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al. [BKN87] discovered also that AC1-matching, the restriction of AC-matching to termsin which each variable occurs only once, is solvable in polynomial-time. This tractablecase of AC-matching turned out to be the rather isolated, since Verma and Ramakrish-nan [VR92] showed that AC-matching is NP-complete even if each variable is allowedto have only two occurrences in the terms being matched. Aiming to develop a di�erentperspective on the complexity of matching, Kolaitis and Hermann [HK94] introduced andstudied a class of counting problems that arise naturally in this context. More speci�-cally, if E is an equational theory, then #E-matching is the following problem: givena term s and a ground term t, �nd the cardinality of a minimal complete set of E-matchers of s and t. The motivation for considering these counting problems comes fromthe fact that matching and uni�cation algorithms should not only decide whether twogiven terms can be E-matched (E-uni�ed), but should also return a minimal complete setof E-matchers (E-uni�ers). In particular, such algorithms can solve at the same time thecorresponding #E-matching problem. Thus, by identifying the computational complexityof #E-matching, we gain a deeper insight into the expected behavior of matching anduni�cation algorithms than the insight obtained from the analysis of the correspondingdecision problem. In the paper [HK94], it was shown that #A-matching, #AC-matching,and #ACU-matching are all #P-complete problems. The concept of #P-completenesswas introduced by Valiant [Val79] as a means of quantifying the computational di�-culty of counting problems. In many respects, a #P-completeness result for a countingproblem indicates a higher level of intractability than a NP-completeness result for thecorresponding desision problem. Valiant [Val79] showed also that there exist polynomial-time decision problems whose counting version is #P-complete. As it turns out, thisphenomenon occurs also in matching, because in [HK94] it was shown that that #AC1-matching is a #P-complete problem.If one takes a closer look at the above NP-hardness and #P-hardness results formatching, then one realizes that their proofs make use of terms containing free functionsymbols, i.e., function symbols that are not constrained by the axioms of the underly-ing equational theory. To put it di�erently, in these hardness results the signature overwhich the terms are built is allowed to vary and is given as part of the input of the de-cision and counting problem under consideration. In turn, this raises the question: doesthe complexity of the matching problems change, if the signature contains no free func-tion symbols? There are several other situations where it has been established that thepresence of free function symbols a�ects the properties of matching and uni�cation. AsBaader and Siekman [BS94] write, �It is important to note that the signature over whichthe terms of the uni�cation problems may be built has considerable in�uence on the uni-�cation type and on the existence of uni�cation algorithms�. For this reason, in studyingan equational theory E one distinguishes between the case of elementary E-matching(E-uni�cation), where the signature contains no free function symbols, and the case ofgeneral E-matching (E-uni�cation), where the signature contains free function symbolsof arbitrary arity. In both cases the signature may contain one or more free constantsymbols. Elementary E-matching (E-uni�cation) extends naturally to simultaneous ele-mentary E-matching (E-uni�cation), where, instead of just a single equation s ?=E t, oneis given a system of equations s1 ?=E t1; : : : ; sk ?=E tk for which an E-matcher (E-uni�er)is sought. Note that in the case of general E-matching (E-uni�cation) such systems reduceto a single equation f(s1; : : : ; sk) ?=E f(t1; : : : ; tk), where f is a free function symbol.



