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a2i�1 2 A0 and a2i 2 A � A0, then we set xi = 1. Otherwise, a2i�1 2 A � A0and a2i 2 A0, then we set xi = 0. This assignment to the variables xi, togetherwith setting y = 1, onstitutes a solution s0 of the equation E that is smallerthan s. Conversely, eah nontrivial solution s0, smaller than s, must have y = 1and xi 2 f0; 1g. The assignment of the values f0; 1g to the variables xi indiatesthe distribution of the values between A0 and A� A0. If xi = 1 then a2i�1 2 A0and a2i 2 A�A0. Otherwise, if xi = 0 then a2i�1 2 A�A0 and a2i 2 A0 for eahi = 1; : : : ; n. utProof of Theorem 2: Let S:Ax = 0 be the onsidered system and s thenonnegative integral vetor. We hek �rst in polynomial time whether s is asolution of the system S. Afterwards, we move the monomials with negativeoeÆients in S to the other side, forming an equivalent system S0:A0x = A00x,where A0 and A00 are integral matries with nonnegative oeÆients. Instanti-ate the variables x in S0 by the solution s and ompute the vetor of valuesb = (b1; : : : ; bk) = A0s = A00s. Let  = (1; : : : ; k) be a vetor of nonnegativeintegers, di�erent from the all-zero vetor (0; : : : ; 0) and pointwise smaller thanthe vetor b. The solution s is not minimal for S if and only if there exists a ve-tor , smaller than b, suh that the system of equations fA0x = g [ fA00x = ghas a solution satisfying the relation 0 � xi � si for eah i = 1; : : : ; n. Lets� = maxfs1; : : : ; sng be the maximum oeÆient in the vetor s. There are(b1+1) � � � (bk+1)�1 = O((nas�)k) possibilities to hoose the vetor , where ais the maximum absolute value of the oeÆients of the matrix A. Sine (nas�)kis polynomial in the size of the input, we have at most a polynomial number ofsystems to solve. A nonnegative solution of the system fA0x = g [ fA00x = gsubjet to the onstraints 0 � xi � si, an be found in polynomial time, fol-lowing the result of Papadimitriou in [Pap81℄. Hene, the whole problem an besolved in polynomial time for a �xed k. utProof of Theorem 3: Membership in oNP is proved the same way as inTheorem 1. Guess a vetor s0 pointwise smaller than the given vetor s andverify that it is not a solution of S.For the lower bound, we exhibit a redution from the omplement of 3-partition, a strongly oNP-omplete problem. We will form a homogeneouslinear Diophantine system S omposed of four parts S1, S2, S3, and S4. The�rst part S1 is a1x11 + a2x12 + � � �+ a3mx13m = By...a1xm1 + a2xm2 + � � �+ a3mxm3m = ByThe j-th line of this system orresponds to one set Aj , where setting xji = 1orresponds to ai 2 Aj . The seond part S2 isx11 + x12 + � � �+ x13m = 3y12



...xm1 + xm2 + � � �+ xm3m = 3yThis part assures that eah Ai ontains three elements when y = 1. We will forethe assignment y = 1 later. The third part S3 isx11 + x21 + � � �+ xm1 = y...x13m + x23m + � � �+ xm3m = yThe i-th line of this part fores the element ai to be in only one set Aj .The idea is now to add suÆiently many variables and homogeneous equa-tions in the fourth part to fore y to have only the solutions 0, 1, m� 1, m, orgreater than m. Naturally, the solution of the whole system for y = 1 must bepointwise smaller than the solution for y = m. The fourth part S4 onsists onlyof the single equation z1 + (m � 1)z2 = y. Hene, we get the solutions of S fory = 0; 1;m�1;m, and maybe greater, but we do not need to onsider those withy > m.The solution with y = 0 is the trivial all-zero solution of S. The solution withy = m, z1 = 1, z2 = 1, and xji = 1 for eah i and j is always a solution of S. Welaim that the instane of 3-partition has a solution if and only if there existsa solution with y = 1, z1 = 1, and z2 = 0, and xji 2 f0; 1g. In this ase, xji = 1indiates that the element aj is in the set Ai, and xji = 0 otherwise. However,the two solutions, one for y = 1, the other for y = m, indiate that there mustbe always a third solution for y = m� 1 that is omplementary to the solutionfor y = 1. The solution with y = m � 1 has the values z1 = 0, z2 = 1, andxji 2 f0; 1g. In this ase, xji = 0 indiates that the element aj is in the set Ai,and xji = 1 otherwise.Set S = S1 [ S2 [ S3 [ S4 and take for vetor s the solutions = fy = m; z1 = 1; z2 = 1; xji = 1 j i = 1; : : : ; 3m; j = 1; : : : ;mg:There exists a pointwise smaller nontrivial solution of the system S than thesolution s if and only if the orresponding instane of the 3-partition has asolution. In other words, the vetor s is a minimal solution of the system S if andonly if the orresponding instane of 3-partition has no solution. This provesthat testing for minimality of a solution of a homogeneous linear Diophantinesystem is oNP-omplete in the strong sense. utProof of Theorem 5: Let S:Ax = 0 be the homogeneous linear Diophantinesystem over nonnegative integers and C the set of vetors. First, we hek inpolynomial time whether eah vetor in C is a solution of S. If s = (s1; : : : ; sn)is a minimal solution of S, then eah oordinate si satis�es the inequalitysi < n(ka)2k+1, where a is the maximum absolute value of the oeÆients in A.This result was proved independently by several authors, among them Papadim-itriou [Pap81℄ and Lambert [Lam87℄. Now, membership in oNP is easy to show.13



Guess a vetor s = (s1; : : : ; sn) within the bounds si < n(ka)2k+1 for eah i andnot greater or equal to any vetor  2 C, and verify that s is not a solution of S.For the lower bound, we exhibit a polynomial redution from the problemminimal solution. Given a system S:Ax = 0 and a vetor s, we enlarge thesystem S by a new system Bx = 0 that will restrit the solutions of the enlargedsystem S0:S[fBx = 0g to the multiples of s. Sine s is a minimal solution of S,it will onstitute the Hilbert basis of S0, i.e., we will fore H(S0) = fsg.We onstrut the matrix B in the following way. It will be an (n � 1) � nintegral matrix, where bji = 8<:0 if i 6= j; j < nyi if i = j; j < nzi if j = nwith the oeÆients yi on the main diagonal, the oeÆients zi in the last olumn,and zeros everywhere else. The oeÆients yi and zi are omputed as the minimalsolutions of the equations yisi+ zisn = 0 over integers, for eah i = 1; : : : ; n� 1.Hene, the oeÆients are yi = sn= gd(si; sn) and zi = �si= gd(si; sn). Indeed,only the multiples of s are solutions of the onstruted system Bx = 0 whihequals f(sn= gd(si; sn))xi � (si= gd(si; sn))xn = 0 j i = 1; : : : ; n � 1g. Sine sis a minimal solution of S, the set fsg is the Hilbert basis of the ombinedsystem S0. utProof of Proposition 8: The only-if diretion is lear. Two equivalent sys-tems S and S0 have the same set of solutions and, onseutively, also the sameHilbert basis.For the if diretion, assume that the systems S and S0 are not equivalent,but both have the same nonempty Hilbert basis H(S) = H(S0) = fh1; : : : ; hqg.Hene, the anonial matries A? and B? are not equal. Therefore there mustbe a row b in B that annot be written as a linear ombination of the rowsfrom A?. Let a1, . . . , am be the rows of the anonial matrix A?. Note that theintegral vetors ai are linearly independent. From the Fundamental Theorem ofLinear Inequalities (see Shrijver [Sh86℄, pages 85-86) follows, that there existsan integral vetor � = (�1; : : : ; �n) that satis�es the system A?x = 0, suh thatb� < 0 holds. We will show that the vetor � an be assumed to have onlynonnegative oeÆients.Suppose that there exists a negative oeÆient �i < 0 in �. Then we anonstrut a new vetor �0 = � + �1h1 + � � � + �qhq by adding to � a linearombination of the Hilbert basis vetors H(S) = fh1; : : : ; hqg with nonnegativeinteger