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Abstract. Following the approach of Hemaspaandra and Vollmer, we can define
counting complexity classes #-C for any complexity class C of decision prob-
lems. In particular, the classes #-11;P with k& > 1 corresponding to all levels
of the polynomial hierarchy have thus been studied. However, for a large variety
of counting problems arising from optimization problems, a precise complexity
classification turns out to be impossible with these classes. In order to remedy this
unsatisfactory situation, we introduce a hierarchy of new counting complexity
classes #-Opt, P and #-Opt,P[logn] with k& > 1. We prove several important
properties of these new classes, like closure properties and the relationship with
the #-11,P-classes. Moreover, we establish the completeness of several natural
counting complexity problems for these new classes.

1 Introduction

Many natural decision problems are known to be complete for the class OP =
AyP[logn], defined by Wagner in [19], or for AxP. In particular, they often oc-
cur in variants of ¥j;_;P-complete problems when cardinality-minimality or weight-
minimality (or, likewise, cardinality-maximality or weight-maximality) is imposed as
an additional constraint. Two prototypical representatives of such problems are as fol-
lows (The completeness of these problems in ©;P and AP is implicit in [6]).

Problem: MIN-CARD-SAT (MIN-WEIGHT-SAT)

Input: A propositional formula ¢ in conjunctive normal form over variables X (together
with a weight function w: X — N) and a subset of variables X’ C X.

Question: Are X' set to true in some cardinality-minimal (weight-minimal) model of ©?

A straightforward ©,P-algorithm for MIN-CARD-SAT computes the minimum
cardinality of the models of ¢ by means of logarithmically many calls to an NP-oracle,
asking questions of the type “Does ¢ have a model of size < £?”. As soon as the min-
imum cardinality kg is known, we can proceed by a simple NP-algorithm, checking
if the subset X’ is true in some model of size kq. Analogously, a AsP-algorithm for
MIN-WEIGHT-S AT first computes the minimum weight of all models of ¢. In any rea-
sonable representation, the weights are exponential with respect to their representation
(e.g., they are represented in binary notation). Hence, the straightforward algorithm for
computing the minimum weight needs logarithmically many calls to an NP-oracle with



respect to the total weight of all variables. This comes down to polynomially many calls
with respect to the representation of the weights.

Note that the membership in ©;P and A,P recalled above is in great contrast to
subset-minimality, i.e., minimality with respect to set inclusion (or, likewise, subset-
maximality), which often raises the complexity one level higher in the polynomial hier-
archy. E.g., the following problem is well-known to be >5P-complete (cf. [13]).

Problem: MIN-SAT

Input: A propositional formula ¢ in conjunctive normal form over variables X and a
subset X’ C X.

Question: Are X' set to true in some subset-minimal model of ?

As far as the complexity of the corresponding counting problems is concerned,
only the counting problem corresponding to MIN-SAT has been satisfactorily classi-
fied so far. The following problem was shown to be #-coNP-complete in [3]: Given a
propositional formula ¢ in conjunctive normal form, how many subset-minimal models
does ¢ have? On the other hand, the counting complexity of the remaining aforemen-
tioned problems has remained obscure. The main goal of this paper is to introduce
new counting complexity classes #-OptP and #-OptP[log n], needed to pinpoint the
precise complexity of these and many similar optimality counting problems. We will
also show the relationship of these new classes with respect to the known classes in
the counting hierarchy. Moreover, we will show that these new classes are not iden-
tical to already known ones, unless the polynomial hierarchy collapses. Finally, we
will present several natural optimization counting problems, which turn out to be com-
plete for one or the other introduced counting class. The definition of new natural
counting complexity classes is by no means limited to the first level of the polyno-
mial hierarchy. Indeed, we will show how the counting complexity classes #-OptP
and #-OptP[log n] can be generalized to #-Opt, P and #-Opt,P[logn] for arbitrary
k > 1 with #-OptP = #-Opt, P and #-OptP[log n] = #-Opt,P[log n].

Due to lack of space, proofs had to be omitted in this paper. A full version with
detailed proofs of all results presented here is provided as a technical report.

2 Preliminaries

We recall the necessary concepts and definitions, but we assume that the reader is famil-
iar with the basic notions in computational counting complexity. For more information,
the interested reader is referred to Chapter 18 in the book [13] or the survey [4].

