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Abstract. Abduction is an important method of non-monotonic reasoning with
many applications in artificial intelligence and related topics. In this paper, we
concentrate on propositional abduction, where the background knowledge is
given by a propositional formula. We have recently started to study the counting
complexity of propositional abduction. However, several important cases have
been left open, namely, the cases when we restrict ourselves to solutions with
minimal cardinality or with minimal weight. These cases – possibly combined
with priorities – are now settled in this paper. We thus arrive at a complete picture
of the counting complexity of propositional abduction.

1 Introduction

Abduction is a method of non-monotonic reasoning which has taken a fundamental
importance in artificial intelligence and related topics. It aims at giving explanations for
observed symptoms and is, therefore, widely used in diagnosis – notably in the medical
domain (see [17]). Other important applications of abduction can be found in planning,
database updates, data-mining and many more areas (see e.g. [11, 12, 16]).

Logic-based abduction is formally described as follows. Given a logical theory T ,
a set M of manifestations, and a set H of hypotheses, find a solution S, i.e., a set
S ⊆ H such that T ∪S is consistent and logically entails M . In this paper, we consider
propositional abduction problems (PAPs, for short), where the theory T is represented
by a propositional formula over a Boolean algebra B = ({0, 1};∨,∧,¬,→,≡) and
the sets H and M consist of variables from some set V . A diagnosis problem can
be represented by a PAP P = 〈V,H,M, T 〉 as follows: The theory T is the system
description. The hypotheses H ⊆ V describe the possibly faulty system components.
The manifestations M ⊆ V are the observed symptoms, describing the malfunction of
the system. The solutions S of P are the possible explanations of the malfunction.

Example 1. Consider the following football knowledge base.

T = {weak defense ∧ weak attack → match lost ,
match lost → manager sad ∧ press angry
star injured → manager sad ∧ press sad }
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Moreover, let the set of observed manifestations and the set of hypotheses be

M ={manager sad }
H = { star injured ,weak defense,weak attack }

This PAP has the following five abductive explanations (= “solutions”).

S1 = { star injured }
S2 = {weak defense,weak attack }
S3 = {weak attack , star injured }
S4 = {weak defense, star injured }
S5 = {weak defense,weak attack , star injured }

Obviously, in the above example, not all solutions are equally intuitive. Indeed, for
many applications, one is not interested in all solutions of a given PAP P but only in
all acceptable solutions of P . Acceptable in this context means minimal with respect
to some preorder � on the powerset 2H . Two natural preorders are subset-minimality
and cardinality-minimality, where the preorder is ⊆ and ≤, respectively. In Example 1,
both S1 and S2 are subset-minimal but only S1 is cardinality-minimal. If we have a
weight function on the hypotheses then we may define the acceptable solutions as the
weight-minimal ones. This preorder (i.e., smaller or equal weight) is denoted as v.

All three criteria ⊆, ≤, and v can be further refined by a hierarchical organization
of our hypotheses according to some priorities (cf. [5]). In this context, priorities may
be used to represent a qualitative version of probability. The resulting preorder is de-
noted by ⊆P , ≤P , and vP . For instance, suppose that for some reason we know that
(for a specific team) star injured is much less likely to occur than weak defense and
weak attack. This judgment can be formalized by assigning lower priority to the for-
mer. Then S2 is the only minimal solution with respect to the preorders ⊆P and ≤P .
Actually, in this simple example, S2 is also the only vP -minimal solution indepen-
dently of the concrete weight function. Finally, if indeed all solutions are acceptable,
then the corresponding preorder is the syntactic equality =.

The usually observed algorithmic problem in logic-based abduction is the existence
problem, i.e. deciding whether at least one solution S exists for a given abduction prob-
lem P . Another well-studied decision problem is the so-called relevance problem, i.e.
Given a PAP P and a hypothesis h ∈ H , is h part of at least one acceptable solution?
However, this approach is not always satisfactory. Especially in database applications,
in diagnosis, and in data-mining there exist situations where we need to know all ac-
ceptable solutions of the abduction problem or at least an important part of them. Con-
sequently, the enumeration problem (i.e., the computation of all acceptable solutions)
has received much interest (see e.g. [3, 4]). Another natural question is concerned with
the total number of solutions to the considered problem. The latter problem refers to the
counting complexity of abduction. Clearly, the counting complexity provides a lower
bound for the complexity of the enumeration problem. Moreover, counting the num-
ber of abductive explanations can be useful for probabilistic abduction problems (see
e.g. [18]). Indeed, in order to compute the probability of failure of a given component in
a diagnosis problem (under the assumption that all preferred explanations are equiprob-
able), we need to count the number of preferred explanations as well as the number of
preferred explanations that contain a given hypothesis.



