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The computational complexity of general ACI-matching and general ACI-uni�cation (that is, the terms to be uni�ed or matched may contain both freefunction and free constant symbols) was investigated by Kapur and Naren-dran [KN86,KN92], who established that these decision problems are NP-com-plete. In contrast, they also proved that elementary ACI-uni�cation with a �nitenumber of free constants is solvable in polynomial time [KN92]. More recently,Narendran [Nar96] showed that ground elementary ACIU-disuni�cation is NP-hard, where ACIU is the extension of ACI with a unit element.In this paper, we investigate further the computational complexity of el-ementary ACI-uni�cation and ACI-disuni�cation with a �nite number of freeconstants. First, we establish that elementary ACI-uni�cation with at least twofree constants is a P-hard problem, which means that every decision problemsolvable in polynomial time can be reduced to elementary ACI-uni�cation withtwo free constants via some logarithmic-space reduction. This complements theaforementioned result of Kapur and Narendran [KN92] stating that elementaryACI-uni�cation with a �nite number of free constants is solvable in polyno-mial time. Moreover, it suggests strongly that elementary ACI-uni�cation isinherently sequential and, thus, lacks \fast parallel" algorithms (see [GHR95]).We also investigate the decision problem and the counting problem for elemen-tary ACI-matching, where the latter is the problem of �nding the number ofminimal complete ACI-matchers of a given �nite system of equations betweenterms. In [HK95a], we introduced counting problems in equational matchingand embarked on a study of their computational complexity as a way to obtainlower bounds on the performance of algorithms for �nding minimal completesets of matchers. Here, we observe that the decision problem for ACI-matchingis solvable in LOGSPACE, but the counting problem for ACI-matching is #P-complete. Since #P-complete problems are considered to be highly intractable(see [Joh90,Pap94]), this shows a dramatic di�erence in computational complex-ity between a decision problem in equational matching and its correspondingcounting problem. It should be noted that Baader and B�uttner [BB88] designedan algorithm for �nding a minimal complete set of elementary ACI-uni�ers of asingle equation between two terms. They also computed explicitly the cardinalityof this minimal set and pointed out that it can be an \enormous number".After this, we analyze the computational complexity of the decision problemfor elementary ground ACI-disuni�cation. We delineate the boundary betweenpolynomial-time solvability and NP-hardness by taking into account two param-eters, the number of free constants and the number of disequations. Speci�cally,we show that, when the number of disequations is �xed, the decision problemfor elementary ground ACI-disuni�cation with any number of free constants issolvable in polynomial time. In contrast, when the number of disequations isunbounded, the decision problem for elementary ground ACI-disuni�cation isNP-hard, as long as at least two free constants are available (the latter resultwas implicit in Narendran [Nar96]).Finally, we investigate the computational complexity of a restricted version ofelementary ACI-matching, which arises naturally as a set-term matching prob-



lem in the context of the logic data language LDL. This problem asks: given asystem of elementary ACI-equations, does there exist an ACI-matcher such thatevery variable is instantiated by a single constant? This restricted ACI-matchingproblem has been introduced by Shmueli, Tsur, and Zaniolo [STZ92], and alsostudied by Arni, Greco, and Sacc�a [AGS96] under the name bounded set-termmatching. Here, we show that restricted ACI-matching with two free constantsand an unbounded number of equations is NP-complete, but restricted ACI-matching with a �xed number of free constants and a �xed number of equationsis solvable in polynomial time.2 PreliminariesA signature F is a countable set of function and constant symbols. If X is acountable set of variables, then T (F ;X ) denotes the set of all terms over thesignature F and the variables in X . A ground term is a term without variables.An identity over F is a �rst-order sentence of the form (8x1) : : : (8xn)(l = r),where l and r are terms in T (F ;X ) with variables among x1; : : : ; xn. Every setE of identities can be viewed as the set of equational axioms of an equationaltheory Th(E) consisting of all identities over F that are logically implied by E.By an abuse of terminology, we will often say the \equational theory E", insteadof the \equational theory Th(E)". The notation s =E t denotes that the identity(8x1) : : : (8xn)(s = t) is a member of Th(E). We write T (F ;X )==E to denotethe term algebra modulo the equational theory E. Similarly, T (F)==E denotesthe ground term algebra modulo E, which is also the initial algebra of E.An E-uni�cation problem is a �nite set � of equations s = t between termsfrom T (F ;X ). A solution (or a uni�er) of a uni�cation problem � is a substi-tution � such that s� =E t� for every equation s = t in � , which means thatthe system of equations in � has a solution in the term algebra T (F ;X )==E.Since solutions are closed under instantiations of variables by arbitrary terms,this is also equivalent to having a solution in the ground term algebra T (F)==E(and, consequently, equivalent to having a solution in every model of E). AnE-matching problem is an E-uni�cation problem � such that for every equations = t in � the term t is ground.An E-disuni�cation problem is a �nite set � of equations s = t and dis-equations s0 6= t0 between terms from T (F ;X ). A solution of a disuni�cationproblem � is a substitution � such that s� =E t� for every equation s = t in �,and s0� 6=E t0� for every disequation s0 6= t0 in �. As before, this means that thesystem of equations and disequations in � has a solution in the term algebraT (F ;X )==E. It should be emphasized, however, that this is not always equiva-lent to having a solution in the ground term algebra T (F)==E, as solutions tosystems of disequations may not be closed under substitutions of variables byground terms. A ground solution of a disuni�cation problem � is a solution � of� in the ground term algebra T (F)==E, that is, � is both a ground substitutionand a solution of �. A ground disuni�cation problem is a disuni�cation problemin which only ground solutions are sought.



