
On the Complexity of Computing
Generators of Closed Sets

Miki Hermann1 and Barış Sertkaya2

1 LIX (CNRS, UMR 7161), École Polytechnique, 91128 Palaiseau, France
hermann@lix.polytechnique.fr

2 Institut für Theoretische Informatik, TU Dresden, Germany
sertkaya@tcs.inf.tu-dresden.de

Abstract. We investigate the computational complexity of some deci-
sion and counting problems related to generators of closed sets funda-
mental in Formal Concept Analysis. We recall results from the litera-
ture about the problem of checking the existence of a generator with a
specified cardinality, and about the problem of determining the number
of minimal generators. Moreover, we show that the problem of counting
minimum cardinality generators is #·coNP-complete. We also present an
incremental-polynomial time algorithm from relational database theory
that can be used for computing all minimal generators of an implication-
closed set.

1 Introduction

Closed sets and pseudo-closed sets play an important rôle in Formal Concept
Analysis (FCA) [5]. For instance, the sets closed under implications are funda-
mental to the attribute exploration algorithm [4]. In addition, pseudo-closed sets
form the left-hand sides of the implications in the canonical implication base
called the Duquenne-Guigues Base [7] of a formal context. As a result, many
problems related to closed and pseudo-closed sets have been by now well investi-
gated in the FCA community. For instance, there exist several polynomial-delay
algorithms3 that generate all concept intents of a formal context. Other compu-
tational problems related to pseudo-closed sets have been analyzed in [11,12,14].

Beside closed and pseudo-closed sets, generators of closed sets also play an
important rôle in FCA. Inspite of this, as mentioned in [17], they have been
paid little attention in the FCA community, especially computational problems
related to them have not been well investigated. Different aspects of minimal
generators have been investigated in the literature [3,17,23]. Valtchev et al. pre-
sented in [23] an efficient method for maintaining the set of minimal generators
of all intents of a formal context upon increases in the object set of the under-
lying context. Nehmé et al. investigated in [17] the same problem in the dual
setting. They presented a method for maintaining the set of minimal generators
upon increases in the attribute set of the context. They characterized how the
3 See [13] for a comprehensive list and a detailed comparison of these algorithms.

set of minimal generators changes when a new attribute is added to the context.
Using this characterization they developed an efficient incremental algorithm for
generating concept intents. Frambourg et al. worked in [3] on evolution of the
the set of minimal generators during lattice assembly .

The present paper aims to given an overview of the computational com-
plexity of some decision and counting problems on generators of closed sets. In
particular we consider the two types of closed sets that are fundamental in FCA,
namely concept intents and sets closed under a set of implications. Throughout
the text, for the latter type of sets, we use the term implication-closed set. We
recall results from the literature about the problem of checking the existence of
a generator with a specified cardinality, and about the problem of determining
the number of minimal generators. Moreover, we define a new problem about the
second type of closed sets, namely the problem of determining the number of min-
imum cardinality generators, and show that this problem is #·coNP-complete,
i.e., it is even more difficult than determining the number of minimal gener-
ators. We also point out that an incremental-polynomial time algorithm from
relational database theory can be used for computing all minimal generators of
an implication-closed set.

Our motivation for analyzing these problems is not only theoretical, but
also practical. A good analysis of these problems can help to develop methods
that support the expert during attribute exploration by making the implication
questions “simpler”. We know that the attribute exploration algorithm asks the
smallest number of questions to the expert, i.e., none of the questions it asks is
redundant. However, it might still be possible to shorten an implication question
by removing redundant attributes from its premise and conclusion. Moreover, a
good analysis of the problems related to generators of concept intents can help
to develop efficient lattice construction and merge algorithms.

2 Counting Complexity

We assume that the reader has a basic knowledge of complexity theory. Addi-
tional information can be found in the book [19].

A counting problem is presented using a suitable witness function which for
every input x returns a set of witnesses for x. Formally, a witness function is a
function A : Σ∗ → P<ω(Γ ∗), where Σ and Γ are two alphabets, and P<ω(Γ ∗) is
the collections of all finite subsets of Γ ∗. Every such witness function gives rise
to the following counting problem: given a string x ∈ Σ∗, find the cardinality
|A(x)| of the witness set A(x).

