On Proving Properties of Completion Strategies

Miki HERMANN
CRIN and INRIA-Lorraine
Campus Scientifique, BP 239,
54506 Vandeeuvre-les-Nancy, France

e-mail: hermann@loria.crin.ir

Abstract

We develop methods for proving the fairness and correctness properties of rule
based completion strategies by means of process logic. The concepts of these prop-
erties are formulated generally within process logic and then concretized to rewrite
system theory based on transition rules. We develop in parallel the notions of success
and failure of a completion strategy, necessary to support the proves of the cited
properties. Finally we show the necessity of another property, called justice, in the
analysis of completion strategies.

1 Introduction

The Knuth-Bendix completion procedure [KB70] presents a key tool for completing equa-
tional theories to confluent and terminating rewrite systems. Several properties were re-
quired to be fulfilled by the completion procedure with respect to its behavior and the
produced result. The first attempt in this direction was Huet’s correctness proof of the
completion procedure [Hue81]. Huet also formulated the notion of fairness in comple-
tion in a certain way. It should be mentioned that Huet’s presentation of the completion
procedure differed considerably from the original presentation in [KB70]|. Bachmair, Der-
showitz, and Hsiang [BDHS86] have put completion in an abstract framework, based on
the notion of transition rules. The notions of success and failure, as well as the prop-
erties fairness, soundness, and correctness cristalised in the work of Bachmair [Bac87|
and Dershowitz. Both give formulations of correctness and fairness in terms of equations
and rewrite rules processed during the application of a transition rule based completion
procedure. Moreover, Bachmair [Bac87| gives a characterization of fairness by several
lemmas.

Fuairness (a key property of completion procedures), as well as other eventuality prop-
erties, were treated in a more general framework of abstract processes and abstract pro-
grams [Fra86, GPSS80, Kro87, QS83].

An obvious tool for reasoning about programs and processes are several types of modal
logic. Temporal logic [Kro87] is well-suited for reasoning about properties appearing
during an execution of (mostly concurrent) fixed processes, but it has problems with

from smaller units. Dynamic logic [FL79]| copes perfectly with the problem of program
composition from smaller units. Its drawback is that it can reason only about properties
occurring before or after but not during the execution of a program. These problems were
resolved in process logic [HKP82|, which incorporates both temporal and dynamic logics.

We want to reason about properties of completion strategies (programs), composed
from transition rules (basic instructions). Thus process logic is a suitable tool for this
analysis. In this article we develop methods for proving the fairness and correctness prop-
erties of rule based completion strategies. The concepts of these properties are formulated
generally within process logic and then concretized to rewrite system theory based on tran-
sition rules as given in [BDH86|. We develop in parallel the notions of success and failure
of a completion strategy, necessary to support the proves of cited properties. Finally
we show the necessity of another property, called justice, in the analysis of completion
strategies. Unfortunately for us, the formalism we use is not capable to prove the justice
of a strategy.

The proofs and several extensions and explications, not included into this article for
lack of space, can be found in the research report [Her90].

2 Basic notation and definitions

The reader is supposed to be familiar with the concepts of term rewriting theory, temporal
logic, dynamic logic, and process logic. For good overviews, see [DJ90] for rewrite systems,
[Kro87] for temporal logic, [FL79] for dynamic logic, and [HKP82| for process logic.

Only to recall the few notations from rewrite systems theory: T (F,X) denotes the
set of all terms (free algebra) over variables X and symbols F, Idrr y) denotes the
set of all identities ¢ ~ ¢ over all terms T(F,X), s ~ t denotes an equation in F,
s — t denotes a rewrite rule in a rewrite system R, —p denotes the smallest rewriting
relation containing R, s > ¢ denotes the reduction ordering between the terms s and ¢,
t|, denotes the subterm of ¢ at a position a« € Pos(t), FPos(t) denotes the set of all
non-variable positions of the term ¢, to denotes the substitution instance of the term ¢
by the substitution o, CP(Ry, Ry) denotes the set of all critical pairs between the rules
of rewrite systems Ry and R,, Tr denotes the common ancestor relation < —p - —sp —
meetability, | r denotes the common descendant relation ——p - <—p — joinability.

