Unification Algorithms Cannot be Combined
in Polynomial Time

Miki Hermann' and Phokion G. Kolaitis? *

! CRIN (CNRS) and INRIA-Lorraine
BP 239, 54506 Vandoeuvre-les-Nancy, France. hermann@loria.fr
2 Computer and Information Sciences, University of California, Santa Cruz
Santa Cruz, CA 95064, U.S.A. kolaitis@cse.ucsc.edu

Abstract. We establish that there is no polynomial-time general com-
bination algorithm for unification in finitary equational theories, unless
the complexity class #P of counting problems is contained in the class
FP of function problems solvable in polynomial-time. The prevalent view
in complexity theory is that such a collapse is extremely unlikely for a
number of reasons, including the fact that the containment of #P in FP
implies that P = NP. Our main result is obtained by establishing the
intractrability of the counting problem for general AG-unification, where
AG is the equational theory of Abelian groups. Specifically, we show that
computing the cardinality of a minimal complete set of unifiers for gen-
eral AG-unification is a #P-hard problem. In contrast, AG-unification
with constants is solvable in polynomial time. Since an algorithm for gen-
eral AG-unification can be obtained as a combination of a polynomial-
time algorithm for AG-unification with constants and a polynomial-time
algorithm for syntactic unification, it follows that no polynomial-time
general combination algorithm exists, unless #P is contained in FP.

1 Introduction and summary of results

Unification in equational theories is the keystone of automated deduction. It is
used extensively in several areas of computer science, including theorem proving,
database systems, natural language processing, logic programming, computer
algebra, and program verification. Plotkin [Plo72] was the first to formulate
explicitly the idea that theorem provers should have built-in algorithms for uni-
fication in equational theories. His pioneering article provided the impetus for
the development of the entire field of equational unification.

Since there are equational theories with an undecidable unification problem,
no general algorithm for unification in an arbitrary equational theory exists. In-
stead, different special-purpose unification algorithms or procedures have to be
designed for equational theories with a decidable unification problem. Neverthe-
less, one may still hope to obtain a unification algorithm for a given equational
theory as a combination of existing unification algorithms for the components
of the theory. More precisely, let F be a signature, E a finite set of equational

* Research of this author was partially supported by NSF Grants No. CCR-9307758

axioms generating the theory, and Th(F, E) the equational theory generated by
E. Suppose that the signature F and the equational axioms in E can be par-
titioned into disjoint sets Fy, F2 and E;, Eg such that the theories Th(Fy, Eq)
and Th(Fz, E2) have decidable unification problems. The question is: does there
exist a general method for combining unification algorithms for Th(F;, E1) and
Th(F2, Ez) into a new unification algorithm for the entire theory Th(F,E)?

By comparing the signature F with the symbols sig(E) occurring in the set
E of equational axioms, we distinguish between three kinds of equational uni-
fication. If sig(E) = F, which means that a unification problem may contain
only symbols occurring in the equations E, then we speak about elementary E-
unification. If the signature F contains additional free constant symbols, but no
free function symbols, then we speak about E-unification with constants. Finally,
if the signature F contains both additional free constant and free function sym-
bols, then we speak about general E-unification. Quite often, it is much easier
to design an algorithm for elementary E-unification or E-unification with con-
stants than an algorithm for general E-unification. Note, however, that general
E-unification can be viewed as the combination of E-unification with constants
and syntactic unification, where syntactic unification is general unification in
the empty theory. Thus, a general method for combining unification algorithms
malkes it possible to produce a general E-unification algorithm in a uniform way,
provided an algorithm for E-unification with constants exists.

The development of combination algorithms originated with Stickel’s algo-
rithm for general associative-commutative (AC) unification [Sti81]. Stickel first
constructed an algorithm for elementary AC-unification and then introduced
a special-purpose combination algorithm for general AC-unification (actually,
with several AC-symbols) that used the algorithm for elementary AC-unification
and the algorithm for syntactic unification as subroutines. The termination of
Stickel’s algorithm was proved by Fages [Fag87]. Similar work was carried out by
Herold and Siekmann [HS87]. More general combination problems were treated
by Yelick, Kirchner, Herold, Tidén, Boudet, Jouannaud, and Schmidt-Schauf,
who designed algorithms for combination of equational theories that satisfy
certain restrictions on the syntactic form of their axioms. Kirchner [Kir85] re-
quires E; and Ea to be sets of simple axioms. Yelick [Yel87] gives a solution for the
combination of regular and collapse-free theories. Similar results with the same
restriction were obtained by Herold [Her86]. Tidén [Tid86] extended Yelick’s re-
sult to collapse-free theories. Boudet, Jouannaud & Schmidt-Schaufi [BJSS89]
gave an algorithm for combining an arbitrary theory with a simple theory. The
problem of how to combine unification algorithms for arbitrary disjoint theories
was finally solved by Schmidt-Schauf} [SS89]. A more efficient version of this com-
bination method was given by Boudet [Bou93]. Using a new approach, Baader
and Schulz [BS92] presented a combination method for decision problems in
disjoint equational theories; a slight modification gives rise to a method for com-
bining algorithms for unification in two disjoint equational theories. This method
is based on linear constant restriction, a notion that generalizes Schmidt-Schauf3’
approach, where constant elimination problems have to be solved. Recently, an

attempt has been made to relax the condition that the equational theories must
have disjoint signatures in the combination problem [KR94]. Although there are
classes of non-disjoint equational theories for which a combination algorithm
exists, the main problem with non-disjoint theories is that provably no gen-
eral combination algorithm exists for them, even if one restricts attention to
finitary theories generated by a finite set of simple linear equational axioms

(cf. [DKR94]).

