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tWe introdu
e and investigate a new type of redu
tions between 
ounting problems, whi
h we
all subtra
tive redu
tions. We show that the main 
ounting 
omplexity 
lasses #P, #NP, as wellas all higher 
ounting 
omplexity 
lasses #��Pk , k � 2, are 
losed under subtra
tive redu
tions.We then pursue problems that are 
omplete for these 
lasses via subtra
tive redu
tions. Wefo
us on the 
lass #NP (whi
h is the same as the 
lass #�
oNP) and show that it 
ontainsnatural 
omplete problems via subtra
tive redu
tions, su
h as the problem of 
ounting theminimal models of a Boolean formula in 
onjun
tive normal form and the problem of 
ountingthe 
ardinality of the set of minimal solutions of a homogeneous system of linear Diophantineinequalities.1 Introdu
tion and Summary of ResultsDe
ision problems ask whether a \solution" exists, whereas 
ounting problems ask how many dif-ferent \solutions" exist. Valiant [Val79a, Val79b℄ developed a 
omputational 
omplexity theory of
ounting problems by introdu
ing the 
lass #P of fun
tions that 
ount the number of a

eptingpaths of nondeterministi
 polynomial-time Turing ma
hines; thus, #P 
aptures 
ounting problemswhose underlying de
ision problem (is there a \solution"?) is in NP. Moreover, Valiant demon-strated that #P 
ontains a wealth of 
omplete problems, that is, there are problems in #P su
hthat every problem in #P 
an be redu
ed to them via a suitable polynomial-time Turing redu
-tion. Clearly, a 
ounting problem is at least as hard as its underlying de
ision problem. Valiant'sseminal dis
overy was that there 
an be a dramati
 gap in inherent 
omputational 
omplexitybetween a 
ounting problem and its underlying de
ision problem. Spe
i�
ally, Valiant [Val79a℄showed that there are #P-
omplete problems whose underlying de
ision problem is solvable inpolynomial time. The �rst problem to exhibit this \easy-to-de
ide, but hard-to-
ount" behavior�Resear
h partially supported by NSF Grant CCR-9732041.1



was #perfe
t mat
hings, whi
h is the problem of 
ounting the number of perfe
t mat
hings in agiven bipartite graph. Indeed, Valiant [Val79a℄ showed that #perfe
t mat
hings is #P-
ompletevia polynomial-time 1-Turing redu
tions, that is, Turing redu
tions that only allow a single 
all toan ora
le. Subsequent resear
h in this area revealed an abundan
e of other natural #P-
ompleteproblems possessing these properties [Val79b, PB83, Lin86℄.In addition to introdu
ing #P, Valiant [Val79a℄ also developed a ma
hine-based frameworkfor introdu
ing higher 
ounting 
omplexity 
lasses. In this framework, the �rst 
lass beyond#P is the 
lass #NP of fun
tions that 
ount the number of a

epting paths of polynomial-timenondeterministi
 Turing ma
hines with a

ess to NP ora
les. More re
ently, Hemaspaandra andVollmer [HV95℄ developed a predi
ate-based framework for introdu
ing higher 
ounting 
omplexity
lasses, whi
h subsumes Valiant's framework and makes it possible to introdu
e other 
ounting
lasses that draw �ner distin
tions. In parti
ular, Valiant's 
lass #NP 
oin
ides with the 
lass#�
oNP of the Hemaspaandra-Vollmer framework.As regards 
omplete problems for these higher 
ounting 
omplexity 
lasses, the state of a�airs israther 
ompli
ated. Toda and Watanabe [TW92℄ showed if a problem is #P-hard via polynomial-time 1-Turing redu
tions, then it is also #�
oNP-hard and #��Pk -hard, for ea
h k � 2, where#��Pk is the 
ounting version of the 
lass �Pk at the k-th level of the polynomial hierar
hy PH.This surprising result yields an abundan
e of problems that are 
omplete for these higher 
ounting
lasses; for instan
e, #perfe
t mat
hings is su
h a problem. At the same time, it stronglysuggests that #P, #�
oNP, and all other higher 
ounting 
lasses are not 
losed under polynomial-time 1-Turing redu
tions. In turn, this means that problems like #perfe
t mat
hings do not
apture the inherent 
omplexity of the higher 
ounting 
omplexity 
lasses. Needless to say that these
lasses are 
losed under parsimonious redu
tions, i.e., polynomial-time redu
tions that preserve thenumber of solutions. The parsimonious redu
tions, however, also preserve the 
omplexity of theunderlying de
ision problem; thus, they 
annot be used to dis
over the existen
e of problems thatare 
omplete for the higher 
ounting 
omplexity 
lasses and exhibit an \easy-to-de
ide, but hard-to-
ount" behavior.In this paper, we introdu
e a new type of redu
tions between 
ounting problems, whi
h we
all subtra
tive redu
tions, sin
e they make it possible to 
ount the number of solutions by �rstover
ounting them and then 
arefully subtra
ting any surplus. We make a 
ase that the subtra
tiveredu
tions are perfe
tly tailored for the study of #�
oNP and of the higher 
ounting 
omplexity
lasses #��Pk , k � 2. To this e�e
t, we �rst show that ea
h of these higher 
ounting 
omplexity
lasses is 
losed under subtra
tive redu
tions. We then fo
us on the 
lass #�
oNP and showthat it 
ontains natural 
omplete problems via subtra
tive redu
tions, su
h as the problem of
ounting the minimal models of a Boolean formula in 
onjun
tive normal form and the problemof 
ounting the 
ardinality of the set of minimal solutions of a homogeneous system of linearDiophantine inequalities. These two parti
ular 
ounting problems have the added feature thatthe 
omplexity of their underlying de
ision problems is lower than �P2 -
omplete, whi
h is the
omplexity of the de
ision problem underlying #�1sat, the generi
 #�
oNP-
omplete problem viaparsimonious redu
tions.2 Counting Problems and Counting Complexity ClassesA 
ounting problem is typi
ally presented using a suitable witness fun
tion whi
h for every inputx, returns a set of witnesses for x. Formally, a witness fun
tion is a fun
tion w: �� �! P<!(�),where � and � are two alphabets, and P<!(�) is the 
olle
tions of all �nite subsets of �. Everysu
h witness fun
tion gives rise to the following 
ounting problem: given a string x 2 �, �nd the2




ardinality jw(x)j of the witness set w(x). In the sequel, we will refer to the fun
tion w 7! jw(x)jas the 
ounting fun
tion asso
iated with the above 
ounting problem; moreover, we will identify
ounting problems with their asso
iated 
ounting fun
tions.Valiant [Val79a, Val79b℄ was the �rst to investigate the 
omputational 
omplexity of 
ountingproblems. To this e�e
t, he introdu
ed the 
lass #P of 
ounting fun
tions that 
ount the number ofa