In this paper, we carry out a systematic investigation of the computational com-plexity of simultaneous elementary E-matching decision and counting problems, where Eis one of the equational theories A, AC or ACU. Our goal is to identify the rôle ofthe signature on the complexity of matching and to delineate the boundary betweenintractability and tractability for elementary matching in these theories. We classify si-multaneous elementary matching problems according to the number of equations in thesystem and the number of free constant symbols in the signature. Eker [Eke93] provedthat elementary AC-matching is NP-complete for single equations over signatures withan unbounded number of free constant symbols. At the other end of the scale, Baader andSiekmann [BS94] pointed out that simultaneous elementary AC-matching is NP-completefor systems of unbounded length over signatures with two free constant symbols. In fact,a slight modi�cation of that reduction shows that a single free constant symbol su�cesfor establishing NP-hardness. We complement the above results in two ways. First, wepoint out that in these cases the corresponding counting problem is #P-complete. Afterthis, we establish that if the systems are of �xed length and the signature contains a�xed number of free constant symbols, then both the decision problem and the count-ing problem for simultaneous elementary AC-matching can be solved in polynomial timeusing dynamic programming. Thus, intractability occurs in AC-matching only when thelength of the systems or the number of free constant symbols grow beyond any bounds.We use the same classi�cation to study and identify the complexity of decisionand counting problems in simultaneous elementary A-matching and ACU-matching. Itturns out that A-matching is tractable in fewer cases than AC-matching, whereas ACU-matching is tractable in more cases. We show that simultaneous elementary A-matchingis solvable in polynomial time only when the systems are of �xed length and the signaturehas a single free constant symbol. In all other cases, the decision problem is NP-completeand the counting problem is #P-complete. In contrast, simultaneous elementary ACU-matching is solvable in polynomial time as long as the systems are of �xed length, evenif the signature has an unbounded number of free constant symbols.Finally, we take a closer look at the intractable cases of simultaneous elementary AC-matching and ACU-matching by considering a third parameter as a resource, namely themaximumnumber of variable occurrences in the systems. While for general AC-matchingone occurrence su�ces for establishing #P-hardenss and two occurrences su�ce for es-tablishing NP-hardness, we show that here the dividing line between tractability and in-tractability is one level higher at two occurrences and three occurrences, respectively. Inparticular, we show that the decision problem for simultaneous elementary AC-matchingwith each variable occurring twice is solvable in polynomial time over signatures with onefree constant symbol, even if the systems are of unbounded length. Moreover, the decisionproblem for simultaneous elementary ACU-matching with each variable occurring twice issolvable in polynomial time, even if the signature contains an unbounded number of freeconstant symbols and the systems are of unbounded length. We derive polynomial-timealgorithms for these problems by reducing them to a class of graph-theoretic problems,known as b-matching , that ask whether a given graph contains a subgraph whose nodessatisfy certain degree constraints. Although b-matching problems have been studied ex-tensively in the context of graph theory to our knowledge this is the �rst time that aconnection has been made between these graph-theoretic problems and matching prob-lems in equational theories. This connection opens the road for incorporating e�cientb-matching algorithms into AC-matching and ACU-matching algorithms.



2 PreliminariesThis section contains the de�nitions of the main concepts and a minimum amount of thenecessary background material from equational matching and computational complexity.Additional material on these topics can be found in [JK91, BS94] and [Pap94].Matching Problems in Equational Theories and their ComplexityA signature F is a countable set of function and constant symbols. If X is a countableset of variables, then T (F ;X ) denotes the set of all terms over the signature F andthe variables in X . Capital letters X;Y; Z; : : :, as well as capital letters with subscriptsXi; Yi; Zi; : : : will be used to denote variables in X .An identity over F is a �rst-order sentence of the form (8X1) : : : (8Xn)(l = r), where land r are terms in T (F ;X ) with variables among X1; : : : ; Xn. Every set E of identitiescan be viewed as the set of equational axioms of an equational theory Th(E) consistingof all identities over F that are logically implied by E. By an abuse of terminology, wewill often say the �equational theory E�, instead of �the equational theory Th(E)�. Thenotation s =E t denotes that the identity (8X1) : : : (8Xn)(s = t) is a member of Th(E).Our main focus will be on