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Abstract. The simultaneous elementary E-matching problem for an equational the-
ory E is to decide whether there is an E-matcher for a given system of equations in
which the only function symbols occurring in the terms to be matched are the ones
constrained by the equational axioms of E. We study the computational complexity
of simultaneous elementary matching problems for the equational theories A of semi-
groups, AC of commutative semigroups, and ACU of commutative monoids. In each
case, we delineate the boundary between NP-completeness and solvability in polyno-
mial time by considering two parameters, the number of equations in the systems and
the number of constant symbols in the signature. Moreover, we analyze further the
intractable cases of simultaneous elementary AC-matching and ACU-matching by
taking also into account the maximum number of occurrences of each variable. Using
graph-theoretic techniques, we show that if each variable is restricted to having at
most two occurrences, then several cases of simultaneous elementary AC-matching
and ACU-matching can be solved in polynomial time.

1 Introduction and Summary of Results

The design of matching and unification algorithms is one of the principal challenges faced
by researchers in automated deduction. This challenge can become particularly intriguing
when the terms to be matched or unified contain function symbols satisfying the axioms
of an equational theory E, in which case we speak of E-matching and E-unification algo-
rithms. Among the various equational theories that have been investigated with respect
to matching and unification during the past twenty years; the equational theory AC of
commutative semigroups occupies a prominent place, because of its important réle in
term rewriting and its conspicuous presence in applications (cf. [BHK 88, JK91, BS94]).
In addition to AC, there has been also an extensive study of unification in the equational
theories A of semigroups and ACU of commutative monoids. Indeed, A-unification algo-
rithms solve the classical Markov’s problem for word equations, while ACU-unification
algorithms are used widely as building blocks for AC-unification algorithms.

Benanav, Kapur, and Narendran [BKN87] analyzed the computational complexity of
decision problems for matching in various equational theories and established that A-
matching, AC-matching, and ACU-matching are all NP-complete problems. Benanav et
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al. [BKN87] discovered also that AC1-matching, the restriction of AC-matching to terms
in which each variable occurs only once, is solvable in polynomial-time. This tractable
case of AC-matching turned out to be the rather isolated, since Verma and Ramakrish-
nan [VR92] showed that AC-matching is NP-complete even if each variable is allowed
to have only two occurrences in the terms being matched. Aiming to develop a different
perspective on the complexity of matching, Kolaitis and Hermann [HK94] introduced and
studied a class of counting problems that arise naturally in this context. More specifi-
cally, if E is an equational theory, then #E-matching is the following problem: given
a term s and a ground term ¢, find the cardinality of a minimal complete set of E-
matchers of s and ¢. The motivation for considering these counting problems comes from
the fact that matching and unification algorithms should not only decide whether two
given terms can be E-matched (E-unified), but should also return a minimal complete set
of E-matchers (E-unifiers). In particular, such algorithms can solve at the same time the
corresponding #E-matching problem. Thus, by identifying the computational complexity
of #E-matching, we gain a deeper insight into the expected behavior of matching and
unification algorithms than the insight obtained from the analysis of the corresponding
decision problem. In the paper [HK94], it was shown that #A-matching, #AC-matching,
and #ACU-matching are all #P-complete problems. The concept of #P-completeness
was introduced by Valiant [Val79] as a means of quantifying the computational diffi-
culty of counting problems. In many respects, a #P-completeness result for a counting
problem indicates a higher level of intractability than a NP-completeness result for the
corresponding desision problem. Valiant [Val79] showed also that there exist polynomial-
time decision problems whose counting version is #P-complete. As it turns out, this
phenomenon occurs also in matching, because in [HK94] it was shown that that #ACI-
matching is a #P-complete problem.