epting paths of nondeterministi
 polynomial-time Turing ma
hines. The prototypi
al problemin #P is #sat, whi
h is the 
ounting version of Boolean satis�ability.#SATInput: A Boolean formula ' in 
onjun
tive normal form.Output: Number of truth assignments to the variables of ' that satisfy '.Valiant [Val79a℄ showed that #sat is #P-
omplete via parsimonious redu
tions, that is, every
ounting problem in #P 
an be redu
ed to #sat via a polynomial-time redu
tion that preservesthe 
ardinalities of the witness sets. Moreover, the same holds true for the 
ounting versions ofmany other NP-
omplete problems. Valiant's seminal dis
overy, however, was the existen
e of aplethora of problems that exhibit an \easy-to-de
ide, but hard-to-
ount" behavior. More pre
isely,if a 
ounting problem is des
ribed via a witness fun
tion w, then the underlying de
ision problem forw asks: given a string x, is w(x) 6= ;? Valiant [Val79a, Val79b℄ showed that there are #P-
ompleteproblems su
h that their underlying de
ision problems is solvable in polynomial time. The �rstimportant problem shown to possess these properties was #perfe
t mat
hings, whi
h is theproblem of 
ounting the number of perfe
t mat
hings in a bipartite graph. Clearly, unless P = NP,#perfe
t mat
hings (and any other problem exhibiting the easy-to-de
ide, but hard-to-
ountbehavior) 
annot be #P-
omplete under parsimonious redu
tions. As it turns out, #perfe
tmat
hings is #P-
omplete via polynomial-time 1-Turing redu
tions, whi
h are a restri
ted formof Turing redu
tions allowing a single query to an ora
le. More pre
isely, a 
ounting problem vis polynomial-time 1-Turing redu
ible to a 
ounting problem w, if there is a deterministi
 Turingma
hine M that 
omputes jv(x)j in polynomial time by making a single 
all to an ora
le that
omputes jw(y)j. Note that parsimonious redu
tions 
onstitute the spe
ial 
ase of polynomial-time1-Turing redu
tions in whi
h v = w Æ g, for some polynomial-time 
omputable total fun
tion g.In other words, the ora
le for jw(y)j is queried on
e and no 
omputation is performed after theora
le's answer is re
eived.In addition to initiating the study of #P, Valiant [Val79a, Val79b℄ developed a framework forintrodu
ing higher 
ounting 
omplexity 
lasses. Spe
i�
ally, for every 
omplexity 
lass C of de
isionproblems, he de�ned #C to be the unionSA2C(#P)A, where (#P)A is the 
olle
tion of all fun
tionsthat 
ount the a

epting paths of nondeterministi
 polynomial-time Turing ma
hines having A astheir ora
le. Thus, in this framework, #NP is the 
lass of fun
tions that 
ount the number ofa

epting paths of NPNP ma
hines. Note that, sin
e there is no di�eren
e between querying theora
le or its 
omplement, #C = #
oC holds for every 
omplexity 
lass C. In parti
ular, we havethat #NP = #
oNP; more generally, #�Pk = #�Pk , for every k � 1, where �Pk is the k-th level ofthe polynomial hierar
hy PH and �Pk = 
o�Pk (re
all that �P1 = NP and �P1 = 
oNP).More re
ently, resear
hers have introdu
ed higher 
omplexity 
ounting 
lasses using a predi
ate-based framework that fo
uses on the 
omplexity of membership in the witness sets. Spe
i�
ally, ifC is a 
omplexity 
lass of de
ision problems, then Hemaspaandra and Vollmer [HV95℄ de�ne #�Cto be the 
lass of all 
ounting problems whose witness fun
tion w satis�es the following 
onditions:1. There is a polynomial p(n) su
h that for every x and every y 2 w(x), we have that jyj � p(jxj),where jxj is the length of x and jyj is the length of y;2. The de
ision problem \given x and y, is y 2 w(x)?" is in C.3



What is the relationship between 
ounting 
omplexity 
lasses in these two di�erent frameworks?It is easy to verify that #P = #�P, that is, Valiant's 
lass #P 
oin
ides with the 
lass of witnessfun
tions for whi
h membership in the witness set 
an be tested in polynomial time. As regardshigher 
ounting 
omplexity 
lasses, information about this relationship is provided by the followingresult, whi
h is essentially due to Toda [Tod91℄ (see also [HV95℄).Theorem 2.1 For every k � 1, #��Pk � #�Pk = #�P�Pk = #��Pk . In parti
ular, #�NP � #NP =#�PNP = #�
oNP.Proof: (Hint) It is easy to verify that #�Pk = #�P�Pk holds for every k � 1. It is harder, however,to establish that #�P�Pk = #��Pk holds for every k � 1. For k = 1, this was proved by Toda [Tod91℄in his Ph.D. thesis; a self-
ontained proof 
an be found in Hemaspaandra and Vollmer [HV95℄. Fork > 1, the proof pro
eeds along the lines of the proof for k = 1 in [HV95℄ by de�ning a predi
ate Bthat des
ribes paths of 
omputations of a P�Pk -ma
hine, and showing that B is in �Pk . Details willappear in the full paper. Finally, the 
ontainment #��Pk � #�P�Pk follows from the 
ontainment�Pk � P�Pk . 2Theorem 2.1 shows that the predi
ate-based framework not only subsumes the ma
hine-basedframework, but also makes it possible to make �ner distin
tions between 
ounting 
omplexity 
lassesthat were absent in the ma
hine-based framework. Indeed, for ea
h k � 1, Valiant's 
lass #�Pk(whi
h is the same as #�Pk ) 
oin
ides with #��Pk . Moreover, the 
lass #��Pk appears to be di�erentand, hen
e, larger than #��Pk . In parti
ular, results by K�obler, S
h�oning, and Tor�an [KST89℄ implythat #�NP = #�
oNP if and only if NP = 
oNP.In general, what makes a 
omplexity 
lass interesting is the existen
e of natural problems thatare 
omplete for the 
lass. As mentioned earlier, #P is a parti
ularly interesting 
omplexity 
lassbe
ause it 
ontains natural 
omplete problems, su
h as #perfe
t mat
hings, whose underlyingde
ision problem is solvable in polynomial time. Do the higher 
ounting 
omplexity 
lasses #��Pk(and #��Pk ) 
ontain natural 
omplete problems and, if so, do some of these problems have aneasier underlying de
ision problem than others? We begin exploring these questions by 
onsidering
ounting problems based on quanti�ed Boolean formulas with a bounded number of quanti�eralternations. In what follows, k is a �xed positive integer.#�kSATInput: A formula '(y1; : : : ; yn) = 8x19x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Booleanformula.Output: Number of truth assignment to the variables y1; : : : ; yn that satisfy '.Proposition 2.2 #�ksat is #��Pk -
omplete via parsimonious redu
tions. In addition, if k is odd(even), then the problem remains #��Pk -
omplete when restri
ted to inputs in whi
h the quanti�er-free part is a Boolean formula in disjun
tive normal form (respe
tively, in 
onjun
tive normalform).The above result seems to be part of the folklore, although we are not able to lo
ate a spe
i�
referen
e; a self-
ontained proof of Proposition 2.2 
an be found in the Appendix. One 
an alsode�ne the 
ounting problem #�ksat in a similar manner and show that it is #��Pk -
omplete viaparsimonious redu
tions.Note that the de
ision problem underlying #�ksat is �k+1sat, whi
h is the prototypi
al �Pk+1-
omplete problem. Thus, the question be
omes: are there any natural #��Pk -
omplete problemssu
h that their underlying de
ision problem is of lower 
omputational 
omplexity (i.e., lower than4