Complexity of counting problems was first investigated by Valiant in [21,22].
For a systematical study and classification of counting problems he introduced
the counting complexity class #P, defined as the class of functions counting
the number of accepting paths of nondeterministic polynomial-time Turing ma-
chines. A typical member is the problem #sat, counting the number of satisfy-
ing assignments to a propositional formula in conjunctive normal form. Valiant
showed in [21,22] that #sat and many other problems are #P-complete.

Hemaspaandra and Vollmer introduced in [9] a predicate-based approach
for defining higher counting complexity classes. In this approach, the counting
complexity classes are denoted by #·C.

Definition 1. #·C is the class of all counting problems whose witness func-
tion A satisfies the following conditions:

(i) There is a polynomial p(n) such that every x ∈ Σ∗ and every y ∈ A(x)
satisfy the relation |y| ≤ p(|x|);

(ii) The decision problem “given x and y, does y belong to A(x)?” is in C.

Completeness of the problems in #P is often proved by using parsimonious
reductions, which are polynomial-time reductions preserving the number of so-
lutions by establishing a bijection between the solution sets of the problems.
There are, however, two shortcoming of parsimonious reductions. First, they
are not powerful enough, since they represent a particular case of many-one re-
ductions, whereas Valiant was obliged to use Turing reductions in [21, 22] to
be able to prove #P-completeness of several problems like #permanent or
#perfect matchings. Second, even if the many-one reduction is powerful
enough for proving completeness, there does not need to exist a one-to-one cor-
respondence between the solutions of the reduced problems. On the other hand,
Turing reductions turned out to be too powerful, since as it was proved in [20],
they collapse all counting classes #·ΣkP and #·ΠkP to #P.

In order to overcome this problem, Durand et al. introduced in [2] a new kind
of reductions called subtractive reduction, under which #P and the higher classes
#·ΠkP for each k ∈ N are closed. A subtractive reduction between counting
problems first overcounts the number of solutions and then carefully subtracts
any surplus. It is formally defined as follows.

Definition 2. Let Σ, Γ be two alphabets and let #·A and #·B be two counting
problems determined by the binary relations A and B between strings from Σ to
Γ . We say that #·A reduces to #·B via a strong subtractive reduction if there
exist two polynomial-time computable functions f and g such that for every string
x ∈ Σ∗ the following conditions hold.
1. B(f(x)) ⊆ B(g(x));
2. |A(x)| = |B(g(x))| − |B(f(x))|.

A subtractive reduction is a transitive closure of strong subtractive reductions.

Parsimonious reductions constitute a special case of subtractive reductions with
B(f(x)) = ∅. In [2] it was pointed out that subtractive reductions are well-suited
tools to study the higher counting complexity classes #·ΣkP and #·ΠkP.

3 Generators of Concept Intents

We assume that the reader is familiar with the theory of FCA. We briefly mention
the necessary basic notions and refer the reader to the standard textbook [5] for
additional information. In the present section we shortly recall the notion of
generators of a concept intent, and some well-known computational problems
about them.

Definition 3. Let K = (G,M, I) be a formal context and C ⊆ M be a concept
intent, i.e., C ′′ = C. The subset D ⊆ C is a minimal generator of C under (·)′′
if D′′ = C holds and D is subset-minimal, i.e., for all E (D we have E′′ (C.

We first recall the computational complexity of checking whether a concept
intent has a generator of cardinality less than or equal to a specified size. It is
well-known that the following problem is NP-complete.

Problem: intent generator
Input: A formal context K = (G,M, I), the intent D of a formal concept (C,D)
from K, and a positive integer m ≤ |A|.
Question: Is there a subset Q ⊆ D of cardinality less than or equal to m that
generates D, i.e., is there a Q ⊆ D such that Q′′ = D and |Q| ≤ m?

