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sets of uni�ers. Formalisms satisfying these requirements are �-terms [CH95], I-terms [Com95], R-terms [Sal92], and primal grammars [HG97], all of them witha �nitary uni�cation algorithm. Set operations were studied in [AHL97].Applications of recurrent schematizations are quite rare and mostly theoreti-cal, like in model building [Pel97] or cycle uni�cation [Sal94]. One reason is thatthere are still some open problems to be solved prior to a successful implemen-tation. A sine qua non of automated deduction is redundancy elimination. Theelementary tools in this respect are testing for equality and subsumption. Inother words, we need to solve the word problem and the subsumption problemfor recurrent term schematizations. Moreover, only positive set operations werestudied in [AHL97] without considering the complement. Complement buildingis interesting from the algebraic and logic point of view, e.g., during constructionof counter-examples or for quanti�er elimination.In the �rst part of the paper, we investigate the word and the subsump-tion problem for primal grammars. By means of uni�cation, we reduce themto a problem in Presburger arithmetic. Our approach is applicable to all recur-rent term schematizations having a �nitary uni�cation algorithm. In the secondpart, we study a particular form of the complement problem. Given a �nite set ofterms, we ask whether its complement can be represented �nitely by schematiza-tions, using only the equality predicate without negation. The answer is negativeas there are ground �rst-order terms too complex to be represented by primalgrammars with limited resources.2 Term schematizations2.1 SyntaxThe language of primal terms is based on four kinds of symbols: �rst-ordervariables V, counter variables C, function symbols Fp of arities p � 0, andde�ned symbolsDq;p of counter arities q � 1 and �rst-order arities p � 0. Nullaryfunction symbols are called constants. The set of all function and de�ned symbolsis denoted by F and D, respectively.Let N be the set of natural numbers. The set of counter expressions L is theset of linear expressions over C with coe�cients inN. Two counter expressions areconsidered equal if they are equivalent with respect to the usual equalities of ad-dition and multiplication. Furthermore, we drop parentheses where possible anddo not distinguish between natural numbers and their symbolic representation.The set of primal terms P is de�ned inductively as the smallest set satisfyingthe following conditions: V � P; f(t) 2 P if f 2 Fp and t 2 Pp; f̂ (l; t) 2 Pif f̂ 2 Dq;p, l 2 Lq, and t 2 Pp. The sets of counter variables and �rst-ordervariables of a primal term t are denoted by CVar(t) and Var(t), respectively.2.2 SemanticsIn the sequel, we assume that the reader is familiar with the basic notions ofterm rewriting. With each de�ned symbol f̂ 2 Dq;p, we associate two rewrite



rules f̂ (0;n;x) ! rf̂1 and f̂ (m + 1;n;x) ! rf̂2 [f̂ (m;n + �;x)]A, where m;nand x are counter variables and �rst-order variables, respectively; rf̂1 and rf̂2are primal terms, whose variables are among those of the left hand sides of therules; all de�ned symbols in rf̂1 and rf̂2 are smaller than f̂ with respect to a givenprecedence relation on the de�ned symbols; A is a set of independent �rst-orderpositions of rf̂2 without the root position; � is either the null vector or a k-dimensional unit vector, i.e., all components of � are zero except one which maybe zero or one. The �rst-order positions are those not below a de�ned symbol.Two positions are independent if none is a pre�x of the other.Let R be the set of all rewrite rules associated with the de�ned symbols. Therewrite relation �!R generated by R is the smallest relation that contains R,and is closed under congruence and substitution. By t#R we denote the normalform of t with respect to R. Note that t#R is a �rst-order term if t containsno counter variables. The �rst-order terms represented by a primal term t arede�ned as L(t) = ft�#R j �: C �! Ng. Two primal terms s and t are equivalent,denoted by s := t, if s�#R = t�#R holds for all substitutions �: C �! N.2.3 Uni�cationA substitution is a mapping �: (V [ C) �! (P [ L), which is well-typed andwhose domain is �nite, i.e., �(x) 2 P for x 2 V, �(n) 2 L for n 2 C, anddom(�) = fv 2 (V [ C) j �(v) 6= vg is �nite. The application of � to a term tis written as t�; the composition of two substitutions �; � is written as �� withthe understanding that t�� = (t�)� for all terms t. We denote � by the setfv 7! v� j v 2 dom(�)g. Normalization is extended to substitutions in thenatural way, i.e., �#R = fv 7! v�#R j v 2 dom(�)g.A substitution � is a uni�er of two primal terms s and t i� for all �: C �! Nthe �rst-order substitution ��#R uni�es the �rst-order terms s�#R and t�#R.A set of uni�ers � is complete i� for every counter substitution � there exists� 2 �, such that ��#R is a most general uni�er of s�#R and t�#R. Note that� is a uni�er of s and t i� s� := t�, i.e., our notion of uni�ability correspondsto the standard one in uni�cation theory. This is not true for completeness: auni�er need not be an instance of any substitution in a given complete set ofuni�ers. Uni�cation of primal terms is decidable and �nitary, i.e., for any pairof primal terms there exists a �nite set of uni�ers which is complete. Moreover,complete sets of uni�ers can be e�ectively computed [HG97].2.4 First-order formulasIn this paper, we use �rst-order formulas to de�ne the word problem in a con-cise way and to compare di�erent notions of subsumption. Quanti�ed countervariables are interpreted over the domain of natural numbers, quanti�ed �rst-order variables over the Herbrand universe with respect to the underlying set offunction symbols. Free variables are treated as constants.



