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Abstract

We investigate the complexity of the satisfiability problem of constraints over finite totally
ordered domains. In our context, a clausal constraint is a disjunction of inequalities of the
form x ≥ d and x ≤ d. We classify the complexity of constraints based on clausal patterns. A
pattern abstracts away from variables and contains only information about the domain elements
and the type of inequalities occurring in a constraint. Every finite set of patterns gives rise to
a (clausal) constraint satisfaction problem in which all constraints in instances must have an
allowed pattern. We prove that every such problem is either polynomially decidable or NP-
complete, and give a polynomial-time algorithm for recognizing the tractable cases. Some of
these tractable cases are new and have not been previously identified in the literature.

1 Introduction

Research in complexity of constraint satisfaction problems (CSP) gained a considerable interest in
the recent years. The first complete classification by means of a dichotomy theorem for Boolean
CSP of Schaefer [Sch78] has been followed in the last decade by an intensive effort to extend his
result to larger domains. Feder and Vardi [FV98] conjectured that a dichotomy theorem holds for
every finite domain. This conjecture has been partially confirmed in 2002 when Bulatov [Bul02]
proved a dichotomy theorem for the 3-element domain. The problem remains open for domains of
higher cardinality. Confronted with the difficulty of the main goal, researchers started to investigate
CSP problems with additional structure, like list constraints or conservative constraints [Bul03].
The effort has been pursued along several lines: one of them applies methods from universal
algebra [BJK05, Bul02, Bul03], the other one is oriented towards graph theoretic methods [FV98,
HN04], and there is also a finite model theory approach [Dal02, FV98, KV00].
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Dichotomy results are important in computational complexity. Ladner proved in [Lad75] that
there exists an infinite hierarchy between the class P of polynomial-time decidable problems and
NP-complete problems, provided that P 6= NP. On the other hand, a dichotomy theorem states that
a considered constraint satisfaction problem is either polynomial-time decidable or NP-complete,
depending on a parameter usually presented in the form of a finite set of relations.. This means that
dichotomy results are not at all obvious and should constitute an exception under the hypothesis
that P 6= NP.

In this paper we consider constraint satisfaction problems inspired by many-valued logic. In fact,
we take for basis of our research the regular signed logic [Häh01], where the underlying finite domain
is totally ordered, i.e., is a chain. This logic provides us with the concept of literal, clause, and
formula, which extend naturally from the Boolean domain. Moreover, the well-known polynomial-
time decidable satisfiability cases, namely Horn, dual Horn, bijunctive, 0- and 1-valid preserve their
good complexity properties. The cornerstone of our approach is the concept of clausal pattern,
which is an abstraction of all clauses of certain type. These patterns correspond, roughly speaking,
to constraints in the algebraic approach. Finite sets of patterns constitute clausal languages upon
which we construct formulas, whose satisfiability are at the heart of our CSP problems. Naturally,
these CSP problems are parametrized by clausal languages. Different clausal languages lead to
CSP problems of different complexity. First, we get rid of the redundant values in the domain, and
thus concentrate on clausal languages closed under taking subpatterns and containing all unary
clauses. Next, to be able to compare clausal languages and subsequently the complexity of the
induced CSP problems, we build 3-saturations by means of resolution and subpatterns. Roughly
speaking, the 3-saturation of a clausal language L gives all patterns of length at most 3 that can
be “implemented” by L, thus measuring the expressive power of L.

There is no direct relationship between classical constraint satisfaction problems based on re-
lations and our CSPs based on clausal languages. Of course, for each clausal CSP there exists a
classical CSP with the same expressive power, but there are relation-based CSPs with no equivalent
clausal CSP. This is due to the fact that a clausal pattern is a prototype of a clause in regular many-
valued logic, contrary to a relation upon a domain. A pattern gives rise to a particular relation
composed of vectors satisfying the intermediate clause. Indeed, each relation is a set of satisfying
assignments of a conjunction of clauses, as it was proved in [GHSZ04], but there are relations that
cannot be represented by a single clause.

We first derive the exact condition for NP-complete CSP problems, followed by a careful and ex-
haustive analysis on the patterns occurring in the saturation, which provide us with the polynomial-
time decidable cases. We obtain a dichotomy theorem for any cardinality of the finite totally ordered
domain, where the previously known four polynomial-time decidable cases keep their complexity.
Moreover, we discover new polynomial-time decidable cases, which are absent from Boolean CSP
problems. We present an algorithm computing a satisfying assignment of a formula, if it exists, by a
unified approach for all polynomial-time decidable cases. Hence, we obtain a complete classification
of many-valued logics-based CSP problems over finite totally ordered domains.

2 Preliminaries

Let D be a finite chain, say D = {0, 1, . . . , n− 1} with the total order 0 < 1 < · · · < n− 1, called a
domain, and let V be a set of variables. For x ∈ V and d ∈ D, the inequalities x ≥ d and x ≤ d are
called positive and negative literals, respectively. A clause is a disjunction of literals. As usually,
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an interval [a, b] denotes the subset of values {x ∈ D | a ≤ x ≤ b}.
A clausal pattern, or pattern for short, is a multiset1 of the form

P = (+a1, . . . ,+ap,−b1, . . . ,−bq),

where p, q ∈ N and ai, bi are values from the domain D, for all i. The +ai’s are called positive
literals, the −bi’s negative literals. The sum p+ q, also denoted by |P |, is the length of the pattern.
Denote by P [l] the number of occurrences of the literal l in the pattern P . If P [l] ≤ Q[l] holds for all
literals l then P is called a subpattern of Q. Note that there are at least |Q| and at most 2 |Q| possible
subpatterns of Q, depending on the repeated occurrences of literals, including also Q and the empty
subpatterns. A clausal language L is a finite set of clausal patterns, with arities not necessarily
equal. We denote by P+ and P− the positive and negative parts, respectively, of the pattern P ,
i.e., P+ = (+a1, . . . ,+ap) and P− = (−b1, . . . ,−bq). We denote by min(P+) = min{a1, . . . , ap}
and max(P−) = max{b1, . . . , bq} the minimum and maximum values of the parts P+ and P−,
respectively. The values min(P+) and max(P−) are undefined for empty parts P+ and P−. We
denote by pos`(L) = {P ∈ L | P = P+, |P | = `} and neg`(L) = {N ∈ L | N = N−, |N | = `} the
set of all positive and negative patterns of length ` in L, respectively.

