exhibited between the sets of
Boolean functions Pol(S) and the sets of Boolean relations S. A basic introduc-
tion to this correspondence can be found in [16, 17] and a comprehensive study
in [18]. This theory helps us to get elegant and short proofs for results concerning
the complexity of conjunctive queries. Indeed, it shows that the smaller the set
of polymorphisms is, the more expressive the corresponding conjunctive queries
are, which is the cornerstone for applying the algebraic method to complexity
(see [3] for a survey). The following proposition can be found, e.g., in [16, 18].

Proposition 2. Let S1 and S2 be two finite sets of Boolean relations. If the

relation Pol(S2) ⊆ Pol(S1) holds, then coq(S1 ∪ {Eq}) ⊆ coq(S2 ∪ {Eq}).

4 Complexity Results

The only difference between conjunctive queries and S-formulas is that the for-
mer contain some existentially quantified variables, thus distinguishing the re-
maining ones. While this certainly does not lead to a different complexity of the
satisfiability problem, this is not any more the case for other computational goals,
such as counting the number of satisfying assignments. The algebraic correspon-
dence described above is useful to determine the complexity of the satisfiability
problem, since it proves that the complexity of sat-coq(S) strongly depends
on the set Pol(S), as shown in Proposition 2. It provides a polynomial-time
reduction from the problem sat-coq(S1) to sat-coq(S2 ∪ {Eq}) by locally re-
placing each S1-clause by its equivalent constraint in coq(S2∪{Eq}). Moreover,
the equivalence relation is actually superfluous. Indeed, from a set of equivalent
variables we choose one variable, say z. Then we can delete the corresponding
equivalence constraints and substitute the equivalent variables by z in the rest
of the formula. Note that we must choose z to be a distinguished variable if
an existentially quantified variable occurs in the equivalence set. This proves
that sat-coq(S1) is polynomial-time reducible to sat-coq(S2). We will show
in the sequel that the algebraic approach is helpful to study the complexity of
the counting and the audit problems for conjunctive queries.

4.1 Introduction to Counting Problems and Their Reducibilities

A counting problem is typically presented using a suitable witness function which
for every input x, returns a set of witnesses for x. Formally, a witness function is
a function w : Σ∗ −→ P<ω(Γ ∗), where Σ and Γ are two alphabets, and P<ω(Γ ∗)
is the collection of all finite subsets of Γ ∗. Every such witness function gives rise
to the following counting problem: given a string x ∈ Σ∗, find the cardinality
|w(x)| of the witness set w(x).

Let Σ, Γ be two alphabets and let R ⊆ Σ∗×Γ ∗ be a binary relation between
strings such that, for each x ∈ Σ∗, the set R(x) = {y ∈ Γ ∗ | R(x, y)} is finite.
We write #R to denote the following counting problem: given a string x ∈ Σ∗,
find the cardinality |R(x)| of the witness set R(x) associated with x. It is easy
to see that every counting problem is of the form #R for some R.

Valiant [24, 25] was the first to investigate the computational complexity of
counting problems. To this effect, he introduced the class #P of counting func-
tions that count the number of accepting paths of nondeterministic polynomial-
time Turing machines. The prototypical problem in #P is #sat, which is the
counting version of Boolean satisfiability. Valiant [24] showed that #sat is #P-
complete via parsimonious reductions, that is, every counting problem in #P can
be reduced to #sat via a polynomial-time reduction that preserves the cardinal-
ities of the witness sets. Creignou and Hermann [5] proved that the complexity
of the counting problem #sat(S) of S-formulas is dichotomic: #sat(S) is in
FP if S is a set of affine relations, otherwise the problem is #P-complete under
Turing reductions.