The study of counting problems was initiated by Valiant in [17, 18]. While decision
problems ask if at least one solution of a given problem instance exists, counting prob-
lems ask for the number of different solutions. The most intensively studied counting
complexity class is #P, which denotes the functions that count the number of accept-
ing paths of a non-deterministic polynomial-time Turing machine. In other words, #P
captures the counting problems corresponding to decision problems contained in NP.
By allowing the non-deterministic polynomial-time Turing machine access to an oracle
in NP, 3,P, ..., we can define an infinite hierarchy of counting complexity classes.



Alternatively, a counting problem is presented using a suitable witness function
which for every input z, returns a set of witnesses for x. Formally, a witness function
is a function A: X* — P<«(I'*), where X and I are two alphabets, and P<%(I"*)
is the collection of all finite subsets of I'*. Every such witness function gives rise to
the following counting problem: given a string x € X*, find the cardinality |A(x)| of
the witness set A(x). According to [7], if C is a complexity class of decision problems,
we define #:-C to be the class of all counting problems #-A whose witness function A
satisfies the following conditions.

1. There is a polynomial p(n) such that for every z and every y € A(x), we have that

ly| < p(|z]), where |z| is the length of « and |y| is the length of y;

2. The decision problem “given x and y, is y € A(z)?” isin C.

It is easy to verify that #P = +#:P. The counting hierarchy is ordered by linear
inclusion [7]. In particular, we have that #P C #.coNP C #.1I,P C #II5P,
etc. Analogously, one can define the classes #-NP, #-35P, #-33P, etc. Toda and
Ogiwara [15] determined the precise relationship between these classes as follows:
#-3.P C #-P¥F = 4.TI,.P. Since the identity # P>+ = #.A, | P trivially holds,
Toda and Ogiwara showed that there are no new A-classes in the counting hierarchy.

The prototypical #-11;P-complete problem for k£ € N is #I1,SAT [3], defined
as follows. Given a formula ¢(X) = VY13Ys - QY (X, Y7,...,Y}:), where ¢ is
a Boolean formula and X, Y7, ..., Y; are sets of propositional variables, count the
number of truth assignments to the variables in X that satisfy .

Completeness of counting problems is usually proved by means of polynomial-
time Turing reductions, also called Cook reductions. However, these reductions do
not preserve the counting classes #-1I;P [16]. Hence, parsimonious reductions are
usually considered instead. Consider two counting problems #-A: ¥* — N and
#-B: X* — N. We say that #-A reduces to #-B via a parsimonious reduction if
there exists a polynomial-time function f € FP, such that for each z € X* we have
#-A(x) = #-B(f(x)). Parsimonious reductions are a special case of Karp reduc-
tions with a one-to-one relation between solutions for the corresponding instances of
the problems #-A and #-B. However, parsimonious reductions are not always strong
enough to prove completeness of well-known problems in counting complexity classes.
E.g., the problem #POSITIVE 2SAT [2,18] of counting satisfying assignments to a propo-
sitional formula with positive literals only and with two literals per clause cannot be
#P-complete under parsimonious reductions, unless P = NP. Therefore Durand, Her-
mann, and Kolaitis [3] generalized parsimonious reductions to subtractive reductions
and showed that all the classes #-1I;P are closed under them. Subtractive reductions
are defined as follows. The counting problem #- A reduces to #- B via a strong subtrac-
tive reduction if there exist two polynomial-time computable functions f and g such that
for each x € X* we have B(f(x)) C B(g(x)) and |A(x)| = |B(g(x))| — |B(f(2))|.

A subtractive reduction is a composition (transitive closure) of a finite sequence of
strong subtractive reductions. Thus, a parsimonious reduction corresponds to the spe-
cial case of a strong subtractive reduction with B(f(x)) = (). In [3], subtractive reduc-
tions have been shown to be strong enough to prove completeness of many interesting
problems in #P and other counting classes, but their power remains tame enough to
preserve several interesting counting classes between #P and #PSPACE.



3 Optimization Counting Complexity Classes

Recall that, according to [7], a counting complexity class #-C can in principle be
defined for any decision complexity class C. However, as far as the polynomial hi-
erarchy is concerned, this definition does not yield the desired diversity of count-
ing complexity classes. In fact, if we simply consider #-C for either C = AP or
C = O4P, then we do not get any new complexity classes, since the relationship
#-0xP = #- AP = #-11;_1P is an immediate consequence of the aforementioned
result by Toda and Ogiwara [15].

