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École Polytechnique
91128 Palaiseau, France

hermann@lix.polytechnique.fr

Gustav Nordh
Dept. of Comp. and Inf. Sciences
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Abstract—We study the complexity of the propositional min-
imal inference problem. Its complexity has been extensively
studied before because of its fundamental importance in arti-
ficial intelligence and nonmonotonic logics. We prove that the
complexity of the minimal inference problem with unbounded
queries has a trichotomy (between P, coNP-complete, and Π2P-
complete). This result finally settles with a positive answer the
trichotomy conjecture of Kirousis and Kolaitis [A dichotomy
in the complexity of propositional circumscription, LICS’01]
in the unbounded case. We also present simple and efficiently
computable criteria separating the different cases.

I. INTRODUCTION AND SUMMARY OF RESULTS

Reasoning with minimal models of a theory is a gen-
eral idea widely used in artificial intelligence, especially for
capturing various aspects of common sense and nonmono-
tonic reasoning. In particular, it is the main idea behind
circumscription [16], [17], diagnosis [7], default logic [22],
and logic programming under stable model semantics [10].
Minimal inference has been shown by Gelfond et al. [11]
to coincide with reasoning under the extended closed world
assumption, which is one of the main formalisms for reasoning
with incomplete information. We focus in this paper on the
important basic case where the theory is propositional, which
is also the most investigated case from a complexity point
of view. In this case, the minimality of models is defined
with respect to the pointwise partial order, extending the order
0 < 1 on truth values.

The complexity of several basic algorithmic problems has
been studied in connection with minimal models of propo-
sitional formulas: among them are the model selection [5],
[20], model checking [3], [14], and inference [4], [8], [9],
[15] problems. Given a propositional formula ϕ, the minimal
model selection problem requires to compute a minimal model
of ϕ. Similarly, given a propositional formula ϕ and a truth
assignment m, the minimal model checking problem asks
whether m is a minimal model of ϕ. Given two proposi-
tional formulas ϕ and ψ, the minimal inference problem asks
whether ψ (also called the query) is true in every minimal
model of ϕ. In propositional theories these problems are
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identical to the corresponding problems for propositional cir-
cumscription. Hence, they are often called the model selection,
model checking, and inference problems for propositional
circumscription, respectively.

The topic of this paper is to classify the complexity of the
minimal inference problem for all restrictions on the types
of clauses allowed in the theory ϕ, presented by a formula
in conjunctive normal form. Note that the corresponding
classification problem for satisfiability was solved in a seminal
paper by Schaefer [24].

The inference problem was proved Π2P-complete by Eiter
and Gottlob in [9] if no restrictions are imposed on the
propositional theory ϕ. Cadoli and Lenzerini proved in [4] that
the inference problem becomes coNP-complete if ϕ is a bi-
junctive or a dual Horn formula. Durand and Hermann proved
in [8] that also the inference problem for affine formulas ϕ is
coNP-complete. Finally, Kirousis and Kolaitis [15] proved a
dichotomy theorem separating the Π2P-complete cases from
the cases in coNP. Moreover, they conjectured that the cases in
coNP could be separated into coNP-complete and polynomial-
time decidable cases.

The proof of the dichotomy for minimal inference by
Kirousis and Kolaitis [15] turned out to be difficult for
several reasons. One of them was the impossibility to apply
the well-known approach through the theory of clones and
Post’s lattice [2], [12], [21] to obtain a complexity classi-
fication. The culprit is the existential quantification which
does not combine well with minimality. This implies that
the co-clones, which are the sets of relations closed under
variable identification, variable permutation, conjunction, and
existential quantification, are not invariant with respect to the
complexity of minimal inference. This situation precludes the
use of the Galois correspondence, which allows first to prove a
completeness result for a subset of relations and subsequently
to extend it to the whole co-clone.

However, if the pointwise partial order on models is relaxed,
which is the consequence of studying generalized forms of
propositional circumscription, then it has been observed that
the Galois correspondence can be restored [19] and the ap-
proach via clone theory works. With the help of these powerful
tools it is relatively easy to classify the complexity of these
generalized forms of minimal inference for every restriction
on the types of clauses in the theory [18].

Following the results of Kirousis and Kolaitis [15], it is clear



that we cannot use the algebraic approach for attacking the
complexity of the minimal inference problem. Our approach is
instead based on refinements of Schaefer’s approach to classify
the complexity of the satisfiability problem in propositional
logic [6], [24]. The main difficulty of Schaefer’s dichotomy
proof for the satisfiability problem was not to identify the
tractable classes. These where, in his own words, either
trivial (0-valid, and 1-valid) or well-known (Horn, dual-Horn,
bijunctive, and affine). The difficulty resided in proving that
all other cases were hard.

The situation for the minimal inference problem is similar.
We identify only one new additional significant tractable class,
namely, when (¬x ∨ ¬y) and (x 6≡ y) are the types of
clauses allowed in the theory. The main difficulty is to prove
that every other set of allowed clauses (which is not known
to be tractable) is coNP-hard. We deal with this challenge
in the same way as Schaefer. We prove that every such
set of allowed clauses expresses (implements) at least one
special case already proved to be coNP-hard. We prove a
number of new coNP-hard cases for the minimal inference
problem and use them together with some already known hard
cases as our targets. There is a significant difference though
between Schaefer’s implementations and ours. We can only
use conjunction, variable identification, and variable permuta-
tion (without existential quantifiers) in our implementations.
This is due to the fact, as already explained, that existential
quantification does not preserve the minimal models, nor
the complexity of the problem. Nevertheless, we manage to
separate the coNP-hard cases from the tractable ones by
using this approach through a more fine-grained analysis, thus,
finishing the complexity classification of minimal inference
with restrictions on the types of allowed clauses. Note that
we address the minimal inference problem for unbounded
queries. Some remarks on the bounded case can be found in
the conclusion.

This result finally settles with a positive answer the tri-
chotomy conjecture of Kirousis and Kolaitis [15]. We also
present simple and efficiently computable criteria separating
the different cases. In the process we also strengthen and give
a much simplified proof of the coNP-completeness result by
Durand and Hermann [8]. We also believe that the implemen-
tations we present might be interesting in their own right, since
they could be useful during the study of other problems, which
are not invariant under existential quantification.

II. PRELIMINARIES

Throughout the paper we use the standard correspondence
between constraints and relations. We use the same symbol for
a constraint and its corresponding relation, since the meaning
will always be clear from the context, and we say that the
constraint represents the relation.

An n-ary logical relation R is a Boolean relation of arity n.
Each element of a logical relation R is an n-ary Boolean vector
(also called a tuple) m = (m1, . . . ,mn) ∈ {0, 1}n. To save
space, we will often write the vector (m1, . . . ,mn) in the
form m1 · · ·mn. Let V be a set of variables. A constraint is

an application of R to an n-tuple of variables from V , i.e.,
R(x1, . . . , xn).