�Pk+1-
omplete)? Clearly, unless �Pk+1 
ollapses to a lower 
omplexity 
lass, no su
h problem 
anbe #��Pk -
omplete via parsimonious redu
tions, whi
h means that a broader 
lass of redu
tionshas to be 
onsidered. To this e�e
t, Toda and Watanabe [TW92℄ proved the following surprisingand quite signi�
ant result: if a 
ounting problem is #P-hard via polynomial-time 1-Turing re-du
tions, then it is also #��Pk -
omplete via the same redu
tions, for every k � 1. Consequently,#perfe
t mat
hings is #��Pk -
omplete via polynomial-time 1-Turing redu
tions. At �rst sight,Toda and Watanabe's theorem [TW92℄ 
an be interpreted as providing an abundan
e of #��Pk -
omplete problems su
h that their underlying de
ision problem is of low 
omplexity. A moment'sre
e
tion, however, reveals that this theorem provides strong eviden
e that #P, #�
oNP, and allother higher 
ounting 
omplexity #��Pk , k � 2, are not 
losed under polynomial-time 1-Turingredu
tion. Moreover, it implies that polynomial-time 1-Turing redu
tions 
annot help us dis
over
omplete problems that embody the inherent diÆ
ulty of ea
h 
ounting 
omplexity 
lasses #��Pk ,k � 1, and allow us to draw meaningful distin
tions between these 
lasses. Consequently, the
hallenge is to dis
over a di�erent 
lass of redu
tions that have the following two 
ru
ial properties:(1) ea
h 
lass #��Pk , k � 1, is 
losed under these redu
tions; (2) ea
h 
lass #��Pk , k � 1, 
ontainsnatural problems that are 
omplete for the 
lass via these redu
tions. In what follows, we take the�rst steps towards 
onfronting this 
hallenge.3 Subtra
tive Redu
tionsResear
hers in stru
tural 
omplexity theory have extensively investigated various 
losure propertiesof #P and of 
ertain other 
ounting 
omplexity 
lasses (see [HO92, OH93℄). For instan
e, it is wellknown and easy to prove that #P is 
losed under both addition and multipli
ation.1 In turn, this hasmotivated resear
hers to introdu
e redu
tions that take advantage of 
losure properties. Indeed,Saluja, Subrahmanyam and Thakur [SST95℄ and Sharell [Sha98℄ used the 
losure of #P underaddition and multipli
ation to introdu
e approximation-preserving redu
tions between 
ountingproblems. In parti
ular, Sharell's [Sha98℄ PL-redu
tions involve positive linear 
ombinations thatapproximate the desired value from below. Unfortunately, these redu
tions do not seem to be suitedfor our purposes. Instead, we adopt a di�erent approa
h and introdu
e the 
lass of subtra
tiveredu
tions that �rst over
ount and then subtra
t any surplus items. It should be emphasized thatde�ning su
h redu
tions is a deli
ate matter, sin
e many 
ounting 
omplexity 
lasses, in
luding#P, do not appear to be 
losed under subtra
tion. Spe
i�
ally, Ogiwara and Hema
handra [OH93℄have shown that #P is 
losed under subtra
tion if and only if the 
lass PP of problems solvable inprobabilisti
 polynomial time 
oin
ides with the 
lass UP of problems solvable by an unambiguousTuring ma
hine in polynomial time, whi
h is 
onsidered an unlikely eventuality. Before de�ningthe 
lass of subtra
tive redu
tions, we need to introdu
e 
ertain auxiliary 
on
epts and establishnotation.Let D be a non-empty set. Intuitively, a multiset on D is a 
olle
tion of elements of D in whi
helements may have multiple o

urren
es. More formally, a multiset M on D 
an be viewed as afun
tion M :D �! N that assigns to ea
h element x 2 D the number M(x) of the o

urren
es of xin M . The multisets on D 
an be equipped with the operations of union and di�eren
e as follows.Let A and B be two multisets on D. The union of A and B is the multiset A� B su
h that(A�B)(x) = A(x) +B(x) for every x 2 D. The di�eren
e of A and B is the multiset A	B su
hthat (A	B)(x) = max(A(x)�B(x); 0) for every x 2 D. We say that A is 
ontained in B, and writeA � B, if A(x) � B(x) for every x 2 D. Note that if B � A, then (A	B)(x) = A(x)�B(x) holdsfor all x 2 D. With ea
h element x 2 D we asso
iate the membership fun
tion mx that satis�es the1Apparently, K. Regan was the �rst to observe this 
losure property of #P, see [HO92℄.5



following equations: mx(A) = A(x), mx(A � B) = A(x) + B(x), and mx(A 	 B) = A(x) � B(x),provided that B � A. Hen
e, whenever multiset di�eren
e is taking pla
e between two multisetssu
h that one is 
ontained in the other, then the multiset operations 
an be repla
ed by the ordinaryarithmeti
 operations. Finally, if A1; : : : ; An are multisets, then we write Lni=1Ai to denote theunion A1 � � � � �An.Let �, � be two alphabets and let R � �� � �� be a binary relation between strings su
hthat, for ea
h x 2 ��, the set R(x) = fy 2 �� j R(x; y)g is �nite. We write #�R to denote thefollowing 
ounting problem: given a string x 2 ��, �nd the 
ardinality jR(x)j of the witness setR(x) asso
iated with x. It is easy to see that every 
ounting problem is of the form #�R for someR.De�nition 3.1 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the 
ounting problem #�A redu
es to the 
ounting problem #�B via asubtra
tive redu
tion, and write #�A �s #�B, if there exist a positive integer n and polynomial-time
omputable fun
tions fi and gi, i = 1; : : : ; n, su
h that for every string x 2 ��:� Lni=1B(fi(x)) �Lni=1B(gi(x));� jA(x)j =Pni=1 jB(gi(x))j �Pni=1 jB(fi(x))j.Clearly, parsimonious redu
tions 
onstitute a spe
ial 
ase of subtra
tive redu
tions. Our �rstresult about subtra
tive redu
tions is that they 
ompose ni
ely. The proof of this result, whi
huses 
ertain basi
 algebrai
 properties of multisets, 
an be found in the Appendix.Theorem 3.2 Redu
ibility via subtra
tive redu
tions is a transitive relation, that is, if #�A �s #�Band #�B �s #�C, then #�A �s #�C.Next we establish the main result of this se
tion; it asserts that Valiant's 
ounting 
omplexity
lasses are 
losed under subtra
tive redu
tions.Theorem 3.3 #P and all higher 
ounting 
omplexity 
lass #��Pk = #�Pk , k � 1, are 
losed undersubtra
tive redu
tions.Proof: (Sket
h) Let k be a �xed positive integer. In what follows, we sket
h the proof that the 
lass#��Pk is 
losed under subtra
tive redu
tions; the proof for #P requires only minor modi�
ations.Re
all that #��Pk = #�Pk = #�P�Pk , as asserted in Theorem 2.1. Let #�A and #�B be two 
ountingproblems su
h that #�B 2 #��Pk and #�A redu
es to #�B via subtra
tive redu
tion. We will showthat #�A belongs to #��Pk by 
onstru
ting a predi
ate A0 in P�Pk su
h thatjA0(x)j = Pni jB(gi(x))j �Pni jB(fi(x))j = jA(x)j ;where fi and gi, 1 � i � n, are the polynomial-time 
omputable fun
tion in the subtra
tiveredu
tion of #�A to #�B. The elements of the predi
ate A0 will be pairs of strings (x; y0) su
h thaty0 = f1(x)� � � � �fn(x)� g1(x)� � � � � gn(x)�y � z, where z is an integer ranging from 1 to the numberb of o

