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Abstract. Reiter's default logic formalizes honmonotonic reasonirsing de-
fault assumptions. The semantics of a given instance ofuttefagic is based
on a fixpoint equation defining an extension. Three differeasoning problems
arise in the context of default logic, namely the existentaroextension, the
presence of a given formula in an extension, and the ocaterefia formula in
all extensions. Since the end of 1980s, several complea#ylts have been pub-
lished concerning these default reasoning problems féergifit syntactic classes
of formulas. We derive in this paper a complete classificatibdefault logic rea-
soning problems by means of universal algebra tools usisgidRdone lattice. In
particular we prove a trichotomy theorem for the existenicamextension, clas-
sifying this problem to be either polynomia§P-complete, or¥2P-complete,
depending on the set of underlying Boolean connectives. léée@ove similar
trichotomy theorems for the two other algorithmic probleimgonnection with
default logic reasoning.

1 Introduction

Nonmonotonic reasoning is one of the most important topicsamputational logic
and artificial intelligence. Different logics formalizingpnmonotonic reasoning have
been developed and studied since the late 1970s. One of ttkmmwn is Reiter'sle-
fault logic [21], which formalizes nonmonotonic reasoning using difassumptions.
Default logic can express facts like “by default, a formuylas true”, in contrast with
standard classical logic, which can only express that atitaip is true or false.

Default logic is based on the principle of defining the serearf a given set of
formulasV (also calledoremisesor axiomg through a fixpoint equation by means of
a finite set of default®. The possible extensions of a given §gtof axioms are the
setsFE, stable under a specific transformation, i.e., satisfymgitientityl"(F) = E.
These fixpoint setd represent the different possible sets of knowledge thatbean
adopted on the base of the premid&s Three important decision problems arise in
the context of reasoning in default logic. The first is to decivhether for a given
set of axiomdl” and defaultsD there exists a fixpoint. The second, calddulous
reasoningis the task to determine whether a formylaccurs in at least one extension
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of the setWW. The third one, calledkeptical reasoningsks to determine whether a
given formulap belongs tall extensions ofV'.

At the end of 1980s and the beginning of 1990s, several codtplesults were
proved for default logic reasoning. Several authors havestigated the complexity of
the three aforementioned problems for syntactically retst versions of propositional
default logic. Kautz and Selman [13] proved tN&-completeness of propositional
default reasoning restricted to disjunction-free fornsiliee., all propositional formulas
occurring in the axiom$V and the default® are conjunctions of literals. Furthermore,
they show that for very particular restrictions defaultseaing is feasible in polyno-
mial time. Stillman [23,24] extends the work of Kautz andrSah by analyzing further
subclasses of disjunction-free default theories, as veedicane other classes that allow
a limited use of disjunction. The work of Kautz and Selman][B3 well as of Still-
man [23, 24] provided a good understanding of the tractglfiontier of propositional
default reasoning. The complexity of the general case wadlyfisettled by Gottlob
in [11], where he proved that propositional default reasgris complete for the sec-
ond level of the polynomial hierarchy. All these complexiggults indicate that default
logic reasoning is more complicated than that of the stahdeopositional logic.

