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Abstract. We investigate the complexity of an optimization problem
in Boolean propositional logic related to information theory: Given a
conjunctive formula over a set of relations, find a satisfying assignment
with minimal Hamming distance to a given assignment that satisfies the
formula (NearestOtherSolution, NOSol).

We present a complete classification with respect to the relations
admitted in the formula. We give polynomial-time algorithms for several
classes of constraint languages. For all other cases we prove hardness or
completeness regarding poly-APX, NPO, or equivalence to a well-known
hard optimization problem.

1 Introduction

We investigate the solution spaces of Boolean constraint satisfaction problems
built from atomic constraints by means of conjunction and variable identification.
We study a minimization problem in connection with Hamming distance: Given
an instance of a constraint satisfaction problem in the form of a generalized
conjunctive formula over a set of atomic constraints, the problem asks to find
a satisfying assignment with minimal Hamming distance to a given assignment
that satisfies the formula (NearestOtherSolution, NOSol).

As it is common, we analyze the complexity of our optimization problem
through a parameter, representing the atomic constraints allowed to be used
in the constraint satisfaction problem. We give a complete classification of the
complexity of approximation with respect to this parameterization. It turns out
that our problems can either be solved in polynomial time, or they are complete
for a well-known optimization class, or else they are equivalent to well-known
hard optimization problems.

Our study can be understood as a continuation of the minimization problems
investigated by Khanna et al. in [11], especially that of MinOnes. The MinOnes
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Table 1. Boolean co-clones with bases.

iSk
0 {ork}

iSk
1 {nandk}

iSk
00 {ork,x→y,¬x,x}

iSk
10 {nandk,¬x,x,x→y}

iD1 {x⊕y,x}
iD2 {x⊕y,x→y}

iL {even4}
iL2 {even4,¬x,x}
iV {x∨y∨¬z}
iV2 {x∨y∨¬z,¬x,x}
iE {¬x∨¬y∨z}
iE2 {¬x∨¬y∨z,¬x,x}

iN {dup3}
iN2 {nae3}
iI {even4,x→y}
iI0 {even4,x→y,¬x}
iI1 {even4,x→y,x}
iM2 {x→y,¬x,x}

optimization problem asks for a solution of a constraint satisfaction problem with
the minimal Hamming weight, i.e., minimal Hamming distance to the 0-vector.
Our work generalizes this by allowing the given vector to be any, potentially
also non-0-vector. Moreover, our work can also be seen as a generalization of
questions in coding theory.

It turns out that our problem NOSol lacks compatibility with existential
quantification, which makes classical clone theory inapplicable. Therefore, we
have to resort to weak co-clones requiring only closure under conjunction and
equality. To dispose of the latter we apply the theory developed in [14], as well
as minimal weak bases of Boolean co-clones from [12].

2 Preliminaries

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or an
atom, is an expression R(x), where R is an n-ary relation and x is an n-tuple of
variables from V . Let L be the collection of all non-empty finite sets of Boolean
relations, also called constraint languages. For Γ ∈ L, a Γ -formula is a finite
conjunction of atoms R1(x1) ∧ · · · ∧ Rk(xk), where the Ri are relations from Γ
and the xi are variable tuples of suitable arity.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x)
to each variable x ∈ V . If we arrange the variables in some arbitrary but fixed
order, say as a tuple (x1, . . . , xn), then the assignments can be identified with
vectors from {0, 1}n. The i-th component of a vector m is denoted by m[i] and
corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The Hamming
weight hw(m) = |{i | m[i] = 1}| of m is the number of 1s in the vector m. The
Hamming distance hd(m,m′) = |{i | m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the vectors disagree. The complement m of a vector m
is its pointwise complement, m[i] = 1 − m[i].

An assignment m satisfies the constraint R(x1, . . . , xn) if (m(x1), . . . ,
m(xn)) ∈ R holds. It satisfies the formula ϕ if it satisfies all of its atoms; m is said
to be a model or solution of ϕ in this case. We use [ϕ] to denote the set of models
of ϕ. Note that [ϕ] represents a Boolean relation. In sets of relations represented
this way we usually omit the brackets. A literal is a variable v, or its negation ¬v.
Assignments m are extended to literals by defining m(¬v) = 1 − m(v).
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We shall need the following Boolean functions and relations later: By x ⊕ y
we denote addition modulo 2 and x ≡ y means x⊕y ⊕1. Further, we let nae3 :=
{0, 1}3

�{000, 111}, dup3 := {0, 1}3
�{010, 101} and even4 := {(a1, a2, a3, a4) ∈

{0, 1}4 | ⊕4
i=1ai = 0}, as well as S0 := [x1∧x4 ≡ x2∧x3], S1 := [S0(x1, x2, x3, x1)]

and S2 := [x1 ∨x2 → x3]. Moreover, for k ≥ 1 we define ork := {0, 1}k
�{0 · · · 0}

and nandk := {0, 1}k
� {1 · · · 1}.