If one takes a closer look at the above NP-hardness and #P-hardness results for
matching, then one realizes that their proofs make use of terms containing free function
symbols, i.e., function symbols that are not constrained by the axioms of the underly-
ing equational theory. To put it differently, in these hardness results the signature over
which the terms are built is allowed to vary and is given as part of the input of the de-
cision and counting problem under consideration. In turn, this raises the question: does
the complexity of the matching problems change, if the signature contains no free func-
tion symbols? There are several other situations where 1t has been established that the
presence of free function symbols affects the properties of matching and unification. As
Baader and Siekman [BS94] write, “Tt is important to note that the signature over which
the terms of the unification problems may be built has considerable influence on the uni-
fication type and on the existence of unification algorithms”. For this reason, in studying
an equational theory E one distinguishes between the case of elementary E-matching
(E-unification), where the signature contains no free function symbols, and the case of
general E-matching (E-unification), where the signature contains free function symbols
of arbitrary arity. In both cases the signature may contain one or more free constant
symbols. Elementary E-matching (E-unification) extends naturally to simultaneous ele-

mentary E-matching (E-unification), where, instead of just a single equation s ;E t, one

is given a system of equations sy ;E t1,..., 8k ;E t for which an E-matcher (E-unifier)
is sought. Note that in the case of general E-matching (E-unification) such systems reduce

to a single equation f(s1,...,sx) ;E f(t1,...,tk), where fis a free function symbol.



In this paper, we carry out a systematic investigation of the computational com-
plexity of simultaneous elementary E-matching decision and counting problems, where E
is one of the equational theories A, AC or ACU. Our goal is to identify the réle of
the signature on the complexity of matching and to delineate the boundary between
intractability and tractability for elementary matching in these theories. We classify si-
multaneous elementary matching problems according to the number of equations in the
system and the number of free constant symbols in the signature. Eker [Eke93] proved
that elementary AC-matching is NP-complete for single equations over signatures with
an unbounded number of free constant symbols. At the other end of the scale, Baader and
Siekmann [BS94] pointed out that simultaneous elementary AC-matching is NP-complete
for systems of unbounded length over signatures with two free constant symbols. In fact,
a slight modification of that reduction shows that a single free constant symbol suffices
for establishing NP-hardness. We complement the above results in two ways. First, we
point out that in these cases the corresponding counting problem is #P-complete. After
this, we establish that if the systems are of fixed length and the signature contains a
fixed number of free constant symbols, then both the decision problem and the count-
ing problem for simultaneous elementary AC-matching can be solved in polynomial time
using dynamic programming. Thus, intractability occurs in AC-matching only when the
length of the systems or the number of free constant symbols grow beyond any bounds.

We use the same classification to study and identify the complexity of decision
and counting problems in simultaneous elementary A-matching and ACU-matching. It
turns out that A-matching is tractable in fewer cases than AC-matching, whereas ACU-
matching is tractable in more cases. We show that simultaneous elementary A-matching
is solvable in polynomial time only when the systems are of fixed length and the signature
has a single free constant symbol. In all other cases, the decision problem is NP-complete
and the counting problem is #P-complete. In contrast, simultaneous elementary ACU-
matching is solvable in polynomial time as long as the systems are of fixed length, even
if the signature has an unbounded number of free constant symbols.

Finally, we take a closer look at the intractable cases of simultaneous elementary AC-
matching and ACU-matching by considering a third parameter as a resource, namely the
maximum number of variable occurrences in the systems. While for general AC-matching
one occurrence suffices for establishing #P-hardenss and two occurrences suffice for es-
tablishing NP-hardness, we show that here the dividing line between tractability and in-
tractability is one level higher at two occurrences and three occurrences, respectively. In
particular, we show that the decision problem for simultaneous elementary AC-matching
with each variable occurring twice is solvable in polynomial time over signatures with one
free constant symbol, even if the systems are of unbounded length. Moreover, the decision
problem for simultaneous elementary ACU-matching with each variable occurring twice is
solvable in polynomial time, even if the signature contains an unbounded number of free
constant symbols and the systems are of unbounded length. We derive polynomial-time
algorithms for these problems by reducing them to a class of graph-theoretic problems,
known as b-matching, that ask whether a given graph contains a subgraph whose nodes
satisfy certain degree constraints. Although b-matching problems have been studied ex-
tensively in the context of graph theory to our knowledge this is the first time that a
connection has been made between these graph-theoretic problems and matching prob-
lems in equational theories. This connection opens the road for incorporating efficient
b-matching algorithms into AC-matching and ACU-matching algorithms.