urren
es of y in the multisetLni B(gi(x))	Lni B(fi(x)), and � is just a delimiter symbol.The predi
ate A0 is 
onstru
ted as follows. A pair (x; y0) belongs to A0 if and only if (x; y0) isa

epted by the following algorithm:1. extra
t f1(x), . . . , fn(x), g1(x), . . . , gn(x), y from y0;2. �nd the number 
g of pairs (gi(x); y), 1 � i � n, that belong to B;6



3. �nd the number 
f of pairs (fi(x); y), 1 � i � n, that belong to B;4. 
he
k that z � 
g � 
f .Step 4 ensures that, for every y, there are as many a

epted strings y0 as the number of o

urren
esof y in the multiset Lni B(gi(x)) 	Lni B(fi(x)). Therefore, the number of pairs (x; y0) a

eptedby A0 is equal to the number of pairs (x;�) a

epted by A. Step 1 
an be 
arried out in polynomialtime. For ea
h pair in Step 2, the test is in �Pk ; moreover, 
g is bounded by the �xed number n ofthe fun
tions gi. Hen
e, Step 2 is in P�Pk . For ea
h pair in Step 3, the test is in �Pk ; moreover, 
fis bounded by also bounded by n. Hen
e, as above, Step 3 is in P�Pk . Step 4 
an be 
arried out inpolynomial time. Consequently, the predi
ate A0 is in P�Pk . 2In view of the pre
eding Theorem 3.3, it is natural to ask whether the 
lasses #��Pk , k � 1,introdu
ed by Hemaspaandra and Vollmer [HV95℄, are also 
losed under subtra
tive redu
tions.We now provide eviden
e to the e�e
t that no 
lass #��Pk is 
losed under subtra
tive redu
tions.For this, we observe that #�ksat, the generi
 
omplete problem for #��Pk , 
an easily be redu
edto #�ksat, the generi
 
omplete problem for #��Pk , via a subtra
tive redu
tion. Consequently,if #��Pk were 
losed under subtra
tive redu
tions, then #��Pk would 
ollapse to #��Pk , whi
h isgenerally 
onsidered as highly unlikely.Let '(y1; : : : ; yn) be any �k-formula 8x19x2 � � �Qkxk �(x1; : : : ; xk; y1; : : : ; yn). Let �'(y1; : : : ; yn)be the �k formula that is equivalent to :' and is obtained from ' by propagating the negationsymbol through the quanti�ers and applying de Morgan laws to the quanti�er-free part of '.Let  (y1; : : : ; yn) be the tautology y1 _ :y1 _ y2 _ :y2 _ � � � _ yn _ :yn. It is obvious that everysatisfying truth assignment of �' is a satisfying truth assignment of  and that #(') = #( )�#(�'),where #(') denotes the number of satisfying truth assignments of ' (and similarly for  and �').Consequently, the polynomial-time 
omputable fun
tions f1(') = �' and g1(') =  
onstitute asubtra
tive redu
tion of #�ksat to #�ksat.Observe that the pre
eding argument 
an also be applied to a Boolean formula ' in 
onjun
tivenormal form (i.e., assume k = 0) to produ
e a subtra
tive redu
tion of #sat to #dnf, where #dnfis the following 
ounting problem.#DNFInput: A Boolean formula � in disjun
tive normal form.Output: Number of truth assignments to the variables of � that satisfy �.Consequently, we obtain a well-known #P-
ompleteness result by means of our new redu
tion.Proposition 3.4 #dnf is #P-
omplete via subtra
tive redu
tions.Observe that #dnf 
annot be #P-
omplete via parsimonious redu
tions, sin
e its underlying de-
ision problem is easily solvable in polynomial time. As stated earlier, #perfe
t mat
hingsis #P-
omplete via polynomial-time 1-Turing redu
tions. It is an interesting open problem todetermine whether #perfe
t mat
hings is also #P-
omplete via subtra
tive redu
tions.4 #�
oNP-
omplete Problems via Subtra
tive Redu
tionsMany important 
ounting problems are known to be #P-
omplete via polynomial-time 1-Turingredu
tions and have the property that their underlying de
ision problem is solvable in polynomialtime [Val79a, Val79b, PB83, Lin86℄. The 
urrent state of knowledge, however, is very di�erent forthe higher 
ounting 
omplexity 
lasses #��Pk and #��Pk , k � 1. We do know that they possessgeneri
 
omplete problem, su
h as #�ksat and #�ksat, that are 
omplete for these 
lasses via7



parsimonious redu
tions, but have inherently high 
omputational 
omplexity (see Proposition 2.2).We also know that every 
ounting problem that is #P-
omplete via polynomial-time 1-Turingredu
tions is also 
omplete for these 
lasses under the same redu
tions [TW92℄. Up to this point,however, it is not known if these higher 
ounting 
omplexity 
lasses 
ontain any problems that havethe following two properties: (1) they are 
omplete for the 
lass via redu
tions under whi
h the
lass is 
losed; (2) their underlying de
ision problems has 
omplexity lower than that of the generi