If E is a set of identities, then sig(E) is the set of all function and constantsymbols occurring in some member of E. From now on we assume that Fnsig(E)consists of constants symbols only. Thus, the only symbols of the signature Fthat do not occur in some member of E are free constants. In this case, we speakof elementary E-uni�cation and elementary E-disuni�cation.In the sequel, we will analyze the computational complexity of elementaryuni�cation and disuni�cation problems by taking into account the number ofequations, the number of disequations, and the number of free constants. Forthis reason, we introduce the following notation. If k and m are two positiveintegers, then E(k;m) is the collection of all elementary E-uni�cation problems� with k equations such that F n sig(E) consists of m free constants. We putE(!;m) = [k�1E(k;m) and E(!;!) = [k;m�1E(k;m):If k is a non-negative integer, and l and m are two positive integers, thenE(k; l;m) is the collection of all elementary E-disuni�cation problems � withk equations, l disequations and such that F nsig(E) consists of m free constants.We also putE(k; !;m) = [l�1E(k; l;m) and E(!; l;!) = [k;m�1E(k; l;m);Our main focus will be on the equational theory ACI of commutative idem-potent semigroups. For this theory, the signature F consists of free constantsand a binary function symbol � that is assumed to be associative, commutative,and idempotent. Thus, the equational axioms of ACI are the identitiesA: (8x)(8y)(8z)(x�(y�z) = (x�y)�z); C: (8x)(8y)(x�y = y�x); I: (8x)(x�x = x)Note that if F = f�; c1; : : : ; cmg, then the ground term algebra T (F)==ACI isthe commutative idempotent semigroup freely generated by c1; : : : ; cm.We will also encounter briey the equational theory ACIU of commutativeidempotent monoids. For this theory, the signature F contains also a constantsymbol 1, which is the unit element for �. Thus, ACIU satis�es also the identityU: (8x)(x�1 = x). If F = f�; c1; : : : ; cmg, then the ground algebra T (F)==ACIUis the commutative idempotent monoid freely generated by c1; : : : ; cm.3 Elementary ACI-uni�cation and ACI-matchingKapur and Narendran [KN92] showed that the decision problem for elementaryACI-uni�cation with a �nite number of free constants is solvable in polynomialtime, even when the signature F is part of the input. More precisely, considerthe following decision problem.ELEMENTARY ACI-UNIFICATION: Given a �nite set fc1; : : : ; cmg of free con-stants and an elementary ACI(!;m)-uni�cation problem � over the signatureF = f�; c1; : : : ; cmg, does � have a solution?



