
On Proving Properties of Completion StrategiesMiki HERMANNCRIN and INRIA-LorraineCampus Scienti�que, BP 239,54506 Vand÷uvre-lès-Nancy, Francee-mail: hermann@loria.crin.frAbstractWe develop methods for proving the fairness and correctness properties of rulebased completion strategies by means of process logic. The concepts of these prop-erties are formulated generally within process logic and then concretized to rewritesystem theory based on transition rules. We develop in parallel the notions of successand failure of a completion strategy, necessary to support the proves of the citedproperties. Finally we show the necessity of another property, called justice, in theanalysis of completion strategies.1 IntroductionThe Knuth�Bendix completion procedure [KB70] presents a key tool for completing equa-tional theories to con�uent and terminating rewrite systems. Several properties were re-quired to be ful�lled by the completion procedure with respect to its behavior and theproduced result. The �rst attempt in this direction was Huet's correctness proof of thecompletion procedure [Hue81]. Huet also formulated the notion of fairness in comple-tion in a certain way. It should be mentioned that Huet's presentation of the completionprocedure di�ered considerably from the original presentation in [KB70]. Bachmair, Der-showitz, and Hsiang [BDH86] have put completion in an abstract framework, based onthe notion of transition rules. The notions of success and failure, as well as the prop-erties fairness, soundness, and correctness cristalised in the work of Bachmair [Bac87]and Dershowitz. Both give formulations of correctness and fairness in terms of equationsand rewrite rules processed during the application of a transition rule based completionprocedure. Moreover, Bachmair [Bac87] gives a characterization of fairness by severallemmas.Fairness (a key property of completion procedures), as well as other eventuality prop-erties, were treated in a more general framework of abstract processes and abstract pro-grams [Fra86, GPSS80, Krö87, QS83].An obvious tool for reasoning about programs and processes are several types of modallogic. Temporal logic [Krö87] is well-suited for reasoning about properties appearingduring an execution of (mostly concurrent) �xed processes, but it has problems with

locating exactly the positions during the execution and also with composition of programsfrom smaller units. Dynamic logic [FL79] copes perfectly with the problem of programcomposition from smaller units. Its drawback is that it can reason only about propertiesoccurring before or after but not during the execution of a program. These problems wereresolved in process logic [HKP82], which incorporates both temporal and dynamic logics.We want to reason about properties of completion strategies (programs), composedfrom transition rules (basic instructions). Thus process logic is a suitable tool for thisanalysis. In this article we develop methods for proving the fairness and correctness prop-erties of rule based completion strategies. The concepts of these properties are formulatedgenerally within process logic and then concretized to rewrite system theory based on tran-sition rules as given in [BDH86]. We develop in parallel the notions of success and failureof a completion strategy, necessary to support the proves of cited properties. Finallywe show the necessity of another property, called justice, in the analysis of completionstrategies. Unfortunately for us, the formalism we use is not capable to prove the justiceof a strategy.The proofs and several extensions and explications, not included into this article forlack of space, can be found in the research report [Her90].2 Basic notation and de�nitionsThe reader is supposed to be familiar with the concepts of term rewriting theory, temporallogic, dynamic logic, and process logic. For good overviews, see [DJ90] for rewrite systems,[Krö87] for temporal logic, [FL79] for dynamic logic, and [HKP82] for process logic.Only to recall the few notations from rewrite systems theory: T (F ;X) denotes theset of all terms (free algebra) over variables X and symbols F , IdT (F;X) denotes theset of all identities t ' t over all terms T (F ;X), s ' t denotes an equation in E,s ! t denotes a rewrite rule in a rewrite system R, �!R denotes the smallest rewritingrelation containing R, s � t denotes the reduction ordering between the terms s and t,tja denotes the subterm of t at a position a 2 Pos(t), FPos(t) denotes the set of allnon-variable positions of the term t, t� denotes the substitution instance of the term tby the substitution �, CP(R1; R2) denotes the set of all critical pairs between the rulesof rewrite systems R1 and R2, "R denotes the common ancestor relation � �R � ��!R �meetability, #R denotes the common descendant relation ��!R � � �R � joinability.We remain basically in the scope of the process logic de�ned in [HKP82], and thereforewe can use the axiomatization of this logic with the support of (strict) propositionaldynamic logic [HR83]. The logic can be therefore called strict simple process logic, denotedStSiPL. For the exact syntax and semantics of this logic see [Her90].The formula hai p means in some executions of a, p is true; the formula [a] p meansin all executions of a, p is true. The formula f p means p is true in the �rst state of apath. The formula p suf q means there exists a su�x x which satis�es q and all su�xesy, where x � y, satisfy p (p is true until q becomes true). The formula n p means nextstate in the path exists and satis�es p. The formula somep means there exists a su�xsatisfying p, i.e. p is true somewhere. The formula all p means all su�xes satisfy p, i.e. pis true henceforth. The formula last p says there the path is of �nite length and the laststate satis�es p. The formula �n (inf) says the path is of �nite (in�nite) length.