Additionally, we use vectors and notations from linear algebra as a compactrepresentation of similar objects. For example, x := s(k) stands for a set ofequations of the form x := s(k), where x is a variable from x and s 2 s is a termcontaining variables k1; k2; : : : from k. Furthermore, fn 7! Ck + cg representsthe substitution replacing each variable in n by the corresponding row in thevector of linear expressions, which is obtained by multiplying the matrix C ofnatural numbers by the vector k of counter variables and adding the vector c.Let s and t be primal terms containing the variables x = Var(s), y = Var(t),m = CVar(s) and n = CVar(t). A complete set of uni�ers for s and t canbe considered as a solved form of the equation s := t in the following way. Auni�er � = fx 7! s0(k);y 7! t0(k);m 7! Ck + c;n 7! Dk + dg, where kare auxiliary counter variables introduced during uni�cation, corresponds to theformula ��(x;y;m;n) = 9k�x := s0(k)^y := t0(k)^m = Ck+c^n = Dk+d�.Note that uni�cation does not introduce auxiliary �rst-order variables. However,s0 and t0 may contain variables from x and y; in this case these variables do notoccur in the domain of the substitution. The formula associated with a completeset of uni�ers � is the disjunction of the formulas corresponding to the singleuni�ers: ��(x;y;m;n) = W�2� ��(x;y;m;n). Therefore the formulas s := t and��(x;y;m;n) are equivalent.2.5 Miscellaneous notationsIf t is a primal term and A � Pos(t) is a set of independent �rst-order positions,then t[�]A is called a context. If s is a context and t is a context or primalterm, then the concatenation of s and t, denoted by s � t, is the context orprimal term sf� 7! tg. Concatenation is associative, hence we drop parentheseswhere possible. The empty context � serves as unit element with respect toconcatenation. Exponentiation is de�ned by s0 = � and si+1 = s � si.The depth of a primal term t, denoted by depth(t), is recursively de�ned asdepth(t) = 0 for t 2 (V [ F0), and depth(f(t)) = depth(f̂ (l; t)) = 1 + depth(t)for f 2 Fp (p > 0) and f̂ 2 D. The depth of a set or vector of terms t is de�nedas depth(t) = maxfdepth(t) j t 2 tg. The depth of the set of rewrite rules Rassociated with D is the depth of the set of all right hand sides: depth(R) =depth(frf̂1 ; rf̂2 [f̂ (m;n+ �;x)]A j f̂ 2 Dg).3 Redundancy eliminationRecurrent term schematizations are of potential use in all areas concerned with�rst-order terms, mostly in automated deduction, like term rewriting with equa-tional completion and proofs by consistency, or clausal theorem proving. Anubiquitous problem appearing there is the duplication of objects. Redundancyelimination plays therefore a vital role. In the simplest case, we need to main-tain the set property, where no element (term, clause, literal) must occur twice.Another case of redundancy is the presence of two elements, where one is aninstance of the other. In the �rst case we have to solve the word problem, i.e., to



determine whether two terms s and t represent the same object in the underlyingtheory. The latter case is usually referred to as the subsumption problem.3.1 Word problemDe�nition 1. The word problem for two primal terms s and t is the questionwhether the formula 8n (s := t) is valid in the equational theory generated by R,where n = CVar(s) [ CVar(t).One possibility to solve the word problem is to reduce s and t to uniquenormal forms, followed by a check whether the latter are syntactically equal.This approach is described for R-strings in [Sal91]. In this paper, we choosea di�erent approach: we transform the word problem to a uni�cation problemand a subsequent problem in Presburger arithmetic. The �rst method is e�cientbut works only if we can de�ne a unique normal form. In general, there is noobvious way of de�ning the normal form of a primal term. Our approach does notdepend on a speci�c syntactic representation for schematizations, but requiresonly the existence of a �nitary and terminating uni�cation algorithm. Therefore,our method is applicable to all known recurrent schematizations, i.e., to �-terms,I-terms, R-terms, and primal grammars.We proceed in three steps.1. Elimination of �rst-order variables: replace all �rst-order variables by newconstants. Observe that the formula 8n(s := t) is valid if and only if the cor-responding formula 8n(s� := t�) is valid, where the terms s�; t� are obtainedfrom the terms s; t by replacing each �rst-order variable x by a new constantcx.2. Uni�cation: solve the equation s� := t�. We solve the equation