Consider a relation R represented by a Boolean matrix, i.e.,
the vectors of R constitute the rows of the matrix. We say that
a relation R is irredundant if it does not contain two identical
columns and it cannot be transformed by column permutation
to a relation of the form Q × {0, 1}k for a k ≥ 1, where Q
is another relation. If R is redundant then the corresponding
irredundant reduction R◦ is formed by identifying identical
columns and removing all columns of the form {0, 1}k. A
set of relations S is irredundant if every relation in S is
irredundant. Given a set of relations S, we form the irredun-
dant reduction S◦ by replacing all redundant relations R in S
by their corresponding irredundant reductions R◦. We prove,
in Proposition 5, that the minimal inference problems of S
and S◦ are equivalent under polynomial many-one reductions.
Hence, we assume throughout the paper that the set of relations
S is irredundant.

An assignment is a mapping m : V → {0, 1} assigning a
Boolean value m(x) to each variable x ∈ V . If we arrange
the variables in some arbitrary but fixed order, say as a
vector (x1, . . . , xn), then the assignments can be identified
with vectors from {0, 1}n. The i-th component of a vector m,
denoted by m[i], corresponds to the value of the i-th variable,
i.e., m(xi) = m[i]. An assignment m satisfies the constraint
R(x1, . . . , xn) if (m(x1), . . . ,m(xn)) ∈ R holds. An assign-
ment m satisfying a constraint R(x1, . . . , xn) is called a model
of R(x1, . . . , xn).

Throughout the text we refer to different types of Boolean
constraint relations following Schaefer’s terminology [24] (see
also the monograph [6]). A Boolean relation R is

• 1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R,
• Horn (dual Horn) if R can be represented by a con-

junctive normal form (CNF) formula having at most one
unnegated (negated) variable in each clause,

• bijunctive if it can be represented by a CNF formula
having at most two variables in each clause,

• affine if it can be represented by an affine system of
equations S : Ax = b over Z2,

• complementive if for each (m1, . . . ,mn) ∈ R also
(¬m1, . . . ,¬mn) ∈ R.

A set S of Boolean relations is called 0-valid (1-valid, Horn,
dual Horn, affine, bijunctive, complementive) if every relation
in S is 0-valid (1-valid, Horn, dual Horn, affine, bijunctive,
complementive). A relation R (a set of relations S) is called
Schaefer if it belongs to one of the classes Horn, dual Horn,
bijunctive, or affine. In the sequel we need to determine the
properties of relations. This will be done by means of closure
operations (see [2] for a survey). We say that a relation R
is closed under a Boolean function f : {0, 1}k → {0, 1}, or
that f is a polymorphism of R, if for any choice of k vectors
m1, . . . ,mk ∈ R, we have that(

f
(
m1[1], . . . ,mk[1]

)
, . . . , f

(
m1[n], . . . ,mk[n]

))
∈ R,

i.e., that the new vector constructed coordinate-wise from



R is Horn ⇔ m, m′ ∈ R implies m ∧m′ ∈ R
R is dual Horn ⇔ m, m′ ∈ R implies m ∨m′ ∈ R
R is bijunctive ⇔ m, m′, m′′ ∈ R implies maj(m, m′, m′′) ∈ R
R is affine ⇔ m, m′, m′′ ∈ R implies m + m′ + m′′ ∈ R
R is complementive ⇔ m ∈ R implies ¬m ∈ R

TABLE I
CORRESPONDENCE WITH CLOSURE OPERATIONS

m1, . . . , mk by means of f belongs to R. In particular, we
study the closure under the Boolean functions called conjunc-
tion (∧), disjunction (∨), majority (maj), addition over Z2

called exclusive-or (+), and negation (¬), where the majority
operation is defined by the identity maj(m,m′,m′′) = (m ∨
m′) ∧ (m′ ∨m′′) ∧ (m′′ ∨m). The correspondence between
the type of relation and the closure operation is specified in
Table I.

Let S be a non-empty finite set of Boolean relations,
also called a constraint language. An S-formula is a finite
conjunction of clauses ϕ = c1∧· · ·∧ ck, where each clause ci
is a constraint application of some logical relation R ∈ S.
An assignment m satisfies the formula ϕ if it satisfies all
clauses ci. Hence the notion of models naturally extends from
constraints to formulas. We denote by [ϕ] the set of models
of a formula ϕ. It is clear that each [ϕ] denotes a Boolean
relation. We also denote by 〈S〉 the set of all relations that can
be expressed using relations from S, conjunction (Cartesian
product), and variable identification. Notice that we do not
require closure under existential quantification. This means
that

• if R ∈ S then R(~x) ∈ 〈S〉,
• if R1(~x), R2(~y) ∈ 〈S〉 then (R1 × R2)(~x, ~y) = R1(~x) ∧
R2(~y) ∈ 〈S〉,

• if R(x1, x2, ~y) ∈ 〈S〉 then R(x, x, ~y) ∈ 〈S〉, where x is
a fresh variable.

Let m = (m[1], . . . ,m[n]) and m′ = (m′[1], . . . ,m′[n]) be
two Boolean vectors from {0, 1}n. We write m ≤ m′ to
denote that m[i] ≤ m′[i] holds for every i ≤ n, as well as
m < m′ for m ≤ m′ and m 6= m′. The relation ≤ is called
the pointwise partial order on models. Let ϕ(x1, . . . , xn) be
a Boolean formula having x1, . . . , xn as its variables and
let m ∈ {0, 1}n be a truth assignment. We say that m is
a minimal model of ϕ if m is a model of ϕ and there is
no other model m′ of ϕ that satisfies the relation m′ < m.
Two vectors a, b ∈ R satisfying the relation a < b are called
comparable. We say that a relation R is incomparable if it does
not contain comparable vectors. We say that a set of relations S
is incomparable if each relation R ∈ S is incomparable.

Let ϕ and ψ be two propositional formulas in conjunctive
normal form. We say that the query ψ follows from ϕ in
propositional circumscription, denoted by ϕ |=min ψ, if the
query ψ is true in every minimal model of ϕ. Since the query ψ
is a conjunction c1 ∧ · · · ∧ ck of clauses ci, then ϕ |=min ψ
if and only if ϕ |=min ci for each i. Hence we can restrict
ourselves to consider only a single query clause instead of
a CNF query ψ at the right-hand side of the propositional

inference problem ϕ |=min c.

III. EXPRESSIVITY TECHNIQUES

In this section we review two very useful techniques. The
first is due to Schaefer [24], for showing that certain relations
belong to 〈S〉 based on information about the polymorphisms
of S. The second is due to Kirousis and Kolaitis [15]. We
begin by stating some basic but useful facts about the set 〈S〉.

Lemma 1 If S is not closed under the functions f1, . . . , fk

then there exists a single relation R ∈ 〈S〉 which is not closed
under any of the functions f1, . . . , fk.

Lemma 2 If a relation R is not closed under the functions
f1, . . . , fk of arities a1, . . . , ak where a denotes the maximum
arity of the functions, then there is a relation R′ ∈ 〈R〉
containing tuples t1, . . . ta, such that for any function fi

and any ai tuples from t1, . . . , ta, the tuple resulting from
applying fi to these ai tuples (in any order), is not in R′.