Hemaspaandra and Vollmer [8] have introduced higher complexity counting
classes using a predicate-based framework that focuses on the complexity of
membership in the witness sets. Specifically, if C is a complexity class of decision
problems, then #·C is the class of all counting problems whose witness function w
satisfies the following conditions:

1. There is a polynomial p(n) such that for every x and every y ∈ w(x), we
have that |y| ≤ p(|x|), where |x| is the length of x and |y| is the length of y.

2. The witness recognition problem “given x and y, is y ∈ w(x)?” is in C.

In particular, #·NP is the class of counting problems associated with decision
problems, for which the witness size is polynomially bounded and the witness
recognition problem is in NP. Following Toda [22], the inclusions #·ΣkP ⊆
#·ΠkP and #·ΠkP ⊆ #·Σk+1P among counting classes hold for each k. In
particular, we have the inclusion #P ⊆ #·NP.

Following Valiant [24], we say that a reduction is parsimonious if it is a
polynomial-time many-one reduction preserving the number of solutions. How-
ever, this reduction does not allow to prove completeness of many known #P-
complete problems. Valiant [25] used counting reductions in his #P-completeness
proofs, but the aforementioned counting classes are not closed under this reduc-
tion, following Toda and Watanabe [23]. Their result implies that every problem
hard for #P under Turing reduction is also hard for #·NP under the same re-
duction. However, since the closure of #P under Turing reductions is the whole

counting counterpart of the polynomial hierarchy, this does not say anything
about the actual complexity of the problem in terms of counting classes. There-
fore we have to aim at a result involving a reducibility that preserves (or almost
preserves) the relevant classes. More useful for counting problems are subtractive

reductions [7]. They allow us to obtain many completeness results and at the
same time they leave the #·ΠkP classes closed. Nevertheless, these reductions do
not seem to be well-suited for our purposes. Indeed, we need to express the oper-
ation of halving the witness set, which is quite delicate if we require the closure of
the counting classes under these reductions. For this purpose, we define the com-

plementive reductions which satisfy the aforementioned requirements, provided
that every witness set of the target counting problem is complementive.

A finite alphabet Γ is called even if |Γ | = 2k for some k ∈ N. A permutation π
on an even alphabet Γ is called bipartite if there exists a partition of Γ into two
disjoint sets Γ0 and Γ1 such that the following conditions hold:

– Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, and |Γ0| = |Γ1|
– for all x ∈ Γi we have π(x) ∈ Γ1−i for each i = 0, 1.

We homomorphically enlarge every permutation π on Γ to the strings in Γ ∗ by
means of the identity π(x1 · · ·xk) = π(x1) · · ·π(xk) for each string x1 · · ·xk ∈ Γ ∗.

A set of strings E ⊆ Γ ∗ over an even alphabet Γ is called complementive

if there exists a bipartite permutation πE on Γ such that x ∈ E holds if and
only if πE(x) ∈ E. If we know that a set of strings E is complementive, we
always assume that we are effectively given the permutation πE . Given Σ, Γ
two alphabets with Γ being even, a binary relation B between strings from Σ

and Γ is said to be complementive if the sets B(y) for each string y ∈ Σ∗ are
complementive with respect to the same bipartite permutation πB.

Definition 3. Let Σ, Γ be two alphabets, Γ being even, and let #A and #B be

two counting problems determined by the binary relations A and B between the

strings from Σ and Γ , where B is complementive.

– We say that the counting problem #A reduces to the counting problem #B
via a strong complementive reduction, if there exists two polynomial-

time computable functions f and g such that for every string x ∈ Σ∗:

• B(g(x)) ⊆ B(f(x))

• 2 · |A(x)| = |B(f(x))| − |B(g(x))|

– A complementive reduction #A ≤cr #B from a counting problem #A
to #B is a transitive closure of strong complementive and parsimonious

reductions.

It is clear that complementive reductions present a special case of counting re-
ductions, the most frequently used reductions among counting problems.

Theorem 4. #P and all higher complexity classes #·ΠkP, k ≥ 1, are closed

under complementive reductions.