Throughout the text we refer to different types of Boolean constraint relations
following Schaefer’s terminology [13] (see also [4,6]). A Boolean relation R is (1)
1-valid if 1 · · · 1 ∈ R and it is 0-valid if 0 · · · 0 ∈ R, (2) Horn (dual Horn) if R
can be represented by a formula in conjunctive normal form (CNF) having at
most one unnegated (negated) variable in each clause, (3) monotone if it is both
Horn and dual Horn, (4) bijunctive if it can be represented by a CNF having
at most two variables in each clause, (5) affine if it can be represented by an
affine system of equations Ax = b over Z2, (6) complementive if for each m ∈ R
also m ∈ R. A set Γ of Boolean relations is called 0-valid (1-valid, Horn, dual
Horn, monotone, affine, bijunctive, complementive) if every R ∈ Γ satisfies that
property.

A formula constructed from atoms by conjunction, variable identification,
and existential quantification is called a primitive positive formula (pp-formula).
We denote by 〈Γ 〉 the set of all relations that can be expressed using relations
from Γ ∪{=}, conjunction, variable identification, and existential quantification.
The set 〈Γ 〉 is called the co-clone generated by Γ . A base of a co-clone B is a
set of relations Γ , such that 〈Γ 〉 = B. All co-clones, ordered by set inclusion,
form a lattice. Together with their respective bases, which were studied in [5],
some of them are listed in Table 1. In particular the sets of relations being 0-
valid, 1-valid, complementive, Horn, dual Horn, affine, bijunctive, 2affine (both
bijunctive and affine), and monotone each form a co-clone denoted by iI0, iI1,
iN2, iE2, iV2, iL2, iD2, iD1, and iM2, respectively.

We will also use a weaker closure than 〈Γ 〉, called conjunctive closure and
denoted by 〈Γ 〉∧, where the constraint language Γ is closed under conjunctive
definitions, but not under existential quantification or addition of explicit equal-
ity constraints.

Minimal weak bases of co-clones are bases with certain additional properties.
Since we rely on only some of them, we shall not define this term but refer the
reader to [12,14].

Theorem 1. If Γ is a minimal weak base of a co-clone, then Γ ⊆ 〈Γ ′〉∧ for any
base Γ ′.

Lagerkvist computed weak bases for all Boolean co-clones in [12]. From
there we infer that each co-clone B ∈ {iE, iE0, iE1, iE2, iN, iN2, iI} has a sin-
gleton minimal weak base {RB}, in which RiE := (S1 × {0, 1}) ∩ ({0, 1} × S2),
RiE0 := RiE × {0}, RiE1 := S1 × {1}, RiE2 := S1 × {0} × {1}, RiN := even4 ∩S0,
RiN2 := [RiN(x1, . . . , x4) ∧ ∧4

i=1 xi+4 = ¬xi] and RiI := [S1(x1, x2, x3) ∧
S1(¬x4,¬x2,¬x3)].

We assume that the reader has a basic knowledge of approximation algo-
rithms and complexity theory, see e.g. [1,6]. For reductions among decision
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problems we use polynomial-time many-one reduction denoted by ≤m. Many-
one equivalence between decision problems is written as ≡m. For reductions
among optimization problems we employ approximation preserving reductions
(AP-reductions), represented by ≤AP. AP-equivalence of optimization problems
is stated as ≡AP. Besides, the following approximation complexity classes in the
hierarchy PO ⊆ APX ⊆ poly-APX ⊆ NPO occur.

We also need a slightly non-standard variation of AP-reductions between
optimization problems P1, P2: Viz., P1 AP-Turing-reduces to P2 if there is a
polynomial-time oracle algorithm A and a constant α ≥ 1 such that for all r > 1
on any input x for P1 we have

• if all oracle calls within A upon inputs for P2 are answered with feasible
solutions for P2, then A outputs a feasible solution for P1 on input x, and

• if for every call in A the oracle answers with an r-approximate solution, then A

computes a (1 + (r − 1)α + o(1))-approximate solution for P1 on input x.

It is straightforward to check that AP-Turing-reductions are transitive. More-
over, if P1 AP-Turing-reduces to P2 with constant α and P2 has an f(n)-
approximation algorithm, then there is an αf(n)-approximation algorithm
for P1.