We remain basically in the scope of the process logic defined in [HKP82|, and therefore
we can use the axiomatization of this logic with the support of (strict) propositional
dynamic logic [HR83]. The logic can be therefore called strict simple process logic, denoted
StSiPL. For the exact syntax and semantics of this logic see [Her90].

The formula (a) p means in some executions of a, p is true; the formula [a] p means
in all executions of a, p is true. The formula f p means p is true in the first state of a
path. The formula p suf ¢ means there exists a suffix @ which satisfies ¢ and all suffixes
y, where © < y, satisfy p (p is true until ¢ becomes true). The formula np means next
state in the path exists and satisfies p. The formula some p means there exists a suffix
satisfying p, i.e. p is true somewhere. The formula all p means all suffixes satisfy p, i.e. p
is true henceforth. The formula last p says there the path is of finite length and the last
state satisfies p. The formula fin (inf) says the path is of finite (infinite) length.

3.1 Process logic preliminaries

Define a: S — P(Xg) to be the applicability function, an assignment of states to sets
of atomic programs Y (programs that can be applied in the given state). For an atomic
program A € ¥y and a state s € S we have A € a(s) if and only if there exists a state ¢,
different from s, such that (s,t) € 7(A).

Define now the predicate apply on atomic programs ¥y in a StSiPL model M. For
a path € S and an atomic program A € ¥y we have M,z | apply(A) if and only if
A € (ao first)(x), which determines if the atomic program A is applicable to the path x.

Define v: S x S — P(Xg U {skip}) to be the state connectivity function. ~(s,t)
determines the set of all atomic programs (or the skip) that transform the state s into the
state t. For an atomic program A € Y, and states s, € S we have A € v(s,t) if and only
if (s,t) € 7(A). Moreover, for all states s € S the skip program is contained in (s, s)
according to the fact that skip does not do anything.

The state connectivity v is simple if for all states s, € S the set y(s,t) contains at most
one element: |y(s,t)| < 1. We consider only simple connectivity in the sequel, otherwise
we would have problems with locating non-ambiguously the use of atomic programs.

Define now the predicate use on atomic programs Yy in a StSiPL model M. For
a path @ € S¥ and an atomic program A € Y, we have M,z = use(A) if and only
if A € ~(first(x), second(x)), where second = first o next. The predicate use determines
whether A was used in the path x as the first applied atomic program to arrive at next(z).
It is sometimes necessary to know the fact that an atomic program was used the last time
in a path . This is expressed by a derived predicate lastuse(A) = use(A)Anall ~use(A).
It is clear that for all atomic programs A we have M,z |= lastuse(A) O use(A) and
M,z |= use(A) D apply(A).

We need also the (polymorphic) predicate empty operating on sets, preferably on the
set of equations F.

3.2 Transition rules

A transition system [QS83] is a triple & = (5, %, Fy,), where S is a countable set of
transition states, Yo is a finite set of transition rules, and Fy, is a set of binary relations
on S in bijection with the transition rules Y.

In the sequel we observe the transition system KB = (Skp, KB,Fkp), where states
Skp are formed by pairs (E; R) of equations £ and rewrite rules R. The Knuth-Bendix
completion procedure is based on the following set KB of six transition rules:

Delete: (FU{s~s} R)F (E;R)

Compose: (E; RU{s — t}) (E RU{s —u})ift —pru

Simplify: (FU{s~th R)F(FU{u~thR) ifs —pu

Orient: (FU{s~th R)F (E;RU{s > 1}) ifs>1

Collapse: (E;RU{s -t} F (FU{u~t}hR) if s—pubyl—r e R with st
Deduce: (EsR)F(FU{s~thR) ifs~te CP(R,R)—FE

T T T T

where t» denotes a proper encompassment ordering. We write (E; R) Fgp (£'; R') if the
latter may be obtained from the former by one application of a rule in KB.

much problems to use it for deducing only one critical pair at a time. The whole set
of critical pairs CP(R, R) is always generated at once. Thus the transition rule Deduce
can be replaced in KB by “Deduction: (F; R) F (FU CP(R, R); R)” with the operational
equivalence Deduction = while apply(Deduce) do Deduce od.