Frambourg et al. mentioned in [3] that the number of minimal generators of
an intent can be exponential in the size of the context. Apart from this expo-
nential bound, it is common folklore that the following problem is #P-complete.

Problem: #minimal intent generator
Input: A formal context K = (G,M, I) and the intent D of a formal concept
(C,D) in K.
Output: Number of all subset-minimal intent generators of D with respect to the
closure operator (·)′′, i.e., |{Q ⊆ D | Q′′ = D ∧ ∀P (Q, P ′′ 6= D}|.

4 Generators of Implication-Closed Sets

In the present section we first shortly recall the notion of minimal generators of
an implication-closed set, and some well-known computational problems about
minimal generators. Later we define a new problem about minimal generators,
and work its computational complexity.

Definition 4. Let L be a set of implications on a finite attribute set A and
P ⊆ A be closed with respect to L, i.e., L(P) = P . The subset Q ⊆ P is a
minimal generator of P under L if L(Q) = P holds and Q is subset-minimal,
i.e., for all R (Q we have L(R) (P .

Minimal generators appear in the literature under different names in various
fields. For instance, in relational databases they are called minimal keys, and
various properties of them have been considered in the literature. In order to
make this connection clear, let us briefly recall some basic notions of relational
databases.

4.1 Connection to Relational Databases

Functional dependencies are a way of expressing constraints on data in relational
databases [16]. Informally, a functional dependency occurs when the values of
a tuple on one set of attributes uniquely determine the values on another set

of attributes. Formally, given a relation R and a set of attribute names A, a
functional dependency is a pair of sets X,Y ⊆ A written as X → Y . The
relation R satisfies the functional dependency X → Y if the tuples with equal
X-values also have equal Y -values. In this case we say that the set of attributesX
functionally determine the set of attributes Y .

Another important concept in relational databases is the notion of a key.
Given a relation R on the attribute set A, a set K ⊆ A is called a key of R if K
functionally determines A. It is called a minimal key if no proper subset of it is
a key. Alternatively, given a set of functional dependencies F that are satisfied
by R, a set K ⊆ A is called a key of the relational system 〈A,F 〉 if K → A can
be inferred from F by using Armstrong’s axioms [1]. In practical applications,
it is important to find “small” keys of a given relation. Lucchesi and Osborn
analyzed in [15] how difficult it is to check whether a given relation has a key of
cardinality bounded by a specified size. This problem is known as the minimum
cardinality key problem (see problem [SR26] in [6]).

Problem: minimum cardinality key
Input: A set A of attribute names, a collection F of functional dependencies,
and a positive integer m ∈ N.
Question: Is there a key of cardinality m or less for the relational system 〈A,F 〉?

Lucchesi and Osborn proved in [15] that minimum cardinality key is NP-
complete. It is well-known that minimal generators of a closed set are the minimal
keys of the subrelation defined by this closed set. Based on this observation, it
is part of common folklore that the following problem is also NP-complete.

Problem: minimum cardinality generator
Input: A set A of attribute names, a set L of implications on A, an L-closed
subset P of A, and a positive integer m ≤ |A|.
Question: Is there a subset Q ⊆ P of cardinality |Q| ≤ m that generates P
under L, i.e., is there a Q ⊆ P such that L(Q) = P and |Q| ≤ m?

4.2 Counting Minimal Generators

Osborn showed in [18] that the number of minimal keys for a relational system
〈A,F 〉 can be exponential in |A|. Moreover, Gunopulos et al. proved in [8] that
the problem of determining the number of minimal keys of a relational system
is #P-complete. Due to the correspondence between minimal keys and minimal
generators of a closed set, it is also well-known that the number of minimal
generators can be exponential in the size of the attribute set, and that the
following counting problem is #P-complete.

Problem: #minimal generator
Input: A set A of attribute names, a set L of implications on A, and an L-closed
subset P of A.
Output: Number of all subset-minimal generators of P under L.