Proof. Let k be a fixed nonnegative integer. We prove that the class #·ΠkP is
closed under strong complementive reductions. The result will follow by induc-
tion on the number of strong complementive and parsimonious reductions used
to compose the final complementive reduction. Recall that Toda [22] showed
that #·ΠkP = #·PΣkP.

Let #A and #B be two counting problems such that #B ∈ #·ΠkP, B is
complementive, and #A reduces to #B via a strong complementive reduction.
We will show that #A belongs to #·ΠkP by constructing a predicate A′ in PΣkP

such that for each string x we have 2 · |A′(x)| = |B(f(x))|−|B(g(x))| = 2 · |A(x)|,
where f and g are the required polynomial-time computable functions.

Let ∗ be a delimiter symbol not in the alphabets Σ and Γ . Let Γ0 and Γ1 be
the partition sets defined by the bipartite permutation πB on Γ . The predicateA′

consists of all pairs (x, y′) of strings x and y′, such that y′ is of the form

f(x) ∗ g(x) ∗ y with (f(x), y) ∈ B, (g(x), y) 6∈ B, and last(y) ∈ Γ0,

where last(y) denotes the last symbol of the string y. Thus, a pair (x, y′) belongs
to A′ if and only if (x, y′) is accepted by the following algorithm:

1. extract f(x), g(x), and y from y′;
2. check that last(y) belongs to Γ0;
3. check that (f(x), y) belongs to B;
4. check that (g(x), y) does not belong to B.

Steps 1 and 2 take polynomial time. The test in Step 3 is in ΠkP, therefore also
in PΣkP. The test in Step 4 is in ΣkP, hence it can be done in PΣkP. Therefore
the predicate A′ is in PΣkP. It is clear from the construction that the identity
2 · |A′(x)| = |B(f(x))| − |B(g(x))| holds, since B is complementive, and this
implies |A′(x)| = |A(x)|. It follows that the counting problem #A is in the
counting class #·PΣkP = #·ΠkP. If we take k = 0 in the proof, we get also the
closure for the class #P. ⊓⊔

In view of the preceding Theorem 4, it is quite natural to ask whether the
classes #·ΣkP are also closed under complementive reductions. The following
proposition provides the evidence that no class #·ΣkP is closed under comple-
mentive reductions.

Proposition 5. For every k ∈ N, the counting class #·ΣkP is not closed under

complementive reductions, unless #·ΣkP = #·ΠkP.

Proof. Following Wrathal [27], we must perform a case analysis, whether k is
even or odd, To obtain completeness for levels of the polynomial hierarchy we
have to use CNF or DNF, according to whether we are in an odd or even level.
In the even case, take a Π2iP-formula ϕ(x1, . . . , xn) and construct the formulas

τ(x0, x1, . . . , xn) = x0 ∨ x1 ∨ · · · ∨ xn ∨ ¬x0 ∨ ¬x1 ∨ · · · ∨ ¬xn

ψ(x0, x1, . . . , xn) =
(

x0 ∧ ¬ϕ(x1, . . . , xn)
)

∨
(

¬x0 ∧ ¬ϕ(¬x1, . . . ,¬xn)
)

where ¬ϕ is formed from ϕ by de Morgan’s laws. For the odd case, take a
Π2i+1P-formula ϕ, maintain the same formula τ , and construct the formula

ψ(x0, x1, . . . , xn) =
(

x0 ∨ ¬ϕ(x1, . . . , xn)
)

∧
(

¬x0 ∨ ¬ϕ(¬x1, . . . ,¬xn)
)

Both τ and ψ are complementive formulas, hence sol(τ) and sol(ψ) are comple-
mentive sets of strings with Γ0 = {0} and Γ1 = {1}.