#-Abduction = ⊆ ⊆P ≤ ≤P v,vP

General case #·coNP #·coNP #·Π2P #·Opt2P[log n] #·Opt2P #·Opt2P

Horn #P #P #·coNP #·OptP[log n] #·OptP #·OptP

definite Horn #P #P #P #·OptP[log n] #·OptP #·OptP

dual Horn #P #P #P #·OptP[log n] #·OptP #·OptP

bijunctive #P #P #·coNP #·OptP[log n] #·OptP #·OptP

Table 1. Counting complexity of propositional abduction

The study of counting complexity has been initiated by Valiant [19, 20] and is now
a well-established part of the complexity theory, where the best known class is #P.
Many counting variants of decision problems have been proved #P-complete. Higher
counting complexity classes do exist, but they are not commonly known. A counting
equivalent of the polynomial hierarchy was defined by Hemaspaandra and Vollmer [8],
whereas generic complete problems for these counting hierarchy classes were presented
in [1]. We enlarged in [10] the approach of Hemaspaandra and Vollmer to classes of op-
timization problem, obtaining this way a new hierarchy of classes #·OptkP[log n] and
#·OptkP for arbitrary k ∈ N. These classes are sandwiched between the previously
known counting classes #·ΠkP, i.e., for each k ∈ N we have

#·ΠkP ⊆ #·Optk+1P[log n] ⊆ #·Optk+1P ⊆ #·Πk+1P.

It was shown in [10] that these inclusions are proper unless the polynomial hierarchy
collapses to the k-th level. The most important special case is k = 1, where we write
#·OptP[log n] and #·OptP as a short-hand for #·Opt1P[log n] and #·Opt1P. On
the first two levels, we thus have the inclusions #P ⊆ #·OptP[log n] ⊆ #·OptP ⊆
#·coNP ⊆ #·Opt2P[log n] ⊆ #·Opt2P ⊆ #·Π2P. It will turn out that these new
counting complexity classes are precisely the ones needed to pinpoint the exact counting
complexity of the open cases in propositional abduction.

Results. We considered in [9] propositional abduction counting problems with the three
preorders =, ⊆, and ⊆P . Together with the general case where T can be an arbitrary
propositional formula, we also considered the special cases where T is Horn, definite
Horn, dual Horn, and bijunctive. These are the most frequently studied subcases of
propositional formulas. Our results from [9] are summarized in the first three columns
of Table 1. In this paper we continue the investigation on counting complexity of propo-
sitional abduction, focusing on the preorders ≤, v, ≤P , and vP . Note that these are
practically highly relevant cases for the following reasons: If the failure of any com-
ponent in a system is independent of the failure of the other components and all com-
ponents have equal failure probability, then explanations with minimum cardinality are
the ones with highest probability. If we have numeric values available for the repair cost
or for the robustness of each component (e.g., based on data such as the empirically col-
lected mean time to failure and component age), then weight-minimal abduction seeks
for the cheapest repair respectively for the most likely explanation. If in addition dif-
ferent sets of components can be ranked according to some criterion that is not well



suited for numeric values (like, e.g., a qualitative rather than a quantitative robustness
measure of components, the accessibility of components, or how critical the failure of
a certain component would be), then this ranking can be expressed by priorities on the
hypotheses, for both the cardinality and weight minimal case. Our results obtained in
this work are summarized in the last three columns of Table 1. In total, we have thus
achieved a complete picture of the counting complexity of propositional abduction.

2 Preliminaries

2.1 Propositional Abduction

A propositional abduction problem (PAP) P consists of a tuple 〈V,H,M, T 〉, where V
is a finite set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of
manifestations, and T is a consistent theory in the form of a propositional formula.
A set S ⊆ H is a solution (also called explanation) to P if T ∪ S is consistent and
T ∪ S |= M holds. Priorities P = 〈H1, . . . ,HK〉 are a stratification of the hypotheses
H = H1 ∪ · · · ∪HK into a fixed number of disjoint sets. The minimal cardinality with
priorities relation A ≤P B holds if A = B or there exists an i ∈ {1, . . . ,K} such that
A ∩ Hj = B ∩ Hj for all j < i and |A ∩Hi| < |B ∩Hi|. The minimal weight with
priorities relation A vP B holds if A = B or there exists an i ∈ {1, . . . ,K} such
that A ∩ Hj = B ∩ Hj for all j < i and

∑
a∈A∩Hi

w(a) <
∑

b∈B∩Hi
w(b), where

w : H → N is the weight function on the hypotheses H .
We study the following family of counting problems, which are parameterized by a

preorder � on 2H .

Problem: #-�-ABDUCTION
Input: A propositional abduction problem P = 〈V,H,M, T 〉.
Output: Number of �-minimal solutions (explanations) of P .