the equational theory AC of commutative semigroups andon the equational theory ACU of commutative monoids. For both these theories, thesignature F contains a binary function symbol + that is assumed to be associative andcommutative. Thus, the equational axioms of AC areA: (8X)(8Y )(8Z)(X + (Y + Z) = (X + Y ) + Z) C: (8X)(8Y )(X + Y = Y +X)For ACU, the signature F contains also a constant symbol 0, which is the unit elementfor +. Thus, ACU satis�es also the identity U: (8X)(X + 0 = X). We also consider theequational theory A of semigroups, whose only equational axiom is associativity.A substitution is a mapping �:X ! T (F ;X ) such that X� = X for all but �nitelymany variables X. We say that a term s E-matches a ground term t if there is a sub-stitution � such that s� =E t. In this case, we call � an E-matcher of s and t. It can beshown that a term s E-matches a ground term t if and only if the equation s ?=E t canbe solved in the quotient algebra T (F ;X )==E.E-matching is the following decision problem: given a term s and a ground term t overa signature F , decide whether s E-matches t. Benanav, Kapur, and Narendran [BKN87]investigated the computational complexity of E-matching and showed that A-matching,AC-matching, and ACU-matching are all NP-complete problems.Beside the decision problem, there is an another important (and often more challeng-ing) algorithmic problem arising in matching, namely the problem of designing algorithmswhich not only decide whether a given term s E-matches a ground term t, but also returnas value a minimal complete set �CSME(s; t) of E-matchers of s and t, provided that sE-matches t. An insight into this problem can be gained by studying a related countingproblem in equational matching, that asks for the number of E-matchers in a minimalcomplete set. Before describing this approach in more detail, we state the basic relevantfacts from computational complexity.#P is the class of all counting problems that are computable in polynomial-time us-ing counting Turing machines, i.e., non-deterministic Turing machines equipped with an



additional output tape on which it prints in binary the number of its accepting computa-tions. The class #P was introduced by Valiant [Val79], who established the existence of#P-complete problems, i.e., counting problems in #P such that every problem in #P canbe reduced to them via restricted polynomial-time reductions that preserve the numberof solutions (parsimonious reductions) or at least make it possible to compute the num-ber of solutions of one problem from the other (counting reductions). The prototypical#P-complete problem is #sat, which asks for the number of satisfying assignments ofa given Boolean formula. Valiant [Val79] discovered also that there are polynomial-timedecision problems, such as perfect matching in bipartite graphs, whose correspondingcounting problem is #P-complete. The prevalent view in complexity theory is that a#P-completeness result indicates a higher level of intractability than a NP-completenessresult does. No #P-complete problem is known to be (nor is believed to be) a memberof the class FPH, the functional analog of the polynomial hierarchy PH (cf. [Pap94]).In [HK94], we introduced a class of counting problems in equational matching andstudied their computational complexity using tools from the theory of #P-completeness.More precisely, #E-matching is the following counting problem: given a term s anda ground term t, �nd the cardinality of �CSME(s; t). This problem is well-de�ned forevery �nitary equational theory E. Observe that, on the face of it, #E-matching is aproblem of intermediate di�culty between the decision problem for E-matching andthe problem of designing matching algorithms that return minimal complete sets of E-matchers. Thus, a #P-completeness result about the #E-matching problem of someequational theory E suggests that computing minimal complete sets of E-matchers isa truly intractable problem. In [HK94] we showed that #A-matching, #AC-matching,and #ACU-matching are all #P-complete problems. Moreover, we established therethat even #AC1-matching is #P-complete, where AC1 is the restriction of AC to linearterms (terms in which each variable occurs only once). In contrast, [BKN87] showed thatthe decision problem for AC1-matching is solvable in polynomial time.Simultaneous Elementary MatchingLet F be a signature, X a set of variables, and E an equational theory whose axiomsare identities over F . The signature F may contain function or constant symbols thatdo not occur in the equational axioms of E. Such symbols are called free, since they arenot constrained in any way by E. As mentioned earlier, the existence of free function orconstant symbols in the signature may a�ect the structural properties of an equationaltheory E and have an impact on uni�cation or matching algorithms for E (cf. [BS94]).Closer to our interests here, it should be noted that the proof in [BKN87] that AC-matching is NP-hard makes an essential use of free function symbols in the signature.More recently, Eker [Eke93] showed that AC-matching remains NP-hard over signatureswith no free function symbols; in the proof of this result, however, the signature athand contains an unbounded number of free constant symbols. The #P-hardness proofsfor #AC-matching and #AC1-matching in [HK94] depend on free function symbols andfree constant symbols in the signature. Thus, it is natural to ask whether and how thecomputational complexity of E-matching and #E-matching changes, if the instances ofthese problems are restricted to terms over signatures having no free function symbolsand possibly only a bounded number of free constant symbols.The elementary E-matching problem is the restriction of E-matching to signatureswith no free function symbols. Thus, given a pair (s; t), where s is a term and t is a