Hence a different approach is necessary if we want to obtain a more fine grained
stratification of the counting hierarchy. For this reason we introduce in the sequel the
counting classes #-Opt,P[logn] and #-Opt, P for each k& € N, which will be ap-
propriate for optimization counting problems. Of special interest will be the classes
#-OptPllog n| = #-Opt,P[log n] and #-OptP = #-Opt,P. We will define the new
counting complexity classes via the nondeterministic transducer model (see [14]), as
well as by an equivalent predicate based definition following the approach from [7].
The following definition generalizes the definition of nondeterministic transducers [14]
to oracle machines.

Definition 1. A nondeterministic transducer M is a nondeterministic polynomial-time
bounded Turing machine, such that every accepting path writes a binary number. If M is
equipped with an oracle from the complexity class C, then it is called a nondeterministic
transducer with C-oracle. A X P-transducer M is a nondeterministic transducer with
a X1 P oracle. We identify nondeterministic transducers without oracle and Y1 P-
transducers.

For x € X*, we write opt () to denote the optimal value, which can be either the
maximum or the minimum, on any accepting path of the computation of M on x. If no
accepting path exists then opt () is undefined.

The above definition of a nondeterministic transducer is similar to a metric Turing
machine defined in [10] and its generalization in [11]. However, our definition deviates
from the machine models in [10, 11] in the following aspects:

1. We take the optimum value only over the accepting paths, while in [10] every path
is accepting. Our ultimate goal is to count the number of optimal solutions. Hence,
above all, the objects that we want to count have to be solutions, i.e., correspond
to an accepting computation, and only in the second place we are interested in the
optimum.

2. In [10], only the maximum value is considered and it is mentioned that the mini-
mum value is treated analogously. We prefer to make the applicability both to max
and min explicit. The definition of the counting complexity classes below is not
affected by this distinction.

3. In [11], NP-metric Turing machines were generalized to higher levels of the poly-
nomial hierarchy by allowing alternations of minimum and maximum computa-
tions. However, for our purposes, in particular for the predicate-based characteri-
zation of the counting complexity classes below, the generalization via oracles is
more convenient. Proving the equivalence of the two kinds of generalizations is
straightforward.



It will be clear in the sequel that the generalization of nondeterministic transducers [14]
to oracle machines is exactly the model we need. A similar idea but with a deterministic
Turing transducer was used by Jenner and Toran in [8] to characterize the functional

complexity classes FPﬁIP, FPEE, and FLEE.

Definition 2. We say that a counting problem #-A: X* — N is in the class #-Opt, P
Jor some k € N, if there is a Sy P-transducer M, such that #-A(x) is the number of
accepting paths of the computation of M on x yielding the optimum value opt ().
If no accepting path exists then #-A(x) = 0. If the length of the binary number writ-
ten by M is bounded by O(z(|z|)) for some function z(n), then #-A is in the class
4:0pt,Plz(n)].

In this paper, we are only interested in #-Opt,P[z(n)] for two types of functions
2(n), namely the polynomial function z(n) = n°®) and the logarithmic function
z(n) = log n. Clearly, #-Opt, P is the same as #-Opt, P[n®™)].

Distinguishing between max and min gives no additional computational power, as
it is formalized by the following result.

Proposition 3. Suppose that some counting problem #-A: X* — N is defined in
terms of a X P-transducer M with the optimum being the maximum (minimum). Then
there exists a parsimonious reduction to a counting problem #-A’ defined via a ¥, P-
transducer M’ with the optimum value corresponding to the minimum (maximum).

Krentel defined in [10] the class OptP[z(n)] of optimization problems for a given
function z(n). He showed that OptP[z(n)] essentially corresponds to FPNPE(™)
(see also [9]). More precisely, for every “smooth” function® z(n) (see [10]) we have
OptP[z(n)] € FPNPEMI and every function f € FPNPEMI can be represented
as an OptP[z(n)]-problem followed by a polynomial-time function h. This correspon-
dence between OptP[z(n)] and FPNPE(M] can be generalized as follows: replacing the
Yx—1P oracle in a 3 P-transducer by a AP oracle does not increase the expressive
power.

We show next that the definition of #-Opt, P[z(n)] via Turing machines (see Def-
inition 1) has an equivalent definition via predicates. The basic idea is to decompose
the computation of a 3; P-transducer M into a predicate B, which associates inputs x
with computations y, and a function f which computes the number written by the trans-
ducer M following the computation path y.