Given a clausal language L and a countably infinite set of variables V , an L-clause is a pair
(P, ~x), where P ∈ L is a pattern and ~x is a finite vector of not necessarily distinct variables from V ,
such that |P | = |~x|. A pair (P, ~x) with a pattern P = (+a1, . . . ,+ap, . . . ,−b1, . . . ,−bq) and variables
~x = (x1, . . . , xp+q) represents the clause cP = (x1 ≥ a1∨· · · ∨xp ≥ ap∨xp+1 ≤ b1∨· · · ∨xp+q ≤ bq).
We will use the more conventional notation P (~x) instead of (P, ~x). An L-formula, or formula
for short, is a conjunction of a finite number of L-clauses. We denote by ϕ(x1, . . . , xk) that the
variables x1, . . . , xk occur in ϕ, fixing also implicitly their sequence.

An assignment is a mapping I : V → D assigning a domain element I(x) to each variable x ∈ V .
The satisfaction relation I |= ϕ is defined as follows:

• I |= true and I 6|= false ;

• I |= x ≤ d if I(x) ≤ d;

• I |= x ≥ d if I(x) ≥ d;

• I |= ϕ ∧ ψ if I |= ϕ and I |= ψ;

• I |= ϕ ∨ ψ if I |= ϕ or I |= ψ.

If I |= ϕ holds, we say that I satisfies ϕ.
The well-known resolution rule from Boolean logic has a straightforward extension to regular

many-valued logic based on a totally ordered domain. Consider two clauses C1 = (C ∨ x ≥ a) and
C2 = (x ≤ b ∨ C ′) with a variable x, the subclauses C and C ′, and two values a, b ∈ D satisfying
the condition a > b. Then C ∨C ′ is called a resolvent of the parent clauses C1 and C2. Resolvents
are logical consequences of their parent clauses, i.e., if an assignment satisfies C1 and C2, then it
also satisfies C ∨ C ′ [BFS01].

It can be easily seen that the literals +0 and −(n − 1) are superfluous since the inequalities
x ≥ 0 and x ≤ n− 1 are always satisfied. We call these literals trivial, contrary to the non-trivial

1A multiset (also called bag) is a set with repetitions.
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literals +1, . . . , +(n− 1) and −0, . . . , −(n− 2). Without loss of generality, it is sufficient to only
consider patterns and clausal languages with non-trivial literals.

A clausal pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq) is said to be

• Horn if p ≤ 1,

• dual Horn if q ≤ 1,

• bijunctive if p+ q ≤ 2 and binary if p+ q = 2,

• d-valid if P (~x) is satisfied by the constant assignment I(x) = d for all x ∈ V ,

• positive if p > 0 and q = 0 (i.e., P = P+),

• negative if p = 0 and q > 0 (i.e., P = P−),

• monotone if it is positive or negative,

• mixed if p > 0 and q > 0.

A clausal language L is Horn, dual Horn, bijunctive, or d-valid, respectively, if every pattern in L

has the corresponding property.
A relation R of arity k over a finite domain D is a subset R ⊆ Dk. A vector m ∈ R is denoted

by m = (m[1], . . . ,m[k]), where m[i] is the value of m at the i-th coordinate. Each L-formula ϕ
gives rise to a corresponding relation

Sol(ϕ(x1, . . . , xk)) = {(I(x1), . . . , I(xk)) | I |= ϕ}

produced by the set of assignments I satisfying ϕ.
Let R ⊆ Dk be a relation of arity k over the domain D and f : D → D be a unary function.

The image of the relation R under the function f is the set of vectors

f(R) = {(f(m[1]), . . . , f(m[k])) | m ∈ R}

of arity k. We say that the relation R is closed under f if the inclusion f(R) ⊆ R holds.
In the sequel we need the image of clausal patterns under unary functions. Let P be a clausal

pattern of length k over the domain D and f : D → D be a unary function. The image of the
pattern P under the function f is the relation

f(P ) = {f(m) | m ∈ Sol(P (x1, . . . , xk))}.

We say that a pattern P is closed under f if the inclusion f(P ) ⊆ Sol(P (x1, . . . , xk)) holds. In this
case, f is called an endomorphism (or unary polymorphism) of P . A unary function f is called
an endomorphism of a clausal language L if the inclusion f(P ) ⊆ Sol(P (x1, . . . , xk)) holds for each
P ∈ L.

Let f : D → D be a unary function defined on the domain D. We denote the range of f by f(D)
and the k-fold composition of f by f k (defined recursively as f 1 = f and fk+1 = fk ◦ f).
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3 Constraint Satisfaction Problems

Given a clausal language L, the constraint satisfaction problem over L is defined as follows.

Problem: csp(V,D,L)
Input: An L-formula ϕ over a finite totally ordered domain D and variables V .
Question: Is ϕ satisfiable?

If the domain D and variables V are implicitly clear, we write csp(L) instead of csp(V,D,L).
In this section we will show that, in order to classify the complexity of problems csp(L), it is

sufficient to do this for languages which contain all unary patterns and are closed under taking
subpatterns.

