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was #perfet mathings, whih is the problem of ounting the number of perfet mathings in agiven bipartite graph. Indeed, Valiant [Val79a℄ showed that #perfet mathings is #P-ompletevia polynomial-time 1-Turing redutions, that is, Turing redutions that only allow a single all toan orale. Subsequent researh in this area revealed an abundane of other natural #P-ompleteproblems possessing these properties [Val79b, PB83, Lin86℄.In addition to introduing #P, Valiant [Val79a℄ also developed a mahine-based frameworkfor introduing higher ounting omplexity lasses. In this framework, the �rst lass beyond#P is the lass #NP of funtions that ount the number of aepting paths of polynomial-timenondeterministi Turing mahines with aess to NP orales. More reently, Hemaspaandra andVollmer [HV95℄ developed a prediate-based framework for introduing higher ounting omplexitylasses, whih subsumes Valiant's framework and makes it possible to introdue other ountinglasses that draw �ner distintions. In partiular, Valiant's lass #NP oinides with the lass#�oNP of the Hemaspaandra-Vollmer framework.As regards omplete problems for these higher ounting omplexity lasses, the state of a�airs israther ompliated. Toda and Watanabe [TW92℄ showed if a problem is #P-hard via polynomial-time 1-Turing redutions, then it is also #�oNP-hard and #��Pk -hard, for eah k � 2, where#��Pk is the ounting version of the lass �Pk at the k-th level of the polynomial hierarhy PH.This surprising result yields an abundane of problems that are omplete for these higher ountinglasses; for instane, #perfet mathings is suh a problem. At the same time, it stronglysuggests that #P, #�oNP, and all other higher ounting lasses are not losed under polynomial-time 1-Turing redutions. In turn, this means that problems like #perfet mathings do notapture the inherent omplexity of the higher ounting omplexity lasses. Needless to say that theselasses are losed under parsimonious redutions, i.e., polynomial-time redutions that preserve thenumber of solutions. The parsimonious redutions, however, also preserve the omplexity of theunderlying deision problem; thus, they annot be used to disover the existene of problems thatare omplete for the higher ounting omplexity lasses and exhibit an \easy-to-deide, but hard-to-ount" behavior.In this paper, we introdue a new type of redutions between ounting problems, whih weall subtrative redutions, sine they make it possible to ount the number of solutions by �rstoverounting them and then arefully subtrating any surplus. We make a ase that the subtrativeredutions are perfetly tailored for the study of #�oNP and of the higher ounting omplexitylasses #��Pk , k � 2. To this e�et, we �rst show that eah of these higher ounting omplexitylasses is losed under subtrative redutions. We then fous on the lass #�oNP and showthat it ontains natural omplete problems via subtrative redutions, suh as the problem ofounting the minimal models of a Boolean formula in onjuntive normal form and the problemof ounting the ardinality of the set of minimal solutions of a homogeneous system of linearDiophantine inequalities. These two partiular ounting problems have the added feature thatthe omplexity of their underlying deision problems is lower than �P2 -omplete, whih is theomplexity of the deision problem underlying #�1sat, the generi #�oNP-omplete problem viaparsimonious redutions.2 Counting Problems and Counting Complexity ClassesA ounting problem is typially presented using a suitable witness funtion whih for every inputx, returns a set of witnesses for x. Formally, a witness funtion is a funtion w: �� �! P<!(�),where � and � are two alphabets, and P<!(�) is the olletions of all �nite subsets of �. Everysuh witness funtion gives rise to the following ounting problem: given a string x 2 �, �nd the2



ardinality jw(x)j of the witness set w(x). In the sequel, we will refer to the funtion w 7! jw(x)jas the ounting funtion assoiated with the above ounting problem; moreover, we will identifyounting problems with their assoiated ounting funtions.Valiant [Val79a, Val79b℄ was the �rst to investigate the omputational omplexity of ountingproblems. To this e�et, he introdued the lass #P of ounting funtions that ount the number ofaepting paths of nondeterministi polynomial-time Turing mahines. The prototypial problemin #P is #sat, whih is the ounting version of Boolean satis�ability.#SATInput: A Boolean formula ' in onjuntive normal form.Output: Number of truth assignments to the variables of ' that satisfy '.Valiant [Val79a℄ showed that #sat is #P-omplete via parsimonious redutions, that is, everyounting problem in #P an be redued to #sat via a polynomial-time redution that preservesthe ardinalities of the witness sets. Moreover, the same holds true for the ounting versions ofmany other NP-omplete problems. Valiant's seminal disovery, however, was the existene of aplethora of problems that exhibit an \easy-to-deide, but hard-to-ount" behavior. More preisely,if a ounting problem is desribed via a witness funtion w, then the underlying deision problem forw asks: given a string x, is w(x) 6= ;? Valiant [Val79a, Val79b℄ showed that there are #P-ompleteproblems suh that their underlying deision problems is solvable in polynomial time. The �rstimportant problem shown to possess these properties was #perfet mathings, whih is theproblem of ounting the number of perfet mathings in a bipartite graph. Clearly, unless P = NP,#perfet mathings (and any other problem exhibiting the easy-to-deide, but hard-to-ountbehavior) annot be #P-omplete under parsimonious redutions. As it turns out, #perfetmathings is #P-omplete via polynomial-time 1-Turing redutions, whih are a restrited formof Turing redutions allowing a single query