Every existing combination algorithm has an exponential running time. In
particular, even if there exist polynomial-time unification algorithms A; and A,
for the disjoint theories Th(F1, E1) and Th(Fz, Es), every known general com-
bination method will give rise to an exponential algorithm A for unification
in the theory Th(F; UF2, E; UE2). In this paper we demonstrate that this
exponential-time behaviour is not a deficiency of the known combination al-
gorithms, but rather it is caused by the inherent intractability of the combina-
tion problem. More precisely, we show that there 1s no polynomial-time general
combination algorithm for unification in finitary equational theories, unless the
complexity class #P of counting problems is contained in the class FP of function
problems solvable in polynomial time.

#£P is the class of all functions f for which there is a nondeterministic Tur-
ing machine M that runs in polynomial time and has the property that f(x)
equals the number of accepting computation paths of M on every input z. The
class #P was introduced and studied in depth by Valiant [Val79a,Val79b], who
showed that several counting problems from graph theory, logic, and algebra
are #£P-complete. The prevalent view in complexity theory is that #P-complete
problems are highly intractable and that, in particular, they are not contained
in FP. Note that one of the reasons for this belief is the fact that if #P were
contained in FP, then P = NP. In [HK95a,HK95b], we showed that the the-
ory of #P-completeness can be applied to the analysis of equational matching
and unification. For this, we introduced a class of counting problems that arise
naturally in equational matching and unification, namely to compute the cardi-
nality of a minimal complete set of E-matchers or E-unifiers, where E is a given
finitary equational theory. We proved that counting the number of E-matchers
or E-unifiers is a #P-hard problem for essentially every important equational
theory E studied in the literature. It should be pointed out that a lower bound
for counting the number of E-matchers or E-unifiers yields immediately a lower
bound on all algorithms for computing minimal complete sets of E-matchers or
E-unifiers, since any algorithm for E-matching or E-unification can be used to
solve the associated counting problem within the same time bounds.

We derive the main result of this paper by analyzing the counting complexity
of unification in the equational theory AG of Abelian groups. We exploit the fact
that AG-unification with constants is unitary, whereas general AG-unification is
finitary, but not unitary. Indeed, AG-unification with constants reduces to the
problem of solving linear Diophantine systems over the integers (positive, nega-
tive, or zero); such systems are known to have a unique general solution obtained
from the Hermite normal form of the corresponding integer matrix. Moreover,

this solution can be computed in polynomial time. Since an algorithm for general
AG-unification can be obtained as a combination of a polynomial-time algorithm
for AG-unification with constants and a polynomial-time algorithm for syntactic
unification, it follows that if the counting problem for general AG-unification is
intractable, then no polynomial-time general combination algorithm exists. We
show this to be the case by establishing that computing the cardinality of a min-
imal complete set of unifiers for general AG-unification is a #P-hard problem.

We also establish that the counting problem for general BR-unification is
#P-hard. This result yields a lower bound on the performance of all algorithms
for general BR-unification.

2 Counting & combination problems in equational unifi-
cation

In this section, we define the basic concepts, describe the family of counting
problems arising in equational unification, and review the solution to the com-
bination problem for unification algorithms. We also present here a minimum
amount of the necessary background material from computational complex-
ity and unification. Additional material for each of these topics can be found

in [Pap94,JK91,BS94].

2.1 Counting problems and the complexity class #P

A counting Turing machine is a non-deterministic Turing machine equipped with
an auxiliary output device on which i1t prints in binary notation the number
of 1ts accepting computations on a given input. The class #P consists of all
functions that are computable by polynomial-time counting Turing machines,
that is, machines for which there is a polynomial p(n) such that the longest
accepting computation of the machine over all inputs of size n is at most p(n).
These concepts were introduced and studied in depth by Valiant in his seminal
papers [Val79a,Val79b].

Let X, I' be nonempty alphabets and let w: X* — P(I'™*) be a function
from the set X* of strings over X to the power set P(I'*) of I'*. If z is a string
in X*, then we refer to w(z) as the witness set for « and to the elements of
w(z) as witnesses for x. Every such function can be identified with the following
counting problem w: given a string z in X*, find the number of witnesses for z,
i.e., find the cardinality of the witness set w(z). Using these concepts, the class
#P can be also described as the collection of all counting problems w such that
the two conditions below hold: (1) there is a polynomial-time algorithm to tell,
given strings # and y, whether y € w(z); (2) there is a & > 1 (which depends on
w) such that |y| < |z|* for all y € w(z).

#SAT is the archetypal counting problem in #P: given a propositional for-
mula ¢, find the number of truth assignments that satisfy it. Here, the witness
set w(yp) consists of all truth assignments satisfying .

Counting problems relate to each other via counting and parsimonious re-
ductions, which are stronger than the polynomial-time reductions between NP-

problems. Let v: IT* — P(A*) and w: Z* — P(I'*) be two counting problems. A
polynomial-time many-one counting (or, simply, counting reduction) from v to w
is a pair of polynomial-time computable functions ¢: I7* — X* and m: N — N
such that |v(z)| = 7(Jw(e(x))]). Such reductions are often called weakly parsimo-
nious. A parsimonious reduction from v to w 1s a counting reduction o, 7 from v
to w such that 7 is the identity function. A counting problem w is #P-hard if
for each counting problem v in #P there is a counting reduction from v to w. If
in addition w is a member of #P, then we say that w is #P-complete.