The notation R[x/V ] means that in the relation R the vari-
ables V are replaced with the new variable x. As a shorthand,
we also write R[V ] instead of R[x/V ] when the new variable x
is implicitly clear or when V represents both the set of
variables to be replaced and the fresh variable. This means V
is a set of variables, but also the identifier of a new variable,
by which all variables in V are replaced in R[V ].

The following is the typical situation we are faced with
when proving our hardness results. We have a set of relations S
for which we want to prove a hardness result. We also know
a hardness result for a relation R. The goal is to show that
R ∈ 〈S〉. For this purpose we have some information on S,
namely we know that S is closed under the operations f1, . . . ,
fj , but it is not closed under the operations g1, . . . , gk. The
first step is to use Lemmas 1 and 2 to produce a single relation
R′ ∈ 〈S〉 that has the properties stated in Lemma 2 and is not
closed under any of the operations g1, . . . , gk.

The next (crucial) step is to prove that R can be imple-
mented by R′ using variable identification. We first show that
R′ must contain a number of vectors a1, . . . , ap, usually by
the argument that R′ would otherwise be closed under one
of the functions g1, . . . , gk. For all Boolean vectors m of
length p we construct the variable sets Vm = {x | a1(x) =
m[1], . . . , ap(x) = m[p]}. We then construct the constraint
Q(V0, . . . , V2p−1) = R′[Vi | i = 0, . . . , 2p − 1]. For instance,
when we know the existence of the vectors a, b, c ∈ R′,
we create the variable sets Vijk = {x | a(x) = i, b(x) =



j, c(x) = k} and construct the constraint Q(V0, . . . , V7) =
R′[V000, . . . , V111].

Finally, we must show that the constructed constraint R′[Vi |
i = 0, . . . , 2p−1], possibly after additional variable identifica-
tion, really generates the relation R. For more information on
this technique, see the monograph [6] or Schaefer’s original
exposition [24]. Note again that our implementations differ
from Schaefer’s since we are not allowed to use existential
quantification.

We will also need a well-known concept from coding theory
which was already used for circumscription [14] and minimal
inference [15].

Definition 3 Let R ⊆ {0, 1}k be a k-ary Boolean relation.
We say that a relation R′ is a direct 0-section of R if there
exists an index i ∈ {1, . . . , k}, such that

R′ = {(m[1], . . . ,m[i− 1],m[i+ 1], . . . ,m[n])
| m ∈ R and m[i] = 0}.

We say that a relation R′′ is a 0-section of R if there exists
a finite sequence of Boolean relations R0, R1, . . . , Rn, such
that R0 = R, R′′ = Rn, and Rj+1 is a direct 0-section of Rj

for each j = 0, . . . , n− 1.
Let S be a finite set of Boolean relations. We say that S∗ is

a 1-valid restriction of S if it contains all relations R∗ which
are both 1-valid and a 0-section of a relation from S.

Note that starting from an arbitrary relation R ∈ S, we
always arrive at a 1-valid 0-section R∗ by iterating the 0-
section operation long enough, unless R = {0 · · · 0}. It is
easy to see that the property of S being Schaefer implies the
restriction S∗ to be Schaefer, since the classes of Horn, dual
Horn, bijunctive, and affine constraints are stable by constant
substitution. Note also that a restriction S∗ is 0-valid if and
only if S is 0-valid.

IV. COMPLEXITY OF MINIMAL INFERENCE AND
EXTENSION

We are interested in the complexity of the following prob-
lem, which is exactly the minimal inference problem studied
for example in [4], [9], [15].

Problem: MININF(S)
Input: A conjunction ϕ of constraints from S and a clause ψ.
Question: Is ψ satisfiable in every minimal model of ϕ, i.e.,
does ϕ |=min ψ hold?

It was proved by Eiter and Gottlob [9] that MININF is Π2P-
complete. Cadoli and Lenzerini [4] showed that the MININF
problem for dual-Horn or bijunctive formulas ϕ is coNP-
complete. Durand and Hermann [8] showed that the MININF
problem for affine formulas ϕ is coNP-complete. Kirousis and
Kolaitis [15] showed that there exists a dichotomy between the
Π2P-complete general case of MININF and the special cases
included in coNP. The MININF problem for Horn formulas ϕ
is trivially known to be polynomial-time decidable.

It is sometimes more convenient to investigate the dual
problem MINEXT of generalized minimal extension, defined
as follows.

Problem: MINEXT(S)
Input: A conjunction ϕ(~x, ~y) of constraints from S, and a
partial assignment m for the variables ~x.
Question: Can m be extended to a minimal model m̄ of ϕ?

The relationship between MININF and MINEXT can be easily
established through the following construction. Let S be a
finite set of Boolean relations and m an assignment to the
variables x1, . . . , xn. Let cm be the largest clause falsified
by the assignment m, i.e., cm = l1 ∨ · · · ∨ ln, where li = xi

if m(xi) = 0, and li = ¬xi otherwise. It is clear that the
clause cm is not satisfiable in every minimal model of the
formula ϕ if and only if the assignment m can be extended
to a minimal model m̄ of ϕ. From this follows that for each
set of relations S the problem MININF(S) is Π2P-complete,
coNP-complete, or polynomial-time decidable if and only if
MINEXT(S) is Σ2P-complete, NP-complete, or polynomial-
time decidable, respectively.

To be able to perform the required complexity analysis, we
need reduction theorems between minimal inference problems
parametrized by different sets of relations. Since our sets of
relations 〈S〉 are not closed under existential quantification, we
cannot have the usual reduction theorem based on inclusion
of polymorphisms.

Proposition 4 Let R be a Boolean relation and S a set of
relations. If R ∈ 〈S〉 then there exists a polynomial many-one
reduction from MININF(R) to MININF(S).

Proposition 5 If S◦ is the irredundant reduction of a set of
relations S, then MININF(S) and MININF(S◦) are equivalent
under polynomial many-one reductions.

We proceed with a sharpening of a result from Kirousis and
Kolaitis [15].

Proposition 6 Let S be a non-Schaefer and non-0-valid set
of Boolean relations, with S∗ being the corresponding 1-
valid restriction. If S∗ is Schaefer, then MININF(S) is coNP-
complete, otherwise it is Π2P-complete.

There exists one case which does not enter into the usual
Schaefer classification of relations.

Proposition 7 If a set of relations S is Schaefer and incom-
parable then MININF(S) is in P.

Proof: Let ϕ |=min ψ be an instance of MININF with S
incomparable. It can be shown that [ϕ] is an incomparable
relation. This follows from the fact that incomparable relations
are preserved under conjunction and variable identification.
Given two formulas ϕ1 and ϕ2, each having only incomparable
models, their conjunction ϕ1 ∧ ϕ2 have only incomparable
models since a model of ϕ1 can never be extended to two



comparable models of ϕ1 ∧ ϕ2 (because ϕ2 has only incom-
parable models). Variable identification only reduces the set
of models of a formula. If the original set of models were all
incomparable, then of course the reduced set of models will
also be incomparable.