Kapur and Narendran [KN92] showed that ELEMENTARY ACI-UNIFICA-TION can be reduced in polynomial time to PROPOSITIONAL HORN SATIS-FIABILITY, that is, to the problem: given a Horn1 formula, does it have a satis-fying truth assignment? It is well known that PROPOSITIONAL HORN SAT-ISFIABILITY is solvable in polynomial time; as a matter of fact, it has a linear-time algorithm [DG84]). Next, we describe Kapur and Naredran's [KN92] re-duction of ELEMENTARY ACI-UNIFICATION to PROPOSITIONAL HORNSATISFIABILITY in some detail, since it will be of interest to us in the sequel.Assume that we are given a set C of m free constants and an elementaryACI(!;m)-uni�cation problem � . Let Xs and Xt be the sets of variables occur-ring in s and t respectively. For every given free constant c and every variablex 2 Xs[Xt, we introduce a propositional variable Px;c; intuitively, Px;c expressesthe fact that the free constant c does not occur in the value of the solution forthe variable x. For every equation s = t in � , we form a set �(s; t) of proposi-tional Horn clauses asserting that a free constant occurs in the left-hand side ofthe solved equation if and only if it occurs in the right-hand side of the solvedequation. Formally, the Horn clauses in the set �(s; t) are obtained as follows.{ Let c be a free constant that occurs in s, but does not occur in t. If Xt 6= ;, weintroduce the Horn clause (Wx2Xt :Px;c). If Xt = ;, we conclude immediatelythat � is not ACI-uni�able, since s = t is not ACI-uni�able.{ Let c be a free constant that occurs in t, but does not occur in s. If Xs 6= ;, weintroduce the Horn clause (Wx2Xs :Px;c). If Xs = ;, we conclude immediatelythat � is not ACI-uni�able, since s = t is not ACI-uni�able.{ Let c be a free constant that does not occur in the equation s = t. For everyvariable x 2 Xs, we introduce the Horn clause (Vy2Xt Py;c � Px;c) and, forevery variable y 2 Xt, we introduce the Horn clause (Vx2Xs Px;c � Py;c). IfXt = ;, then the �rst clause is the unit clause Px;c. Similarly, if Xs = ;, thenthe second clause is the unit clause Py;c.{ Finally, for every variable x occurring in some equation in � , we introducethe Horn clause (Wc2C :Px;c) to ensure that the value of the solution for xcontains at least one free constant.Let �(� ) = S(s=t)2� �(s; t). It is now quite straightforward to verify that theACI(!;m)-uni�cation problem � has a solution if and only if the set �(� ) ofHorn clauses is satis�able. Note that �(� ) has size polynomial in m and the sizeof � ; in fact, the size of �(� ) is O(mkr2), where k is the number of equationsin � and r is the maximum size of an equation in � . Thus, the decision problemfor elementary ACI-uni�cation is solvable in polynomial time.Once an algorithmic problem has been shown to be solvable in polynomialtime (and, hence, tractable from the point of view of sequential computation),it is natural to ask whether it can also be solved \fast in parallel". To formalizethis concept, researchers in computational complexity introduced and studiedin depth the class NC of all decision problems that can be solved in polylog-1 A Horn formula is a conjunction of propositional clauses each of which has at mostone positive literal.



arithmic time using polynomially many processors. It is easy to see that NCcontains LOGSPACE and, in turn, is contained in P, where LOGSPACE is theclass of problems solvable by a deterministic Turing machine using a logarithmicamount of space in its work tape, and P is the class of problems solvable bya deterministic Turing machine in polynomial time. Although it is widely be-lieved that NC is properly contained in P, the question NC ?= P remains one ofthe outstanding open problems of computational complexity. Starting with thework of Cook [Coo74], researchers identi�ed numerous decision problems thatare candidates to manifesting the separation between NC and P. These problems,which are known as P-complete problems, are the \hardest" members of P, inthe sense that every problem in P can be reduced to them via some logarithmic-space reduction. Establishing that a certain problem is P-complete is viewed asproviding strong evidence that this problem is not in NC and, hence, it is inher-ently sequential. Examples of P-complete problems of relevance to automateddeduction include UNIT RESOLUTION [JL76] and SYNTACTIC UNIFICA-TION [DKM84] (a comprehensive treatment of the theory of P-completeness anda catalogue of P-complete problems can be found in the monograph [GHR95]).Our �rst result in this paper shows that ELEMENTARY ACI-UNIFICATIONyields a new paradigm of a P-complete problem.Theorem 1. ACI(!; 2)-uni�cation is P-complete. In words, the decision prob-lem for elementary ACI-uni�cation with two free constants is P-complete.Proof. Plaisted [Pla84] showed that PROPOSITIONAL HORN SATISFIABIL-ITY is a P-complete problem; in fact, he showed that the problem remainsP-complete even when restricted to inputs in which each clause