omplete problem for the 
lass.In this se
tion, we fo
us on the 
lass #�
oNP and establish that it 
ontains 
ertain natural
ounting problems that possess the above two properties. Re
all that #�
oNP is the �rst higher
ounting 
omplexity 
lass that arises in Valiant's framework, sin
e #�
oNP = #NP. Moreover, itis quite robust, sin
e, as shown by Toda [Tod91℄, #�
oNP = #NP = #�PNP (see Theorem 2.1).Cir
ums
ription is a well-developed formalism of 
ommon-sense reasoning introdu
ed by M
-Carthy [M
C80℄ and extensively studied by the arti�
ial intelligen
e 
ommunity. The key ideabehind 
ir
ums
ription is that one is interested in the minimal models of formulas, sin
e they arethe ones that have as few \ex
eptions" as possible and, therefore, embody 
ommon sense. In the
ontext of Boolean logi
, 
ir
ums
ription amounts to the study of satisfying assignments of Booleanformulas that are minimal with respe
t to the pointwise partial order on truth assignments. Morepre
isely, if s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) are two elements of f0; 1gn, then we write s < s0 todenote that s 6= s0 and si � s0i holds for every i � n. Let '(x1; : : : ; xn) be a Boolean formula havingx1; : : : ; xn as its variables and let s 2 f0; 1gn be a truth assignment. We say that s is a minimalmodel of ' if s is a satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' su
h that s < s0. This 
on
ept gives rise to the following natural 
ounting problem.#CIRCUMSCRIPTIONInput: A Boolean formula '(x1; : : : ; xn) in 
onjun
tive normal form.Output: Number of minimal models of '(x1; : : : ; xn).The underlying de
ision problem for #
ir
ums
ription is NP-
omplete, sin
e a Boolean for-mula has a minimal model if and only if it is satis�able. Thus, it has lower 
omplexity than�P2 -
omplete, whi
h is the 
omplexity of the underlying de
ision problem for #�1sat, the generi
problem for #�
oNP.Theorem 4.1 #
ir
ums
ription is #�
oNP-
omplete via subtra
tive redu
tions.Proof: It is 
lear that the problem belongs to #�
oNP, sin
e testing whether a given truthassignment is a minimal model of a given formula is in 
oNP (a
tually, this de
ision problem is
oNP-
omplete [Cad92℄).For the lower bound, we 
onstru
t a subtra
tive redu
tion of #�1sat to #
ir
ums
ription.In what follows, we write A(F ) to denote the set of all satisfying assignments of a �1-formulaF ; we also write B( ) to denote the set of all minimal models of a Boolean formula  . LetF (x) = 8y �(x; y) be a �1-formula, where �(x; y) is a Boolean formula in disjun
tive normal form,and x = (x1; : : : ; xn), y = (y1; : : : ; ym) are tuples of Boolean variables. Let x0 = (x01; : : : ; x0n) be atuple of new Boolean variables, let z be a single new Boolean variable, let P (x; x0) be the formula(x1 � :x01) ^ � � � ^ (xn � :x0n), let Q(y) be the formula y1 ^ � � � ^ ym, and, �nally, let F 0(x; x0; y; z)be the formula P (x; x0) ^ (z ! Q(y)) ^ (�(x; y)! z):There is a polynomial-time 
omputable fun
tion g su
h that, given a �1-formula F as above, itreturns as value a Boolean formula g(F ) in 
onjun
tive normal form that is logi
ally equivalentto the formula F 0(x; x0; y; z) (this is so, be
ause �(x; y) is in disjun
tive normal form). Now let8



F 00(x; x0; y; z) be the formula F 0(x; x0; y; z)^(z ! :Q(y)) and let f be a polynomial-time 
omputablefun
tion su
h that, given a �1-formula F as above, it returns as value a Boolean formula f(F ) thatis logi
ally equivalent to the formula F 00(x; x0; y; z).We will show in a sequen
e of four 
laims that there is a bije
tion between the satisfyingassignments of F and the minimal models of F 0 that do not satisfy F 00.Claim 1: (x; x0; y; z) is a model of F 0 if and only if either P (x; x0) = 1 and Q(y) = 1 and z = 1,or P (x; x0) = 1 and z = 0 and �(x; y) = 0. This is obvious from the de�nition of F 0, sin
e z = 1implies Q(y) = 1.Claim 2: (x; x0; y; z) is a minimal model of F 0 if and only if either �(x; y) = 1 for all y andP (x; x0) = 1 and Q(y) = 1 and z = 1, or P (x; x0) = 1 and z = 0 and �(x; y) = 0 and thereis no y0 su
h that y0 < y and �(x; y0) = 0. Consider the models (x; x0; 1; : : : ; 1; 1). Assume that(x; x0; 1; : : : ; 1; 1) is a minimal model of F 0. Then for every y we must have that �(x; y) = 1, sin
eotherwise (x; x0; y; 0) would be a model of F 0 smaller than (x; x0; 1; : : : ; 1; 1). Assume that x is su
hthat 8y �(x; y) = 1. Then (x; x0; 1; : : : ; 1; 1) is a minimal model of F 0, sin
e the only way to have asmaller model would be to have one of the form (x; x0; y; 0) with �(x; y) = 0, whi
h 
ontradi
ts thehypothesis on x. Now, 
onsider models of the form (x; x0; y; 0). From Claim 1 it follows that su
ha model is minimal if and only if there is no y0 < y su
h that �(x; y0) = 0.Claim 3: (x; x0; y; z) is a model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0. Thisfollows easily from the de�nition of F 00.Claim 4: (x; x0; y; z) is a minimal model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0and there is no y0 su
h that y0 < y and �(x; y0) = 0. This follows from the de�nition of F 00 andClaim 3.From Claims 1 to 4, it follows that the set di�eren
e of minimal models of F 0 and F 00 is equalto the set f(x; x0; 1; : : : ; 1; 1) j 8y �(x; y) ^ P (x; x0)g. Note that this set is isomorphi
 to the setof satisfying assignments of the formula F , sin
e the variables x0 are fun
tionally dependent onthe variables x through the formula P (x; x0). Hen
e, we have that jA(F )j = jB(F 0)j � jB(F 00)j,whi
h establishes that the polynomial-time 
omputable fun
tions f and g 
onstitute a subtra
tiveredu
tion of #�1sat to #
ir
ums
ription. 2The following result is an immediate 
onsequen
e of Theorems 3.3 and 4.1.Corollary 4.2 #�
oNP = #P if and only if #
ir
ums
ription is in #P.We now move from 
ounting problems in Boolean logi
 to 
ounting problems in integer linearprogramming. A system of linear Diophantine inequalities over the non-negative integers is a systemof the form S:Ax � b, where A is an integer matrix, b is an integer ve
tor, and we are interestedin the non-negative integer solutions of this system. If b is the zero-ve
tor (0; : : : ; 0), then we saythat the system is homogeneous. A non-negative integer solution s of S is minimal if there is nonon-negative solution s0 of S su
h that s0 < s in the pointwise partial order on integer ve
tors. Itis well known that the set of all minimal solutions plays an important role in analyzing the spa
eof all non-negative integer solutions of linear Diophantine systems (see S
hrijver [S
h86℄). Clearly,every homogeneous system has (0; : : : ; 0) as a trivial minimal solution. Here, we are interested in
ounting the number of non-trivial minimal solutions of homogeneous systems.#HOMOGENEOUS MIN SOLInput: A homogeneous system S:Ax � 0 of linear Diophantine inequalities.Output: Number of non-trivial minimal solutions of S.9



