On the Complexity of
Unification and Disunification
in Commutative Idempotent Semigroups

Miki Hermann' and Phokion G. Kolaitis? *

! LORIA (CNRS), BP 239, 54506 Vandceuvre-lés-Nancy, France, hermann@loria.fr
2 Computer Science Department, University of California, Santa Cruz, CA 95064,
U.S.A., kolaitis@cse.ucsc.edu

Abstract. We analyze the computational complexity of elementary uni-
fication and disunification problems for the equational theory ACI of
commutative idempotent semigroups. From earlier work, it was known
that the decision problem for elementary ACI-unification is solvable in
polynomial time. We show that this problem is inherently sequential
by establishing that it is complete for polynomial time (P-complete)
via logarithmic-space reductions. We also investigate the decision prob-
lem and the counting problem for elementary ACI-matching and observe
that the former is solvable in logarithmic space, but the latter is #P-
complete. After this, we analyze the computational complexity of the
decision problem for elementary ground ACI-disunification. Finally, we
study the computational complexity of a restricted version of elementary
ACI-matching, which arises naturally as a set-term matching problem in
the context of the logic data language LLDL. In both cases, we delineate
the boundary between polynomial-time solvability and NP-hardness by
taking into account two parameters, the number of free constants and
the number of disequations or equations.

1 Introduction and Summary of Results

Among all equational theories studied in the context of unification and auto-
mated deduction, the equational theory AC of commutative semigroups is un-
doubtedly the one that has attracted the most attention. There are many appli-
cations, however, in which the operators at hand may satisfy other equational
axioms 1n addition to associativity A and commutativity C. For this reason,
various extensions of AC have also been examined. A particularly natural and
useful such extension is the equational theory ACI of commutative idempotent
semigroups, which augments AC with the idempotence axiom It (Vi) (z %z = z).
ACIT provides perhaps the simplest way to consider finite sets of objects that are
represented by free constants, without being hampered by the drawbacks of a
full Set datatype specification. Moreover, simpler set constraints can be treated
by considering unification problems in commutative idempotent semigroups.

* Research of this author was partially supported by NSF Grant CCR-9610257.

The computational complexity of general ACI-matching and general ACI-
unification (that is, the terms to be unified or matched may contain both free
function and free constant symbols) was investigated by Kapur and Naren-
dran [KIN86,KN92], who established that these decision problems are NP-com-
plete. In contrast, they also proved that elementary ACI-unification with a finite
number of free constants is solvable in polynomial time [KN92]. More recently,
Narendran [Nar96] showed that ground elementary ACTU-disunification is NP-
hard, where ACIU is the extension of ACI with a unit element.

In this paper, we investigate further the computational complexity of el-
ementary ACl-unification and ACI-disunification with a finite number of free
constants. First, we establish that elementary ACI-unification with at least two
free constants is a P-hard problem, which means that every decision problem
solvable in polynomial time can be reduced to elementary ACI-unification with
two free constants via some logarithmic-space reduction. This complements the
aforementioned result of Kapur and Narendran [KN92] stating that elementary
ACI-unification with a finite number of free constants is solvable in polyno-
mial time. Moreover, it suggests strongly that elementary ACI-unification is
inherently sequential and, thus, lacks “fast parallel” algorithms (see [GHR95]).
We also investigate the decision problem and the counting problem for elemen-
tary ACI-matching, where the latter is the problem of finding the number of
minimal complete ACI-matchers of a given finite system of equations between
terms. In [HK95a], we introduced counting problems in equational matching
and embarked on a study of their computational complexity as a way to obtain
lower bounds on the performance of algorithms for finding minimal complete
sets of matchers. Here, we observe that the decision problem for ACI-matching
is solvable in LOGSPACE, but the counting problem for ACI-matching is #P-
complete. Since #P-complete problems are considered to be highly intractable
(see [Joh90,Pap94]), this shows a dramatic difference in computational complex-
ity between a decision problem in equational matching and its corresponding
counting problem. It should be noted that Baader and Biittner [BB88] designed
an algorithm for finding a minimal complete set of elementary ACI-unifiers of a
single equation between two terms. They also computed explicitly the cardinality
of this minimal set and pointed out that 1t can be an “enormous number”.

After this, we analyze the computational complexity of the decision problem
for elementary ground ACI-disunification. We delineate the boundary between
polynomial-time solvability and NP-hardness by taking into account two param-
eters, the number of free constants and the number of disequations. Specifically,
we show that, when the number of disequations is fixed, the decision problem
for elementary ground ACI-disunification with any number of free constants is
solvable in polynomial time. In contrast, when the number of disequations is
unbounded, the decision problem for elementary ground ACI-disunification is
NP-hard, as long as at least two free constants are available (the latter result
was implicit in Narendran [Nar96]).

Finally, we investigate the computational complexity of a restricted version of
elementary ACI-matching, which arises naturally as a set-term matching prob-

lem in the context of the logic data language LDL. This problem asks: given a
system of elementary ACl-equations, does there exist an ACI-matcher such that
every variable is instantiated by a single constant? This restricted ACI-matching
problem has been introduced by Shmueli, Tsur, and Zaniolo [STZ92], and also
studied by Arni, Greco, and Sacca [AGS96] under the name bounded set-term
matching. Here, we show that restricted ACI-matching with two free constants
and an unbounded number of equations is NP-complete, but restricted ACI-
matching with a fixed number of free constants and a fixed number of equations
1s solvable in polynomial time.