to an orale. More preisely, a ounting problem vis polynomial-time 1-Turing reduible to a ounting problem w, if there is a deterministi Turingmahine M that omputes jv(x)j in polynomial time by making a single all to an orale thatomputes jw(y)j. Note that parsimonious redutions onstitute the speial ase of polynomial-time1-Turing redutions in whih v = w Æ g, for some polynomial-time omputable total funtion g.In other words, the orale for jw(y)j is queried one and no omputation is performed after theorale's answer is reeived.In addition to initiating the study of #P, Valiant [Val79a, Val79b℄ developed a framework forintroduing higher ounting omplexity lasses. Spei�ally, for every omplexity lass C of deisionproblems, he de�ned #C to be the unionSA2C(#P)A, where (#P)A is the olletion of all funtionsthat ount the aepting paths of nondeterministi polynomial-time Turing mahines having A astheir orale. Thus, in this framework, #NP is the lass of funtions that ount the number ofaepting paths of NPNP mahines. Note that, sine there is no di�erene between querying theorale or its omplement, #C = #oC holds for every omplexity lass C. In partiular, we havethat #NP = #oNP; more generally, #�Pk = #�Pk , for every k � 1, where �Pk is the k-th level ofthe polynomial hierarhy PH and �Pk = o�Pk (reall that �P1 = NP and �P1 = oNP).More reently, researhers have introdued higher omplexity ounting lasses using a prediate-based framework that fouses on the omplexity of membership in the witness sets. Spei�ally, ifC is a omplexity lass of deision problems, then Hemaspaandra and Vollmer [HV95℄ de�ne #�Cto be the lass of all ounting problems whose witness funtion w satis�es the following onditions:1. There is a polynomial p(n) suh that for every x and every y 2 w(x), we have that jyj � p(jxj),where jxj is the length of x and jyj is the length of y;2. The deision problem \given x and y, is y 2 w(x)?" is in C.3



What is the relationship between ounting omplexity lasses in these two di�erent frameworks?It is easy to verify that #P = #�P, that is, Valiant's lass #P oinides with the lass of witnessfuntions for whih membership in the witness set an be tested in polynomial time. As regardshigher ounting omplexity lasses, information about this relationship is provided by the followingresult, whih is essentially due to Toda [Tod91℄ (see also [HV95℄).Theorem 2.1 For every k � 1, #��Pk � #�Pk = #�P�Pk = #��Pk . In partiular, #�NP � #NP =#�PNP = #�oNP.Proof: (Hint) It is easy to verify that #�Pk = #�P�Pk holds for every k � 1. It is harder, however,to establish that #�P�Pk = #��Pk holds for every k � 1. For k = 1, this was proved by Toda [Tod91℄in his Ph.D. thesis; a self-ontained proof an be found in Hemaspaandra and Vollmer [HV95℄. Fork > 1, the proof proeeds along the lines of the proof for k = 1 in [HV95℄ by de�ning a prediate Bthat desribes paths of omputations of a P�Pk -mahine, and showing that B is in �Pk . Details willappear in the full paper. Finally, the ontainment #��Pk � #�P�Pk follows from the ontainment�Pk � P�Pk . 2Theorem 2.1 shows that the prediate-based framework not only subsumes the mahine-basedframework, but also makes it possible to make �ner distintions between ounting omplexity lassesthat were absent in the mahine-based framework. Indeed, for eah k � 1, Valiant's lass #�Pk(whih is the same as #�Pk ) oinides with #��Pk . Moreover, the lass #��Pk appears to be di�erentand, hene, larger than #��Pk . In partiular, results by K�obler, Sh�oning, and Tor�an [KST89℄ implythat #�NP = #�oNP if and only if NP = oNP.In general, what makes a omplexity lass interesting is the existene of natural problems thatare omplete for the lass. As mentioned earlier, #P is a partiularly interesting omplexity lassbeause it ontains natural omplete problems, suh as #perfet mathings, whose underlyingdeision problem is solvable in polynomial time. Do the higher ounting omplexity lasses #��Pk(and #��Pk ) ontain natural omplete problems and, if so, do some of these problems have aneasier underlying deision problem than others? We begin exploring these questions by onsideringounting problems based on quanti�ed Boolean formulas with a bounded number of quanti�eralternations. In what follows, k is a �xed positive integer.#�kSATInput: A formula '(y1; : : : ; yn) = 8x19x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Booleanformula.Output: Number of truth assignment to the variables y1; : : : ; yn that satisfy '.Proposition 2.2 #�ksat is #��Pk -omplete via parsimonious redutions. In addition, if k is odd(even), then the problem remains #��Pk -omplete when restrited to inputs in whih the quanti�er-free part is a Boolean formula in disjuntive normal form (respetively, in onjuntive normalform).The above result seems to be part of the folklore, although we are not able to loate a spei�referene; a self-ontained proof of Proposition 2.2 an be found in the Appendix. One an alsode�ne the ounting problem #�ksat in a similar manner and show that it is #��Pk -omplete viaparsimonious redutions.Note that the deision problem underlying #�ksat is �k+1sat, whih is the prototypial �Pk+1-omplete problem. Thus, the question beomes: are there any natural #��Pk -omplete problemssuh that their underlying deision problem is of lower omputational omplexity (i.e., lower than4