The proof of Cook’s theorem [Coo71] that SAT is NP-complete can be modi-
fied to show that #SAT is #£P-complete. Since many reductions of SAT to other
NP-hard problems turn out to be parsimonious, it follows that the counting ver-
sions of many NP-complete problems are #P-complete. Valiant [Val79a] made
also an unexpected, but fundamental, discovery by establishing that there are
#P-complete problems whose underlying decision problem is solvable in polyno-
mial time. The first and perhaps most well known among them is the following
problem, which will be of particular use to us in the sequel.

#PERFECT MATCHINGS [Val79a]

Input: Bipartite graph G with 2n nodes.

Output: Number of perfect matchings of G | 1.e., sets of n edges such that no
pair of edges shares a common node.

#P-complete problems are considered to be truly intractable. Actually, in
some sense they are substantially more intractable than NP-complete problems.
To make this precise, one needs to bring in complexity classes of function prob-
lems, since #P 1s a collection of problems that require more complicated answers
than the mere “yes” or “no” answers to decision problems. Let FP denote the
class of all functions computable by a deterministic Turing machine in polyno-
mial time; thus FP is the functional analog of P, the class of decision problems
solvable in polynomial time. FP forms the first and lowest level of FPH, the func-
tional analog of the polynomial hierarchy PH (cf. [Joh90, section 4.1]). The next
level of FPH is the class FPNF of all functions that are computable in polynomial
time using NP-oracles. In general, for each k& > 1, the (k + 1)-st level of FPH is
the class of all functions computable in polynomial time with oracles from the
k-th level of the polynomial hierarchy PH. There is strong evidence that #P is
not contained in FPH, although this remains an oustanding open problem in
complexity theory. First, it should be pointed out that if #£P were contained in
FP, then P = NP. Moreover, it is known that there are oracles relative to which
#P is not contained in FPNP . Finally, evidence of a different kind was provided
by Toda [Tod89], who showed that the polynomial hierarchy PH is contained
in the class P#P of all decision problems computable in polynomial time using
#P-oracles. As Johnson [Joh90] writes, this result indicates a precise sense in
which #P dominates the entire polynomial hierarchy PH.

2.2 Equational theories and unification

If F is a signature and X is a countable set of variables, then 7 (F, X’) denotes
the set of all terms over the signature F and the variables in X'. If E is a
set of equational axioms, then the equational theory Th(F,E) induced by E
is the smallest congruence relation over 7 (F, X’) containing E and closed under
substitutions. We write s =g ¢ to denote that the pair (s,?) of terms is a member
of Th(F,E). An E-unifier of s and ¢ is a substitution p such that sp =g ¢p holds;
equivalently, an E-unifier of s and ¢ is a solution of the equation s =g ¢ in the
algebra T(F,X)/=g. If a minimal complete set of E-unifiers of s and ¢ exists,
then it is unique up to =j (cf. [FH86]). In this case, we let uCSUg(s,t) denote
the minimal complete set of E-unifiers of s and ¢, if s and ¢ are unifiable, or the
empty set, otherwise. A theory E is said to be unitary if for every pair of terms
(s,t) the set pCSUR(s,t) exists and |uCSUg(s,t)| < 1. Similarly, E is said to be
finitary if for every pair of terms (s,t) the set uCSUE(s,t) exists and is finite.

Every finitary equational theory E gives rise to the following E-un:fication
problem: given two terms s and ¢, produce a (minimal) complete set uCSUg(s, ?)
of E-unifiers of s and ¢. The E-matching problem is the restriction of the E-
unification problem to terms s and ¢ such that ¢ is a ground term. We write s =g ¢
to denote an instance of the E-unification problem; this way we differentiate an
instance of the E-unification problem from an E-equality s =g . If E is the
empty theory, then we speak about the syntactic unification problem and the
syntactic matching problem, and we write s = ¢.

2.3 Unification in Abelian groups and Boolean rings

Let G = (G, +, —, ¢) be an algebraic structure such that + is a binary operation
on the carrier G of G, — is a unary operation on G, and e is an element of
(. We say that G = (G, 4+, —, ¢) is an Abelian group if it satisfies the following
equational axioms AG:

r+e=x r+y=y+=zx
r+(—z)=e€ (z4+y)+z=a+ (y+2).

It is important to note that AG-unification is equivalent to AG-matching,
since every AG-unification problem s =aq t is equivalent to s + (=) =aq e.