In the scope of the aforementioned results a natural queatises whether the pre-
vious analysis covers all possible cases. We embark on tiaikenge by making two
generalizations. First, the usual clauses have been dizmeerto constraints based on
Boolean relations. Second, we allow in the axidifisand the default® not only for-
mulas built as conjunctions of constraints, but also coctiva queries, i.e., existential
positive conjunctive formulas built upon constraints. §hpproach using a restricted
existential quantification can be seen as a half way betweendual propositional for-
mulas and the default query language DQL defined in [6]. Megedhis approach is
natural in the scope of relation-based constraints, sinaioivs us to use the universal
algebra tools to reason about complexity. We take advargfgiee closed classes of
Boolean functions and relations, called clones and coedpwhich allow us to prove
a complexity result for a single representant of this clalsat extends by means of
closure properties to all Boolean functions or queriespeetively, in the same class.
Using these algebraic tools we deduce a complete clasgficaf the three default
reasoning problems parametrized by sets of Boolean camstr&imilar classification,
using universal algebra tools and Post lattice, had beea@dyrdone for other nonmono-
tonic reasoning formalisms, namely circumscription [18fl@bduction [8,17]. Finally,
a complexity classification of propositional default loglong other lines, studying the
structural aspects of the underlying formulas, had beer dofl]. Our approach to the
complexity classification differs from Ben-Eliyahu's [1] the following points: (1) the
class of formulas in the the axioms, prerequisite, justiiicg and consequence of de-
faults is always the same; (2) the classification is perfarime the set of underlying
Boolean relations, taking the role of a parameter, from which the formulas arit b
and not on the input formulas itself; (3) the studied clasdésrmulas are closed under
conjunction and existential quantification. The aforenwergd requirements for unifor-
mity of the formulas in all three parts of defaults and in tixéens, plus the closure
under conjunction exclude prerequisite-free, justifimatfree, normal, semi-normal, or
any other syntactically restricted default theories frinis tlassification.



2 Preliminaries

Throughout the paper we use the standard correspondeneedyepredicates and rela-
tions. We use the same symbol for a predicate and its comelspg relation, since the
meaning will always be clear from the context, and we saytti@predicateepresents
the relation.

An n-ary logical relation R is a Boolean relation of arity.. Each element of a
logical relationR is ann-ary Boolean vectom = (mq,...,m,) € {0,1}". LetV
be a set of variables. &onstraintis an application ofR to ann-tuple of variables
from V, i.e., R(z1,...,2,). An assignment: V' — {0,1} satisfies the constraint
R(x1,...,zp) 1f (I(x1),...,I(zy)) € R holds.

Example 1.Equivalence is the binary relation defined by = {00, 11}. Given the
ternary relationsiae = {0,1}® . {000,111} and 1-in-3= {100,010, 001}, the con-
straint nae(x, y, z) is satisfied if not all variables are assigned the same vahde a
1-in-3(z, y, z) is satisfied if exactly one of the variablesy, andz is assigned to 1.

Throughout the text we refer to different types of Booleanstaaint relations fol-
lowing Schaefer’s terminology [22]. We say that a Boolealatien R is 1-valid if
1---1 € RanditisO-validif 0---0 € R; Horn (dual Horn) if R can be represented
by a conjunctive normal form (CNF) formula having at most em@egated (negated)
variable in each clausdgjjunctiveif it can be represented by a CNF formula having
at most two variables in each clausdfineif it can be represented by a conjunction
of linear functions, i.e., a CNF formula with-clauses (XOR-CNF);omplementive
for each(aq,...,a,) € R, also(—-ay,...,-a,) € R. A setS of Boolean relations
is called 0-valid (1-valid, Horn, dual Horn, affine, bijuha, complementive) if every
relation inS is O-valid (1-valid, Horn, dual Horn, affine, bijunctive, oplementive).

Let R be a Boolean relation of arity. Thedual relationto R is the set of vectors
dual(R) = {(—-aa,...,ay) | (aq,...,a,) € R}. Note thatR™ = R U dual(R) is
a complementive relation called the complementive closfirB. The setdual(S) =
{dual(R) | R € S} denotes the corresponding dual relations to the set oioakss.

Let S be a non-empty finite set of Boolean relations. &formulais a finite con-
junction of S-clausesp = ¢1 A - - - A cx, Where eaclb-clausec; is a constraint appli-
cation of a logical relatiorz € S. An assignment satisfies the formula if it satisfies
all clauses:;. We denote byol(y) the set of satisfying assignments of a formyla

Schaefer in his seminal paper [22] developed a complexitysification of the sat-
isfiability problem ofS-formulas.Conjunctive querieturn out to be useful in order to
obtain this result. Given a sétof Boolean relations, we denote ey Q(S) the set of
all formulas of the form

F(xlw"vxk) = 391392391 go(xlw"axkayla"'aylL

wherey is an S-formula. We call these existentially quantified formutamjunctive
queries ovelS, with x = (z1, ..., z;) being the vector oflistinguished variables

As usually in computational complexity, we denote Ay<,, B a polynomial-
time many-one reduction from the problemto problemB. If there exist reductions
A <, BandB <,, A, we say that the problem$and B arepolynomially equivalent
denoted byd =, B.



