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Abstract. Reiter’s default logic formalizes nonmonotonic reasoningusing de-
fault assumptions. The semantics of a given instance of default logic is based
on a fixpoint equation defining an extension. Three differentreasoning problems
arise in the context of default logic, namely the existence of an extension, the
presence of a given formula in an extension, and the occurrence of a formula in
all extensions. Since the end of 1980s, several complexity results have been pub-
lished concerning these default reasoning problems for different syntactic classes
of formulas. We derive in this paper a complete classification of default logic rea-
soning problems by means of universal algebra tools using Post’s clone lattice. In
particular we prove a trichotomy theorem for the existence of an extension, clas-
sifying this problem to be either polynomial,NP-complete, orΣ2P-complete,
depending on the set of underlying Boolean connectives. We also prove similar
trichotomy theorems for the two other algorithmic problemsin connection with
default logic reasoning.

1 Introduction

Nonmonotonic reasoning is one of the most important topics in computational logic
and artificial intelligence. Different logics formalizingnonmonotonic reasoning have
been developed and studied since the late 1970s. One of the most known is Reiter’sde-
fault logic [21], which formalizes nonmonotonic reasoning using default assumptions.
Default logic can express facts like “by default, a formulaϕ is true”, in contrast with
standard classical logic, which can only express that a formulaϕ is true or false.

Default logic is based on the principle of defining the semantics of a given set of
formulasW (also calledpremisesor axioms) through a fixpoint equation by means of
a finite set of defaultsD. The possible extensions of a given setW of axioms are the
setsE, stable under a specific transformation, i.e., satisfying the identityΓ (E) = E.
These fixpoint setsE represent the different possible sets of knowledge that canbe
adopted on the base of the premisesW . Three important decision problems arise in
the context of reasoning in default logic. The first is to decide whether for a given
set of axiomsW and defaultsD there exists a fixpoint. The second, calledcredulous
reasoning, is the task to determine whether a formulaϕ occurs in at least one extension
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of the setW . The third one, calledskeptical reasoningasks to determine whether a
given formulaϕ belongs toall extensions ofW .

At the end of 1980s and the beginning of 1990s, several complexity results were
proved for default logic reasoning. Several authors have investigated the complexity of
the three aforementioned problems for syntactically restricted versions of propositional
default logic. Kautz and Selman [13] proved theNP-completeness of propositional
default reasoning restricted to disjunction-free formulas, i.e., all propositional formulas
occurring in the axiomsW and the defaultsD are conjunctions of literals. Furthermore,
they show that for very particular restrictions default reasoning is feasible in polyno-
mial time. Stillman [23,24] extends the work of Kautz and Selman by analyzing further
subclasses of disjunction-free default theories, as well as some other classes that allow
a limited use of disjunction. The work of Kautz and Selman [13], as well as of Still-
man [23,24] provided a good understanding of the tractability frontier of propositional
default reasoning. The complexity of the general case was finally settled by Gottlob
in [11], where he proved that propositional default reasoning is complete for the sec-
ond level of the polynomial hierarchy. All these complexityresults indicate that default
logic reasoning is more complicated than that of the standard propositional logic.

In the scope of the aforementioned results a natural question arises whether the pre-
vious analysis covers all possible cases. We embark on this challenge by making two
generalizations. First, the usual clauses have been generalized to constraints based on
Boolean relations. Second, we allow in the axiomsW and the defaultsD not only for-
mulas built as conjunctions of constraints, but also conjunctive queries, i.e., existential
positive conjunctive formulas built upon constraints. This approach using a restricted
existential quantification can be seen as a half way between the usual propositional for-
mulas and the default query language DQL defined in [6]. Moreover, this approach is
natural in the scope of relation-based constraints, since it allows us to use the universal
algebra tools to reason about complexity. We take advantageof the closed classes of
Boolean functions and relations, called clones and co-clones, which allow us to prove
a complexity result for a single representant of this class,that extends by means of
closure properties to all Boolean functions or queries, respectively, in the same class.
Using these algebraic tools we deduce a complete classification of the three default
reasoning problems parametrized by sets of Boolean constraints. Similar classification,
using universal algebra tools and Post lattice, had been already done for other nonmono-
tonic reasoning formalisms, namely circumscription [16] and abduction [8,17]. Finally,
a complexity classification of propositional default logicalong other lines, studying the
structural aspects of the underlying formulas, had been done in [1]. Our approach to the
complexity classification differs from Ben-Eliyahu’s [1] in the following points: (1) the
class of formulas in the the axioms, prerequisite, justification, and consequence of de-
faults is always the same; (2) the classification is performed on the set of underlying
Boolean relationsS, taking the role of a parameter, from which the formulas are built
and not on the input formulas itself; (3) the studied classesof formulas are closed under
conjunction and existential quantification. The aforementioned requirements for unifor-
mity of the formulas in all three parts of defaults and in the axioms, plus the closure
under conjunction exclude prerequisite-free, justification-free, normal, semi-normal, or
any other syntactically restricted default theories from this classification.