The StSiPL model, corresponding to the transition system KB, will be denoted by
Mgkp. A strict regular program based on the set KB of transition rules as atomic pro-
grams is called a completion strategy (or simply strategy). A path a corresponding to an
execution of a completion strategy a is called a completion path.

3.3 Observed strategy

Taking advantage of the defined predicate apply (and empty), we can easily write the KBe
completion strategy as a strict regular program based on the transition rules K'B. First,
to structure well the completion strategy we use the subprograms rR and rF to describe
the reduction of all rules and equations, respectively.

program rR is program rk is
begin begin
while apply(Compose) do Compose od; while apply(Simplify) do Simplify od;
while apply(Collapse) do Collapse od while apply(Delete) do Delete od
end end

The observed completion strategy has the form

program KBc(F) is
begin
while apply(Delete) do Delete od;
while —empty(F) do
if apply(Orient) then while apply(Orient) do Orient; rR; rE od
else fail
fi;
Deduction; rF
od

end

To make the proofs concerning the strategy more convenient, we describe parts of the
KBc strategy by subprograms. These are the orient loop and the loop body:

program ol is program [b is

begin be.gin .
while apply(Orient) do if apply(Orient) then Ol.
Orient; rR; rF and else fail
b b ﬁ;
(()jd Deduction; rF
e end

Then the main loop can be written as

begin
while —empty(F) do b od
end

3.4 Term rewriting theory within process logic

Classical (finite) rewrite systems can be investigated under process logic and transition
system formalism, too. In this case the rewrite rules R become the atomic programs .
A pair (of terms) (s,t) is contained in the interpretation of an atomic program (rewrite
rule) [— r € R = Y if and only if there exists a nonvariable position a € FPos(s) and a
substitution o, such that s|, = lo and ¢ = s[ro],. The predicate apply is then equivalent
to the presence of a redex in the first term (state) of a path.

The basic applied strategy (if we can speak of a certain strategy at all) is a nonde-
terministic choice of rewrite rules from R, denoted just by the symbol R. Thereafter the
computation of a normal form (normalization) could be expressed as

norm(R) = while Ip((p € R) A apply(p)) do R od

The fact that R is terminating is expressed just as [norm(R)]|fin, which follows nat-
urally from the intuitive meaning that there are no infinite rewritings. The diamond
lemma saying “A terminating rewrite system R is confluent iff it is locally confluent” is
then expressed by the following process logic expression

[norm(R)]fin D (LConf(R) = Conf(R)) (1)

using the predicates Conf(R) =1r C |r and LConf(R) = CP(R, R) C |g for confluence
and local confluence respectively. The set CP(R, R) is, in principle, interpreted as the
relation «—pg - —R.

4 Properties of the completion strategy

4.1 Success of completion

Following the intuitive meaning, a path x is wunfailing (successful) if during the com-
putation, expressed by x, no fail instruction was used. The appropriate PL expression
formalizing this fact is M, 2 |= unfailing = all —use(fail).

Now, if the fail instruction was used somewhere during the completion path x of the
strategy KBc, we have

Mgp, x = some use(fail) = fin A last (mempty(F) A —apply(Orient)) (2)

from which we deduce Mgp,x |= some use(fail) D fin A last —empty(E), which is equiv-
alent to

Mgp,x |= (fin D last empty(E)) D all ~use(fail) (3)
From the structure of the K'Be strategy we deduce

[KBc] (all ~use(fail) D (fin D last empty(F))) (4)

the case of KBe we can write
unfailing = fin D last empty(F) (5)
From (5), we derive immediately the following theorem:
Theorem 4.1 A finite completion path x of the completion strateqy KBc is successful

(or unfailing) if and only if in the last state of x the set of equations E is empty.