Pol(R) O E; < RisHorn Pol(R) 2 V2 & Risdual Horn
Pol(R) 2 D2 < Ris bijunctive Pol(R) D Ly < Ris affine

Pol(R) 2 N2 < Riscomplementive Pol(R) D Re < R is disjunction-free
Pol(R) 21y < Ris0-valid Pol(R) 21, < Ris1-valid

Pol(R) 21 <« Ris0-and1-valid Pol(R)2>I; < RisBoolean

Fig. 1. Polymorphism correspondences

3 Closure Properties of Constraints

There exist easy criteria to determine if a given relatioddsn, dual Horn, bijunctive,
or affine. We recall these properties here briefly for cormgriess. An interested reader
can find a more detailed description with proofs in the papkofin the monograph [7].
Given a logical relatior?, the followingclosure propertiefully determine the structure
of R, whered is the exclusive or andhaj is the majority operation:

— RisHornif and only ifm, m’ € R implies(m A m') € R.

— Risdual Horn if and only ifm, m’ € R implies(m v m') € R.

— Ris affine if and only ifm, m’,m” € R implies(m & m’ & m"”) € R.

— Ris bijunctive if and only ifm, m’,m” € R impliesmaj(m,m’,m") € R.

The notion of closure property of a Boolean relation has loefined more gener-
ally, see forinstance [12,18]. Lgt {0,1}* — {0, 1} be a Boolean function of arity.
We say thatR is closed underf, or that f is apolymorphisnof R, if for any choice
of k vectorsmy, ..., my € R, not necessarily distinct, we have that

(f(ml[l],...,mk[l]), ce f(ml[n],...,mk[n])) €R, Q)

i.e., that the new vector constructed coordinate-wise from. .., m; by means off
belongs toR. We denote byPol(R) the set of all polymorphisms aR and byPol(.5)
the set of Boolean functions that are polymorphisms of eweation inS. It turns out
that Pol(S) is aclosed set of Boolean functigrelso called alone for every set of
relationssS. In fact, a clone is a set of functions containing all praj@es and closed
under composition. A clone generated by a set of functiBpse., a set containing’,

all projections, and closed under composition, is denotefFth. All closed classes of
Boolean functions were identified by Post [20]. Post alsected the inclusion struc-
ture of these classes, which is now referred t®ast’s lattice presented in Fig. 2 with
the notation from [2]. We did not use the previously acceptetgtion for the clones, as
in [18,19], since we think that the new one used in [2] is biettited mnemotechnically
and also scientifically than the old one. The correspondehtte most studied classes
with respect to the polymorphisms of a relatiéhis presented in Fig. 1. The claks
is the closed class of Boolean functions generated by theitgdunction, thus for ev-
ery Boolean relatiorR we havePol(R) D I,. If the conditionPol(S) 2 C holds for
C € {Eq, V2,D4, Lo}, i.e.,S being Horn, dual Horn, bijunctive, or affine, respectively,
then we say that the set of relatiofidelongs to th&chaefer’s class



A Galois correspondence has been exhibited between thefdgt®lean functions
Pol(S) and the sets of Boolean relatiosA basic introduction to this correspondence
can be found in [18] and a comprehensive study in [19]. Sax[&]lsThis theory helps
us to get elegant and short proofs for results concerninggmeplexity of conjunc-
tive queries. Indeed, it shows that the smaller the set ofrpotphisms is, the more
expressive the corresponding conjunctive queries are;iwisithe cornerstone for ap-
plying the algebraic method to complexity (see [2] and [5]dorveys). The following
proposition can be found, e.g., in [5,18,19].