3 Completion procedure3.1 Process logic preliminariesDe�ne �: S �! P(�0) to be the applicability function, an assignment of states to setsof atomic programs �0 (programs that can be applied in the given state). For an atomicprogram A 2 �0 and a state s 2 S we have A 2 �(s) if and only if there exists a state t,di�erent from s, such that (s; t) 2 � (A).De�ne now the predicate apply on atomic programs �0 in a StSiPL model M . Fora path x 2 S! and an atomic program A 2 �0 we have M;x j= apply(A) if and only ifA 2 (� � �rst)(x), which determines if the atomic program A is applicable to the path x.De�ne : S � S �! P(�0 [fskipg) to be the state connectivity function. (s; t)determines the set of all atomic programs (or the skip) that transform the state s into thestate t. For an atomic program A 2 �0 and states s; t 2 S we have A 2 (s; t) if and onlyif (s; t) 2 � (A). Moreover, for all states s 2 S the skip program is contained in (s; s)according to the fact that skip does not do anything.The state connectivity is simple if for all states s; t 2 S the set (s; t) contains at mostone element: j(s; t)j � 1. We consider only simple connectivity in the sequel, otherwisewe would have problems with locating non-ambiguously the use of atomic programs.De�ne now the predicate use on atomic programs �0 in a StSiPL model M . Fora path x 2 S! and an atomic program A 2 �0 we have M;x j= use(A) if and onlyif A 2 (�rst(x); second(x)), where second = �rst � next . The predicate use determineswhether A was used in the path x as the �rst applied atomic program to arrive at next (x).It is sometimes necessary to know the fact that an atomic program was used the last timein a path x. This is expressed by a derived predicate lastuse(A) = use(A)^nall:use(A).It is clear that for all atomic programs A we have M;x j= lastuse(A) � use(A) andM;x j= use(A) � apply(A).We need also the (polymorphic) predicate empty operating on sets, preferably on theset of equations E.3.2 Transition rulesA transition system [QS83] is a triple S = (S;�0;`�0), where S is a countable set oftransition states, �0 is a �nite set of transition rules, and `�0 is a set of binary relationson S in bijection with the transition rules �0.In the sequel we observe the transition system KB = (SKB ;KB ;`KB), where statesSKB are formed by pairs (E;R) of equations E and rewrite rules R. The Knuth�Bendixcompletion procedure is based on the following set KB of six transition rules:Delete: (E [fs ' sg;R) ` (E;R)Compose: (E;R [fs! tg) ` (E;R [fs! ug) if t �!R uSimplify: (E [fs ' tg;R) ` (E [fu ' tg;R) if s �!R uOrient: (E [fs ' tg;R) ` (E;R [fs! tg) if s � tCollapse: (E;R [fs! tg) ` (E [fu ' tg;R) if s �!R u by l! r 2 R with s �� lDeduce: (E;R) ` (E [fs ' tg;R) if s ' t 2 CP(R;R) � Ewhere �� denotes a proper encompassment ordering. We write (E;R) `KB (E 0;R0) if thelatter may be obtained from the former by one application of a rule in KB .