Since ϕ is expressed by conjunction and variable identifi-
cation over an incomparable set of relations S it follows that
all models of ϕ are incomparable and hence also minimal.
Thus, ϕ |=min ψ if and only if ϕ |= ψ, where the latter can
be checked in polynomial time since S is Schaefer.

Consider now S to be Schaefer or 0-valid. Tractability of
MININF(S) for S being 0-valid is trivial and the polynomial-
time decidability of MININF(S) for S being Horn follows
from the fact that a satisfiable Horn formula has a unique
minimal model computable in polynomial time. In the rest of
the paper we investigate the other cases for which MININF(S)
is in coNP, namely when S is dual Horn, bijunctive, or affine.

V. AFFINE RELATIONS

In this section we separate the coNP-complete cases from
the tractable cases for MININF(S) with an affine set of
relations S. This result is a significant strengthening of the pre-
vious result due to Durand and Hermann [8], which states that
there exists a set of affine relations S for which MININF(S)
is coNP-complete. Moreover, their proof is rather involved in
comparison to the proofs we present here.

Lemma 8 Let R be a Boolean relation which is affine and
1-valid, but neither 0-valid, nor other Schaefer. Then we can
construct the relation [(x+ y + z = 1)∧ (w = 1)] from R by
conjunction and variable identification.

Proof: Since R is not Horn, there exist two vectors
a, b ∈ R, such that a ∧ b /∈ R. Construct the variable
sets Vij = {x ∈ V | a(x) = i, b(x) = j}. Identify the vari-
ables in each set Vij , i.e., construct the relation R′ =
R[V00, V01, V10, V11]. It can be easily seen that the vectors
0011, 0101, and 1111 belong to R′, whereas 0000 /∈ R′ (not
0-valid) and 0001 /∈ R′ (not Horn). Since R′ is affine, we
have 0011 + 0101 + 1111 = 1001 ∈ R′.

Let m,m′ ∈ R′ and m′′ /∈ R′. Then also m+m′ +m′′ /∈
R′, since otherwise from the membership of m, m′, and
m + m′ + m′′ in R′ follows that (m + m′ + m′′) + m +
m′ = m′′ ∈ R′, because R′ is affine. Using this result,
from 0011, 0101 ∈ R′ and 0001 /∈ R′ follows 0110 /∈ R′.
From 0101, 1111 ∈ R′ and 0001 /∈ R′ follows 1011 /∈ R′.
Finally from 0011, 1111 ∈ R′ and 0001 /∈ R′ follows
1101 /∈ R′. We can force the variable V11 to take the
value 1 by the constraint R′(V11, V11, V11, V11), since R as
well as R′ are both 1-valid but not 0-valid. Hence, the con-
straint R′(x, y, z, w) ∧ R′(w,w,w,w) generates the relation
[(x+ y + z = 1) ∧ (w = 1)] = {0011, 0101, 1001, 1111}.

Lemma 9 MINEXT(R) for R = [(x+y+z = 1)∧(x+w = 1)]
and R = [(x+ y + z = 0) ∧ (x+ w = 1)] is NP-complete.

Proof: The membership in NP is clear, we focus on the
NP-hardness proof by means of a reduction from 3SAT. Let
ϕ(x1, . . . , xn) = c1 ∧ · · · ∧ ck be a 3SAT formula. Associate
the variables yi with the clauses ci for i = 1, . . . , k. Construct
the system in the following way.

For each clause ci = l1i ∨ l2i ∨ l3i add the following three
formulas (z3i−2 +v1

i +yi = 1)∧ (v1
i +u1

i = 1), (z3i−1 +v2
i +

yi = 1)∧ (v2
i + u2

i = 1), (z3i + v3
i + yi = 1)∧ (v3

i + u3
i = 1)

to the formula ϕ′, where

vj
i =

xp if lji = ¬xp,

x′p if lji = xp.

and

uj
i =

x
′
p if lji = ¬xp,

xp if lji = xp.

The variable vj
i is a placeholder for the negation ¬lji of the

literal lji and vice versa for uj
i .

Claim: The formula ϕ is satisfiable if and only if the
assignment s(yi) = 1 for all i = 1, . . . , k of ϕ′ has a minimal
extension.

a) Let ϕ be satisfiable: Let m be a satisfying assignment
of ϕ. Then in each clause ci there must be a literal lji such that
m(lji ) = 1. Hence, for each extension m̄ of m that satisfies ϕ′

we must have m̄(vj
i ) = 0 following the definition of vj

i , where
the equation x+x′ = 1 enforces the variables x and x′ to take
opposite values. The value m̄(vj

i ) = 0 implies two different
incomparable assignments for the variables yi and z3i+3−j .
The first one is m̄(z3i+3−j) = 1 and m̄(yi) = 0, which is not
interesting for us. The second is m̄(z3i+3−j) = 0 and m̄(yi) =
1, which is the desired minimal assignment. It is clear from the
construction of the formula ϕ′ that this assignment is minimal.
It is also clear that m̄ is an extension of the assignment s(yi) =
1 for all i = 1, . . . , k. Hence, the assignment s(yi) = 1 for
all i can be extended to a minimal one.

b) Let ϕ be unsatisfiable: Then for all assignments m of
the variables V there exists a falsified clause ci. This implies
that m(lji ) = 0 for all j = 1, 2, 3. Let m̄ be an extension
of m that satisfies the formula ϕ′. Then the structure of the
formula ϕ′ implies that we have m̄(v1

i ) = m̄(v2
i ) = m̄(v3

i ) =
1. This implies the existence of a minimal assignment with
yi = 0 and m̄(z3i+3−j) = 0 for all j. Hence, the assignment
s(yi) = 1 for all i cannot be extended to a minimal one.

For the latter relation, by swapping variables we get [(x+
y+ z = 0)∧ (x+w = 1)] = [(w+ y+ z = 1)∧ (x+w = 1)]
and the result follows from the previous relation.

Lemma 10 MINEXT(R) for R = [x + y + z = 1] and R =
[(x+ y + z = 1) ∧ (w = 1)] is NP-complete.

Proposition 11 MININF(S) is coNP-complete for each set of
relations S which is affine and 1-valid, but neither 0-valid,
nor other Schaefer.



Proof: We can construct a relation R which is affine
and 1-valid, but not 0-valid, not Horn, not dual Horn, nor
bijunctive, by Cartesian product of relations from S. The rest
follows from Lemma 8, Lemma 10, and from the relationship
between MINEXT and MININF.

Lemma 12 If S is neither complementive nor 0-valid nor 1-
valid, then the relation R01 = {01} can be constructed from
S by conjunction and variable identification.

Lemma 13 Given an irredundant affine relation R which is
not incomparable, then any two comparable tuples a < b in R
must differ in at least two positions. Moreover, there must be
a third tuple c which is not constant on the positions where a
and b differ.