2 Preliminaries

A signature F is a countable set of function and constant symbols. If A" is a
countable set of variables, then 7 (F, X') denotes the set of all terms over the
signature F and the variables in X'. A ground term is a term without variables.

An identity over F is a first-order sentence of the form (V1) ... (Ya,)({ = r),
where [and r are terms in 7 (F, X') with variables among z1, ..., z,. Every set
E of identities can be viewed as the set of equational arioms of an equational
theory Th(E) consisting of all identities over F that are logically implied by E.
By an abuse of terminology, we will often say the “equational theory E”, instead
of the “equational theory Th(E)”. The notation s =g t denotes that the identity
(V) ... (Van)(s = t) is a member of Th(E). We write 7 (F,X)/=g to denote
the term algebra modulo the equational theory E. Similarly, 7 (F)/=g denotes
the ground term algebra modulo E, which is also the initial algebra of E.

An E-unification problem is a finite set I' of equations s = ¢ between terms
from T(F,X). A solution (or a unifier) of a unification problem I' is a substi-
tution p such that sp =g tp for every equation s = ¢ in ', which means that
the system of equations in I' has a solution in the term algebra 7 (F,X)/=k.
Since solutions are closed under instantiations of variables by arbitrary terms,
this is also equivalent to having a solution in the ground term algebra T (F)/=g
(and, consequently, equivalent to having a solution in every model of E). An
E-matching problem is an E-unification problem [I" such that for every equation
s =t 1in I the term ¢ is ground.

An E-disunification problem is a finite set A of equations s = ¢ and dis-
equations s’ # t’ between terms from 7 (F,X). A solution of a disunification
problem A is a substitution p such that sp =g tp for every equation s =¢ in A,
and s'p #g t'p for every disequation s’ £ t' in A. As before, this means that the
system of equations and disequations in A has a solution in the term algebra
T(F,X)/=g. It should be emphasized, however, that this is not always equiva-
lent to having a solution in the ground term algebra 7 (F)/=g, as solutions to
systems of disequations may not be closed under substitutions of variables by
ground terms. A ground solution of a disunification problem A is a solution p of
A in the ground term algebra 7 (F)/=g, that is, p is both a ground substitution
and a solution of A. A ground disunification problem is a disunification problem
in which only ground solutions are sought.

If E is a set of identities, then sig(E) is the set of all function and constant
symbols occurring in some member of E. From now on we assume that F\ sig(E)
consists of constants symbols only. Thus, the only symbols of the signature F
that do not occur in some member of E are free constants. In this case, we speak
of elementary E-unification and elementary E-disunification.

In the sequel, we will analyze the computational complexity of elementary
unification and disunification problems by taking into account the number of
equations, the number of disequations, and the number of free constants. For
this reason, we introduce the following notation. If & and m are two positive
integers, then E(k; m) is the collection of all elementary E-unification problems
I' with k equations such that F \ sig(E) consists of m free constants. We put

E(w;m) = U E(k;m) and E(w;w) = U E(k;m).

If & is a non-negative integer, and [and m are two positive integers, then
E(k,l;m) is the collection of all elementary E-disunification problems I' with
k equations, [disequations and such that F\ sig(E) consists of m free constants.
We also put

E(k,w;m) = U E(k,;m) and E(w,ljw)= U E(k,l;m),
1>1 Em>1

Our main focus will be on the equational theory ACI of commutative idem-
potent semigroups. For this theory, the signature F consists of free constants
and a binary function symbol % that 1s assumed to be associative, commutative,
and 1dempotent. Thus, the equational axioms of ACI are the identities

A: (Vo) (Vy) (V2) (zx(yxz) = (zxy)*z), C: (Ve)(Vy)(ery = yxz), I (Vo) (zxz = 2)

Note that if F = {*,¢1,...,¢m}, then the ground term algebra 7 (F)/=acr is
the commutative idempotent semigroup freely generated by c¢1,...,¢m.

We will also encounter briefly the equational theory ACIU of commutative
idempotent monoids. For this theory, the signature F contains also a constant
symbol 1, which is the unit element for *x. Thus, ACIU satisfies also the identity
U: (Va)(w*x1=2). If F = {*,c1,...,cm}, then the ground algebra 7 (F)/=ac1u

is the commutative idempotent monoid freely generated by ¢q, ..., ¢p.

3 Elementary ACI-unification and ACI-matching

Kapur and Narendran [KN92] showed that the decision problem for elementary
ACIT-unification with a finite number of free constants is solvable in polynomial
time, even when the signature F is part of the input. More precisely, consider
the following decision problem.

ELEMENTARY ACI-UNIFICATION: Given a finite set {c1, ..., ¢y} of free con-
stants and an elementary ACI(w;m)-unification problem I' over the signature
F ={x,¢1,...,¢m}, does I' have a solution?

Kapur and Narendran [KN92] showed that ELEMENTARY ACI-UNIFICA-
TION can be reduced in polynomial time to PROPOSITIONAL HORN SATIS-
FIABILITY, that is, to the problem: given a Horn' formula, does it have a satis-
fying truth assignment? It is well known that PROPOSITIONAL HORN SAT-
ISFTABILITY is solvable in polynomial time; as a matter of fact, it has a linear-
time algorithm [DG84]). Next, we describe Kapur and Naredran’s [KN92] re-
duction of ELEMENTARY ACI-UNIFICATION to PROPOSITIONAL HORN
SATISFIABILITY in some detail, since it will be of interest to us in the sequel.

