
Uni�cation Algorithms Cannot be Combinedin Polynomial TimeMiki Hermann1 and Phokion G. Kolaitis2 ?1 CRIN (CNRS) and INRIA-LorraineBP 239, 54506 Vand�uvre-l�es-Nancy, France. hermann@loria.fr2 Computer and Information Sciences, University of California, Santa CruzSanta Cruz, CA 95064, U.S.A. kolaitis@cse.ucsc.eduAbstract. We establish that there is no polynomial-time general com-bination algorithm for uni�cation in �nitary equational theories, unlessthe complexity class #P of counting problems is contained in the classFP of function problems solvable in polynomial-time. The prevalent viewin complexity theory is that such a collapse is extremely unlikely for anumber of reasons, including the fact that the containment of #P in FPimplies that P = NP. Our main result is obtained by establishing theintractrability of the counting problem for general AG-uni�cation, whereAG is the equational theory of Abelian groups. Speci�cally, we show thatcomputing the cardinality of a minimal complete set of uni�ers for gen-eral AG-uni�cation is a #P-hard problem. In contrast, AG-uni�cationwith constants is solvable in polynomial time. Since an algorithm for gen-eral AG-uni�cation can be obtained as a combination of a polynomial-time algorithm for AG-uni�cation with constants and a polynomial-timealgorithm for syntactic uni�cation, it follows that no polynomial-timegeneral combination algorithm exists, unless #P is contained in FP.1 Introduction and summary of resultsUni�cation in equational theories is the keystone of automated deduction. It isused extensively in several areas of computer science, including theorem proving,database systems, natural language processing, logic programming, computeralgebra, and program veri�cation. Plotkin [Plo72] was the �rst to formulateexplicitly the idea that theorem provers should have built-in algorithms for uni-�cation in equational theories. His pioneering article provided the impetus forthe development of the entire �eld of equational uni�cation.Since there are equational theories with an undecidable uni�cation problem,no general algorithm for uni�cation in an arbitrary equational theory exists. In-stead, di�erent special-purpose uni�cation algorithms or procedures have to bedesigned for equational theories with a decidable uni�cation problem. Neverthe-less, one may still hope to obtain a uni�cation algorithm for a given equationaltheory as a combination of existing uni�cation algorithms for the componentsof the theory. More precisely, let F be a signature, E a �nite set of equational? Research of this author was partially supported by NSF Grants No. CCR-9307758

axioms generating the theory, and Th(F ;E) the equational theory generated byE. Suppose that the signature F and the equational axioms in E can be par-titioned into disjoint sets F1, F2 and E1, E2 such that the theories Th(F1;E1)and Th(F2;E2) have decidable uni�cation problems. The question is: does thereexist a general method for combining uni�cation algorithms for Th(F1;E1) andTh(F2;E2) into a new uni�cation algorithm for the entire theory Th(F ;E)?By comparing the signature F with the symbols sig(E) occurring in the setE of equational axioms, we distinguish between three kinds of equational uni-�cation. If sig(E) = F , which means that a uni�cation problem may containonly symbols occurring in the equations E, then we speak about elementary E-uni�cation. If the signature F contains additional free constant symbols, but nofree function symbols, then we speak about E-uni�cation with constants. Finally,if the signature F contains both additional free constant and free function sym-bols, then we speak about general E-uni�cation. Quite often, it is much easierto design an algorithm for elementary E-uni�cation or E-uni�cation with con-stants than an algorithm for general E-uni�cation. Note, however, that generalE-uni�cation can be viewed as the combination of E-uni�cation with constantsand syntactic uni�cation, where syntactic uni�cation is general uni�cation inthe empty theory. Thus, a general method for combining uni�cation algorithmsmakes it possible to produce a general E-uni�cation algorithm in a uniform way,provided an algorithm for E-uni�cation with constants exists.The development of combination algorithms originated with Stickel's algo-rithm for general associative-commutative (AC) uni�cation [Sti81]. Stickel �rstconstructed an algorithm for elementary AC-uni�cation and then introduceda special-purpose combination algorithm for general AC-uni�cation (actually,with several AC-symbols) that used the algorithm for elementary AC-uni�cationand the algorithm for syntactic uni�cation as subroutines. The termination ofStickel's algorithm was proved by Fages [Fag87]. Similar work was carried out byHerold and Siekmann [HS87]. More general combination problems were treatedby Yelick, Kirchner, Herold, Tid�en, Boudet, Jouannaud, and Schmidt-Schau�,who designed algorithms for combination of equational theories that satisfycertain restrictions on the syntactic form of their axioms. Kirchner [Kir85] re-quires E1 and E2 to be sets of simple axioms.Yelick [Yel87] gives a solution for thecombination of regular and collapse-free theories. Similar results with the samerestriction were obtained by Herold [Her86]. Tid�en [Tid86] extended Yelick's re-sult to collapse-free theories. Boudet, Jouannaud & Schmidt-Schau� [BJSS89]gave an algorithm for combining an arbitrary theory with a simple theory. Theproblem of how to combine uni�cation algorithms for arbitrary disjoint theorieswas �nally solved by Schmidt-Schau� [SS89]. A more e�cient version of this com-bination method was given by Boudet [Bou93]. Using a new approach, Baaderand Schulz [BS92] presented a combination method for decision problems indisjoint equational theories; a slight modi�cation gives rise to a method for com-bining algorithms for uni�cation in two disjoint equational theories. This methodis based on linear constant restriction, a notion that generalizes Schmidt-Schau�'approach, where constant elimination problems have to be solved. Recently, an