Algorithm 1 Minimal generator
Input: Implications L on the attribute set A and a subset P ⊆ A such that L(P) = P
Output: A minimal generator Q of P
1: Q← P
2: for all m ∈ P do
3: if L(Q r {m}) = P then
4: Q← Q r {m}
5: end if
6: end for

4.3 Finding All Minimal Generators

In some cases, it might not be enough to find only one minimal generator of
an implication-closed set. For instance during attribute exploration it might
be useful to show the expert different minimal generators of the premise and
conclusion of the implication question for better understandability. The expert
might want to browse among them to find a shortened version of the question
which is most comprehensible to him. In the sequel we are going to investigate
the problem of determining all minimal generators of a closed set.

Lucchesi and Osborn presented in [15] an algorithm to determine all mini-
mal keys of a given relation. Given a set of attributes R and a set of functional
dependencies F , the algorithm returns the set of all minimal keys for the rela-
tional system 〈R,F 〉. Below we present an adaptation of this algorithm to find
all minimal generators of a given implication-closed set. The algorithm is based
on the following property shown in [15]. Here we formulate the property in terms
of implications and minimal generators, and leave out its proof.

Lemma 5. Let L be a set of implications on the attributes A and G be a
nonempty set of minimal generators for a given P ⊆ A under L. The comple-
ment set 2P rG contains a minimal generator if and only if G contains a minimal
generator G and L contains an implication L → R, such that L ∪ R ∪ G ⊆ P
holds and L ∪ (GrR) does not include any minimal generator from G.

Lemma 5 assumes the existence of a nonempty set of minimal generators,
thus the algorithm following from the lemma needs one minimal generator be-
fore it can proceed to find all other minimal generators. It is not difficult to
find one minimal generator of a given implication-closed set P . We can start
with P , iterate over all elements of P , and remove an element if the remaining
set still generates P . Algorithm 1 implements this idea. It determines a minimal
generator of a given set of attributes P closed under a given set of implica-
tions L. Algorithm 1 terminates since P is finite. Upon termination, Q is a
minimal generator of P since it does not contain any redundant attributes. For
checking whether Qr {m} generates P we can use the well-known implicational
closure algorithm LinClosure from [16]. The LinClosure algorithm runs in
time O(|L| |A|). Algorithm 1 makes at most |A| iterations of LinClosure and
therefore it runs in time O(|L| |A|2).

Algorithm 2 All minimal generators
Input: Set of implications L on the attribute set A and an L-closed set P ⊆ A
Output: All minimal generators G of P
1: G ← {MinGen(P,L)} {Initial set of minimal generators}
2: for all G ∈ G do
3: for all L→ R ∈ L such that L ∪R ∪G ⊆ P do
4: S ← L ∪ (K r R)
5: flag ← true
6: for all H ∈ G do
7: if H ⊆ S then
8: flag ← false
9: end if

10: end for
11: if flag then
12: G ← G ∪ {MinGen(S,L)}
13: end if
14: end for
15: end for

Now that we have an algorithm to determine one minimal generator, we can
proceed with the algorithm determining the set of all minimal generators of an
implication-closed set.

Algorithm 2 terminates, since G and L are both finite. Following Lemma 5,
upon termination of the algorithm the set G contains all minimal generators
of the given set of attributes P under L. Let |L| = `, |G| = g, and |P | = p
be the cardinalities of the corresponding sets. The algorithm runs in time
O(`g(p+ gp)) +O(gm), where m is the complexity of Algorithm 1. Hence Algo-
rithm 2 has time complexity O(`gp(g + p)). Note that the algorithm finds min-
imal generators in incremental polynomial time, which is a notion introduced
in [10] for analyzing the performance of algorithms that generate all solutions of
a problem. An algorithm is said to run in incremental polynomial time if given
an input and a prefix of the set of solutions (say, a closed set and a collection
of the first k minimal generators), it finds another solution, or determines that
none exists, in time polynomial in the combined sizes of the input and the given
prefix. For finding a minimal generator, Algorithm 2 needs to perform at most
g`p(g + p) operations, which is polynomial in the size of the input, i.e., in the
size of L and P , as well as polynomial in the size of the already found minimal
generators G.