Proposition 2. Let .Sy, S2 be two sets of Boolean relations. The incluslsi(S;) C
Pol(S2) impliescoQ(S; U {eg}) D coQ(S2 U {eq}).

Given ak-ary Boolean functiorf: {0,1}* — {0, 1}, the set ofnvariantsInv(f)
of f is the set of Boolean relations closed undeMore precisely, a relatio® belongs
to Inv(f) if the membership condition (1) holds for any collection @t mecessarily
distinct vectorsn, € Rfori =1, ..., k. If F' is a set of Boolean functions thénv(F")
is the set of invariants for each functigne F'. It turns out thalnv(F') is aclosed set of
Boolean relationsalso called @o-clone for every set of functiong'. In fact, a co-clone
is a set of relations (identified by their predicates) clogader conjunction, variable
identification, and existential quantification. A co-clayenerated by a set of relatiofs
is denoted by.S). Polymorphisms and invariants relate clones and co-clopasGalois
correspondence. This means tiiat C F, impliesInv(Fy) 2 Inv(F>) andS; C S
impliesPol(S1) 2 Pol(S2). Geiger [10] proved the identitidol(Inv(F')) = [F] and
Inv(Pol(S)) = (S) for all sets of Boolean functions and relationsS.

4 Default Logic

A default[21] is an expression of the form

a: MGy, ...,MG,,

2)
~
wherea, 31, . . . B,y are propositional formulas. The formudais called theprereg-
uisite, 41, . . ., B thejustificationand~ the consequencef the default. The notation

with M serves only to syntactically and optically distinguish phstification from the
prerequisite. Adefault theorys a pairl” = (W, D), whereD is a set of defaults and’

a set of propositional formulas also called théoms For a default theory” = (W, D)
and a sef of propositional formulas lef’( E') be the minimal set such that the follow-
ing properties are satisfied:

(D1) W C I'(E)
(D2) I'(E) is deductively closed
(D3) If
a: Mgy, ...,M3
Y

theny € I'(E)

“eD, acl(E), and —fi,...,~fn ¢ E



Any fixed point of [, i.e., a sett’ of formulas satisfying the identity’(E) = E, is an
extensiorfor T'. Each extensioy of a default theoryi” = (W, D) is identified by a
subseyd(E, T) of D, called thegenerating defaultef F, defined as

): a:Mﬂl,...,Mﬁm
v

gd(E, T eD

aeE,ﬁﬁlg:‘E,...,ﬁﬂngE}.

There exists an equivalent constructive definition of thieesion. It has been proved
equivalent to the previous definition by Reiter in [21], wi&s some authors, like Kautz
and Selman [13], take it for the initial definition of the ex$gon. DefineF, = W and

Oé:Mﬂh...,Mﬂ

Ein —Th(Ei)U{w ™ €D, o€ E;, and—p, ..., Bm ¢E},

whereTh(E) is the deductive closure of the set of formulsThen theextensiorof
the default theory” = (W, D) is the unionE = | J;2, E;. Notice the presence of the
final unionE in the conditions-3; ¢ E.

We generalize the default theories in the same way as promuei formulas are
generalized toS-formulas. For a non-empty finite set of Boolean relatidhsan S-
defaultis an expression of the form (2), whete 31, ... 3, are formulas from
c0oQ(S). An S-default theonryis a pairT’'(S) = (D, W), whereD is a set ofS-defaults
andW a set of formulas frontoQ(S). An S-extensionis a minimal set ofcoQ(.S)-
formulas including?” and closed under the fixpoint operafor

Three algorithmic problems are investigated in conneciuith default logic, na-
mely the existence of an extension for a given default th&grhe question whether a
given formulay belongs to some extension of a default theory (called coadLdr brave
reasoning), and the question whethebelongs to every extension of a theory (called
skeptical or cautious reasoning). We express them as eamssatisfaction problems.

Problem: EXTENSION(S)
Input: An S-default theoryI'(S) = (W, D).
Question:DoesT'(S) have anS-extension?

