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oNP is 
lear. We guess a ve
tor s0pointwise smaller than the given ve
tor s and verify that it is not a solutionof S.For the lower bound, we 
onstru
t a polynomial redu
tion from the 
omple-ment of partition. The partition problem with the additional spe
ial 
ondi-tion is expressed in arithmeti
 form by the equation x1a1 + (1 � x1)a2 + � � � +xna2n�1+(1�xn)a2n = (1�x1)a1+x1a2+ � � �+(1�xn)a2n�1+xna2n. Considerthe 
ase when ea
h variable xi is instantiated by the values f0; 1g. Setting xi = 1has the e�e
t to put a2i�1 into A0 and a2i into A � A0. Regrouping variablesin the previous equation results in the summand xia2i�1 + (1 � xi)a2i � ((1 �xi)a2i�1 + xia2i) = 2xi(a2i�1 � a2i) � (a2i�1 � a2i) for ea
h i. Summing upthese expressions for i = 1; : : : ; n and multiplying the right-hand side by a newvariable y gives the equation E:2 nXi=1 xi(a2i�1 � a2i) = y nXi=1(a2i�1 � a2i):This equation has always the solution y = 2 and xi = 1 for ea
h i. We 
laimthat s = fy = 2; xi = 1 j i = 1; : : : ; ng is minimal for E if and only if the
orresponding instan
e of partition has no nontrivial solution. Indeed, if par-tition has a nontrivial solution, then there are two possibilities for ea
h i. Either11



a2i�1 2 A0 and a2i 2 A � A0, then we set xi = 1. Otherwise, a2i�1 2 A � A0and a2i 2 A0, then we set xi = 0. This assignment to the variables xi, togetherwith setting y = 1, 
onstitutes a solution s0 of the equation E that is smallerthan s. Conversely, ea
h nontrivial solution s0, smaller than s, must have y = 1and xi 2 f0; 1g. The assignment of the values f0; 1g to the variables xi indi
atesthe distribution of the values between A0 and A� A0. If xi = 1 then a2i�1 2 A0and a2i 2 A�A0. Otherwise, if xi = 0 then a2i�1 2 A�A0 and a2i 2 A0 for ea
hi = 1; : : : ; n. utProof of Theorem 2: Let S:Ax = 0 be the 
onsidered system and s thenonnegative integral ve
tor. We 
he
k �rst in polynomial time whether s is asolution of the system S. Afterwards, we move the monomials with negative
oeÆ
ients in S to the other side, forming an equivalent system S0:A0x = A00x,where A0 and A00 are integral matri
es with nonnegative 
oeÆ
ients. Instanti-ate the variables x in S0 by the solution s and 
ompute the ve
tor of valuesb = (b1; : : : ; bk) = A0s = A00s. Let 
 = (
1; : : : ; 
k) be a ve
tor of nonnegativeintegers, di�erent from the all-zero ve
tor (0; : : : ; 0) and pointwise smaller thanthe ve
tor b. The solution s is not minimal for S if and only if there exists a ve
-tor 
, smaller than b, su
h that the system of equations fA0x = 
g [ fA00x = 
ghas a solution satisfying the relation 0 � xi � si for ea
h i = 1; : : : ; n. Lets� = maxfs1; : : : ; sng be the maximum 
oeÆ
ient in the ve
tor s. There are(b1+1) � � � (bk+1)�1 = O((nas�)k) possibilities to 
hoose the ve
tor 
, where ais the maximum absolute value of the 
oeÆ
ients of the matrix A. Sin
e (nas�)kis polynomial in the size of the input, we have at most a polynomial number ofsystems to solve. A nonnegative solution of the system fA0x = 
g [ fA00x = 
gsubje
t to the 
onstraints 0 � xi � si, 
an be found in polynomial time, fol-lowing the result of Papadimitriou in [Pap81℄. Hen
e, the whole problem 
an besolved in polynomial time for a �xed k. utProof of Theorem 3: Membership in 
oNP is proved the same way as inTheorem 1. Guess a ve
tor s0 pointwise smaller than the given ve
tor s andverify that it is not a solution of S.For the lower bound, we exhibit a redu
tion from the 
omplement of 3-partition, a strongly 
oNP-
omplete problem. We will form a homogeneouslinear Diophantine system S 
omposed of four parts S1, S2, S3, and S4. The�rst part S1 is a1x11 + a2x12 + � � �+ a3mx13m = By...a1xm1 + a2xm2 + � � �+ a3mxm3m = ByThe j-th line of this system 
orresponds to one set Aj , where setting xji = 1
orresponds to ai 2 Aj . The se
ond part S2 isx11 + x12 + � � �+ x13m = 3y12



...xm1 + xm2 + � � �+ xm3m = 3yThis part assures that ea
h Ai 
ontains three elements when y = 1. We will for
ethe assignment y = 1 later. The third part S3 isx11 + x21 + � � �+ xm1 = y...x13m + x23m + � � �+ xm3m = yThe i-th line of this part for
es the element ai to be in only one set Aj .The idea is now to add suÆ