To relate our problem to well-known optimization problems we make the
following convention: For optimization problems P and Q we say that Q is P-
hard if P ≤AP Q, i.e. if P reduces to it. Moreover, Q is called P-complete if
P ≡AP Q. We use these notions in particular with respect to the following
problems from [11], taking parameters Γ ∈ L.
Problem MinOnes(Γ ). Given a conjunctive formula ϕ over relations from Γ , a
solution is any assignment m satisfying ϕ. The goal is to minimize the Hamming
weight hw(m).
Problem WeightedMinOnes(Γ ). Given a conjunctive formula ϕ over relations
from Γ and a weight function w : V → N on the variables V of ϕ, a solution
is again any assignment m satisfying ϕ. The objective is to minimize the value∑

x:m(x)=1 w(x).
We now define some well-studied problems to which we will relate our prob-

lems. Note that these problems do not depend on any parameter.
Problem MinDistance. Given a matrix A ∈ Z

k×l
2 any non-zero vector x ∈ Z

l
2

with Ax = 0 is considered a solution. The aim is to minimize the Hamming
weight hw(x).
Problem MinHornDeletion. For a conjunctive formula ϕ over relations from the
constraint language {[x ∨ y ∨ ¬z], [x], [¬x]}, an assignment m satisfying ϕ is
feasible. The objective is given by the minimum number of unsatisfied conjuncts
of ϕ.

MinDistance and MinHornDeletion are NP-hard to approximate within
2Ω(log1−ε(n)) for all ε > 0 [8,11]. Thus, unless P = NP, both are inequivalent
to any problem P ∈ APX.

We also use the classic satisfiability problem SAT(Γ ), asking for a conjunc-
tive formula ϕ over a Γ ∈ L, if ϕ is satisfiable. Schaefer presented in [13] a com-
plete classification of complexity for SAT(Γ ). His dichotomy theorem proves that
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SAT(Γ ) is in P if Γ is 0-valid (Γ ⊆ iI0), 1-valid (Γ ⊆ iI1), Horn (Γ ⊆ iE2), dual
Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine (Γ ⊆ iL2); otherwise it is NP-
complete. Moreover, we need the decision problem AnotherSAT(Γ ), asking for a
conjunctive formula ϕ over Γ and a model m, if there is another model m′ �= m
for ϕ. In [10] Juban completely classified the complexity of AnotherSAT. His
dichotomy result shows AnotherSAT(Γ ) to be polynomial-time decidable if Γ
is both 0- and 1-valid (Γ ⊆ iI), complementive (Γ ⊆ iN2), Horn (Γ ⊆ iE2),
dual Horn (Γ ⊆ iV2), bijunctive (Γ ⊆ iD2), or affine (Γ ⊆ iL2); or else to be
NP-complete.

3 Results

Here we present the formal definition of our considered problem, with parameter
Γ ∈ L, and our results; the proofs follow in subsequent sections.

Problem NearestOtherSolution(Γ ), NOSol(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m
satisfying ϕ.
Solution: Another assignment m′ satisfying ϕ.
Objective: Minimum Hamming distance hd(m,m′).

Theorem 2. For every Γ ∈ L the optimization problem NOSol(Γ ) is

(i) in PO if
(a) Γ is bijunctive (Γ ⊆ iD2) or
(b) Γ ⊆ 〈x1 ∨ · · · ∨ xk, x → y,¬x, x〉 for some k ∈ N, k ≥ 2 (Γ ⊆ iSk

00) or
(c) Γ ⊆ 〈¬x1 ∨ · · · ∨¬xk, x → y,¬x, x〉 for some k ∈ N, k ≥ 2 (Γ ⊆ iSk

10);
(ii) MinDistance-complete if Γ is exactly affine (iL ⊆ 〈Γ 〉 ⊆ iL2);
(iii) MinHornDeletion-complete under AP-Turing-reductions if Γ is

(a) exactly Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈Γ 〉 ⊆ iV2);

(iv) in poly-APX if Γ is
(a) exactly both 0-valid and 1-valid (〈Γ 〉 = iI) or
(b) exactly complementive (iN ⊆ 〈Γ 〉 ⊆ iN2),
where NOSol(Γ ) is n-approximable but not (n1−ε)-approximable unless P =
NP;

(v) and NPO-complete otherwise (iI0 ⊆ 〈Γ 〉 or iI1 ⊆ 〈Γ 〉).
The optimization problem can be transformed into a decision problem as

usual. We add a bound k ∈ N to the input and ask if hd(m,m′) ≤ k. This way
we obtain the corresponding decision problem NOSold. Its complexity follows
immediately from the theorems above. All cases in PO become polynomial-time
decidable, whereas the other cases, which are APX-hard, become NP-complete.
This way we obtain a dichotomy theorem classifying the decision problems as
polynomial or NP-complete for all finite sets of relations Γ .
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4 Duality and Inapplicability of Clone Closure