Problem: cREDULOUYS)
Input: An S-default theoryI'(S) = (W, D) and anS-formula.
Question:Doesy belong tosomeS-extension off'(5)?

Problem: SKEPTICAL(S)
Input: An S-default theonyT'(S) = (W, D) and anS-formulap.
Question:Doesyp belong toeveryS-extension off".

To be able to use the algebraic tools for exploration of caxip} results by means
of clones and co-clones, and to exploit Post’s lattice, wednt® establish a Galois
connection for the aforementioned algorithmic problems.

Theorem 3. Let.S; and .S, be two sets of relations such that the inclusisi(S;) C
Pol(S2) holds. Then we have the following reductions among prohlems

EXTENSION(S2) <,, EXTENSION(S]) CREDULOUYS3) <,,, CREDULOUYS})
SKEPTICAL(S2) <,, SKEPTICAL(S)



Proof. SincePol(S1) C Pol(S2) holds, then any conjunctive query 2 can be ex-
pressed by a logically equivalent conjunctive query usinty eelations fromsS;, ac-
cording to Proposition 2. LeT'(S3) = (W2, Dy) be anSs-default theory. Perform
the aforementioned transformation for every conjunctivery in W, and D, to get
corresponding sets of preliminariég; and defaultsD,, equivalent tolV, and Ds,
respectively. Therefore the default thedfy{S2) has anS-extension if and only if
T(S1) = (W1, D1) has one. An analogous result holds for credulous and sleptic
reasoning. a

Post’s lattice is symmetric according to the main vertigaé IBF «—— 1, (see
Figure 2), expressing graphically the duality betweenawsiclones and implying the
duality between the corresponding co-clones. This sympeatiends to all three algo-
rithmic problems observed in connection with default Iogis we see in the following
lemma. It will allow us to considerably shorten several soo

Lemma 4. Let S be a set of relations. Then the following equivalences hold:

EXTENSION(S) =,,, EXTENSION(dual(S))
CREDULOUYS) =,,, CREDULOUY dual(5))
SKEPTICAL(S) =,, SKEPTICAL(dual(S))

Proof. Itis clear thatp(x) = Ri(x) A - - - A Rx(x) belongs to arb-extensionF of the
default theoryl'(S) if and only if thedual(S)-formulay’ (x) = dual(Ry)(x) A --- A
dual(Rg)(x) belongs to alual(S)-extensionE’ of the default theor{’(dual(S)). O

5 Complexity Results

Complexity results for reasoning in default logic startede published in early 1990s.
Gottlob [11] proved that deciding the existence of an extenfor a propositional de-
fault theory is¥X;P-complete. Kautz and Selman [13] investigated the comiylexi
propositional default logic reasoning with unit clausebe¥ proved that deciding the
existence of an extension for this special caélscomplete. Zhao and Ding [26] also
investigated the complexity of several special cases a@fudelbgic, when the formulas
are restricted to special cases of bijunctive formulas. Wegete here the complexity
classification for default logic by the algebraic method.

Proposition 5. If S is 0-valid or 1-valid, i.e., if Pol(S) D I or Pol(S) D I, then
everyS-default theory always has a uniq$eextension.

Proof. Consider Reiter's constructive definition of the extengidan S-default theory
T(S) = (W, D). Since every formula i} and D is 0-valid (respectivelyl-valid),
every justifications of any default is als@-valid (1-valid). Then—z is not O-valid
(1-valid) and therefore it cannot appear in ashextensionE. Therefore any default
from D is satisfied if and only if its prerequisite is in the setF; for somes. Since
every formula inD is 0-valid (1-valid), whatever consequengés added toF;, there
cannot be a contradiction with the formulas previouslyuigd intoE;. Hence we just



have to add tdZ every consequencgrecursively derived from the prerequisites until
we reach a fixpoinf. Since we start with a finite set of axiorfis and there is only a
finite set of defaultd), an S-extensionE always exists and it is unique. a

We need to distinguish theé, P-complete cases from the cases includeNih The
following proposition identifies the largest classes o&tieins for which the existence
of an extension is a member dfP. According to the Galois connection, we need to
identify the smallest clones that contain the correspampgimlymorphisms. The reader
is invited to consult Figure 1 to identify the clones of polyrphisms corresponding to
the mentioned relational classes.