Lemma 1 Let L be a clausal language such that for some a ∈ {1, . . . , n− 1} the positive literal +a
(or for some a ∈ {0, . . . , n− 2} the negative literal −a) does not occur in any pattern in L. Then
there exists a clausal language L′ over the domain D′ = D r {a} such that csp(V,D,L) and
csp(V,D′, L′) are polynomial-time equivalent.

Proof: We only consider the case of a positive literal +a not occurring in L; the other case is dual.
For every pattern P ∈ L, let P ′ be a pattern over D′ obtained from P by replacing each occurrence
of −a by −(a− 1), and let L′ = {P ′ | P ∈ L}. We claim that csp(V,D,L) and csp(V,D ′, L′) are
polynomial-time equivalent.

Given a formula ϕ as an instance of csp(V,D,L), construct the new formula ϕ′ from ϕ by
replacing every literal of the form x ≤ a by x ≤ a−1. Obviously ϕ′ is an instance of csp(V,D′, L′).
Conversely, given an instance ϕ′ of csp(V,D′, L′), construct ϕ from ϕ′ by replacing literals of the
form x ≤ a − 1 by x ≤ a in those clauses, which do not correspond to any pattern in L. The
modified clauses now correspond to patterns in L, i.e., ϕ is an instance of csp(V,D,L).

We show that ϕ and ϕ′ are logically equivalent. Every assignment satisfying ϕ′ also satisfies ϕ
since x ≤ a − 1 implies x ≤ a. Conversely, let I be an assignment satisfying ϕ, and let I ′ be the
assignment defined as I ′(x) = a− 1 if I(x) = a, and I ′(x) = I(x) otherwise. By a case analysis it
is straightforward to verify that for every literal in ϕ satisfied by I, the corresponding literal in ϕ ′

is satisfied by I ′ (bearing in mind that ϕ does not contain literals of the form x ≥ a). 2

Remark 2 It follows from the definitions that if f is an endomorphism of L and I is a satisfying
assignment to an instance of csp(L) then f ◦ I also satisfies the instance. In particular, every
satisfiable instance of csp(L) has a solution using only values from f(D).

Lemma 3 Let L be a clausal language over a domain D that has an endomorphism f which is
not a permutation. Then there exists a clausal language L′ on a smaller domain D′ such that
csp(V,D,L) and csp(V,D′, L′) are polynomial-time equivalent.

Proof: It is easy to see that for any k the iterated function f k is also an endomorphism and
that for some k the mapping f k acts identically on its range, i.e., that f k(a) = a holds for every
a ∈ fk(D). Without loss of generality, we may assume that already the unary function f has this
property. Since f is not a permutation, we can find an element b ∈ D which is not in the range
of f , i.e., such that b 6∈ f(D). Let f(b) = a for some a ∈ f(D). We have either a < b or a > b. We
perform the proof only for the case a < b, since the other one is similar.
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Let D = {0, . . . , n−1} be the domain. We need a case analysis corresponding to the position of b
in D. If b = n− 1 then every satisfiable instance of csp(V,D,L) has a solution over {0, . . . , n− 2}
according to Remark 2. So we can simply remove n− 1 from D and all occurrences of n− 1 from
the patterns in L. Clearly this leads to an equivalent problem over a smaller domain.

Let b < n− 1. For every pattern P ∈ L, let P ′ be a pattern obtained from P by replacing each
literal +b (if there are any) by +(b+ 1). Set L′ = {P ′ | P ∈ L} and D′ = D r {b}. We claim that
csp(V,D,L) and csp(V,D′, L′) are polynomial-time equivalent. Since f is also an endomorphism
of L′, following Remark 2 every satisfiable instance of csp(V,D ′, L′) has a satisfying assignment
I : V → f(D) using only values from the range of f . Clearly, changing all literals of the form x ≥ b

to x ≥ b+ 1 does not affect the satisfiability of instances of csp(V,D,L). 2

By Lemmas 1 and 3, in order to classify the complexity of problems csp(L), it is sufficient to
consider only clausal languages L whose all endomorphisms are permutations and such that each
non-trivial literal is present in some pattern in L. To further restrict the class of clausal languages,
we need to temporarily extend the type of constraints under consideration by allowing not only
constraints given by patterns from L, but also constant constraints, i.e., constraints of the form
x = a where x is a variable and a is an element from D. For a clausal language L, let cspc(L)
denote the extended problem csp(L) in which arbitrary constant constraints are also allowed in
instances. Note that we can express the constraint x = a as a conjunction of two unary clauses
(x ≤ a) ∧ (x ≥ a).

Proposition 4 ([BJK99, BJK05]) csp(L) and cspc(L) are polynomial-time equivalent when-
ever all endomorphisms of a clausal language L are permutations.

Proof: Corollary 4.8 in [BJK05] or Theorem 3.7 in [BJK99]. 2

Definition 5 We call a clausal language L SU-closed, if it is closed under taking subpatterns and
it contains all non-trivial unary patterns, i.e., if it satisfies the following conditions:

1. If P ∈ L and P ′ is a subpattern of P then P ′ ∈ L.

2. (+d) ∈ L for all d ∈ {1, . . . , n− 1}.

3. (−d) ∈ L for all d ∈ {0, . . . , n− 2}.

We need first to determine the maximal possible cardinality of SU-closed clausal languages,
what is done be means of the following combinatorial lemma.

Lemma 6 There are at most (`+ 1)2|D|−2 different patterns of length at most ` over a domain D.