We considered the abduction counting problems with the preorders of equality =, sub-
set minimality ⊆, and subset minimality with priorities ⊆P in [9]. In this paper we
consider the preorders of minimal cardinality ≤, minimal weight v, as well as their
versions with priorities ≤P and vP , respectively. It is clear that an upper bound for
a minimal weight decision or counting abduction problem subsumes that for the cor-
responding abduction problem for minimal cardinality. Similarly, a lower bound for a
minimal cardinality abduction problem subsumes that for minimal weight abduction.
In both cases, setting the weight of each hypothesis x ∈ H to w(x) = 1 corresponds
to the cardinality version. Throughout this paper, we follow the formalism of Eiter and
Gottlob [2], allowing only positive literals in the solutions.

Together with the general case where T can be an arbitrary propositional formula,
we consider the special cases where T is Horn, definite Horn, dual Horn, and bijunctive.
A propositional clause C is said to be Horn, definite Horn, dual Horn, or bijunctive if it
has at most one positive literal, exactly one positive literal, at most one negative literal,
or at most two literals, respectively. A theory T is Horn, definite Horn, dual Horn, or
bijunctive if it is a conjunction (or, equivalently, a set) of Horn, definite Horn, dual
Horn, or bijunctive, clauses, respectively.



2.2 Counting Complexity

The study of counting problems was initiated by Valiant in [19, 20]. While decision
problems ask if at least one solution of a given problem instance exists, counting prob-
lems ask for the number of different solutions. The most intensively studied counting
complexity class is #P, which denotes the functions that count the number of accept-
ing paths of a non-deterministic polynomial-time Turing machine. In other words, #P
captures the counting problems corresponding to decision problems in NP. By allowing
the non-deterministic polynomial-time Turing machine access to an oracle in NP, Σ2P,
Σ3P, . . . , we can define an infinite hierarchy of counting complexity classes.

Alternatively, a counting problem is presented using a witness function which for
every input x returns a set of witnesses for x. A witness function is a function w : Σ∗ →
P<ω(Γ ∗), whereΣ and Γ are two alphabets, andP<ω(Γ ∗) is the collection of all finite
subsets of Γ ∗. Every such witness function gives rise to the following counting problem:
given a string x ∈ Σ∗, find the cardinality |w(x)| of the witness set w(x). According
to [8], if C is a complexity class of decision problems, we define #·C to be the class of
all counting problems whose witness function w satisfies the following conditions.

1. There is a polynomial p(n) such that for every x ∈ Σ∗ and every y ∈ w(x) we
have |y| ≤ p(|x|);

2. The problem “given x and y, is y ∈ w(x)?” is in C.

It is easy to verify that #P = #·P. The counting hierarchy is ordered by linear inclu-
sion [8]. In particular, we have that #P ⊆ #·coNP ⊆ #·Π2P ⊆ #·Π3P, etc

In [10] we introduced new counting complexity classes for counting optimal so-
lutions. We followed the aforementioned approach, where the complexity class C was
chosen among OptP and OptP[log n], or, more generally, OptkP and OptkP[log n]
for arbitrary k ∈ N, respectively. These classes were previously defined by Krentel [14,
15]. A large collection of completeness results for these classes is given in [7]. As
Krentel observed, the classes OptP[log n] and OptP, which are closely related to
FPNP[log n] and FPNP, contain problems computing optimal solutions with a logarith-
mic and polynomial number of calls to an NP-oracle, respectively.

The application of the counting operator to the aforementioned optimization classes
allowed us to define in [10] the counting complexity classes #·OptP, #·OptP[log n]
and, more generally, #·OptkP, #·OptkP[log n] for each k ∈ N. To formally introduce
these classes, we need some supplementary notions.

A non-deterministic transducer M is a non-deterministic polynomial-time boun-
ded Turing machine, which writes a binary number on the output at the end of every
accepting path. If M is equipped with an oracle from the complexity class C, then it
is called a non-deterministic transducer with C-oracle. A ΣkP-transducer M is a non-
deterministic transducer with a Σk−1P oracle. We identify non-deterministic transduc-
ers without oracle and Σ1P-transducers. For x ∈ Σ∗, we write optM (x) to denote the
optimal value, which can be either the maximum or the minimum, on any accepting path
of the computation of M on x. If no accepting path exists then optM (x) is undefined.