2 Preliminaries

Throughout the paper we use the standard correspondence between predicates and rela-
tions. We use the same symbol for a predicate and its corresponding relation, since the
meaning will always be clear from the context, and we say thatthe predicaterepresents
the relation.

An n-ary logical relationR is a Boolean relation of arityn. Each element of a
logical relationR is ann-ary Boolean vectorm = (m1, . . . ,mn) ∈ {0, 1}n. Let V
be a set of variables. Aconstraint is an application ofR to ann-tuple of variables
from V , i.e.,R(x1, . . . , xn). An assignmentI : V → {0, 1} satisfies the constraint
R(x1, . . . , xn) if (I(x1), . . . , I(xn)) ∈ R holds.

Example 1.Equivalence is the binary relation defined byeq = {00, 11}. Given the
ternary relationsnae = {0, 1}3 r {000, 111} and 1-in-3= {100, 010, 001}, the con-
straint nae(x, y, z) is satisfied if not all variables are assigned the same value and
1-in-3(x, y, z) is satisfied if exactly one of the variablesx, y, andz is assigned to 1.

Throughout the text we refer to different types of Boolean constraint relations fol-
lowing Schaefer’s terminology [22]. We say that a Boolean relation R is 1-valid if
1 · · · 1 ∈ R and it is0-valid if 0 · · · 0 ∈ R; Horn (dual Horn) if R can be represented
by a conjunctive normal form (CNF) formula having at most oneunnegated (negated)
variable in each clause;bijunctive if it can be represented by a CNF formula having
at most two variables in each clause;affine if it can be represented by a conjunction
of linear functions, i.e., a CNF formula with⊕-clauses (XOR-CNF);complementiveif
for each(α1, . . . , αn) ∈ R, also(¬α1, . . . ,¬αn) ∈ R. A setS of Boolean relations
is called 0-valid (1-valid, Horn, dual Horn, affine, bijunctive, complementive) if every
relation inS is 0-valid (1-valid, Horn, dual Horn, affine, bijunctive, complementive).

LetR be a Boolean relation of arityn. Thedual relationtoR is the set of vectors
dual(R) = {(¬α1, . . . ,¬αn) | (α1, . . . , αn) ∈ R}. Note thatR¬ = R ∪ dual(R) is
a complementive relation called the complementive closureof R. The setdual(S) =
{dual(R) | R ∈ S} denotes the corresponding dual relations to the set of relationsS.

Let S be a non-empty finite set of Boolean relations. AnS-formula is a finite con-
junction ofS-clauses, ϕ = c1 ∧ · · · ∧ ck, where eachS-clauseci is a constraint appli-
cation of a logical relationR ∈ S. An assignmentI satisfies the formulaϕ if it satisfies
all clausesci. We denote bysol(ϕ) the set of satisfying assignments of a formulaϕ.

Schaefer in his seminal paper [22] developed a complexity classification of the sat-
isfiability problem ofS-formulas.Conjunctive queriesturn out to be useful in order to
obtain this result. Given a setS of Boolean relations, we denote byCOQ(S) the set of
all formulas of the form

F (x1, . . . , xk) = ∃y1∃y2 · · · ∃yl ϕ(x1, . . . , xk, y1, . . . , yl),

whereϕ is anS-formula. We call these existentially quantified formulasconjunctive
queries overS, with x = (x1, . . . , xk) being the vector ofdistinguished variables.

As usually in computational complexity, we denote byA ≤m B a polynomial-
time many-one reduction from the problemA to problemB. If there exist reductions
A ≤m B andB ≤m A, we say that the problemsA andB arepolynomially equivalent,
denoted byA ≡m B.