oeÆients �j 2 Z+0 for eah j = 1; : : : ; q, suh that we get a positiveoeÆient �0i > 0. Reall that the Hilbert basis ontains only nonnegative in-tegral vetors. Indeed, eah oeÆient �0i in �0 an be made positive, sine theondition �0i = �i < 0 implies that eah nonnegative linear ombination of theHilbert basis is equal to 0 in the i-th oordinate. This an happen if and only ifhij = 0 holds for eah vetor hj in the Hilbert basis H(S).The ondition hij = 0 for eah j implies that the system A?x = 0 ontains therow xi = 0. Without loss of generality, we assume that h11 = � � � = h1q = 0, i.e.,14



that the �rst oeÆient of the vetors hi from the Hilbert basisH(S) is equal to 0,otherwise we permute the oordinates. The �rst row of the matrix A? is equalto a1 = (a11; 0; : : : ; 0; ak+11 ; : : : ; an1 ). Sine the �rst oordinate of the vetors hi isequal to 0, the vetor a0 = (0; : : : ; 0; ak+11 ; : : : ; an1 ) has the property that a0hi = 0for eah hi 2 H(S). From the Fundamental Theorem of Linear Inequalitiesfollows that a0 is a nonnegative linear ombination of the linearly independentrows a1, . . . , ak of the matrix A?. Indeed, the set of vetors fa1; : : : ; ak; a0gannot be linearly independent, sine eah vetor �, that satis�es the systemA?x = 0, an be produed as a linear ombination of the vetors H(S), andthis implies �a0 = 0. The rows a2, . . . , ak annot partiipate in the nonnegativelinear ombination to produe the vetor a0, sine the oeÆients aii 6= 0 at themain diagonal of A? are di�erent from 0 for eah i = 2; : : : ; k. Hene, there existsa positive oeÆient �, suh that �a1 = a0. This is true either if �a11 = 0 or if a0is the all-zero vetor (0; : : : ; 0). The �rst ase is impossible sine a11 6= 0. Theseond ase implies ak+11 = � � � = an1 = 0. Therefore the �rst row of A? is equalto a1 = (a11; 0; : : : ; 0). The oeÆient a11 must be equal to 1, sine the greatestommon divisor of the oeÆients of the row a1 is equal to 1. This implies thatthe �rst row of the system A?x = 0 is equal to x1 = 0.Sine the vetor � satis�es the system A?x = 0, the oordinate �i mustbe equal to 0, but this ontradits the initial ondition �i < 0. The inequationb�0 < 0 is satis�ed by the onstruted vetor �0, too, sine the equality �jbhj = 0for eah j = 1; : : : ; q follows from the fat that fh1; : : : ; hqg is also the Hilbertbasis of the system S0.Hene, there exists a nonnegative integral vetor � that is a solution of thesystem S:Ax = 0 and therefore also of the system A?x = 0, suh that b� < 0holds. The vetor � an be written as a linear ombination with nonnegativeinteger oeÆients of the Hilbert basis H(S). The vetor � is not a solutionof the system S0:Bx = 0, following the relation b� < 0, therefore it annotbe written as a linear ombination with nonnegative integer oeÆients of theHilbert basis H(S0). Hene, the Hilbert bases H(S) and H(S0) must be di�erent.Contradition. utProof of Theorem 11: The problem belongs to oNP, as it was proved byEdmonds and Giles in [EG82℄.For the lower bound, we perform a redution from the variant of the hilbertbasis heking problem, where C is known to be a set of solutions of thesystem S. The redution onsists of simply forgetting the system S.We must prove that the set of solutions C is the Hilbert basis of the system Sif and only if C is the Hilbert basis of some unknown system. The only-if impli-ation is always trivially satis�ed, sine C is the Hilbert basis of some system ifit is the Hilbert basis of S. If the set of vetors C is the Hilbert basis of an un-known system, we reonstrut a homogeneous linear Diophantine system S overintegers, suh that all vetors i from C are solutions of S0. Following Proposi-tion 10, the set of vetors C is the Hilbert basis of the system S if and only ifthe systems S and S0 are equivalent. ut15