Proposition 6. If S is Horn, dual Horn, bijunctive, or affine, i.e., if the incloas
Pol(S) 2 Eg, Pol(S) D Vg, Pol(S) D Dg, or Pol(S) O Ly hold, then the prob-
lemEXTENSION(S) is in NP.

Proof. We present a nondeterministic polynomial algorithm whictdéi an extension
for an S-default theoryI'(S) = (W, D).

1. Guess asdd’ C D of generating defaults.

2. For everycoQ(S)-formulay € W U {v | v consequence of € D'} verify that
¥ = holds for every justificatior$ in D', i.e., check thap A (3 is satisfiable.

3. Check thatD’ is minimal, i.e., for everyS-defauItM € D~ D' and
everycoQ(S)-formulay € W U {v | v consequence ef € D'} verify thaty ¥ o
or ¢ ¥ 3; holds for an.

Step 1 ensure§'(E) C E. Instead ofp ¥ « andy ¥ ; for ani we check whether
v = aandy = (; hold, respectively. Note th#@t=- p holds if and only ifd = p A 6.
Equivalence is decidable in polynomial time f8fformulas from Schaefer’s class [3],
which extends to conjunctive queries. Therefore we cardggtip A S, ¢ = o, ¢ = 5;
hold, and also ifp ¥ «, ¢ ¥ ; for ani, in polynomial time. Hence, Steps 2 and 3 can
be performed in polynomial time. a

Now we need to determine the simplest relational classew/iich the extension
problem isNP-hard. The first one has been implicitly identified by Kautzl &el-
man [13] as the class of formulas consisting only of literals

Proposition 7. If Pol(S) C Ry holds thereEXTENSION(S) is NP-hard.

Proof. Kautz and Selman proved in [13] using a reduction froeaB that the exten-
sion problem isNP-hard for default theorie¥’ = (W, D), where all formulas in the
axiomsWW and the default® are literals. Bohleet al. identified in [4] that the rela-
tional class generated by the sets of satisfying assigrsnerd literal is the co-clone
Inv(Rs). Therefore from the Galois connection and Theorem 3 folltves the inclu-
sionPol(S) C R, implies that the extension problem f(.5) is NP-hard. O

The second simplest class with Hi?-hard extension problem contains all relations
which are at the same time bijunctive, affine, and complement

Proposition 8. If Pol(S) C D holds, thereXTENSION(S) is NP-hard.



Proof. Recall first thafinv(D) is generated by the relatidio1, 10} (see [4]), which is
the set of satisfying assignments of the claugey, or equivalently of the affine clause
x @y = 1. Note that the affine clause® y = 0 represents the equivalence relation
x = y belonging to every co-clone. Hence, the co-clbme D) contains both relations
generated by &y =1 andz &y = 0.

We present a polynomial reduction from tiNP-complete problenNAE-3sSAT
(Not-All-Equal 3SAT [9, page 259]) t&XTENSION(S). Consider the following in-
stance ofNAE-3SAT represented by the formula(z, ..., z,) = /\f:1 nae(u;, vi, t;)
built upon the variables, ..., z,, wherenae(z, y, z) ensures that the variablesy,

z do not take the same Boolean value. We first build the follov2ifr. — 1) defaults

. T: M(xiEBxH_l = 0)
o T; B xiy1 =0

T: M(JL @]}H_l = 1)
T Bxipr =1

d9

3

and dj =
foreachi = 1,...,n — 1. For each clauseae(u, v,t) in the formulay we build the
corresponding default

T:Mudz=1),Muvez=1),Mtdz=1)
1

d(u,v,t) =

wherez is a new variable. From each p&it!, d}) exactly one default will apply. It will
assign two possible pairs of truth valu@s, b;;1) to the variables:; andz;;1. This
way the first set of default pairs separates the variabjes. ., z,, into two equivalence
classes. All variables in one equivalence class take the sarth value.