4.2 Correctness

The intuitive meaning of correctness is a predicate coupled to the notion of success. A
strategy a is correct with respect to the predicate P(a), if the validity of this predicate is
implied by each successful and finite computation. In the PL formalism:

[a] (fin A unfailing O last P(a)) (6)

Within a completion strategy a the predicate P(a) is expressed by Conf(R), meaning
that a completing strategy is correct with respect to the confluence of the produced rewrite
rules R. That justifies the following theorem.

Theorem 4.2 A completion strategy b is correct if and only if b produces a confluent
rewrite system R whenever b finishes successfully.

Applying the equality (5) to (6), we get the expression
Mgp |= [KBe] (fin A last empty(E) D last Conf(R))

for the correctness of the completion strategy KBe.
For proving the correctness of KBc¢ we need a supporting lemma, which is useful also
for proofs of other properties.

Lemma 4.3 For all transition rules A € (KB — {Deduction}) U {Deduce} the following
proposition is valid: Mgp |= [while apply(A) do A od] (fin A last —apply(A))

Lemma 4.3 implies immediately the following two propositions:

MKB |: [TR] fin (7)
Mgg |: [TE] fin (8)
With a little more effort it is possible to prove
Proposition 4.4 Mgp | [ol] fin.

We cannot have Mgp = [ol]last ~apply(Deduction) because this implies Mgp |
[ol]last (CP(R, R) = E), which implies Mgp |= [ol] f mapply(Orient) and this is definitely

not possible.

Mgp E [ol]last ((— \/ apply(A)) A apply(Deduction)) (9)

A€ KB—{Deduction}

what indicates that only the Deduction rule can be applied after ol. This implies imme-
diately Mgp |= (ml)inf O (ml) all ~lastuse(Deduction) or else

Mgp | [ml] some lastuse(Deduction) D [ml] fin

The implication | [a]fin D [a] somelastuse(A) is trivially satisfied for each atomic
program (transition rule) A and program « in each model M, therefore we have

Mgp | [ml] some lastuse(Deduction) = [ml] fin (10)

Assume that xgp is a finite completion path of the strategy KBe¢ and y its suffix.
Assume further that z; is a suffix of y and z = neat(z).

Y

Z2
P
TKB = S1...8y...8z Sz ...8,
S——— ™

Z1

The fact, that each use of the Deduction transition rule (at y) is followed by a sequence
of Simplify rules and then by a sequence of Delete rules in the strategy KBe, can be
expressed as

Mgp,y | use(Deduction) D n (use(Simplify) suf (apply(Delete) O use(Delete))) (11)

From the structure of the transition rule Delete we deduce immediately the implication
Mg, 23 |= use(Delete) D Je(e € E D e € Idy(r,x)). This one implies further

Mg, 2, [= last empty(E) A all use(Delete) D (E C ldrr x)) (12)
From the structure of the completion strategy KBe, as well as from (11), follows
Mgp, z1 = lastuse(Simplify) D nall use(Delete) (13)
Comparing (12) with (13) and using - (¢ D b) D (a A ¢ D b A ¢) gives the implication
Mg, 2 |= last empty(E) A lastuse(Simplify) O n(E C ldrr xy) (14)

ApplyingF (p D g)AN(pDr)=pD(gAr)andFprn(pAg)=npAngon (11) and
on the implication Mgp,y = use(Deduction) D n(CP(R,R) C E), we get

Mgp,y | use(Deduction) D n((CP(R,R) C E)A

(use(Simplify) suf (apply(Delete) D use(Delete)))) (15)

Comparing (15) and (14) results in the implication

Mgp,y [last empty(E) A lastuse(Deduction) D nall LConf(R) (16)

pass from y to xgp and we get
Mgp,zxp = alllast empty(E) Asome lastuse(Deduction) D somenall LConf(R) (17)