ground term with function symbols among those in the equational axioms of E, thequestion is to decide whether there is a substitution � such that s� =E t. The elementary#E-matching problem is the analogous restriction of #E-matching. In the sequel, we willalso be interested in extensions of elementary matching problems where each instancecan be a �nite set of pairs of terms, instead of just a single pair of terms.The simultaneous elementary E-matching problem is the following decision problem:given a �nite set f(s1; t1); : : : ; (sk; tk)g, where each si is a term and each ti is a groundterm with function symbols among those in the equational axioms of E, decide whetherthere is a substitution � such that si� =E ti for every i � k. Such a substitution is calledan E-matcher of the set f(s1; t1); : : : ; (sk; tk)g. Similarly, the simultaneous elementary#E-matching problem is the following counting problem: given a �nite set of pairs ofterms as above, �nd the cardinality of a minimal complete set of E-matchers of that set.From now on, the notation s1 ?=E t1; : : : ; sk ?=E tk will be used to represent an instanceof the simultaneous elementary E-matching (or #E-matching) problem.In e�ect, the simultaneous elementary E-matching problem asks for the solution of asystem of equations s1 ?=E t1; : : : ; sk ?=E tk in the quotient algebra T (F ;X )==E, wherethe function symbols of F are exactly the function symbols occurring in the equationalaxioms of E. Of course, one can consider simultaneous E-matching problems over arbi-trary signatures. However, the simultaneous E-matching problem over arbitrary signa-tures is reducible to the E-matching problem, because one can use free function symbolsto encode a system of equations into a single equation. We will classify simultaneouselementary matching problems using two parameters, namely the number of equations ina given system, called the length of the system, and the number of free constants in thesignature. Note that the number of free constant symbols is unimportant for matchingproblems over signatures with free function symbols, since a set fC1; C2; : : : ; Cmg of freeconstant symbols can be represented by the set fg(C); g(g(C)); : : : ; gm(C)g, where C isa free constant symbol and g is a free unary function symbol.If k and m are two positive integers, then the �E(k;m)-matching problem consistsof all instances of simultaneous elementary E-matching with at most k equations and atmost m free constants. We also put�E(k; !) = 1[m=1 �E(k;m) and �E(!;m) = 1[k=1 �E(k;m)Thus, in �E(k; !)-matching the signature has an unbounded number of free constantsymbols, while in �E(!;m)-matching the systems of equations have unbounded length.We de�ne similarly#�E(k;m)-matching,#�E(k; !)-matching, and#�E(!;m)-matching.3 Simultaneous Elementary AC-MatchingIf + is an associative and commutative binary function symbol, then every term builtusing +, variables from X , and free constants can be brought into an equivalent �attenedform. This means that all parentheses have been removed and all occurrences of identicalvariables and free constants have been grouped together using multiplicity coe�cients,so that if t is a variable or a free constant, then every term of the form t+ � � �+ t with �summands equal to t is replaced by the expression �t. Thus, an instance of the elementary



AC-matching problem is an equation of the form�1X1 + � � �+ �nXn ?=AC 1C1 + � � �+ mCm;where each Xi is a variable from X , each Cj is a free constant, and each �i and each jis a positive integer. The size of such an instance of elementary AC-matching is equal tonmaxf�1; : : : ; �ng+mmaxf1; : : : ; mg, i.e., all integers occurring in this instance areviewed as written in unary notation. In other words, the size of an instance s ?=AC t ofelementary AC-matching is essentially the sum of all occurrences of variables and freeconstants occurring in s and t, before s and t are �attened. By the same token, the sizeof an instance s1 ?=AC t1; : : : ; sk ?=AC tk of the simultaneous AC-matching problem isequal to the sum of the sizes of each instance si ?=AC ti, 1 � i � k.It is well known that there is a close relationship between the elementary AC-matchingproblem and the problem of solving systems of linear Diophantine equations subject tocertain additional constraints. Let �1X1 + � � �+ �nXn ?