Note that the formuldu @ z = 1) A (v® 2z = 1) A (t ® z = 1) is satisfied only
if the identityu = v = ¢ holds. Therefore the defaul{u, v, t) applies if and only if
the clausenae(u, v, t) is not satisfied. LeD be the set of all constructed defaulty
d}, andd(u,v,t) for each clausewae(u,v,t) from ¢. This implies that the formula
o(x1,...,T,) has a solution if and only if the default theoif, D) has an extension.
The proposition then follows from Theorem 3. ad

Finally, we deal with the most complicated case of defadbties. The following
proposition presents a generalization of Gottlob’s proofif [11] that the existence of
an extension i&;P-complete.

Proposition 9. If Pol(S) C Ny holds therEXTENSION(S) is X2 P-hard.

Proof. Lety = Jx Yy p(x, y) be a quantified Boolean formula, with the variable vec-
torsz = (x1,...,2,) andy = (y1, ..., Ym), such that the relatioR = sol(p(x, y))
satisfies the conditioRol(R) = I,. Let R™ be the dual closure of the relatidd It is
clear thatR(x, y) is satisfiable if and only iR™(x, y) is. Suppose thd®ol(S) = Ny
holds, meaning thad is a set of complementive relations. Singe is complementive,
the relation? = {0,1}"*™ < R~ must be complementive as well. Therefore both re-
lationsR™ and R must be in the co-clongS) = Inv(Pol(S)) = Inv(N,) generated by
the relationsS. Moreover, we have thak(z,y) = “R™(z, y).

The identity relation is included in every co-clone, therefwe can use the identity
predicate(z = y). SinceS is complementive, the co-clon&) contains the relation



nae, according to [4]. By identification of variables we can cioast the predicate
nae(z,y,y) which is identical to the inequality predicate # y).

Construct thes-default theoryl'(S) = (W, D) with the empty set of axiomB/ =
(¢ and the default® = D; U D,, where

Dl: T:M((L’i:xi+1)7T:M(xi#x%Fl) Z:1,7n_1 ,
T = Tijq1 Ty #xi"!‘l

DQZ{T:Mlj(w,y)}.

The satisfiability ofy is the generic:, P-complete problem [25]. To prove, P-hard-
ness forS-EXTENSION wherePol(S) = Ny, it is sufficient to show that) is valid if
and only if T'(S) has an extension by same reasoning as in the proof of Theatem 5
in [11]. Sincel, C N andPol(S) = N2 hold, the proof of our proposition follows.O

Gottlob [11] proved theZ; P membership of the extension problem using a con-
structive equivalence between default logic and autoemist logic, previously exhib-
ited by Marek and Truszczynhski [14], followed by P-membership proof of the
latter, which itself follows from a previous result of Nietad15]. A straightforward
generalization of these results fbdefault theories and the aforementioned proposi-
tions allow us to prove the following trichotomy theorem.

Theorem 10. Let S be a set of Boolean relations. ¥ is 0-valid or 1-valid then the
problemeXTENSION(.S) is decidable in polynomial time. ElseSfis Horn, dual Horn,
bijunctive, or affine, theEXTENSION(S) is NP-complete. OtherwiSEXTENSION(.S)
is Yo P-complete.

Gottlob exhibited in [11] an intriguing relationship bet@retheEXTENSION prob-
lem and the two other algorithmic problems observed in cotioe with default logic
reasoning. In fact, the constructions used in the proofthf@EXTENSION problem can
be reused for theREDULOUSaNdSKEPTICAL problems, provided we make some mi-
nor changes. These changes can be carried over to our appsacell, as we see in
the following theorems.

Theorem 11. Let S be a set of Boolean relations. # is 0-valid or 1-valid then the
problem crRebuLougS) is decidable in polynomial time. Else & is Horn, dual
Horn, bijunctive, or affine, theaReDULOUYS) is NP-complete. Otherwise the prob-
lemcREDULOUYS) is ¥yP-complete.