s� := t�by means of uni�cation. Note that a �nitary and terminating uni�cationalgorithm exists for all four known recurrent schematizations. This meansthat the output of the uni�cation algorithm is a �nite disjunction of formulas9k(n =Nik+di), where Ni and di is a matrix and a vector of non-negativeintegers, respectively, and k are new counter variables introduced duringuni�cation. The resulting formula �(n) = 9kWi(n = Nik + di) containsonly counter variables, since there are no �rst-order variables in s� and t�.3. Validity check: check whether the formula 8n �(n) is valid. The formula �(n)represents a complete set of uni�ers, one per disjunct, of the problem s� := t�.To show that the universally quanti�ed formula 8n(s� := t�) is valid, we needto prove that the uni�ers from �(n) cover the whole Cartesian product Njnj.By correctness of the applied uni�cation algorithm, the formulas 8n(s� :=t�) and 8n �(n) are equivalent. The latter expression is a �2-formula ofPresburger arithmetic and can be solved by usual methods [Coo72].3.2 Subsumption problemIn the �rst-order case, a term s subsumes a term t if there exists a substitution �,such that s� = t. In the free algebra, this is equivalent to 9x(s = t), where



x = Var(s). An alternative de�nition is that the formula 8y9x(s = t) is valid,where x = Var(s) and y = Var(t). These two de�nitions are equivalent, exceptfor singular signatures, since in the empty theory (without axioms) validity inthe equational theory is equivalent to validity in the inductive theory.For schematizations, there are several possibilities to de�ne subsumption.Let s and t be two primal terms from a schematization G, where m = CVar(s),n = CVar(t), x = Var(s), and y = Var(t). Recall that we check the validity offormulas in the equational theory of R, i.e., the free algebra generated by R.The possibilities to de�ne that s subsumes t are: (1) the formula 9m9x(s := t) isvalid; (2) the formula 8n8y9m9x(s := t) is valid; (3) the formula 8n9m(s := t)is valid; (4) the formula 8n9m9x(s := t) is valid. The �rst two approachesare straightforward extensions of the �rst-order concept. The second approachdoes not meet a natural requirement for subsumption, namely independenceof the underlying signature. Subsumption should be a local test on two termsindependent of other elements. There exist two terms s, t, such that s subsumes t(according to the second de�nition) over a signature F , but not over an extendedsignature F 0 � F [AHL97, Example 14]. The same terms also show that the �rsttwo subsumption concepts are not equivalent, since there is no substitution �,such that s� := t, as required by the �rst concept. The problems with the secondconcept originate from quanti�cation over �rst-order variables. One possibilityto avoid them is to quantify only the counter variables, as in the third approach.This concept is not satisfactory either, since it does not capture usual �rst-order subsumption. When we extend the third concept with usual equational�rst-order subsumption, we get the fourth concept.Hence, we have two suitable concepts for subsumption: the �rst and the lastone. Intuitively, the �rst concept expresses that there is a uniform mapping �,relating the term s and t in the equational theory of the schematization. Inparticular, for the counter variable vectors m and n, this means that m is alinear expression of n. In contrast, the fourth concept requires this uniformityonly on the �rst-order level; the vectors m and n need not be related by a linearfunction. Clearly, the �rst concept implies the fourth concept. The converse isnot true.The last subsumption concept encompasses the �rst one. Moreover, the lastconcept corresponds to the natural view that schematizations are just a �niterepresentation of in�nite sets of �rst-order terms: s subsumes t if every termrepresented by t is subsumed by a term represented by s. Therefore we adoptthe last concept of subsumption.De�nition 2. Let s and t be primal terms, where m = CVar(s), n = CVar(t),and x = Var(s). The term s subsumes t if the formula 8n9m9x(s := t) is valid.A set S subsumes a set T if for each term t0 2 T there exists a term s0 2 S, suchthat s0 subsumes t0.A primal term s subsumes a primal term t i� the set L(s) subsumes the set L(t).Similar to the word problem, we want to reduce subsumption to uni�cation.We proceed in four steps: we replace certain �rst-order variables by new con-stants, apply the uni�cation algorithm, simplify the resulting formula, and checkits validity in Presburger arithmetic.