The transition rule Deduce is highly nondeterministic and therefore it would pose toomuch problems to use it for deducing only one critical pair at a time. The whole setof critical pairs CP(R;R) is always generated at once. Thus the transition rule Deducecan be replaced in KB by �Deduction: (E;R) ` (E [CP(R;R);R)� with the operationalequivalence Deduction = while apply(Deduce) do Deduce od.The StSiPL model, corresponding to the transition system KB, will be denoted byMKB . A strict regular program based on the set KB of transition rules as atomic pro-grams is called a completion strategy (or simply strategy). A path x corresponding to anexecution of a completion strategy a is called a completion path.3.3 Observed strategyTaking advantage of the de�ned predicate apply (and empty), we can easily write the KBccompletion strategy as a strict regular program based on the transition rules KB . First,to structure well the completion strategy we use the subprograms rR and rE to describethe reduction of all rules and equations, respectively.program rR isbeginwhile apply(Compose) do Compose od;while apply(Collapse) do Collapse odend program rE isbeginwhile apply(Simplify) do Simplify od;while apply(Delete) do Delete odendThe observed completion strategy has the formprogram KBc(E) isbeginwhile apply(Delete) do Delete od;while :empty(E) doif apply(Orient) then while apply(Orient) do Orient ; rR; rE odelse fail�;Deduction; rEodendTo make the proofs concerning the strategy more convenient, we describe parts of theKBc strategy by subprograms. These are the orient loop and the loop body:program ol isbeginwhile apply(Orient) doOrient ; rR; rEodend and program lb isbeginif apply(Orient) then olelse fail�;Deduction; rEendThen the main loop can be written as

program ml isbeginwhile :empty(E) do lb odend3.4 Term rewriting theory within process logicClassical (�nite) rewrite systems can be investigated under process logic and transitionsystem formalism, too. In this case the rewrite rules R become the atomic programs �0.A pair (of terms) (s; t) is contained in the interpretation of an atomic program (rewriterule) l! r 2 R = �0 if and only if there exists a nonvariable position a 2 FPos(s) and asubstitution �, such that sja = l� and t = s[r�]a. The predicate apply is then equivalentto the presence of a redex in the �rst term (state) of a path.The basic applied strategy (if we can speak of a certain strategy at all) is a nonde-terministic choice of rewrite rules from R, denoted just by the symbol R. Thereafter thecomputation of a normal form (normalization) could be expressed asnorm(R) = while 9p((p 2 R) ^ apply(p)) do R odThe fact that R is terminating is expressed just as [norm(R)]�n, which follows nat-urally from the intuitive meaning that there are no in�nite rewritings. The diamondlemma saying �A terminating rewrite system R is con�uent i� it is locally con�uent � isthen expressed by the following process logic expression[norm(R)]�n � (LConf (R) � Conf (R)) (1)using the predicates Conf (R) ="R � #R and LConf (R) = CP(R;R) � #R for con�uenceand local con�uence respectively. The set CP(R;R) is, in principle, interpreted as therelation �R � �!R.4 Properties of the completion strategy4.1 Success of completionFollowing the intuitive meaning, a path x is unfailing (successful) if during the com-putation, expressed by x, no fail instruction was used. The appropriate PL expressionformalizing this fact is M;x j= unfailing � all:use(fail).Now, if the fail instruction was used somewhere during the completion path x of thestrategy KBc, we haveMKB ; x j= someuse(fail) � �n ^ last (:empty(E) ^ :apply(Orient)) (2)from which we deduce MKB ; x j= someuse(fail) � �n ^ last:empty(E), which is equiv-alent to MKB ; x j= (�n � last empty(E)) � all:use(fail) (3)From the structure of the KBc strategy we deduce[KBc] (all:use(fail) � (�n � last empty(E))) (4)