attempt has been made to relax the condition that the equational theories musthave disjoint signatures in the combination problem [KR94]. Although there areclasses of non-disjoint equational theories for which a combination algorithmexists, the main problem with non-disjoint theories is that provably no gen-eral combination algorithm exists for them, even if one restricts attention to�nitary theories generated by a �nite set of simple linear equational axioms(cf. [DKR94]).Every existing combination algorithm has an exponential running time. Inparticular, even if there exist polynomial-time uni�cation algorithms A1 and A2for the disjoint theories Th(F1;E1) and Th(F2;E2), every known general com-bination method will give rise to an exponential algorithm A for uni�cationin the theory Th(F1 [F2;E1 [E2). In this paper we demonstrate that thisexponential-time behaviour is not a de�ciency of the known combination al-gorithms, but rather it is caused by the inherent intractability of the combina-tion problem. More precisely, we show that there is no polynomial-time generalcombination algorithm for uni�cation in �nitary equational theories, unless thecomplexity class #P of counting problems is contained in the class FP of functionproblems solvable in polynomial time.#P is the class of all functions f for which there is a nondeterministic Tur-ing machine M that runs in polynomial time and has the property that f(x)equals the number of accepting computation paths of M on every input x. Theclass #P was introduced and studied in depth by Valiant [Val79a,Val79b], whoshowed that several counting problems from graph theory, logic, and algebraare #P-complete. The prevalent view in complexity theory is that #P-completeproblems are highly intractable and that, in particular, they are not containedin FP. Note that one of the reasons for this belief is the fact that if #P werecontained in FP, then P = NP. In [HK95a,HK95b], we showed that the the-ory of #P-completeness can be applied to the analysis of equational matchingand uni�cation. For this, we introduced a class of counting problems that arisenaturally in equational matching and uni�cation, namely to compute the cardi-nality of a minimal complete set of E-matchers or E-uni�ers, where E is a given�nitary equational theory. We proved that counting the number of E-matchersor E-uni�ers is a #P-hard problem for essentially every important equationaltheory E studied in the literature. It should be pointed out that a lower boundfor counting the number of E-matchers or E-uni�ers yields immediately a lowerbound on all algorithms for computing minimal complete sets of E-matchers orE-uni�ers, since any algorithm for E-matching or E-uni�cation can be used tosolve the associated counting problem within the same time bounds.We derive the main result of this paper by analyzing the counting complexityof uni�cation in the equational theory AG of Abelian groups. We exploit the factthat AG-uni�cation with constants is unitary, whereas general AG-uni�cation is�nitary, but not unitary. Indeed, AG-uni�cation with constants reduces to theproblem of solving linear Diophantine systems over the integers (positive, nega-tive, or zero); such systems are known to have a unique general solution obtainedfrom the Hermite normal form of the corresponding integer matrix. Moreover,

this solution can be computed in polynomial time. Since an algorithm for generalAG-uni�cation can be obtained as a combination of a polynomial-time algorithmfor AG-uni�cation with constants and a polynomial-time algorithm for syntacticuni�cation, it follows that if the counting problem for general AG-uni�cation isintractable, then no polynomial-time general combination algorithm exists. Weshow this to be the case by establishing that computing the cardinality of a min-imal complete set of uni�ers for general AG-uni�cation is a #P-hard problem.We also establish that the counting problem for general BR-uni�cation is#P-hard. This result yields a lower bound on the performance of all algorithmsfor general BR-uni�cation.2 Counting & combination problems in equational uni�-cationIn this section, we de�ne the basic concepts, describe the family of countingproblems arising in equational uni�cation, and review the solution to the com-bination problem for uni�cation algorithms. We also present here a minimumamount of the necessary background material from computational complex-ity and uni�cation. Additional material for each of these topics can be foundin [Pap94,JK91,BS94].2.1 Counting problems and the complexity class #PA counting Turing machine is a non-deterministic Turing machine equipped withan auxiliary output device on which it prints in binary notation the numberof its accepting computations on a given input. The class #P consists of allfunctions that are computable by polynomial-time counting Turing machines,that is, machines for which there is a polynomial p(n) such that the longestaccepting computation of the machine over all inputs of size n is at most p(n).These concepts were introduced and studied in depth by Valiant in his seminalpapers [Val79a,Val79b].Let �, � be nonempty alphabets and let w:�� �! P(� �) be a functionfrom the set �� of strings over � to the power set P(� �) of � �. If x is a stringin ��, then we refer to w(x) as the witness set for x and to the elements ofw(x) as witnesses for x. Every such function can be identi�ed with the followingcounting problem w: given a string x in ��, �nd the number of witnesses for x,i.e., �nd the cardinality of the witness set w(x). Using these concepts, the class#P can be also described as the collection of all counting problems w such thatthe two conditions below hold: (1) there is a polynomial-time algorithm to tell,given strings x and y, whether y 2 w(x); (2) there is a k � 1 (which depends onw) such that jyj � jxjk for all y 2 w(x).#SAT is the archetypal counting problem in #P: given a propositional for-mula ', �nd the number of truth assignments that satisfy it. Here, the witnessset w(') consists of all truth assignments satisfying '.Counting problems relate to each other via counting and parsimonious re-ductions, which are stronger than the polynomial-time reductions between NP-