2 Preliminaries

This section contains the definitions of the main concepts and a minimum amount of the
necessary background material from equational matching and computational complexity.
Additional material on these topics can be found in [JK91, BS94] and [Pap94].

Matching Problems in Equational Theories and their Complexity

A signature F is a countable set of function and constant symbols. If A" is a countable
set of variables, then T (F, ) denotes the set of all terms over the signature F and
the variables in A'. Capital letters XY, Z ..., as well as capital letters with subscripts
X;,Y;, Z;, ... will be used to denote variables in X'.

An identity over F is a first-order sentence of the form (VX3) ... (VX,)({ = r), where !
and r are terms in 7 (F, X)) with variables among X1,..., X,,. Every set E of identities
can be viewed as the set of equational axioms of an equational theory Th(E) consisting
of all identities over F that are logically implied by E. By an abuse of terminology, we
will often say the “equational theory E”, instead of “the equational theory Th(E)”. The
notation s =g t denotes that the identity (VX1)...(VX,)(s =) is a member of Th(E).

Our main focus will be on the equational theory AC of commutative semigroups and
on the equational theory ACU of commutative monoids. For both these theories, the
signature F contains a binary function symbol + that is assumed to be associative and
commutative. Thus, the equational axioms of AC are

A VX)WV (X + (Y +2) = (X +Y)+2)  C: (VX)VY) (X 4+Y =Y +X)

For ACU, the signature F contains also a constant symbol 0, which is the unit element
for +. Thus, ACU satisfies also the identity U: (VX)(X 4 0 = X). We also consider the
equational theory A of semigroups, whose only equational axiom is associativity.

A substitution is a mapping p: X' — T (F, X) such that Xp = X for all but finitely
many variables X. We say that a term s E-matches a ground term ¢ if there is a sub-
stitution p such that sp =g ¢. In this case, we call p an E-matcher of s and ¢. It can be

shown that a term s E-matches a ground term ¢ if and only if the equation s ;E t can
be solved in the quotient algebra 7(F, X)/=x.

E-matching 1s the following decision problem: given a term s and a ground term ¢ over
a signature F, decide whether s E-matches ¢. Benanav, Kapur, and Narendran [BKN87]
investigated the computational complexity of E-matching and showed that A-matching,
AC-matching, and ACU-matching are all NP-complete problems.

Beside the decision problem, there is an another important (and often more challeng-
ing) algorithmic problem arising in matching, namely the problem of designing algorithms
which not only decide whether a given term s E-matches a ground term ¢, but also return
as value a minimal complete set pCSMEg(s,t) of E-matchers of s and ¢, provided that s
E-matches . An insight into this problem can be gained by studying a related counting
problem in equational matching, that asks for the number of E-matchers in a minimal
complete set. Before describing this approach in more detail, we state the basic relevant
facts from computational complexity.

#P 1s the class of all counting problems that are computable in polynomial-time us-
ing counting Turing machines, i.e., non-deterministic Turing machines equipped with an



additional output tape on which it prints in binary the number of its accepting computa-
tions. The class #P was introduced by Valiant [Val79], who established the existence of
#P-complete problems, i.e., counting problems in #P such that every problem in #P can
be reduced to them via restricted polynomial-time reductions that preserve the number
of solutions (parsimonious reductions) or at least make it possible to compute the num-
ber of solutions of one problem from the other (counting reductions). The prototypical
#P-complete problem 1s #SAT, which asks for the number of satisfying assignments of
a given Boolean formula. Valiant [Val79] discovered also that there are polynomial-time
decision problems, such as perfect matching in bipartite graphs, whose corresponding
counting problem is #P-complete. The prevalent view in complexity theory is that a
#P-completeness result indicates a higher level of intractability than a NP-completeness
result does. No #P-complete problem is known to be (nor is believed to be) a member
of the class FPH, the functional analog of the polynomial hierarchy PH (cf. [Pap94]).