Assume that we are given a set C' of m free constants and an elementary
ACI(w; m)-unification problem I'. Let X and &; be the sets of variables occur-
ring in s and ¢ respectively. For every given free constant ¢ and every variable
z € X;UX;, we introduce a propositional variable Py .; intuitively, Py . expresses
the fact that the free constant ¢ does not occur in the value of the solution for
the variable x. For every equation s = ¢ in I', we form a set @(s,t) of proposi-
tional Horn clauses asserting that a free constant occurs in the left-hand side of
the solved equation if and only if it occurs in the right-hand side of the solved
equation. Formally, the Horn clauses in the set ©(s,t) are obtained as follows.

— Let ¢ be a free constant that occurs in s, but does not occur in ¢. If X, # 0, we
introduce the Horn clause (\/xeXt =P,). If Xy = 0, we conclude immediately
that I" is not ACI-unifiable, since s = ¢ is not ACl-unifiable.

— Let ¢ be a free constant that occurs in ¢, but does not occur in s. If X; # 0, we
introduce the Horn clause (\/xeXs =P,). If X, = 0, we conclude immediately
that I" is not ACI-unifiable, since s = ¢ is not ACl-unifiable.

— Let ¢ be a free constant that does not occur in the equation s = t. For every
variable x € X, we introduce the Horn clause (/\yEXt Py. D Py.) and, for
every variable y € X;, we introduce the Horn clause (/\xeXs Poe DPy.). If
A = 0, then the first clause is the unit clause Py .. Similarly, if X; = (), then
the second clause is the unit clause Py ..

— Finally, for every variable z occurring in some equation in I', we introduce
the Horn clause (\/cec - Py,) to ensure that the value of the solution for
contains at least one free constant.

Let ©(I') = U(s:t)E* O(s,t). It is now quite straightforward to verify that the
ACI(w; m)-unification problem I' has a solution if and only if the set ©(I") of
Horn clauses is satisfiable. Note that @(I") has size polynomial in m and the size
of I'; in fact, the size of O(I") is O(mkr?), where k is the number of equations
in I" and r 1s the maximum size of an equation in I". Thus, the decision problem
for elementary ACI-unification is solvable in polynomial time.

Once an algorithmic problem has been shown to be solvable in polynomial
time (and, hence, tractable from the point of view of sequential computation),
it 1s natural to ask whether i1t can also be solved “fast in parallel”. To formalize
this concept, researchers in computational complexity introduced and studied
in depth the class NC of all decision problems that can be solved in polylog-

L' A Horn formula is a conjunction of propositional clauses each of which has at most
one positive literal.

arithmic time using polynomially many processors. It is easy to see that NC
contains LOGSPACE and, in turn, is contained in P, where LOGSPACE is the
class of problems solvable by a deterministic Turing machine using a logarithmic
amount of space in its work tape, and P is the class of problems solvable by
a deterministic Turing machine in polynomial time. Although it is widely be-

lieved that NC is properly contained in P, the question NC ~ P remains one of
the outstanding open problems of computational complexity. Starting with the
work of Cook [Coo74], researchers identified numerous decision problems that
are candidates to manifesting the separation between NC and P. These problems,
which are known as P-complete problems, are the “hardest” members of P, in
the sense that every problem in P can be reduced to them via some logarithmic-
space reduction. Establishing that a certain problem is P-complete is viewed as
providing strong evidence that this problem is not in NC and, hence, it is inher-
ently sequential. Examples of P-complete problems of relevance to automated
deduction include UNIT RESOLUTION [JL76] and SYNTACTIC UNIFICA-
TION [DKM84] (a comprehensive treatment of the theory of P-completeness and
a catalogue of P-complete problems can be found in the monograph [GHR95]).
Our first result in this paper shows that ELEMENTARY ACI-UNIFICATION

yields a new paradigm of a P-complete problem.

Theorem 1. ACI(w;2)-unification is P-complete. In words, the decision prob-
lem for elementary ACI-unification with two free constants is P-complete.

Proof. Plaisted [Pla84] showed that PROPOSITIONAL HORN SATISFIABIL-
ITY 1s a P-complete problem; in fact, he showed that the problem remains
P-complete even when restricted to inputs in which each clause has at most
three literals. We now present a logarithmic-space reduction of this restricted
problem to the decision problem for ACI(w; 2)-unification.

Let a and b be two free constants. Given a set S of propositional Horn clauses
each of which has at most three literals, we generate the following elementary
ACT-unification problem I'(S) in the free constants a and b.

1. For every propositional variable X occurring in some clause in S, we intro-

duce a variable x € X and the equation x xa = a * b.

2. For every unit clause X in .S, we introduce the equation # = b.

3. For every clause in S of the form (=X VY V—=7), we introduce the equation
rTxy*xz=axb.

4. For every clause of the form (=X V =Y V Z), we introduce the equation

TRYKZ =X KY.