We say that a counting problem #·A : Σ∗ → N is in the class #·OptkP for some
k ∈ N, if there is a ΣkP-transducer M , such that #·A(x) is the number of accept-
ing paths of the computation of M on x yielding the optimum value optM (x). If



no accepting path exists then #·A(x) = 0. If the length of the binary number writ-
ten by M is bounded by O(log |x|), then #·A is in the class #·OptkP[log n]. For
k = 1, we write #·OptP[log n] and #·OptP as a short-hand for #·Opt1P[log n] and
#·Opt1P, respectively. It was shown in [10] that these new classes #·OptkP[log n] and
#·OptkP are robust, i.e., they do not collapse to already known counting complexity
classes unless the polynomial hierarchy collapses as well. Finally, these new counting
classes were shown to be sandwiched between the classes #·ΠkP, i.e., we obtained
the inclusions #P ⊆ #·OptP[log n] ⊆ #·OptP ⊆ #·coNP ⊆ #·Opt2P[log n] ⊆
#·Opt2P ⊆ #·Π2P, etc.

The prototypical #·ΠkP-complete problem for k ∈ N is #ΠkSAT [1], defined as
follows. Given a formula

ϕ(X) = ∀Y1∃Y2 · · ·QkYk ψ(X,Y1, . . . , Yk)

where ψ is a Boolean formula and X , Y1, . . . , Yk are sets of propositional variables,
count the number of truth assignments to the variables in X that satisfy ϕ. We ob-
tain the prototypical #·Optk+1P[log n]-complete problem #MIN-CARD-ΠkSAT and
the prototypical #·Optk+1P-complete problem #MIN-WEIGHT-ΠkSAT [10] by ask-
ing for the number of cardinality-minimal and weight-minimal models of ϕ(X). In
the latter case, there exists a weight function w : X → N assigning positive values
to each variable x ∈ X . As usual, the counting problems #MIN-CARD-Π0SAT and
#MIN-WEIGHT-Π0SAT are just denoted by #MIN-CARD-SAT and #MIN-WEIGHT-
SAT, being respectively #·OptP[log n]- and #·OptP-complete.

3 General Case

Theorem 2. #-≤-ABDUCTION is #·Opt2P[log n]-complete and #-v-ABDUCTION is
#·Opt2P-complete.

Proof. In order to prove the membership, we show that these problems can be solved
by an appropriate Σ2P-transducer M , i.e., M works in non-deterministic polynomial
time with access to an NP-oracle and, in case of #-≤-ABDUCTION, the output of M is
logarithmically bounded. We give a high-level description of M : It takes an arbitrary
PAP P = 〈V,H,M, T 〉 as input and non-deterministically enumerates all subsets S ⊆
H , such that every computation path of M corresponds to exactly one S ⊆ H . By
two calls to an NP-oracle, M checks on every path whether T ∪ S is consistent (i.e.,
satisfiable) and if T ∪ S |= M holds. If both oracle calls answer “yes”, then S is
a solution of P and the computation path is accepting. The output written by M on
each path is the cardinality of the corresponding set S (resp. the sum of the weights of
the elements in S) for the #-≤-ABDUCTION problem (resp. for the #-v-ABDUCTION
problem). Finally, we define the optimal value of M to be the minimum. Obviously,
the accepting paths of M outputting the optimal value correspond one-to-one to the
cardinality-minimal (resp. weight-minimal) solutions of the PAP P .

The hardness of #-≤-ABDUCTION (resp. of #-v-ABDUCTION) is shown by re-
duction from #MIN-CARD-Π1SAT (resp. from #MIN-WEIGHT-Π1SAT). Let an ar-
bitrary instance of #MIN-CARD-Π1SAT (resp. of #MIN-WEIGHT-Π1SAT) be given



by the quantified Boolean formula ϕ(X) = ∀Y ψ(X,Y ) with X = {x1, . . . , xk} and
Y = {y1, . . . , yl}. In case of #MIN-WEIGHT-Π1SAT, we additionally have a weight
function w defined on the variables inX . LetX ′ = {x′1, . . . , x′k},X ′′ = {x′′1 , . . . , x′′k},
Q = {q1, . . . , qk}, R = {r1, . . . , rk}, and t be fresh variables. Then we define the PAP
P = 〈V,H,M, T 〉 as follows.

V = X ∪X ′ ∪X ′′ ∪ Y ∪Q ∪R ∪ {t}, H = X ∪X ′ ∪X ′′, M = Q ∪R ∪ {t}
T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬x′i, xi → qi, x

′
i → qi | i = 1, . . . , k}

∪ {¬x′i ∨ ¬x′′i , x′i → ri, x
′′
i → ri | i = 1, . . . , k}.

In case of #-v-ABDUCTION, we leave the weights of the variables inX unchanged. For
the remaining hypotheses, we set w(xi) = w(x′i) = w(x′′i ) for every i ∈ {1, . . . , k}.