Theorem 4. For any function z(n), a counting problem #-A: X* — N is in the class
#-Opt, Plz(n)] if and only if there exist an alphabet I', a predicate B on X* x I'*, and
a polynomial-time computable function f: I'* — N satisfying the following conditions.
(i) There is a polynomial p(n) such that every pair of strings (x,y) € B satisfies the
relation |y| < p(|z|);

(ii) The predicate B is decidable by a AP algorithm;
(iii) The length of f(y) is bounded by O(z(|x|)) for every (z,y);

3 A function f: N — N is smooth if it is nondecreasing and its unary representation is com-
putable in polynomial time.



(iv) opt]j?(x) =opt({f(y) | (z,y) € B}) with opt € {max, min},
) A(z) ={y | (z,y) € BA f(y) = opt{(x)}.
As far as complete problems for these new complexity classes are concerned, we
propose the following natural generalizations of minimum cardinality and minimum
weight counting satisfiability problems to quantified Boolean formulas.

Problem: #MIN-CARD-II;SAT (#MIN-WEIGHT-11;SAT)

Input: A TI;;SAT formula ¢(X) = VY13Ys - QYr (X, Y1,...,Y,) with k € N,
where ¢ is a quantifier-free formula and X, Y7, ..., Y}, are sets of propositional vari-
ables, (and a weight function w: X — N assigning positive values to each variable
x € X) such that @ is either 3 for k even or V for k£ odd.

Output: Number of cardinality-minimal (weight-minimal) models of #(X) or 0 if
(X)) is unsatisfiable.

We define the classes #MIN-CARD-S AT and #MIN-WEIGHT-S AT to be the #MIN-
CARD-II)SAT and #MIN-WEIGHT-II3S AT, respectively. Moreover, we can assume,
following the ideas of Wrathal [20], that the formula ¢ is in CNF for k£ even and in
DNF for k odd. Notice that for k even (odd), the formula ¢ has an odd (even) number
of variable vectors, since the first variable block X remains always unquantified.

Theorem 5. For every k € N, the following problems are complete via parsimo-
nious reductions. #MIN-WEIGHT-II; SAT is #-Opt,, , P-complete and #MIN-CARD-
11, SAT is #-Opt,, . Pllog n]-complete.

As usual, also the versions of #MIN-WEIGHT-II;SAT and #MIN-CARD-II, SAT
restricted to 3 literals per clause are #-Opt,_, ,P-complete and #-Opt,, P[logn]-
complete, respectively, since there exists a parsimonious reduction to them.

Apart from containing natural complete problems, a complexity class should also be
closed with respect to an appropriate type of reductions. We consider the closure of the
considered counting classes under subtractive reductions. Note that we cannot expect
the class #-Opt, P[z(n)] to be closed under subtractive reductions for any function
z(n) since we can always get an arbitrary polynomial speed-up simply by padding the
input. We show in the sequel that the two most interesting cases, namely #-Opt, P and
#-Opt,P[logn] for each k € N, are indeed closed under subtractive reductions.

Theorem 6. The complexity classes #-Opt, P and #-Opt,Pllogn| are closed under
subtractive reductions for all k € N.

Our new considered classes #-Opt; P and #-Opt; P[log n] need to be confronted
with the already known counting hierarchy. We will present certain inclusions of the
new classes with respect to already known counting complexity classes and show that
the inclusions are proper, unless the polynomial hierarchy collapses.

Theorem 7. We have #-11;P C #-Opt,,Pllogn] C #-Opt, P C #1411 P for
each k € N.

Finally, the following result shows that the new classes are robust.
Theorem 8. If #-Opt, Pllogn] or #-Opty, P coincides with either #-11,P or
#1111 P for some k € N, then the polynomial hierarchy collapses to the k-th or
(k + 1)-st level, respectively.



4 Further Optimization Counting Problems

The most interesting optimization counting problems are of course those belonging to
the classes on the first level of the optimization counting hierarchy, namely #-OptP and
#-OptP[log n]. In this section we will focus on such problems of particular interest.

Gasarch et al. presented in [6] a plethora of optimization problems complete for
OptP and OptP[log n]. Either their lower bound is already proved by a parsimonious
reduction or the presented reduction can be transformed into a parsimonious one sim-
ilarly to Galil’s construction in [5]. The counting version of virtually all these prob-
lems can therefore be proved to be complete for #-OptP or #-OptP[logn|. Like-
wise, Krentel presented in [11] several problems belonging to higher levels of the op-
timization hierarchy. They give rise to counting problems complete for #-Opt,P or
#-Opt,Pllogn] with k > 1.