problems. Let v:�� ! P(��) and w:�� ! P(� �) be two counting problems. Apolynomial-time many-one counting (or, simply, counting reduction) from v to wis a pair of polynomial-time computable functions �:�� ! �� and � :N ! Nsuch that jv(x)j = � (jw(�(x))j). Such reductions are often called weakly parsimo-nious. A parsimonious reduction from v to w is a counting reduction �, � from vto w such that � is the identity function. A counting problem w is #P-hard iffor each counting problem v in #P there is a counting reduction from v to w. Ifin addition w is a member of #P, then we say that w is #P-complete.The proof of Cook's theorem [Coo71] that SAT is NP-complete can be modi-�ed to show that #SAT is #P-complete. Since many reductions of SAT to otherNP-hard problems turn out to be parsimonious, it follows that the counting ver-sions of many NP-complete problems are #P-complete. Valiant [Val79a] madealso an unexpected, but fundamental, discovery by establishing that there are#P-complete problems whose underlying decision problem is solvable in polyno-mial time. The �rst and perhaps most well known among them is the followingproblem, which will be of particular use to us in the sequel.#PERFECT MATCHINGS [Val79a]Input: Bipartite graph G with 2n nodes.Output: Number of perfect matchings of G , i.e., sets of n edges such that nopair of edges shares a common node.#P-complete problems are considered to be truly intractable. Actually, insome sense they are substantially more intractable than NP-complete problems.To make this precise, one needs to bring in complexity classes of function prob-lems, since #P is a collection of problems that require more complicated answersthan the mere \yes" or \no" answers to decision problems. Let FP denote theclass of all functions computable by a deterministic Turing machine in polyno-mial time; thus FP is the functional analog of P, the class of decision problemssolvable in polynomial time. FP forms the �rst and lowest level of FPH, the func-tional analog of the polynomial hierarchy PH (cf. [Joh90, section 4.1]). The nextlevel of FPH is the class FPNP of all functions that are computable in polynomialtime using NP-oracles. In general, for each k � 1, the (k + 1)-st level of FPH isthe class of all functions computable in polynomial time with oracles from thek-th level of the polynomial hierarchy PH. There is strong evidence that #P isnot contained in FPH, although this remains an oustanding open problem incomplexity theory. First, it should be pointed out that if #P were contained inFP, then P = NP. Moreover, it is known that there are oracles relative to which#P is not contained in FPNP. Finally, evidence of a di�erent kind was providedby Toda [Tod89], who showed that the polynomial hierarchy PH is containedin the class P#P of all decision problems computable in polynomial time using#P-oracles. As Johnson [Joh90] writes, this result indicates a precise sense inwhich #P dominates the entire polynomial hierarchy PH.

2.2 Equational theories and uni�cationIf F is a signature and X is a countable set of variables, then T (F ;X) denotesthe set of all terms over the signature F and the variables in X . If E is aset of equational axioms, then the equational theory Th(F ;E) induced by Eis the smallest congruence relation over T (F ;X) containing E and closed undersubstitutions. We write s =E t to denote that the pair (s; t) of terms is a memberof Th(F ;E). An E-uni�er of s and t is a substitution � such that s� =E t� holds;equivalently, an E-uni�er of s and t is a solution of the equation s :=E t in thealgebra T (F ;X)==E. If a minimal complete set of E-uni�ers of s and t exists,then it is unique up to �VE (cf. [FH86]). In this case, we let �CSUE(s; t) denotethe minimal complete set of E-uni�ers of s and t, if s and t are uni�able, or theempty set, otherwise. A theory E is said to be unitary if for every pair of terms(s; t) the set �CSUE(s; t) exists and j�CSUE(s; t)j � 1. Similarly, E is said to be�nitary if for every pair of terms (s; t) the set �CSUE(s; t) exists and is �nite.Every �nitary equational theory E gives rise to the following E-uni�cationproblem: given two terms s and t, produce a (minimal) complete set �CSUE(s; t)of E-uni�ers of s and t. The E-matching problem is the restriction of the E-uni�cation problem to terms s and t such that t is a ground term.We write s :=E tto denote an instance of the E-uni�cation problem; this way we di�erentiate aninstance of the E-uni�cation problem from an E-equality s =E t. If E is theempty theory, then we speak about the syntactic uni�cation problem and thesyntactic matching problem, and we write s := t.2.3 Uni�cation in Abelian groups and Boolean ringsLet G = (G;+;�; e) be an algebraic structure such that + is a binary operationon the carrier G of G, � is a unary operation on G, and e is an element ofG. We say that G = (G;+;�; e) is an Abelian group if it satis�es the followingequational axioms AG:x+ e = x x+ y = y + xx+ (�x) = e (x+ y) + z = x+ (y + z):It is important to note that AG-uni�cation is equivalent to AG-matching,since every AG-uni�cation problem s :=AG t is equivalent to s+ (�t) :=AG e.Let E be an arbitrary equational theory. In the case of general E-uni�cation,there is no di�erence between a single equation s :=E t and a system of equationsfs1 :=E t1; : : : ; sn :=E tng, since the E-uni�ers of fs1 :=E t1; : : : ; sn :=E tng coin-cide with the E-uni�ers of the equation f(s1; : : : ; sn) :=E f(t1; : : : ; tn), where fis a free function symbol in F n sig(E). In contrast, there are equational the-ories E for which in the case of elementary E-uni�cation or in the case of E-uni�cation with constants there are computational di�erences between singleequations and systems of equations (cf. [BS94,HK95b]). Note that systems ofAG-uni�cation problems with constants are not always equivalent to single AG-uni�cation problems. Nevertheless, we can take advantage of the Abelian groupaxioms and bring such systems into a special form. We replace n occurrences