The non-quantified part of the Π2iP formula ϕ is in CNF, therefore the
formulas ¬ϕ(x1, . . . , xn) and ¬ϕ(¬x1, . . . ,¬xn) are in DNF. Using the distribu-
tive law, both formulas x0 ∧ ¬ϕ(x1, . . . , xn) and ¬x0 ∧ ¬ϕ(¬x1, . . . ,¬xn) can
be transformed into DNF in polynomial time and linear space. Hence, the for-
mula ψ is equivalent to a DNF-formula, which can be obtained in polynomial
time and linear space. Similarly for the odd case, the non-quantified part of
the Π2i+1P formula ϕ is in DNF, therefore the formulas ¬ϕ(x1, . . . , xn) and
¬ϕ(¬x1, . . . ,¬xn) are in CNF. Using the distributive law, we can show that the
final formula ψ can be transformed in polynomial time and linear space into an
equivalent CNF formula.

In both cases, it is clear that sol(ψ) ⊆ sol(τ), |sol(τ)| = 2 · 2n, and |sol(ψ)| =
2 · |sol(¬ϕ)| = 2 ·

(

2n − |sol(ϕ)|
)

. Thus we conclude that 2 · |sol(ϕ)| = |sol(τ)| −
|sol(ψ)|. Hence, we have a complementive reduction from a #·ΠkP-complete
problem to a counting problem in #·ΣkP. ⊓⊔

4.2 The Counting Problem of Conjunctive Queries

The counting problem associated with the satisfiability of generalized conjunctive
queries is defined as follows.

Problem: #sat-coq(S)
Input: A conjunctive query F (x) = ∃y ϕ(x,y) from coq(S).
Output: Number of different satisfying assignments to the distinguished vari-
ables x.

We used the notation #sat-coq to point out the importance of conjunctive
queries, contrary to the cryptic notation #Σ1sat used on a more theoretical
level in [7]. Our ultimate goal is to determine the complexity of #sat-coq(S)
for all possible sets S. Observe first that #sat-coq(S) is in #·NP for every set
of Boolean relations S. A central result for our development is the following easy
consequence of Proposition 2.

Proposition 6. Let S1 and S2 be two finite sets of Boolean relations. If the

inclusion Pol(S2) ⊆ Pol(S1) holds, then there exists a parsimonious reduction

from #sat-coq(S1) to #sat-coq(S2).

This result, together with Post’s lattice, allows us to prove the following tri-
chotomy complexity classification. We need two propositions whose predecessors
can already be found in a slightly different form in [4] and which provide two
basic #·NP-complete problems.

Proposition 7. #sat(R1/3) is #P-complete and #sat-coq(R1/3) is #·NP-

complete, both via parsimonious reductions.

Proof. From Valiant’s original results [24] follows that #sat is the generic #P-
complete problem via parsimonious reductions. From the same reference and also
from [7] it follows that #sat-coq is the generic #·NP-complete counting prob-
lem under parsimonious reductions (see also [12]). It is clear that #sat(R1/3) is
in #P and #sat-coq(R1/3) is in #·NP.

The standard reduction from sat to 3sat is also a parsimonious reduc-
tion from #sat to #3sat, and it gives rise to a parsimonious reduction from
#sat-coq to#3sat-coq. Each clause c = l1 ∨ l2 ∨ l3 of a 3sat formula defines
one of the following four relations.

OR0(x1, x2, x3) = sol(x1 ∨ x2 ∨ x3) = {0, 1}3
r {(0, 0, 0)}

OR1(x1, x2, x3) = sol(¬x1 ∨ x2 ∨ x3) = {0, 1}3
r {(1, 0, 0)}

OR2(x1, x2, x3) = sol(¬x1 ∨ ¬x2 ∨ x3) = {0, 1}3
r {(1, 1, 0)}

OR3(x1, x2, x3) = sol(¬x1 ∨ ¬x2 ∨ ¬x3) = {0, 1}3
r {(1, 1, 1)}

We will show that every relation ORi can be represented as a conjunction of
relations R1/3. Note first that the relation Z(v1, v2) = R1/3(v1, v1, v2) forces the
variables v1 to be assigned the value 0. Therefore the relation N(x, y, v1, v2) =
R1/3(x, y, v1) ∧ Z(v1, v2) forces y to be the negation of x. For each c = ORi we
construct now the corresponding formula r(ORi) by means of R1/3. We obtain
the following constructions.