Let E be an arbitrary equational theory. In the case of general E-unification,
there is no difference between a single equation s =g ¢ and a system of equations
{51 =g t1,..., 8, =g tn}, since the E-unifiers of {s; =g t1,...,s, =g l,} coin-
cide with the E-unifiers of the equation f(s1,...,s,) =g f(t1,...,tn), where f
is a free function symbol in F \ sig(E). In contrast, there are equational the-
ories E for which in the case of elementary E-unification or in the case of E-
unification with constants there are computational differences between single
equations and systems of equations (cf. [BS94,HK95b]). Note that systems of
AG-unification problems with constants are not always equivalent to single AG-
unification problems. Nevertheless, we can take advantage of the Abelian group
axioms and bring such systems into a special form. We replace n occurrences

of the term ¢ in ¢ + --- 4+ ¢ by the expression nt; we also replace k occurrences
of t in (=t) + -+ + (—t) by the expression —kt. Thus, every system of AG-
unification problems with constants can be brought into the form Ax = I'c,
where A = (oz‘Z)Z1 and I' = (7%7)/: are integer matrices, x = (21, ...,%nm) is a
vector of formal variables, and ¢ = (c1,...,¢,) is a vector of free constants.
It follows that every system of AG-unification problems with constants can be
transformed to a system of linear Diophantine equations that must be solved over
the integers (positive, negative, or zero). The solution of the latter is computed
as the Hermite normal form of the corresponding integer matrix. The Hermite
normal form yields a general parametric expression for all solutions; moreover,
this expression is unique up to a linear combination. As a result, AG-unification
with constant is unitary (cf. [BS94]).

Let B = (B,®,A,0,1) be an algebraic structure such that & (exclusive or)
and A (conjunction) are binary operations on the carrier B of B, and 0 (false)
and 1 (true) are elements of B. We say that B = (B, ®, A, 0, 1) is a Boolean ring
if it satisfies the following equational axioms BR:

rgl0=12x rPy=ydz

rPxr=0 (toy)@r=2D(yd2)
eAN0=0 rANy=yAa

rAl== (gAY ANz=2A(YyAz)
tAz=uzx tA(y®z)=(xAy) @ (zAz).

BR-unification is equivalent to BR-matching, since every BR-unification prob-
lem s =g t is equivalent to st =g 0. Moreover, every BR-unification problem
s =pr 0 1s equivalent to s®1 =g 1; therefore, it makes no difference whether we
consider a problem s =ggr 0 or s =g 1. When it comes to BR-unification with
constants, there is no difference between a single equation and a system of equa-
tions, since every system of BR-unification problems s; =g 1, ..., s, =pr 1
can be transformed to the equivalent problem s; A --- A's, =g 1.

Martin and Nipkow [MN89] showed that BR-unification with constants is
unitary. This follows from Lowenheim’s theorem, which provides a way to obtain
the most general BR-unifier from any particular BR-unifier. Indeed, let F be a
signature consisting of @, A, 0, 1, and free constant symbols, and let ¢ be a term
over F whose variables are 1, ..., z,. Lowenheim’s theorem implies that if the
substitution z; — b;, 1 <7 < n,is a BR-unifier of { =pg 0, then the substitution
2 2 B (A (2 @ b)), 1 <i<n,is the only element of uCSUpg(¢, 0).

2.4 Combination algorithm for equational unification

Let Th(Fy, Eq) and Th(Fz, Eq) be finitary equational theories with disjoint sig-
natures. Baader and Schulz [BS92] presented an algorithm for unification in the
combined theory Th(F; U Fa, E; U Eg), under the assumption that the unifica-
tion problem with linear constant restrictions 1s solvable for each of the theories
Th(Fy, Eq) and Th(F3, E2). If E is an equational theory and P is an E-unification
problem, then a linear constant restriction of P is a linear ordering < on a fi-
nite set V' of variables and a finite set C' of free constants (i.e., the constants in

C' are not members of sig(E)). A solution of an E-unification problem P with
linear constant restriction is an E-unifier o of P with the property that if c € C
and x € V are such that # < ¢, then ¢ does not occur in zo. It 1s known that
there are algorithms for both AG-unification with linear constant restriction and
BR-unification with linear constant restriction (cf. [SS89,BS92]).

Assume that A; is an algorithm for the E;-unification problem with linear
constant restriction, ¢ = 1,2. Baader and Schulz [BS92] give an algorithm A for
unification in the combined theory Th(F; U Fa, E; U E3) that uses the two algo-
rithms A; and A as subroutines. The crucial part of this combination algorithm
A is a decomposition algorithm that takes as input an a system P of elementary
E1UEs-unification problems and, after several (possibly non-deterministic) steps,
transforms this system into separate E;-unification problems and Es-unification
problems. Before outlining the combination algorithm, several auxiliary concepts
have to be introduced. The elements of the signature F; are called 1-symbols and
the elements of Fy are called 2-symbols. If a term ¢ is of the form f(t1,...,¢)
and f 1s an i-symbol, then we say that ¢ is an i-term. A subterm s of an i-term ¢
is called an alien subterm of ¢ if it is a j-term, j # ¢, such that every proper
superterm of s in £ 1s an i-term. An ¢-term is pure if it contains only i-symbols
and variables. A pure i-equation, 7 = 1,2, is an equation s =g t such that s and
t are pure i-terms. An equation s =g t is pure if it is 1-pure or 2-pure.

The main steps of the combination algorithm A are as follows:

Variable abstraction: Successively replace all alien subterms by new variables
until all terms in P are pure. This means that every equation s =g ¢, where s
contains an alien subterm si, is replaced by two equations s’ =g ¢ and
r =g s1, where s’ is the term obtained from s by replacing s; by =.

Impure equation split: Replace each impure equation s =g t by two new
equations ¥ =g s and @ =g t, where x is a new variable. After this step has
been carried out, the resulting system contains pure equations only.