For each i, the clauses¬xi∨¬x′i, xi → qi, x′i → qi in T ensure that every solution S
of P contains exactly one of {xi, x

′
i}. Similarly, the clauses ¬x′i∨¬x′′i , x′i → ri, x′′i →

ri ensure that every solution contains exactly one of {x′i, x′′i }. The sets of variables X ′

and X ′′ both represent the complement X r A, but X ′′ is there to get the cardinalities
right, since without it, the cardinality |A ∪ (X rA)′| would be the same for all S.

For a subset of variables A ⊆ X , let A′ and A′′ be defined as A′ = {x′ | x ∈ A}
and A′′ = {x′′ | x ∈ A}. Then, the effect of the conjunct ψ(X,Y ) → t in T is that,
for every subset A ⊆ X the following equivalence holds: The assignment I on X with
I−1(1) = A is a model of ϕ(X) if and only if A∪ (X rA)′ ∪{ψ(X,Y ) → t} |= {t}.
Thus, for every A ⊆ X , we have the following equivalences. The assignment I on X
with I−1(1) = A is a model of ϕ(X) if and only ifA∪(XrA)′∪A′′ is a solution ofP .
Moreover, the previous assignment I is cardinality-minimal (resp. weight-minimal) if
and only if A ∪ (X r A)′ ∪ A′′ is a cardinality-minimal (resp. a weight-minimal)
solution of P . This accomplishes a parsimonious reduction to #-≤-ABDUCTION (resp.
#-v-ABDUCTION). ut

#-≤P -ABDUCTION with no restriction on the number of priorities requires some
preparatory work. For this purpose, we first consider the appropriate version of #SAT.

Problem: #MIN-LEX–ΠkSAT
Input: A quantified Boolean formula ϕ(X) = ∀Y1∃Y2 · · ·QYk ψ(X,Y1, . . . , Yk) and a
subset X ′ = {x1, . . . , x`} ⊆ X , such that Q = ∀ (resp. Q = ∃) and ψ(X,Y1, . . . , Yk)
is in DNF (resp. in CNF) if k is odd (resp. k is even).
Output: Number of satisfying assignments I : X → {0, 1} of the formula ϕ(X), such
that (I(x1), . . . , I(x`)) is lexicographically minimal.

As usual, #MIN-LEX–Π0SAT represents the aforementioned problem for unquantified
formulas, therefore we denote it as #MIN-LEX-SAT.

Theorem 3. #MIN-LEX–ΠkSAT is #·Optk+1P-complete. In particular, #MIN-LEX-
SAT is #·OptP-complete.

Proof. We only give the proof for #MIN-LEX-SAT, since the generalization to higher
levels of the hierarchy is obvious.



In order to prove the membership, we show that #MIN-LEX-SAT can be solved
by an appropriate NP-transducer M . We give a high-level description of M : It takes
as input an arbitrary propositional formula ϕ with variables in X plus a subset X ′ =
{x1, . . . , x`} ⊆ X of distinguished variables. M non-deterministically enumerates all
possible truth assignments I : X → {0, 1}, such that every computation path of M
corresponds to exactly one assignment I . On each path, M checks in polynomial time
if I is a model of ϕ. If this is the case, then the computation path is accepting. The
output written by M on each path is the binary string (I(x1), . . . , I(x`)). Finally, we
define the optimal value of M to be the minimum. Obviously, the accepting paths of M
outputting the optimal value correspond one-to-one to the satisfying assignments I of ϕ,
such that (I(x1), . . . , I(x`)) is lexicographically minimal.

For the hardness proof, let L be an arbitrary minimum problem in #·OptP. We
show that there exists a parsimonious reduction from L to #MIN-LEX-SAT. Since L
is in #·OptP, there exists an NP-transducer M for L. On input w, the transducer M
produces an output of length ≤ p(|w|) on every branch for some polynomial p. Without
loss of generality, we may assume that M actually produces an output of length exactly
= p(|w|). Now let w be an arbitrary instance of L and let N = p(|w|) denote the length
of the output on every computation path. Analogously to Cook’s theorem (see [6]),
there exists a propositional formula ϕ with variables X , such that there is a one-to-one
correspondence between the satisfying truth assignment of ϕ and the successful com-
putations of M on w. Moreover, X and ϕ can be extended in such a way that the output
on each successful computation path is encoded by the variables X ′ = {x1, . . . , xN},
i.e., for every successful computation path π, the truth values (I(x1), . . . , I(xN )) of the
corresponding model I of ϕ represent exactly the output on the path π. But then there
is indeed a one-to-one correspondence between the computation paths of M on w, such
that M outputs the minimum on these paths and the satisfying assignments of the (ex-
tended) formula ϕ, such that the truth values on (x1, . . . , xN ) are lexicographically
minimal. ut

We also need the usual restriction of the previous problem to three literals per clause.