�Pk+1-omplete)? Clearly, unless �Pk+1 ollapses to a lower omplexity lass, no suh problem anbe #��Pk -omplete via parsimonious redutions, whih means that a broader lass of redutionshas to be onsidered. To this e�et, Toda and Watanabe [TW92℄ proved the following surprisingand quite signi�ant result: if a ounting problem is #P-hard via polynomial-time 1-Turing re-dutions, then it is also #��Pk -omplete via the same redutions, for every k � 1. Consequently,#perfet mathings is #��Pk -omplete via polynomial-time 1-Turing redutions. At �rst sight,Toda and Watanabe's theorem [TW92℄ an be interpreted as providing an abundane of #��Pk -omplete problems suh that their underlying deision problem is of low omplexity. A moment'sreetion, however, reveals that this theorem provides strong evidene that #P, #�oNP, and allother higher ounting omplexity #��Pk , k � 2, are not losed under polynomial-time 1-Turingredution. Moreover, it implies that polynomial-time 1-Turing redutions annot help us disoveromplete problems that embody the inherent diÆulty of eah ounting omplexity lasses #��Pk ,k � 1, and allow us to draw meaningful distintions between these lasses. Consequently, thehallenge is to disover a di�erent lass of redutions that have the following two ruial properties:(1) eah lass #��Pk , k � 1, is losed under these redutions; (2) eah lass #��Pk , k � 1, ontainsnatural problems that are omplete for the lass via these redutions. In what follows, we take the�rst steps towards onfronting this hallenge.3 Subtrative RedutionsResearhers in strutural omplexity theory have extensively investigated various losure propertiesof #P and of ertain other ounting omplexity lasses (see [HO92, OH93℄). For instane, it is wellknown and easy to prove that #P is losed under both addition and multipliation.1 In turn, this hasmotivated researhers to introdue redutions that take advantage of losure properties. Indeed,Saluja, Subrahmanyam and Thakur [SST95℄ and Sharell [Sha98℄ used the losure of #P underaddition and multipliation to introdue approximation-preserving redutions between ountingproblems. In partiular, Sharell's [Sha98℄ PL-redutions involve positive linear ombinations thatapproximate the desired value from below. Unfortunately, these redutions do not seem to be suitedfor our purposes. Instead, we adopt a di�erent approah and introdue the lass of subtrativeredutions that �rst overount and then subtrat any surplus items. It should be emphasized thatde�ning suh redutions is a deliate matter, sine many ounting omplexity lasses, inluding#P, do not appear to be losed under subtration. Spei�ally, Ogiwara and Hemahandra [OH93℄have shown that #P is losed under subtration if and only if the lass PP of problems solvable inprobabilisti polynomial time oinides with the lass UP of problems solvable by an unambiguousTuring mahine in polynomial time, whih is onsidered an unlikely eventuality. Before de�ningthe lass of subtrative redutions, we need to introdue ertain auxiliary onepts and establishnotation.Let D be a non-empty set. Intuitively, a multiset on D is a olletion of elements of D in whihelements may have multiple ourrenes. More formally, a multiset M on D an be viewed as afuntion M :D �! N that assigns to eah element x 2 D the number M(x) of the ourrenes of xin M . The multisets on D an be equipped with the operations of union and di�erene as follows.Let A and B be two multisets on D. The union of A and B is the multiset A� B suh that(A�B)(x) = A(x) +B(x) for every x 2 D. The di�erene of A and B is the multiset A	B suhthat (A	B)(x) = max(A(x)�B(x); 0) for every x 2 D. We say that A is ontained in B, and writeA � B, if A(x) � B(x) for every x 2 D. Note that if B � A, then (A	B)(x) = A(x)�B(x) holdsfor all x 2 D. With eah element x 2 D we assoiate the membership funtion mx that satis�es the1Apparently, K. Regan was the �rst to observe this losure property of #P, see [HO92℄.5



following equations: mx(A) = A(x), mx(A � B) = A(x) + B(x), and mx(A 	 B) = A(x) � B(x),provided that B � A. Hene, whenever multiset di�erene is taking plae between two multisetssuh that one is ontained in the other, then the multiset operations an be replaed by the ordinaryarithmeti operations. Finally, if A1; : : : ; An are multisets, then we write Lni=1Ai to denote theunion A1 � � � � �An.Let �, � be two alphabets and let R � �� � �� be a binary relation between strings suhthat, for eah x 2 ��, the set R(x) = fy 2 �� j R(x; y)g is �nite. We write #�R to denote thefollowing ounting problem: given a string x 2 ��, �nd the ardinality jR(x)j of the witness setR(x) assoiated with x. It is easy to see that every ounting problem is of the form #�R for someR.De�nition 3.1 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the ounting problem #�A redues to the ounting problem #�B via asubtrative redution, and write #�A �s #�B, if there exist a positive integer n and polynomial-timeomputable funtions fi and gi, i = 1; : : : ; n, suh that for every string x 2 ��:� Lni=1B(fi(x)) �Lni=1B(gi(x));� jA(x)j =Pni=1 jB(gi(x))j �Pni=1 jB(fi(x))j.Clearly, parsimonious redutions onstitute a speial ase of subtrative redutions. Our �rstresult about subtrative redutions is that they ompose niely. The proof of this result, whihuses ertain basi algebrai properties of multisets, an be found in the Appendix.Theorem 3.2 Reduibility via subtrative redutions is a transitive relation, that is, if #�A �s #�Band #�B �s #�C, then #�A �s #�C.Next we establish the main result of this setion; it asserts that Valiant's ounting omplexitylasses are losed under subtrative redutions.Theorem 3.3 #P and all higher ounting omplexity lass #��Pk = #�Pk , k � 1, are losed undersubtrative redutions.Proof: (Sketh) Let k be a �xed positive integer. In what follows, we sketh the proof that the lass#��Pk is losed under subtrative redutions; the proof for #P requires only minor modi�ations.Reall that #��Pk = #�Pk = #�P�Pk , as asserted in Theorem 2.1. Let #�A and #�B be two ountingproblems suh that #�B 2 #��Pk and #�A redues to #�B via subtrative redution. We will showthat #�A belongs to #��Pk by onstruting a prediate A0 in P�Pk suh thatjA0(x)j = Pni jB(gi(x))j �Pni jB(fi(x))j = jA(x)j ;where fi and gi, 1 � i � n, are the polynomial-time omputable funtion in the subtrativeredution of #�A to #�B. The elements of the prediate A0 will be pairs of strings (x; y0) suh thaty0 = f1(x)� � � � �fn(x)� g1(x)� � � � � gn(x)�y � z, where z is an integer ranging from 1 to the numberb of ourrenes of y in the multisetLni B(gi(x))	Lni B(fi(x)), and � is just a delimiter symbol.The prediate A0 is onstruted as follows. A pair (x; y0) belongs to A0 if and only if (x; y0) isaepted by the following algorithm:1. extrat f1(x), . . . , fn(x), g1(x), . . . , gn(x), y from y0;2. �nd the number g of pairs (gi(x); y), 1 � i � n, that belong to B;6