of the term t in t+ � � � + t by the expression nt; we also replace k occurrencesof t in (�t) + � � � + (�t) by the expression �kt. Thus, every system of AG-uni�cation problems with constants can be brought into the form Ax = �c,where A = ��ji�mk and � = �
ji �nk are integer matrices, x = (x1; : : : ; xm) is avector of formal variables, and c = (c1; : : : ; cn) is a vector of free constants.It follows that every system of AG-uni�cation problems with constants can betransformed to a system of linear Diophantine equations that must be solved overthe integers (positive, negative, or zero). The solution of the latter is computedas the Hermite normal form of the corresponding integer matrix. The Hermitenormal form yields a general parametric expression for all solutions; moreover,this expression is unique up to a linear combination. As a result, AG-uni�cationwith constant is unitary (cf. [BS94]).Let B = (B;�;^; 0; 1) be an algebraic structure such that � (exclusive or)and ^ (conjunction) are binary operations on the carrier B of B, and 0 (false)and 1 (true) are elements of B. We say that B = (B;�;^; 0; 1) is a Boolean ringif it satis�es the following equational axioms BR:x� 0 = x x� y = y � xx� x = 0 (x� y) � z = x� (y � z)x ^ 0 = 0 x ^ y = y ^ xx ^ 1 = x (x ^ y) ^ z = x ^ (y ^ z)x ^ x = x x ^ (y � z) = (x ^ y) � (x ^ z):BR-uni�cation is equivalent to BR-matching, since every BR-uni�cation prob-lem s :=BR t is equivalent to s�t :=BR 0. Moreover, every BR-uni�cation problems :=BR 0 is equivalent to s�1 :=BR 1; therefore, it makes no di�erence whether weconsider a problem s :=BR 0 or s :=BR 1. When it comes to BR-uni�cation withconstants, there is no di�erence between a single equation and a system of equa-tions, since every system of BR-uni�cation problems s1 :=BR 1, . . . , sn :=BR 1can be transformed to the equivalent problem s1 ^ � � � ^ sn :=BR 1.Martin and Nipkow [MN89] showed that BR-uni�cation with constants isunitary. This follows from L�owenheim's theorem, which provides a way to obtainthe most general BR-uni�er from any particular BR-uni�er. Indeed, let F be asignature consisting of �, ^, 0, 1, and free constant symbols, and let t be a termover F whose variables are x1; : : : ; xn. L�owenheim's theorem implies that if thesubstitution xi 7! bi, 1 � i � n, is a BR-uni�er of t :=BR 0, then the substitutionxi 7! xi � (t ^ (xi � bi)), 1 � i � n, is the only element of �CSUBR(t; 0).2.4 Combination algorithm for equational uni�cationLet Th(F1;E1) and Th(F2;E2) be �nitary equational theories with disjoint sig-natures. Baader and Schulz [BS92] presented an algorithm for uni�cation in thecombined theory Th(F1 [F2;E1 [E2), under the assumption that the uni�ca-tion problem with linear constant restrictions is solvable for each of the theoriesTh(F1;E1) and Th(F2;E2). If E is an equational theory and P is an E-uni�cationproblem, then a linear constant restriction of P is a linear ordering � on a �-nite set V of variables and a �nite set C of free constants (i.e., the constants in

C are not members of sig(E)). A solution of an E-uni�cation problem P withlinear constant restriction is an E-uni�er � of P with the property that if c 2 Cand x 2 V are such that x � c, then c does not occur in x�. It is known thatthere are algorithms for both AG-uni�cation with linear constant restriction andBR-uni�cation with linear constant restriction (cf. [SS89,BS92]).Assume that Ai is an algorithm for the Ei-uni�cation problem with linearconstant restriction, i = 1; 2. Baader and Schulz [BS92] give an algorithm A foruni�cation in the combined theory Th(F1 [F2;E1 [E2) that uses the two algo-rithms A1 and A2 as subroutines. The crucial part of this combination algorithmA is a decomposition algorithm that takes as input an a system P of elementaryE1[E2-uni�cation problems and, after several (possibly non-deterministic) steps,transforms this system into separate E1-uni�cation problems and E2-uni�cationproblems. Before outlining the combination algorithm, several auxiliary conceptshave to be introduced. The elements of the signature F1 are called 1-symbols andthe elements of F2 are called 2-symbols. If a term t is of the form f(t1; : : : ; tn)and f is an i-symbol, then we say that t is an i-term. A subterm s of an i-term tis called an alien subterm of t if it is a j-term, j 6= i, such that every propersuperterm of s in t is an i-term. An i-term is pure if it contains only i-symbolsand variables. A pure i-equation, i = 1; 2, is an equation s :=E t such that s andt are pure i-terms. An equation s :=E t is pure if it is 1-pure or 2-pure.The main steps of the combination algorithm A are as follows:Variable abstraction: Successively replace all alien subterms by new variablesuntil all terms in P are pure. This means that every equation s :=E t, where scontains an alien subterm s1, is replaced by two equations s0 :=E t andx :=E s1, where s0 is the term obtained from s by replacing s1 by x.Impure equation split: Replace each impure equation s :=E t by two newequations x :=E s and x :=E t, where x is a new variable. After this step hasbeen carried out, the resulting system contains pure equations only.Variable identi�cation: In a non-deterministic way, choose a partition of theset of variables occurring in the system obtained in the previous step. Foreach equivalence class of this partition, choose a variable as canonical rep-resentative of the class and replace in the system all occurrences of othervariables in the class by its canonical representative.Variable ordering and labelling: In a non-deterministic way, choose a linearordering � on the variables of the system and assign label 1 or label 2 toeach of these variables.Split of the problem: Split the system into two systems P1 and P2, wherethe P1 contains all 1-equations and P2 contains all 2-equations. Only the i-variables are considered as variables in the system Pi, whereas the j-variablesin Pi, with i 6= j, are treated as constants. For i = 1; 2, use algorithm Aito solve the Ei-uni�cation problem Pi with the linear constant restrictioninduced by the linear ordering of the previous step. If both P1 and P2 aresolvable, combine the complete sets U1 and U2 returned by A1 and A2 toobtain a solution to the original system.