Problem: #MIN-LEX-3SAT
Input: A propositional formula ϕ in conjunctive normal form over the variables X with
at most three literals per clause and a subset X ′ = {x1, . . . , x`} ⊆ X .
Output: Number of satisfying assignments I : X → {0, 1} of the formula ϕ, such that
(I(x1), . . . , I(x`)) is lexicographically minimal.

Since there exists a parsimonious reduction from #SAT to #3SAT (see [13]), the same
reduction implies the following consequence of Theorem 3.

Corollary 4. #MIN-LEX-3SAT is #·OptP-complete.

Theorem 5. #-≤P -ABDUCTION without restriction on the number of priorities and #-
vP -ABDUCTION with or without restriction on the number of priorities are #·Opt2P-
complete. #-≤P -ABDUCTION is #·Opt2P[log n]-complete if the number of priorities
is bounded by a constant.



Proof. For the membership proof, we slightly modify the Σ2P-transducer M from the
membership proof of Theorem 2. Again, M non-deterministically enumerates all sub-
sets S ⊆ H , such that every computation path ofM corresponds to exactly one S ⊆ H .
By two calls to an NP-oracle,M checks on every path whether T ∪S is consistent (i.e.,
satisfiable) and whether T ∪ S |= M holds. If both oracle calls answer “yes”, then S is
a solution of P and the computation path is accepting. Only the output written byM on
each path has to be modified with respect to the proof of Theorem 2: Suppose that the
input PAP P has K priorities H1, . . . ,HK . Then M computes on every computation
path the vector (c1, . . . , cK), where ci is the cardinality (resp. the total weight) of S∩Hi

for every i. Without loss of generality we may assume for every i that, on all paths, the
binary representation of the numbers ci has identical length (by adding appropriately
many leading zeros). Then M simply outputs this vector (c1, . . . , cK), considered as a
single number in binary. Finally, we again define the optimal value of M as the min-
imum. Obviously, the accepting paths of M outputting the optimal value correspond
one-to-one to the ≤P -minimal (resp. vP -minimal) solutions of the PAP P . If there are
no restrictions on the number K of priorities or if we consider weight-minimality, then
the output of M has polynomial length. Indeed, Since K ≤ |H| always holds, because
in the extremal case each hypothesis has its own priority class, we need at most |H|
bits. The length of each ci is bounded by log |H| bits, since ci ≤ |H| holds. We need
O(K log |H|) bits to represent the vector (c1, . . . , cK). If K is constant, this becomes
O(log |H|).

For the hardness part, only the #·Opt2P-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow
from the corresponding hardness result without priorities in Theorem 2. We reduce the
#MIN-LEX–Π1SAT problem to #-≤P -ABDUCTION. Let an arbitrary instance of #MIN-
LEX–Π1SAT be given by the quantified Boolean formula ϕ(X) = ∀Y ψ(X,Y ) with
X = {x1, . . . , xn} and the subset X ′ = {x1, . . . , x`} ⊆ X . Let t, Q = {q1, . . . , qn}
R = {r1, . . . , r`}, Z = {z1, . . . , zn}, and Z ′ = {z′1, . . . , z′`} be fresh variables. Then
we define the PAP P = 〈V,H,M, T 〉 as follows:

V = X ∪ Y ∪ Z ∪ Z ′ ∪Q ∪R ∪ {t}
H = X ∪ Z ∪ Z ′ with

H1 = {x1}, . . . ,H` = {x`}, and H`+1 = (X rX ′) ∪ Z ∪ Z ′

M = Q ∪R ∪ {t}
T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬zi, xi → qi, zi → qi | 1 ≤ i ≤ n}
∪ {¬zi ∨ ¬z′i, zi → ri, z

′
i → ri | 1 ≤ i ≤ `}

The idea of the variables in Q, R, Z, and Z ′ is similar to the the variables Q, R, X ′,
and X ′′ in the proof of Theorem 2. They ensure that every solution S of P contains
exactly n variables out of the 2n variables in H`+1. This can be seen as follows. By
the clauses ¬xi ∨ ¬zi, xi → qi, zi → qi with i ∈ {1, . . . , n}, every solution contains
exactly one of {xi, zi}. Of course, the variables xi with i ∈ {1, . . . , `} are not in H`+1.
However, the clauses ¬zi ∨¬z′i, zi → ri, z

′
i → ri with i ∈ {1, . . . , `} ensure that every

solution contains exactly one of {zi, z
′
i}. In other words, for every i ∈ {1, . . . , `} every

solution contains either {xi, z
′
i} or {zi}.