1. Elimination of �rst-order variables in t: replace all �rst-order variables in tby new constants, producing the term t�. The formula 8n9m9x(s := t) isvalid i� 8n9m9x(s := t�) holds by the way how we interpret free variables.2. Uni�cation: solve the equation s = t� by means of a uni�cation algorithm.Its output can be written as the �nite formula �(m;n;x) = 9kWi(x =ui(k)^m =Mik+ci^n = Nik+di), where k are the new counter variablesintroduced during uni�cation,Mi,Ni are matrices of non-negative integers,and ci, di are vectors of non-negative integers.3. Simpli�cation: remove the equations x = ui(k) and m =Mik+ ci from theformula �(m;n;x), producing �0(n). Note that 9m9x �(m;n;x) is equiv-alent to �0(n), since the variables m and x are existentially quanti�ed andappear only once and separated on the left-hand side of equations.4. Validity check: check if 8n �0(n) is valid. The result 8n9kWi(n = Nik+di)belongs to the �2-fragment of Presburger arithmetic.3.3 Complexity issuesBoth the word problem and the subsumption problem reduce in the last step toa �2-formula in Presburger arithmetic. While the complexity of full Presburgerarithmetic is at least doubly exponential and Cooper presents in [Coo72] an algo-rithm of triple exponential complexity, the �2-fragment is only coNP-complete,as it was proved by Gr�adel [Gr�a88] and Sch�oning [Sch97]. Our formulas arequite simple and do not cover the whole �2-fragment: they are of the form8n9kWi(n = Nik + di), i.e., the formula is in disjunctive normal form and thevariables n appear only once separated on the left-hand side. Therefore we canask whether our special problems are still coNP-complete. The lower bound re-ductions used by Gr�adel and Sch�oning require more complex formulas. However,following an idea in [Sch97], due to Gr�adel, we can prove the coNP-hardness ofour problems by a reduction from simultaneous incongruences [GJ79]. ThisNP-complete problem is de�ned as follows: given a set f(a1; b1); : : : ; (ap; bp)g ofordered pairs of positive integers, with ai � bi, the problem asks whether there isan integer n such that n 6� ai ( mod bi) holds for all i. We use the dual problem toshow coNP-hardness. Encoding n � ai (modbi) as 9k(n = bik + ai), we obtainthe disjunction 9kWpi=1(n = bik+ai). The �nal formula is 8n9kWi(n = bik+ai),which is of the same type as the formulas obtained from word and subsumptionproblems. Note that in both cases only the problem solved in the last step iscoNP-complete. The overall complexity of our algorithms is determined by thecomplexity of uni�cation. In particular, the cardinality of a minimal completeset of uni�ers can be at least exponential [Sal91]; and we have to compute allsolutions to obtain the formula. Hence, the formula in the last step can be ex-ponentially longer than the input of the original problem.4 Complement problemIf t is a �rst-order term, its Herbrand universe is H(t) = ft� j �:X �! T (F)g,the set of the ground instances of t with respect to the underlying signature F .