=AC 1C1 + � � �+ mCm be aninstance of elementary AC-matching and assume that � is an AC-matcher for it. Thesubstitution � assigns to each variable Xi, 1 � i � n, a certain number (possibly zero)of copies of each constant symbol Cj, 1 � j � m. This can be expressed formally byXi 7! xi1C1 + � � �+ ximCm, 1 � i � n, where each xij is an arithmetic variable rangingover non-negative integers and expressing how many copies of the constant symbol Cjwill be assigned to the variable Xi. Let us consider now how the copies of each constantsymbolCj are distributed among the variablesXi: out of a total of j copies ofCj, we havethat x1j copies are assigned toX1, x2j copies are assigned toX2, and so on until xnj copiesare assigned to Xn. We arrive at the following system of linear Diophantine equations�1x11 + � � � + �nxn1 = 1... ... ...�1x1m + � � � + �nxnm = m (1)Note that an integer solution of the above system does not necessarily give rise to anAC-matcher of the instance �1X1+ � � �+�nXn ?=AC 1C1+ � � �+mCm, unless it satis�escertain constraints arising from the assignments Xi 7! xi1C1 + � � �+ ximCm, 1 � i � n.More speci�cally, each xij must be a non-negative integer and each variable must beassigned at least one copy of at least one of the constants symbols. Thus, there is aone-to-one and onto correspondence between AC-matchers of �1X1 + � � �+ �nXn ?=AC1C1 + � � �+ mCm and integer solutions of the system (1) that satisfy the constraintsxij � 0; 1 � i � n; 1 � j � m (2)mXj=1 xij � 1; 1 � i � n: (3)In elementary ACU-matching, constraints (3) are not necessary, because we can alwaysassign the constant 0 of the unit axiom U to a variable. As a result, ACU-matchers corre-spond to solutions of the system (1) that satisfy just the non-negativity constraints (2).Eker [Eke93] established that �AC(1; !)-matching is a NP-complete problem by re-ducing the following 3-partition problem to the elementary AC-matching problem oversignatures with an unbounded number of free constants symbols.



3-partition: Given a �nite set S = fa1; : : : ; a3mg with 3m elements, a positive integer ,and a positive integer weight s(ai) for every ai 2 S such that =4 < s(ai) < =2 andP3mi=1 s(ai) = m, decide whether S can be partitioned into m disjoint sets S1, . . . , Smsuch that Pa2Sj s(a) =  for every j � m.Using systems of linear Diophantine equations with constraints of the form (2) and (3)as an intermediary, an instance of 3-partition can be reduced to an instance s(a1)X1+� � �+ s(a3m)X3m ?=AC C1 + � � �+ Cm of the elementary AC-matching problem, whereC1; : : : ; C3m are free constant symbols. It is known that 3-partition is a strongly NP-complete problem, which means that it remains NP-complete even when all integers oc-curring in it are given in unary (cf. [GJ79]). This property of 3-partition is indispensablehere, since the preceding reduction is in polynomial-time only when the weights s(ai),1 � i � 3m, and the integer  are in unary3. Moreover, this reduction of 3-partitionto �AC(1; !)-matching is parsimonious, which in turn implies that the counting problem#�AC(1; !)-matching is #P-hard. The preceding �ndings establish the following result.Theorem 3.1 �AC(1; !)-matching is NP-complete and #�AC(1; !)-matching is #P-complete.The above result identi�es the computational complexity of simultaneous elementaryAC-matching for the case in which the system consists of a single equation and thesignature contains an unbounded number of free constant symbols. At the other end ofthe classi�cation of elementary matching problems according to the length of the systemand the number of free constants, we have the case in which the systems of equations areof unbounded length and the signature contains a single free constant symbol.Theorem 3.2 �AC(!; 1)-matching is NP-complete and #�AC(!; 1)-matching is #P-complete.Proof: (Hint) Re�nement of the reduction of 1-in-3 sat to �AC(!; 2)-matching, whichwas given in [BS94]. 2The main result of this section shows that if both the length of the system and the num-ber of free constants are kept bounded, then the elementary AC-matching decision andcounting problems are tractable. In what follows, P stands for the class of decision prob-lems solvable in deterministic polynomial time, while FP denotes the class of functionscomputable in deterministic polynomial time.Theorem 3.3 �AC(k;m)-matching is in P and #�AC(k;m)-matching is in FP, for allk � 1 and all m � 1.Proof: (Hint) Dynamic programming algorithm for counting the solutions of systemsof linear Diophantine equations (given in unary) subject to certain constraints. 2The preceding Theorems 3.1, 3.2, and 3.3 give a complete picture of the computationalcomplexity of simultaneous elementary AC-matching problems. In the full paper, westudy the complexity of ACU-matching and unveil a di�erent picture, since simultaneouselementary ACU-matching turns out to be tractable for systems of bounded length, evenif the signature contains an unbounded number of free constants.3Benanav et al. [BKN87] state that Chandra and Kanellakis (unpublished) showed that elementaryAC-matching is NP-hard by reducing the bin packing problem to it. bin packing is a strongly NP-complete problem that contains 3-partition as a special case (cf. [GJ79]).