Proof: Let D = {0, . . . , n− 1}. Every pattern P can be uniquely described by the characteristic
vector (k+1, . . . , k+(n−1), k−0, . . . , k−(n−2)), where kl denotes the number of occurrences of literal l in
pattern P . We have 0 ≤ kl ≤ ` since P is of length at most `. The vector is of size 2(n−1) = 2|D|−2.
Hence there are at most (`+ 1)2|D|−2 different characteristic vectors and thus also patterns. 2

Proposition 7 For any clausal language L over a fixed domain D there exists an SU-closed clausal
language L′, such that csp(L) and csp(L′) are polynomial-time equivalent and, moreover, L′ can
be constructed from L in polynomial time.
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Proof: To be able to apply Proposition 4, we describe an algorithm looking for non-surjective
endomorphisms of the clausal language L. Using these endomorphisms, we apply Lemmas 1 and 3
to transform the language L to another one having only permutative endomorphisms. Finally, using
Proposition 4, we prove the polynomial-time equivalence between csp(L) and csp(L ′), where L′ is
the SU-closed clausal language corresponding to L.

First, we describe a polynomial-time algorithm which finds a non-surjective endomorphism of L
or shows that such an endomorphism does not exist. Let P = (+a1, . . . ,+ap,−b1, . . . ,−bq) be a
pattern in L and RP = Sol(P (x1, . . . , xp+q)) be the corresponding relation on D. By definition,
a unary function f on D is not an endomorphism of RP if and only if there exists a vector
m = (m1, . . . ,mp,m

′
1, . . . ,m

′
q) ∈ RP , such that f(m) 6∈ RP , i.e., if and only if there exists a vector

m = (m1, . . . ,mp,m
′
1, . . . ,m

′
q) such that the following conditions hold:

1. There exists an i, such that i ∈ {1, . . . , p} and mi ≥ ai or i ∈ {1, . . . , q} and m′
i ≤ bi.

2. For all j ∈ {1, . . . , p} we have f(mj) < aj.

3. For all j ∈ {1, . . . , q} we have f(m′
j) > bj.

This can be checked simply by computing, for any fixed endomorphism f and pattern P , all sets
{mj | f(mj) < aj} and {m′

j | f(m′
j) > bj}, which requires |D| × |P | time, following by a check

whether one of these sets contains an element satisfying Condition 1. Since |D| is a constant, for
any given f the above conditions can be verified in polynomial time. Since D is fixed, the number
of possible unary functions on D is a constant.

Using the above algorithm, we can detect non-surjective endomorphisms of L. If f is such
an endomorphism and b is an element absent from the range of f then we follow the (linear-time)
procedures from the proofs of Lemmas 1 and 3 to obtain an equivalent language over domainDr{b}.
We perform these steps until all endomorphisms of the obtained language are permutations, i.e.,
at most |D| times.

By Lemmas 1 and 3, we may assume that all endomorphisms of L are permutations and that
each non-trivial literal is present in some pattern in L. We will show that the language L ′ obtained
from L by adding all unary patterns together with all subpatterns of the patterns in L is the required
language. Note that every unary pattern is a subpattern of some pattern in L and that there are
no more than (`+ 1)2|D|−2 patterns in L′, according to Lemma 6, where ` is the maximal length of
patterns in the considered clausal language L. Since the domain D is fixed, i.e., the cardinality |D|
is a constant, the cardinality of L′ is polynomial in the size of L. Hence, the language L′ can be
produced in polynomial time with respect to the size of L.

We will show that csp(L) and cspc(L
′) are polynomial-time equivalent. This, together with

obvious inclusions csp(L) ⊆ csp(L′) ⊆ cspc(L
′), will prove the proposition.

As we noticed in Proposition 4, the problem csp(L) is polynomial-time equivalent to cspc(L).
It is easy to show that cspc(L) and cspc(L

′) are polynomial-time equivalent. Assume that P =
(+a1,+a2, . . . ,+ap,−b1, . . . ,−bq) ∈ L and Q = (+a2, . . . ,+ap,−b1, . . . ,−bq). Clearly the clause
(x2 ≥ a2 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq) is obtained by resolution in many-valued
logic from the clauses x1 ≤ 0 and (x1 ≥ a1 ∨ x2 ≥ a2 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq).
The clause x1 ≤ 0 ensures that the variable x is assigned the constant 0 in the latter clause and
therefore it plays the role of the constant substitution x1 = 0. Similarly, all patterns obtained from
patterns of L by removing one literal can be added to L, and the new problem will be equivalent
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to cspc(L). Continuing this procedure, we will eventually obtain that cspc(L) and cspc(L
′) are

polynomial-time equivalent, which implies that csp(L) and cspc(L
′) are equivalent. 2

Remark 8 Note that we always consider the domain D to be fixed. If the domain D were a
part of the input, the SU-closed language L′ would be exponentially larger that the corresponding
clausal language L. Nevertheless, even in this case the problems csp(L) and csp(L ′) would be
polynomial-time equivalent.

According to Lemma 3, we can get rid of redundant values in the domain. According to
Proposition 7, we can restrict the csp(L) problems to the case where the clausal language L is
closed under taking subpatterns and it contains all unary patterns. Therefore we consider only
SU-closed clausal languages L in the sequel.

4 Complexity of CSP Problems

Some polynomial cases have already been identified in the literature before without the use of
clausal patterns and languages. The satisfiability problems for L-formulas built from Horn, dual
Horn, and bijunctive clausal languages, respectively, were studied in the framework of many-valued
logics [Häh01] as well as in the one of constraints [CJJK00, JC95].

Proposition 9 ([CJJK00, Häh01, JC95]) csp(L) for a Horn, dual Horn, or bijunctive clausal
language L is decidable in polynomial time.

This result does not prove all polynomial-time decidable cases of csp(L), but it shows that
three polynomial-time decidable classes of Boolean constraint satisfaction problems extend to finite
totally ordered domains, provided that we use the clausal patterns paradigm.