has at mostthree literals. We now present a logarithmic-space reduction of this restrictedproblem to the decision problem for ACI(!; 2)-uni�cation.Let a and b be two free constants. Given a set S of propositional Horn clauseseach of which has at most three literals, we generate the following elementaryACI-uni�cation problem � (S) in the free constants a and b.1. For every propositional variable X occurring in some clause in S, we intro-duce a variable x 2 X and the equation x � a = a � b.2. For every unit clause X in S, we introduce the equation x = b.3. For every clause in S of the form (:X_:Y _:Z), we introduce the equationx � y � z = a � b.4. For every clause of the form (:X _ :Y _ Z), we introduce the equationx � y � z = x � y.5. For every clause of the form (:X _Z), we introduce the equation x � z = x.We now claim that the set S has a satisfying assignment if and only of the ele-mentary ACI-uni�cation problem � (S) has a solution. If h is a truth assignmentthat satis�es every clause in S, then it is easy to see that the substitutionx� = � b if h(X) = TRUEa � b if h(X) = FALSE



is a solution of the elementary ACI-uni�cation problem � (S). Conversely, sup-pose that � is a solution of � (S). For every variable x occurring in � (S), it mustbe the case that x� = b or x� = a � b, since the equations in group (1) aboveimply that x� � a =ACI a � b. It is now easy to verify that the truth assignmenth(X) = �TRUE if x� = bFALSE if x� = a � bsatis�es every clause in S. For example, a clause of the form (:X_:Y _Z) mustbe satis�ed by h, since, otherwise, it would be the case that x� = b, y� = b andz� = a � b, which implies that � is not a solution of the equation x � y � z = x � yassociated with this clause. utThe preceding reduction of PROPOSITIONAL HORN SATISFIABILITYto ELEMENTARY ACI-UNIFICATION made use of two free constants in thesignature. It should be noted that the presence of at least two free constants isindispensable in obtaining this P-hardness result. Indeed, the decision problemfor ACI(!; 1)-uni�cation is trivial, as the constant substitution �x:a is a solutionof every elementary ACI-uni�cation problem in which a is the only free constant.Let AC be the equational theory of commutative semigroups. It is wellknown that at the level of the decision problem elementary AC-matching andelementary AC-uni�cation have the same computational complexity, namelyeach of these two problems is NP-complete (see [BKN87,KN92]). Moreover,the same holds true for the equational theory ACU of commutative monoids(see [KN92,HK95b]). In contrast to the above, we observe next that the de-cision problem for elementary ACI-matching is in LOGSPACE and, thus, oflower computational complexity than the decision problem for elementary ACI-uni�cation (unless P collapses to LOGSPACE, which is considered extremelyunlikely). We also examine the computational complexity of elementary #ACI-matching, which is the following counting problem: given an elementary ACI-matching problem � , �nd the cardinality of the the minimal complete set ofACI-matchers of � . Valiant [Val79a,Val79b] developed a complexity theory ofcounting and enumeration problems by introducing the class #P and identify-ing problems that are complete for this class under parsimonious2 reductions.In our earlier papers [HK95a,HK95b], we initiated a systematic investigationof the computational complexity of counting problems in equational matchingusing concepts and results from the theory of #P-completeness. In particular,we showed that the counting problem for elementary AC-matching, as well asthe counting problem for elementary ACU-matching, is #P-complete. It shouldbe noted that a #P-completeness result indicates that the counting problem athand is highly intractable, in fact it suggests a higher level of intractability thanan NP-completeness result for the corresponding decision problem (for more onthis point see Johnson [Joh90] and Papadimitriou [Pap94]).2 A parsimonious reduction is a polynomial-time reduction between two counting prob-lems that preserves the number of the solutions of each instance.



Theorem 2. The decision problem for elementary ACI-matching is solvable inlogarithmic space, but the counting problem for elementary ACI-matching is #P-complete, even when restricted to instances with just two free constants. Thus,{ ACI(!;!)