Pol(R) ⊇ E2 ⇔ R is Horn Pol(R) ⊇ V2 ⇔ R is dual Horn
Pol(R) ⊇ D2 ⇔ R is bijunctive Pol(R) ⊇ L2 ⇔ R is affine
Pol(R) ⊇ N2 ⇔ R is complementive Pol(R) ⊇ R2 ⇔ R is disjunction-free
Pol(R) ⊇ I0 ⇔ R is 0-valid Pol(R) ⊇ I1 ⇔ R is 1-valid
Pol(R) ⊇ I ⇔ R is 0- and 1-valid Pol(R) ⊇ I2 ⇔ R is Boolean

Fig. 1. Polymorphism correspondences

3 Closure Properties of Constraints

There exist easy criteria to determine if a given relation isHorn, dual Horn, bijunctive,
or affine. We recall these properties here briefly for completeness. An interested reader
can find a more detailed description with proofs in the paper [5] or in the monograph [7].
Given a logical relationR, the followingclosure propertiesfully determine the structure
of R, where⊕ is the exclusive or andmaj is the majority operation:

– R is Horn if and only ifm,m′ ∈ R implies(m ∧m′) ∈ R.
– R is dual Horn if and only ifm,m′ ∈ R implies(m ∨m′) ∈ R.
– R is affine if and only ifm,m′,m′′ ∈ R implies(m⊕m′ ⊕m′′) ∈ R.
– R is bijunctive if and only ifm,m′,m′′ ∈ R impliesmaj(m,m′,m′′) ∈ R.

The notion of closure property of a Boolean relation has beendefined more gener-
ally, see for instance [12,18]. Letf : {0, 1}k → {0, 1} be a Boolean function of arityk.
We say thatR is closed underf , or thatf is apolymorphismof R, if for any choice
of k vectorsm1, . . . ,mk ∈ R, not necessarily distinct, we have that

(

f
(

m1[1], . . . ,mk[1]
)

, . . . , f
(

m1[n], . . . ,mk[n]
)

)

∈ R, (1)

i.e., that the new vector constructed coordinate-wise fromm1, . . . ,mk by means off
belongs toR. We denote byPol(R) the set of all polymorphisms ofR and byPol(S)
the set of Boolean functions that are polymorphisms of everyrelation inS. It turns out
that Pol(S) is a closed set of Boolean functions, also called aclone, for every set of
relationsS. In fact, a clone is a set of functions containing all projections and closed
under composition. A clone generated by a set of functionsF , i.e., a set containingF ,
all projections, and closed under composition, is denoted by [F ]. All closed classes of
Boolean functions were identified by Post [20]. Post also detected the inclusion struc-
ture of these classes, which is now referred to asPost’s lattice, presented in Fig. 2 with
the notation from [2]. We did not use the previously acceptednotation for the clones, as
in [18,19], since we think that the new one used in [2] is better suited mnemotechnically
and also scientifically than the old one. The correspondenceof the most studied classes
with respect to the polymorphisms of a relationR is presented in Fig. 1. The classI2
is the closed class of Boolean functions generated by the identity function, thus for ev-
ery Boolean relationR we havePol(R) ⊇ I2. If the conditionPol(S) ⊇ C holds for
C ∈ {E2,V2,D2,L2}, i.e.,S being Horn, dual Horn, bijunctive, or affine, respectively,
then we say that the set of relationsS belongs to theSchaefer’s class.



A Galois correspondence has been exhibited between the setsof Boolean functions
Pol(S) and the sets of Boolean relationsS. A basic introduction to this correspondence
can be found in [18] and a comprehensive study in [19]. See also [5]. This theory helps
us to get elegant and short proofs for results concerning thecomplexity of conjunc-
tive queries. Indeed, it shows that the smaller the set of polymorphisms is, the more
expressive the corresponding conjunctive queries are, which is the cornerstone for ap-
plying the algebraic method to complexity (see [2] and [5] for surveys). The following
proposition can be found, e.g., in [5,18,19].

Proposition 2. LetS1, S2 be two sets of Boolean relations. The inclusionPol(S1) ⊆
Pol(S2) impliesCOQ(S1 ∪ {eq}) ⊇ COQ(S2 ∪ {eq}).