Table 1: Complexity Results for Simultaneous Elementary MatchingSimultaneous Elementary A-Matchingnumber of number of constantsequations 1 m � 2 !k � 1 P / FP! NP-complete / #P-complete Simultaneous Elementary AC-Matchingnumber of number of constantsequations 1 m � 2 !k � 1 P / FP! NP-complete / #P-completeSimultaneous Elementary ACU-Matchingnumber of number of constantsequations 1 m � 2 !k � 1 P / FP! NP-complete / #P-completeTheorem 3.4 �ACU(!; 1)-matching is NP-complete and #�ACU(!; 1)-matching is #P-complete. On the other hand, �ACU(k; !)-matching is in P and #�ACU(k; !)-matchingis in FP, for all k � 1.We analyze also the complexity of elementary matching for the equational theory Aof semigroups. Our �ndings are summarized in the following result, which shows thatsimultaneous elementary A-matching becomes intractable as soon as the signature Fcontains two free constant symbols, even if the system consists of a single equation.Theorem 3.5 �A(1;m)-matching is NP-complete and #�A(1;m)-matching is #P-com-plete, for all m � 2. �A(!; 1)-matching is NP-complete and #�A(!; 1)-matching is#P-complete. On the other hand, �A(k; 1)-matching is in P and #�A(k; 1)-matching isin FP, for all k � 1.The results of this section are illustrated in Table 1.4 Elementary Matching with Bounded Occurrences of VariablesUp to this point, we classi�ed and studied simultaneous elementary matching problemsby utilizing two parameters, the number of equations in a given system and the numberof free constants in the signature. There is, however, a third natural parameter that oftencomes into play in equational matching, namely the maximumnumber of occurrences ofvariables in the instances of the matching problem under consideration. The rôle of thisparameter is completely understood for the case of AC-matching over signatures contain-ing free function symbols. Indeed, let ACi-matching be the restriction of AC-matching toinstances in which each variable has at most i occurrences, where i is a positive integer.As mentioned earlier, Benanav et al. [BKN87] showed that the decision problem for AC1-matching is solvable in polynomial time, whereas Hermann and Kolaitis [HK94] provedthat the counting problem #AC1-matching is #P-complete (and, hence, for every i � 2,#ACi-matching is #P-complete as well). Benanav et al. [BKN87] also pointed out that



the decision problem for AC3-matching is NP-complete, but left the complexity of AC2-matching as an open question. This was settled by Verma and Ramakrishnan [VR92], whoestablished that the decision problem for AC2-matching is NP-complete. By exploitingthe existence of free function symbols in a clever way, Verma and Ramakrishnan [VR92]showed that sat restricted to instances in which each Boolean variable has at most threeoccurrences can be reduced to AC2-matching4. Free function symbols are also used in acrucial way when proving that #AC1-matching is #P-hard [HK94].Next, we investigate the computational complexity of simultaneous elementary AC-matching problems in which variables have a bounded number of occurrences. This isdone by carrying out a �ner analysis of �AC(k; !)-matching and �AC(!;m)-matching,which in the previous section were shown to be the intractable cases of simultaneouselementary AC-matching. If i, k, and m are positive integers, then �ACi(k; !)-matchingis the restriction of �AC(k; !)-matching to instances in which each variable has at most ioccurrences in a given system of k equations. Similarly, we de�ne the classes �ACi(!;m)-matching, �ACi(!; !)-matching, and the corresponding classes of counting problems.All cases of simultaneous elementary AC1-matching turn out to be tractable. Thus,free function symbols are indispensable for showing that #AC1-matching is #P-hard.Theorem 4.1 �AC1(!; !)-matching is in P and #�AC1(!; !)