5. For every clause of the form (=X V 7), we introduce the equation z x z = .

We now claim that the set S has a satisfying assignment if and only of the ele-
mentary ACI-unification problem I'(.S) has a solution. If & is a truth assignment
that satisfies every clause in .S, then it is easy to see that the substitution

_[b ifh(X)=TRUE
Y7= axbif h(X) = FALSE

is a solution of the elementary ACI-unification problem I'(S). Conversely, sup-
pose that o is a solution of I'(S). For every variable x occurring in I'(.S), it must
be the case that xo = b or o = a * b, since the equations in group (1) above
imply that zo % @ =ac1 a * b. It is now easy to verify that the truth assignment

TRUE if zo =5
h(X) = {FALSE fzo=axb

satisfies every clause in S. For example, a clause of the form (=X V=YV 7) must
be satisfied by h, since, otherwise, it would be the case that xoc = b, yo = b and
zo = a x b, which implies that ¢ is not a solution of the equation x xy* 2z = x * y
associated with this clause. a

The preceding reduction of PROPOSITIONAL HORN SATISFIABILITY
to ELEMENTARY ACI-UNIFICATION made use of two free constants in the
signature. It should be noted that the presence of at least two free constants is
indispensable in obtaining this P-hardness result. Indeed, the decision problem
for ACI(w; 1)-unification is trivial, as the constant substitution Az.a is a solution
of every elementary ACI-unification problem in which a 1s the only free constant.

Let AC be the equational theory of commutative semigroups. It is well
known that at the level of the decision problem elementary AC-matching and
elementary AC-unification have the same computational complexity, namely
each of these two problems is NP-complete (see [BKN87,KN92]). Moreover,
the same holds true for the equational theory ACU of commutative monoids
(see [KN92,HK95b]). In contrast to the above, we observe next that the de-
cision problem for elementary ACI-matching is in LOGSPACE and, thus, of
lower computational complexity than the decision problem for elementary ACI-
unification (unless P collapses to LOGSPACE, which is considered extremely
unlikely). We also examine the computational complexity of elementary #ACI-
matching, which is the following counting problem: given an elementary ACI-
matching problem [, find the cardinality of the the minimal complete set of
ACT-matchers of I'. Valiant [Val79a,Val79b] developed a complexity theory of
counting and enumeration problems by introducing the class #P and identify-
ing problems that are complete for this class under parsimonious? reductions.
In our earlier papers [HK95a,HK95b], we initiated a systematic investigation
of the computational complexity of counting problems in equational matching
using concepts and results from the theory of #P-completeness. In particular,
we showed that the counting problem for elementary AC-matching, as well as
the counting problem for elementary ACU-matching, is #£P-complete. It should
be noted that a #P-completeness result indicates that the counting problem at
hand 1s highly intractable, in fact it suggests a higher level of intractability than
an NP-completeness result for the corresponding decision problem (for more on
this point see Johnson [Joh90] and Papadimitriou [Pap94]).

2 A parsimonious reduction is a polynomial-time reduction between two counting prob-
lems that preserves the number of the solutions of each instance.

Theorem 2. The decision problem for elementary ACl-matching is solvable in
logarithmic space, but the counting problem for elementary ACl-matching is #P-
complete, even when restricted to instances with just two free constants. Thus,
- ACI(w;w)-matching is in LOGSPACE;
- #ACI(w; 2)-matching is #P-complete.

Proof. Let I' be an arbitrary elementary ACI-matching problem, that is, for
every equation s = ¢ in I', the term ¢ is ground. Let S(I") be the set of Horn
clauses that results from the reduction of elementary ACI-unification to PROPO-
SITIONAL HORN SATISFIABILITY, as described in the beginning of this sec-
tion. An inspection of this reduction reveals that each clause in S(I") is either
a unit clause or a disjunction of negated propositional variables, since the set
A of variables of ¢ 1s empty. This special case of PROPOSITIONAL HORN
SATISFIABILITY is solvable in logarithmic space, as one needs only to verify
that, for every clause consisting of negated propositional variables, at least one
of 1ts propositional variables does not appear as a unit clause.

Next, we focus on elementary #ACI-matching. It is easy to see that this
counting problem is in #P (this follows also from more general results in [HK95a]).
For the lower bound, we have to show that #ACI(w;2)-matching is a #P-hard
problem. Consider the following counting problem:

#POSITIVE 2SAT: Given a propositional CNF formula ¢ such that each clause
is a disjunction of two propositional variables, find the number of satisfying truth
assignments of .

Although the underlying decision problem POSITIVE 2SAT is trivial, Valiant
showed in [Val79b] that the corresponding counting problem #POSITIVE 2SAT
is #P-hard. This is an extreme instance of an interesting phenomenon, first ob-
served by Valiant [Val79a], in which the counting version of an “easy” decision
problem may be “hard”. We now exhibit a parsimonious reduction of #POS-
ITIVE 2SAT to #ACI(w;2)-matching. Assume that a and b are two free con-
stants. Given a a positive 25AT propositional formula ¢, construct the following
ACT(w; 2)-matching problem I'(y):

— for every propositional variable X occurring in ¢, introduce a propositional

variable x and the equation = * a = a * b;

— for every clause (X VY') of ¢, introduce the equation z x y = a * b.
It is easy to check that there is a one-to-one correspondence between satisfying
truth assignments of ¢ and solutions of I'(y), since for every solution o of the
equation z ¥ a = a * b it must be the case that either xo = b or xo =axb. O

Two remarks are in order now.