In [HK94], we introduced a class of counting problems in equational matching and
studied their computational complexity using tools from the theory of #P-completeness.
More precisely, #E-matching i1s the following counting problem: given a term s and
a ground term ¢, find the cardinality of pCSMg(s,t). This problem is well-defined for
every finitary equational theory E. Observe that, on the face of it, #E-matching is a
problem of intermediate difficulty between the decision problem for E-matching and
the problem of designing matching algorithms that return minimal complete sets of E-
matchers. Thus, a #P-completeness result about the #E-matching problem of some
equational theory E suggests that computing minimal complete sets of E-matchers is
a truly intractable problem. In [HK94] we showed that #A-matching, #AC-matching,
and #ACU-matching are all #P-complete problems. Moreover, we established there
that even #AC1-matching is #P-complete, where ACI is the restriction of AC to linear
terms (terms in which each variable occurs only once). In contrast, [BKN87] showed that
the decision problem for AC1-matching is solvable in polynomial time.

Simultaneous Elementary Matching

Let F be a signature, A" a set of variables, and E an equational theory whose axioms
are identities over F. The signature F may contain function or constant symbols that
do not occur in the equational axioms of E. Such symbols are called free, since they are
not constrained in any way by E. As mentioned earlier, the existence of free function or
constant symbols in the signature may affect the structural properties of an equational
theory E and have an impact on unification or matching algorithms for E (cf. [BS94]).
Closer to our interests here, it should be noted that the proof in [BKN87] that AC-
matching is NP-hard makes an essential use of free function symbols in the signature.
More recently, Eker [Eke93] showed that AC-matching remains NP-hard over signatures
with no free function symbols; in the proof of this result, however, the signature at
hand contains an unbounded number of free constant symbols. The #P-hardness proofs
for #AC-matching and #ACI-matching in [HK94] depend on free function symbols and
free constant symbols in the signature. Thus, it 1s natural to ask whether and how the
computational complexity of E-matching and #E-matching changes, if the instances of
these problems are restricted to terms over signatures having no free function symbols
and possibly only a bounded number of free constant symbols.

The elementary E-matching problem is the restriction of E-matching to signatures
with no free function symbols. Thus, given a pair (s,t), where s is a term and ¢ is a



ground term with function symbols among those in the equational axioms of E, the
question is to decide whether there is a substitution p such that sp =g t. The elementary
#E-matching problem is the analogous restriction of #E-matching. In the sequel, we will
also be interested in extensions of elementary matching problems where each instance
can be a finite set of pairs of terms, instead of just a single pair of terms.

The simultaneous elementary E-matching problem is the following decision problem:
given a finite set {(s1,1),..., (Sk,tx)}, where each s; is a term and each ¢; is a ground
term with function symbols among those in the equational axioms of E, decide whether
there is a substitution p such that s;p =g ¢; for every ¢ < k. Such a substitution is called
an E-matcher of the set {(s1,t1),..., (sk,t)}. Similarly, the simultaneous elementary
#E-matching problem 1s the following counting problem: given a finite set of pairs of
terms as above, find the cardinality of a minimal complete set of E-matchers of that set.

From now on, the notation s; ;E t1,..., 8k ;E tr will be used to represent an instance
of the simultaneous elementary E-matching (or #E-matching) problem.

In effect, the simultaneous elementary E-matching problem asks for the solution of a
system of equations sy ;E t1,..., 8k ;E tr in the quotient algebra 7 (F,X)/=g, where
the function symbols of F are exactly the function symbols occurring in the equational
axioms of E. Of course, one can consider simultaneous E-matching problems over arbi-
trary signatures. However, the simultaneous E-matching problem over arbitrary signa-
tures is reducible to the E-matching problem, because one can use free function symbols
to encode a system of equations into a single equation. We will classify simultaneous
elementary matching problems using two parameters, namely the number of equations in
a given system, called the length of the system, and the number of free constants in the
signature. Note that the number of free constant symbols is unimportant for matching
problems over signatures with free function symbols, since a set {C,Cs, ..., Cp} of free
constant symbols can be represented by the set {g(C),g(9(C)),...,¢™(C)}, where C'is
a free constant symbol and ¢ is a free unary function symbol.

If & and m are two positive integers, then the ¢E(k, m)-matching problem consists
of all instances of simultaneous elementary E-matching with at most k& equations and at
most m free constants. We also put

E(k,w) = U cE(k,m) and €E(w,m) = U cE(k, m)

Thus, in eE(k,w)-matching the signature has an unbounded number of free constant
symbols, while in ¢E(w, m)-matching the systems of equations have unbounded length.
We define similarly #¢E(k, m)-matching, #¢E(k, w)-matching, and #€E(w, m)-matching.