Problem: #MIN-CARD-SAT
Input: A propositional formula ¢ in conjunctive normal form over the variables X .
Output: Number of models of ¢ with minimal Hamming weight.

The dual problem #MAX-CARD-SAT asks for the number of models with maximal
Hamming weight. The problems #MIN-WEIGHT-SAT and #MAX-WEIGHT-SAT are
the corresponding weighted versions of the aforementioned problems.

Following Theorem 5, both counting problems #MIN-CARD-SAT and #MAX-
CARD-SAT are #-OptP|[log n]-complete, whereas #MIN-WEIGHT-SAT and #MAX-
WEIGHT-SAT are #-OptP-complete. We consider only the cardinality-minimal prob-
lems in the sequel.

It is also interesting to investigate special cases of the optimization counting prob-
lems involving the following restrictions on the formula ¢. As usual, a literal is a propo-
sitional variable (positive literal) or its negation (negative literal), whereas a clause is
a disjunction of literals, and a formula in conjunctive normal form is a conjunction of
clauses. We say that a clause c is Horn if it contains at most one positive literal, dual
Horn if it contains at most one negative literal, Krom if it contains at most two lit-
erals. A formula ¢ = ¢; A -+ A ¢, in conjunctive normal form is Horn, dual Horn,
or Krom if all clauses ¢; for ¢ = 1,...,n satisfy the respective condition. Formulas
restricted to conjunctions of Horn, dual Horn, or Krom clauses are often investigated in
computational problems related to artificial intelligence, in particular to closed world
reasoning [1]. We denote by the specification in brackets the restriction of the counting
problem #MIN-CARD-SAT to the respective class of formulas.

The models of Horn formulas are closed under conjunction, i.e., for two mod-
els m and m’ of a Horn formula ¢, also the Boolean vector m A m’ = (m[1] A
m/[1],...,m[k] A m'[k]) is a model of ¢. Hence there exists a unique model with
minimal Hamming weight if and only if ¢ is satisfiable. Therefore a Horn formula ¢
has either one cardinality-minimal model or none, depending on the satisfiability of ¢.
A similar situation arises for #MIN-CARD-DNF, the problem of counting the number
of assignments with minimal Hamming weight to a propositional formula in disjunctive
normal form. These considerations imply the following results.

Proposition 9. #MIN-CARD-SAT[HORN] and #MIN-CARD-DNF are in FP.



Vertex covers, cliques, and independent sets have a particular relationship. The
set X is a smallest vertex cover in G = (V, E) if and only if V ~\ X is a largest
independent set in G if and only if V' \ X is a largest clique in the complement graph
G = (V,V xV~\ E). The size of the largest clique has been investigated by Krentel [10]
and proved to be OptP[log n]-complete (the same proof is also given in [13]). Using
this knowledge, we can determine the complexity of the following problems.

Problem: #MAX-CARD-INDEPENDENT SET

Input: Graph G = (V, E).

Output: Number of independent sets in G with maximum cardinality, i.e., number of
subsets V' C V where |V’| is maximal and for all u,v € V' we have (u,v) ¢ E.

Problem: #MAX-CARD-CLIQUE

Input: Graph G = (V, E).

Output: Number of cliques in G with maximum cardinality, i.e., number of subsets
V' C V where |V'| is maximal and (u, v) € F holds for all u,v € V' such that u # v.

Problem: #MIN-CARD-VERTEX COVER

Input: Graph G = (V, E).

Output: Number of vertex covers of G with minimal cardinality, i.e., number of subsets
V! C V where |V'| is minimal and (u,v) € E impliesu € V' orv € V.

Theorem 10. The problems #MAX-CARD-INDEPENDENT SET, #MAX-CARD-CLIQUE,
and #MIN-CARD-VERTEX COVER are #-OptP[log n]-complete. Their weighted ver-
sions are #-OptP-complete.

We can easily transform the counting problem #MIN-CARD-VERTEX COVER to both
#MIN-CARD-SAT[DUAL HORN] and #MIN-CARD-SAT[KROM]. Indeed, we can repre-
sent an edge (u,v) € E of a graph G = (V, E) by a clause (u V v) which is both
Krom and dual Horn. Hence a cardinality-minimal vertex cover of a graph G = (V, E)
corresponds to a cardinality-minimal model of the formula o = /\(, ,)cp(u V V).