Another notion introduced in [10] for analyzing algorithms that enumerate
solutions is polynomial delay. An algorithm is said to run with polynomial delay
if the delay until the first solution is written, as well as thereafter the delay
between any two consecutive solutions, is bounded by a polynomial in the size
of the input. Polynomial delay is a stronger notion than incremental polynomial
time, i.e., if an algorithm runs with polynomial delay it is also runs in incremental
polynomial time. To the best of our knowledge, there is no polynomial delay

algorithm that finds all minimal keys of a relation, which is equivalent to finding
all minimal generators of an attribute set closed under a set of implications.

4.4 Counting Minimum Cardinality Generators

In this section we consider a modified version of the #minimal generator.
For this problem, we slightly change the notion of “generates“ as follows. For a
given set L of implications on an attribute set A, and an L-closed set P ⊆ A,
we say that a Q ⊆ A is a minimum cardinality generator of P if L(Q) rQ = P
holds and no subset of A with smaller cardinality satisfies this property. In other
words, we require that P should be the “new consequences” of closing Q under L
and that no set with smaller cardinality can have this property. It turns out that
the problem of counting such sets is #·coNP-complete, which means that it is
even harder than the #minimal generator problem.

Problem: #minimum cardinality generator
Input: A set A of attribute names, a set L of implications on A, an L-closed
subset P of A.
Question: Number of all minimum cardinality generators of P under L, i.e.,
number of the subsets Q ⊆ A such that L(Q) r Q = P and no other subset
R ⊆ A with |R| < |Q| satisfies the condition L(R) rR = P .

Theorem 6. #minimum cardinality generator is #·coNP-complete.

Proof. The problem is clearly in #·coNP what can be shown as follows. Given
a set of attributes Q, we have to check (i) whether Q generates P , and if so
(ii) whether there is another generator R with |R| < |Q|. The first test can be
done in polynomial time using a closure algorithm based on the reachability
algorithm for graphs. The second test, which dominates the overall complexity,
can be done by a coNP-algorithm. Indeed, checking whether Q is not a mini-
mum cardinality generator can be done by the following NP-algorithm: Guess
a subset of attributes R ⊆ A such that |R| < |Q| and check if R generates P .
Again, checking if R generates P can be done in polynomial time, thus check-
ing whether Q is a minimum cardinality generator can be done in coNP and
counting such sets can be done in #·coNP.

We show the #·coNP-hardness by a strong subtractive reduction from the
problem #Π1SAT. #Π1SAT is #·coNP-complete according to [2]. Consider an
instance of the #Π1SAT problem given by a formula ϕ(X) = ∀Y ψ(X,Y) where
X = {x1, . . . , xk} and Y = {y1, . . . , yl} are disjoint sets of variables. Without
loss of generality we can assume that ψ(X,Y) is in 3DNF, i.e., it is of the form
C1 ∨ · · · ∨ Cn where each Ci is of the form Ci = li1 ∧ li2 ∧ li3, and the lij ’s are
propositional literals over X ∪ Y .

Let x′
1, . . . , x

′
k, q1, . . . , qk, y′1, . . . , y

′
l, r1, . . . , rl, g1, . . . , gn, u denote fresh pair-

wise distinct variables and let us regroup them in the sets X={x′
1, . . . , x

′
k},

Y={y′1, . . . , y′l}, Q1 = {q1, . . . , qk}, R1 = {r1, . . . , rl}, and G = {g1, . . . , gn}.

We define two instances of the minimum cardinality generator problem. The
first problem P1 is defined as follows:

A1 = A = X ∪X1 ∪ Y ∪ Y1 ∪Q1 ∪R1 ∪G ∪ {u}
P1 = Q1 ∪R1 ∪G
L1 = {{xi, x

′
i} → A, xi → qi, x

′
i → qi | 1 ≤ i ≤ k} ∪

{{yi, y
′
i} → A, yi → ri, y

′
i → ri | 1 ≤ i ≤ l} ∪

{zij → gi | 1 ≤ i ≤ n and 1 ≤ j ≤ 3}

where, for 1 ≤ s ≤ k and 1 ≤ t ≤ l, zij is in one of the forms xs, x
′
s, yt, or, y′t

depending on whether the literal lij in Ci is in one of the forms ¬xs, xs,¬yt,
or yt, respectively. In other words, zij encodes the negation of lij . Now we define
the second problem P2.