As in the Boolean case, it turns out that it is sufficient to examine the patterns of length
at most 3 that can be obtained from L (or “implemented” by L, see [CKS01]). For this reason
we introduce the notion of 3-saturation of a clausal language which is based on the concept of
pattern resolution. Let P = (v1, . . . , vp,+a) and Q = (−b, v′1, . . . , v

′
q) be two patterns, such that P

contains a positive literal +a and Q a negative literal −b, satisfying b < a. Then the pattern
R = (v1, . . . , vp, v

′
1, . . . , v

′
q) is called a resolvent of P and Q. We say that R is obtained from P

and Q by pattern resolution.

Definition 10 Let L be an SU-closed clausal language, i.e. a clausal language closed under taking
subpatterns and containing all unary patterns. The 3-saturation of L, denoted by L̂, contains all
patterns that can be constructed inductively from L by the following rules:

1. If P ∈ L and |P | ≤ 3, then P ∈ L̂ (introduction).

2. If P and Q are patterns in L̂ such that |P | + |Q| ≤ 5, then all resolvents of P and Q are in L̂

(restricted resolution).

Note that due to the restriction, only resolvents with a length at most 3 are considered in the
second condition.
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Remark 11 Observe that L̂ is an SU-closed language and that it can be computed from the
already SU-closed language L in linear time. This requires first to search L for patterns of length
smaller or equal to 3, according to Step 1, what can be done in linear time with respect to the size
of L. Then the 3-saturation L̂ is produced in constant time according to Step 2.

Proposition 12 csp(L̂) is reducible to csp(L) in polynomial time.

Proof: For each formula ϕ(~x) over L̂ there exists a formula ϕ′(~x, ~y) over L, such that ϕ′ can
be obtained from ϕ by means of resolution in polynomial time. It follows from resolution for
many-valued regular logic (and is easy to see) that the formula ϕ is satisfiable if and only if ϕ ′ is.
2

We need to analyze carefully which parts of the csp(L) problem are polynomial-time decidable
and which are NP-complete. To this end we need the concept of disjoint PN-pair.

Definition 13 We call two patterns P and N a PN-pair if P is positive (P = P +), N is negative
(N = N−), one of them has length 2, and the other has length 3. A PN-pair (P,N) is called
disjoint when max(N) < min(P ) holds, otherwise it is overlapping.

We will perform a reduction from the following well-known problem, which is also known as a
constraint satisfaction problem over the set of Boolean relations {or +

3 , or
−
2 } with or+

3 = {0, 1}3
r

{000} and or−2 = {0, 1}2
r {11}. Its NP-completeness follows from Schaefer’s result [Sch78]. The

problem can also be described as csp(L), where L is the clausal language {(+1,+1,+1), (−0,−0)}.

Problem: monotone sat

Input: A Boolean formula ϕ = c1 ∧ · · · ∧ ck in conjunctive normal form, where each clause ci has
either three positive literals or two negative literals.
Question: Is ϕ satisfiable?

Proposition 14 If the 3-saturation L̂ contains a disjoint PN-pair of patterns then csp(L) is NP-
complete.

Proof: Let P = (+a1,+a2,+a3) be a positive pattern of length 3 and N = (−b1,−b2) be the
negative pattern of length 2 in L̂ that constitute the disjoint PN-pair. Let d = max(N). For each
Boolean formula ϕ we construct an L̂-formula ϕ′ in the following way. For each clause or+

3 (x, y, z)
in ϕ we put the clause P (x, y, z) in ϕ′ and for each clause or−

2 (x, y) in ϕ we put the clause N(x, y)
in ϕ′. Since P and N are disjoint it is easy to check that ϕ is satisfiable if and only if ϕ ′ is (intuitively
values smaller than or equal to d will be identified to 0, while the others will be identified to 1).

The proof for a positive pattern P of length 2 and a negative pattern N of length 3 follows from
the previous case by the duality principle. 2

5 Dichotomy Result

We must analyze now the cases when the 3-saturation L̂ does not contain a disjoint PN-pair. This
will be done by a case analysis.
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Case 1: All positive patterns in L̂ have length 1, or dually all negative patterns in L̂ have length 1.

This case corresponds to the Horn and dual Horn cases.

Proposition 15 Let L be an SU-closed clausal language. If all positive (negative) patterns in L̂

have length 1 then both L and L̂ are Horn (dual Horn).

Proof: Suppose that L is not Horn, i.e., there exists a pattern M with at least two positive
literals. The clausal language L is closed under subpatterns, therefore there must be a positive
pattern P = (+p1,+p2) in L. Since |P | ≤ 3 holds, we have that P ∈ L̂, what is a contradiction
with the assumption. The result for dual Horn follows from the duality principle. 2

Tractability of the cases considered in Proposition 15 follows from Proposition 9.

Case 2: The 3-saturation L̂ contains at least one positive and one negative pattern of length
greater or equal to 2.

Case 2 splits to the following sub-cases.

Case 2.1: All patterns in L̂ have length smaller or equal to 2.

If all patterns in L̂ have length smaller or equal to 2 then L is bijunctive and csp(L) is tractable
by Proposition 9.

Case 2.2: There exists at least one pattern M ∈ L̂ of length |M | = 3.

We need to analyze the case when there exists a pattern M ∈ L̂ of length |M | = 3. This is
the most involved part of the proof. To this end we need to introduce the notions of [a, b]-valid,
[a, b]-satisfiable, and [a, b]-unsatisfiable patterns on an interval [a, b].

Definition 16 A pattern M of length k is called [a, b]-valid if every assignment I : V → [a, b]
satisfies the clause M(x1, . . . , xk), i.e., if every assignment whose range is restricted to the interval
[a, b] satisfies M(x1, . . . , xk). M is called [a, b]-satisfiable if the clause M(x1, . . . , xk) is satisfiable
by an assignment I : V → [a, b], i.e., by an assignment whose range is restricted to the interval
[a, b]. M is called [a, b]-unsatisfiable when there is no satisfying assignment I : V → [a, b] of the
clause M(x1, . . . , xk), i.e., when there is no assignment restricted to the interval [a, b] that satisfies
M(x1, . . . , xk).