Proof: We claim that the existence two comparable tuples
a < b differing in just one position implies the relation R to be
redundant. Denote by i the coordinate on which a and b differ.
For any tuple c in R we construct the tuple c′ = a+b+c, which
is identical to c except that c′[i] = ¬c[i]. Since R is affine, the
tuple c′ must be in the relation. Hence, R is redundant since it
is of the form Q×{0, 1}. Thus in any irredundant relation any
two comparable tuples must differ in at least two positions.

Now let a and b differ on at least two positions, say i and j.
If all tuples c ∈ R are constant on the positions i and j
where a and b differ, i.e., c[i] = c[j] for all c ∈ R, then R is
again redundant because in particular the columns i and j are
identical.

Proposition 14 MININF(S) is coNP-hard for each set of
relations S, which is affine, but neither incomparable, nor
other Schaefer, nor 0-valid, nor 1-valid, nor complementive.

Proof: By Lemma 12 we know that we have access to the
relation R01(x, y) = {01} which allows us to impose variables
to take constant values. Since S is neither Horn nor dual Horn,
by taking Cartesian products we can assume that there is a
relation N ∈ 〈S〉 and two tuples a, b ∈ N , such that a ∧
b /∈ N and a ∨ b /∈ N . Use Schaefer’s variable identification
on a and b to get the relation N [V00, V01, V10, V11]. Now we
need to impose the constant 0 on V00 and 1 on V11, using
the relation R01. We construct the constraint N(z, x, y, w) ∧
R01(z, w) = (x 6≡ y)∧ (z = 0)∧ (w = 1) by conjunction and
variable identification.

By taking Cartesian products of relations in S, there exists
a single relation R in 〈S〉 which is affine, but neither incom-
parable, nor bijunctive, nor Horn, nor dual-Horn. Since R is
not incomparable there exist two tuples a and b satisfying the
condition a < b. Without loss of generality we can assume
that a and b are closest possible, i.e., there is no tuple t where
a < t < b holds. By Lemma 13 we know that a and b differ
in at least two positions, and that there is a third tuple c not
constant on the coordinates where a and b differ.

Since R is neither Horn nor dual-Horn, we can assume by
taking a Cartesian product of R with itself, that c satisfies the
conditions a ∧ c /∈ R, b ∧ c /∈ R, a ∨ c /∈ R, and b ∨ c /∈ R.

Form the Schaefer-style variable identification on R based on
the tuples a, b, c. Note that since a < b holds, the variables
V100 and V101 will not appear. Thus we get the relation
R[V000, V001, V010, V011, V110, V111]. It can be checked that
the variables V001, V010, V011, V110 must all appear. Observe
that if V001 does not appear, then b ∨ c = b ∈ R which
is a contradiction. Similarly, if V110 does not appear, then
a ∧ c = a ∈ R which is a contradiction. Moreover, V010 and
V011 must appear since c is not constant on the coordinates
where a and b differ.

Since R is affine, it also contains the tuple d =
a + b + c = 011001. Moreover, R does not con-
tain the tuple t = maj(a, b, c) = 000111 since this
tuple satisfies the condition a < t < b. We add
the constraint (V110 6≡ V001) ∧ (V000 = 0) ∧ (V111 = 1) to
R[V000, V001, V010, V011, V110, V111]. The resulting constraint
contains the tuples 000011, 001111, 010101, 011001, but
it does not contain the tuple 000111. There are only three
undetermined variables so there can be at most 8 tuples
satisfying the affine constraint. Moreover, since the constraint
is affine the number of tuples satisfying the constraint is a
power of 2. Therefore, since 000111 is not satisfying the
constraint, we have that R[V001, V010, V011, V110] ∧ (V110 6≡
V001) ∧ (V000 = 0) ∧ (V111 = 1) = (V001 + V010 + V011 =
0)∧(V110+V001 = 1)∧(V000 = 0)∧(V111 = 1). This relation
is coNP-hard by Lemma 9.

Lemma 15 If S is complementive and neither 0-valid nor 1-
valid, then we can construct [x 6≡ y] from S by conjunction
and variable identification.

Lemma 16 MINEXT(R) for R = [(x+y+z+w = 0)∧ (x+
u = 1) ∧ (y + v) = 1] is NP-complete.

Proof: NP-membership is clear, we focus on the NP-
hardness proof by a reduction from NAE3SAT (not-all-equal
3SAT). Let ϕ = c1 ∧ · · · ∧ ck be a not-all-equal 3sat formula
with variables x1, . . . , xn and clauses ci = l1i ∨ l2i ∨ l3i . We
construct a formula ϕ′ as the conjunction of the following
equations for each clause ci = l1i ∨ l2i ∨ l3i :

(z3i−2 + v1
i + v2

i + yi = 0) ∧ (v1
i + u1

i = 1)
∧ (v2

i + u2
i = 1),

(z3i−1 + v2
i + v3

i + yi = 0) ∧ (v2
i + u2

i = 1)
∧ (v3

i + u3
i = 1),

(z3i + v3
i + v1

i + yi = 0) ∧ (v3
i + u3

i = 1)
∧ (v1

i + u1
i = 1),

where

vj
i =

xp if lji = xp,

x′p if lji = ¬xp.

and

uj
i =

x
′
p if vj

i = xp,

xp if vj
i = x′p.



The variable vj
i is a placeholder for the literal lji , whereas uj

i

is the negation of vj
i .

Claim: The formula ϕ is satisfiable if and only if the
assignment s(yi) = 1 for all i = 1, . . . , k of ϕ′ has a minimal
extension.

Let ϕ be not-all-equal satisfiable. Then there exists a not-
all-equal satisfying assignment m of the formula ϕ. Since
every clause ci is not-all-equal satisfied, for each i there must
be a, b ∈ {1, 2, 3} such that m(lai ) 6= m(lbi ). Let m̄ be an
extension of m that satisfies ϕ′. Following the construction
of ϕ′, we must have m̄(va

i ) + m̄(vb
i ) = 1. Then there are two

possibilities to get a minimal assignment m̄:

1) When we set m̄(z3i−p) = 1 and m̄(yi) = 0, we get an
uninteresting assignment.

2) When we set m̄(z3i−p = 0 and m̄(yi) = 1, we get
an assignment which is an extension of the assignment
s(yi) = 1 for all i = 1, . . . , k.

These two possible assignments are clearly incomparable and
no value can be changed from 1 to 0 to get another satisfying
assignment of ϕ′. Therefore the assignment m̄ from the second
case is minimal.

Let ϕ be not-all-equal unsatisfiable. Then for each assign-
ment m there must always be a clause ci which literals are
assigned the same values, i.e., m(l1i ) = m(l2i ) = m(l3i ) = 0 or
m(l1i ) = m(l2i ) = m(l3i ) = 1. Let m̄ be an extension of m that
satisfies the formula ϕ′. Following the construction of ϕ′, we
have m̄(v1

i )+m̄(v2
i ) = m̄(v2

i )+m̄(v3
i ) = m̄(v3

i )+m̄(v1
i ) = 0.