Corollary 11. The counting problems #MIN-CARD-SAT[DUAL HORN] and #MIN-
CARD-SAT[KROM] are #-OptP[log n]-complete via parsimonious reductions.

The following problem is a classic in optimization theory. It is usually formulated
as the maximal number of clauses that can be satisfied. We can also ask for the number
of truth assignments that satisfy the maximal number of clauses.

Problem: #MAX2SAT

Input: A propositional formula ¢ in conjunctive normal form over the variables X with
at most two variables per clause.

Output: Number of assignments to  that satisfy the maximal number of clauses.

The optimization variant of the following counting problem is presented in [6] under
the name CHEATING SAT. We can interpret it as a satisfiability problem in a 3-valued
logic, where the middle value 7 is a “don’t-know”. In this setting it is interesting to
investigate the minimal size of uncertainty we need to satisfy a formula for the opti-
mization variant, as well as the number of satisfying assignments with the minimal size
of uncertainty.



Problem: #MIN-SIZE UNCERTAINTY SAT

Input: A propositional formula ¢ in conjunctive normal form over the variables X.
Output: Number of satisfying assignments m: X — {0, 7, 1} of the formula , where
m(x) = 7 satisfies both literals = and -z, with minimal cardinality of the set {z € X |
m(zx) =7}

Theorem 12. #MAX2SAT and #MIN-SIZE UNCERTAINTY SAT are #-OptP[logn]-
complete.

Even though the complete problems for the classes #-OptP and #-OptP[logn|
are the most interesting ones, there also exist some interesting complete problems in
the classes #-Opt, P and #-Opt,P[logn| for k& > 1. The following problem is an
example of such a case.

Problem: #MAXIMUM k-QUANTIFIED CIRCUIT

Input: A Boolean circuit C(x, y1, . . ., Y ) over variable vectors &, y1, ..., Yk.
Output: Number of maximum values € {0,1}" in binary notation satisfying the
quantified expression Vy13ys - - - Qi (C(x,y1,-..,yr) = 1), where @ is either V
or 3 depending on the parity of k.

Theorem 13. #MAXIMUM k-QUANTIFIED CIRCUIT is #-Opt,P-complete.

5 Concluding Remarks

In the scope of the result from [16] showing that all classes between #P and #PH, the
counting equivalent of the polynomial hierarchy, collapse to #P under 1-Turing reduc-
tions, it is necessary (1) to find suitable reductions strong enough to prove completeness
of well-known counting problems, but tame enough to preserve at least some counting
classes, (2) to identify counting classes with interesting complete problems preserved
under the aforementioned reduction. The first problem was mainly addressed in [3],
whereas in this paper we focused on the second point. We introduced a new hierar-
chy of optimization counting complexity classes #-Opt, P and #-Opt, P[log n]. These
classes allowed us to pinpoint the complexity of many natural optimization counting
problems which had previously resisted a precise classification. Moreover, we have
shown that these new complexity classes have several desirable properties and they in-
teract well with the counting hierarchy defined by Hemaspaandra and Vollmer in [7].
Nevertheless, the Hemaspaandra-Vollmer counting hierarchy does not seem to be suf-
ficiently detailed to capture all interesting counting problems. Therefore an even more
fine-grained stratification of the counting complexity classes is necessary, which started
with the contribution of Pagourtzis and Zachos [12] and has been pursued in this paper.

Finally, further decision problems in AP (respectively ©,P) with k& € N and
corresponding counting problems should be inspected. It should be investigated if the
complexity of the latter can be precisely identified now that we have the new count-
ing complexity classes #-Opt, P (respectively #-Opt,P[logn]) at hand. Moreover,
we would also like to find out more about the nature of the problems that are complete
for these new counting complexity classes. In particular, it would be very interesting



to find out if there also exist “easy to decide, hard to count” problems, i.e., problems
whose counting variant is complete for #-Opt, P (respectively #-Opt, P[log n]) while
the corresponding decision problem is below AP (respectively ©,P). Clearly, such
a phenomenon can only exist if we consider completeness with respect to reductions
stronger than the parsimonious ones. Hence, the closure of our new counting classes
under subtractive reductions (rather than just under parsimonious reductions) in Theo-
rem 6 is an indispensable prerequisite for further research in this direction.
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