It is clear that on a given interval [a, b] a pattern M is [a, b]-valid, or [a, b]-satisfiable, or [a, b]-
unsatisfiable. Moreover, [a, b]-validity implies [a, b]-satisfiability. The notion of [a, b]-satisfiability
of M means that we can restrict our attention to the satisfying assignments of M(x1, . . . , xk) on the
interval [a, b], contrary to the [a, b]-unsatisfiable patterns. It should also be clear that a pattern M
can be [a, b]-unsatisfiable even if the clause M(x1, . . . , xk) is satisfiable by an assignment I whose
range is not included in the interval [a, b].

Definition 17 Let L be a clausal language, such that L̂ contains a positive binary and a negative
binary pattern. We call the values

pmax = max{min(P ) | P ∈ pos2 L̂} and qmin = min{max(N) | N ∈ neg2 L̂}
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Propagate L: (C ∨ x ≤ v) ∧ (x ≤ u) → (x ≤ u) if u ≤ v

Propagate R: (C ∨ x ≥ u) ∧ (x ≥ v) → (x ≥ v) if u ≤ v

Restrict L: (C ∨ x ≤ u) ∧ (x ≥ v) → C ∧ (x ≥ v) if u < v

Restrict R: (C ∨ x ≥ v) ∧ (x ≤ u) → C ∧ (x ≤ u) if u < v

Contradiction: (x ≤ u) ∧ (x ≥ v) → ⊥ if u < v

Figure 1: Formula simplification rules

the markers of the binary positive and negative patterns in the saturation L̂, respectively. We
also call P∗ = (+pmax,+pmax) and N∗ = (−qmin,−qmin) the extremal patterns.

Observe that in Case 2.2 these markers are well-defined, since there are binary positive and
negative patterns in the 3-saturation L̂.

Our goal is to present a polynomial-time algorithm that decides the satisfiability of an L-formula
ϕ. This algorithm starts with the following pre-processing step. From ϕ we construct a new L-
formula ϕ′ by exhaustive application of the five rules presented in Figure 1. Since these rules are
confluent and terminating, we can apply them in an arbitrary order and always obtain the unique
normal form ϕ′.

It is clear that ϕ′ can be computed from ϕ in polynomial time. The formulas ϕ and ϕ′ are
logically equivalent, therefore they also have the same satisfiability property. Observe that every
variable in ϕ′ occurs at most once in a unary positive (resp. negative) clause. Moreover, if a
variable x occurs both in a positive clause (x ≥ u) and in a negative clause (x ≤ v), then these two
clauses are compatible, i.e., u ≤ v holds, and both clauses are satisfied by two assignments I(x) = u

and I ′(x) = v. These observations will be used to justify the correctness of the polynomial-time
algorithms developed in the sequel. Moreover, note that the patterns of all constraints occurring
in ϕ′ belong to L, since L is closed under subpatterns.

Case 2.2 splits once more. We need to perform a case analysis on the position of markers of the
binary monotone patterns in L̂.

Case 2.2.1: pmax ≤ qmin. Observe that when the relation pmax ≤ qmin holds then there cannot
be a disjoint PN-pair of patterns in L.

Proposition 18 Let L be an SU-closed clausal language, such that L̂ contains a positive binary, a
negative binary, and a ternary pattern. If the markers satisfy pmax ≤ qmin, then csp(L) is decidable
in polynomial time.

Proof: Let ϕ be an L-formula. Transform ϕ to a new L-formula ϕ′ by an exhaustive application
of the simplification rules from Figure 1. Observe that all non-unit clauses from ϕ ′ are d-valid for
every d ∈ [pmax, qmin]. Indeed, for sake of contradiction, suppose that there exists a clause c in ϕ,
which is not d-valid for some d ∈ [pmax, qmin]. Let Mc be the pattern associated to c. Since it is not
d-valid, all literals of Mc must be of the form +p with p > d ≥ pmax or −q with q < d ≤ qmin. Mc

cannot be positive since otherwise we can produce from Mc by taking subpatterns a positive binary
pattern P = (+p1,+p2) ∈ L̂ with pi > pmax for each i, but this contradicts the definition of pmax

and the fact that the SU-closed clausal language L is closed under subpatterns. Dually, Mc cannot
be negative since otherwise we could produce a negative binary pattern N = (−q1,−q2) ∈ L̂ with
qi < pmax ≤ qmin, which contradicts the definition of qmin and the SU-closedness of L. If Mc is
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mixed, we can derive by taking subpatterns a pattern M ′ = (+p,−q) ∈ L̂ with q < pmax < p.
There exists by definition a pattern P1 = (+pmax,+p1) ∈ L̂ for some p1 ≥ pmax. We obtain by two
resolution steps from M ′ and P1 the pattern Q = (+p,+p) ∈ L̂, which contradicts the definition
of pmax, since p > pmax holds.

After the transformation to ϕ′ by an exhaustive application of the rules from Figure 1, the
algorithm to find a satisfying assignment proceeds as follows. If ϕ′ contains the empty clause ⊥
then ϕ is unsatisfiable. Otherwise, assign first all variables to an arbitrary but fixed d ∈ [pmax, qmin].
This initial assignment I(x) = d for all x ∈ V satisfies all non-unit clauses, according to the previous
observation, but not necessarily the unit ones. If a variable x appears in a unit clause (x ≥ a) (or
x ≤ b) not satisfied by I(x) = d, then change the value of x to a (resp. b).