Note that the underlying de
ision problem of #hom min sol amounts to whether a givenhomogeneous system of linear Diophantine inequalities has a non-negative integer solution otherthan the trivial solution (0; : : : ; 0). It is easy to show that this problem is solvable in polynomialtime, sin
e it 
an be redu
ed to linear programming. In 
ontrast, 
ounting the number ofnon-trivial minimal solutions turns out to be a hard problem.Theorem 4.3 #homogeneous min sol is #�
oNP-
omplete via subtra
tive redu
tions.Proof: (Hint) The problem is in #�
oNP, be
ause de
iding membership in the witness sets is in
oNP; indeed, the size of minimal solutions is bounded by a polynomial in the size of the system(see Corollary 17.1b in [S
h86, page 239℄). The lower bound is established through a sequen
eof subtra
tive redu
tions. First, #
ir
ums
ription 
an be redu
ed to #satisfiable 
ir
, therestri
tion of #
ir
ums
ription to satis�able Boolean formulas. In turn, this problem has asubtra
tive redu
tion to #satisfiable min sol, whi
h asks for the number of minimal solutionsof a system S : Ax � b of linear Diophantine inequalities having at least one non-negative integersolutions (details of these two redu
tions 
an be found in the Appendix). Finally, #satisfiablemin sol has a subtra
tive redu
tion to #homogeneous min sol, whi
h we outline in what followsLet S:Ax � b be a system of linear Diophantine inequalities with at least one non-negativeinteger solution and su
h that A is k � n integer matrix. First 
onstru
t the system S0:Ax� b�y �0; 2z � t = y; xi � y; xi � y � t, where �y = (y; : : : ; y) is a ve
tor of length k having the samevariable y in ea
h 
oordinate, and z and t are additional new variables. After this, 
onstru
t thesystem S00 = S0 [ fx1 = � � � = xn = yg.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be thesets of nontrivial minimal solutions of S0 and S00, respe
tively. In the Appendix we show thatB(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-time
omputable fun
tions f(S) = S0 and g(S) = S00 
onstitute a subtra
tive redu
tion of #satisfiablemin sol to #homogeneous min sol. 2Corollary 4.4 #�
oNP = #P if and only if #homogeneous min sol is in #P.To the best of our knowledge, the above result provides the �rst example of a 
ounting problemwhose underlying de
ision problem is solvable in polynomial time, but the 
ounting problem itselfis not in #P, unless higher 
ounting 
omplexity 
lasses 
ollapse to #P.5 Con
luding RemarksWe 
on
lude by re
alling Valiant's assertion from his in
uential paper [Val79b℄ to the e�e
t that\The 
ompleteness 
lass for #P appears to be rivalled only by that for NP in relevan
e to naturallyo

urring 
omputational problems." The passage of time and the subsequent resear
h in this area
ertainly proved this to be the 
ase. We believe that the results reported here suggest that also#�
oNP 
ontains 
omplete problems of 
omputational signi�
an
e. Furthermore, we believe thatsubtra
tive redu
tions are the right tool for investigating #�
oNP and identifying other naturalproblems that are #�
oNP-
omplete via these redu
tions. The next 
hallenge in this vein is todetermine whether #hilbert is #�
oNP-
omplete via subtra
tive redu
tions. #hilbert is theproblem of 
omputing the 
ardinality of the Hilbert basis of a homogeneous system S:Ax = 0 oflinear Diophantine equations, i.e., 
ounting the number of non-trivial minimal solutions of su
ha system. We note that this 
ounting problem was �rst studied by Hermann, Juban and Ko-laitis [HJK99℄, where it was shown to be a member of #�
oNP and also to be #P-hard underpolynomial-time 1-Turing redu
tions. 10
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AppendixProof of Theorem 2.2A bije
tion 
an be de�ned between ea
h binary string x of length n and stru
tures of the formstr(x) = hU = f0; : : : ; n � 1g;XU ; <U i, where U represents the sets of positions of x, < is thenatural total ordering of the set f0; : : : ; n � 1g and XU (i) holds if and only if the i-th positionof the string x equals 1. As an example, the word x = 1010 is represented by the stru
turehU = f0; 1; 2; 3g;X = f0; 2g; <i. Note that the mapping is not bije
tive in absen
e of the orderingrelation. In the same way, every pair (x; y) with jxjk = nk = jyj 
an be represented by a uniquestru
ture str(x; y) = hU ;XU ; Y U ; <U i with Y being a k-ary relation on U su
h that the predi
ateY U (i0; : : : ; ik�1) holds if and only if position i0 + i1n+ � � �+ ik�1nk�1 of the string y equals 1. Wesay that the stru
ture str(x; y) extends str(x) as the pair (x; y) is an extension of x.Re
all that �Pi is the i-th existential level of the polynomial-time hierar
hy PH, and let �1ibe the i-th level of the se
ond-order logi
, i.e., the se
ond-order logi
 with the formulas in prenexnormal form with i alternations of se
ond-order quanti�er starting with an existential one. Inan analogous manner, �1i will be the i-th level of the se
ond-order logi
 starting with a universalquanti�er. In [Sto76℄, Sto
kmeyer generalized Fagin's theorem and showed that every level �Pi ofthe polynomial hierar
hy 
orresponds to �1i . By a straightforward modi�
ation of the proof, itholds that for every binary predi
ate R 2 �Pi , there exists a formula � su
h that (x; y) 2 R if andonly if str(x; y) j= �.Consider the following 
ounting problem, issued from a dire
t generalization of the des
riptive
omplexity ideas to the 
ounting 
lasses.#��1iGEN-SATInput: A formula �(X;Y;<) 2 �1i and a stru
ture str(x).Output: Number of extensions str(x; y) of str(x) that are models of �(X;Y;<).The problem #��1igen-sat is de�ned analogously. Note that the 
ounting 
omplexity 
lasses #��Piand #��Pi , for i � 1, are 
losed under parsimonious redu
tions. This is just a 
onsequen
e of theresult that the 
lasses of de
ision problems �Pi and �Pi are 
losed under polynomial many-oneredu
tions.Proposition 5.1 #��1igen-sat (resp. #��1igen-sat) is #��Pi -
omplete (resp. #��Pi -
omplete)with respe
t to parsimonious redu
tions.Proof: The proof follows from Sto
kmeyer's 
hara
terizations. Let R be a binary predi
ate in �Pi .Then there exists a �1i formula � su
h that (x; y) 2 R if and only if str(x; y) = hU ;XU ; Y U ; <U i j=�. The bije
tive en
oding of words into stru
tures implies that, for any �xed x, the number ofword y, satisfying the membership (x; y) 2 R, 
orresponds to the number of extensions str(x; y) ofstr(x) that are models of �, thus giving a parsimonious redu
tions from #�R to #��1igen-sat. 2We are able now to prove Proposition 2.2.Proposition 2.2. #�ksat is #��Pk -
omplete via parsimonious redu
tions. Moreover, if k is odd(even), then the problem remains #��Pk -
omplete, even if the quanti�er-free part of the input isrestri
ted to be a Boolean formula in disjun
tive normal form (respe
tively, in 
onjun
tive normalform). 12