-matching is in FP.Proof: (Hint) For each equation, we �nd the number of elementary ACU-matchers usingTheorem 3.4 and subtract the number of ACU-matchers violating the constraints (3). Ifeach variable occurs once, the latter computation can be done in polynomial time. 2Recall that �AC(1; !)-matching is proved NP-hard and that #�AC(1; !)-matchingis proved #P-hard using a parsimonious reduction from 3-partition (cf. Theorem 3.1).This reduction generates instances of AC-matching in which variables have an unboundednumber of occurrences. The following result reveals that if we bound the number of occur-rences of variables, then we cross the dividing line between intractability and tractability.Theorem 4.2 �ACi(k; !) is in P and #�ACi(k; !) is in FP, for all i � 1 and all k � 1.Proof: (Hint) Dynamic programming algorithm for systems of linear Diophantineequations (in unary) of bounded length and with bounded coe�cients. 2To complete the analysis, we consider �AC(!;m)-matching with bounds on the num-ber of occurrences of variables. It turns out that here three occurrences su�ce to establishNP-hardness and #P-hardness, even over signatures with only one free constant symbol.Theorem 4.3 �AC3(!; 1)-matching is NP-complete and #�AC3(!; 1)-matching is #P-complete.Proof: (Hint) Parsimonius reduction from Positive 1-in-3 sat. 2It remains to examine simultaneous elementary AC-matching problems in which thesystems are of unbounded length, but each variable has at most two occurrences. Inorder to analyze this case, we bring into the picture concepts and techniques from graphtheory. Recall that if G = (V;E) is a graph, then a matching is a subset M of the set Eof edges such that no two edges in M have a common node, while a complete matching4This restriction of sat is NP-complete (cf. [GJ79]). In contrast, sat restricted to instances in whicheach variable has at most two occurrences can be decided in polynomial time using resolution.



is a matchingM such that every node of G is incident upon an edge in M . The followinggeneralizations of these concepts turn out to be extremely useful here.If G = (V;E) is a graph (not necessarily a bipartite one) and b = (bi : i 2 V ) is asequence of positive integers, then a b-matching is a subset M of E such that every node iof G is incident upon at most bi edges in M . A complete b-matching is a b-matching suchthat every node i of G is incident upon exactly bi edges in M . The b-matching problemasks: given a graph G = (V;E) and a sequence b = (bi : i 2 V ) of positive integers,is there a complete b-matching of G? This problem has been studied extensively in theliterature and e�cient algorithmic solutions have been found. In particular, Edmondsand Johnson [EJ69] established that b-matching is solvable in polynomial time. Moreover,Berge [Ber73] considered the b-matching problem for multigraphs and showed that it hasa polynomial-time reduction to the b-matching problem for graphs. We now have all thenecessary tools to obtain the following result.Theorem 4.4 �AC2(!; 1)-matching is in P, but #�AC2(!; 1)-matching is #P-complete.Proof: (Hint) Every instance of �AC2(!; 1)-matching can be transformed into a systemof linear Diophantine equations such that the elements of the matrix are either 0 or 1,and each column has exactly two non-zero entries. Such a matrix can be viewed as thenode-edge incidence matrix of a multigraph. As a result, every instance of the original�AC2(!; 1)-matching problem can be reduced in polynomial time to an instance of ab-matching problem on a multigraph. For the counting problem, use a parsimoniousreduction of #perfect matchings [Val79] to #�AC2(!; 1)-matching. 