It is clear that alllast p is equivalent to last p. We have further Fp; np O somep and
Fpr somesomep D some p which proves

Mgp | somenall LConf(R) D someall LConf(R)
Therefore (17) implies
Mgp, xgp = last empty(E) A some lastuse(Deduction) D someall LConf(R) (18)
From (10) we imply
Mgkp,xkp = some lastuse(Deduction) = fin (19)
Comparing (18) and (19) results in
Mgp,xgp = fin A last empty(E) D someall LConf(R)

Using F (a AbDc¢)=(aAbDaAc)and Fpp fin A someallp D last p on the previous
implication gives

Mgp,xgp = fin Alast empty(E) D last LConf(R) (20)

The use of a reduction ordering in the transition rule Orient subsumes the proposition
[norm(R)] fin therefore (20) implies

Mgp, xgp = fin A last empty(E) D last Conf(R) (21)

according to (1). The finiteness of xxp is expressed already in (21), therefore (21) is valid
for all completion paths xxp of the strategy KBe. Therefore we can generalize (21) to

Mgp = [KBc] (fin A last empty(E) D last Conf(R))
The last implication validates the following theorem.

Theorem 4.5 The completion strateqy KBec is correct.

4.3 Fairness

Our notion of fairness follows, in principle, the ideas of [Fra86, GPSS80, Kr687|. The
difference, or additional required property, is the application determinacy of strict regular
programs. We require that a completion strategy a € ¥ must be deterministic with respect
to the application of the transition rules ¥y. The definition of application determinacy
is based on the notion of a deterministic program « in dynamic logic which assumes the
termination of a.

If (a) (fin A last apply(A)) D [a] (fin A last apply(A)) then a is deterministic with
respect to the application of A. The program a is deterministic in application (wrt ¥g) if
and only if it is deterministic wrt the application of all A € Y.

If a and b are both deterministic in application, then also a;b is deterministic in
application.

If a is deterministic in application, then also while p do a od is deterministic in
application.

If a and b are both deterministic in application, then also if p then a else b fi is
deterministic in application.

We are ready now to define the fairness property in general:

Definition 4.7 The program a € ¥ is fair (wrt ¥o) if it is deterministic in application
and for all atomic programs A € Yo the expression [a] (inf O (all some apply(A) D
all some use(A))) is valid.

This definition expresses exactly the following intuitive property: if there is an atomic
program A that can be applied infinitely many times during an infinite computation with
deterministic application of atomic programs, then the atomic program A is actually used
infinitely many times during that computation. The definition reflects the general fairness
principle expressed by the statement

Fverything which is enabled infinitely many times within an environment with
deterministic application will eventually occur.

We use the shorthand fair to express the fairness property and thus write [a] fair to
declare that the strategy a is fair.

The application determinacy of the program a with respect of its fairness is unavoid-
able. Consider a new completion strategy derived from K Be, where the deterministic
transition rule Deduction is replaced by the nondeterministic one Deduce. This new
strategy could diverge on the system R = {fgfx — gfx,ggx — x} if the transition rule
Deduce never choose the second rule for computing critical pairs. On the other hand,
computing the critical pairs of the second rule can leed to a finite canonical system. This
is of course in contradiction with the notion of fairness.

For the fairness proof of a completion strategy we need to know the mutual dependence
of transition rules with respect to the states where they get enabled or disabled. This is
expressed in the following fact by a positive and negative invariant matrices.

Fact 4.8 The proposition Mgp = [A] (f apply(B) D last apply(B)) is valid for the tran-
sition rules A and B according to the following table:

B
A Delete Compose Simplify Orient Collapse Deduction

Delete valid valid valid valid
Compose valid valid valid valid valid
Stmplify valid valid valid
Orient valid valid valid valid
Collapse valid valid valid valid
Deduction | wvalid valid valid valid valid

rules A and B according to the following table:

B
A Delete Compose Simplify Orient Collapse Deduction

Delete valid valid valid valid valid

Compose valid valid valid valid valid valid
Stmplify valid valid valid

Orient valid valid

Collapse valid valid valid
Deduction valid valid valid

The positive and negative invariants on programs a,b € ¥ can be extended in a straight-
forward way on the constructs a;b and while p do « od.