Proof: The proof mimi
s the method to derive the 
ompleteness of sat from Fagin's theorem(see [Imm99℄ for example). We give a parsimonious redu
tion from #��1igen-sat to #��isat. Letstr(x) = hU ;XU ; Y U ; <U i be the 
onsidered stru
ture and�(X;Y;<) = 9R18R2 � � �QiRi�(R1; : : : ; Ri;X; Y;<)be an instan
e of #��1igen-sat. Let jUj = n. We 
onstru
t an instan
e '(y) of #��isat as follows.The formula '(y) will 
ontain the boolean variables Rj(e1; : : : ; e�j ) and Y (e1; : : : ; ek) for j =1; : : : ; i and e1; : : : ; e�j 2 U . First, ea
h blo
k of existentially (resp. universally) quanti�ed se
ond-order variable Rj is repla
ed by a blo
k of n�j existentially (resp. universally) quanti�ed booleanvariables Rj(0; 0; : : : ; 0), Rj(0; 0; : : : ; 1),. . . , Rj(n� 1; n� 1; : : : ; n� 1).Next, repla
e every �rst-order universal quanti�
ation 8x in � by the 
onjun
tion Vn�1x=0 andevery existential quanti�
ation 9x by the disjun
tionWn�1x=0 and unroll the resulting formula, repla
-ing x by its su

essive value 0, 1 and n� 1. We then obtain a boolean formula with only variablesY (e1; : : : ; ek) (shorten by the ve
tor y) as free variables and whose terms are among Rj(e1; : : : ; e�j ),Y (e1; : : : ; ek), but also ei < ej and X(e). The �nal step 
onsist of repla
ing every term ei < ej andX(e) by their boolean value true or false depending on whether this is true or false in the stru
turestr(x). There is no exponential blow-up be
ause the 
onstru
ted formula is of polynomial lengthin the size of the stru
ture str(x), whi
h is part of the input of the redu
ed problem.We have now a one-to-one 
orresponden
e between the satis�ability of � in the stru
turestr(x; y) and the formula '(y) being an instan
e of the 
ounting problem #��isat: str(x; y) j=�(X;Y;<) if and only if '(y) is satis�able.Moreover, the 
ardinality of the set fY U j hU ;XU ; Y U ; <i j= �(X;Y;<)g is equal to the numberof distin
t assignments of y that satisfy '(y). This 
on
ludes the 
ompleteness proof for the 
ountingproblem #��isat. The proof is similar for the 
ounting problem #��isat. 2

13



Proof of Theorem 3.2For proving that the subtra
tive redu
tions 
ompose, we will need the following properties ofmultisets.Lemma 5.2 Let Ai, Bi, for i = 1; : : : ; n, A, B, C, and D be multisets.1. If Bi � Ai for ea
h i, then nMi=1 (Ai 	Bi) = ( nMi=1 Ai)	 ( nMi=1 Bi):2. If B � A, D � C, and C 	D � A	B then(A	B)	 (C 	D) = (A�D)	 (B � C):Proof: Let x be an arbitrary element of the domain. Sin
e Bi � Ai holds for ea
h i, we have thatmx(Ai 	Bi) = mx(Ai)�mx(Bi):Hen
e, mx( nMi=1 (Ai 	Bi)) = nXi=1(mx(Ai)�mx(Bi))= nXi=1 mx(Ai)� nXi=1 mx(Bi)= mx( nMi=1 Ai)�mx( nMi=1 Bi):The in
lusion Bi � Ai for ea
h i implies nMi=1 Bi � nMi=1 Ai:Hen
e, mx( nMi=1 Ai)�mx( nMi=1 Bi) = mx( nMi=1 Ai 	 nMi=1 Bi):For the se
ond 
ase, mx((A	B)	 (C 	D)) == mx(A	B)�mx(C 	D)= (mx(A)�mx(B))� (mx(C)�mx(D))= (mx(A) +mx(D)) � (mx(B) +mx(C))= mx(A�D)�mx(B � C)= mx((A �D)	 (B � C)):14



2We are able now to prove Theorem 3.2 showing that a 
omposition of two subtra
tive redu
tionsprodu
es another subtra
tive redu
tion.Theorem 3.2. Redu
ibility via subtra
tive redu
tions is a transitive relation, that is, if #�A �s#�B and #�B �s #�C, then #�A �s #�C.Proof: Suppose that #�A redu
es to #�B via subtra
tive redu
tion with the fun
tions f1i and g1i .Suppose also that #�B redu
es to #�C via subtra
tive redu
tion with the fun
tions f2i and g2i . Weprove that there exists a subtra
tive redu
tion from #�A to #�C with the fun
tions fk and gk.Let M = Mi B(g1i (x))	Mi B(f1i (x))i.e., jM j = jA(x)j. Sin
e there is a subtra
tive redu
tion from #�B to #�C, the setM is isomorphi
to Mi (Mj C(g2j (g1i (x))) 	Mj C(f2j (g1i (x))))	 Mi (Mj C(g2j (f1i (x)))	Mj C(f2j (f1i (x)))):Sin
e the in
lusions are satis�ed, following property 1 of Lemma 5.2, the previous set is equal to(Mi Mj C(g1j (g1i (x)))	Mi Mj C(f2j (g1i (x))))	 (Mi Mj C(g2j (f1i (x))) 	Mi Mj C(f2j (f1i (x)))):Following property 2 of Lemma 5.2, the latter set is equal toMi Mj (C(g2j (g1i (x))) � C(f2j (f1i (x))))	 Mi Mj (C(f2j (g1i (x)))� C(g2j (f1i (x)))):Hen
e, we 
hoose the fun
tions g2j (g1i (x)) and f2j (f1i (x)) for gk(x), whereas the fun
tions f2j (g1i (x))and g2j (f1i (x)) be
ome the fun
tions fk(x). Therefore, we derive the equalityjA(x)j = Xk jC(gk(x))j �Xk jC(fk(x))j 2
15