Comparing (3) and (4) we get MKB ; x j= all:use(fail) � �n � last empty(E). Thus, inthe case of KBc we can writeunfailing = �n � last empty(E) (5)From (5), we derive immediately the following theorem:Theorem 4.1 A �nite completion path x of the completion strategy KBc is successful(or unfailing) if and only if in the last state of x the set of equations E is empty.4.2 CorrectnessThe intuitive meaning of correctness is a predicate coupled to the notion of success. Astrategy a is correct with respect to the predicate P (a), if the validity of this predicate isimplied by each successful and �nite computation. In the PL formalism:[a] (�n ^ unfailing � lastP (a)) (6)Within a completion strategy a the predicate P (a) is expressed by Conf (R), meaningthat a completing strategy is correct with respect to the con�uence of the produced rewriterules R. That justi�es the following theorem.Theorem 4.2 A completion strategy b is correct if and only if b produces a con�uentrewrite system R whenever b �nishes successfully.Applying the equality (5) to (6), we get the expressionMKB j= [KBc] (�n ^ last empty(E) � lastConf (R))for the correctness of the completion strategy KBc.For proving the correctness of KBc we need a supporting lemma, which is useful alsofor proofs of other properties.Lemma 4.3 For all transition rules A 2 (KB � fDeductiong) [fDeduceg the followingproposition is valid: MKB j= [while apply(A) do A od] (�n ^ last:apply(A))Lemma 4.3 implies immediately the following two propositions:MKB j= [rR]�n (7)MKB j= [rE]�n (8)With a little more e�ort it is possible to proveProposition 4.4 MKB j= [ol]�n.We cannot have MKB j= [ol] last:apply(Deduction) because this implies MKB j=[ol] last (CP(R;R) = E), which impliesMKB j= [ol] f :apply(Orient) and this is de�nitelynot possible.

Comparing (7), (8), and Proposition 4.4 with ml impliesMKB j= [ol] last ((: _A2KB�fDeductiong apply(A)) ^ apply(Deduction)) (9)what indicates that only the Deduction rule can be applied after ol . This implies imme-diately MKB j= hml i inf � hml iall:lastuse(Deduction) or elseMKB j= [ml] some lastuse(Deduction) � [ml]�nThe implication j= [a]�n � [a] some lastuse(A) is trivially satis�ed for each atomicprogram (transition rule) A and program a in each model M , therefore we haveMKB j= [ml] some lastuse(Deduction) � [ml]�n (10)Assume that xKB is a �nite completion path of the strategy KBc and y its su�x.Assume further that z1 is a su�x of y and z2 = next (z1).xKB = s1 : : : yz }| {sy : : : sz1 z2z }| {sz2 : : : sn| {z }z1The fact, that each use of the Deduction transition rule (at y) is followed by a sequenceof Simplify rules and then by a sequence of Delete rules in the strategy KBc, can beexpressed asMKB ; y j= use(Deduction) � n (use(Simplify) suf (apply(Delete) � use(Delete))) (11)From the structure of the transition ruleDelete we deduce immediately the implicationMKB ; z2 j= use(Delete) � 9e(e 2 E � e 2 IdT (F;X)). This one implies furtherMKB ; z2 j= last empty(E) ^ all use(Delete) � (E � IdT (F;X)) (12)From the structure of the completion strategy KBc, as well as from (11), followsMKB ; z1 j= lastuse(Simplify) � nall use(Delete) (13)Comparing (12) with (13) and using ` (a � b) � (a ^ c � b ^ c) gives the implicationMKB ; z1 j= last empty(E) ^ lastuse(Simplify) � n (E � IdT (F;X)) (14)Applying ` (p � q) ^ (p � r) � p � (q ^ r) and `PL n (p ^ q) � n p ^ n q on (11) andon the implicationMKB ; y j= use(Deduction) � n (CP (R;R) � E), we getMKB ; y j= use(Deduction) � n ((CP(R;R) � E)^(use(Simplify) suf (apply(Delete) � use(Delete)))) (15)Comparing (15) and (14) results in the implicationMKB ; y j= last empty(E) ^ lastuse(Deduction) � nallLConf (R) (16)