A2 = A, P2 = P1, L2 = L1 ∪ {{y1, . . . , yl} → gi | 1 ≤ i ≤ n}.

Now let A(ϕ) denote the set of all satisfying truth assignments of a #Π1SAT-
formula ϕ and let B(P) denote the set of all solutions of a minimum cardinality
generator problem P. We claim that the following holds:

B(P1) ⊆ B(P2) and |A(ϕ)| = |B(P2)| − |B(P1)| .

Consider the problem P1. Solutions of P1, i.e., minimum cardinality generators
of P1 satisfy the following 3 conditions: (1) An attribute qi can be generated
only in two ways, by the implication xi → qi or by the implication x′

i → qi. So a
solution of P1 contains one of xi and x′

i. Moreover, it cannot contain both of them
due to the implication {xi, x

′
i} → A, since this implication would also generate

the attribute u, and u is not contained in P1. This means, for each 1 ≤ i ≤ k a
solution of P1 contains either xi or x′

i in order to be able to generate the qi’s.
(2) Similarly, it also contains either yi or y′i for each 1 ≤ i ≤ l in order to be able
to generate the ri’s. (3) In addition to these, in order to be able to generate an
attribute gi, a solution contains at least one attribute that encodes the negation
of a literal occurring in the implicant Ci. In order be able to generate all gi’s,
a solution contains at least one such attribute for each implicant Ci. Subsets
of A that satisfy these 3 conditions are solutions of P1. Each such subset has
exactly the size |X| + |Y | = k + l. Moreover, they are the only solutions of P1,
since any subset of A that has cardinality less than k + l fails to generate at
least one attribute in P1. Conditions (1) and (2) enforce a solution to be a truth
assignment over X ∪ Y . Condition (3) enforces this truth assignment to contain
the negation of at least one literal in every implicant, i.e., it enforces this truth
assignment to falsify the formula ψ(X,Y).

Consider now the problem P2. Each solution of P1 is also a solution of P2 since
P2 = P1 and L2 contains all implications from L1. In addition to the implications
from L1, L2 also contains implications of the form {y1, . . . , yl} → gi for each
1 ≤ i ≤ n. These new implications give rise to the following new solutions. Like
the solutions of P1, in order to be able to generate the qi’s and ri’s, they satisfy

the conditions (1) and (2) mentioned above. In order to be able to generate
the gi’s, they contain every yi for each 1 ≤ i ≤ l. In other words, these new
solutions are truth assignments over X ∪ Y that set every y1, . . . , yl to true.

Based on the above descriptions, B(P1) is the set of truth assignments that
falsify ψ(X,Y) and B(P2) is the set of truth assignments that falsify ψ(X,Y),
plus the set of truth assignments that set every y1, . . . , yl to true. Obviously, the
claim B(P1) ⊆ B(P2) is satisfied. Moreover, the difference B(P1) r B(P2) is the
set of truth assignments that set every y1, . . . , yl to true and at the same time
satisfy ψ(X,Y) (since by taking the set difference from B(P1) we remove the
truth assignments that falsify ψ(X,Y)). In other words, this set contains the
models of ψ(X,Y) such that all Y values are fixed by setting them to true. This
set has exactly the same cardinality as the set of models of ϕ(X) = ∀Y ψ(X,Y),
thus the other claim |A(ϕ)| = |B(P2)| − |B(P1)| holds. ut

5 Concluding Remarks

We analyzed some decision and counting problems related to generators of closed
sets fundamental in FCA, namely concept intents and implication-closed sets.
We have shown that the problem of checking the existence of a generator of
cardinality less than or equal to a specified size is NP-complete and the problem
of determining the number of minimal generators is #P-complete. Moreover, we
have shown that the problem of determining the number of minimum cardinality
generators is #·coNP-complete, i.e., it is even more difficult than counting min-
imal generators. We have also given an incremental-polynomial time algorithm
from relational databases that can be used for computing all minimal generators
of an implication-closed set. We also explicitly establish a connection between
the corresponding results on relational databases and those on minimal keys of
a relation, which were known before but have never explicitly been mentioned
in the FCA literature.