1. The preceding Theorem 2 shows that elementary ACI-matching is an al-
gorithmic problem whose decision version is “easy”, but its counting version
is “hard”. Compare this with elementary AC-matching and elementary ACU-
matching for which the decision problem is NP-complete [BKN87] and the count-
ing problem is #P-complete [HK95a].

2. In proving that #ACI(w;2)-matching is a #P-hard problem, the num-
ber of equations used varied with the input. In the full paper, we show that

if the number of equations is fixed, then the counting problem for elementary
ACI-matching is solvable in polynomial time using a dynamic programming algo-
rithm. More formally, we can show that, for every two positive integers k and m,
the counting problem #ACI(k; m) is in the class FP of functions computable in
polynomial time. It should also be pointed out that Baader and Biittner [BB88]
obtained explicit expressions for the number of most general complete unifiers
of elementary ACI-unification problems consisting of a single equation.

The proofs of Theorems 1 and 2 can be adapted easily to obtain similar
results for elementary ACIU-unification and ACTU-matching. In fact, since a unit
element of % is available, a single free constant suffices to obtain the hardness
results in each case.

Theorem 3. The following statements are true for the equational theory ACIU
of commutative idempotent monoids.

— ACTU(w; 1)-unification is P-complete.

- ACTU(w;w)-matching is in LOGSPACE.

- #ACIU(w; 1)-matching is #P-complete.

4 Ground elementary ACI-disunification

Narendran [Nar96] studied the computational complexity of the equational the-
ory ACIUZ, which is the extension of ACIU with the equational axiom Z:
(Vo) (z % 0 = 0) asserting that % has a zero element 0. In particular, he showed
that ground elementary ACIUZ-disunification is NP-hard by exhibiting a reduc-
tion from 3SAT. An inspection of that proof shows that actually a stronger result
is established, namely that ground elementary ACIU-disunification with a single
free constant a is NP-complete. Moreover, Narendran [Nar96] commented in a
footnote that “A similar reduction will work also for the ACI case. There we
have to use two constants, say a and b, since we do not have the unit 1.” The
following result confirms that ground elementary ACI-disunification with two
free constants is NP-complete, although the reduction we use is not from 3SAT,
but from the problem NOT-ALL-EQUAL 3SAT, which asks: given a 3CNF for-
mula ¢, 1s there a truth assignment such that each clause has at least one true
literal and at least one false literal? (see [GJ79, page 259]).

Theorem 4. For every positive integer m > 2, ground ACI(0,w; m)-disunifica-
tion i1s NP-complete. In words, the decision problem for ground elementary ACI-
disunification with no equations and at least two free constants is NP-complete.

Proof. Membership in NP is obvious; in fact, even ground ACI(w, w;w)-disunifi-
cation is in NP, as it suffices to guess a ground substitution ¢ such that |zo| < m
for every variable z occurring in the given instance, where m is the number of
free constants occurring in the instance.

Let C' be a set of m free constants, m > 2, and let a and b two free constants
in C'. Given a 3CNF formula ¢ to be tested for NOT-ALL-EQUAL 3SAT, we
generate the following ACI(0,w; m)-disunification problem A(y).

— For every propositional variable X; occurring in ¢, we introduce two variables
z; and y;, and the following disequations. For every ground term ¢ different
than a * b and such that each free constant occurs at most once in ¢, we
introduce the disequation x; * y; # t. For every ground term ¢’ different
than a and b, and such that each free constant occurs at most once in ¢/, we
introduce the disequations x; # ¢’ and y; # 1.

— For every clause of ¢ of the form (X; V =X; V X,) and for every term ¢
different than a % b and such that each free constant occurs at most once
in ¢, we introduce the disequation ; * y; * &, # . In a similar manner, we
introduce disequations for clauses of the other possible forms. For example, if
a clause is of the form (=X; V=X, V X,), then we introduce the disequations
Yi kY ok &y £ 1

The first group of disequations enforces the following property on every ground
substitution o that is a solution of A(¢p) in the commutative idempotent semi-
group freely generated by the constants in C: for every propositional variable
X; occurring in ¢, either #;0 = a Ay;0 = b or ;0 = b A y;o0 = a. In turn,
this property implies that for every disequation in the second group at least one
variable takes value a and at least one variable takes value b. Thus, there is a
truth assignment such that every clause of ¢ has at least one true and at least
one false literal if and only if A(p) has a solution in the commutative idempotent
semigroup freely generated by the constants in C'. a

In the above NP-hardness proof, both free constants a« and b were used,
moreover, the number of disequations that were introduced varied with the size
of input. It turns out that if either of these conditions is relaxed, then ground
elementary ACI-disunification becomes tractable. First, note that ground ele-
mentary ACI-disunification with a single free constant a is trivial, since in this
case the ground term algebra 7 ({, a})/=acr is the singleton {a}. Next, we will
show that ground elementary ACI-disunification with a fixed number of disequa-
tions is solvable in polynomial time, even when an arbitrary number of equations
is present and an arbitrary number of free constants is available. For this, we
need to establish an auxiliary result first.

Lemma 5. For every positive integer k, there 1s a polynomial-time algorithm
for solving the following decision problem: given a propositional Horn formula 6
and k propositional formulas 1, ..., ¥, each in disjunctive normal form, is the
formula 8 Ay A -+ Ay satisfiable?