Given ak-ary Boolean functionf : {0, 1}k −→ {0, 1}, the set ofinvariantsInv(f)
of f is the set of Boolean relations closed underf . More precisely, a relationR belongs
to Inv(f) if the membership condition (1) holds for any collection of not necessarily
distinct vectorsmi ∈ R for i = 1, . . . , k. If F is a set of Boolean functions thenInv(F )
is the set of invariants for each functionf ∈ F . It turns out thatInv(F ) is aclosed set of
Boolean relations, also called aco-clone, for every set of functionsF . In fact, a co-clone
is a set of relations (identified by their predicates) closedunder conjunction, variable
identification, and existential quantification. A co-clonegenerated by a set of relationsS
is denoted by〈S〉. Polymorphisms and invariants relate clones and co-clonesby a Galois
correspondence. This means thatF1 ⊆ F2 implies Inv(F1) ⊇ Inv(F2) andS1 ⊆ S2

impliesPol(S1) ⊇ Pol(S2). Geiger [10] proved the identitiesPol(Inv(F )) = [F ] and
Inv(Pol(S)) = 〈S〉 for all sets of Boolean functionsF and relationsS.

4 Default Logic

A default[21] is an expression of the form

α : Mβ1, . . . ,Mβm

γ
(2)

whereα, β1, . . . βm, γ are propositional formulas. The formulaα is called theprereq-
uisite, β1, . . . , βm the justificationandγ theconsequenceof the default. The notation
with M serves only to syntactically and optically distinguish thejustification from the
prerequisite. Adefault theoryis a pairT = (W,D), whereD is a set of defaults andW
a set of propositional formulas also called theaxioms. For a default theoryT = (W,D)
and a setE of propositional formulas letΓ (E) be the minimal set such that the follow-
ing properties are satisfied:

(D1) W ⊆ Γ (E)
(D2) Γ (E) is deductively closed
(D3) If

α : Mβ1, . . . ,Mβm

γ
∈ D, α ∈ Γ (E), and ¬β1, . . . ,¬βm /∈ E

thenγ ∈ Γ (E)



Any fixed point ofΓ , i.e., a setE of formulas satisfying the identityΓ (E) = E, is an
extensionfor T . Each extensionE of a default theoryT = (W,D) is identified by a
subsetgd(E, T ) of D, called thegenerating defaultsof E, defined as

gd(E, T ) =

{

α : Mβ1, . . . ,Mβm

γ
∈ D

∣

∣

∣

∣

∣

α ∈ E,¬β1 /∈ E, . . . ,¬βm /∈ E

}

.

There exists an equivalent constructive definition of the extension. It has been proved
equivalent to the previous definition by Reiter in [21], whereas some authors, like Kautz
and Selman [13], take it for the initial definition of the extension. DefineE0 = W and

Ei+1 = Th(Ei) ∪

(

γ

˛

˛

˛

˛

˛

α : Mβ1, . . . , Mβm

γ
∈ D, α ∈ Ei, and¬β1, . . . ,¬βm /∈ E

)

,

whereTh(E) is the deductive closure of the set of formulasE. Then theextensionof
the default theoryT = (W,D) is the unionE =

⋃

∞

i=0
Ei. Notice the presence of the

final unionE in the conditions¬βi /∈ E.
We generalize the default theories in the same way as propositional formulas are

generalized toS-formulas. For a non-empty finite set of Boolean relationsS, anS-
default is an expression of the form (2), whereα, β1, . . . βm, γ are formulas from
COQ(S). An S-default theoryis a pairT (S) = (D,W ), whereD is a set ofS-defaults
andW a set of formulas fromCOQ(S). An S-extensionis a minimal set ofCOQ(S)-
formulas includingW and closed under the fixpoint operatorΓ .

Three algorithmic problems are investigated in connectionwith default logic, na-
mely the existence of an extension for a given default theoryT , the question whether a
given formulaϕ belongs to some extension of a default theory (called credulous or brave
reasoning), and the question whetherϕ belongs to every extension of a theory (called
skeptical or cautious reasoning). We express them as constraint satisfaction problems.

Problem: EXTENSION(S)
Input: An S-default theoryT (S) = (W,D).
Question:DoesT (S) have anS-extension?

Problem: CREDULOUS(S)
Input: An S-default theoryT (S) = (W,D) and anS-formulaϕ.
Question:Doesϕ belong tosomeS-extension ofT (S)?

Problem: SKEPTICAL(S)
Input: An S-default theoryT (S) = (W,D) and anS-formulaϕ.
Question:Doesϕ belong toeveryS-extension ofT .

To be able to use the algebraic tools for exploration of complexity results by means
of clones and co-clones, and to exploit Post’s lattice, we need to establish a Galois
connection for the aforementioned algorithmic problems.