3 Simultaneous Elementary AC-Matching

If 4+ is an associative and commutative binary function symbol, then every term built
using 4+, variables from X', and free constants can be brought into an equivalent flattened
form. This means that all parentheses have been removed and all occurrences of identical
variables and free constants have been grouped together using multiplicity coefficients,
so that if ¢ is a variable or a free constant, then every term of the form ¢ + - - -+ ¢ with «
summands equal to ¢ is replaced by the expression at. Thus, an instance of the elementary



AC-matching problem 1s an equation of the form

ale + - —|—0[an ;AC 7101 + - +P}/mcma

where each X; is a variable from X', each Cj; is a free constant, and each a; and each v,
is a positive integer. The size of such an instance of elementary AC-matching is equal to
nmax{ay,...,an} +mmax{vyi,...,Ym}, i.e., all integers occurring in this instance are

viewed as written in unary notation. In other words, the size of an instance s :?Ac t of
elementary AC-matching is essentially the sum of all occurrences of variables and free
constants occurring in s and ¢, before s and ¢ are flattened. By the same token, the size

of an instance s ;Ac t1,..., 8k ;Ac t of the simultaneous AC-matching problem is

equal to the sum of the sizes of each instance s; ;Ac i, 1 <2<k
It 1s well known that there 1s a close relationship between the elementary AC-matching
problem and the problem of solving systems of linear Diophantine equations subject to

certain additional constraints. Let a1 X1 + -+ + a, X, ;Ac vC1 4+ -+ ¥ Cnm be an
instance of elementary AC-matching and assume that p is an AC-matcher for it. The
substitution p assigns to each variable X;, 1 < ¢ < n, a certain number (possibly zero)
of copies of each constant symbol C;, 1 < j < m. This can be expressed formally by
Xi = 20101+ -+ 2:mCh, 1 <1 < n, where each z;; is an arithmetic variable ranging
over non-negative integers and expressing how many copies of the constant symbol C}
will be assigned to the variable X;. Let us consider now how the copies of each constant
symbol C; are distributed among the variables X;: out of a total of 4; copies of C;, we have
that z1; copies are assigned to X, za; copies are assigned to X», and so on until z,; copies
are assigned to X,,. We arrive at the following system of linear Diophantine equations

a1x11+ - oty = M1
(1)

A X1m+ - Ty = Ym

Note that an integer solution of the above system does not necessarily give rise to an

AC-matcher of the instance ay X7+ - -+ a, X, :?Ac v1C1 4 - -+ 4m O, unless 1t satisfies
certain constraints arising from the assignments X; — 2;1C1 + -+ - 4+ 2imChiy, 1 <2 < n.
More specifically, each z;; must be a non-negative integer and each variable must be
assigned at least one copy of at least one of the constants symbols. Thus, there is a

one-to-one and onto correspondence between AC-matchers of a1 X7 + - + ap, X, :?Ac
11C1 + -+ ymCim and integer solutions of the system (1) that satisfy the constraints

zi; > 0, 1<i<n, 1<j<m (2)
> @i
j=1

In elementary ACU-matching, constraints (3) are not necessary, because we can always
assign the constant 0 of the unit axiom U to a variable. As a result, ACU-matchers corre-
spond to solutions of the system (1) that satisfy just the non-negativity constraints (2).

Eker [Eke93] established that eAC(1,w)-matching is a NP-complete problem by re-
ducing the following 3-PARTITION problem to the elementary AC-matching problem over
signatures with an unbounded number of free constants symbols.

1

Y

, 1<i<n. (3)



3-PARTITION: Given a finite set S = {ay, ..., asm} with 3m elements, a positive integer =,
and a positive integer weight s(a;) for every a; € S such that v/4 < s(a;) < v/2 and
2?2 s(a;) = mry, decide whether S can be partitioned into m disjoint sets Si, ..., Sp
such that ZaeSj s(a) = v for every j < m.