-matching is in LOGSPACE;{ #ACI(!; 2)-matching is #P-complete.Proof. Let � be an arbitrary elementary ACI-matching problem, that is, forevery equation s = t in � , the term t is ground. Let S(� ) be the set of Hornclauses that results from the reduction of elementary ACI-uni�cation to PROPO-SITIONAL HORN SATISFIABILITY, as described in the beginning of this sec-tion. An inspection of this reduction reveals that each clause in S(� ) is eithera unit clause or a disjunction of negated propositional variables, since the setXt of variables of t is empty. This special case of PROPOSITIONAL HORNSATISFIABILITY is solvable in logarithmic space, as one needs only to verifythat, for every clause consisting of negated propositional variables, at least oneof its propositional variables does not appear as a unit clause.Next, we focus on elementary #ACI-matching. It is easy to see that thiscounting problem is in #P (this follows also frommore general results in [HK95a]).For the lower bound, we have to show that #ACI(!; 2)-matching is a #P-hardproblem. Consider the following counting problem:#POSITIVE 2SAT: Given a propositional CNF formula ' such that each clauseis a disjunction of two propositional variables, �nd the number of satisfying truthassignments of '.Although the underlying decision problemPOSITIVE 2SAT is trivial, Valiantshowed in [Val79b] that the corresponding counting problem #POSITIVE 2SATis #P-hard. This is an extreme instance of an interesting phenomenon, �rst ob-served by Valiant [Val79a], in which the counting version of an \easy" decisionproblem may be \hard". We now exhibit a parsimonious reduction of #POS-ITIVE 2SAT to #ACI(!; 2)-matching. Assume that a and b are two free con-stants. Given a a positive 2SAT propositional formula ', construct the followingACI(!; 2)-matching problem � ('):{ for every propositional variable X occurring in ', introduce a propositionalvariable x and the equation x � a = a � b;{ for every clause (X _ Y ) of ', introduce the equation x � y = a � b.It is easy to check that there is a one-to-one correspondence between satisfyingtruth assignments of ' and solutions of � ('), since for every solution � of theequation x � a = a � b it must be the case that either x� = b or x� = a � b. utTwo remarks are in order now.1. The preceding Theorem 2 shows that elementary ACI-matching is an al-gorithmic problem whose decision version is \easy", but its counting versionis \hard". Compare this with elementary AC-matching and elementary ACU-matching for which the decision problem is NP-complete [BKN87] and the count-ing problem is #P-complete [HK95a].2. In proving that #ACI(!; 2)-matching is a #P-hard problem, the num-ber of equations used varied with the input. In the full paper, we show that



if the number of equations is �xed, then the counting problem for elementaryACI-matching is solvable in polynomial time using a dynamic programming algo-rithm. More formally, we can show that, for every two positive integers k and m,the counting problem #ACI(k;m) is in the class FP of functions computable inpolynomial time. It should also be pointed out that Baader and B�uttner [BB88]obtained explicit expressions for the number of most general complete uni�ersof elementary ACI-uni�cation problems consisting of a single equation.The proofs of Theorems 1 and 2 can be adapted easily to obtain similarresults for elementary ACIU-uni�cation and ACIU-matching. In fact, since a unitelement of � is available, a single free constant su�ces to obtain the hardnessresults in each case.Theorem 3. The following statements are true for the equational theory ACIUof commutative idempotent monoids.{ ACIU(!; 1)-uni�cation is P-complete.{ ACIU(!;!)-matching is in LOGSPACE.{ #ACIU(!; 1)-matching is #P-complete.4 Ground elementary ACI-disuni�cationNarendran [Nar96] studied the computational complexity of the equational the-ory ACIUZ, which is the extension of ACIU with the equational axiom Z:(8x)(x � 0 = 0) asserting that � has a zero element 0. In particular, he showedthat ground elementary ACIUZ-disuni�cation is NP-hard by exhibiting a reduc-tion from 3SAT. An inspection of that proof shows that actually a stronger resultis established, namely that ground elementary ACIU-disuni�cation with a singlefree constant a is NP-complete. Moreover, Narendran [Nar96] commented in afootnote that \A similar reduction will work also for the ACI case. There wehave to use two constants, say a and b, since we do not have the unit 1." Thefollowing result con�rms that ground elementary ACI-disuni�cation with twofree constants is NP-complete, although the reduction we use is not from 3SAT,but from the problem NOT-ALL-EQUAL 3SAT, which asks: given a 3CNF for-mula ', is there a truth assignment such that each clause has at least one trueliteral and at least one false literal? (see [GJ79, page 259]).Theorem 4. For every positive integer m � 2, ground ACI(0; !;m)-disuni�ca-tion is NP-complete. In words, the decision problem for ground elementary ACI-disuni�cation with no equations and at least two free constants is NP-complete.Proof. Membership in NP is obvious; in fact, even ground ACI(!; !;!)-disuni�-cation is in NP, as it su�ces to guess a ground substitution � such that jx�j � mfor every variable x occurring in the given instance, where m is the number offree constants occurring in the instance.Let C be a set of m free constants, m � 2, and let a and b two free constantsin C. Given a 3CNF formula ' to be tested for NOT-ALL-EQUAL 3SAT, wegenerate the following ACI(0; !;m)-disuni�cation problem �(').