Then we can set m̄(z3i−2) = m̄(z3i−1) = m̄(z3i) = m̄(yi) =
0 to produce a minimal assignment. This implies that the
assignment s(yi) = 1 for all i cannot be extended to a minimal
one.

Proposition 17 MININF(S) is coNP-hard for each set of
relations S, which is affine and complementive, but neither
incomparable, nor other Schaefer, nor 0-valid, nor 1-valid.

Proof: By taking Cartesian products of relations in S
there exists a relation R in 〈S〉 which is affine, but neither in-
comparable, nor bijunctive, nor Horn, nor dual-Horn. Since R
is not incomparable there are two tuples a and b satisfying the
condition a < b. Without loss of generality we can assume
that a and b are closest, i.e., there is no tuple t satisfying
a < t < b. By Lemma 13 we know that a and b differ in at
least two positions and that there exists a third tuple c which
is not constant on the coordinates where a and b differ.

Since R is neither Horn, nor dual-Horn we can assume, by
taking a Cartesian products of R with itself, that c satisfies
the conditions a ∧ c /∈ R, b ∧ c /∈ R, a ∨ c /∈ R, and
b ∨ c /∈ R. Form the Schaefer style implementation on R
based on the tuples a, b, c. Note that since a < b holds, the
variables V100 and V101 will not appear. Hence we get the
relation R[V000, V001, V010, V011, V110, V111]. It can be checked
that the variables V001, V010, V011, V110 must all appear. If V001

does not appear, then b ∨ c = b ∈ R which is a contradiction.
Similarly, if V110 does not appear, then a∧c = a ∈ R which is

a contradiction. Moreover, V010 and V011 must appear since c
is not constant on the coordinates where a and b differ.

Since R is affine, it must also contain the tuple d =
a + b + c = 011001. Moreover, R does not contain the
tuple t = maj(a, b, c) = 000111 since this tuple satisfies
a < t < b. Furthermore, since R is complementive it also
contains the tuples 100110, 111100 101010, 110000. Now,
adding the constraints V000 6≡ V111 and V110 6≡ V001, to which
we have access according to Lemma 15, we get the relation
R[V000, V001, V010, V011, V110, V111]∧(V000 6≡ V111)∧(V110 6≡
V001). Since the value of V110 is determined by V001 and vice
versa, and the same for V000 and V111, there can be at most 16
tuples satisfying the affine constraint. We already have 8 tuples
that satisfy the constraint and we know that the tuple 000111
does not satisfy the constraint. Since the constraint is affine,
the number of tuples satisfying the constraint must be a power
of 2. The constraint R[V000, V001, V010, V011, V110, V111] ∧
(V000 6≡ V111)∧(V110 6≡ V001) generates the relation {000011,
001111, 010101, 011001, 100110, 111100, 101010, 110000}.
It is equivalent to the constraint (V000 +V001 +V010 +V011 =
0) ∧ (V000 + V111 = 1) ∧ (V001 + V110 = 1), for which
the minimal inference problem is coNP-complete according
to Lemma 16.

VI. DUAL HORN RELATIONS

Proposition 18 MININF(S) is coNP-hard for each set of
relations S, which is dual Horn, but neither Horn, nor 0-valid,
nor 1-valid.

Proof: Construct a relation R from S which is neither
0-valid nor 1-valid. Such a relation exists by taking Cartesian
products. Take a tuple a ∈ R and construct the relation
R[V0, V1] on a. Both variables V0 and V1 must appears since R
is neither 0-valid nor 1-valid. Hence 01 ∈ R[V0, V1]. Neither
00 nor 11 is in R[V0, V1] since R is neither 0-valid nor 1-valid.
Moreover, 10 is not in R, since if it were then the fact that R
is dual-Horn together with 01 ∈ R implies 11 ∈ R which we
have already ruled out. Thus R[V0, V1] represents the relation
{01}.

Now construct from S a relation Q which is dual Horn,
but not Horn. There must be two tuples a, b ∈ Q, such
that a ∧ b /∈ Q and a ∨ b ∈ Q. Construct the rela-
tion Q[V00, V01, V10, V11] on a and b. Form the conjunction
Q[V00, V01, V10, V11] ∧ R[V00, V11] forcing the variables V00

and V11 to take the values 0 and 1, respectively. The constraint
Q′(V00, V01, V10, V11) = Q[V00, V01, V10, V11] ∧ R[V00, V11]
is equal to (V01 ∨ V10) ∧ (V00 = 0) ∧ (V11 = 1). Cadoli
and Lenzerini [4] proved that MININF([x ∨ y]) is coNP-
complete, therefore also MININF(Q′) is coNP-complete for
Q′ = [(x ∨ y) ∧ (z = 0) ∧ (w = 1)].

Lemma 19 MININF(R) for R = [(x∨y)∧(¬z∨x)∧(¬z∨y)]
and R = [(x ∨ y) ∧ (¬z ∨ x)] is coNP-complete.

Proposition 20 MININF(S) is coNP-hard for each set of
relations S, which is dual-Horn and 1-valid, but neither 0-
valid nor Horn.



Proof: We know that there is a relation R in 〈S〉 which is
dual-Horn and 1-valid but not 0-valid, constructed by taking
Cartesian products. Now, do Schaefer’s construction on two
tuples a, b ∈ R such that a ∧ b /∈ R and a ∨ b ∈ R.
Such tuples exist, since R is dual Horn, but not Horn. This
construction gives us the relation Q(V00, V01, V10, V11) =
R[V00, V01, V10, V11]. Since Q is 1-valid but not 0-valid,
we have access to the constraint (x = 1). Construct the
conjunction Q′(V00, V01, V10, V11) = Q(V00, V01, V10, V11) ∧
Q(V11, V11, V11, V11). Now, V01 and V10 both exists, otherwise
we would have a ∧ b ∈ R. Moreover, 0001 /∈ Q′ since
a∧b = 0001. If V00 does not exist then Q′ = [(x∨y)∧(z = 1)].
Cadoli and Lenzerini [4] that MININF([x ∨ y]) is coNP-
complete, hence also MININF(Q′) is coNP-complete.

Assume now that V00 exists We know that Q′ contains the
tuples 1111, 0011, 0101, and 0111. We now have to consider 5
cases according to the presence of the tuples 1001, 1011, and
1101:

Case 1: Q′ = {1111, 0011, 0101, 0111} which is equal to
[(y ∨ z) ∧ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (w = 1)] for which MININF
is coNP-complete according to Lemma 19.

Case 2: Q′ contains the tuple 1001. Because Q′ is dual
Horn, it must also contain the tuples 1011 and 1101. Since
0001 is not in the relation, we have constructed [(x∨ y∨ z)∧
(w = 1)]. By variable identification we can get the relation
[(x ∨ y) ∧ (w = 1)] for which we already know MININF to
be coNP-complete. hence we can assume further on that Q′

does not contain the tuple 1001.
Case 3: Q′ contains 1011. Then it is equal to [(y ∨ z) ∧

(¬x ∨ z) ∧ (w = 1)] for which MININF is coNP-complete
according to Lemma 19.