Proof of Theorem 4.3As stepping stones towards proving Theorem 4.3, we will introdu
e and use two other te
hni
al
ounting problems.#SATISFIABLE CIRCInput: A satis�able Boolean formula '(x1; : : : ; xn) in 
onjun
tive normal form.Output: Number of minimal models of '(x1; : : : ; xn).Proposition 5.3 #satisfiable 
ir
 is #�
oNP-
omplete via subtra
tive redu
tions.Proof: De
iding membership in the witness sets for this problem is in PNP, be
ause de
idingsatis�ability of a Boolean formula ' is in NP and de
iding minimality of a model of ' is in 
oNP.Hen
e, #satisfiable 
ir
 belongs to #�PNP = #�
oNP.For the lower bound, it is not hard to verify that a subtra
tive redu
tion of #
ir
ums
riptionto #satisfiable 
ir
 
an be obtained as follows: given a Boolean formula '(x1; : : : ; xn) in 
on-jun
tive normal form the new formula (x0; x00; x1; : : : ; xn) = ((x0 ^ x1 ^ � � � ^ xn) _ (:x0 ^ �(x1; : : : ; xn))) ^ (x0 6� x00):The formula  has at least one model, namely m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1).We show that m0 is minimal for  . Suppose that there exists a smaller model m00. Thenm00(x0) = 0 or m00(xi) = 0 for some i. If m00(x0) = 0 then m00(x00) = 1, hen
e the models m0 and m00are in
omparable. Ifm00(xi) = 0 for some i, then x0^x1^� � �^xn = 0. Hen
e, :x0^�(x1; : : : ; xn) = 1From this follows that :x0 = 1, i.e., m00(x0) = 0. This on
e more leads to m00(x00) = 1 and the twomodels are in
omparable. There is a 
ontradi
tion in both 
ases, therefore m0 is minimal.Now, we show that (x1; : : : ; xn) is a minimal model of � if and only if m1 = (x0 = 0; x00 =1; x1; : : : ; xn) is a minimal model of  . Constru
t the new formula  0 =  ^x0^x1^� � �^xn^(x0 6�x00). The formula  0 has exa
tly one model, namely m0. This model is therefore also minimalfor  0.Let A(�) be the set of minimal solutions of � and B(�) be the set of minimal solutions of asatis�able formula �. The in
lusion B( 0) � B( ) holds, sin
e  0 has only one model m0 whi
h isalso minimal for  . It is 
lear that every model of � also satis�es  . Moreover, the only model of  that does not satisfy � is the unique model of  0, m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1). Thisimplies that the equality jA(�)j = jB( )j � jB( 0)j holds. The formulas  and  0 
an be written in
onjun
tive normal form without exponential explosion. Hen
e, we have a subtra
tive redu
tion.2#SATISFIABLE MIN SOLInput: A system S:Ax � b of linear Diophantine inequalities having at least one non-negativeinteger solution.Output: Number of minimal solutions of S.Proposition 5.4 #satisfiable min sol is #�
oNP-
omplete via subtra
tive redu
tions.Proof: De
iding membership in the witness sets for this problem is in PNP and, hen
e, the problemis in #�PNP = #�
oNP. Indeed, testing the system for solvability is in NP, whereas testing a givensolution for minimality is in 
oNP. In both tests, we use the fa
t that the size of minimal solutionsis bounded by a polynomial in the size of the system (see Corollary 17.1b in [S
h86, page 239℄).16



For the lower bound, observe that the standard redu
tion of Boolean satis�ability to integer lin-ear programming also 
onstitutes a parsimonious redu
tion of #satisfiable 
ir
 to #satisfiablemin sol. 2We are able now to prove Theorem 4.3.Theorem 4.3. #homogeneous min sol is #�
oNP-
omplete via subtra
tive redu
tions.Proof: The problem is in #�
oNP, be
ause de
iding membership in the witness sets is in 
oNP,using the bounds in the size of minimal solutions (see the proof of Proposition 5.4).For the lower bound, we exhibit a subtra
tive redu
tion from #satisfiable min sol. LetS:Ax � b be a system of linear Diophantine inequalities with at least one non-negative integersolution and su
h that A is k � n integer matrix. First 
onstru
t the systemS0: Ax� b�y � 0; 2z � t = y; xi � y; xi � y � t;where �y = (y; : : : ; y) is a ve
tor of length k having the same variable y in ea
h 
oordinate, and zand t are additional new variables.Claim 1: The ve
tor s0 = (x1 = x2 = � � � = xn = y = 0; z = 1; t = 2) is a minimal solution of S0.This is obviously a solution. The only smaller solution is the trivial all-zero solution.Claim 2: The nontrivial minimal solutions of S0, ex
ept s0, are of the form (x1; : : : ; xn; y =2k; z = k; t = 0) or (x1; : : : ; xn; y = 2k + 1; z = k + 1; t = 1). Suppose s is a solution di�erentfrom s0 and y = 2k � 2. In this 
ase, the se
ond equation has for admissible values of z and t thepairs (k + i; 2i) for every i. On
e i � 1 holds, s is greater than s0. Therefore only the pair (k; 0) is
onvenient. If y = 2k+1 and k � 0, z and t have for admissible values the pairs (k+ i; 2i� 1) withi � 1. On
e i � 2 holds, s be
omes greater than s0. Therefore only the pair (k+1; 1) is 
onvenient.Claim 3: There exists a minimal solution of S0 with y � 3 and y odd if and only if there are nosolutions for y = 1 and y = 2. If there exists a solution with y = 1 or y = 2, then there exists alsoa minimal solution with the same value of y. Suppose that there exists a minimal solution withy � 3 and y = 2k + 1, then t = 1. From this follows xi � 2k for ea
h i. We have that k � 1 sin
ey � 3, therefore xi � 2 holds for ea
h i. From 2z � t = y, t = 1, and y � 3 follows z � 2. Lets3 = (x1 � 2; : : : ; xn � 2; y � 3; z � 2; t = 1) be a minimal solution of S0. If there is a minimalsolution with y = 1, it is of the form s1 = (x1 � 1; : : : ; xn � 1; y = 1; z = 1; t = 1) and s1 is smallerthan s3. Contradi
tion. If there is a minimal solution with y = 2, it is s2 = (x1 � 2; : : : ; xn �2; y = 2; z = 1; t = 0) and s2 is smaller than s3. Contradi
tion.Claim 4: If there exists a minimal solution with y even, then this solution is (x1 = � � � = xn =2 = y; z = 1; t = 0). For y = 2k and t = 0 we must have x1 = � � � = y = 2k and z = k for somek � 1. Sin
e S0 is a homogeneous system, we 
an divide the solution by k.Now, we use the knowledge that The known minimal model in #satisfiable 
ir
 and alsothe known minimal solution of Ax � b for #satisfiable min sol has a value xi = 0 for some i.Hen
e, this solution falsi�es the system of equations x1 = � � � = xn.After this, 
onstru
t the system S00 = S0 [ fx1 = � � � = xn = yg. Clearly, the system S00 has theminimal solution s0 = (x1 = � � � = xn = 0; y = 0; z = 1; t = 2) and also s2 = (x1 = � � � xn = 2; y =17



2; z = 1; t = 0) if s2 is a solution of S0. Therefore the minimal solutions of S00 are in
luded in theminimal solutions of S0.We know that S0 has at least one minimal solution s for y = 1, sin
e S:Ax � b has one solution.Moreover, s is not a minimal solution of S00.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be the setsof nontrivial minimal solutions of S0 and S00, respe
tively. From the previous reasoning follows thatB(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-time
omputable fun
tions f(S) = S0 and g(S) = S00 
onstitute a subtra
tive redu
tion of #satisfiablemin sol to #homogeneous min sol. 2
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