{ For every propositional variableXi occurring in ', we introduce two variablesxi and yi, and the following disequations. For every ground term t di�erentthan a � b and such that each free constant occurs at most once in t, weintroduce the disequation xi � yi 6= t. For every ground term t0 di�erentthan a and b, and such that each free constant occurs at most once in t0, weintroduce the disequations xi 6= t0 and yi 6= t0.{ For every clause of ' of the form (Xi _ :Xj _ Xr) and for every term tdi�erent than a � b and such that each free constant occurs at most oncein t, we introduce the disequation xi � yj � xr 6= t. In a similar manner, weintroduce disequations for clauses of the other possible forms. For example, ifa clause is of the form (:Xi_:Xj _Xr), then we introduce the disequationsyi � yj � xr 6= t.The �rst group of disequations enforces the following property on every groundsubstitution � that is a solution of �(') in the commutative idempotent semi-group freely generated by the constants in C: for every propositional variableXi occurring in ', either xi� = a ^ yi� = b or xi� = b ^ yi� = a. In turn,this property implies that for every disequation in the second group at least onevariable takes value a and at least one variable takes value b. Thus, there is atruth assignment such that every clause of ' has at least one true and at leastone false literal if and only if�(') has a solution in the commutative idempotentsemigroup freely generated by the constants in C. utIn the above NP-hardness proof, both free constants a and b were used;moreover, the number of disequations that were introduced varied with the sizeof input. It turns out that if either of these conditions is relaxed, then groundelementary ACI-disuni�cation becomes tractable. First, note that ground ele-mentary ACI-disuni�cation with a single free constant a is trivial, since in thiscase the ground term algebra T (f�; ag)==ACI is the singleton fag. Next, we willshow that ground elementary ACI-disuni�cation with a �xed number of disequa-tions is solvable in polynomial time, even when an arbitrary number of equationsis present and an arbitrary number of free constants is available. For this, weneed to establish an auxiliary result �rst.Lemma 5. For every positive integer k, there is a polynomial-time algorithmfor solving the following decision problem: given a propositional Horn formula �and k propositional formulas  1; : : : ;  k each in disjunctive normal form, is theformula � ^  1 ^ � � � ^  k satis�able?Proof. Let �,  1; : : : ;  k be an instance of this problem of size s. Without loss ofgenerality, we may assume that there is a positive integer n � s such that each i consists of exactly n disjuncts. Thus, for every i � k,  i � �i1 _ � � � _ �in,where each �ij is a conjunction of at most s literals. By distributing conjunctionsover disjunctions, we have that 1 ^ � � � ^  k � _(j1;:::;jk)2f1;:::;ngk �1j1 ^ � � � ^ �kjk:



It follows that the formula � ^  1 ^ � � � ^  k is satis�able if and only if there isa k-tuple (j1; : : : ; jk) 2 f1; : : : ; ngk such that the formula � ^ �1j1 ^ � � � ^ �kjk issatis�able. Since each of the nk formulas � ^ �1j1 ^ � � � ^ �kjk is a propositionalHorn formula, we can apply the polynomial-time algorithm for propositionalHorn satis�ability nk times and, thus, determine in polynomial time whetherthe formula � ^  1 ^ � � � ^ k is satis�able. utTheorem 6. For every positive integer k, ground ACI(!; k;!)-disuni�cation isin P. In words, ground elementary disuni�cation with k disequations and anarbitrary number of free constants is solvable in polynomial time.Proof. Fix a positive integer k. Let � be a given ACI(!; k;!)-disuni�cationproblem. Thus, � = � [ fp1 6= q1; : : : ; pk 6= qkg, where � is an arbitrary ele-mentary ACI-uni�cation problem. Recall Kapur and Narendran's [KN92] reduc-tion of elementary ACI-uni�cation to Propositional Horn Satis�ability, whichwas described in Section 3. In particular, recall that for every equation l = rthis reduction generates a set �(l; r) of Horn clauses. Let � be the Horn for-mulaV(s=t)2� �(s; t). For every disequation pi 6= qi, 1 � i � k, consider the set�(pi; qi) of Horn clauses generated when the reduction is applied to the equationpi = qi. For every i � k, let �i be the conjunction of all Horn clauses in �(pi; qi),and let  i be the formula in disjunctive normal form that is obtained from:�i us-ing de Morgan's laws. It is now easy to verify that the ACI(!; k;!)