Using systems of linear Diophantine equations with constraints of the form (2) and (3)

as an intermediary, an instance of 3-PARTITION can be reduced to an instance s(a1)X; +

<+ s(asm) Xam ;Ac ~Cy + -+ -+ vCyy, of the elementary AC-matching problem, where
Ch,...,Csy are free constant symbols. It 1s known that 3-PARTITION is a strongly NP-
complete problem, which means that it remains NP-complete even when all integers oc-
curring in it are given in unary (cf. [GJ79]). This property of 3-PARTITION is indispensable
here, since the preceding reduction is in polynomial-time only when the weights s(a;),
1 < i < 3m, and the integer v are in unary®. Moreover, this reduction of 3-PARTITION
to €eAC(1,w)-matching is parsimonious, which in turn implies that the counting problem
#eAC(1,w)-matching is #P-hard. The preceding findings establish the following result.

Theorem 3.1 €¢AC(1,w)-matching is NP-complete and #eAC(1,w)-matching is #P-
complete.

The above result identifies the computational complexity of simultaneous elementary
AC-matching for the case in which the system consists of a single equation and the
signature contains an unbounded number of free constant symbols. At the other end of
the classification of elementary matching problems according to the length of the system
and the number of free constants, we have the case in which the systems of equations are
of unbounded length and the signature contains a single free constant symbol.

Theorem 3.2 €¢AC(w, 1)-matching is NP-complete and #eAC(w, 1)-matching is #P-
complete.

Proof: (Hint) Refinement of the reduction of 1-IN-3 SAT to ¢AC(w, 2)-matching, which
was given in [BS94]. O

The main result of this section shows that if both the length of the system and the num-
ber of free constants are kept bounded, then the elementary AC-matching decision and
counting problems are tractable. In what follows, P stands for the class of decision prob-
lems solvable in deterministic polynomial time, while FP denotes the class of functions
computable in deterministic polynomial time.

Theorem 3.3 €¢AC(k, m)-matching is in P and #eAC(k, m)-matching is in FP, for all
k>1and allm > 1.

Proof: (Hint) Dynamic programming algorithm for counting the solutions of systems
of linear Diophantine equations (given in unary) subject to certain constraints. O

The preceding Theorems 3.1, 3.2, and 3.3 give a complete picture of the computational
complexity of simultaneous elementary AC-matching problems. In the full paper, we
study the complexity of ACU-matching and unveil a different picture, since simultaneous
elementary ACU-matching turns out to be tractable for systems of bounded length, even
if the signature contains an unbounded number of free constants.

3Benanav et al. [BKN&7] state that Chandra and Kanellakis (unpublished) showed that elementary
AC-matching is NP-hard by reducing the BIN PACKING problem to it. BIN PACKING is a strongly NP-
complete problem that contains 3-PARTITION as a special case (cf. [GJ79]).



Table 1: Complexity Results for Simultaneous Elementary Matching

Simultaneous Elementary A-Matching Simultaneous Elementary AC-Matching
number of | number of constants | number of | number of constants |
equations || 1 [ m>2 ] w | | equations || 1 [ m>2 ] w |

k>1 P / FP ‘ k>1 P / FP
w NP-complete / #P-complete w NP-complete / #P-complete

Simultaneous Elementary ACU-Matching

number of | number of constants |

equations || 1 [ m>2 ] w |
k>1 P / FP
w NP-complete / #P-complete

Theorem 3.4 ¢ACU(w, 1)-matching is NP-complete and #eACU(w, 1)-matching is #P-
complete. On the other hand, eACU(k,w)-matching is in P and #ecACU(k,w)-matching
15 in FP, for all k > 1.

We analyze also the complexity of elementary matching for the equational theory A
of semigroups. Our findings are summarized in the following result, which shows that
simultaneous elementary A-matching becomes intractable as soon as the signature F
contains two free constant symbols, even if the system consists of a single equation.

Theorem 3.5 €A(1, m)-matching is NP-complete and #eA(1, m)-matching is #P-com-
plete, for all m > 2. €eA(w,1)-matching is NP-complete and #eA(w,1)-matching is
#P-complete. On the other hand, eA(k,1)-matching is in P and #eA(k, 1)-matching is
i FP, for all k> 1.

