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Appendix

Proof of Theorem 1: Membership in coNP is clear. We guess a vector s'
pointwise smaller than the given vector s and verify that it is not a solution
of S.

For the lower bound, we construct a polynomial reduction from the comple-
ment, of PARTITION. The PARTITION problem with the additional special condi-
tion is expressed in arithmetic form by the equation z1ay + (1 — z1)as + -+ - +
Tpaon—1+(1—xp)a, = (1—xz1)as +x1a2+- -+ (1 —xz,)as,—1 + xna2,. Consider
the case when each variable z; is instantiated by the values {0, 1}. Setting z; = 1
has the effect to put as; 1 into A’ and as; into A — A’. Regrouping variables
in the previous equation results in the summand z;a9; 1 + (1 — z;)as; — ((1 —
.’177;)(121',1 + .’17,;(121') = 2.’1,‘1'((12,;,1 — (lQi) — ((121',1 — (12,;) for each 1. Summing up
these expressions for i = 1,...,n and multiplying the right-hand side by a new
variable y gives the equation E:

n n
2 Z zi(a2i—1 —az) =y Z(amq — a;).
=1 i=1

This equation has always the solution y = 2 and z; = 1 for each i. We claim
that s = {y = 2,2z; = 1| i = 1,...,n} is minimal for E if and only if the
corresponding instance of PARTITION has no nontrivial solution. Indeed, if PAR-
TITION has a nontrivial solution, then there are two possibilities for each i. Either
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as;—1 € A" and as; € A — A’, then we set z; = 1. Otherwise, ay; 1 € A — A’
and ay; € A', then we set x; = 0. This assignment to the variables x;, together
with setting y = 1, constitutes a solution s’ of the equation E that is smaller
than s. Conversely, each nontrivial solution s’, smaller than s, must have y = 1
and z; € {0,1}. The assignment of the values {0, 1} to the variables z; indicates
the distribution of the values between A’ and A — A'. If z; = 1 then ay;_; € A’
and as; € A— A'. Otherwise, if ; = 0 then as; 1 € A— A’ and as; € A’ for each
1=1,...,n. ad

Proof of Theorem 2: Let S: Ax = 0 be the considered system and s the
nonnegative integral vector. We check first in polynomial time whether s is a
solution of the system S. Afterwards, we move the monomials with negative
coefficients in S to the other side, forming an equivalent system S’: A'x = A" x,
where A’ and A" are integral matrices with nonnegative coefficients. Instanti-
ate the variables x in S’ by the solution s and compute the vector of values
b= (b1,...,bx) = A’'s = A"s. Let ¢ = (c1,...,c) be a vector of nonnegative
integers, different from the all-zero vector (0,...,0) and pointwise smaller than
the vector b. The solution s is not minimal for S if and only if there exists a vec-
tor ¢, smaller than b, such that the system of equations {A'z = ¢} U{A"z = ¢}
has a solution satisfying the relation 0 < z; < s; for each ¢ = 1,...,n. Let
s* = max{sy,...,sn} be the maximum coefficient in the vector s. There are
(by +1)--- (bx +1) — 1 = O((nas*)*) possibilities to choose the vector ¢, where a
is the maximum absolute value of the coefficients of the matrix A. Since (nas*)*
is polynomial in the size of the input, we have at most a polynomial number of
systems to solve. A nonnegative solution of the system {A'z = ¢} U{A"z = ¢}
subject to the constraints 0 < z; < s;, can be found in polynomial time, fol-
lowing the result of Papadimitriou in [Pap81]. Hence, the whole problem can be
solved in polynomial time for a fixed k. O

Proof of Theorem 3: Membership in coNP is proved the same way as in
Theorem 1. Guess a vector s' pointwise smaller than the given vector s and
verify that it is not a solution of S.

For the lower bound, we exhibit a reduction from the complement of 3-
PARTITION, a strongly coNP-complete problem. We will form a homogeneous
linear Diophantine system S composed of four parts Si, S2, S3, and Ss. The
first part S7 is

1 1 1
1T + 2Ty + -+ + A3 T3, = By

arzy’ + aszy’ + - + agmzy,, = By

The j-th line of this system corresponds to one set A;, where setting TZ =1
corresponds to a; € A;. The second part S is

Ty +xy Ty, = 3y
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o't xy 4wy, =3y

This part assures that each A; contains three elements when y = 1. We will force
the assignment y = 1 later. The third part S3 is

o+ +alt =y

1 2 m
T3y + T3, + 0+ I3y, =Y

The i-th line of this part forces the element a; to be in only one set A;.