Variable identification: In a non-deterministic way, choose a partition of the
set of variables occurring in the system obtained in the previous step. For
each equivalence class of this partition, choose a variable as canonical rep-
resentative of the class and replace in the system all occurrences of other
variables in the class by its canonical representative.

Variable ordering and labelling: In a non-deterministic way, choose a linear
ordering < on the variables of the system and assign label 1 or label 2 to
each of these variables.

Split of the problem: Split the system into two systems P; and P,, where
the P, contains all 1-equations and P contains all 2-equations. Only the i-
variables are considered as variables in the system P;, whereas the j-variables
in P;, with ¢ # j, are treated as constants. For ¢ = 1,2, use algorithm A;
to solve the E;-unification problem P; with the linear constant restriction
induced by the linear ordering of the previous step. If both P, and P, are
solvable, combine the complete sets U; and Us returned by A; and As to
obtain a solution to the original system.

Regrouping: The complete set of unifiers for the original E; U Eq-unification
problem P is the union of the solutions of all systems generated by all possible
choices in the earlier non-deterministic steps.

Note that if both equational theories E; and Es are finitary, then the combi-
nation algorithm A computes a finite complete set of unifiers for every unification
problem in the theory E; U Es, since every nondeterministic choice is done from
a finite set. This implies that the combination E; U Es of two finitary theories
E; and E; is also finitary, assuming that E;-unification with linear constant re-
striction is solvable, ¢ = 1,2. On the other hand, if both E; and E» are unitary
theories, then the combination algorithm may compute a complete set of unifiers
with more than one element, since the combination algorithm consists of several
non-deterministic steps. This does not necessarily mean that the equational the-
ory E1 U Es is not unitary. Indeed, assume that E; and E, are empty theories
with finite disjoint signatures. It is obvious that the empty theory E; U E5 is
unitary, but the combination algorithm may produce a complete set of unifiers
with more than one element, due to the non-deterministic choices.

3 Unification with constants vs. general unification

In this section, we derive inherent lower bounds for the running time of all
combination algorithms for equational unification. More precisely, we show that,
unless #P is contained in FP, there does not exist a polynomial-time combination
algorithm for E; UEs-unification with oracles for the E;-unification problem and
the Es-unification problem. This result is obtained by analyzing the complexity
of AG-unification with constants and the complexity of the counting problem
for general AG-unification. As stated earlier, AG-unification with constants is a
unitary theory. Baader and Siekman [BS94] pointed out that the most general
unifier for AG-unification with constants can be computed in polynomial time.
This is based on a transformation of the AG-unification problems with constants
to an equivalent linear Diophantine system of equations that must be solved
over the integers, followed by the computation of the Hermite normal form of
the corresponding integer matrix.

Proposition 1. AG-unification with constants is solvable in polynomial time.

Proof. Every system of AG-unification problems with constants Ax = ['c can
be transformed to an equivalent linear Diophantine system over the integers
as follows. Assume that every formal variable z; gets assigned y! copies of the
constant ¢;, and Z‘Z copies of a residual term u;, 1 < j < n. Therefore, we write

i=yier+ o ylen +ziur 4 o+ 2y,

where yg, Z‘Z are integer variables, ¢; are free constants, and u; are formal vari-
ables (one for each free constant) representing residual terms that are cancelled
to the neutral element e in the original system Ax = I'c. After substitution and
regrouping, we obtain two linear Diophantine systems AZ = 0 and AY = [over

the integers, where Y = (yf):; and 7 = (Z‘Z):; are matrices of integer variables.
The first system is derived from the equations A(Zu) = e, where e = (e, ..., €)
is a vector of neutral elements, expressing the fact that the residual terms wu;
are cancelled to the neutral element e in the original system. It is clear that this
transformation can be carried out in polynomial time. Since the unique integer
solutions of the linear Diophantine systems AZ = 0 and AY = I" can be com-
puted in polynomial time (cf. [KB79]), it follows that the unique solution of each
AG-unification problem with constants can be computed in polynomial time. O

We now introduce the counting problems for general AG-unification and
general BR-unification.

#General AG-Unification

Input: A set F of free constant and function symbols, and two terms s,t €
T (sig(AG) U F, X).

Output: Cardinality of the set pCSUaq(s,1).

General BR-Unification

Input: A set F of free function and constant symbols, and two terms s,t €
T (sig(BR) UF, X).

Output: Cardinality of the set pCSUpRg(s,1).

The following result yields a lower bound for the computational complexity
of the counting problem for general AG-unification and general BR-unification.

Proposition 2. The counting problems #General AG-Unification and #Gen-
eral BR-Unification are both #P-hard.

Proof. We give a parsimonious reduction from #Perfect Matchings that works
for both #General AG-unification and #General BR-unification. In [HK95a], we
used the same reduction to show that #£AC1-matching is #£P-hard, where AC1-
matching is the restriction of AC-matching to linear terms. It should be noted,
however, that the proof of correctness we give here is substantially different
than the proof for #£AC1-matching; actually, in what follows the combination
algorithm for equational unification is used in a crucial way, while the proof for
#ACI-matching made no use of the combination algorithm.