Case 4: Q′ contains 1101. Then it is equal to [(y ∨ z) ∧
(¬x ∨ y) ∧ (w = 1)] for which MININF is coNP-complete
according to Lemma 19.

Case 5: Q′ contains both tuples 1101 and 1011. Then
we can construct the new constraint Q′′(x, y, z, w) =
Q′(x, y, z, w)∧Q(x, x, x, x) which is equivalent to (y ∨ z)∧
(x = 1)∧ (w = 1). Since MININF([x∨ y]) is coNP-complete,
we know that MININF(Q′′) is coNP-complete.

There are no more cases to consider.

VII. BIJUNCTIVE RELATIONS

Proposition 21 MININF(S) for S = {[¬x ∨ ¬y], [x 6≡ y]} is
in P.

Proof: Let ϕ |=min ψ be an instance of MININF(S) for
S = {[¬x ∨ ¬y], [x 6≡ y]}. Check first that ϕ is satisfiable,
what can be done in polynomial time since S is bijunctive.
If ϕ is NOT satisfiable, then ϕ |=min ψ is trivially satisfied.

If the formula ϕ is only produced from the relation [¬x∨¬y]
then it is 0-valid and therefore ϕ |=min ψ is in P.

The formula ϕ is a conjunction of binary constraints of the
type (¬x∨¬y) and (x 6≡ y). Let us consider the structure of ϕ.
If a variable v occurs only in negative constraints, i.e., only
in constraints of the form (¬x ∨ ¬y), then v has the value 0
in all minimal models of ϕ. Hence, we can drop all clauses

(¬v ∨¬y) from ϕ and remove the variable v from ψ. Repeat
this replacement until all variables occur in a 6≡ constraint.

Let ϕ′ |=min ψ
′ be the resulting instance. Assume with the

aim of reaching a contradiction that there exist two comparable
models m0 < m1 of ϕ′. Then there exists a variable x,
such that m0(x) = 0 and m1(x) = 1. Let y be a variable
occurring together with x in a (x 6≡ y) constraint. Then
we have m0(y) = 1 and m1(y) = 0, which implies that
m0 ≮ m1, constituting a contradiction. Hence, all models
of ϕ′ are incomparable. Therefore ϕ′ |=min ψ′ holds if and
only if ϕ′ |= ψ′ which is decidable in polynomial time since ϕ′

is bijunctive.
The following result shows that in the case of bijunctive

constraints in the minimal inference problem we can impose
variables to take constant values. The unary relations F = {0}
and T = {1} can be used to represent the logical values 0
and 1, respectively. Similarly, the binary relation R01 = {01}
can be used to represent both logical values at once. Hence,
T (x) implies x = 1, F (x) implies x = 0, and R01(x, y)
implies x = 0, y = 1.

Lemma 22 If S is bijunctive but not other Schaefer, then we
can construct by conjunction and variable identification the
binary relation R01 = {01}.

Lemma 23 MINEXT(R) for R = [(x ∨ y) ∧ (x 6≡ z)] is NP-
complete.

Proof: The membership in NP is clear, we focus on the
NP-hardness proof by means of a reduction from 3SAT. Let
ϕ(x1, . . . , xn) = c1 ∧ · · · ∧ ck be a 3SAT formula. Associate
the variable yi with the clause ci for i = 1, . . . , k. For each
clause ci = l1i ∨ l2i ∨ l3i we add the following three formulas
(yi∨v1

i )∧(v1
i 6≡ v̄1

i ), (yi∨v2
i )∧(v2

i 6≡ v̄2
i ), and (yi∨v3

i )∧(v3
i 6≡

v̄3
i ) to ϕ′, where

vj
i =

x if lji = ¬x,

x′ if lji = x.

and

v̄j
i =

x
′ if lji = ¬x,

x if lji = x.

Claim: The partial assignment s(yi) = 1 for each i =
1, . . . , k can be extended to a minimal assignment of ϕ′ if and
only if ϕ is satisfiable.

Let ϕ be satisfiable. Every clause ci evaluates to 1. For
each clause ci there exists a j, such that lji = 1. Then vj

i = 0
which implies yi = 1. Moreover, since vj

i 6≡ v̄j
i holds, every

satisfying assignment to ϕ′ is incomparable, hence minimal.
Let ϕ be unsatisfiable. Then there exists a falsified clause ci,

i.e., l1i = l2i = l3i = 0, which implies v1
i = v2

i = v3
i = 1.

Therefore there exists a satisfying assignment m of ϕ′ with
m(yi) = 0. hence s(yi) = 1 for i = 1, . . . , k cannot be
extended to a minimal solution.



We need the following result from [12], based on a previous
algebraic result from [1], stating that it is sufficient to con-
sider binary relations when we consider bijunctive constraint
languages.

Proposition 24 (Jeavons et al. [12]) Given a n-ary bijunc-
tive constraint R(x1, . . . , xn) then it is equivalent to∧

1≤i≤j Rij(xi, xj) where Rij is the projection of the rela-
tion R to the coordinates i and j.

Proposition 25 Let N = {[¬x ∨ ¬y], [x 6≡ y]}. MININF(S)
for each set of relations S, which is bijunctive, but neither
other Schaefer, nor a subset of 〈N〉, is coNP-complete.

Proof: Let R be the Cartesian product of all relations in S.
Obviously, R is bijunctive but neither Horn, nor dual-Horn, nor
affine, nor a subset of 〈N〉. Let ϕ be the conjunction of binary
constraints representing the relation R, produced according to
Proposition 24.

There must be a clause (`p∨`) ∈ ϕ with at least one positive
literal, say `p, otherwise we would have [ϕ] ∈ 〈N〉. If ` is
a negative literal, then `p must not occur in a 6≡ constraint,
otherwise we would again have [ϕ] ∈ 〈N〉. If both `p and `
are positive, then `p or ` must not occur in a 6≡ constraint,
otherwise we would again have [ϕ] ∈ 〈N〉. In all cases, this is
because (`p ∨ `)∧ (`p 6≡ x) = (¬x∨ `)∧ (`p 6≡ x). Moreover,
the literals `p and ` cannot be assigned constant values. Indeed,
if ϕ = ϕ′ ∧ (`p ∨ `) |= ¬`p for a formula ϕ′ with [ϕ′] ∈ 〈N〉,
then ϕ is equivalent to ϕ′ ∧ (¬`p ∨¬`p)∧ (`p 6≡ `), implying
[ϕ] ∈ 〈N〉. If ϕ = ϕ′ ∧ (`p ∨ `) |= `p then ϕ is equivalent
to ϕ′, implying again [ϕ] ∈ 〈N〉.

Hence, we are in the situation (`p∨`) ∈ ϕ and `p is positive
and it does not occur in any 6≡ constraint. Two cases emerge
depending on whether ` appears in a 6≡ constraint. For the
rest of the proof we focus on the case where ` appears in a 6≡
constraint. The other case can be handled in the same way with
only minor and obvious modifications. Assume that `p = x,
Var(`) = y, and y occurs in a 6≡ constraint together with z,
i.e., that (x ∨ y) ∧ (y 6≡ z) ∈ ϕ, or (x ∨ ¬y) ∧ (y 6≡ z) ∈ ϕ.
Without loss of generality we assume the former case since
(x ∨ ¬y) ∧ (y 6≡ z) = (x ∨ z) ∧ (y 6≡ z).