By the application of `PL (a ^ b � c) � (somea ^ all b � some c) to (16), we canpass from y to xKB and we getMKB ; xKB j= all last empty(E)^some lastuse(Deduction) � somenallLConf (R) (17)It is clear that all last p is equivalent to last p. We have further `PL n p � somep and`PL somesomep � somep which provesMKB j= somenallLConf (R) � someallLConf (R)Therefore (17) impliesMKB ; xKB j= last empty(E) ^ some lastuse(Deduction) � someallLConf (R) (18)From (10) we imply MKB ; xKB j= some lastuse(Deduction) � �n (19)Comparing (18) and (19) results inMKB ; xKB j= �n ^ last empty(E) � someallLConf (R)Using ` (a ^ b � c) � (a ^ b � a ^ c) and `PL �n ^ someallp � last p on the previousimplication gives MKB ; xKB j= �n ^ last empty(E) � lastLConf (R) (20)The use of a reduction ordering in the transition rule Orient subsumes the proposition[norm(R)]�n therefore (20) impliesMKB ; xKB j= �n ^ last empty(E) � lastConf (R) (21)according to (1). The �niteness of xKB is expressed already in (21), therefore (21) is validfor all completion paths xKB of the strategy KBc. Therefore we can generalize (21) toMKB j= [KBc] (�n ^ last empty(E) � lastConf (R))The last implication validates the following theorem.Theorem 4.5 The completion strategy KBc is correct.4.3 FairnessOur notion of fairness follows, in principle, the ideas of [Fra86, GPSS80, Krö87]. Thedi�erence, or additional required property, is the application determinacy of strict regularprograms. We require that a completion strategy a 2 �must be deterministicwith respectto the application of the transition rules �0. The de�nition of application determinacyis based on the notion of a deterministic program a in dynamic logic which assumes thetermination of a.

De�nition 4.6 (Application determinacy of strict regular programs)If hai (�n ^ last apply(A)) � [a] (�n ^ last apply(A)) then a is deterministic withrespect to the application of A. The program a is deterministic in application (wrt �0) ifand only if it is deterministic wrt the application of all A 2 �0.If a and b are both deterministic in application, then also a; b is deterministic inapplication.If a is deterministic in application, then also while p do a od is deterministic inapplication.If a and b are both deterministic in application, then also if p then a else b � isdeterministic in application.We are ready now to de�ne the fairness property in general:De�nition 4.7 The program a 2 � is fair (wrt �0) if it is deterministic in applicationand for all atomic programs A 2 �0 the expression [a] (inf � (all someapply(A) �all someuse(A))) is valid.This de�nition expresses exactly the following intuitive property: if there is an atomicprogram A that can be applied in�nitely many times during an in�nite computation withdeterministic application of atomic programs, then the atomic program A is actually usedin�nitely many times during that computation. The de�nition re�ects the general fairnessprinciple expressed by the statementEverything which is enabled in�nitely many times within an environment withdeterministic application will eventually occur.We use the shorthand fair to express the fairness property and thus write [a] fair todeclare that the strategy a is fair.The application determinacy of the program a with respect of its fairness is unavoid-able. Consider a new completion strategy derived from KBc, where the deterministictransition rule Deduction is replaced by the nondeterministic one Deduce. This newstrategy could diverge on the system R = ffgfx! gfx; ggx! xg if the transition ruleDeduce never choose the second rule for computing critical pairs. On the other hand,computing the critical pairs of the second rule can leed to a �nite canonical system. Thisis of course in contradiction with the notion of fairness.For the fairness proof of a completion strategy we need to know the mutual dependenceof transition rules with respect to the states where they get enabled or disabled. This isexpressed in the following fact by a positive and negative invariant matrices.Fact 4.8 The proposition MKB j= [A] (f apply(B) � last apply(B)) is valid for the tran-sition rules A and B according to the following table:BA Delete Compose Simplify Orient Collapse DeductionDelete valid valid valid validCompose valid valid valid valid validSimplify valid valid validOrient valid valid valid validCollapse valid valid valid validDeduction valid valid valid valid valid