The problem NOSol is not compatible with existential quantification as the fol-
lowing shows:

Example 3. Consider the relation R = {00000, 01111, 10101} and let (ϕR,m) be
an instance of NOSol with ϕR = R(x1, . . . , x5) and m = 10101. Both m1 = 00000
and m2 = 01111 are feasible solutions of ϕR and hd(m,m1) = hd(m,m2) = 3.
Hence m2 is an optimal solution of (ϕR,m). Let m′ = 1010, m′

1 = 0000, and
m′

2 = 0111 be new tuples, constructed from m, m1, and m2 respectively, by
truncating the last coordinate. Hence, they are the solutions of (∃x5 ϕR,m′).
However, note that hd(m′,m′

1) = 2 and hd(m′,m′
2) = 3. The tuple m′

2 is not an
optimal solution of (∃x5 ϕR,m′).

Because of this incompatibility, we cannot prove an AP-equivalence result
between any two NOSol problems parametrized by constraint languages gen-
erating the same co-clone. Yet, similar results hold for the conjunctive closure.

Proposition 4. Let Γ and Γ ′ be constraint languages. If Γ ′ ⊆ 〈Γ 〉∧ holds
then we have the reductions NOSold(Γ ′) ≤m NOSold(Γ ) and NOSol(Γ ′) ≤AP

NOSol(Γ ).

Proof. For similarity it suffices to show that NOSol(Γ ′) ≤AP NOSol(Γ ) if Γ ′ ⊆
〈Γ 〉∧.

Let a formula ϕ with a model m be an instance of NOSol(Γ ′). As Γ ′ ⊆ 〈Γ 〉∧,
every constraint R(x1, . . . , xk) of ϕ can be written as a conjunction of constraints
upon relations from Γ . Substitute the latter into ϕ, obtaining ϕ′. Now (ϕ′,m)
is an instance of NOSol(Γ ), where ϕ′ is only polynomially larger than ϕ. For ϕ
and ϕ′ have the same variables and hence the same models, also the nearest
other models of ϕ and ϕ′ are the same. ��

For a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R}, i.e.,
the relation containing the complements of tuples from R. We naturally extend
this to sets of relations Γ by putting dual(Γ ) = {dual(R) | R ∈ Γ}. Since taking
complements is involutive, duality is a symmetric relation. By inspecting the
bases of co-clones in Table 1, we deduce that many co-clones are duals of each
other, e.g. iE2 and iV2.

We now show that it suffices to consider one half of Post’s lattice of co-clones.

Lemma 5. For every Boolean constraint language Γ we have the mutual reduc-
tions NOSold(Γ ) ≡m NOSold(dual(Γ )) and NOSol(Γ ) ≡AP NOSol(dual(Γ )).

Proof. For a Γ -formula ϕ and an assignment m to ϕ we construct a dual(Γ )-
formula ϕ′ by substitution of every atom R(x) by dual(R)(x). Then m satis-
fies ϕ if and only if m satisfies ϕ′, m being the complement of m. Moreover,
hd(m,m′) = hd(m,m′). ��
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5 Finding Another Solution Closest to the Given One

5.1 Polynomial-Time Cases

Since we cannot take advantage of the clone closure, we must proceed differently.
We use the following result based on a previous theorem of Baker and Pixley [2].

Proposition 6 (Jeavons et al. [9]). Every bijunctive constraint R(x1, . . . , xn)
is equivalent to

∧
1≤i≤j Rij(xi, xj), where Rij is the projection of R to the coor-

dinates i and j.

Proposition 7. If Γ is bijunctive (Γ ⊆ iD2) then NOSol(Γ ) is in PO.

Proof. According to Proposition 6 we may assume that the formula ϕ is a con-
junction of atoms R(x, y) or a unary constraint R(x, x) in the form [x] or [¬x].
Unary constraints can be eliminated and their value propagated into the other
clauses, since they fix the value for a given variable.

For each variable x we construct a model mx of ϕ with mx(x) �= m(x)
such that hd(mx,m) is minimal among all models with this property. Initially
we set mx(x) to 1 − m(x) and mx(y) := m(y) for all variables y �= x and
mark x as flipped. If mx satisfies all atoms we are done. Otherwise let R(u, v)
be an atom falsified by mx. If u and v are marked as flipped, the construction
fails, a model mx with the property mx(x) �= m(x) does not exist. Otherwise
the uniquely determined variable v in R(u, v) is not marked as flipped. Set
mx(v) := 1 − m(v), mark v as flipped, and repeat the process.