Similarly, if T is a set of �rst-order terms, its Herbrand universe H(T ) is the unionof the Herbrand universes H(t) for each t 2 T . For a primal term t, its Herbranduniverse is the set H(L(t)), i.e., the Herbrand universe of the schematized set.Finally, the Herbrand universe of a set of primal terms T is obtained as theunion of the Herbrand universes H(t) for each t 2 T .Given a set of �rst-order or primal terms T , its complement is the set T c =T (F) n H(T ). A class C is a collection of sets of terms satisfying a commonproperty. For a given class C , the complement problem is the question whetherfor each �nite set of terms T 2 C there exists a �nite set of terms T 0 2 C , suchthat H(T 0) = T c holds. The set T 0 is called a �nite complement representation.For �rst-order terms, Lassez and Marriott proved that �nite sets of linearterms always have a �nite complement representation [LM87]. On the otherhand, they showed that this is not true for arbitrary �nite sets of �rst-orderterms. Since schematizations were introduced to increase the expressive powerof �rst-order terms, we might expect to be able to represent the complementsof non-linear terms by a �nite set of primal terms. However, as we show in thesequel, already the very simple non-linear term f(x; x) has no �nite complementrepresentation by primal terms.The potential of primal terms resides in the possibility to generate arbitrarilydeep terms by iterating contexts. The expressive power of iteration is limitedby the fact that the number of contexts must be �nite. The maximal numberof consecutive iterations during a reduction of a primal term is measured bythe iteration depth. Each iteration terminates with the application of the baserule f̂(0; : : :) ! rf̂1 for some de�ned symbol f̂ . Therefore we can determine theiteration depth by counting the occasions when a variable gets decremented to 0.The iteration depth of a primal term is then the maximum over all reductions.Inspection of the rewrite systemR reveals that there is a correspondence betweenthe application of base rules and the number of counter positions present in theprimal term: each iteration consumes a counter position.De�nition 3. The iteration depth of a primal term is the function � de�nedrecursively as follows:{ � (x) = � (a) = 0 for a �rst-order variable x and a constant a,{ � (f(t1; : : : ; tn)) = maxf� (ti) j i = 1; : : : ; ng for an n-ary function symbol f ,{ � (f̂ (c; t1; : : : ; tn)) = jcj+maxf� (ti) j i = 1; : : : ; ng for a de�ned symbol f̂ .The iteration depth naturally extends to a set of primal terms T , de�ned by� (T ) = maxf� (t) j t 2 Tg.This de�nition emphasizes the static aspect by looking at the primal termonly. The operational aspect, namely counting the occasions when a variable isdecremented to 0, is expressed by the equalities � (f̂ (0; : : :)�) = 1 + � (rf̂1 �) and� (f̂(n + 1; : : :)�) = � (rf̂2�) for each de�ned symbol f̂ and substitution �.Iteration of contexts consumes resources of the primal term. On one hand,a single iteration can produce an arbitrarily deep term. On the other hand,



there are ground �rst-order terms that require a certain iteration depth. We usetwo di�erent contexts, f(�; a) and f(a; �), to force a consumption of resources.Consider the ground term s = f(�; a)m � a. If the value of m is su�ciently large,then a primal term t representing s must contain a de�ned symbol through whichwe iterate the context f(�; a), and the iteration depth of tmust be at least 1. If wesimply concatenate two blocks of the same context, like in f(�; a)m � f(�; a)m � a,we do not necessarily need to increase the iteration depth of the primal term.However, if we insert the context f(a; �) between the two blocks, producing theterm s = f(�; a)m � f(a; �) � f(�; a)m � a, we force a primal term t representing sto have an iteration depth of at least 2. Repeating the step, this idea leads toan upper bound on the number of context blocks f(�; a)m � f(a; �) that can berepresented by a given primal term t.Lemma 4. Let t be a primal term without �rst-order variables and let s =w � (f(�; a)m � f(a; �))n � a be a ground �rst-order term, where w is a propersubcontext of f(�; a)m � f(a; �). If s 2 L(t) and m > � (t)� depth(R) + depth(t)then n � � (t).The lemma indicates that if we choose the value of n in the term s largerthan the iteration depth � (t) of the primal term t, then we cannot represent sby t using iteration only. Therefore, the