Theorem 3. LetS1 andS2 be two sets of relations such that the inclusionPol(S1) ⊆
Pol(S2) holds. Then we have the following reductions among problems:

EXTENSION(S2) ≤m EXTENSION(S1) CREDULOUS(S2) ≤m CREDULOUS(S1)
SKEPTICAL(S2) ≤m SKEPTICAL(S1)



Proof. SincePol(S1) ⊆ Pol(S2) holds, then any conjunctive query onS2 can be ex-
pressed by a logically equivalent conjunctive query using only relations fromS1, ac-
cording to Proposition 2. LetT (S2) = (W2, D2) be anS2-default theory. Perform
the aforementioned transformation for every conjunctive query inW2 andD2 to get
corresponding sets of preliminariesW1 and defaultsD1, equivalent toW2 andD2,
respectively. Therefore the default theoryT (S2) has anS-extension if and only if
T (S1) = (W1, D1) has one. An analogous result holds for credulous and skeptical
reasoning. ⊓⊔

Post’s lattice is symmetric according to the main vertical line BF ←→ I2 (see
Figure 2), expressing graphically the duality between various clones and implying the
duality between the corresponding co-clones. This symmetry extends to all three algo-
rithmic problems observed in connection with default logic, as we see in the following
lemma. It will allow us to considerably shorten several proofs.

Lemma 4. LetS be a set of relations. Then the following equivalences hold:

EXTENSION(S) ≡m EXTENSION(dual(S))

CREDULOUS(S) ≡m CREDULOUS(dual(S))

SKEPTICAL(S) ≡m SKEPTICAL(dual(S))

Proof. It is clear thatϕ(x) = R1(x)∧ · · · ∧Rk(x) belongs to anS-extensionE of the
default theoryT (S) if and only if thedual(S)-formulaϕ′(x) = dual(R1)(x) ∧ · · · ∧
dual(Rk)(x) belongs to adual(S)-extensionE′ of the default theoryT (dual(S)). ⊓⊔

5 Complexity Results

Complexity results for reasoning in default logic started to be published in early 1990s.
Gottlob [11] proved that deciding the existence of an extension for a propositional de-
fault theory isΣ2P-complete. Kautz and Selman [13] investigated the complexity of
propositional default logic reasoning with unit clauses. They proved that deciding the
existence of an extension for this special case isNP-complete. Zhao and Ding [26] also
investigated the complexity of several special cases of default logic, when the formulas
are restricted to special cases of bijunctive formulas. We complete here the complexity
classification for default logic by the algebraic method.

Proposition 5. If S is 0-valid or 1-valid, i.e., if Pol(S) ⊇ I0 or Pol(S) ⊇ I1, then
everyS-default theory always has a uniqueS-extension.

Proof. Consider Reiter’s constructive definition of the extensionof anS-default theory
T (S) = (W,D). Since every formula inW andD is 0-valid (respectively1-valid),
every justificationβ of any default is also0-valid (1-valid). Then¬β is not 0-valid
(1-valid) and therefore it cannot appear in anyS-extensionE. Therefore any default
from D is satisfied if and only if its prerequisiteα is in the setEi for somei. Since
every formula inD is 0-valid (1-valid), whatever consequenceγ is added toEi, there
cannot be a contradiction with the formulas previously included intoEi. Hence we just



have to add toE every consequenceγ recursively derived from the prerequisites until
we reach a fixpointE. Since we start with a finite set of axiomsW and there is only a
finite set of defaultsD, anS-extensionE always exists and it is unique. ⊓⊔

We need to distinguish theΣ2P-complete cases from the cases included inNP. The
following proposition identifies the largest classes of relations for which the existence
of an extension is a member ofNP. According to the Galois connection, we need to
identify the smallest clones that contain the corresponding polymorphisms. The reader
is invited to consult Figure 1 to identify the clones of polymorphisms corresponding to
the mentioned relational classes.

Proposition 6. If S is Horn, dual Horn, bijunctive, or affine, i.e., if the inclusions
Pol(S) ⊇ E2, Pol(S) ⊇ V2, Pol(S) ⊇ D2, or Pol(S) ⊇ L2 hold, then the prob-
lemEXTENSION(S) is in NP.

Proof. We present a nondeterministic polynomial algorithm which finds an extension
for anS-default theoryT (S) = (W,D).