We can prove now the application determinacy of the key parts of the completion
strategy KBec.

Lemma 4.9 The programs rR, rF, ol, and therefore also the completion strategy KBc
are deterministic in application.

We continue with the proof of the second part of the fairness condition.

Lemma 4.10 If a € ¥ is finite and deterministic in application, and [a] some use(A) is
valid then while ¢ do a od is fair wrt A € Y.

Corollary 4.11 The completion strateqy KBc is fair wrt the transition rule Deduction.
Assume that xj is a computation path of /6. From the structure of /b follows
Mgp, xp = all muse(fail) O some use(Orient)
which implies Mgp |= [Ib] (all muse(fail) O some use(Orient)) from
Mgp E [I0] (f apply(Orient) D some use(Orient)) (22)

The proposition Mgp = [Ib] fin follows from (7), (8), Proposition 4.4, and the finiteness
of Orient and Deduction. Using Fpy, [a] (finAp) D [while ¢ do « od] (inf D all p) on (22)
implies Mgp = [ml] (inf D (all ~use(fail) O all some use(Orient)). In general we have
Mgp, x = inf D all =(fail) from (2), therefore with the use of = (¢ D b)A(a D (b D¢)) D
(a D ¢) we get Mgp = [ml] (inf D all some use(Orient)), or else

Mgp |= [KBc] (inf D all some use(Orient))
Applying to it F (a D b) D (a D (¢ D b)) we get
Mgp = [KBc] (inf D (all some apply(Orient) D all some use(Orient)))
Therefore we proved

Lemma 4.12 The completion strategy KBc is fair wrt the transition rule Orient.

Mgp = [KBc]all(e € CP(R,R) D somee € E) (23)

Lemma 4.12 implies that all persistent equations are oriented into rules during an infinite
completion by the strategy KBe:

Mgp = [KBc] (inf D all (e € £ D somee ¢ F)) (24)

A statement combined of (23) and (24) was presented as a fairness definition in [Bac87].
Using the statements (23), (24), and the Critical Pair Lemma [BDH86, KB70], we derive
by means of proof ordering that for two terms s and ¢, equal in the equational theory
E, an infinite completion by the strategy KBec will generate a state (F;; R;) such that
S \I/Ri t [BDH86] Mkg |: [[(BC] (mf D) (f (S =g t) - some (S iR t)))

Now we prove that KBc is fair wrt the rest of transition rules. We need the following
fairness lemma.

Lemma 4.13 [If a € ¥ is deterministic in application and [a] (inf D all (apply(A) D
some use(A))) is valid then a is fair wrt A € .

Lemma 4.13 in connection with Fact 4.8 is the main tool for proving fairness of a com-
pletion strategy wrt the transition rules Compose, Collapse, Simplify, and Delete.

Lemma 4.14 The completion strateqy KBc is fair wrt the transition rules Compose,
Collapse, Simplify, and Delete.

We could have proved the fairness of a completion strategy wrt Compose and Collapse
of a completion strategy where the subprogram rR would have the form

program rR is
begin
while apply(Collapse) do Collapse od;
while apply(Compose) do Compose od
end

The required additional effort would be to prove that each application of Compose, dis-
abled by the use of Collapse, is replaced by an application of Simplify.

To summarize the effort of this section, we state the final theorem

Theorem 4.15 The completion strategy KBc is fair (wrt KB).

4.4 Justice

Soundness (a property local to transition rules, and therefore not dealt with here), success,
correctness, and fairness are not the only properties to be observed within a completion
strategy. We need also the property of justice.