The results of this section are illustrated in Table 1.

4 Elementary Matching with Bounded Occurrences of Variables

Up to this point, we classified and studied simultaneous elementary matching problems
by utilizing two parameters, the number of equations in a given system and the number
of free constants in the signature. There is, however, a third natural parameter that often
comes into play in equational matching, namely the maximum number of occurrences of
variables in the instances of the matching problem under consideration. The role of this
parameter is completely understood for the case of AC-matching over signatures contain-
ing free function symbols. Indeed, let ACi-matching be the restriction of AC-matching to
instances in which each variable has at most ¢ occurrences, where ¢ is a positive integer.
As mentioned earlier, Benanav et al. [BKN87] showed that the decision problem for AC1-
matching is solvable in polynomial time, whereas Hermann and Kolaitis [HK94] proved
that the counting problem #ACI-matching is #P-complete (and, hence, for every ¢ > 2,
#ACi-matching is #P-complete as well). Benanav et al. [BKN8&7] also pointed out that



the decision problem for AC3-matching is NP-complete, but left the complexity of AC2-
matching as an open question. This was settled by Verma and Ramakrishnan [VR92], who
established that the decision problem for AC2-matching is NP-complete. By exploiting
the existence of free function symbols in a clever way, Verma and Ramakrishnan [VR92]
showed that SAT restricted to instances in which each Boolean variable has at most three
occurrences can be reduced to AC2-matching?. Free function symbols are also used in a
crucial way when proving that #ACl-matching is #P-hard [HK94].

Next, we investigate the computational complexity of simultaneous elementary AC-
matching problems in which variables have a bounded number of occurrences. This is
done by carrying out a finer analysis of €eAC(k,w)-matching and eAC(w, m)-matching,
which in the previous section were shown to be the intractable cases of simultaneous
elementary AC-matching. If ¢, k, and m are positive integers, then eACi(k,w)-matching
is the restriction of €AC(k,w)-matching to instances in which each variable has at most ¢
occurrences in a given system of k equations. Similarly, we define the classes eACi(w, m)-
matching, eACi(w,w)-matching, and the corresponding classes of counting problems.

All cases of simultaneous elementary ACl-matching turn out to be tractable. Thus,
free function symbols are indispensable for showing that ##AC1-matching is #P-hard.

Theorem 4.1 €ACI(w,w)-matching is in P and #eACl(w,w)-matching is in FP.

Proof: (Hint) For each equation, we find the number of elementary ACU-matchers using
Theorem 3.4 and subtract the number of ACU-matchers violating the constraints (3). If
each variable occurs once, the latter computation can be done in polynomial time. O

Recall that €eAC(1,w)-matching is proved NP-hard and that #eAC(1,w)-matching
is proved #P-hard using a parsimonious reduction from 3-PARTITION (cf. Theorem 3.1).
This reduction generates instances of AC-matching in which variables have an unbounded
number of occurrences. The following result reveals that if we bound the number of occur-
rences of variables, then we cross the dividing line between intractability and tractability.

Theorem 4.2 eACi(k,w) is in P and #eACi(k,w) is in TP, for alli > 1 and all k > 1.

Proof: (Hint) Dynamic programming algorithm for systems of linear Diophantine
equations (in unary) of bounded length and with bounded coefficients. O

To complete the analysis, we consider ¢eAC(w, m)-matching with bounds on the num-
ber of occurrences of variables. It turns out that here three occurrences suffice to establish
NP-hardness and #P-hardness, even over signatures with only one free constant symbol.

Theorem 4.3 €¢AC3(w, 1)-matching is NP-complete and #e¢AC3(w, 1)-matching is #P-
complete.
Proof: (Hint) Parsimonius reduction from POSITIVE 1-IN-3 saT. O

It remains to examine simultaneous elementary AC-matching problems in which the
systems are of unbounded length, but each variable has at most two occurrences. In
order to analyze this case, we bring into the picture concepts and techniques from graph

theory. Recall that if G = (V| F) is a graph, then a matching is a subset M of the set F
of edges such that no two edges in M have a common node, while a complete matching

4This restriction of saT is NP-complete (cf. [GJ79]). In contrast, SAT restricted to instances in which
each variable has at most two occurrences can be decided in polynomial time using resolution.



i1s a matching M such that every node of GG is incident upon an edge in M. The following
generalizations of these concepts turn out to be extremely useful here.