-disuni�cationproblem � has a ground solution if and only if the formula � ^  1 ^ � � � ^  k issatis�able. Note that the size of this formula is polynomial in the size of �. Wecan now apply Lemma 5 and obtain the desired polynomial-time algorithm. ut5 Restricted ACI-matchingSet-matching is an important special case of general ACI-matching; its com-putational complexity has been investigated by Kapur and Narendran [KN86],who showed that this problem is NP-complete. Set-matching, as well as cer-tain variants of it, arise naturally in deductive database systems and in logic-based languages that support complex objects. Shmueli et al. [STZ92] studied setmatching problems in the context of LDL, a Horn-clause programming languagefor deductive database systems. The semantics of LDL require that set-termsconsisting of variables and constants be matched in such a way that variablesare instantiated only by individual constants. In essence, the problems examinedby Shmueli et al. [STZ92] can be formalized as follows: given an elementary ACI-matching problem � , is there a a solution � of � such that, for every variablex occuring in � , the value x� is equal to one of the constant symbols occurringin �? In what follows, we call such problems restricted ACI-matching problems.Let restricted ACI(k;m)-matching be the class of restricted ACI-matching prob-lems with k equations and m free constants. The classes restricted ACI(!;m)-matching , restricted ACI(k; !)-matching , and restricted ACI(!; !)-matching arede�ned in an analogous way. Shmueli et al. [STZ92] gave an exponential-timealgorithm for restricted ACI(!; !)-matching. After this, Arni et al. [AGS96] con-sidered bounded set-term matching , which, in our terminology, is the same as



restricted ACI(1; !)-matching, that is, restricted ACI-matching with a singleequation, but no a priori bound on the number of free constants. An instanceof this problem can be written as XD = C, where X is a set of variables, Cand D are sets of free constants, each set stands for the \product" of its mem-bers, and the concatenation XD denotes the union X [D. Arni et al. [AGS96]pointed out that XC = D has a restricted ACI-matcher if and only if C � Dand jXj � jD n Cj. This gives a simple polynomial-time test for the decisionproblem for restricted ACI(1; !)-matching. Moreover, Arni et al. [AGS96] gavean explicit formula for the number of restricted ACI-matchers of a single equa-tion, from which it follows that restricted #ACI(1; !)-matching is in the classFP of functions computable in polynomial time.In the sequel, we analyze the computational complexity of restricted ACI-matching by considering once again the interplay between the number of equa-tions and the number of constants. We �rst observe that a slight modi�cationof the proof of Theorem 4 shows that restricted ACI-matching with no a prioribound on the number of equations is intractable, even if only two free constantsare available. This should be contrasted with the low complexity of the decisionproblem for ACI-matching (cf. Theorem 2).Theorem 7. Restricted ACI(!; 2)-matching is a NP-complete problem and re-stricted #ACI(!; 2)-matching is a #P-complete problem.Proof. Since the upper bounds are obvious, we focus on establishing NP-hardnessand #P-hardness. For this, we give a parsimonious reduction of NOT-ALL-EQUAL 3SAT to restricted ACI(!; 2)-matching. For every propositional variableXi in a given 3CNF formula �, we introduce two variables xi and yi, and theequation xi � yi = a � b, where a and b are free constants. For each clause of �of the form (Xi _:Xj _Xr), we introduce the equation xi � yj � xr = a � b. Weintroduce equations for clauses of the other possible forms in a similar manner.Then � has an assignment that falsi�es at least one literal in every clause if andonly if the associated system of equations has a restricted ACI-matcher. utNext, we consider restricted ACI-matching with a �xed number of equations.The main result of this section is that for any two positive integers k and m,the decision problem for restricted ACI(k;m)-matching is solvable in polynomialtime. Note that restricted ACI(k;m)-matching can be reduced easily to groundACI-disuni�cation, but at the expense of introducing an unbounded number ofdisequations (and so Theorem 6 can not be used). Indeed, for every variable xof a given restricted ACI(k;m)-matching problem with constants c1; : : : ; cm, weintroduce 2m � m � 1 new disequations of the form x 6= ci1 � � � � � cir , where2 � r � m, and cij 6= cil for all j 6= l; these disequations capture the re-striction x 2 fc1; : : : ; cmg. It follows that every restricted ACI(k;m)-matchingproblem with n variables can be reduced to a ground ACI(k; n(2m�m�1);m)-disuni�cation problem. This approach, however, reduces restricted ACI(k;m)-matching to ground ACI(k; !;m)-disuni�cation, which is NP-complete (recallTheorem 4). Thus, a di�erent method is needed to establish the tractability ofrestricted ACI(k;m)-matching.