If mx does not exist for any variable x, then m is the sole model of ϕ and
the problem is not solvable. Otherwise choose one of the variables x for which
hd(mx,m) is minimal and return mx as second solution m′. ��
Proposition 8. If Γ ⊆ iSk

00 or Γ ⊆ iSk
10 for some k ≥ 2 then NOSol(Γ ) is in

PO.

Proof. We perform the proof only for iSk
00. Lemma 5 implies the same result

for iSk
10.

The co-clone iSk
00 is generated by Γ ′ := {ork, [x → y], [x], [¬x]}. According

to [7], this set Γ ′ is also a so-called plain basis of iSk
00, i.e. we may assume that our

inputs (ϕ,m) contain conjunctive formulas ϕ over these relations and equality,
without existential quantification.

Note that x ∨ y is a polymorphism of Γ , i.e., for any two solutions m1, m2

of ϕ we have that the assignment m1 ∨ m2 which is defined by (m1 ∨ m2)(x) =
m1(x) ∨ m2(x) for every x is also a solution of ϕ. It follows that we get the
optimal solution m′ for the instance ϕ and m by either flipping some values 1
of m to 0 or flipping some values 0 of m to 1 but not both. To see this, assume
the optimal solution m′ flips both ones and zeros, then m′ ∨ m is a solution of
ϕ that is closer to m than m′ which is a contradiction.

The main idea is to compute for each variable x of ϕ the distance of the
solution mx, which is minimal among the solutions of ϕ which differ from m
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on the variable x, and flip only ones or only zeros. Then the algorithm chooses
one mx closest to m as m′ and returns it. Since m and m′ differ in at least one
variable, this yields the correct result.

We describe the computation of mx. If m(x) = 0, we flip x to 1 and prop-
agate iteratively along equalities x = z and x → y-constraints, i.e., if x → y
is a constraint of ϕ and m(y) = 0, we flip y to 1 and propagate. This process
terminates after at most n flips, as we only flip from 0 to 1 and no variable is
flipped more than once. If the resulting assignment satisfies ϕ, this is our mx.
Otherwise, there is no satisfying assignment which we get by flipping x and
only flipping 0 to 1 and thus no candidate mx with the desired properties. If
m(x) = 1, we flip x to 0 and propagate backward along equalities x = z and
binary implications, i.e., if y → x is a constraint of ϕ and m(y) = 1, we flip y
to 0 and iterate. Again, if the result satisfies ϕ, this is our mx; else, there is no
candidate mx for this variable. Finally, return the candidate mx being closest
to m if it exists, otherwise there is no feasible solution. ��

5.2 Hard Cases

Lemma 9. Let Γ be a constraint language. If iI1 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 holds then
finding a feasible solution for NOSol(Γ ) is NPO-hard. Otherwise, NOSol(Γ ) ∈
poly-APX.

Proof. Finding a feasible solution to NOSol(Γ ) is exactly the problem
AnotherSAT(Γ ) which is NP-hard if and only if iI1 ⊆ 〈Γ 〉 or iI0 ⊆ 〈Γ 〉 according
to Juban [10]. If AnotherSAT(Γ ) is polynomial-time decidable, we can always
find a feasible solution for NOSol(Γ ) if it exists. Obviously, every feasible solu-
tion is an n-approximation of the optimal solution, where n is the number of
variables of the input. ��

Tightness Results. It will be convenient to consider the following decision
problem.

Problem:AnotherSAT<n(Γ )
Input: A conjunctive formula ϕ over relations from Γ and an assignment m sat-
isfying ϕ.
Question: Is there another satisfying assignment m′ of ϕ, different from m, such
that hd(m,m′) < n, where n is the number of variables of ϕ?

Note that AnotherSAT<n(Γ ) is not compatible with existential quantifica-
tion. Let ϕ(y, x1, . . . , xn) with the model m be an instance of AnotherSAT<n(Γ )
and m′ its solution satisfying hd(m,m′) < n + 1. Let m1 and m′

1 be the corre-
sponding vectors to m and m′, respectively, with the first coordinate truncated.
When we existentially quantify the variable y in ϕ, producing ϕ1(x1, . . . , xn) =
∃y ϕ(y, x1, . . . , xn), then both m1 and m′

1 are solutions of ϕ′, but we cannot
guarantee hd(m1,m

′
1) < n. Hence we need the equivalent of Proposition 4 for

this problem, whose proof is analogous.
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Proposition 10. AnotherSAT<n(Γ ′) ≤m AnotherSAT<n(Γ ) for Γ, Γ ′ ∈ L, Γ ′ ⊆
〈Γ 〉∧.