Proof. Let 8, 41, ...,y be an instance of this problem of size s. Without loss of
generality, we may assume that there is a positive integer n < s such that each
1; consists of exactly n disjuncts. Thus, for every ¢ < k, ¥y = xi1 V -+ V Xin,
where each y;; is a conjunction of at most s literals. By distributing conjunctions
over disjunctions, we have that

YL AN = \/ X1ji A A Xk -
(1,edn) €41, }E

It follows that the formula 6 A i1 A --- A 9y is satisfiable if and only if there is
a k-tuple (ji,...,jx) € {1,...,n}* such that the formula 0 A x1j, A+ A Xkj, 18
satisfiable. Since each of the n* formulas 8 A X1j; A -+ A Xkj, 18 a propositional
Horn formula, we can apply the polynomial-time algorithm for propositional
Horn satisfiability n* times and, thus, determine in polynomial time whether
the formula 6 A 1 A - - - Aty 1s satisfiable. a

Theorem 6. For every positive integer k, ground ACI(w, k;w)-disunification is
m P. In words, ground elementary disunification with k disequations and an
arbitrary number of free constants is solvable in polynomial time.

Proof. Fix a positive integer k. Let A be a given ACI(w, k;w)-disunification
problem. Thus, A = I'U{p1 # q1,...,pk # qx}, where I' is an arbitrary ele-
mentary ACI-unification problem. Recall Kapur and Narendran’s [KN92] reduc-
tion of elementary ACI-unification to Propositional Horn Satisfiability, which
was described in Section 3. In particular, recall that for every equation [= »
this reduction generates a set @(l,r) of Horn clauses. Let ¢ be the Horn for-
mula /\(s:t)E* O(s,t). For every disequation p; # ¢;, 1 < i < k, consider the set
O(pi, ¢;) of Horn clauses generated when the reduction is applied to the equation
pi = q;. For every i < k, let ¢; be the conjunction of all Horn clauses in @ (p;, ¢;),
and let 4; be the formulain digjunctive normal form that is obtained from —¢; us-
ing de Morgan’s laws. It is now easy to verify that the ACI(w, k;w)-disunification
problem A has a ground solution if and only if the formula 8 A ¥y A - A Yy 18
satisfiable. Note that the size of this formula is polynomial in the size of A. We
can now apply Lemma 5 and obtain the desired polynomial-time algorithm. O

5 Restricted ACI-matching

Set-matching is an important special case of general ACI-matching; its com-
putational complexity has been investigated by Kapur and Narendran [KN86],
who showed that this problem is NP-complete. Set-matching, as well as cer-
tain variants of it, arise naturally in deductive database systems and in logic-
based languages that support complex objects. Shmueli et al. [STZ92] studied set
matching problems in the context of LDL, a Horn-clause programming language
for deductive database systems. The semantics of LDL require that set-terms
consisting of variables and constants be matched in such a way that variables
are instantiated only by individual constants. In essence, the problems examined
by Shmueli et al. [STZ92] can be formalized as follows: given an elementary ACI-
matching problem [is there a a solution p of I' such that, for every variable
z occuring in I, the value zp is equal to one of the constant symbols occurring
in I'? In what follows, we call such problems restricted ACI-matching problems.
Let restricted ACI(k, m)-matching be the class of restricted ACI-matching prob-
lems with & equations and m free constants. The classes restricted ACI(w, m)-
matching, restricted ACI(k,w)-matching, and restricted ACI{w, w)-matching are
defined in an analogous way. Shmueli et al. [STZ92] gave an exponential-time
algorithm for restricted ACI(w, w)-matching. After this, Arni et al. [AGS96] con-
sidered bounded set-term matching, which, in our terminology, is the same as

restricted ACI(1,w)-matching, that is, restricted ACI-matching with a single
equation, but no a priori bound on the number of free constants. An instance
of this problem can be written as XD = (', where X is a set of variables, '
and D are sets of free constants, each set stands for the “product” of its mem-
bers, and the concatenation X D denotes the union X U D. Arni et al. [AGS96]
pointed out that XC' = D has a restricted ACI-matcher if and only if ¢' C D
and |X| > |D\ C|. This gives a simple polynomial-time test for the decision
problem for restricted ACI(1,w)-matching. Moreover, Arni et al. [AGS96] gave
an explicit formula for the number of restricted ACI-matchers of a single equa-
tion, from which it follows that restricted #ACI(1,w)-matching is in the class
FP of functions computable in polynomial time.

In the sequel, we analyze the computational complexity of restricted ACI-
matching by considering once again the interplay between the number of equa-
tions and the number of constants. We first observe that a slight modification
of the proof of Theorem 4 shows that restricted ACI-matching with no a priori
bound on the number of equations is intractable, even if only two free constants
are available. This should be contrasted with the low complexity of the decision
problem for ACI-matching (cf. Theorem 2).

Theorem 7. Restricted ACI(w;2)-matching is a NP-complete problem and re-
stricted #ACI(w; 2)-matching is a #P-complete problem.