Regrouping: The complete set of uni�ers for the original E1 [E2-uni�cationproblemP is the union of the solutions of all systems generated by all possiblechoices in the earlier non-deterministic steps.Note that if both equational theories E1 and E2 are �nitary, then the combi-nation algorithmA computes a �nite complete set of uni�ers for every uni�cationproblem in the theory E1 [E2, since every nondeterministic choice is done froma �nite set. This implies that the combination E1 [E2 of two �nitary theoriesE1 and E2 is also �nitary, assuming that Ei-uni�cation with linear constant re-striction is solvable, i = 1; 2. On the other hand, if both E1 and E2 are unitarytheories, then the combination algorithmmay compute a complete set of uni�erswith more than one element, since the combination algorithm consists of severalnon-deterministic steps. This does not necessarily mean that the equational the-ory E1 [E2 is not unitary. Indeed, assume that E1 and E2 are empty theorieswith �nite disjoint signatures. It is obvious that the empty theory E1 [E2 isunitary, but the combination algorithm may produce a complete set of uni�erswith more than one element, due to the non-deterministic choices.3 Uni�cation with constants vs. general uni�cationIn this section, we derive inherent lower bounds for the running time of allcombination algorithms for equational uni�cation. More precisely, we show that,unless #P is contained in FP, there does not exist a polynomial-time combinationalgorithm for E1[E2-uni�cation with oracles for the E1-uni�cation problem andthe E2-uni�cation problem. This result is obtained by analyzing the complexityof AG-uni�cation with constants and the complexity of the counting problemfor general AG-uni�cation. As stated earlier, AG-uni�cation with constants is aunitary theory. Baader and Siekman [BS94] pointed out that the most generaluni�er for AG-uni�cation with constants can be computed in polynomial time.This is based on a transformation of the AG-uni�cation problems with constantsto an equivalent linear Diophantine system of equations that must be solvedover the integers, followed by the computation of the Hermite normal form ofthe corresponding integer matrix.Proposition 1. AG-uni�cation with constants is solvable in polynomial time.Proof. Every system of AG-uni�cation problems with constants Ax = �c canbe transformed to an equivalent linear Diophantine system over the integersas follows. Assume that every formal variable xi gets assigned yji copies of theconstant cj, and zji copies of a residual term uj , 1 � j � n. Therefore, we writexi = y1i c1 + � � � + yni cn + z1i u1 + � � � + zni unwhere yji , zji are integer variables, cj are free constants, and uj are formal vari-ables (one for each free constant) representing residual terms that are cancelledto the neutral element e in the original system Ax = �c. After substitution andregrouping, we obtain two linear Diophantine systems AZ = 0 and AY = � over

the integers, where Y = �yji �nm and Z = �zji �nm are matrices of integer variables.The �rst system is derived from the equations A(Zu) = e, where e = (e; : : : ; e)is a vector of neutral elements, expressing the fact that the residual terms ujare cancelled to the neutral element e in the original system. It is clear that thistransformation can be carried out in polynomial time. Since the unique integersolutions of the linear Diophantine systems AZ = 0 and AY = � can be com-puted in polynomial time (cf. [KB79]), it follows that the unique solution of eachAG-uni�cation problem with constants can be computed in polynomial time. 2We now introduce the counting problems for general AG-uni�cation andgeneral BR-uni�cation.#General AG-Uni�cationInput: A set F of free constant and function symbols, and two terms s; t 2T (sig(AG) [F ;X).Output: Cardinality of the set �CSUAG(s; t).#General BR-Uni�cationInput: A set F of free function and constant symbols, and two terms s; t 2T (sig(BR) [F ;X).Output: Cardinality of the set �CSUBR(s; t).The following result yields a lower bound for the computational complexityof the counting problem for general AG-uni�cation and general BR-uni�cation.Proposition 2. The counting problems #General AG-Uni�cation and #Gen-eral BR-Uni�cation are both #P-hard.Proof. We give a parsimonious reduction from #Perfect Matchings that worksfor both #General AG-uni�cation and #General BR-uni�cation. In [HK95a], weused the same reduction to show that #AC1-matching is #P-hard, where AC1-matching is the restriction of AC-matching to linear terms. It should be noted,however, that the proof of correctness we give here is substantially di�erentthan the proof for #AC1-matching; actually, in what follows the combinationalgorithm for equational uni�cation is used in a crucial way, while the proof for#AC1-matching made no use of the combination algorithm.Suppose that we are given a bipartite graph G = (S; T;E) with 2n nodes,where the sets S = fs1; : : : ; sng and T = ft1; : : : ; tng form the partition of thenodes. Let a be a constant symbol, f a unary function symbol, and g a (n+1)-aryfunction symbol. We also consider two disjoint sets of variables X = fxij j i; j =1; : : : ; ng and Y = fy1; : : : ; yng. With each node si in the set S we associate theterm s�i = g(s1i ; : : : ; sni ; sn+1i), wheresji =8<:f(xii) if 1 � i; j � n and i = jxij if 1 � i; j � n and i 6= jyi if 1 � i � n and j = n+ 1