Proposition 11. If Γ ∈ L with 〈Γ 〉 = iI or iN ⊆ 〈Γ 〉 ⊆ iN2, then
AnotherSAT<n(Γ ) is NP-complete.

Proof. Containment in NP is clear, so it only remains to show hardness. Since the
considered problem is not compatible with existential quantification, we cannot
use clone theory and therefore we will consider the three co-clones iN2, iN and
iI individually, making use of minimal weak bases.

Case 〈Γ 〉 = iN: We show a reduction from AnotherSAT(R) where R =
{000, 101, 110} which is NP-hard by [10]. Since R is 0-valid, AnotherSAT(R)
is still NP-complete if we restrict it to instances (ϕ,0), where ϕ is a conjunc-
tive formula over R and 0 is the constant 0-assignment. Thus we can perform a
reduction from this restricted problem.

By Theorem 1 and Proposition 10 we may assume that Γ contains the
minimal weak base relation RiN. Given a formula ϕ over R, we construct
another formula ϕ′ over RiN by replacing every constraint R(xi, xj , xk) with
RiN(xi, xj , xk, w), where w is a new global variable. Moreover, set m to the
constant 0-assignment. This construction is a many-one reduction from the
restricted version of AnotherSAT(R) to AnotherSAT<n(Γ ).

To see this, observe that the tuples in RiN that have a 0 in the last coordinate
are exactly those in R×{0}. Thus any solution of ϕ can be extended to a solution
of ϕ′ by assigning 0 to w. Assume that ϕ′ has a solution m which is not constant 0
or constant 1. Because RiN is complementive, we may assume that m(w) = 0.
But then m restricted to the variables of ϕ is not the constant 0-assignment and
satisfies all constraints of ϕ. This completes the proof of the first case.

Case 〈Γ 〉 = iN2: We show a reduction from AnotherSAT<n(RiN) which is NP-
hard by the previous case. Reasoning as before, we may assume that Γ contains
RiN2 = {mm | m ∈ RiN}. Given an RiN-formula ϕ over the variables x1, . . . , xn,
we construct an RiN2-formula over the variables x1, . . . , xn, x′

1, . . . , x
′
n by replac-

ing RiN(xi, xj , xk, x�) with RiN2(xi, xj , xk, x�, x
′
i, x

′
j , x

′
k, x′

�). Moreover, we define
an assignment m′ to ϕ′ by setting m′(xi) := m(xi) and m′(x′

i) := m(xi). It is
easy to see that this construction is a reduction from AnotherSAT<n(RiN) to
AnotherSAT<n(Γ ).

Case 〈Γ 〉 = iI: Note that by restricting the first argument of the minimal
weak base relation RiI to 0, we get the relation {0}×R with R := {000, 011, 101}.
By [10] we have that AnotherSAT(R) is NP-complete. Now we proceed similarly
to the first case, observing that the only solution m such that m(w) = 1 is the
constant 1-assignment. ��
Proposition 12. For Γ ∈ L such that 〈Γ 〉 = iI or iN ⊆ 〈Γ 〉 ⊆ iN2 and any
ε > 0 there is no polynomial-time n1−ε-approximation algorithm for NOSol(Γ ),
unless P = NP.

Proof. Assume that there is a constant ε > 0 with a polynomial-time n1−ε-
approximation algorithm for NOSol(Γ ). We will show how to use this algorithm to
solve AnotherSAT<n(Γ ) in polynomial time. Proposition 11 completes the proof.
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Let (ϕ,m) be an instance of AnotherSAT<n(Γ ) with n variables. If n = 1,
then we reject the instance. Otherwise, we construct a new formula ϕ′ and a new
assignment m′ as follows. Let k be the smallest integer greater than 1/ε. Choose
a variable x of ϕ and introduce nk − n new variables xi for i = 1, . . . , nk − n.
For every i ∈ {1, . . . , nk − n} and every constraint R(y1, . . . , y�) in ϕ, such that
x ∈ {y1, . . . , y�}, construct a new constraint R(zi

1, . . . , z
i
�) by zi

j = xi if yj = x

and zi
j = yj otherwise; add all the newly constructed constraints to ϕ in order to

get ϕ′. Moreover, we extend m to an assignment of ϕ′ by setting m′(xi) = m(x).
Now run the n1−ε-approximation algorithm for NOSol(Γ ) on (ϕ′,m′). If the
answer is m′ then reject, otherwise accept.