iently many variables and homogeneous equa-tions in the fourth part to for
e y to have only the solutions 0, 1, m� 1, m, orgreater than m. Naturally, the solution of the whole system for y = 1 must bepointwise smaller than the solution for y = m. The fourth part S4 
onsists onlyof the single equation z1 + (m � 1)z2 = y. Hen
e, we get the solutions of S fory = 0; 1;m�1;m, and maybe greater, but we do not need to 
onsider those withy > m.The solution with y = 0 is the trivial all-zero solution of S. The solution withy = m, z1 = 1, z2 = 1, and xji = 1 for ea
h i and j is always a solution of S. We
laim that the instan
e of 3-partition has a solution if and only if there existsa solution with y = 1, z1 = 1, and z2 = 0, and xji 2 f0; 1g. In this 
ase, xji = 1indi
ates that the element aj is in the set Ai, and xji = 0 otherwise. However,the two solutions, one for y = 1, the other for y = m, indi
ate that there mustbe always a third solution for y = m� 1 that is 
omplementary to the solutionfor y = 1. The solution with y = m � 1 has the values z1 = 0, z2 = 1, andxji 2 f0; 1g. In this 
ase, xji = 0 indi
ates that the element aj is in the set Ai,and xji = 1 otherwise.Set S = S1 [ S2 [ S3 [ S4 and take for ve
tor s the solutions = fy = m; z1 = 1; z2 = 1; xji = 1 j i = 1; : : : ; 3m; j = 1; : : : ;mg:There exists a pointwise smaller nontrivial solution of the system S than thesolution s if and only if the 
orresponding instan
e of the 3-partition has asolution. In other words, the ve
tor s is a minimal solution of the system S if andonly if the 
orresponding instan
e of 3-partition has no solution. This provesthat testing for minimality of a solution of a homogeneous linear Diophantinesystem is 
oNP-
omplete in the strong sense. utProof of Theorem 5: Let S:Ax = 0 be the homogeneous linear Diophantinesystem over nonnegative integers and C the set of ve
tors. First, we 
he
k inpolynomial time whether ea
h ve
tor in C is a solution of S. If s = (s1; : : : ; sn)is a minimal solution of S, then ea
h 
oordinate si satis�es the inequalitysi < n(ka)2k+1, where a is the maximum absolute value of the 
oeÆ
ients in A.This result was proved independently by several authors, among them Papadim-itriou [Pap81℄ and Lambert [Lam87℄. Now, membership in 
oNP is easy to show.13



Guess a ve
tor s = (s1; : : : ; sn) within the bounds si < n(ka)2k+1 for ea
h i andnot greater or equal to any ve
tor 
 2 C, and verify that s is not a solution of S.For the lower bound, we exhibit a polynomial redu
tion from the problemminimal solution. Given a system S:Ax = 0 and a ve
tor s, we enlarge thesystem S by a new system Bx = 0 that will restri
t the solutions of the enlargedsystem S0:S[fBx = 0g to the multiples of s. Sin
e s is a minimal solution of S,it will 
onstitute the Hilbert basis of S0, i.e., we will for
e H(S0) = fsg.We 
onstru
t the matrix B in the following way. It will be an (n � 1) � nintegral matrix, where bji = 8<:0 if i 6= j; j < nyi if i = j; j < nzi if j = nwith the 
oeÆ
ients yi on the main diagonal, the 
oeÆ
ients zi in the last 
olumn,and zeros everywhere else. The 
oeÆ
ients yi and zi are 
omputed as the minimalsolutions of the equations yisi+ zisn = 0 over integers, for ea
h i = 1; : : : ; n� 1.Hen
e, the 
oeÆ
ients are yi = sn= g
d(si; sn) and zi = �si= g
d(si; sn). Indeed,only the multiples of s are solutions of the 
onstru
ted system Bx = 0 whi
hequals f(sn= g
d(si; sn))xi � (si= g
d(si; sn))xn = 0 j i = 1; : : : ; n � 1g. Sin
e sis a minimal solution of S, the set fsg is the Hilbert basis of the 
ombinedsystem S0. utProof of Proposition 8: The only-if dire
tion is 
lear. Two equivalent sys-tems S and S0 have the same set of solutions and, 
onse
utively, also the sameHilbert basis.For the if dire
tion, assume that the systems S and S0 are not equivalent,but both have the same nonempty Hilbert basis H(S) = H(S0) = fh1; : : : ; hqg.Hen
e, the 
anoni
al matri
es A? and B? are not equal. Therefore there mustbe a row b in B that 
annot be written as a linear 
ombination of the rowsfrom A?. Let a1, . . . , am be the rows of the 
anoni
al matrix A?. Note that theintegral ve
tors ai are linearly independent. From the Fundamental Theorem ofLinear Inequalities (see S
hrijver [S
h86℄, pages 85-86) follows, that there existsan integral ve