r(OR0)(x1, x2, x3) = R1/3(x1, z1, z2) ∧R1/3(y2, z1, z3) ∧R1/3(y3, z2, z4) ∧

R1/3(z2, z3, z5) ∧N(x2, y2, v1, v2) ∧N(x3, y3, v1, v2)

r(OR1)(x1, x2, x3) = r(OR0)(u1, x2, x3) ∧N(x1, u1, v1, v2)

r(OR2)(x1, x2, x3) = r(OR1)(x1, u2, x3) ∧N(x2, u2, v1, v2)

r(OR3)(x1, x2, x3) = r(OR2)(x1, x2, u3) ∧N(x3, u3, v1, v2)

where u1, . . . , u3, v1, v2, y2, y3, z1, . . . , z5 are new variables. In the case of
conjunctive queries, these new variables will be existentially quantified. The
resulting formula is the conjunction of these partial formulas r(c) for all clauses c.
This proves the required parsimonious reductions from #sat to #sat(R1/3) and
from #sat-coq to #sat-coq(R1/3) ⊓⊔

Remark 8. There exists an alternative and shorter proof of Proposition 7 making
use of algebraic arguments. We mention this proof here, since one of our goals
is to promote the algebraic approach. The drawback of the proof is that it
does not provide an explicit parsimonious reduction and that it is valid only for
#sat-coq.

Proof. Since Pol(R1/3) = I2 and I2 ⊆ S for every clone S, we conclude by
Proposition 6 that #sat-coq(S) reduces to #sat-coq(R1/3) via parsimonious
reductions. ⊓⊔

Proposition 9. #sat(Rnae) is #P-complete and #sat-coq(Rnae) is #·NP-

complete, both via complementive reductions.

Proof. It is clear that #sat(Rnae) is in #P and #sat-coq(Rnae) is in #·NP,
respectively. To prove completeness, we will reduce #sat(R1/3) to #sat(Rnae).
Observe that the algebraic approach is of no use here. Indeed, since Rnae is com-
plementive, whereas R1/3 is not, we have Pol(R1/3) ⊂ Pol(Rnae), which does not
provide the desired reduction. Therefore we have to construct an explicit reduc-
tion. For each clause c = R1/3(x1, x2, x3) of a {R1/3}-formula ϕ, we construct
the formula

q(c) = Rnae(x1, x2, z) ∧Rnae(x2, x3, z) ∧Rnae(x3, x1, z) ∧Rnae(x1, x2, x3)

where z is a new variable. The resulting formula q(ϕ) is the conjunction of
these partial formulas q(c) for all clauses c. Observe that if an assignment I
satisfies ϕ, then the dual assignment Ī does not. Observe also that the set of sat-
isfying assignments for the formula q(c) is complementive, therefore the resulting
formula q(ϕ) will have twice as many satisfying assignments as the original for-
mula ϕ. This proves the required complementive reduction from #sat(R1/3) to
#sat(Rnae).

In case of conjunctive queries, z will be an existentially quantified variable. In
order to be allowed to apply the same argument as above, we have to make sure
that if an assignment I on the distinguished variables x satisfies the conjunctive
query F (x) = ∃yϕ(x,y), then the dual assignment Ī does not. Since it is not
necessarily the case, we have to introduce two new variables u and v, and to
consider first a new conjunctive query F ′(x, u, v) = ∃yϕ(x,y) ∧ R1/3(u, u, v).
The number of satisfying assignments for F ′ is equal to the number of satisfying
assignments for F . Moreover, F ′ has the desired property mentioned above.
Therefore the previous construction, namely q(F ′), provides a complementive
reduction from #sat-coq(R1/3) to #sat-coq(Rnae). Using Proposition 7, this
proves the result. ⊓⊔

Theorem 10. Let S be a non-empty finite set of Boolean relations.