If G = (V,E) is a graph (not necessarily a bipartite one) and b = (b; : i € V) is a
sequence of positive integers, then a b-matching is a subset M of E such that every node i
of (G is incident upon at most b; edges in M. A complete b-matching is a b-matching such
that every node ¢ of (G is incident upon exactly b; edges in M. The b-matching problem
asks: given a graph G = (V) EF) and a sequence b = (b; : i € V) of positive integers,
is there a complete b-matching of GG7 This problem has been studied extensively in the
literature and efficient algorithmic solutions have been found. In particular, Edmonds
and Johnson [EJ69] established that b-matching is solvable in polynomial time. Moreover,
Berge [Ber73] considered the b-matching problem for multigraphs and showed that it has
a polynomial-time reduction to the b-matching problem for graphs. We now have all the
necessary tools to obtain the following result.

Theorem 4.4 ¢AC2(w, 1)-matching is in P, but #e¢AC2(w, 1)-matching is #P-complete.

Proof: (Hint) Every instance of eAC2(w, 1)-matching can be transformed into a system
of linear Diophantine equations such that the elements of the matrix are either 0 or 1,
and each column has exactly two non-zero entries. Such a matrix can be viewed as the
node-edge incidence matrix of a multigraph. As a result, every instance of the original
€¢AC2(w, 1)-matching problem can be reduced in polynomial time to an instance of a
b-matching problem on a multigraph. For the counting problem, use a parsimonious
reduction of #PERFECT MATCHINGS [Val79] to #eAC2(w, 1)-matching. O

It is an open problem to identify the exact complexity of eAC2(w, m)-matching for
m > 2. In this case the decision problem appears to become more difficult, because it
reduces to a b-matching problem with additional coloring constraints. The state of affairs
is clear, however, for the counting problem, since the preceding Theorem 4.4 implies that
#eAC2(w, m)-matching is #P-complete for every m > 2.

In the full paper, we study also the complexity of simultaneous elementary ACU-
matching problems with bounds on the number of occurrences of variables. The following
result summarizes our findings.

Theorem 4.5 eACU2(w,w)-matching is in P, whereas eACU3(w, 1)-matching is NP-
complete. Moreover, #e¢ACU2(w, 1)-matching is #P-complete.

The results of this section are illustrated in Table 2.

We conclude by pointing out that some of our results in this section provide a par-
tial explanation as to why all known combination algorithms for equational unification
have superpolynomial worst-case behavior. Indeed, by Theorem 4.5, simultaneous ele-
mentary ACU2-matching is solvable in polynomial time, while general ACU2-matching
is NP-complete [VR92]. Thus, unless P = NP, the decision problem for general ACU2-
matching can not be solved via a polynomial-time algorithm that combines a decision
procedure for simultaneous elementary ACU2-matching with a syntactic matching algo-
rithm for terms in which each variable occurs at most twice. Moreover, by Theorem 4.1,
simultaneous elementary #£AC1-matching is in FP, while general #AC1-matching is #P-
complete [HK94]. Thus, unless FP = #P, no general ACl-matching algorithm can be
designed using a polynomial-time combination algorithm that combines an elementary
AC1-matching algorithm with a syntactic matching algorithm for linear terms.



Table

2: Simultaneous Elementary Matching with Bounded Variable Occurrence

Simultaneous Elementary

AC1-Matching & ACU1-Matching Simultaneous Elementary AC2-Matching
number of | number of constants | number of | number of constants |
equations || 1 [ m>2 ] w | | equations || 1 [ m>2 ] w |

E>1 E>1 P / FP
P/ FP
w w P/ #P-c ? / #P-complete
Simultaneous Elementary
Simultaneous Elementary ACU2-Matching ACi-Matching & ACUi-Matching, ¢ > 3
number of | number of constants | number of | number of constants |
equations || 1 [ m>2 ] w | | equations || 1 [ m>2 ] w |
E>1 P / FP E>1 P / FP
w P / #P-complete w NP-complete / #P-complete
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