Our goal is to produce the constraint (x ∨ y) ∧ (y 6≡ z) ∧
R01(v, w) from ϕ by conjunction and variable identification.
It is clear that both aforementioned constraints belong to 〈S〉,
since we can produce from S the constraint R01(x0, x1)
following Lemma 22.

Simplify ϕ by identifying all variables x1, x2 such that
(x1 = x2) ∈ ϕ, then remove all equality constraints from ϕ.
Form the sets of variables V0 = {v | ϕ |= ¬v} and V1 =
{w | ϕ |= w}. Remove from ϕ all clauses containing variables
in V0∪V1, then add the constraint R01(V0, V1) to ϕ. Obviously,
this transformation of ϕ does not change the fact that the
projection of ϕ onto {x, y} is equivalent to (x∨y), whereas the
projection of ϕ onto {y, z} is equivalent to (y 6≡ z). Note that
there can be no (x1 = x2) ∈ ϕ where {x1, x2} ⊆ {x, y, z}.
In the same manner, we must have {x, y, z} ∩ V0 = ∅ and
{x, y, z} ∩ V1 = ∅.

Continue simplifying the formula ϕ by eliminating all
(x1 6≡ x2) constraints, except the one (y 6≡ z), by replacing x1

by ¬x2, as well as ¬x1 by x2, throughout the formula. Denote
the resulting formula by ϕ′. Since x does not occur in any 6≡
constraint and neither y nor z occur in any other 6≡ constraint
except in (y 6≡ z), otherwise there would have to be some
(x1 = x2) constraint still left, we have (x∨y)∧ (y 6≡ z) ∈ ϕ′.

Recall that resolution between two clauses (c ∨ v) and
(¬v ∨ c′) produces the new clause (c ∨ c′) and discards the
two previous clauses. Note that resolution on binary clauses
produces a binary clause. For any variable xi /∈ {x, y, z}
occurring both positively and negatively in ϕ′, apply resolu-
tion to get a formula, where every variable not in {x, y, z}
only occurs either positively or negatively, but not both.
Denote the resulting formula by ϕ′′. Form the variable sets
V ′′

0 = {v | v only occurs negatively in ϕ′′} and V ′′
1 = {w |

w only occurs positively in ϕ′′}. Discard from ϕ′′ the clauses
containing variables from V ′′

0 ∪ V ′′
1 and add the constraint

R01(V ′′
0 , V

′′
1 ) to the formula.

Hence using only conjunction and variable identification,
we can implement (x ∨ y) ∧ (y 6≡ z) ∧ R01(v, w) from S.
Using Lemma 23 we obtain the desired coNP-completeness
result.

VIII. MAIN RESULT

Theorem 26 (Trichotomy of Minimal Inference) Let S be
a finite nonempty set of Boolean relations and S∗ the corre-
sponding 1-valid restriction. If every relation in S is Horn,
or 0-valid, or both Schaefer and incomparable, or a subset
of 〈N〉, where N = {[¬x ∨ ¬y], [x 6≡ y]}, then MININF(S)
is decidable in polynomial time. Else if S∗ is Schaefer then
MININF(S) is coNP-complete. Otherwise MININF(S) is Π2P-
complete.

Proof: The parts concerning Π2P-completeness and
membership in coNP follow from the dichotomy theorem
due to Kirousis and Kolaitis [15]. As for tractability, this
is, as already explained, trivial for S being Horn or 0-
valid. Tractability of MININF(S) for S being Schaefer and
incomparable, or a subset of 〈[¬x∨¬y], [x 6≡ y]〉, is proved in
Propositions 7, and 21, respectively. The coNP-hardness for
MININF(S) when S is neither Schaefer, nor 0-valid, and S∗

is Schaefer, is proved in Proposition 6.
Hence, what remains to be done is to prove coNP-hardness

for all sets of relations S that do not fall into one of the
tractable classes when S is affine, dual Horn, or bijunctive.
This is done in Sections V, VI, and VII, respectively. For S
being affine, the analysis is divided into three cases, depending
on whether S is 1-valid (Proposition 11), complementive
(Proposition 17), or neither 1-valid nor complementive (Propo-
sition 14). Similarly, the analysis for the dual Horn case is
divided into two parts depending on whether S is 1-valid
(Proposition 20) or not (Proposition 18). Finally, the case
where S is bijunctive is treated in Proposition 25.

Checking whether a relation R is Schaefer can be done in
polynomial time by testing for closure under corresponding



operations (see Table I). Checking whether a relation is 0-
valid or incomparable can be done in polynomial time by
inspection. Checking whether R is a subset of 〈N〉 is more
subtle, since we cannot use the Galois correspondence with
polymorphisms, because 〈N〉 is not closed under existential
quantification. Recall that 〈N〉 is the set of all relations that
can be expressed using relations from N , conjunction, and
variable identification. However, we can apply Proposition 24,
since the inclusion R ⊆ 〈N〉 implies that R must be bijunctive.
It is then sufficient to check that R is closed under majority and
that all projections Rij of R are equal to one of the relations
[¬x∨¬y] or [x 6≡ y]. This test can be performed in polynomial
time.

IX. CONCLUDING REMARKS

We have proved a trichotomy for the complexity of the
minimal inference problem with unbounded queries. It is
natural to ask if such a result can be obtained in the case
of bounded queries. Gottlob and Eiter [9] proved the Π2P-
completeness of the minimal inference problem in general al-
ready for queries with a single literal which was propagated by
Kirousis and Kolaitis [15] to obtain their dichotomy theorem.
However, Cadoli and Lenzerini [4] showed for the bijunctive
case that the minimal inference problem is coNP-complete for
unbounded queries, but it becomes polynomial-time decidable
when the query is restricted to a single literal. The same effect
was observed by Durand and Hermann in [8] for the affine
case. Our coNP-hardness proofs for the bijunctive, affine,
and dual Horn cases are not valid for bounded queries. In
fact, the bijunctive case is easily seen to be tractable for
bounded queries. The result of [4], showing that there are
coNP-complete dual Horn minimal inference problems even
for single literal queries, together with the fact that there
exist tractable bounded query dual Horn minimal inference
problems, indicate that the classification for bounded queries
in the dual Horn case is more intricate.

The affine case might be more complicated to solve. It
is easy to see that it corresponds to the following problem
over representable matroids: given a set S of t elements, find
a circuit passing through S. When t ≥ 2 is bounded, the
complexity of this problem is widely open [13]. Notice that
the (simpler) problem restricted to graphs can be reduced to
the t-disjoint path problem, showed to be polynomial-time
decidable after considerable effort [23]. Therefore the final
answer to complexity classification of the minimal inference
problem with bounded queries still remains a challenging open
question.
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