3. �nd the number f of pairs (fi(x); y), 1 � i � n, that belong to B;4. hek that z � g � f .Step 4 ensures that, for every y, there are as many aepted strings y0 as the number of ourrenesof y in the multiset Lni B(gi(x)) 	Lni B(fi(x)). Therefore, the number of pairs (x; y0) aeptedby A0 is equal to the number of pairs (x;�) aepted by A. Step 1 an be arried out in polynomialtime. For eah pair in Step 2, the test is in �Pk ; moreover, g is bounded by the �xed number n ofthe funtions gi. Hene, Step 2 is in P�Pk . For eah pair in Step 3, the test is in �Pk ; moreover, fis bounded by also bounded by n. Hene, as above, Step 3 is in P�Pk . Step 4 an be arried out inpolynomial time. Consequently, the prediate A0 is in P�Pk . 2In view of the preeding Theorem 3.3, it is natural to ask whether the lasses #��Pk , k � 1,introdued by Hemaspaandra and Vollmer [HV95℄, are also losed under subtrative redutions.We now provide evidene to the e�et that no lass #��Pk is losed under subtrative redutions.For this, we observe that #�ksat, the generi omplete problem for #��Pk , an easily be reduedto #�ksat, the generi omplete problem for #��Pk , via a subtrative redution. Consequently,if #��Pk were losed under subtrative redutions, then #��Pk would ollapse to #��Pk , whih isgenerally onsidered as highly unlikely.Let '(y1; : : : ; yn) be any �k-formula 8x19x2 � � �Qkxk �(x1; : : : ; xk; y1; : : : ; yn). Let �'(y1; : : : ; yn)be the �k formula that is equivalent to :' and is obtained from ' by propagating the negationsymbol through the quanti�ers and applying de Morgan laws to the quanti�er-free part of '.Let  (y1; : : : ; yn) be the tautology y1 _ :y1 _ y2 _ :y2 _ � � � _ yn _ :yn. It is obvious that everysatisfying truth assignment of �' is a satisfying truth assignment of  and that #(') = #( )�#(�'),where #(') denotes the number of satisfying truth assignments of ' (and similarly for  and �').Consequently, the polynomial-time omputable funtions f1(') = �' and g1(') =  onstitute asubtrative redution of #�ksat to #�ksat.Observe that the preeding argument an also be applied to a Boolean formula ' in onjuntivenormal form (i.e., assume k = 0) to produe a subtrative redution of #sat to #dnf, where #dnfis the following ounting problem.#DNFInput: A Boolean formula � in disjuntive normal form.Output: Number of truth assignments to the variables of � that satisfy �.Consequently, we obtain a well-known #P-ompleteness result by means of our new redution.Proposition 3.4 #dnf is #P-omplete via subtrative redutions.Observe that #dnf annot be #P-omplete via parsimonious redutions, sine its underlying de-ision problem is easily solvable in polynomial time. As stated earlier, #perfet mathingsis #P-omplete via polynomial-time 1-Turing redutions. It is an interesting open problem todetermine whether #perfet mathings is also #P-omplete via subtrative redutions.4 #�oNP-omplete Problems via Subtrative RedutionsMany important ounting problems are known to be #P-omplete via polynomial-time 1-Turingredutions and have the property that their underlying deision problem is solvable in polynomialtime [Val79a, Val79b, PB83, Lin86℄. The urrent state of knowledge, however, is very di�erent forthe higher ounting omplexity lasses #��Pk and #��Pk , k � 1. We do know that they possessgeneri omplete problem, suh as #�ksat and #�ksat, that are omplete for these lasses via7



parsimonious redutions, but have inherently high omputational omplexity (see Proposition 2.2).We also know that every ounting problem that is #P-omplete via polynomial-time 1-Turingredutions is also omplete for these lasses under the same redutions [TW92℄. Up to this point,however, it is not known if these higher ounting omplexity lasses ontain any problems that havethe following two properties: (1) they are omplete for the lass via redutions under whih thelass is losed; (2) their underlying deision problems has omplexity lower than that of the generiomplete problem for the lass.In this setion, we fous on the lass #�oNP and establish that it ontains ertain naturalounting problems that possess the above two properties. Reall that #�oNP is the �rst higherounting omplexity lass that arises in Valiant's framework, sine #�oNP = #NP. Moreover, itis quite robust, sine, as shown by Toda [Tod91℄, #�oNP = #NP = #�PNP (see Theorem 2.1).Cirumsription is a well-developed formalism of ommon-sense reasoning introdued by M-Carthy [MC80℄ and extensively studied by the arti�ial intelligene ommunity. The key ideabehind irumsription is that one is interested in the minimal models of formulas, sine they arethe ones that have as few \exeptions" as possible and, therefore, embody ommon sense. In theontext of Boolean logi, irumsription amounts to the study of satisfying assignments of Booleanformulas that are minimal with respet to the pointwise partial order on truth assignments. Morepreisely, if s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) are two elements of f0; 1gn, then we write s < s0 todenote that s 6= s0 and si � s0i holds for every i � n. Let '(x1; : : : ; xn) be a Boolean formula havingx1; : : : ; xn as its variables and let s 2 f0; 1gn be a truth assignment. We say that s is a minimalmodel of ' if s is a satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' suh that s < s0. This onept gives rise to the following natural ounting problem.