Suppose that we are given a bipartite graph G' = (5,7, E) with 2n nodes,
where the sets S = {s1,...,8,} and T = {{,...,1,} form the partition of the
nodes. Let a be a constant symbol, f a unary function symbol, and ¢ a (n+1)-ary
function symbol. We also consider two disjoint sets of variables X = {z;; |4,/ =
1,...,n}and Y = {y1, ...,y }. With each node s; in the set .S we associate the

term s7 = g(s},. ..,5?,5?"’1), where
') if1<ij<nandi=j
51 = ¢ @ ifl1<ij<nandi#j

Yi ifl<i<nand j=n-+1

Intuitively, we view the nodes s1,...,s, in S as vectors of a “matrix”:

81‘ = g(f($11),9012,9013, . ~~,l‘1n,y1)
5; = g(l‘zl,f(l‘zz),l‘z& . ~~,l‘2n,y2)
5; = g($n1a$n2a .. 'a$n,n—1af($nn)ayn)

in which the subterms f(x;;) occupy the main diagonal, while the variables
Y1, - - ., Yn are along the last column. Next, with each node ¢; in T we associate

the ground term ¢f = g(t}, ... 2 7)), where
' fla) iftl1<i,j<nand(s;,t;) €FE
ti=qa iftl1<i,j<nand(s;,t;) ¢ FE
f(a) fj=n+1
Thus, we view the nodes t1,...,%, in T as vectors of another “matrix”
i =g(t,.., 11, f(a))
t5=yg(tz, ..., 15, f*(a))

=gt ...t ().

The intuition is that the second matrix represents the adjacency matrix (ex-
tended by the column f*(a), 1 < k < n) of the edge relation E of the graph G,
where the terms f(a) and @ are used to encode the presence and the absence,
respectively, of an edge between two nodes. Note that the terms s}, ¢« < n, are
linear and have pairwise disjoint variables, while the terms ¢}, ¢ < n, are ground.

Consider now the E-unification problem sjo --- o) =g tj o --- ot} where,
if E = AG, the symbol o stands for +, while, if E = BR, it stands for A. This
problem can be viewed as a Eq U Es-unification problem, where E; € {AG,BR}
and Es is the empty theory. Thus, the problem sj o --- 05} =g {jo --- ot} can
be solved by applying to it the combination algorithm with the algorithm for E;-
unification with constants and the algorithm for syntactic unification algorithm
as subroutines. The variable abstraction transforms it to the system

{ugo - ou, Zpvio---ovy, u=ps;, vj=pt;|ij=1,...,n}

where u;, v; are new variables. Every equation is pure so we do not need to
split them. We cannot identify two variables v; and v;, where ¢ # j, since the
equality v; = vj implies the equality ¢7 = ¢7, which 1s evidently incorrect because
of the different subterms in the last column ¢?*™' = fi(a) and t?"’l = fi(a).
Hence, every variable v; can be either identified with a variable u; or it can
form a singleton equivalence class [v;]. Identifying the variables X and Y is not
necessary, their value will be determined later. It is also not necessary to choose
a linear ordering < on the variables, since every choice of the ordering is correct.

Indeed, the terms s} are linear and have pairwise disjoint variables, whereas the
terms ¢ are ground; therefore, no variable cycles can occur.

Note that u; =g s] and v; =g] are 2-equations, and s7, 7 are 2-terms,
for 1 < ¢,7 < n. Therefore the variables u;, v; must be labelled as 2-variables,

otherwise none of the 2-equations u; = s; and v; = ¢7 would have a solution.

Since uj 0 -+ ouUy =F V1 0 - -+ 0 Uy, IS & l-equation, the 2-variables u;, v; are con-
sidered here as constants. Since no “constant” appears twice among vy, ..., vy,
the axioms (z 4+ (—#) = €) and (z A« =) are not used in the equivalence proof
of the Skolemized terms uj o - - - ou, and vy o - - - ov,. Only the associativity and
commutativity of the symbol o € {4+, A} is used in the equivalence proof, there-
fore the vector of “constants” (uq,...,u,) must be a permutation of the vector
(v1,...,v,). This implies that the only variable identifications that generate a
solution for u; o --- o u, =g vy © --- o v, are the ones for which every class
in the partition of {u;,v; | 4,5 = 1,...,n} consists of two variables, one u; and
the other v;, for some ¢, j € {1,...,n}. No partition with singleton equivalence

classes [u;] or [v;] gives a solution for the aforementioned 1-equation. Its solution
1s always the identity T.

Consider now the 2-equations u; = s7 and v; = ¢;, 1 < 4,5 < n. If the
variables u; and v; are identified within a class [u;, v;] of the partition, then the
syntactic unification algorithm merges the respective equations to s7 = ¢;. We
claim that for each ¢ and j, 1 <4, j < n, there is an edge (s;,t;) € E if and only
if the terms s7 and ¢} are unifiable in the empty theory. Indeed, if (s;,?;) € £,
then by the above construction we have that t; = f(a) and st = f(z;;). Since
sF =y, for 1 <i#k<mnand s!t =y, we have that the terms s} and t5 are
unifiable via the most general unifier

_ 1 i—1 i+1
Tij = [l‘“ '_>tj,~~~,$i,i—1 |—>tj y Lig b @y Tig41 |—>tj y ey

2in = 17, v > f7(a)].