term t must contain variables.Corollary 5. If s = (f(�; a)m �f(a; �))n �a is an instance of a primal term t with� (t) < n and m > � (t) � depth(R) + depth(t), then t must end with a variable.We show by contradiction that the complement of the �rst-order term f(x; x)has no �nite representation. The underlying idea is to choose a ground terms = f(s1; s2) from the complement, such that both s1 and s2 are too complexto be produced by iteration alone, and s2 is twice as deep as s1. Therefore aterm representing s must be of the form f(u; v), where both u and v end withvariables y and z, respectively. If y 6= z then the terms f(u; v) and f(x; x)are uni�able, contradicting the assumption that f(u; v) represents (part of) thecomplement of f(x; x). If y = z, then there is no substitution �, such thatu�#R = s1 and v�#R = s2 hold.Theorem 6. The complement of a �nite set of �rst-order terms cannot be rep-resented in general by a �nite set of primal terms.5 ConclusionWe presented general algorithms for solving the word and the subsumption prob-lem for primal terms that also work for �-terms, I-terms, and R-terms. The algo-rithms require a �nitary uni�cation algorithm for the schematization formalisms,as well as a solver for the �2-fragment of Presburger arithmetic. Still, there aresome problems left, especially concerning e�ciency. For the word problem, itwould be interesting to have an algorithm that computes �rst a suitable normal



form of primal terms, followed by a syntactic comparison. Algebraically, thisamounts to axiomatizing the theory of primal terms.We also showed that equations and primal terms are not su�cient for describ-ing in general the complement of �rst-order terms. This result trivially extendsto recurrent term schematizations, since �rst-order terms are just a special case.On the other hand, the complement problem is easily solvable if we extend thelanguage by negation and quanti�cation. Then the complement can be expressedby a formula in the �rst-order theory of term schematizations. In this context,we are interested in deciding the validity of formulas and in obtaining solvedforms, e.g., by quanti�er elimination. Peltier showed in [Pel97] that the �rst-order theory of R-terms is decidable by quanti�er elimination. The decidabilityof the �rst-order theory of primal terms is still an open problem.References[AHL97] A. Amaniss, M. Hermann, and D. Lugiez. Set operations for recurrent termschematizations. In M. Bidoit and M. Dauchet, editors, Proc. 7th TAPSOFTConference, Lille (France), LNCS 1214, pages 333{344. Springer, 1997.[CH95] H. Chen and J. Hsiang. Recurrence domains: Their uni�cation and applicationto logic programming. Information and Computation, 122:45{69, 1995.[Com95] H. Comon. On uni�cation of terms with integer exponents. MathematicalSystems Theory, 28(1):67{88, 1995.[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplication. InB. Meltzer and D. Mitchie, editors, Machine Intelligence, volume 7, pages91{99. Edinburgh University Press, 1972.[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to thetheory of NP-completeness. W.H. Freeman and Co, 1979.[Gr�a88] E. Gr�adel. Subclasses of Preburger arithmetic and the polynomial-time hier-archy. Theoretical Computer Science, 56(3):289{301, 1988.[HG97] M. Hermann and R. Galbav�y. Uni�cation of in�nite sets of terms schematizedby primal grammars. Theoretical Computer Science, 176(1-2):111{158, 1997.[LM87] J.-L. Lassez and K. Marriott. Explicit representation of terms de�ned bycounter examples. J. Automated Reasoning, 3(3):301{317, 1987.[Pel97] N. Peltier. Increasing model building capabilities by constraint solving onterms with integer exponents. J. Symbolic Computation, 24(1):59{101, 1997.[Sal91] G. Salzer. Deductive generalization and meta-reasoning, or how to formalizeGenesis. In �Osterreichische Tagung f�ur K�unstliche Intelligenz, Informatik-Fachberichte 287, pages 103{115. Springer, 1991.[Sal92] G. Salzer. The uni�cation of in�nite sets of terms and its applications. InA. Voronkov, editor, Proc. 3rd LPAR Conference, St. Petersburg (Russia),LNCS (LNAI) 624, pages 409{420. Springer, 1992.[Sal94] G. Salzer. Primal grammars and uni�cation modulo a binary clause. InA. Bundy, editor, Proc. 12th CADE Conference, Nancy (France), LNCS(LNAI) 814, pages 282{295. Springer, 1994.[Sch97] U. Sch�oning. Complexity of Presburger arithmetic with �xed quanti�er di-mension. Theory of Computing Systems, 30(4):423{428, 1997.