1. Guess a setD′ ⊆ D of generating defaults.
2. For everyCOQ(S)-formulaϕ ∈ W ∪ {γ | γ consequence ofd ∈ D′} verify that
ϕ 2 ¬β holds for every justificationβ in D′, i.e., check thatϕ ∧ β is satisfiable.

3. Check thatD′ is minimal, i.e., for everyS-default α:Mβ1,...,Mβm

γ
∈ D r D′ and

everyCOQ(S)-formulaϕ ∈W ∪ {γ | γ consequence ofd ∈ D′} verify thatϕ 2 α
orϕ 2 βi holds for ani.

Step 1 ensuresΓ (E) ⊆ E. Instead ofϕ 2 α andϕ 2 βi for an i we check whether
ϕ⇒ α andϕ⇒ βi hold, respectively. Note thatθ ⇒ ρ holds if and only ifθ ≡ ρ ∧ θ.
Equivalence is decidable in polynomial time forS-formulas from Schaefer’s class [3],
which extends to conjunctive queries. Therefore we can decide ifϕ∧β,ϕ⇒ α,ϕ⇒ βi

hold, and also ifϕ 2 α, ϕ 2 βi for ani, in polynomial time. Hence, Steps 2 and 3 can
be performed in polynomial time. ⊓⊔

Now we need to determine the simplest relational classes forwhich the extension
problem isNP-hard. The first one has been implicitly identified by Kautz and Sel-
man [13] as the class of formulas consisting only of literals.

Proposition 7. If Pol(S) ⊆ R2 holds thenEXTENSION(S) is NP-hard.

Proof. Kautz and Selman proved in [13] using a reduction from 3SAT, that the exten-
sion problem isNP-hard for default theoriesT = (W,D), where all formulas in the
axiomsW and the defaultsD are literals. Böhleret al. identified in [4] that the rela-
tional class generated by the sets of satisfying assignments to a literal is the co-clone
Inv(R2). Therefore from the Galois connection and Theorem 3 followsthat the inclu-
sionPol(S) ⊆ R2 implies that the extension problem forT (S) is NP-hard. ⊓⊔

The second simplest class with anNP-hard extension problem contains all relations
which are at the same time bijunctive, affine, and complementive.

Proposition 8. If Pol(S) ⊆ D holds, thenEXTENSION(S) is NP-hard.



Proof. Recall first thatInv(D) is generated by the relation{01, 10} (see [4]), which is
the set of satisfying assignments of the clausex⊕ y, or equivalently of the affine clause
x ⊕ y = 1. Note that the affine clausex ⊕ y = 0 represents the equivalence relation
x ≡ y belonging to every co-clone. Hence, the co-cloneInv(D) contains both relations
generated byx⊕ y = 1 andx⊕ y = 0.

We present a polynomial reduction from theNP-complete problemNAE-3SAT

(Not-All-Equal 3SAT [9, page 259]) toEXTENSION(S). Consider the following in-
stance ofNAE-3SAT represented by the formulaϕ(x1, . . . , xn) =

∧k
i=1

nae(ui, vi, ti)
built upon the variablesx1, . . . ,xn, wherenae(x, y, z) ensures that the variablesx, y,
z do not take the same Boolean value. We first build the following 2(n− 1) defaults

d0
i =
⊤ : M(xi ⊕ xi+1 = 0)

xi ⊕ xi+1 = 0
and d1

i =
⊤ : M(xi ⊕ xi+1 = 1)

xi ⊕ xi+1 = 1

for eachi = 1, . . . , n − 1. For each clausenae(u, v, t) in the formulaϕ we build the
corresponding default

d(u, v, t) =
⊤ : M(u⊕ z = 1),M(v ⊕ z = 1),M(t⊕ z = 1)

⊥

wherez is a new variable. From each pair(d0
i , d

1
i ) exactly one default will apply. It will

assign two possible pairs of truth values(bi, bi+1) to the variablesxi andxi+1. This
way the first set of default pairs separates the variablesx1, . . . ,xn into two equivalence
classes. All variables in one equivalence class take the same truth value.

Note that the formula(u ⊕ z = 1) ∧ (v ⊕ z = 1) ∧ (t ⊕ z = 1) is satisfied only
if the identityu = v = t holds. Therefore the defaultd(u, v, t) applies if and only if
the clausenae(u, v, t) is not satisfied. LetD be the set of all constructed defaultsd0

i ,
d1

i , andd(u, v, t) for each clausenae(u, v, t) from ϕ. This implies that the formula
ϕ(x1, . . . , xn) has a solution if and only if the default theory(∅, D) has an extension.
The proposition then follows from Theorem 3. ⊓⊔

Finally, we deal with the most complicated case of default theories. The following
proposition presents a generalization of Gottlob’s proof from [11] that the existence of
an extension isΣ2P-complete.