We claim that the algorithm described above is a correct polynomial-time
algorithm for the decision problem AnotherSAT<n(Γ ) when Γ is complementive.
Polynomial runtime is clear. It remains to show its correctness. If the only solu-
tions to ϕ are m and m, then, as n > 1, the approximation algorithm must answer
m′ and the output is correct. Assume that there is a satisfying assignment ms

different from m and m. The relation Γ is complementive, hence we may assume
that ms(x) = m(x). It follows that ϕ′ has a satisfying assignment m′

s for which
hd(m′

s,m
′) < n holds. But then the approximation algorithm must find a sat-

isfying assignment m′′ for ϕ′ with hd(m′,m′′) < n · (nk)1−ε = nk(1−ε)+1. Since
the inequality k > 1/ε holds, it follows that hd(m′,m′′) < nk. Consequently, m′′

is not the complement of m′ and the output of our algorithm is again correct.
When Γ is not complementive but both 0-valid and 1-valid (〈Γ 〉 = iI), we

perform the expansion algorithm described above for each variable of the for-
mula ϕ and reject if the result is the complement for each run. The runtime
remains polynomial. ��

MinDistance-Equivalent Cases. In this section we show that affine co-clones
give rise to problems equivalent to MinDistance. The upper bound is easy.

Lemma 13. For affine Γ ∈ L (Γ ⊆ iL2) the problem NOSol(Γ ) reduces to
MinDistance.

Proof. Let the formula ϕ and the model m be an instance of NOSol(Γ ) over the
variables x1, . . . , xn. Clearly, ϕ can be written as Ax = b and m is a solution of
this affine system. As any solution of Ax = b can be written as m′ = m + m0

where m0 is a solution of Ax = 0, the problem becomes equivalent to computing
the solutions of this homogeneous system of small weight. But this is exactly the
MinDistance problem. ��

The following lemma can be easily proved, since the equivalence relation
[x ≡ y] is the solution set of the linear equation x + y = 0. The relation [x] is
represented by the equation x = 1 whereas the relation [¬x] is represented by
x = 0.

Lemma 14. NOSol({even4}) ≡AP NOSol({even4, [x], [¬x]}).
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Corollary 15. For Γ ∈ L with iL ⊆ 〈Γ 〉 ⊆ iL2 we have MinDistance ≤AP

NOSol(Γ ).

Proof. We show an AP-reduction to NOSol({even4, [x], [¬x]}). Since every sys-
tem of linear equations can be written as a conjunction over relations in iL2, the
claim follows. ��

MinHornDeletion-Equivalent Cases. As in Proposition 11 the need to use
conjunctive closure instead of 〈 〉 causes a case distinction in the proof of the
following result.

Lemma 16. If Γ is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) then one of the following
relations is in 〈Γ 〉∧: [x → y], [x → y] × {0}, [x → y] × {1}, or [x → y] × {01}.
Proof. Supposing that 〈Γ 〉 = iE, we get from Theorem 1 that RiE belongs
to 〈Γ 〉∧. Observe that RiE(x1, x1, x1, x4) = [x1 → x4] and thus [x → y] ∈
〈RiE〉∧ ⊆ 〈Γ 〉∧ which concludes this case. The case 〈Γ 〉 = iE0 leads to
[x → y] × {0} ∈ 〈Γ 〉∧ in a completely analogous manner. The cases 〈Γ 〉 = iE1

and 〈Γ 〉 = iE2 lead to [x → y] × {1} ∈ 〈Γ 〉∧ and [x → y] × {01} ∈ 〈Γ 〉∧,
respectively, by observing that (x1 ≡ x1 ∧ x3) = x1 → x3. ��
Lemma 17. If a constraint language Γ ∈ L is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2),
then NOSol(Γ ) is MinHornDeletion-hard.

Proof. Reduction from MinOnes(Γ ∪ {[x]}) which is MinHornDeletion-hard
by [11]. Consider first the case in which [x → y] ∈ 〈Γ 〉∧. By Proposition 4
we may assume that [x → y] ∈ Γ . Let ϕ be a Γ ∪{[x]}-formula. We construct ϕ′

as follows. Replace each atomic formula R(y1, . . . , yk) in ϕ, where R ∈ Γ , by
its conjunctive normal form decomposition, which yields a formula ϕ′′. Since
R ∈ Γ ⊆ iE2 holds, each clause occurring in this decomposition contains at
most one unnegated variable. Those that contain negated variables are 0-valid,
and so is their conjunction. The remaining ones, which are not 0-valid, are just
single variables (literals). Next, replace all literals y from ϕ′′ by x → y, where x
is a global new variable. Finally, add v → x for all variables v of ϕ to get ϕ′.