Fix two positive integers k and m. Let � be a restricted ACI(k;m)-matchingproblem with free constants c1; : : : ; cm and variables x1; : : : ; xn. Each equationof � can be written as XC = D, where X is a subset of fx1; : : : ; xng, and Cand D are subsets of fc1; : : : ; cmg. For every i � n, let C(xi) be the set of allconstants that occur in the right-hand side of every equation of � in which thevariable xi occurs (that is, C(xi) is the intersection of the sets D such that xioccurs in some equation XC = D of � ). Our polynomial-time algorithm forrestricted ACI(k;m)-matching will examine the cardinalities of the sets C(xi),1 � i � n. Note that if there is a variable xi such that C(xi) = ;, then � hasno restricted ACI-matchers. On the other hand, if C(xi) is a singleton for somevariable xi, then we can eliminate xi from � by replacing it with the uniquemember of C(xi). Finally, it may be the case that jC(xi)j � 2, for every variablexi. The next lemma shows that in this case restricted ACI(k:m)-matching canbe reduced to restricted ACI(k;m � 1)-matching. In what follows, we will usethe notation XD = cjC to indicate that the right-hand side of this equation isthe union fcjg [C, where cj 62 C.Lemma 8. Assume that � is a restricted ACI(k;m)-matching problem with freeconstants c1; : : : ; cm and variables x1; : : : ; xn such that each equation of � hasa restricted ACI-matcher and jC(xi)j � 2 for every i � n. Fix a free constantcj and assume that X1C1 = cjD1; : : : ; XrCr = cjDr is a list of all equations of� in which cj occurs in the right-hand side, but not in the left-hand side of theequation. Then � has a restricted ACI-matcher if and only if there is a sequencez1; : : : ; zr of (not necessarily distinct) variables with the following properties:1. For every i � r, the variable zi occurs in the equation XiDi = cjDi; moreoverzi can occur only in equations in which cj occurs.2. The system � � obtained from � by eliminating all occurrences of the freeconstant cj and of the variables z1; : : : ; zr has a restricted ACI-matcher.Proof. If: Take such a sequence z1; : : : ; zr of variables and a restricted ACI-matcher �� of � �. Extend �� to a substitution � on the variables of � by assigningcj as the value of zi�, 1 � i � r. Then � is a restricted ACI-matcher of � .Only If: Suppose that � is a restricted ACI-matcher of � . Then, for everyi � r, there exists a variable zi occurring in the equation XiCi = cjDi and suchthat zi� = cj . It is clear that zi can not occur in any equation of � in whichcj does not occur. Consider now the system � � obtained from � by eliminatingall occurrences of the free constant cj and the variables z1; : : : ; zr. De�ne asubstitution �� on the variables of � � as follows. If z� 6= cj, then z�� = z�. Ifz� = cj , then put z�� = cl, where cl is a free constant that is di�erent than cjand occurs in the right-hand side of every equation of � in which z occurs. Notethat such a free constant exists, because jC(z)j � 2. It is now easy to verify that�� is a restricted ACI-matcher of � �. utTheorem 9. Let k and m be two positive integers. The decision problem forrestricted ACI(k;m)-matching is solvable in polynomial time.



Proof. Let Propagate-and-Split(�) be the following procedure, where � is asystem with at most k equations and at most m free constants c1; : : : ; cm.1. If only one free constant occurs in �, then stop and report that � has arestricted ACI-matcher.2. If one of the equations of � does not have a restricted ACI-matcher or ifC(xi) = ; for one of the variables xi of �, then stop and report that � does nothave a restricted ACI-matcher.3. Replace every variable xi such that jC(xi)j = 1 by the unique member ofthe singleton C(xi). Let �0 be the resulting system.4. Let j be the smallest integer such that the free constant cj occurs in �0.Consider all equations X1C1 = cjD1; : : : ; XrCr = cjDr of �0 in which cj occursin the right-hand side, but not in the left-hand side of the equation. For everysequence z1; : : : ; zl of variables such that each zi occurs in the equation XiCi =cjDi, but does not occur in any equation in which cj does not occur, generatethe system �0(cj ; z1; : : : ; zl) obtained from �0 by eliminating all occurrences ofthe free constant cj and the variables z1; : : : ; zl.Note that each of the �rst three steps takes time O(n), where n is the numberof variables of �. Note also that, after the last step has been completed, at mostnk systems of the form �0(cj ; z1; : : : ; zl) are generated; moreover, the number ofconstants of each such system is one less than the number of constants of �.The above procedure Propagate-and-Split gives rise to a polynomial-timealgorithm for restricted ACI(k;m)-matching. Let � be a restricted ACI(k:m)-matching problem. Apply �rst the procedure to � , then to each system generatedin the last step, and continue this way until either a restricted ACI-matcher hasbeen found or there are no systems to which the procedure can be applied. Sinceeach application of the last step eliminates a free constant, at most nkm systemshave to be considered, where n is the number of variables of � . Thus, the runningtime of the algorithm is O(nkm+1). The correctness of the algorithm follows fromthe preceding Lemma 8 and the fact that the systems generated by the thirdstep of the procedure satisfy the hypotheses of Lemma 8. utNote that the running time of the above algorithm for restricted ACI(k;m)-matching depends exponentially on the number m of free constants. It remainsan open problem to determine whether restricted ACI(k; !)-matching can besolved in polynomial time.6 Concluding RemarksCombinedwith the work of Kapur and Narendran [KN92] and Narendran [Nar96],the results presented here provide a fairly complete picture of the computationalcomplexity of elementary ACI-uni�cation and elementary ACI-disuni�cation.Moreover, they shed light on the computational complexity of restricted ACI-matching, a class of constrained set-term matching problems that arose in thedevelopment of deductive database systems [STZ92,AGS96].We conclude by pointing out that in the full version of the paper we ven-ture beyond ACI-uni�cation and ACI-disuni�cation by considering the full �rst-
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