It is not surprising to see that the mentioned problems about generators of
concept intents and generators of implication-closed sets are of the same com-
plexity. In fact, the closure operator induced by a formal context and the closure
operator induced by the set of implications that are valid in this formal context
coincide. That is, one can easily transfer these results from one case to the other.

References

1. W. W. Armstrong. Dependency structures of data base relationships. In J. L.
Rosenfeld, editor, Proceedings 6th Information Processing Conference (IFIP ’74),
Stockholm (Sweden), pages 580–583. North-Holland, 1974.

2. A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and com-
plete problems for counting complexity classes. Theoretical Computer Science,
340(3):496–513, 2005.

3. C. Frambourg, P. Valtchev, and R. Godin. Merge-based computation of minimal
generators. In F. Dau, M.-L. Mugnier, and G. Stumme, editors, Proceedings 13th
ICCS, Kassel (Germany), LNCS 3596, pages 181–194. Springer, 2005.

4. B. Ganter. Two basic algorithms in concept analysis. Technical Report Preprint-
Nr. 831, Technische Hochschule Darmstadt, Germany, 1984.

5. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1999.

6. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Co, 1979.

7. J.-L. Guigues and V. Duquenne. Familles minimales d’implications informatives
resultant d’un tableau de données binaries. Mathématiques, Informatique et Sci-
ences Humaines, 95:5–18, 1986.

8. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. Sewak
Sharma. Discovering all most specific sentences. ACM Transactions on Database
Systems, 28(2):140–174, 2003.

9. L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes
beyond #P and other definitional adventures. SIGACT News, Complexity Theory
Column 8, 26(1):2–13, March 1995.

10. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maxi-
mal independent sets. Information Processing Letters, 27(3):119–123, 1988.

11. S. O. Kuznetsov. On computing the size of a lattice and related decision problems.
Order, 18(4):313–321, 2001.

12. S. O. Kuznetsov. On the intractability of computing the Duquenne-Guigues base.
Journal of Universal Computer Science, 10(8):927–933, 2004.

13. S. O. Kuznetsov and S. A. Obiedkov. Comparing performance of algorithms for
generating concept lattices. Journal of Experimental and Theoretical Artificial
Intelligence, 14(2-3):189–216, 2002.

14. S. O. Kuznetsov and S. O. Obiedkov. Counting pseudo-intents and #P-
completeness. In R. Missaoui and J. Schmid, editors, Proceedings 4th ICFCA,
Dresden (Germany), LNCS 3874, pages 306–308. Springer, February 2006.

15. C. L. Lucchesi and S. L. Osborn. Candidate keys for relations. Journal of Computer
and System Science, 17(2):270–279, 1978.

16. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
17. K. Nehmé, P. Valtchev, M. H. Rouane, and R. Godin. On computing the minimal

generator family for concept lattices and icebergs. In B. Ganter and R. Godin,
editors, Proceedings of the 3rd ICFCA, Lens (France), LNCS 3403, pages 192–207.
Springer, 2005.

18. S. L. Osborn. Normal Forms for Relational Data Bases. PhD thesis, University of
Waterloo, Canada, 1977.

19. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
20. S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to

#P. Theoretical Computer Science, 100(1):205–221, 1992.
21. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189–201, 1979.
22. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM

Journal on Computing, 8(3):410–421, 1979.
23. P. Valtchev, R. Missaoui, and R. Godin. Formal concept analysis for knowledge dis-

covery and data mining: The new challenges. In P. W. Eklund, editor, Proceedings
2nd ICFCA, LNCS 2961, pages 352–371. Springer, 2004.