Conversely, if (s;,t;) € E, then t; = a and st = f(x;). Consequently, the
terms s} and ¢} are not unifiable. Observe that for each pair of terms s} and ¢}
the unifier o;; is unique, because of the forced substitution y; +— fi(a). As a
result, every perfect matching £’ C E of the graph G gives rise to the unifier

g = U Jij

(i.7)eB!

of the system P» = {u; = s}, v; =1} [1 <i,j < n}, provided that the partition
identified the variables u; and v; if and only if there exists and edge (s;,%;) € E.
Moreover, the uniqueness of each substitution ¢;; implies the uniqueness of the
unifier ¢, since the term sj o --- o s is linear and the term ¢J o --- o ¢} is
ground. It follows that each partition of the variables {u;,v; | 1 < 4,j < n}
that encodes a perfect matching of the graph G corresponds to one unifier of
the system P,. Conversely, if the partition identified the variables u; and v; such
that (s;,t;) ¢ E, then the system P; has no solution.

The regrouping step returns the complete set U of unifiers ¢ that corresponds
to the perfect matchings of the graph G, since the solution of the Skolemized
equation uy0 - - -ou, =g v10- - - 0ov, 18 the identity T. Note that every substitution
in the complete set of unifiers U is ground. Assume that the set U is not minimal,
i.e., that there exists two unifiers o,p € U and a substitution 7, such that
on =% p where V = Dom(c) = Pom(p) is the set of variables occurring in the
E-unification problem. The fact that the substitution ¢ is ground implies that
the identity on = o holds for every substitution n with Dom(n) C V. Since
the substitutions ¢ and p have the same domains V' and since for all variables
z € V the instances zo and xp contain free symbols only, we have that o :g P
implies ¢ = p. Hence, the computed complete set of unifiers is minimal. This
concludes the construction of a parsimonious reduction from #Perfect Matchings
to #General AG-unification and to #General BR-Unification. a

By Proposition 1, AG-unification with constants is solvable in polynomial
time. Moreover, it is well known that the same holds true for syntactic unifi-
cation. Since general AG-unification is the combination of AG-unification with
constants and syntactic unification, Proposition 2 implies now immediately the
main result of this paper.

Theorem 3. Unless #P is contained in FP, there does not exist a combination
algorithm A for Ei U Es-unification, where E1 and Es are disjoint equational
theories, such that A runs in polynomial time using oracles for the E{-unification
problem and the Es-unification problem.

We conclude this section with some comments on the proof of Proposition 2.
First, as a byproduct of this proof, we see that general AG-unification and general
BR-unification are not unitary, since there exist bipartite graphs with more
than one perfect matching. Note also that this proof makes use of three free
(uninterpreted) symbols that are not present in the signature of the Boolean
ring axioms BR, namely the constant a, the unary function symbol f, and the
(n+1)-ary symbol g. Using a more complicated proof, we can reduce the number
of the free symbols and their arity. Clearly, the constant a is not necessary and
can be replaced by the Boolean constant 0. This results in some additional
variable abstraction steps. The unary symbol f can be replaced by the negation
operator — on the main diagonal of the “matrix” S and at the positions in T’
encoding the edges (s;,%;) € E, but it cannot be eliminated from the last column
where it serves to distinguish the terms ¢7. The ground term =0 can be replaced
by the equivalent Boolean value 1. The (n + 1)-ary symbol g can be replaced by
an iteration of the exclusive-or connective @, provided that we apply the unary
symbol f to the subterms as an index to express their previous positions under
the symbol g. Hence, after these transformations have been carried out, we have
the new terms sf = st & - & s? & 5?"'1, where

) J (=) if1<ij<nandi=j
sl = ¢ fi(xj) if1<ij<nandi#j
7 (ws) ifl<i<nandj=n+1

and ¢ =t} & - - @7 @t?"’l where

' (1) ifl1<ij<nand(s;t)€eFr
th=2¢ fi(0) ifl1<ij<nand(s;,t)¢FE
Vit () ifj=n+1
The unification problem s A --- A's; =pr t] A --- AT} encodes, as before,

the problem of finding all perfect matchings in the bipartite graph G. Thus, the
counting problem #General BR-Unification is #P-hard, even in the presence of
a single free unary function symbol.

4 Concluding remarks

We proved that there is no polynomial-time general combination algorithm for
unification in finitary equational theories, unless the counting class #P collapses
to the class FP of function problems solvable in polynomial-time. Such a collapse
is considered highly unlikely for a number of reasons; in particular, as mentioned
earlier, the collapse of #P to FP implies that P = NP. As a matter of fact, the
prevalent view in complexity theory is that #P is contained neither in FPNP
nor in any other level of the functional polynomial hierarchy FPH. Under the
hypothesis that #P is not contained in FPH (which is also widely believed to
be true), our results imply a stronger lower bound on the performance of all
general combination algorithms, namely that no such algorithm can be found in
the class FPH.

We end by describing two open problems that are motivated from the work
reported here. Note that the equational theory AG of Abelian groups is col-
lapsing (axiom # + ¢ = #) and non-regular (axiom # 4+ (—x) = €). Are there
equational theories E that are regular, or non-collapsing, or both regular and
non-collapsing, and such that a similar gap in computational complexity exists
between E-unification with constants and the counting problem for general E-
unification? We conjecture that such equational theories exist, although none of
the well-studied ones, e.g. AC, appears to be such a candidate. Finally, can a
lower bound on the performance of all combinations algorithms be derived with-
out appealing to any complexity-theoretic hypotheses? In other words, is there
an equational theory E for which the gap in computational complexity between
E-unification with constants and the counting problem for general E-unification
can be enlarged to two provably different complexity classes?

Acknowledgement We thank Christophe Ringeissen for discussions on the
combination problem for finitary unification.