– If S is affine, then #sat-coq(S) is in FP.

– Else if S is bijunctive, or Horn, or dual Horn, then #sat-coq(S) is #P-

complete under counting reductions.

– Otherwise #sat-coq(S) is #·NP-complete under complementive reductions.

Proof. If S is affine, then the Gaussian elimination algorithm used in [5] for
#sat(S) can also be used to construct a corresponding polynomial-time algo-
rithm for #sat-coq(S).

If S is Horn, dual Horn, or bijunctive, then sat(S) is in P following [20] and
therefore #sat-coq(S) is in #P. Moreover, we know from [5] that in this case
#sat(S) is #P-hard. Hence, the trivial (parsimonious) reduction from #sat(S)
to #sat-coq(S) finally shows that #sat-coq(S) is #P-complete.

It remains to treat the case where Pol(S) = N. In fact, observe that all
the other nonconsidered classes N2, I, I0, I1 or I2 are subsets of N. Therefore

according to Proposition 6 and Post’s lattice, it suffices to exhibit a set S of
Boolean relations, such that N ⊆ Pol(S) but #sat-coq(S) is #·NP-complete.

According to Proposition 9 we know that #sat-coq(Rnae) is #·NP-complete
via complementive reductions. Construct now the relations

R′′(u, v, x, y, z) = (¬u ∧ ¬v ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (u ∧ v ∧ x ∧ y ∧ z) and

R′(u, v, x, y, z) = R′′(u, v, x, y, z) ∨

(u ∧ ¬v ∧Rnae(x, y, z)) ∨ (¬u ∧ v ∧Rnae(x, y, z)).

Consider now the formula F (x) = ∃y
∧m

i=1
Rnae(x

i
1, x

i
2, x

i
3) being an instance of

#sat-coq(Rnae), where xi
1, x

i
2, x

i
3 are variables from the vector x. Build the

formulas

F ′(x, u, v) = ∃y

m
∧

i=1

R′(u, v, xi
1, x

i
2, x

i
3) and

F ′′(x, u, v) = ∃y

m
∧

i=1

R′′(u, v, xi
1, x

i
2, x

i
3)

from the relations R′ and R′′. The satisfying assignments of the query F ′ in-
clude those of F ′′. If q is the number of satisfying assignments of F then those
of F ′ is 2q + 2 and those of F ′′ is 2. Hence, we have the equality 2 |sol(F)| =
|sol(F ′)|−|sol(F ′′)|, implying a complementive reduction from the counting prob-
lem #sat-coq(Rnae) to #sat-coq({R′, R′′}), proving that #sat-coq({R′, R′′})
is #·NP-complete. Moreover, both R′ and R′′ are 0-valid, 1-valid, and comple-
mentive, since Rnae is complementive. Hence Pol({R′, R′′}) contains N. ⊓⊔

4.3 The Audit Problem

Another problem of interest, defined by Kleinberg et al. [11] and studied from
a complexity standpoint by Jonsson and Krokhin [10, 14], is the audit problem.
This problem is related to databases that support statistical queries. It can be
generalized to conjunctive queries in the following way.

Problem: audit-coq(S)
Input: A conjunctive query F (x) = ∃y ϕ(x,y) from coq(S).
Question: Is F unsatisfiable or is there some variable among x that is frozen,
i.e., that takes the same value in all satisfying assignments?

Note that our audit-coq(S) problem is different from the 1-audit problem
studied in [10], since we do not include the variable candidate to be frozen as
part of the input. Nevertheless, our result can be shown to follow from those
in [10]. We want to insist here on the clarity and simplicity of our proof.