There is a one-to-one correspondence between the models of ϕ(X) which are lex-
icographically minimal on X ′ and the ≤P -minimal solutions of P . Indeed, let I be a
model of ϕ(X) which is lexicographically minimal on X ′. Then I can be extended to
exactly one ≤P -minimal solution S of P , namely S = I−1(1) ∪ {zi | 1 ≤ i ≤ n and
I(xi) = 0} ∪ {z′i | 1 ≤ i ≤ ` and I(xi) = 1}.

Conversely, let S be a ≤P -minimal solution of P . Then we obtain a lexicograph-
ically minimal model I of ϕ(X) simply by restricting S to X , i.e. I(x) = 1 for all
x ∈ S ∩X and I(x) = 0 otherwise. ut

4 Special Cases

We consider the special cases of propositional abduction problems, where the theory is
presented by Horn, definite Horn, dual Horn, or bijunctive formulas. Recall the follow-
ing counting problem introduced in [10].

Problem: #MIN-CARD-VERTEX-COVER (RESP. #MIN-WEIGHT-VERTEX-COVER)
Input: Graph G = (V,E) (plus a weight function w : V → N in case of #MIN-
WEIGHT-VERTEX-COVER).
Output: Number of vertex covers of G with minimal cardinality (resp. with minimal
weight), i.e., cardinality-minimal (resp. weight-minimal) subsets C ⊆ V such that
(u, v) ∈ E implies u ∈ C or v ∈ C.

In [10], it was shown that #MIN-CARD-VERTEX-COVER is #·OptP[log n]-com-
plete while #MIN-WEIGHT-VERTEX-COVER is #·OptP-complete.

Theorem 6. #-≤-ABDUCTION is #·OptP[log n]-complete and #-v-ABDUCTION is
#·OptP-complete for Horn, definite Horn, dual Horn, or bijunctive theories.

Proof. For the membership part, we construct a transducer M exactly as in the proof of
Theorem 2. The only difference is that we can now check in deterministic polynomial
time whether T ∪ S is consistent (i.e., satisfiable) and whether T ∪ S |= M holds.
Hence, we end up with the desired NP-transducer (rather than a Σ2P-transducer) since
we no longer need an NP-oracle.

The hardness is shown by a reduction from #MIN-CARD-VERTEX-COVER
(resp. #MIN-WEIGHT-VERTEX-COVER). Let an arbitrary instance of #MIN-CARD-
VERTEX-COVER be given by the graph G = (V,E) with V = {v1, . . . , vn} and
E = {e1, . . . , em}. By slight abuse of notation, we consider the elements in V and E
also as propositional variables and set X = {v1, . . . , vn} and R = {e1, . . . , em}. In
case of #MIN-WEIGHT-VERTEX-COVER, we additionally have a weight function w
defined on the variables in X . Then we define the PAP P = 〈W,H,M, T 〉 as follows.

W = X ∪R, H = X, M = R

T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

The resulting theory contains only clauses which are, at the same time, Horn, defi-
nite Horn, dual Horn, and bijunctive. Obviously, for every subset X ′ ⊆ X = V



the following equivalence holds: X ′ is a solution of P if and only if X ′ is a ver-
tex cover of G. But then there exists also a one-to-one correspondence between the
cardinality-minimal (resp. weight-minimal) solutions of P and the cardinality-minimal
(resp. weight-minimal) vertex covers of G. ut

Again, #-≤P -ABDUCTION with no restriction on the number of priorities requires
some preparatory work. For this purpose, we first consider an appropriate variant of
counting the vertex covers of a graph.

Problem: #MIN-LEX-VERTEX-COVER
Input: Graph G = (V,E) and a subset V ′ = {v1, . . . , v`} ⊆ V .
Output: Number of vertex covers C of G, such that (χ(v1), . . . , χ(v`)) is lexicograph-
ically minimal, where χ is the characteristic function of the vertex cover C.

Theorem 7. #MIN-LEX-VERTEX-COVER is #·OptP-complete.

Proof. In order to prove the membership, we show that #MIN-LEX-VERTEX-COVER
can be solved by the following NP-transducer M . It takes as input an arbitrary graph
G = (V,E) with distinguished vertices V ′ = {v1, . . . , v`}. M non-deterministically
enumerates all subsets C ⊆ V , such that every computation path of M cor-
responds to exactly one such subset C. If C is a vertex cover of G, then the
computation path is accepting. The output written by M on each path is the bi-
nary vector (χC(v1), . . . , χC(v`)). Obviously, the accepting paths of M outputting
the minimal value correspond one-to-one to the vertex covers C of G, such that
(χC(v1), . . . , χC(v`)) is lexicographically minimal.