Observe that ϕ′ is 0-valid. Moreover, the other solutions of ϕ′ are exactly
the solutions of ϕ extended by the assignment x := 1, because whenever one
of the variables v takes the value 1, the clause v → x forces x to 1 which in
turn enforces the unary clauses y of ϕ by the implications x → y. It follows that
OPT(ϕ) + 1 = OPT(ϕ′,0).

Moreover, for every r-approximate solution m′ of ϕ′ we first check whether
m = 0 is a solution of ϕ. In case it is, OPT(ϕ) = 0 and we trivially have
hw(m) ≤ 2rOPT(ϕ). Otherwise, OPT(ϕ) ≥ 1 and we get a solution m of ϕ
by restriction to the variables of ϕ with the weight hw(m) = hd(0,m′) − 1 ≤
r(OPT(ϕ′,0))− 1 ≤ r(OPT(ϕ)+1)− 1 ≤ 2rOPT(ϕ). In any case, we have thus
hw(m) ≤ 2rOPT(ϕ) which shows that the construction is an AP-reduction with
α = 2.
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For the other cases of Lemma 16 we argue similarly. The only difference is the
introduction of some new variables, forced to constant values by the respective
relation from Lemma 16. It is easy to see that these constants do not change the
rest of the analysis. ��

The proof of the following corollary requires a reduction to a similar problem,
namely NearestSolution (NSol), which differs from NOSol in the point that the
input assignment m does not need to satisfy the input formula ϕ; if it does,
then m is the optimal solution (see [3] for details).

Corollary 18. If Γ ∈ L is proper Horn (iE ⊆ 〈Γ 〉 ⊆ iE2) or proper dual-Horn
(iV ⊆ 〈Γ 〉 ⊆ iV2) then NOSol(Γ ) is MinHornDeletion-complete under AP-Turing-
reductions.

Proof. Hardness follows from Lemma 17 and duality. Moreover, NOSol(Γ ) can be
AP-Turing-reduced to NSol(Γ ∪{[x], [¬x]}) as follows: Given a Γ -formula ϕ and
a model m, we construct for every variable x of ϕ a formula ϕx = ϕ∧(x = m(x)).
Then for every x we run an oracle algorithm for NSol(Γ ∪{[x], [¬x]}) on (ϕx,m)
and output one result of these oracle calls that is closest to m.

We claim that this algorithm is indeed an AP-Turing reduction. To see this
observe first that the algorithm always computes a feasible solution, unless
only m satisfies ϕ. Moreover, we have OPT(ϕ,m) = minx(OPT(ϕx,m)). Let
A(ϕ,m) be the answer of the algorithm on (ϕ,m) and let B(ϕx,m) be the
answers to the oracle calls. Consider a variable x∗ such that OPT(ϕ,m) =
minx(OPT(ϕx,m)) = OPT(ϕx∗ ,m), and assume that B(ϕx∗ ,m) is an r-
approximate solution of (ϕx∗ ,m). Then we get

hd(m,A(ϕ,m))
OPT(ϕ,m)

=
miny(hd(m,B(ϕy,m))

OPT(ϕx∗ ,m)
≤ hd(m,B(ϕx∗ ,m))

OPT(ϕx∗ ,m)
≤ r.

Thus the algorithm is indeed an AP-Turing-reduction from NOSol(Γ ) to
NSol(Γ ∪{[x], [¬x]}). Note that NSol(Γ ∪{[x], [¬x]}) reduces to MinHornDeletion
(see [3]). Duality completes the proof. ��

6 Concluding Remarks

The studied problem is in PO for bijunctive constraints. If the constraints are
implication hitting set bounded by k for some k ≥ 2, the problem NOSol still
remains in PO. The situation is more complicated for Horn constraints and dual
Horn constraints, where the task becomes equivalent to MinHornDeletion. The
next complexity stage of the solution structure is characterized by affine con-
straints, where we can apply standard linear algebra techniques to prove equiva-
lence with the MinDistance-problem. The penultimate stage of solution structure
complexity is represented by constraints, for which the existence of a solution is
guaranteed by their definition, but we do not have any other exploitable infor-
mation. We need a guarantee of at least two solutions. The existence of a second
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solution is guaranteed by iN2 being complementive. Our problem belongs to the
class poly-APX for these constraints. We can even exactly pinpoint the poly-
nomial (n, i.e. arity of the formula) for which we can get a polynomial-time
approximation. This complexity result indicates that we cannot get a suitable
approximation for these types of the considered optimization problem. All other
cases cannot be approximated in polynomial time at all.
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