Proof. Since the upper bounds are obvious, we focus on establishing NP-hardness
and #P-hardness. For this, we give a parsimonious reduction of NOT-ALL-
EQUAL 3SAT to restricted ACI(w, 2)-matching. For every propositional variable
X; in a given 3CNF formula ¢, we introduce two variables z; and y;, and the
equation x; * y; = a * b, where a and b are free constants. For each clause of ¢
of the form (X; V=X, V X,), we introduce the equation z; * y; * 2, = a*b. We
introduce equations for clauses of the other possible forms in a similar manner.
Then ¢ has an assignment that falsifies at least one literal in every clause if and
only if the associated system of equations has a restricted ACI-matcher. a

Next, we consider restricted ACI-matching with a fixed number of equations.
The main result of this section 1s that for any two positive integers k£ and m,
the decision problem for restricted ACI(k, m)-matching is solvable in polynomial
time. Note that restricted ACI(k, m)-matching can be reduced easily to ground
ACI-disunification, but at the expense of introducing an unbounded number of
disequations (and so Theorem 6 can not be used). Indeed, for every variable »
of a given restricted ACI(k, m)-matching problem with constants ¢y, ..., ¢y, we
introduce 2™ — m — 1 new disequations of the form # # ¢;, * -+ * ¢;,, where
2 <r < m,and ¢;; # ¢, for all j # [; these disequations capture the re-
striction & € {e1,...,¢em}. It follows that every restricted ACI(k, m)-matching
problem with n variables can be reduced to a ground ACI(k, n(2™ —m—1); m)-
disunification problem. This approach, however, reduces restricted ACI(k, m)-
matching to ground ACI(k,w;m)-disunification, which is NP-complete (recall
Theorem 4). Thus, a different method is needed to establish the tractability of
restricted ACI(k, m)-matching.

Fix two positive integers k and m. Let I" be a restricted ACI(k, m)-matching
problem with free constants ¢1, ..., ¢, and variables x1, ..., z,. Each equation
of I' can be written as XC = D, where X is a subset of {&1,...,2,}, and C
and D are subsets of {c1,...,¢m}. For every i < n, let C(z;) be the set of all
constants that occur in the right-hand side of every equation of I" in which the
variable #; occurs (that is, C'(x;) is the intersection of the sets D such that z;
occurs in some equation XC = D of I'). Our polynomial-time algorithm for
restricted ACI(k, m)-matching will examine the cardinalities of the sets C'(x;),
1 <7 < n. Note that if there is a variable z; such that C(z;) = @, then I" has
no restricted ACI-matchers. On the other hand, if C'(z;) is a singleton for some
variable z;, then we can eliminate z; from I' by replacing it with the unique
member of C'(z;). Finally, it may be the case that |C'(z;)| > 2, for every variable
z;. The next lemma shows that in this case restricted ACI(k.m)-matching can
be reduced to restricted ACI(k, m — 1)-matching. In what follows, we will use
the notation XD = ¢;C to indicate that the right-hand side of this equation is
the union {¢;} UC, where ¢; &€ C.

Lemma 8. Assume that I' is a restricted ACI(k, m)-matching problem with free
constants cq,...,cy and variables xq,...,x, such that each equation of I' has
a restricted ACI-matcher and |C(x;)| > 2 for every i < n. Fiz a free constant
¢; and assume that X1C1 = ¢; Dy, ..., X, C, = ¢; D, 1s a list of all equations of
I" an which ¢; occurs in the right-hand side, but not in the left-hand side of the
equation. Then I' has a restricted ACI-matcher if and only if there is a sequence
Z1, ..., 2r of (not necessarily distinct) variables with the following properties:

1. Foreveryi < r, the variable z; occurs in the equation X; D; = ¢; D;; moreover
z; can occur only in equations wn which c; occurs.

2. The system I obtained from I' by eliminating all occurrences of the free
constant c; and of the variables 21, ..., 2, has a restricted ACl-matcher.

Proof. If: Take such a sequence z1,...,z, of variables and a restricted ACI-
matcher p* of I'*. Extend p# to a substitution p on the variables of I" by assigning
¢; as the value of z;p, 1 < ¢ <. Then p is a restricted ACl-matcher of I".

Only If: Suppose that p is a restricted ACI-matcher of I'. Then, for every
t < r, there exists a variable z; occurring in the equation X;C; = ¢; D; and such
that z;p = c;. It is clear that z; can not occur in any equation of I" in which
¢; does not occur. Consider now the system ™ obtained from I" by eliminating
all occurrences of the free constant ¢; and the variables z1,..., 2. Define a
substitution p* on the variables of I'* as follows. If zp # ¢;, then zp* = zp. If
zp = ¢j, then put zp* = ¢;, where ¢; is a free constant that is different than c;
and occurs in the right-hand side of every equation of I" in which z occurs. Note
that such a free constant exists, because |C'(z)| > 2. It is now easy to verify that
p" is a restricted ACI-matcher of /™. a

Theorem 9. Let k and m be two positive integers. The decision problem for
restricted ACI(k, m)-matching is solvable in polynomial time.

Proof. Let Propagate-and-Split(A) be the following procedure, where A is a
system with at most k equations and at most m free constants cy,...,cp.

1. If only one free constant occurs in A, then stop and report that A has a
restricted ACI-matcher.

2. 1If one of the equations of A does not have a restricted ACI-matcher or if
C(z;) = 0 for one of the variables x; of A, then stop and report that A does not
have a restricted ACI-matcher.

3. Replace every variable x; such that |C'(z;)| = 1 by the unique member of
the singleton C'(z;). Let A’ be the resulting system.