#CIRCUMSCRIPTIONInput: A Boolean formula '(x1; : : : ; xn) in onjuntive normal form.Output: Number of minimal models of '(x1; : : : ; xn).The underlying deision problem for #irumsription is NP-omplete, sine a Boolean for-mula has a minimal model if and only if it is satis�able. Thus, it has lower omplexity than�P2 -omplete, whih is the omplexity of the underlying deision problem for #�1sat, the generiproblem for #�oNP.Theorem 4.1 #irumsription is #�oNP-omplete via subtrative redutions.Proof: It is lear that the problem belongs to #�oNP, sine testing whether a given truthassignment is a minimal model of a given formula is in oNP (atually, this deision problem isoNP-omplete [Cad92℄).For the lower bound, we onstrut a subtrative redution of #�1sat to #irumsription.In what follows, we write A(F ) to denote the set of all satisfying assignments of a �1-formulaF ; we also write B( ) to denote the set of all minimal models of a Boolean formula  . LetF (x) = 8y �(x; y) be a �1-formula, where �(x; y) is a Boolean formula in disjuntive normal form,and x = (x1; : : : ; xn), y = (y1; : : : ; ym) are tuples of Boolean variables. Let x0 = (x01; : : : ; x0n) be atuple of new Boolean variables, let z be a single new Boolean variable, let P (x; x0) be the formula(x1 � :x01) ^ � � � ^ (xn � :x0n), let Q(y) be the formula y1 ^ � � � ^ ym, and, �nally, let F 0(x; x0; y; z)be the formula P (x; x0) ^ (z ! Q(y)) ^ (�(x; y)! z):There is a polynomial-time omputable funtion g suh that, given a �1-formula F as above, itreturns as value a Boolean formula g(F ) in onjuntive normal form that is logially equivalentto the formula F 0(x; x0; y; z) (this is so, beause �(x; y) is in disjuntive normal form). Now let8



F 00(x; x0; y; z) be the formula F 0(x; x0; y; z)^(z ! :Q(y)) and let f be a polynomial-time omputablefuntion suh that, given a �1-formula F as above, it returns as value a Boolean formula f(F ) thatis logially equivalent to the formula F 00(x; x0; y; z).We will show in a sequene of four laims that there is a bijetion between the satisfyingassignments of F and the minimal models of F 0 that do not satisfy F 00.Claim 1: (x; x0; y; z) is a model of F 0 if and only if either P (x; x0) = 1 and Q(y) = 1 and z = 1,or P (x; x0) = 1 and z = 0 and �(x; y) = 0. This is obvious from the de�nition of F 0, sine z = 1implies Q(y) = 1.Claim 2: (x; x0; y; z) is a minimal model of F 0 if and only if either �(x; y) = 1 for all y andP (x; x0) = 1 and Q(y) = 1 and z = 1, or P (x; x0) = 1 and z = 0 and �(x; y) = 0 and thereis no y0 suh that y0 < y and �(x; y0) = 0. Consider the models (x; x0; 1; : : : ; 1; 1). Assume that(x; x0; 1; : : : ; 1; 1) is a minimal model of F 0. Then for every y we must have that �(x; y) = 1, sineotherwise (x; x0; y; 0) would be a model of F 0 smaller than (x; x0; 1; : : : ; 1; 1). Assume that x is suhthat 8y �(x; y) = 1. Then (x; x0; 1; : : : ; 1; 1) is a minimal model of F 0, sine the only way to have asmaller model would be to have one of the form (x; x0; y; 0) with �(x; y) = 0, whih ontradits thehypothesis on x. Now, onsider models of the form (x; x0; y; 0). From Claim 1 it follows that suha model is minimal if and only if there is no y0 < y suh that �(x; y0) = 0.Claim 3: (x; x0; y; z) is a model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0. Thisfollows easily from the de�nition of F 00.Claim 4: (x; x0; y; z) is a minimal model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0and there is no y0 suh that y0 < y and �(x; y0) = 0. This follows from the de�nition of F 00 andClaim 3.From Claims 1 to 4, it follows that the set di�erene of minimal models of F 0 and F 00 is equalto the set f(x; x0; 1; : : : ; 1; 1) j 8y �(x; y) ^ P (x; x0)g. Note that this set is isomorphi to the setof satisfying assignments of the formula F , sine the variables x0 are funtionally dependent onthe variables x through the formula P (x; x0). Hene, we have that jA(F )j = jB(F 0)j � jB(F 00)j,whih establishes that the polynomial-time omputable funtions f and g onstitute a subtrativeredution of #�1sat to #irumsription. 2The following result is an immediate onsequene of Theorems 3.3 and 4.1.Corollary 4.2 #�oNP = #P if and only if #irumsription is in #P.We now move from ounting problems in Boolean logi to ounting problems in integer linearprogramming. A system of linear Diophantine inequalities over the non-negative integers is a systemof the form S:Ax � b, where A is an integer matrix, b is an integer vetor, and we are interestedin the non-negative integer solutions of this system. If b is the zero-vetor (0; : : : ; 0), then we saythat the system is homogeneous. A non-negative integer solution s of S is minimal if there is nonon-negative solution s0 of S suh that s0 < s in the pointwise partial order on integer vetors. Itis well known that the set of all minimal solutions plays an important role in analyzing the spaeof all non-negative integer solutions of linear Diophantine systems (see Shrijver [Sh86℄). Clearly,every homogeneous system has (0; : : : ; 0) as a trivial minimal solution. Here, we are interested inounting the number of non-trivial minimal solutions of homogeneous systems.#HOMOGENEOUS MIN SOLInput: A homogeneous system S:Ax � 0 of linear Diophantine inequalities.Output: Number of non-trivial minimal solutions of S.9