It is easy to see that this problem belongs to the class coNP. We prove that the
algebraic approach applies to study the complexity of this problem. The following
result follows again immediately from Proposition 2 (see also Proposition 6).

Proposition 11. Let S1 and S2 be two finite sets of Boolean relations. If the in-

clusion Pol(S2) ⊆ Pol(S1) holds, then audit-coq(S1) is polynomial-time many-

one reducible to audit-coq(S2).

Once more, this result together with Post’s lattice allows us to get a complete
complexity classification.

Theorem 12. Let S be a non-empty finite set of Boolean relations.

– If S is both 0- and 1-valid, or affine, or Horn, or dual Horn or bijunctive,

then audit-coq(S) is in P.

– Otherwise audit-coq(S) is coNP-complete.

Proof. If S is both 0- and 1-valid, i.e., I ⊆ Pol(S), then the problem is trivial.
If S is affine, Horn, dual Horn, or bijunctive, then observe that given an S-

formula and a variable x, we can check in polynomial time whether both F ∧ x
and F ∧ ¬x are satisfiable. Therefore, in this case audit-coq(S) is in P.

If S is complementive, but neither 0-valid, nor included in the four previous
cases, i.e., Pol(S) = N2, then no variable can be frozen. Therefore in this case the
problem audit-coq(S) is equivalent to the coNP-complete problem unsat(S),
asking whether an S-formula is unsatisfiable.

The remaining cases are those for which Pol(S) = I0, I1 or I2. According
to Proposition 6 and Post’s lattice, in order to conclude the proof it suffices to
exhibit a Boolean relation R0 (resp. R1) such that I0 ⊆ Pol(R0) (resp. I1 ⊆
Pol(R1)) and audit-coq(R0) (resp. audit-coq(R1)) is coNP-complete. Recall
first that sat(R1/3) is NP-complete, so unsat(R1/3) is coNP-complete. Consider
an instance of unsat(R1/3) defined by the formula F (x) =

∧m
i=1

R1/3(x
i
1, x

i
2, x

i
3).

Construct the 0-valid relation

R0(v, x, y, z) = (¬v ∧ x ∧ y ∧ z) ∨ (¬v ∧ ¬x ∧ ¬y ∧ ¬z) ∨ (v ∧R1/3(x, y, z))

and build the formula F ′(x, v) =
∧m

i=1
R0(v, x

i
1, x

i
2, x

i
3). Clearly, the inclusion

I0 ⊆ Pol({R0}) holds since the relation R0 is 0-valid.
Observe that F ′ is always satisfiable, that no variable among the x is frozen,

and that F is unsatisfiable if and only if the variable v is frozen to 0 in F ′. So, we
have a reduction from unsat(R1/3) to audit-coq(R0), therefore the problem
audit-coq(R0) is coNP-complete. The proof is similar for Pol(S) = I1, with a
1-valid relation R1 similar to R0, just flip the polarity of the variable v. ⊓⊔

5 Conclusion

While the complexity of conjunctive-query evaluation and constraint satisfac-
tion is the same, we determined that this is not any more the case for other
computational goals. We have shown that the counting problem for conjunctive
queries has a different structure than that for conjunctive formulas. The lat-
ter displays a dichotomy behavior between the affine formulas in FP and the
#P-complete other cases, as it was shown in [5], whereas the former presents

a trichotomy structure between the affine cases in FP, the Horn, dual Horn,
and bijunctive #P-complete cases, and finally the general #·NP-complete case.
This shows that, under the more fine grained analysis presented by counting, the
conjunctive queries present three different levels of (in)tractability. As a byprod-
uct, we developed a new kind of reductions among counting problems, called
the complementive reductions, that allow to use halving functions within the
counting classes under certain circumstances , i.e., when every instance of the
target set is complementive. Since there are many counting problems presenting
this structure, we think that the complementive reductions will have a broader
impact.