We need to prove that these assignment modifications do not alter the satisfaction of the non-
unit clauses. Suppose that x occurs in ϕ′ in a unit positive clause (x ≥ v) which is not not satisfied
by I(x) = d, i.e., we have v > d. There are three types of clauses in ϕ′ where the variable x
can occur, namely a negative unit clause (x ≤ u), as well as the non-unit clauses (C ∨ x ≥ u)
with u > v and (C ∨ x ≤ u) with u ≥ v. A negative unit clause (x ≤ u) must be compatible with
(x ≥ v), since ϕ′ does not contain the empty clause, thus it is satisfied by I(x) = v. The assignment
I(x) = d does not contribute to the satisfaction of the clause (C ∨ x ≥ u) since d < v ≤ u holds.
The asignment I(x) = d satisfies the clause (C ∨ x ≤ u), since d < v ≤ u holds, thus I(x) = v

satisfies it, too. Therefore changing the assignment from I(x) = d to I(x) = v will not affect the
satisfiability of the non-unit clauses. 2

Case 2.2.2: qmin < pmax. In this case the csp(L) problem can be substantially simplified and
studied on the restricted interval [qmin, pmax].

Lemma 19 Let L be an SU-closed clausal language such that L̂ contains a positive and a negative
binary pattern. If the markers satisfy the condition qmin < pmax then both extremal patterns N∗ =
(−qmin,−qmin) and P∗ = (+pmax,+pmax) belong to L̂.

Proof: By definition of the markers qmin and pmax, there exist patterns N = (−q1,−qmin) ∈ L̂

and P = (+p1,+pmax) ∈ L̂, where q1 ≤ qmin < pmax ≤ p1 holds. A resolution step between P

and N produces the pattern M = (−qmin,+pmax). Another resolution step between M and N

produces N∗, whereas a different resolution step between M and P produces P∗. 2

Lemma 20 Let L be an SU-closed clausal language such that L̂ contains a positive binary, a
negative binary, and a ternary pattern. If L̂ does not contain a disjoint PN-pair and the markers
satisfy the condition qmin < pmax, then every pattern M ∈ L of length |M | ≥ 3 is [qmin, pmax]-valid.

Proof: Observe first that both extremal patterns N∗ = (−qmin,−qmin) and P∗ = (+pmax,+pmax)
belong to L̂, according to Lemma 19. Suppose that there exists a pattern M ∈ L of length
|M | ≥ 3, which is not [qmin, pmax]-valid. This means that M contains only the literals −b with
b < pmax and +a with a > qmin.

Let M be positive, i.e., M = (+a1, . . . ,+ak), where k ≥ 3 and ai > qmin holds for all i.
Then the subpattern M+

3 = (+a1,+a2,+a3) belongs to L̂, and together with N∗ = (−qmin,−qmin)
forms a disjoint PN-pair, which is a contradiction with the assumption. Let M be negative, i.e.,
M = (−b1, . . . ,−bk), where k ≥ 3 and bi < pmax holds for all i. Then, the subpattern M−

3 =

(−b1,−b2,−b3) belongs to L̂, and together with P∗ = (+pmax,+pmax) forms a disjoint PN-pair,
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which is once more a contradiction with the assumption. Let M = (+a1, . . . ,+ak,−b1, . . . ,−b`)
be mixed, where k + ` ≥ 3, ai > qmin, and bj < pmax hold for all i, j. Then either the subpattern

M3 = (+a1,+a2,−b1) or the subpattern M3 = (+a1,−b1,−b2) belongs to L̂. Thus, by repeated
resolution of M3 and P∗ we can produce the positive pattern M ′

3 = (+a1,+pmax,+pmax), where
a1 > qmin and pmax > qmin hold. This leads to a contradiction as before. 2

Lemma 21 Let L be an SU-closed clausal language such that L̂ contains a positive binary, a
negative binary, and a ternary pattern. If L̂ does not contain a disjoint PN-pair and the markers
satisfy the condition qmin < pmax, then every binary pattern in L is either [qmin, pmax]-valid or of
the form (+a,+b), (−a,−b), or (−a,+b), where a, b ∈ [qmin, pmax].

Proof: Recall that both extremal patterns N∗ = (−qmin,−qmin) and P∗ = (+pmax,+pmax) belong
to L̂, according to Lemma 19.

Let P = (+a,+b) ∈ L be a positive pattern with a ≤ b. P belongs to L̂. If a ≤ qmin holds
then P is [qmin, pmax]-valid. Consider now the case qmin < a. The pattern Q∗ = (−qmin,+pmax) is a
resolvent of the extremal patterns P∗ = (+pmax,+pmax) and N∗ = (−qmin,−qmin) since qmin < pmax

holds. If qmin < a ≤ pmax holds then we obtain Q′ = (+b,+pmax) by resolution from P and Q∗. By
resolution from Q′ and N∗ we get Q′′ = (+b,−qmin). Another resolution step between Q′ and Q′′

gives Q† = (+b,+b). If b > pmax then this contradicts the definition of pmax, therefore we must have
b ≤ pmax and [a, b] ⊆ [qmin, pmax]. The same result holds by duality for negative binary patterns
in L.

LetM = (−a,+b) ∈ L. If a ≥ pmax or b ≤ qmin hold thenM is [qmin, pmax]-valid. If a < pmax and
b > qmin hold then we need a supplementary case analysis. If a ≥ qmin and b ≤ pmax then the interval
[a, b] or [b, a], depending whether a < b or b ≤ a, is included in [qmin, pmax]. If a < qmin then we can
produce by resolution from M and N∗ = (−qmin,−qmin) the pattern Q = (−a,−qmin), followed by
an additional resolution step with M which gives Q† = (−a,−a), what contradicts the definition
of qmin. If b > pmax holds then we can produce by resolution from M and P∗ = (+pmax,+pmax)
the pattern Q′ = (+pmax,+b), followed by two additional resolution steps as above, which give
Q† = (+b,+b), what contradicts the definition of pmax. 2

Proposition 22 Let L be an SU-closed clausal language such that L̂ contains a positive binary, a
negative binary, and a ternary pattern. If L̂ does not contain a disjoint PN-pair and the markers
satisfy the condition qmin < pmax, then csp(L) is decidable in polynomial time.