The hardness proof is by a parsimonious reduction from #MIN-LEX-3SAT. In
fact, this is the same reduction as in the standard NP-completeness proof of VERTEX
COVER by reduction from 3SAT to VERTEX COVER, see e.g. [6]. Let ϕ(x1, . . . , xk) be
a propositional formula in CNF with three literals per clause. We construct the graph
G = (V,E) as follows. For each variable xi we construct an edge ei = (xi, x

′
i). For

each clause ci = l1i ∨ l2i ∨ l3i we construct three edges (l1i , l
2
i ), (l2i , l

3
i ), (l3i , l

1
i ) forming

a triangle ti. Finally, we connect each positive literal z in the triangle ti to its counter-
part z in an edge ej = (z, z′) , as well as each negative literal ¬z in the triangle ti to its
counterpart z′. The set of distinguished variables X ′ from #MIN-LEX-3SAT becomes
the set of distinguished vertices V ′ in #MIN-LEX-VERTEX-COVER. ut

Theorem 8. #-≤P -ABDUCTION without restriction on the number of priorities and #-
vP -ABDUCTION with or without restriction on the number of priorities are #·OptP-
complete for Horn, definite Horn, dual Horn, or bijunctive theories. #-≤P -ABDUCTION
for Horn, definite Horn, dual Horn, or bijunctive theories is #·OptP[log n]-complete
if the number of priorities is restricted by a constant.

Proof. For the membership part, we construct a transducer M exactly as in the proof
of Theorem 5. The only difference is that we get an NP-transducer (rather than a Σ2P-
transducer) since we no longer need an NP-oracle for checking whether T ∪ S is con-
sistent (i.e., satisfiable) and whether T ∪ S |= M holds.

For the hardness part, only the #·OptP-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow



from the corresponding hardness result without priorities in Theorem 6. Let an arbitrary
instance of #MIN-LEX-VERTEX-COVER be given by the graph G = (V,E) with V =
{v1, . . . , vn} and E = {e1, . . . , em} and let V ′ = {v1, . . . , v`} with ` ≤ n. As in the
proof of Theorem 6, we consider the elements in V andE also as propositional variables
and setX = {v1, . . . , vn} andR = {e1, . . . , em}. In addition, letQ = {q`+1, . . . , qn},
and Z = {z`+1, . . . , zn} be fresh variables. Then we define the PAP P = 〈V,H,M, T 〉
as follows.

V = X ∪R ∪Q ∪ Z, M = R ∪Q
H = X ∪ Z with H1 = {v1}, . . . ,H` = {v`}, and H`+1 = (X r V ′) ∪ Z
T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪

{vi → qi, zi → qi | `+ 1 ≤ i ≤ n}

The resulting theory contains only clauses which are, at the same time, Horn, definite
Horn, dual Horn, and bijunctive. The variables Q and Z realize the familiar idea that
in every ≤P -minimal solution S of P , for every i ∈ {` + 1, . . . , n}, exactly one of vi

and zi is contained in S. It can then be easily shown that there is a one-to-one correspon-
dence between the lexicographically minimal vertex covers of G and the ≤P -minimal
solutions of P . ut

5 Conclusion

In this paper, we have completed the analysis of the counting complexity of proposi-
tional abduction. Together with previous results presented in [9], we have thus achieved
a full picture. Recall from [19] that counting problems may display a significantly
different complexity behavior from the corresponding decision problems. Hence, the
complexity of a class of problems is better understood when we analyse the counting
complexity in addition to the decision complexity. By complementing the complexity
results of Eiter and Gottlob [2] on decision problems related to propositional abduc-
tion with our counting complexity results in Table 1, we have thus arrived at a better
understanding of the complexity of propositional abduction in various settings.

From a complexity theoretic point of view, there is another interesting aspect to the
counting complexity results shown here. The class #P has been studied intensively and
many completeness results for this class can be found in the literature. In contrast, for
the higher counting complexity classes #·ΠkP, #·OptkP[log n], and #·OptkP (with
k ≥ 1) very few problems had been shown to be complete. Our results on the counting
complexity of propositional abduction thus also lead to a better understanding of these
counting complexity classes.

For future work, we plan to extend the complexity analysis of many more fami-
lies of decision problems in the artificial intelligence domain (like, e.g., closed-world
reasoning in various settings) to counting problems. Moreover, we would also like to
extend the abduction cases studied in this paper to yet another case, namely the case of
affine theories, i.e.: the theory T is an affine system AX = b over Z2. This case was in
fact dealt with in [9] for #-�-abduction with �∈ {=,⊆,⊆P }. There are obvious upper
and lower bounds also for #-�-abduction with affine theories when the preorder � is in



{≤,v,≤P ,vP }. However, proving tight complexity bounds also for these cases has to
be left as an open problem for future work.
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