Intuitively, we view the nodes s1; : : : ; sn in S as vectors of a \matrix":s�1 = g(f(x11); x12; x13; : : : ; x1n; y1)s�2 = g(x21; f(x22); x23; : : : ; x2n; y2)...s�n = g(xn1; xn2; : : : ; xn;n�1; f(xnn); yn)in which the subterms f(xii) occupy the main diagonal, while the variablesy1; : : : ; yn are along the last column. Next, with each node ti in T we associatethe ground term t�i = g(t1i ; : : : ; tni ; tn+1i), wheretji = 8<:f(a) if 1 � i; j � n and (sj ; ti) 2 Ea if 1 � i; j � n and (sj ; ti) 62 Ef i(a) if j = n+ 1Thus, we view the nodes t1; : : : ; tn in T as vectors of another \matrix"t�1 = g(t11; : : : ; tn1 ; f(a))t�2 = g(t12; : : : ; tn2 ; f2(a))...t�n = g(t1n; : : : ; tnn; fn(a)):The intuition is that the second matrix represents the adjacency matrix (ex-tended by the column fk(a), 1 � k � n) of the edge relation E of the graph G,where the terms f(a) and a are used to encode the presence and the absence,respectively, of an edge between two nodes. Note that the terms s�i , i � n, arelinear and have pairwise disjoint variables, while the terms t�i , i � n, are ground.Consider now the E-uni�cation problem s�1 � � � � � s�n :=E t�1 � � � � � t�n, where,if E = AG, the symbol � stands for +, while, if E = BR, it stands for ^. Thisproblem can be viewed as a E1 [E2-uni�cation problem, where E1 2 fAG;BRgand E2 is the empty theory. Thus, the problem s�1 � � � � � s�n :=E t�1 � � � � � t�n canbe solved by applying to it the combination algorithmwith the algorithm for E1-uni�cation with constants and the algorithm for syntactic uni�cation algorithmas subroutines. The variable abstraction transforms it to the systemfu1 � � � � � un :=E v1 � � � � � vn; ui :=E s�i ; vj :=E t�j j i; j = 1; : : : ; ngwhere ui, vj are new variables. Every equation is pure so we do not need tosplit them. We cannot identify two variables vi and vj , where i 6= j, since theequality vi = vj implies the equality t�i = t�j , which is evidently incorrect becauseof the di�erent subterms in the last column tn+1i = f i(a) and tn+1j = fj (a).Hence, every variable vj can be either identi�ed with a variable ui or it canform a singleton equivalence class [vj]. Identifying the variables X and Y is notnecessary, their value will be determined later. It is also not necessary to choosea linear ordering � on the variables, since every choice of the ordering is correct.

Indeed, the terms s�i are linear and have pairwise disjoint variables, whereas theterms t�j are ground; therefore, no variable cycles can occur.Note that ui :=E s�i and vj :=E t�j are 2-equations, and s�i , t�j are 2-terms,for 1 � i; j � n. Therefore the variables ui, vj must be labelled as 2-variables,otherwise none of the 2-equations ui := s�i and vj := t�j would have a solution.Since u1 � � � � �un :=E v1 � � � � �vn is a 1-equation, the 2-variables ui, vj are con-sidered here as constants. Since no \constant" appears twice among v1; : : : ; vn,the axioms (x+(�x) = e) and (x^x = x) are not used in the equivalence proofof the Skolemized terms u1 � � � � �un and v1� � � � �vn. Only the associativity andcommutativity of the symbol � 2 f+;^g is used in the equivalence proof, there-fore the vector of \constants" (u1; : : : ; un) must be a permutation of the vector(v1; : : : ; vn). This implies that the only variable identi�cations that generate asolution for u1 � � � � � un :=E v1 � � � � � vn are the ones for which every classin the partition of fui; vj j i; j = 1; : : : ; ng consists of two variables, one ui andthe other vj, for some i; j 2 f1; : : : ; ng. No partition with singleton equivalenceclasses [ui] or [vj] gives a solution for the aforementioned 1-equation. Its solutionis always the identity >.Consider now the 2-equations ui := s�i and vj := t�j , 1 � i; j � n. If thevariables ui and vj are identi�ed within a class [ui; vj] of the partition, then thesyntactic uni�cation algorithm merges the respective equations to s�i := t�j . Weclaim that for each i and j, 1 � i; j � n, there is an edge (si; tj) 2 E if and onlyif the terms s�i and t�j are uni�able in the empty theory. Indeed, if (si; tj) 2 E,then by the above construction we have that tij = f(a) and sii = f(xii). Sinceski = xik for 1 � i 6= k � n and sn+1i = yi, we have that the terms s�i and t�j areuni�able via the most general uni�er�ij = [xi1 7! t1j ; : : : ; xi;i�1 7! ti�1j ; xii 7! a; xi;i+1 7! ti+1j ; : : : ;xin 7! tnj ; yi 7! fj(a)]:Conversely, if (si; tj) 62 E, then tij = a and sii = f(xii). Consequently, theterms s�i and t�j are not uni�able. Observe that for each pair of terms s�i and t�jthe uni�er �ij is unique, because of the forced substitution yi 7! fj (a). As aresult, every perfect matching E0 � E of the graph G gives rise to the uni�er� = [(i;j)2E0 �ijof the system P2 = fui := s�i ; vj := t�j j 1 � i; j � ng, provided that the partitionidenti�ed the variables ui and vj if and only if there exists and edge (si; tj) 2 E.Moreover, the uniqueness of each substitution �ij implies the uniqueness of theuni�er �, since the term s�1 � � � � � s�n is linear and the term t�1 � � � � � t�n isground. It follows that each partition of the variables fui; vj j 1 � i; j � ngthat encodes a perfect matching of the graph G corresponds to one uni�er ofthe system P2. Conversely, if the partition identi�ed the variables ui and vj suchthat (si; tj) 62 E, then the system P2 has no solution.