Proposition 9. If Pol(S) ⊆ N2 holds thenEXTENSION(S) is Σ2P-hard.

Proof. Letψ = ∃x ∀y ϕ(x,y) be a quantified Boolean formula, with the variable vec-
torsx = (x1, . . . , xn) andy = (y1, . . . , ym), such that the relationR = sol(ϕ(x,y))
satisfies the conditionPol(R) = I2. LetR¬ be the dual closure of the relationR. It is
clear thatR(x,y) is satisfiable if and only ifR¬(x,y) is. Suppose thatPol(S) = N2

holds, meaning thatS is a set of complementive relations. SinceR¬ is complementive,
the relationR̄ = {0, 1}n+m

r R¬ must be complementive as well. Therefore both re-
lationsR¬ andR̄ must be in the co-clone〈S〉 = Inv(Pol(S)) = Inv(N2) generated by
the relationsS. Moreover, we have that̄R(x,y) = ¬R¬(x,y).

The identity relation is included in every co-clone, therefore we can use the identity
predicate(x = y). SinceS is complementive, the co-clone〈S〉 contains the relation



nae, according to [4]. By identification of variables we can construct the predicate
nae(x, y, y) which is identical to the inequality predicate(x 6= y).

Construct theS-default theoryT (S) = (W,D) with the empty set of axiomsW =
∅ and the defaultsD = D1 ∪D2, where

D1 =

{

⊤ : M(xi = xi+1)

xi = xi+1

,
⊤ : M(xi 6= xi+1)

xi 6= xi+1

∣

∣

∣

∣

∣

i = 1, . . . , n− 1

}

,

D2 =

{

⊤ : MR̄(x,y)

⊥

}

.

The satisfiability ofψ is the genericΣ2P-complete problem [25]. To proveΣ2P-hard-
ness forS-EXTENSION wherePol(S) = N2, it is sufficient to show thatψ is valid if
and only ifT (S) has an extension by same reasoning as in the proof of Theorem 5.1
in [11]. SinceI2 ⊆ N2 andPol(S) = N2 hold, the proof of our proposition follows.⊓⊔

Gottlob [11] proved theΣ2P membership of the extension problem using a con-
structive equivalence between default logic and autoepistemic logic, previously exhib-
ited by Marek and Truszczyński [14], followed by aΣ2P-membership proof of the
latter, which itself follows from a previous result of Niemelä [15]. A straightforward
generalization of these results toS-default theories and the aforementioned proposi-
tions allow us to prove the following trichotomy theorem.

Theorem 10. Let S be a set of Boolean relations. IfS is 0-valid or 1-valid then the
problemEXTENSION(S) is decidable in polynomial time. Else ifS is Horn, dual Horn,
bijunctive, or affine, thenEXTENSION(S) is NP-complete. OtherwiseEXTENSION(S)
is Σ2P-complete.

Gottlob exhibited in [11] an intriguing relationship between theEXTENSION prob-
lem and the two other algorithmic problems observed in connection with default logic
reasoning. In fact, the constructions used in the proofs fortheEXTENSIONproblem can
be reused for theCREDULOUSandSKEPTICAL problems, provided we make some mi-
nor changes. These changes can be carried over to our approach as well, as we see in
the following theorems.

Theorem 11. Let S be a set of Boolean relations. IfS is 0-valid or 1-valid then the
problem CREDULOUS(S) is decidable in polynomial time. Else ifS is Horn, dual
Horn, bijunctive, or affine, thenCREDULOUS(S) is NP-complete. Otherwise the prob-
lemCREDULOUS(S) is Σ2P-complete.

Proof. The extensionE constructed in the proof of Proposition 5 is unique and testing
whether a givenS-formulaϕ belongs toE takes polynomial time. The nondeterministic
polynomial-time algorithm from the proof of Proposition 6 can be extended by the
additional polynomial-time step

4. Check whetherϕ ∈ Th(W ∪ {γ | γ consequence ofd ∈ D′}) holds.



to test whether a givenS-formulaϕ belongs toE. If Pol(S) ⊆ R2 holds, it is sufficient
to take the default theoryT = (W,D) with the axiomW = {ϕ(x1, . . . , xn)} and the
defaults

D =

{

⊤ : Mxi

xi

,
⊤ : M¬xi

¬xi

∣

∣

∣

∣

∣

i = 1, . . . , n

}

.