4. Let j be the smallest integer such that the free constant ¢; occurs in A’
Consider all equations X1C1 =¢; D1, ..., X, Cr = ¢; D, of A" in which ¢; occurs
in the right-hand side, but not in the left-hand side of the equation. For every
sequence z1, ..., z; of variables such that each z; occurs in the equation X;C; =
¢; D;, but does not occur in any equation in which ¢; does not occur, generate
the system A’(¢;, 21, ..., z1) obtained from A’ by eliminating all occurrences of
the free constant ¢; and the variables z1,.. ., 2.

Note that each of the first three steps takes time O(n), where n is the number
of variables of A. Note also that, after the last step has been completed, at most
n* systems of the form Alej, z1,. .., 21) are generated; moreover, the number of
constants of each such system is one less than the number of constants of A.

The above procedure Propagate-and-Split gives rise to a polynomial-time
algorithm for restricted ACI(k, m)-matching. Let I" be a restricted ACI(k.m)-
matching problem. Apply first the procedure to I", then to each system generated
in the last step, and continue this way until either a restricted ACI-matcher has
been found or there are no systems to which the procedure can be applied. Since
each application of the last step eliminates a free constant, at most n*™ systems
have to be considered, where n is the number of variables of I". Thus, the running
time of the algorithm is O(n*™*1). The correctness of the algorithm follows from
the preceding Lemma 8 and the fact that the systems generated by the third
step of the procedure satisfy the hypotheses of Lemma 8. a

Note that the running time of the above algorithm for restricted ACI(k, m)-
matching depends exponentially on the number m of free constants. It remains
an open problem to determine whether restricted ACI(k,w)-matching can be
solved in polynomial time.

6 Concluding Remarks

Combined with the work of Kapur and Narendran [KN92] and Narendran [Nar96],
the results presented here provide a fairly complete picture of the computational
complexity of elementary ACI-unification and elementary ACI-disunification.
Moreover, they shed light on the computational complexity of restricted ACI-
matching, a class of constrained set-term matching problems that arose in the
development of deductive database systems [STZ92,AGS96].

We conclude by pointing out that in the full version of the paper we ven-
ture beyond ACI-unification and ACI-disunification by considering the full first-

order theory of free commutative idempotent semigroups with m generators,
m > 2. We analyze the computational complexity of this theory and show it to
be PSPACE-complete; moreover, we study the complexity of fragments of this
theory obtained by restricting the quantifier alternation or the quantifier-free
part of first-order sentences.

References

[AGS96] N. Arni, S. Greco, and D. Sacca. Matching of bounded set terms in the logic
language LDLTY. J. Logic Prog., 27(1):73-87, 1996.

[BB88] F.Baader and W. Biittner. Unification in commutative idempotent monoids.
Theoretical Comp. Sci., 56(3):345-353, 1988.

[BKN87] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems.
J. Symb. Comp., 3:203-216, 1987.

[Coo74] S.A. Cook. An observation on time-storage trade off. J. of Comp. and System
Sci., 9(3):308-316, 1974.

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satis-
fiability of propositional Horn formulae. J. Logic Prog., 1(3):267-284, 1984.

[DKM84] C. Dwork, P.C. Kanellakis, and J.C. Mitchell. On the sequential nature of
unification. J. Logic Prog., 1:35-50, 1984.

[GHR95] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation:
P-completeness theory. Oxford University Press, New York, 1995.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Co, 1979.

[HK95a] M. Hermann and P.G. Kolaitis. The complexity of counting problems in
equational matching. J. Symb. Comp., 20(3):343-362, 1995.

[HK95b] M. Hermann and P.G. Kolaitis. Computational complexity of simultaneous
elementary matching problems. In J. Wiedermann and P. Hajek, eds, Proc.
20th MFCS, Prague (Czech Republic), LNCS 969, pp 359-370. Springer, 1995.

[JL76] N.D. Jones and W.T. Laaser. Complete problems for deterministic polyno-
mial time. Theoretical Comp. Sci., 3(1):105-117, 1976.

[Joh90] D.S. Johmson. A catalog of complexity classes. In J. van Leeuwen, ed,
Handbook of Theoretical Computer Science, Volume A, chapter 2, pp 67-161.
North-Holland, Amsterdam, 1990.

[KN86] D. Kapur and P. Narendran. NP-completeness of the set unification and
matching problems. In J.H. Siekmann, ed, Proc. 8th CADE, Osford (Eng-
land), LNCS 230, pp 489-495. Springer, 1986.

[KN92] D. Kapur and P. Narendran. Complexity of unification problems with
associative-commutative operators. J. of Autom. Reasoning, 9:261-288, 1992.

[Nar96] P. Narendran. Unification modulo ACI+140. Fundamenta Informaticae,
25(1):49-57, 1996.

[Pap94] C.H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[Pla84] D.A. Plaisted. Complete problems in the first-order predicate calculus. J. of
Comp. and System Sci., 29(1):8-35, 1984.

[STZ92] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of set terms in the logic
data language (LDL). J. Logic Prog., 12(1 & 2):89-119, 1992.

[Val79a] L.G. Valiant. The complexity of computing the permanent. Theoretical
Comp. Sct., 8:189-201, 1979.

[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems. STAM
J. on Comp., 8(3):410-421, 1979.