The regrouping step returns the complete set U of uni�ers � that correspondsto the perfect matchings of the graph G, since the solution of the Skolemizedequation u1� � � ��un :=E v1� � � � �vn is the identity>. Note that every substitutionin the complete set of uni�ers U is ground. Assume that the set U is not minimal,i.e., that there exists two uni�ers �; � 2 U and a substitution �, such that�� =VE � where V = Dom(�) = Dom(�) is the set of variables occurring in theE-uni�cation problem. The fact that the substitution � is ground implies thatthe identity �� = � holds for every substitution � with Dom(�) � V . Sincethe substitutions � and � have the same domains V and since for all variablesx 2 V the instances x� and x� contain free symbols only, we have that � =VE �implies � = �. Hence, the computed complete set of uni�ers is minimal. Thisconcludes the construction of a parsimonious reduction from#Perfect Matchingsto #General AG-uni�cation and to #General BR-Uni�cation. 2By Proposition 1, AG-uni�cation with constants is solvable in polynomialtime. Moreover, it is well known that the same holds true for syntactic uni�-cation. Since general AG-uni�cation is the combination of AG-uni�cation withconstants and syntactic uni�cation, Proposition 2 implies now immediately themain result of this paper.Theorem 3. Unless #P is contained in FP, there does not exist a combinationalgorithm A for E1 [E2-uni�cation, where E1 and E2 are disjoint equationaltheories, such that A runs in polynomial time using oracles for the E1-uni�cationproblem and the E2-uni�cation problem.We conclude this section with some comments on the proof of Proposition 2.First, as a byproduct of this proof, we see that general AG-uni�cation and generalBR-uni�cation are not unitary, since there exist bipartite graphs with morethan one perfect matching. Note also that this proof makes use of three free(uninterpreted) symbols that are not present in the signature of the Booleanring axioms BR, namely the constant a, the unary function symbol f , and the(n+1)-ary symbol g. Using a more complicated proof, we can reduce the numberof the free symbols and their arity. Clearly, the constant a is not necessary andcan be replaced by the Boolean constant 0. This results in some additionalvariable abstraction steps. The unary symbol f can be replaced by the negationoperator : on the main diagonal of the \matrix" S and at the positions in Tencoding the edges (sj ; ti) 2 E, but it cannot be eliminated from the last columnwhere it serves to distinguish the terms t�j . The ground term :0 can be replacedby the equivalent Boolean value 1. The (n+1)-ary symbol g can be replaced byan iteration of the exclusive-or connective �, provided that we apply the unarysymbol f to the subterms as an index to express their previous positions underthe symbol g. Hence, after these transformations have been carried out, we havethe new terms s�i = s1i � � � � � sni � sn+1i , wheresji = 8<:fj (:xii) if 1 � i; j � n and i = jfj (xij) if 1 � i; j � n and i 6= jfn+1(yi) if 1 � i � n and j = n+ 1

and t�i = t1i � � � � � tni � tn+1i wheretji = 8<: fj(1) if 1 � i; j � n and (sj ; ti) 2 Efj(0) if 1 � i; j � n and (sj ; ti) 62 Efn+1+i(0) if j = n+ 1The uni�cation problem s�1 ^ � � � ^ s�n :=BR t�1 ^ � � � ^ t�n encodes, as before,the problem of �nding all perfect matchings in the bipartite graph G. Thus, thecounting problem #General BR-Uni�cation is #P-hard, even in the presence ofa single free unary function symbol.4 Concluding remarksWe proved that there is no polynomial-time general combination algorithm foruni�cation in �nitary equational theories, unless the counting class #P collapsesto the class FP of function problems solvable in polynomial-time. Such a collapseis considered highly unlikely for a number of reasons; in particular, as mentionedearlier, the collapse of #P to FP implies that P = NP. As a matter of fact, theprevalent view in complexity theory is that #P is contained neither in FPNPnor in any other level of the functional polynomial hierarchy FPH. Under thehypothesis that #P is not contained in FPH (which is also widely believed tobe true), our results imply a stronger lower bound on the performance of allgeneral combination algorithms, namely that no such algorithm can be found inthe class FPH.We end by describing two open problems that are motivated from the workreported here. Note that the equational theory AG of Abelian groups is col-lapsing (axiom x + e = x) and non-regular (axiom x + (�x) = e). Are thereequational theories E that are regular, or non-collapsing, or both regular andnon-collapsing, and such that a similar gap in computational complexity existsbetween E-uni�cation with constants and the counting problem for general E-uni�cation? We conjecture that such equational theories exist, although none ofthe well-studied ones, e.g. AC, appears to be such a candidate. Finally, can alower bound on the performance of all combinations algorithms be derived with-out appealing to any complexity-theoretic hypotheses? In other words, is therean equational theory E for which the gap in computational complexity betweenE-uni�cation with constants and the counting problem for general E-uni�cationcan be enlarged to two provably di�erent complexity classes?Acknowledgement We thank Christophe Ringeissen for discussions on thecombination problem for �nitary uni�cation.References[BJSS89] A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schau�. Uni�cation in Booleanrings and Abelian groups. Journal of Symbolic Computation, 8:449{477, 1989.[Bou93] A. Boudet. Combining uni�cation algorithms. Journal of Symbolic Compu-tation, 16:597{626, 1993.