2It is an open problem to identify the exact complexity of �AC2(!;m)-matching form � 2. In this case the decision problem appears to become more di�cult, because itreduces to a b-matching problem with additional coloring constraints. The state of a�airsis clear, however, for the counting problem, since the preceding Theorem 4.4 implies that#�AC2(!;m)-matching is #P-complete for every m � 2.In the full paper, we study also the complexity of simultaneous elementary ACU-matching problems with bounds on the number of occurrences of variables. The followingresult summarizes our �ndings.Theorem 4.5 �ACU2(!; !)-matching is in P, whereas �ACU3(!; 1)-matching is NP-complete. Moreover, #�ACU2(!; 1)-matching is #P-complete.The results of this section are illustrated in Table 2.We conclude by pointing out that some of our results in this section provide a par-tial explanation as to why all known combination algorithms for equational uni�cationhave superpolynomial worst-case behavior. Indeed, by Theorem 4.5, simultaneous ele-mentary ACU2-matching is solvable in polynomial time, while general ACU2-matchingis NP-complete [VR92]. Thus, unless P = NP, the decision problem for general ACU2-matching can not be solved via a polynomial-time algorithm that combines a decisionprocedure for simultaneous elementary ACU2-matching with a syntactic matching algo-rithm for terms in which each variable occurs at most twice. Moreover, by Theorem 4.1,simultaneous elementary #AC1-matching is in FP, while general #AC1-matching is #P-complete [HK94]. Thus, unless FP = #P, no general AC1-matching algorithm can bedesigned using a polynomial-time combination algorithm that combines an elementaryAC1-matching algorithm with a syntactic matching algorithm for linear terms.



Table 2: Simultaneous Elementary Matching with Bounded Variable OccurrenceSimultaneous ElementaryAC1-Matching & ACU1-Matchingnumber of number of constantsequations 1 m � 2 !k � 1! P / FP Simultaneous Elementary AC2-Matchingnumber of number of constantsequations 1 m � 2 !k � 1 P / FP! P / #P-c ? / #P-completeSimultaneous Elementary ACU2-Matchingnumber of number of constantsequations 1 m � 2 !k � 1 P / FP! P / #P-complete Simultaneous ElementaryACi-Matching & ACUi-Matching, i � 3number of number of constantsequations 1 m � 2 !k � 1 P / FP! NP-complete / #P-completeReferences[Ber73] C. Berge. Graphs and hypergraphs. North-Holland, Amsterdam, 2nd edition, 1973.[BHK+88] H.-J. Bürckert, A. Herold, D. Kapur, J.H. Siekmann, M.E. Stickel, M. Tepp, andH. Zhang. Opening the AC-uni�cation race. Journal of Automated Reasoning,4(4):465�474, 1988.[BKN87] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journalof Symbolic Computation, 3:203�216, 1987.[BS94] F. Baader and J.H. Siekmann. Uni�cation theory. In D.M. Gabbay, C.J. Hogger,and J.A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and LogicProgramming, volume 2: Deduction Methodologies, pages 41�125. Oxford UniversityPress, Oxford (UK), 1994.[EJ69] J. Edmonds and E.L. Johnson. Matching: A well-solved class of integer linear pro-grams. In Combinatorial Structures and Their Applications, Calgary (Canada), pages89�92. Gordon and Breach, 1969.[Eke93] S.M. Eker. Improving the e�ciency of AC matching and uni�cation. Research report2104, Institut de Recherche en Informatique et en Automatique, November 1993.[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theoryof NP-completeness. W.H. Freeman and Co, 1979.[HK94] M. Hermann and P.G. Kolaitis. The complexity of counting problems in equationalmatching. In A. Bundy, editor, Proceedings 12th International Conference on Auto-mated Deduction (CADE'94), Nancy (France), volume 814 of Lecture Notes in Com-puter Science (in Arti�cial Intelligence), pages 560�574. Springer-Verlag, June 1994.[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, editors, ComputationalLogic. Essays in honor of Alan Robinson, chapter 8, pages 257�321. MIT Press,Cambridge (MA, USA), 1991.[Pap94] C.H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.[Val79] L.G. Valiant. The complexity of computing the permanent. Theoretical ComputerScience, 8(2):189�201, 1979.
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