We have also shown that the corresponding audit problem for conjunctive
queries displays a dichotomic behavior, where the cases of Horn, dual Horn,
bijunctive, or both 0 and 1-valid constraints are in P, whereas the other cases
are coNP-complete.

Acknowledgment. We thank Elmar Böhler, Matthias Galota, and Steffen Re-
ith for helpful discussions.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundation of databases. Addison-Wesley,
1995.

2. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part I: Post’s lattice with applications to complexity theory. SIGACT News, Com-
plexity Theory Column 42, 34(4):38–52, 2003.

3. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks,
part II: Constraint satisfaction problems. SIGACT News, Complexity Theory Col-
umn 43, 35(1):22–35, 2004.

4. N. Creignou and M. Hermann. On #P-completeness of some
counting problems. Research report 2144, Institut de Recherche
en Informatique et en Automatique, December 1993. URL =
http://www.lix.polytechnique.fr/∼hermann/publications/satcount.ps.gz.

5. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Information and Computation, 125(1):1–12, 1996.

6. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. SIAM, Philadelphia (PA), 2001.

7. A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. In M. Nielsen and B. Rovan, editors,
Proceedings 25th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2000), Bratislava (Slovakia), volume 1893 of Lecture Notes
in Computer Science, pages 323–332. Springer-Verlag, August 2000. To appear in
Theoretical Computer Science.

8. L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes
beyond #P and other definitional adventures. SIGACT News, Complexity Theory
Column 8, 26(1):2–13, March 1995.

9. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the Association for Computing Machinery, 44(4):527–548, 1997.

10. P. Jonsson and A. Krokhin. Computational complexity of auditing finite attributes
in statistical databases. In Proceedings Structural Theory of Automata, Semigroups
and Universal Algebra, Montreal (Canada), July 2003.

11. J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing Boolean attributes.
Journal of Computer and System Science, 66(1):244–253, 2003.

12. J. Köbler, U. Schöning, and J. Torán. On counting and approximation. Acta
Informatica, 26(4):363–379, 1989.

13. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Science, 61(2):302–332, 2000.

14. A. Krokhin and P. Jonsson. Recognizing frozen variables in constraint satisfaction
problems. Technical Report TR03-062, Electronic Colloquium on Computational
Complexity, 2003.

15. M. Lenzerini. Data integration: a theoretical perspective. In Proceeding 21st Sym-
posium on Principles of Database Systems (PODS 2002), Madison (Wisconsin,
USA), pages 233–246. SIGACT-SIGMOD-SIGART, ACM Press, June 2002.

16. N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge,
1997.

17. R. Pöschel. Galois connection for operations and relations. Technical Report
MATH-AL-8-2001, Technische Universität Dresden, 2001.

18. R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher
Verlag der Wissenschaften, Berlin, 1979.

19. E. L. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematical Studies, 5:1–122, 1941.

20. T. J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th
Symposium on Theory of Computing (STOC’78), San Diego (California, USA),
pages 216–226, 1978.

21. C. Silberstein, S. Brin, R. Motwani, and J. D. Ullman. Scalable techniques for
mining causal structures. Data Mining and Knowledge Discovery, 4(2-3):163–192,
2000.

22. S. Toda. Computational complexity of counting complexity classes. PhD thesis,
Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan,
1991.

23. S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to
#P. Theoretical Computer Science, 100(1):205–221, 1992.

24. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

25. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

26. J. Widom. Research problems in data warehousing. In Proceedings 4th Interna-
tional Conference on Information and Knowledge Management (CIKM’95), Balti-
more (Maryland, USA), pages 25–30. Association for Computing Machinery, 1995.

27. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):23–33, 1976.

28. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a
warehousing environment. In M. J. Carey and D. A. Schneider, editors, Proceedings
SIGMOD International Conference on Management of Data, San Jose (California,
USA), pages 316–327. ACM Press, May 1995.

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Fig. 2. Graph of all closed classes of Boolean functions