[BS92] F. Baader and K. Schulz. Uni�cation in the union of disjoint equationaltheories: combining decision procedures. In D. Kapur, editor, Proceedings11th International Conference on Automated Deduction (CADE'92), SaratogaSprings (New York, USA), volume 607 of Lecture Notes in Computer Science(in Arti�cial Intelligence), pages 50{65. Springer-Verlag, June 1992.[BS94] F. Baader and J.H. Siekmann. Uni�cation theory. In D.M. Gabbay, C.J. Hog-ger, and J.A. Robinson, editors, Handbook of Logic in Arti�cial Intelligenceand Logic Programming, volume 2: Deduction Methodologies, pages 41{125.Oxford University Press, Oxford (UK), 1994.[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings3rd Symposium on Theory of Computing (STOC'71), Shaker Heights (Ohio,USA), pages 151{158. Association for Computing Machinery, May 1971.[DKR94] E. Domenjoud, F. Klay, and Ch. Ringeissen. Combination techniques fornon-disjoint equational theories. In A. Bundy, editor, Proceedings 12th Inter-national Conference on Automated Deduction (CADE'94), Nancy (France),volume 814 of Lecture Notes in Computer Science (in Arti�cial Intelligence),pages 267{281. Springer-Verlag, 1994.[Fag87] F. Fages. Associative commutative uni�cation. Journal of Symbolic Compu-tation, 3(3):257{275, 1987.[FH86] F. Fages and G. Huet. Complete sets of uni�ers and matchers in equationaltheories. Theoretical Computer Science, 43(1):189{200, 1986.[Her86] A. Herold. Combinations of uni�cation algorithms. In J.H. Siekmann,editor, Proceedings 8th International Conference on Automated Deduction(CADE'86), Oxford (England), volume 230 of Lecture Notes in ComputerScience, pages 450{469. Springer-Verlag, 1986.[HK95a] M. Hermann and P.G. Kolaitis. The complexity of counting problems inequational matching. Journal of Symbolic Computation, 20(3):343{362, 1995.[HK95b] M. Hermann and P.G. Kolaitis. Computational complexity of simultane-ous elementary matching problems. In J. Wiedermann and P. H�ajek, ed-itors, Proceedings 20th International Symposium on Mathematical Founda-tions of Computer Science (MFCS'95), Prague (Czech Republic), volume 969of Lecture Notes in Computer Science, pages 359{370. Springer-Verlag, Au-gust 1995.[HS87] A. Herold and J.H. Siekmann. Uni�cation in Abelian semigroups. Journal ofAutomated Reasoning, 3:247{283, 1987.[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:A rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, editors,Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages257{321. MIT Press, Cambridge (MA, USA), 1991.[Joh90] D.S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-plexity, chapter 2, pages 67{161. North-Holland, Amsterdam, 1990.[KB79] R. Kannan and A. Bachem. Algorithms for computing the Smith and Hermitenormal forms of an integer matrix. SIAM Journal on Computing, 8(4):499{507, 1979.[Kir85] C. Kirchner. M�ethodes et outils de conception syst�ematique d'algorithmesd'uni�cation dans les th�eories �equationnelles. Th�ese d'Etat, Universit�e deNancy 1, France, 1985.[KR94] H. Kirchner and Ch. Ringeissen. Combining symbolic constraint solvers onalgebraic domains. Journal of Symbolic Computation, 18(2):113{155, 1994.

[MN89] U. Martin and T. Nipkow. Boolean uni�cation | the story so far. Journalof Symbolic Computation, 7(3 & 4):275{294, 1989.[Pap94] C.H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.[Plo72] G.D. Plotkin. Building-in equational theories. In B. Meltzer and D. Mitchie,editors, Machine Intelligence, volume 7, pages 73{90. Edinburgh UniversityPress, Edinburgh, UK, 1972.[SS89] M. Schmidt-Schau�. Uni�cation in a combination of arbitrary disjoint equa-tional theories. Journal of Symbolic Computation, 8:51{99, 1989.[Sti81] M. Stickel. A uni�cation algorithm for associative-commutative functions.Journal of the Association for Computing Machinery, 28(3):423{434, 1981.[Tid86] E. Tid�en. Uni�cation in combinations of collapse-free theories with disjointsets of function symbols. In J.H. Siekmann, editor, Proceedings 8th Interna-tional Conference on Automated Deduction (CADE'86), Oxford (England),volume 230 of Lecture Notes in Computer Science, pages 431{449. Springer-Verlag, 1986.[Tod89] S. Toda. On the computational power of PP and �P. In Proceedings 30thIEEE Symposium on Foundations of Computer Science (FOCS'89), ResearchTriangle Park (North Carolina, USA), pages 514{519, 1989.[Val79a] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-puter Science, 8(2):189{201, 1979.[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems. SIAMJournal on Computing, 8(3):410{421, 1979.[Yel87] K. Yelick. Uni�cation in combinations of collapse-free regular theories. Jour-nal of Symbolic Computation, 3(1 & 2):153{182, 1987.