Note that the underlying deision problem of #hom min sol amounts to whether a givenhomogeneous system of linear Diophantine inequalities has a non-negative integer solution otherthan the trivial solution (0; : : : ; 0). It is easy to show that this problem is solvable in polynomialtime, sine it an be redued to linear programming. In ontrast, ounting the number ofnon-trivial minimal solutions turns out to be a hard problem.Theorem 4.3 #homogeneous min sol is #�oNP-omplete via subtrative redutions.Proof: (Hint) The problem is in #�oNP, beause deiding membership in the witness sets is inoNP; indeed, the size of minimal solutions is bounded by a polynomial in the size of the system(see Corollary 17.1b in [Sh86, page 239℄). The lower bound is established through a sequeneof subtrative redutions. First, #irumsription an be redued to #satisfiable ir, therestrition of #irumsription to satis�able Boolean formulas. In turn, this problem has asubtrative redution to #satisfiable min sol, whih asks for the number of minimal solutionsof a system S : Ax � b of linear Diophantine inequalities having at least one non-negative integersolutions (details of these two redutions an be found in the Appendix). Finally, #satisfiablemin sol has a subtrative redution to #homogeneous min sol, whih we outline in what followsLet S:Ax � b be a system of linear Diophantine inequalities with at least one non-negativeinteger solution and suh that A is k � n integer matrix. First onstrut the system S0:Ax� b�y �0; 2z � t = y; xi � y; xi � y � t, where �y = (y; : : : ; y) is a vetor of length k having the samevariable y in eah oordinate, and z and t are additional new variables. After this, onstrut thesystem S00 = S0 [ fx1 = � � � = xn = yg.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be thesets of nontrivial minimal solutions of S0 and S00, respetively. In the Appendix we show thatB(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-timeomputable funtions f(S) = S0 and g(S) = S00 onstitute a subtrative redution of #satisfiablemin sol to #homogeneous min sol. 2Corollary 4.4 #�oNP = #P if and only if #homogeneous min sol is in #P.To the best of our knowledge, the above result provides the �rst example of a ounting problemwhose underlying deision problem is solvable in polynomial time, but the ounting problem itselfis not in #P, unless higher ounting omplexity lasses ollapse to #P.5 Conluding RemarksWe onlude by realling Valiant's assertion from his inuential paper [Val79b℄ to the e�et that\The ompleteness lass for #P appears to be rivalled only by that for NP in relevane to naturallyourring omputational problems." The passage of time and the subsequent researh in this areaertainly proved this to be the ase. We believe that the results reported here suggest that also#�oNP ontains omplete problems of omputational signi�ane. Furthermore, we believe thatsubtrative redutions are the right tool for investigating #�oNP and identifying other naturalproblems that are #�oNP-omplete via these redutions. The next hallenge in this vein is todetermine whether #hilbert is #�oNP-omplete via subtrative redutions. #hilbert is theproblem of omputing the ardinality of the Hilbert basis of a homogeneous system S:Ax = 0 oflinear Diophantine equations, i.e., ounting the number of non-trivial minimal solutions of suha system. We note that this ounting problem was �rst studied by Hermann, Juban and Ko-laitis [HJK99℄, where it was shown to be a member of #�oNP and also to be #P-hard underpolynomial-time 1-Turing redutions. 10
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AppendixProof of Theorem 2.2A bijetion an be de�ned between eah binary string x of length n and strutures of the formstr(x) = hU = f0; : : : ; n � 1g;XU ; <U i, where U represents the sets of positions of x, < is thenatural total ordering of the set f0; : : : ; n � 1g and XU (i) holds if and only if the i-th positionof the string x equals 1. As an example, the word x = 1010 is represented by the struturehU = f0; 1; 2; 3g;X = f0; 2g; <i. Note that the mapping is not bijetive in absene of the orderingrelation. In the same way, every pair (x; y) with jxjk = nk = jyj an be represented by a uniquestruture str(x; y) = hU ;XU ; Y U ; <U i with Y being a k-ary relation on U suh that the prediateY U (i0; : : : ; ik�1) holds if and only if position i0 + i1n+ � � �+ ik�1nk�1 of the string y equals 1. Wesay that the struture str(x; y) extends str(x) as the pair (x; y) is an extension of x.Reall that �Pi is the i-th existential level of the polynomial-time hierarhy PH, and let �1ibe the i-th level of the seond-order logi, i.e., the seond-order logi with the formulas in prenexnormal form with i alternations of seond-order quanti�er starting with an existential one. Inan analogous manner, �1i will be the i-th level of the seond-order logi starting with a universalquanti�er. In [Sto76℄, Stokmeyer generalized Fagin's theorem and showed that every level �Pi ofthe polynomial hierarhy orresponds to �1i . By a straightforward modi�ation of the proof, itholds that for every binary prediate R 2 �Pi , there exists a formula � suh that (x; y) 2 R if andonly if str(x; y) j= �.Consider the following ounting problem, issued from a diret generalization of the desriptiveomplexity ideas to the ounting lasses.#��1iGEN-SATInput: A formula �(X;Y;<) 2 �1i and a struture str(x).Output: Number of extensions str(x; y) of str(x) that are models of �(X;Y;<).The problem #��1igen-sat is de�ned analogously. Note that the ounting omplexity lasses #��Piand #��Pi , for i � 1, are losed under parsimonious redutions. This is just a onsequene of theresult that the lasses of deision problems �Pi and �Pi are losed under polynomial many-oneredutions.Proposition 5.1 #��1igen-sat (resp. #��1igen-sat) is #��Pi -omplete (resp. #��Pi -omplete)with respet to parsimonious redutions.Proof: The proof follows from Stokmeyer's haraterizations. Let R be a binary prediate in �Pi .Then there exists a �1i formula � suh that (x; y) 2 R if and only if str(x; y) = hU ;XU ; Y U ; <U i j=�. The bijetive enoding of words into strutures implies that, for any �xed x, the number ofword y, satisfying the membership (x; y) 2 R, orresponds to the number of extensions str(x; y) ofstr(x) that are models of �, thus giving a parsimonious redutions from #�R to #��1igen-sat. 2We are able now to prove Proposition 2.2.Proposition 2.2. #�ksat is #��Pk -omplete via parsimonious redutions. Moreover, if k is odd(even), then the problem remains #��Pk -omplete, even if the quanti�er-free part of the input isrestrited to be a Boolean formula in disjuntive normal form (respetively, in onjuntive normalform). 12