tor � = (�1; : : : ; �n) that satis�es the system A?x = 0, su
h thatb� < 0 holds. We will show that the ve
tor � 
an be assumed to have onlynonnegative 
oeÆ
ients.Suppose that there exists a negative 
oeÆ
ient �i < 0 in �. Then we 
an
onstru
t a new ve
tor �0 = � + �1h1 + � � � + �qhq by adding to � a linear
ombination of the Hilbert basis ve
tors H(S) = fh1; : : : ; hqg with nonnegativeinteger 
oeÆ
ients �j 2 Z+0 for ea
h j = 1; : : : ; q, su
h that we get a positive
oeÆ
ient �0i > 0. Re
all that the Hilbert basis 
ontains only nonnegative in-tegral ve
tors. Indeed, ea
h 
oeÆ
ient �0i in �0 
an be made positive, sin
e the
ondition �0i = �i < 0 implies that ea
h nonnegative linear 
ombination of theHilbert basis is equal to 0 in the i-th 
oordinate. This 
an happen if and only ifhij = 0 holds for ea
h ve
tor hj in the Hilbert basis H(S).The 
ondition hij = 0 for ea
h j implies that the system A?x = 0 
ontains therow xi = 0. Without loss of generality, we assume that h11 = � � � = h1q = 0, i.e.,14



that the �rst 
oeÆ
ient of the ve
tors hi from the Hilbert basisH(S) is equal to 0,otherwise we permute the 
oordinates. The �rst row of the matrix A? is equalto a1 = (a11; 0; : : : ; 0; ak+11 ; : : : ; an1 ). Sin
e the �rst 
oordinate of the ve
tors hi isequal to 0, the ve
tor a0 = (0; : : : ; 0; ak+11 ; : : : ; an1 ) has the property that a0hi = 0for ea
h hi 2 H(S). From the Fundamental Theorem of Linear Inequalitiesfollows that a0 is a nonnegative linear 
ombination of the linearly independentrows a1, . . . , ak of the matrix A?. Indeed, the set of ve
tors fa1; : : : ; ak; a0g
annot be linearly independent, sin
e ea
h ve
tor �, that satis�es the systemA?x = 0, 
an be produ
ed as a linear 
ombination of the ve
tors H(S), andthis implies �a0 = 0. The rows a2, . . . , ak 
annot parti
ipate in the nonnegativelinear 
ombination to produ
e the ve
tor a0, sin
e the 
oeÆ
ients aii 6= 0 at themain diagonal of A? are di�erent from 0 for ea
h i = 2; : : : ; k. Hen
e, there existsa positive 
oeÆ
ient �, su
h that �a1 = a0. This is true either if �a11 = 0 or if a0is the all-zero ve
tor (0; : : : ; 0). The �rst 
ase is impossible sin
e a11 6= 0. These
ond 
ase implies ak+11 = � � � = an1 = 0. Therefore the �rst row of A? is equalto a1 = (a11; 0; : : : ; 0). The 
oeÆ
ient a11 must be equal to 1, sin
e the greatest
ommon divisor of the 
oeÆ
ients of the row a1 is equal to 1. This implies thatthe �rst row of the system A?x = 0 is equal to x1 = 0.Sin
e the ve
tor � satis�es the system A?x = 0, the 
oordinate �i mustbe equal to 0, but this 
ontradi
ts the initial 
ondition �i < 0. The inequationb�0 < 0 is satis�ed by the 
onstru
ted ve
tor �0, too, sin
e the equality �jbhj = 0for ea
h j = 1; : : : ; q follows from the fa
t that fh1; : : : ; hqg is also the Hilbertbasis of the system S0.Hen
e, there exists a nonnegative integral ve
tor � that is a solution of thesystem S:Ax = 0 and therefore also of the system A?x = 0, su
h that b� < 0holds. The ve
tor � 
an be written as a linear 
ombination with nonnegativeinteger 
oeÆ
ients of the Hilbert basis H(S). The ve
tor � is not a solutionof the system S0:Bx = 0, following the relation b� < 0, therefore it 
annotbe written as a linear 
ombination with nonnegative integer 
oeÆ
ients of theHilbert basis H(S0). Hen
e, the Hilbert bases H(S) and H(S0) must be di�erent.Contradi
tion. utProof of Theorem 11: The problem belongs to 
oNP, as it was proved byEdmonds and Giles in [EG82℄.For the lower bound, we perform a redu
tion from the variant of the hilbertbasis 
he
king problem, where C is known to be a set of solutions of thesystem S. The redu
tion 
onsists of simply forgetting the system S.We must prove that the set of solutions C is the Hilbert basis of the system Sif and only if C is the Hilbert basis of some unknown system. The only-if impli-
ation is always trivially satis�ed, sin
e C is the Hilbert basis of some system ifit is the Hilbert basis of S. If the set of ve
tors C is the Hilbert basis of an un-known system, we re
onstru
t a homogeneous linear Diophantine system S overintegers, su
h that all ve
tors 
i from C are solutions of S0. Following Proposi-tion 10, the set of ve
tors C is the Hilbert basis of the system S if and only ifthe systems S and S0 are equivalent. ut15