Proof. The extensior® constructed in the proof of Proposition 5 is unique and testi
whether a givery-formulap belongs tax takes polynomial time. The nondeterministic
polynomial-time algorithm from the proof of Proposition @rcbe extended by the
additional polynomial-time step

4. Check whethep € Th(W U {v | v consequence af € D’}) holds.



to test whether a givefi-formulay belongs taE. If Pol(.S) C R» holds, it is sufficient
to take the default theory = (W, D) with the axiomW = {¢(z1,...,z,)} and the

defaults
1=1,... ,n} .

Note that the possible truth value assignments corresmodifferent extensions of the
default theoryT'. Hencep belongs to an extension @f if and only if there exists an
extension ofl". The same construction also works fos1(.S) C D andPol(S) C No,
provided that we take the set of defaults= {d?,d} | i = 1,...,n — 1} in the former

andD; in the latter case. O

D:{T:Mxi’ TZM“LL’i

X, —Z;

Theorem 12. Let S be a set of Boolean relations. # is 0-valid or 1-valid then the
problemskEPTICAL(S) is decidable in polynomial time. ElseSfis Horn, dual Horn,
bijunctive, or affine, thersKkePTICAL(S) is coNP-complete. Otherwise the problem
SKEPTICAL(S) is IIoP-complete.

Proof. Skeptical reasoning is dual to the credulous one. For eaxtutyus reasoning
question whether ai-formulay(x) = Ry () A- - - A Ri(x) belongs to an extension of

a default theory’(S) = (W, D), we associate the (dual) skeptical reasoning question
whether thedual(S)-formulay’(x) = dual(Ry)(x) A - - - A dual(Ry)(x) belongs to

no extension of the corresponding dual default theB(yual(S)) = (W', D’). Every
S-formulain andD is replaced by its correspondidgal(.S)-formulainW’ andD’.
Note that the co-clonekiv(Ny), Inv(Ls), Inv(Ds2), Inv(D), andInv(R2) are closed
under duality, i.e., for eaclX € {Inv(N3),Inv(Lz),Inv(D2),Inv(D), Inv(Rs2)} we
haveX = dual(X). Moreover we have the identitiesial(Inv(E3)) = Inv(Vs) and
dual(Inv(V3)) = Inv(E2), what relates the co-clones of Horn and dual Horn relations.
Using now Lemma 4, the result follows from Theorem 11. a

6 Concluding Remarks

We found a complete classification for reasoning in propmsél default logic, ob-

served for the three corresponding algorithmic problenasnely of the existence of
an extension, the presence of a given formula in an extenaimhthe membership of
a given formula in all extensions. To be able to take advantdghe algebraic proof
methods, we generalized the propositional default logimfdas to conjunctive queries.
This generalization is in the same spirit and it is done altrgsame guidelines as
the one going from the satisfiability problesaT for Boolean formulas in conjunctive
normal form to the constraint satisfaction proble®pron the Boolean domain. Gott-
lob [11], Kautz and Selman [13], Stillman [23,24], and ZhatwDing [26] explored a

large part of the complexity results for default logic remisg. We completed the afore-
mentioned results and found that only a trivial subclasseféudit theories have the
three algorithmic problems decidable in polynomial timbeTorresponding polymor-
phism clones are colored white in Figure 2. Another part dédk theories (composed
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Fig. 2. Graph of all closed classes of Boolean functions

of Horn, dual Horn, bijunctive, or affine relations) haX&>-complete (respcoNP-
complete) algorithmic problems, with the correspondintypmrphism clones colored
light gray in Figure 2. Finally, for the default theories,sleal on complementive or on
all relations, the algorithmic problems a¥& P-complete (respll, P-complete), with
the corresponding polymorphism clones colored dark grasigare 2. This implies the
existence of a trichotomy theorem for each of the studiedrélymic problems.
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