Proof: The algorithm to find a satisfying assignment for ϕ in polynomial time proceeds as follows.
First, it transforms ϕ to ϕ′ by an exhaustive application of the rules from Figure 1. If ϕ′ contains
the empty clause ⊥ then ϕ is unsatisfiable. Otherwise, construct the sub-formula ϕ ′

2 consisting of
all [qmin, pmax]-satisfiable clauses from ϕ′ which are not [qmin, pmax]-valid. According to Lemmas 20
and 21, ϕ′

2 is bijunctive, i.e., it contains only unit and binary clauses, and therefore its satisfia-
bility is decidable in polynomial time. Find a satisfying assignment for ϕ ′

2. The binary clauses
from formula ϕ′ involve only comparisons with values from the interval [qmin, pmax], according to
Lemma 21. Hence, if we change any assignment I(x) < qmin to I(x) = qmin and any assignment
I(x) > pmax to I(x) = pmax, this cannot affect the truth value of any literal in ϕ′

2. Therefore if ϕ′
2

is satisfiable, it must be [qmin, pmax]-satisfiable.
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The remaining clauses in ϕ′ are either “big” clauses, i.e., of length 3 or more, binary clauses,
or unit clauses. The first two types are [qmin, pmax]-valid, so the computed satisfying assignment
satisfies them. What remains are unit clauses which are not [qmin, pmax]-valid.

As in the proof of Proposition 18, we change the values of the concerned variables, setting
I(x) = v if either x ≤ v or x ≥ v is a [qmin, pmax]-unsatisfiable clause in ϕ′. Once more, by
construction of ϕ′ for the same reason as in the proof of Proposition 18, this change does not alter
the satisfaction of the already satisfied clauses. Suppose that x occurs in ϕ ′ in a unit positive clause
(x ≥ v) which is not satisfied by I(x) = d, i.e., we have v > d. There are three types of clauses
in ϕ′ where the variable x can occur, namely a negative unit clause (x ≤ u), as well as the non-unit
clauses (C ∨ x ≥ u) with u > v and (C ∨ x ≤ u) with u ≥ v. A negative unit clause (x ≤ u)
must be compatible with (x ≥ v), since ϕ′ does not contain the empty clause, thus it is satisfied by
I(x) = v. The assignment I(x) = d does not contribute to the satisfaction of the clause (C∨x ≥ u)
since d < v ≤ u holds. The asignment I(x) = d satisfies the clause (C ∨ x ≤ u), since d < v ≤ u

holds, thus I(x) = v satisfies it, too. Therefore changing the assignment from I(x) = d to I(x) = v

will not affect the satisfiability of the non-unit clauses. 2

To the best of our knowledge, the tractable cases identified by means of Proposition 22 are new.
The following theorem follows from Propositions 14, 15, 18, and 22.

Theorem 23 (Dichotomy Theorem) Let L be an SU-closed clausal language. If the satura-
tion L̂ does not contain a disjoint PN-pair then csp(L) is decidable in polynomial time, otherwise
csp(L) is NP-complete.

Example 24 Consider the SU-closed clausal language

L = {(−0), (−1), (+1), (+2),
(+1,−0), (+1,+1), (−1,−1), (+2,+2),
(+1,+1,+1)}

over the 3-element domain D = {0, 1, 2}. The only endomorphism of L is the identity. The 3-
saturation L̂ of L is then equal to L∪{(+2,−1), (+1,+2), (+1,−1)}. There is no disjoint PN-pair
in L̂, therefore csp(L) is polynomial-time decidable.

As usual, a clausal language with a polynomial-time decidable problem csp(L) is called tractable.
The following theorem proves that we can recognize tractable clausal languages in polynomial time,
giving the answer to the meta-problem of Theorem 23.

Theorem 25 Let L be an arbitrary clausal language over a fixed domain D. It is decidable in
polynomial time whether csp(L) is tractable.

Proof: Starting with a clausal language L, we can get rid of the redundant values, according to
Lemma 3 and produce the corresponding SU-closed language L1, according to Proposition 7, both
in polynomial time with respect to the size of L. From L1 we can produce the 3-saturation L̂1

in linear time with respect to the size of L1, according to Remark 11. The 3-saturation can be
searched in polynomial time for a PN-pair. 2
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6 Concluding Remarks

We presented a complexity analysis of the constraint satisfaction problems over finite totally or-
dered domains, based on the new concept of clausal patterns. We derived decidable conditions
for CSP problems implying either NP-completeness or polynomial-time satisfiability. In fact, our
polynomial-time cases generalize the previously known characterization through Horn, dual Horn,
bijunctive, 0- and 1-valid Boolean relations. Not surprisingly the 3-saturation concept allows us
to decide algorithmically the dividing condition between the tractable and intractable instances.
The result is a dichotomy theorem applicable to the CSP problems over totally ordered domains of
arbitrary cardinality.

By combining tractability results from the paper with the algebraic approach, it is possible
to obtain many more tractable (non-clausal) CSPs. We leave this as an open problem — to
characterize tractable (non-clausal) constraint languages that can be generated from clausal ones.
This would actually amount to describing tractable clausal languages algebraically. Our CSP
problems are somewhat orthogonal to the relationally defined ones. On one hand we obtained a
dichotomy theorem, on the other hand relations can express much more constraints than clauses,
so our classification is coarser. Another possible extension of our research is to consider clausal
patterns over a partially rather than totally ordered domain. We believe that the results presented
in this paper can be generalized to this more general case.

Acknowledgment: We sincerely thank Julien Demouth for proofreading the paper and pointing
out several writing errors. We also thank the anonymous referee for his useful remarks.
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