References

[BJSS89] A. Boudet, J.-P. Jouannaud, and M. Schmidt-Schaufl. Unification in Boolean
rings and Abelian groups. Journal of Symbolic Computation, 8:449-477, 1989.

[Bou93] A. Boudet. Combining unification algorithms. Journal of Symbolic Compu-
tation, 16:597-626, 1993.

[BS92]

[BS94]

[Coo71]

[DKR94]

[Fag87]
[FHS36]

[Her86]

[HK95a]

[HK95b]

[HS87]

[TK91]

[Joh90]

[KB79]

[Kir85]

[KR94]

F. Baader and K. Schulz. Unification in the union of disjoint equational
theories: combining decision procedures. In D. Kapur, editor, Proceedings
11th International Conference on Automated Deduction (CADE’92), Saratoga
Springs (New York, USA), volume 607 of Lecture Notes in Computer Science
(in Artificial Intelligence), pages 50-65. Springer-Verlag, June 1992.

F. Baader and J.H. Siekmann. Unification theory. In D.M. Gabbay, C.J. Hog-
ger, and J.A. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume 2: Deduction Methodologies, pages 41-125.
Oxford University Press, Oxford (UK), 1994.

S.A. Cook. The complexity of theorem-proving procedures. In Proceedings
3rd Symposium on Theory of Computing (STOC’71), Shaker Heights (Ohio,
USA), pages 151-158. Association for Computing Machinery, May 1971.

E. Domenjoud, F. Klay, and Ch. Ringeissen. Combination techniques for
non-disjoint equational theories. In A. Bundy, editor, Proceedings 12th Inter-
national Conference on Automated Deduction (CADE’94), Nancy (France),
volume 814 of Lecture Notes in Computer Science (in Artificial Intelligence),
pages 267-281. Springer-Verlag, 1994.

F. Fages. Associative commutative unification. Journal of Symbolic Compu-
tation, 3(3):257-275, 1987.

F. Fages and G. Huet. Complete sets of unifiers and matchers in equational
theories. Theoretical Computer Science, 43(1):189-200, 1986.

A. Herold. Combinations of unification algorithms. In J.H. Siekmann,
editor, Proceedings 8th International Conference on Automated Deduction
(CADE’86), Ozford (England), volume 230 of Lecture Notes in Computer
Science, pages 450-469. Springer-Verlag, 1986.

M. Hermann and P.G. Kolaitis. The complexity of counting problems in
equational matching. Journal of Symbolic Computation, 20(3):343-362, 1995.
M. Hermann and P.G. Kolaitis. Computational complexity of simultane-
ous elementary matching problems. In J. Wiedermann and P. Hajek, ed-
itors, Proceedings 20th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS’95), Prague (Czech Republic), volume 969
of Lecture Notes in Computer Science, pages 359-370. Springer-Verlag, Au-
gust 1995.

A. Herold and J.H. Siekmann. Unification in Abelian semigroups. Journal of
Automated Reasoning, 3:247-283, 1987.

J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras:
A rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages
257-321. MIT Press, Cambridge (MA, USA), 1991.

D.S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity, chapter 2, pages 67-161. North-Holland, Amsterdam, 1990.

R. Kannan and A. Bachem. Algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM Journal on Computing, 8(4):499—
507, 1979.

C. Kirchner. Méthodes et outils de conception systématique d’algorithmes
d’unification dans les théories équationnelles. These d’Etat, Université de
Nancy 1, France, 1985.

H. Kirchner and Ch. Ringeissen. Combining symbolic constraint solvers on
algebraic domains. Journal of Symbolic Computation, 18(2):113-155, 1994.

[MN89]
[Pap94]
[Plo72]
[SS89]
[Sti81]

[Tids6]

[Tod89]

[Val79a]
[Val79b]

[Yel87]

U. Martin and T. Nipkow. Boolean unification — the story so far. Journal
of Symbolic Computation, 7(3 & 4):275-294, 1989.

C.H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
G.D. Plotkin. Building-in equational theories. In B. Meltzer and D. Mitchie,
editors, Machine Intelligence, volume 7, pages 73-90. Edinburgh University
Press, Edinburgh, UK, 1972.

M. Schmidt-Schaufl. Unification in a combination of arbitrary disjoint equa-
tional theories. Journal of Symbolic Computation, 8:51-99, 1989.

M. Stickel. A unification algorithm for associative-commutative functions.
Journal of the Association for Computing Machinery, 28(3):423-434, 1981.
E. Tidén. Unification in combinations of collapse-free theories with disjoint
sets of function symbols. In J.H. Siekmann, editor, Proceedings 8th Interna-
tional Conference on Automated Deduction (CADE’86), Ozford (England),
volume 230 of Lecture Notes in Computer Science, pages 431-449. Springer-
Verlag, 1986.

S. Toda. On the computational power of PP and ®P. In Proceedings 30th
IEEE Symposium on Foundations of Computer Science (FOCS’89), Research
Triangle Park (North Carolina, USA), pages 514-519, 1989.

L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189-201, 1979.

L.G. Valiant. The complexity of enumeration and reliability problems. STAM
Journal on Computing, 8(3):410-421, 1979.

K. Yelick. Unification in combinations of collapse-free regular theories. Jour-
nal of Symbolic Computation, 3(1 & 2):153-182, 1987.