Note that the possible truth value assignments correspond to different extensions of the
default theoryT . Henceϕ belongs to an extension ofT if and only if there exists an
extension ofT . The same construction also works forPol(S) ⊆ D andPol(S) ⊆ N2,
provided that we take the set of defaultsD = {d0

i , d
1
i | i = 1, . . . , n− 1} in the former

andD1 in the latter case. ⊓⊔

Theorem 12. Let S be a set of Boolean relations. IfS is 0-valid or 1-valid then the
problemSKEPTICAL(S) is decidable in polynomial time. Else ifS is Horn, dual Horn,
bijunctive, or affine, thenSKEPTICAL(S) is coNP-complete. Otherwise the problem
SKEPTICAL(S) is Π2P-complete.

Proof. Skeptical reasoning is dual to the credulous one. For each credulous reasoning
question whether anS-formulaϕ(x) = R1(x)∧· · ·∧Rk(x) belongs to an extension of
a default theoryT (S) = (W,D), we associate the (dual) skeptical reasoning question
whether thedual(S)-formulaϕ′(x) = dual(R1)(x) ∧ · · · ∧ dual(Rk)(x) belongs to
no extension of the corresponding dual default theoryT (dual(S)) = (W ′, D′). Every
S-formula inW andD is replaced by its correspondingdual(S)-formula inW ′ andD′.
Note that the co-clonesInv(N2), Inv(L2), Inv(D2), Inv(D), andInv(R2) are closed
under duality, i.e., for eachX ∈ {Inv(N2), Inv(L2), Inv(D2), Inv(D), Inv(R2)} we
haveX = dual(X). Moreover we have the identitiesdual(Inv(E2)) = Inv(V2) and
dual(Inv(V2)) = Inv(E2), what relates the co-clones of Horn and dual Horn relations.
Using now Lemma 4, the result follows from Theorem 11. ⊓⊔

6 Concluding Remarks

We found a complete classification for reasoning in propositional default logic, ob-
served for the three corresponding algorithmic problems, namely of the existence of
an extension, the presence of a given formula in an extension, and the membership of
a given formula in all extensions. To be able to take advantage of the algebraic proof
methods, we generalized the propositional default logic formulas to conjunctive queries.
This generalization is in the same spirit and it is done alongthe same guidelines as
the one going from the satisfiability problemSAT for Boolean formulas in conjunctive
normal form to the constraint satisfaction problemCSPon the Boolean domain. Gott-
lob [11], Kautz and Selman [13], Stillman [23,24], and Zhao with Ding [26] explored a
large part of the complexity results for default logic reasoning. We completed the afore-
mentioned results and found that only a trivial subclass of default theories have the
three algorithmic problems decidable in polynomial time. The corresponding polymor-
phism clones are colored white in Figure 2. Another part of default theories (composed
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Fig. 2. Graph of all closed classes of Boolean functions

of Horn, dual Horn, bijunctive, or affine relations) haveNP-complete (resp.coNP-
complete) algorithmic problems, with the corresponding polymorphism clones colored
light gray in Figure 2. Finally, for the default theories, based on complementive or on
all relations, the algorithmic problems areΣ2P-complete (resp.Π2P-complete), with
the corresponding polymorphism clones colored dark gray inFigure 2. This implies the
existence of a trichotomy theorem for each of the studied algorithmic problems.
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14. W. Marek and M. Truszczyński. Modal logic for default reasoning.Annals of Mathematics
and Artificial Intelligence, 1(1-4):275–302, 1990.

15. I. Niemelä. On the decidability and complexity of autoepistemic reasoning.Fundamenta
Informaticae, 17(1-2):117–155, 1992.

16. G. Nordh. A trichotomy in the complexity of propositional circumscription. In F. Baader and
A. Voronkov (eds),Proc. 11th LPAR, Montevideo (Uruguay), LNCS 3452, pages 257–269,
2005.

17. G. Nordh and B. Zanuttini. Propositional abduction is almost always hard. In L. P. Kaelbling
and A. Saffiotti (eds),Proc. 19th IJCAI, Edinburgh (UK), pages 534–539, 2005.

18. N. Pippenger.Theories of Computability. Cambridge University Press, Cambridge, 1997.
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