Example 4.16 Let us study the completion strategy

begin
while apply(Delete) do Delete od;
while —empty(F) do
while apply(Orient) do Orient; rR; rF od;
if empty(F) then Deduction else fail fi;
rk
od

end

The presented strategy is perfectly correct and fair, but it applies the Deduction rule only
if the set of equations E is empty after ol (i.e., all equations were oriented into rules),
otherwise it fails. This failure could be premature because a critical pair e could have
been produced by Deduction and oriented into a rewrite rule r by Orient, and this rule r
could simplify the previously unorientable equation in K. Therefore the dummy strategy
ds is not justified. It is reasonable to fail only if all critical pairs from already produced
rewrite rules were generated and completely simplified (Deduction followed by rFE) and
none of the remained equations can be oriented, as it was done in the justified strategy

KBe.

Now we can define formally the discussed property:

Definition 4.17 The strategy b € X is justified if and only if b is fair and for all sets
of equations E if the strategy b fails on E then every fair strategy ¢ € ¥ fails on E, too.
Formally:

[b] fair A VYE([b(E)] some use(fail) D Ve([c] fair D [¢(E)] some use(fail))) (25)

The justice expression (25) is not an expression in the StSiPL logic any more. For proving
it we must use a more subtle variant of process logic than StSiPL. Also the justice principle
of [IMP83] must be modified to cope well with our intentions.

5 Conclusion

Using the process logic, we were able to formulate the correctness and fairness properties
for transition rule based systems in general and proving them for a specific completion
strategy K Be. During the fairness proof we formulated two lemmas suitable for proofs of
the fairness property of an arbitrary completion strategy based on the transition rules K'B.
Moreover, we showed that the particular formulation of fairness for the transition rules
KB, given by Bachmair and Dershowitz, can be derived from our general one. Finally, we
described the necessity of another property, called justice, for the analysis of completion
strategies.

Acknowledgment

I would like to thank Nachum Dershowitz and Pierre Lescanne for the encouragement to follow
this research, and the discussions on the fairness problem in completion.

[Bac87]

[BDHS6|

[DJ90]

[FL79]

[Fra86]
[GPSS80]

[Her90]

[HKP82]

[HR83]

[Hue81]

[KB70]

[Kré87]

[MP83]

[QS83]

L. Bachmair. Proof methods for equational theories. PhD thesis, University of Illinois,
Urbana Champaign, Illinois, 1987.

L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In Pro-
ceedings 1st IEEE Symposium on Logic in Computer Science (LICS’86), Cambridge,
(Massachusetts, USA), pages 346-357, June 1986.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics, chap-
ter 6, pages 243-309. Elsevier, Amsterdam, 1990.

M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Science, 18:194-211, 1979.

N. Francez. Fairness. Springer-Verlag, 1986.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In
Proceedings of the 7th ACM Symposium on POPL, Las Vegas, pages 163173, January
1980.

M. Hermann. On proving properties of completion strategies. Research report 90-R-
149, Centre de Recherche en Informatique de Nancy, 1990. To appear in Proceedings
of 4th Conference on Rewrite Techniques and Applications, Como (Italy).

D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability, com-
pleteness. Journal of Computer and System Science, 25:144-170, 1982.

J.Y. Halpern and J.H. Reif. The propositional dynamic logic of deterministic, well-
structured programs. Theoretical Computer Science, 27:127-165, 1983.

G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm.
Journal of Computer and System Science,23(1):11-21, August 1981. Also as: Rapport
25, INRIA, 1980.

D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press,
Oxford, 1970.

F. Kréger. Temporal logic of programs, volume 8 of FATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1987.

7. Manna and A. Pnueli. How to cook a temporal proof system for your pet language.
In Proceedings 10th ACM POPL Symposium, Austin, (Texas, USA), pages 141-154,
1983.

J.P. Queille and J. Sifakis. Fairness and related properties in transition systems - A
temporal logic to deal with fairness. Acta Informatica, 19:195-220, 1983.