The idea is now to add sufficiently many variables and homogeneous equa-
tions in the fourth part to force y to have only the solutions 0, 1, m — 1, m, or
greater than m. Naturally, the solution of the whole system for y = 1 must be
pointwise smaller than the solution for y = m. The fourth part S, consists only
of the single equation z; + (m — 1)zo = y. Hence, we get the solutions of S for
y = 0,1,m—1,m, and maybe greater, but we do not need to consider those with
y>m.

The solution with y = 0 is the trivial all-zero solution of S. The solution with
y=m,z =1, 2o =1, and ] =1 for each i and j is always a solution of S. We
claim that the instance of 3-PARTITION has a solution if and only if there exists
a solution with y =1, 2y = 1, and 2z, = 0, and 2 € {0,1}. In this case, z] =1
indicates that the element a; is in the set 4;, and 3317 = 0 otherwise. However,
the two solutions, one for y = 1, the other for y = m, indicate that there must
be always a third solution for y = m — 1 that is complementary to the solution
for y = 1. The solution with y = m — 1 has the values z; = 0, z2 = 1, and
z] € {0,1}. In this case, z; = 0 indicates that the element a; is in the set A;,
and TZ = 1 otherwise.

Set S =51 USy US3U S, and take for vector s the solution

s={y=m,z :17,22:1,93'3:1\i:l,...,?)m;j:l,...,m}.

There exists a pointwise smaller nontrivial solution of the system S than the
solution s if and only if the corresponding instance of the 3-PARTITION has a
solution. In other words, the vector s is a minimal solution of the system S if and
only if the corresponding instance of 3-PARTITION has no solution. This proves
that testing for minimality of a solution of a homogeneous linear Diophantine
system is coNP-complete in the strong sense. O

Proof of Theorem 5: Let S: Az = 0 be the homogeneous linear Diophantine
system over nonnegative integers and C the set of vectors. First, we check in
polynomial time whether each vector in C is a solution of S. If s = (s1,...,55)
is a minimal solution of S, then each coordinate s; satisfies the inequality
s; < n(ka)***!, where a is the maximum absolute value of the coefficients in A.
This result was proved independently by several authors, among them Papadim-
itriou [Pap81] and Lambert [Lam87]. Now, membership in coNP is easy to show.
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Guess a vector s = (s, ..., 5,) within the bounds s; < n(ka)?**! for each i and
not greater or equal to any vector ¢ € C, and verify that s is not a solution of S.

For the lower bound, we exhibit a polynomial reduction from the problem
MINTMAL SOLUTION. Given a system S: Az = 0 and a vector s, we enlarge the
system S by a new system Bz = 0 that will restrict the solutions of the enlarged
system S’: SU{Bxz = 0} to the multiples of s. Since s is a minimal solution of S,
it will constitute the Hilbert basis of S’, i.e., we will force H(S") = {s}.

We construct the matrix B in the following way. It will be an (n — 1) x n
integral matrix, where

' 0ifi#j, j<n

bl=Quyiifi=j, j<n
with the coefficients y; on the main diagonal, the coefficients z; in the last column,
and zeros everywhere else. The coefficients y; and z; are computed as the minimal
solutions of the equations y;s; + 2;s, = 0 over integers, for eachi =1,...,n— 1.
Hence, the coefficients are y; = s,/ ged(s;, sn) and z; = —s;/ ged(si, sn). Indeed,
only the multiples of s are solutions of the constructed system Bz = 0 which
equals {(sn/ged(si, sn))xi — (si/ ged(si, $n))xn =04 =1,...,n — 1}. Since s
is a minimal solution of S, the set {s} is the Hilbert basis of the combined
system S’ |

Proof of Proposition 8: The only-if direction is clear. Two equivalent sys-
tems S and S’ have the same set of solutions and, consecutively, also the same
Hilbert basis.

For the if direction, assume that the systems S and S’ are mot equivalent,
but both have the same nonempty Hilbert basis H(S) = H(S') = {h1,..., hq}.
Hence, the canonical matrices A+ and Bt are not equal. Therefore there must
be a row b in B that cannot be written as a linear combination of the rows
from A'. Let ai, ..., a,, be the rows of the canonical matrix A'. Note that the
integral vectors a; are linearly independent. From the Fundamental Theorem of
Linear Inequalities (see Schrijver [Sch86], pages 85-86) follows, that there exists
an integral vector & = (o, ..., @,) that satisfies the system ALz = 0, such that
ba < 0 holds. We will show that the vector a can be assumed to have only
nonnegative coefficients.