Proof: The proof mimis the method to derive the ompleteness of sat from Fagin's theorem(see [Imm99℄ for example). We give a parsimonious redution from #��1igen-sat to #��isat. Letstr(x) = hU ;XU ; Y U ; <U i be the onsidered struture and�(X;Y;<) = 9R18R2 � � �QiRi�(R1; : : : ; Ri;X; Y;<)be an instane of #��1igen-sat. Let jUj = n. We onstrut an instane '(y) of #��isat as follows.The formula '(y) will ontain the boolean variables Rj(e1; : : : ; e�j ) and Y (e1; : : : ; ek) for j =1; : : : ; i and e1; : : : ; e�j 2 U . First, eah blok of existentially (resp. universally) quanti�ed seond-order variable Rj is replaed by a blok of n�j existentially (resp. universally) quanti�ed booleanvariables Rj(0; 0; : : : ; 0), Rj(0; 0; : : : ; 1),. . . , Rj(n� 1; n� 1; : : : ; n� 1).Next, replae every �rst-order universal quanti�ation 8x in � by the onjuntion Vn�1x=0 andevery existential quanti�ation 9x by the disjuntionWn�1x=0 and unroll the resulting formula, repla-ing x by its suessive value 0, 1 and n� 1. We then obtain a boolean formula with only variablesY (e1; : : : ; ek) (shorten by the vetor y) as free variables and whose terms are among Rj(e1; : : : ; e�j ),Y (e1; : : : ; ek), but also ei < ej and X(e). The �nal step onsist of replaing every term ei < ej andX(e) by their boolean value true or false depending on whether this is true or false in the struturestr(x). There is no exponential blow-up beause the onstruted formula is of polynomial lengthin the size of the struture str(x), whih is part of the input of the redued problem.We have now a one-to-one orrespondene between the satis�ability of � in the struturestr(x; y) and the formula '(y) being an instane of the ounting problem #��isat: str(x; y) j=�(X;Y;<) if and only if '(y) is satis�able.Moreover, the ardinality of the set fY U j hU ;XU ; Y U ; <i j= �(X;Y;<)g is equal to the numberof distint assignments of y that satisfy '(y). This onludes the ompleteness proof for the ountingproblem #��isat. The proof is similar for the ounting problem #��isat. 2
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Proof of Theorem 3.2For proving that the subtrative redutions ompose, we will need the following properties ofmultisets.Lemma 5.2 Let Ai, Bi, for i = 1; : : : ; n, A, B, C, and D be multisets.1. If Bi � Ai for eah i, then nMi=1 (Ai 	Bi) = ( nMi=1 Ai)	 ( nMi=1 Bi):2. If B � A, D � C, and C 	D � A	B then(A	B)	 (C 	D) = (A�D)	 (B � C):Proof: Let x be an arbitrary element of the domain. Sine Bi � Ai holds for eah i, we have thatmx(Ai 	Bi) = mx(Ai)�mx(Bi):Hene, mx( nMi=1 (Ai 	Bi)) = nXi=1(mx(Ai)�mx(Bi))= nXi=1 mx(Ai)� nXi=1 mx(Bi)= mx( nMi=1 Ai)�mx( nMi=1 Bi):The inlusion Bi � Ai for eah i implies nMi=1 Bi � nMi=1 Ai:Hene, mx( nMi=1 Ai)�mx( nMi=1 Bi) = mx( nMi=1 Ai 	 nMi=1 Bi):For the seond ase, mx((A	B)	 (C 	D)) == mx(A	B)�mx(C 	D)= (mx(A)�mx(B))� (mx(C)�mx(D))= (mx(A) +mx(D)) � (mx(B) +mx(C))= mx(A�D)�mx(B � C)= mx((A �D)	 (B � C)):14



2We are able now to prove Theorem 3.2 showing that a omposition of two subtrative redutionsprodues another subtrative redution.Theorem 3.2. Reduibility via subtrative redutions is a transitive relation, that is, if #�A �s#�B and #�B �s #�C, then #�A �s #�C.Proof: Suppose that #�A redues to #�B via subtrative redution with the funtions f1i and g1i .Suppose also that #�B redues to #�C via subtrative redution with the funtions f2i and g2i . Weprove that there exists a subtrative redution from #�A to #�C with the funtions fk and gk.Let M = Mi B(g1i (x))	Mi B(f1i (x))i.e., jM j = jA(x)j. Sine there is a subtrative redution from #�B to #�C, the setM is isomorphito Mi (Mj C(g2j (g1i (x))) 	Mj C(f2j (g1i (x))))	 Mi (Mj C(g2j (f1i (x)))	Mj C(f2j (f1i (x)))):Sine the inlusions are satis�ed, following property 1 of Lemma 5.2, the previous set is equal to(Mi Mj C(g1j (g1i (x)))	Mi Mj C(f2j (g1i (x))))	 (Mi Mj C(g2j (f1i (x))) 	Mi Mj C(f2j (f1i (x)))):Following property 2 of Lemma 5.2, the latter set is equal toMi Mj (C(g2j (g1i (x))) � C(f2j (f1i (x))))	 Mi Mj (C(f2j (g1i (x)))� C(g2j (f1i (x)))):Hene, we hoose the funtions g2j (g1i (x)) and f2j (f1i (x)) for gk(x), whereas the funtions f2j (g1i (x))and g2j (f1i (x)) beome the funtions fk(x). Therefore, we derive the equalityjA(x)j = Xk jC(gk(x))j �Xk jC(fk(x))j 2
15



Proof of Theorem 4.3As stepping stones towards proving Theorem 4.3, we will introdue and use two other tehnialounting problems.#SATISFIABLE CIRCInput: A satis�able Boolean formula '(x1; : : : ; xn) in onjuntive normal form.Output: Number of minimal models of '(x1; : : : ; xn).Proposition 5.3 #satisfiable ir is #�oNP-omplete via subtrative redutions.Proof: Deiding membership in the witness sets for this problem is in PNP, beause deidingsatis�ability of a Boolean formula ' is in NP and deiding minimality of a model of ' is in oNP.Hene, #satisfiable ir belongs to #�PNP = #�oNP.For the lower bound, it is not hard to verify that a subtrative redution of #irumsriptionto #satisfiable ir an be obtained as follows: given a Boolean formula '(x1; : : : ; xn) in on-juntive normal form the new formula (x0; x00; x1; : : : ; xn) = ((x0 ^ x1 ^ � � � ^ xn) _ (:x0 ^ �(x1; : : : ; xn))) ^ (x0 6� x00):The formula  has at least one model, namely m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1).We show that m0 is minimal for  . Suppose that there exists a smaller model m00. Thenm00(x0) = 