The proposition MKB j= [A] (f :apply(B) � last:apply(B)) is valid for the transitionrules A and B according to the following table: BA Delete Compose Simplify Orient Collapse DeductionDelete valid valid valid valid validCompose valid valid valid valid valid validSimplify valid valid validOrient valid validCollapse valid valid validDeduction valid valid validThe positive and negative invariants on programs a; b 2 � can be extended in a straight-forward way on the constructs a; b and while p do a od.We can prove now the application determinacy of the key parts of the completionstrategy KBc.Lemma 4.9 The programs rR, rE, ol , and therefore also the completion strategy KBcare deterministic in application.We continue with the proof of the second part of the fairness condition.Lemma 4.10 If a 2 � is �nite and deterministic in application, and [a] someuse(A) isvalid then while q do a od is fair wrt A 2 �0.Corollary 4.11 The completion strategy KBc is fair wrt the transition rule Deduction.Assume that xlb is a computation path of lb. From the structure of lb followsMKB ; xlb j= all:use(fail) � someuse(Orient)which impliesMKB j= [lb] (all:use(fail) � someuse(Orient)) fromMKB j= [lb] (f apply(Orient) � someuse(Orient)) (22)The proposition MKB j= [lb]�n follows from (7), (8), Proposition 4.4, and the �nitenessof Orient and Deduction. Using `PL [a] (�n^p) � [while q do a od] (inf � all p) on (22)implies MKB j= [ml] (inf � (all:use(fail) � all someuse(Orient)). In general we haveMKB ; x j= inf � all:(fail) from (2), therefore with the use of ` (a � b)^ (a � (b � c)) �(a � c) we get MKB j= [ml] (inf � all someuse(Orient)), or elseMKB j= [KBc] (inf � all someuse(Orient))Applying to it ` (a � b) � (a � (c � b)) we getMKB j= [KBc] (inf � (all someapply(Orient) � all someuse(Orient)))Therefore we provedLemma 4.12 The completion strategy KBc is fair wrt the transition rule Orient.

Corollary 4.11 implies that all critical pairs are generated by the strategy KBc:MKB j= [KBc]all (e 2 CP(R;R) � some e 2 E) (23)Lemma 4.12 implies that all persistent equations are oriented into rules during an in�nitecompletion by the strategy KBc:MKB j= [KBc] (inf � all (e 2 E � some e 62 E)) (24)A statement combined of (23) and (24) was presented as a fairness de�nition in [Bac87].Using the statements (23), (24), and the Critical Pair Lemma [BDH86, KB70], we deriveby means of proof ordering that for two terms s and t, equal in the equational theoryE, an in�nite completion by the strategy KBc will generate a state (Ei;Ri) such thats #Ri t [BDH86]: MKB j= [KBc] (inf � (f (s =E t) � some (s #R t))).Now we prove that KBc is fair wrt the rest of transition rules. We need the followingfairness lemma.Lemma 4.13 If a 2 � is deterministic in application and [a] (inf � all (apply(A) �someuse(A))) is valid then a is fair wrt A 2 �0.Lemma 4.13 in connection with Fact 4.8 is the main tool for proving fairness of a com-pletion strategy wrt the transition rules Compose, Collapse, Simplify, and Delete.Lemma 4.14 The completion strategy KBc is fair wrt the transition rules Compose,Collapse, Simplify, and Delete.We could have proved the fairness of a completion strategy wrt Compose and Collapseof a completion strategy where the subprogram rR would have the formprogram rR isbeginwhile apply(Collapse) do Collapse od;while apply(Compose) do Compose odendThe required additional e�ort would be to prove that each application of Compose, dis-abled by the use of Collapse, is replaced by an application of Simplify.To summarize the e�ort of this section, we state the �nal theoremTheorem 4.15 The completion strategy KBc is fair (wrt KB).4.4 JusticeSoundness (a property local to transition rules, and therefore not dealt with here), success,correctness, and fairness are not the only properties to be observed within a completionstrategy. We need also the property of justice.Example 4.16 Let us study the completion strategy