Suppose that there exists a negative coefficient a; < 0 in a. Then we can
construct a new vector &' = a + Athy + --- + A\ghy by adding to a a linear
combination of the Hilbert basis vectors H(S) = {h1, ..., hy} with nonnegative
integer coefficients \; € Zo+ for each 7 = 1,...,¢q, such that we get a positive
coefficient o > 0. Recall that the Hilbert basis contains only nonnegative in-
tegral vectors. Indeed, each coefficient @} in ' can be made positive, since the
condition o} = a; < 0 implies that each nonnegative linear combination of the
Hilbert basis is equal to 0 in the i-th coordinate. This can happen if and only if
h} = 0 holds for each vector h; in the Hilbert basis H(S).

The condition h’7 = 0 for each j implies that the system A1tz = 0 contains the
row z; = 0. Without loss of generality, we assume that hj = --- = hl =0, i.e.,
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that the first coefficient of the vectors h; from the Hilbert basis H (S) is equal to 0,
otherwise we permute the coordinates. The first row of the matrix A is equal
to a; = (a},0,...,0, a’f“, ..., a}). Since the first coordinate of the vectors h; is
equal to 0, the vector a’ = (0,...,0, af“, ..., a}) has the property that a’h; =0
for each h; € H(S). From the Fundamental Theorem of Linear Inequalities
follows that a' is a nonnegative linear combination of the linearly independent
rows ag, ..., ap of the matrix A+. Indeed, the set of vectors {ai,...,ax,a'}
cannot be linearly independent, since each vector 3, that satisfies the system
Atz = 0, can be produced as a linear combination of the vectors H(S), and
this implies Sa’ = 0. The rows as, ..., a; cannot participate in the nonnegative
linear combination to produce the vector a’, since the coefficients al # 0 at the
main diagonal of A+ are different from 0 for each i = 2, ..., k. Hence, there exists
a positive coefficient A, such that Aa; = a’. This is true either if Aal = 0 or if o’
is the all-zero vector (0,...,0). The first case is impossible since a] # 0. The
second case implies af™! = ... = @ = 0. Therefore the first row of A" is equal
to a; = (al,0,...,0). The coefficient al must be equal to 1, since the greatest
common divisor of the coefficients of the row a; is equal to 1. This implies that
the first row of the system Atz = 0 is equal to z; = 0.

Since the vector a satisfies the system Atz = 0, the coordinate «; must
be equal to 0, but this contradicts the initial condition a; < 0. The inequation
ba' < 0 is satisfied by the constructed vector ', too, since the equality A;bh; =0
for each j = 1,...,q follows from the fact that {hq,...,h,} is also the Hilbert
basis of the system S’.

Hence, there exists a nonnegative integral vector « that is a solution of the
system S: Az = 0 and therefore also of the system A'z = 0, such that ba < 0
holds. The vector a can be written as a linear combination with nonnegative
integer coefficients of the Hilbert basis H(S). The vector « is not a solution
of the system S': Bx = 0, following the relation ba < 0, therefore it cannot
be written as a linear combination with nonnegative integer coefficients of the
Hilbert basis H(S’). Hence, the Hilbert bases H(S) and H(S’) must be different.
Contradiction. |

Proof of Theorem 11: The problem belongs to coNP, as it was proved by
Edmonds and Giles in [EG82].

For the lower bound, we perform a reduction from the variant of the HILBERT
BASIS CHECKING problem, where C' is known to be a set of solutions of the
system S. The reduction consists of simply forgetting the system S.

We must prove that the set of solutions C' is the Hilbert basis of the system S
if and only if C is the Hilbert basis of some unknown system. The only-if impli-
cation is always trivially satisfied, since C' is the Hilbert basis of some system if
it is the Hilbert basis of S. If the set of vectors C is the Hilbert basis of an un-
known system, we reconstruct a homogeneous linear Diophantine system S over
integers, such that all vectors ¢; from C are solutions of S’. Following Proposi-
tion 10, the set of vectors C is the Hilbert basis of the system S if and only if
the systems S and S’ are equivalent. O
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