0 or m00(xi) = 0 for some i. If m00(x0) = 0 then m00(x00) = 1, hene the models m0 and m00are inomparable. Ifm00(xi) = 0 for some i, then x0^x1^� � �^xn = 0. Hene, :x0^�(x1; : : : ; xn) = 1From this follows that :x0 = 1, i.e., m00(x0) = 0. This one more leads to m00(x00) = 1 and the twomodels are inomparable. There is a ontradition in both ases, therefore m0 is minimal.Now, we show that (x1; : : : ; xn) is a minimal model of � if and only if m1 = (x0 = 0; x00 =1; x1; : : : ; xn) is a minimal model of  . Construt the new formula  0 =  ^x0^x1^� � �^xn^(x0 6�x00). The formula  0 has exatly one model, namely m0. This model is therefore also minimalfor  0.Let A(�) be the set of minimal solutions of � and B(�) be the set of minimal solutions of asatis�able formula �. The inlusion B( 0) � B( ) holds, sine  0 has only one model m0 whih isalso minimal for  . It is lear that every model of � also satis�es  . Moreover, the only model of  that does not satisfy � is the unique model of  0, m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1). Thisimplies that the equality jA(�)j = jB( )j � jB( 0)j holds. The formulas  and  0 an be written inonjuntive normal form without exponential explosion. Hene, we have a subtrative redution.2#SATISFIABLE MIN SOLInput: A system S:Ax � b of linear Diophantine inequalities having at least one non-negativeinteger solution.Output: Number of minimal solutions of S.Proposition 5.4 #satisfiable min sol is #�oNP-omplete via subtrative redutions.Proof: Deiding membership in the witness sets for this problem is in PNP and, hene, the problemis in #�PNP = #�oNP. Indeed, testing the system for solvability is in NP, whereas testing a givensolution for minimality is in oNP. In both tests, we use the fat that the size of minimal solutionsis bounded by a polynomial in the size of the system (see Corollary 17.1b in [Sh86, page 239℄).16



For the lower bound, observe that the standard redution of Boolean satis�ability to integer lin-ear programming also onstitutes a parsimonious redution of #satisfiable ir to #satisfiablemin sol. 2We are able now to prove Theorem 4.3.Theorem 4.3. #homogeneous min sol is #�oNP-omplete via subtrative redutions.Proof: The problem is in #�oNP, beause deiding membership in the witness sets is in oNP,using the bounds in the size of minimal solutions (see the proof of Proposition 5.4).For the lower bound, we exhibit a subtrative redution from #satisfiable min sol. LetS:Ax � b be a system of linear Diophantine inequalities with at least one non-negative integersolution and suh that A is k � n integer matrix. First onstrut the systemS0: Ax� b�y � 0; 2z � t = y; xi � y; xi � y � t;where �y = (y; : : : ; y) is a vetor of length k having the same variable y in eah oordinate, and zand t are additional new variables.Claim 1: The vetor s0 = (x1 = x2 = � � � = xn = y = 0; z = 1; t = 2) is a minimal solution of S0.This is obviously a solution. The only smaller solution is the trivial all-zero solution.Claim 2: The nontrivial minimal solutions of S0, exept s0, are of the form (x1; : : : ; xn; y =2k; z = k; t = 0) or (x1; : : : ; xn; y = 2k + 1; z = k + 1; t = 1). Suppose s is a solution di�erentfrom s0 and y = 2k � 2. In this ase, the seond equation has for admissible values of z and t thepairs (k + i; 2i) for every i. One i � 1 holds, s is greater than s0. Therefore only the pair (k; 0) isonvenient. If y = 2k+1 and k � 0, z and t have for admissible values the pairs (k+ i; 2i� 1) withi � 1. One i � 2 holds, s beomes greater than s0. Therefore only the pair (k+1; 1) is onvenient.Claim 3: There exists a minimal solution of S0 with y � 3 and y odd if and only if there are nosolutions for y = 1 and y = 2. If there exists a solution with y = 1 or y = 2, then there exists alsoa minimal solution with the same value of y. Suppose that there exists a minimal solution withy � 3 and y = 2k + 1, then t = 1. From this follows xi � 2k for eah i. We have that k � 1 siney � 3, therefore xi � 2 holds for eah i. From 2z � t = y, t = 1, and y � 3 follows z � 2. Lets3 = (x1 � 2; : : : ; xn � 2; y � 3; z � 2; t = 1) be a minimal solution of S0. If there is a minimalsolution with y = 1, it is of the form s1 = (x1 � 1; : : : ; xn � 1; y = 1; z = 1; t = 1) and s1 is smallerthan s3. Contradition. If there is a minimal solution with y = 2, it is s2 = (x1 � 2; : : : ; xn �2; y = 2; z = 1; t = 0) and s2 is smaller than s3. Contradition.Claim 4: If there exists a minimal solution with y even, then this solution is (x1 = � � � = xn =2 = y; z = 1; t = 0). For y = 2k and t = 0 we must have x1 = � � � = y = 2k and z = k for somek � 1. Sine S0 is a homogeneous system, we an divide the solution by k.Now, we use the knowledge that The known minimal model in #satisfiable ir and alsothe known minimal solution of Ax � b for #satisfiable min sol has a value xi = 0 for some i.Hene, this solution falsi�es the system of equations x1 = � � � = xn.After this, onstrut the system S00 = S0 [ fx1 = � � � = xn = yg. Clearly, the system S00 has theminimal solution s0 = (x1 = � � � = xn = 0; y = 0; z = 1; t = 2) and also s2 = (x1 = � � � xn = 2; y =17



2; z = 1; t = 0) if s2 is a solution of S0. Therefore the minimal solutions of S00 are inluded in theminimal solutions of S0.We know that S0 has at least one minimal solution s for y = 1, sine S:Ax � b has one solution.Moreover, s is not a minimal solution of S00.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be the setsof nontrivial minimal solutions of S0 and S00, respetively. From the previous reasoning follows thatB(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-timeomputable funtions f(S) = S0 and g(S) = S00 onstitute a subtrative redution of #satisfiablemin sol to #homogeneous min sol. 2
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