program ds(E) isbeginwhile apply(Delete) do Delete od;while :empty(E) dowhile apply(Orient) do Orient ; rR; rE od;if empty(E) then Deduction else fail �;rEodendThe presented strategy is perfectly correct and fair, but it applies the Deduction rule onlyif the set of equations E is empty after ol (i.e., all equations were oriented into rules),otherwise it fails. This failure could be premature because a critical pair e could havebeen produced by Deduction and oriented into a rewrite rule r by Orient , and this rule rcould simplify the previously unorientable equation in E. Therefore the dummy strategyds is not justi�ed . It is reasonable to fail only if all critical pairs from already producedrewrite rules were generated and completely simpli�ed (Deduction followed by rE) andnone of the remained equations can be oriented, as it was done in the justi�ed strategyKBc.Now we can de�ne formally the discussed property:De�nition 4.17 The strategy b 2 � is justi�ed if and only if b is fair and for all setsof equations E if the strategy b fails on E then every fair strategy c 2 � fails on E, too.Formally:[b] fair ^ 8E([b(E)] someuse(fail) � 8c([c] fair � [c(E)] someuse(fail))) (25)The justice expression (25) is not an expression in the StSiPL logic any more. For provingit we must use a more subtle variant of process logic than StSiPL. Also the justice principleof [MP83] must be modi�ed to cope well with our intentions.5 ConclusionUsing the process logic, we were able to formulate the correctness and fairness propertiesfor transition rule based systems in general and proving them for a speci�c completionstrategy KBc. During the fairness proof we formulated two lemmas suitable for proofs ofthe fairness property of an arbitrary completion strategy based on the transition rulesKB .Moreover, we showed that the particular formulation of fairness for the transition rulesKB , given by Bachmair and Dershowitz, can be derived from our general one. Finally, wedescribed the necessity of another property, called justice, for the analysis of completionstrategies.AcknowledgmentI would like to thank Nachum Dershowitz and Pierre Lescanne for the encouragement to followthis research, and the discussions on the fairness problem in completion.

References[Bac87] L. Bachmair. Proof methods for equational theories. PhD thesis, University of Illinois,Urbana Champaign, Illinois, 1987.[BDH86] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Pro-ceedings 1st IEEE Symposium on Logic in Computer Science (LICS'86), Cambridge,(Massachusetts, USA), pages 346�357, June 1986.[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science B: Formal Methods and Semantics, chap-ter 6, pages 243�309. Elsevier, Amsterdam, 1990.[FL79] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.Journal of Computer and System Science, 18:194�211, 1979.[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. InProceedings of the 7th ACM Symposium on POPL, Las Vegas, pages 163�173, January1980.[Her90] M. Hermann. On proving properties of completion strategies. Research report 90-R-149, Centre de Recherche en Informatique de Nancy, 1990. To appear in Proceedingsof 4th Conference on Rewrite Techniques and Applications, Como (Italy).[HKP82] D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability, com-pleteness. Journal of Computer and System Science, 25:144�170, 1982.[HR83] J.Y. Halpern and J.H. Reif. The propositional dynamic logic of deterministic, well-structured programs. Theoretical Computer Science, 27:127�165, 1983.[Hue81] G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm.Journal of Computer and System Science, 23(1):11�21, August 1981. Also as: Rapport25, INRIA, 1980.[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,editor, Computational Problems in Abstract Algebra, pages 263�297. Pergamon Press,Oxford, 1970.[Krö87] F. Kröger. Temporal logic of programs, volume 8 of EATCS Monographs on TheoreticalComputer Science. Springer-Verlag, 1987.[MP83] Z. Manna and A. Pnueli. How to cook a temporal proof system for your pet language.In Proceedings 10th ACM POPL Symposium, Austin, (Texas, USA), pages 141�154,1983.[QS83] J.P. Queille and J. Sifakis. Fairness and related properties in transition systems - Atemporal logic to deal with fairness. Acta Informatica, 19:195�220, 1983.

