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There are two main algorithmic problems arising in the study of E-matching andE-uni�cation. The �rst is a decision problem, namely, given two terms s and t, decidewhether or not there is an E-matcher (or an E-uni�er) of s and t. The second problemis to design matching and uni�cation algorithms such that, given two terms s and t, thealgorithm terminates and returns a set which is empty, if s and t are not E-matchable(respectively, not E-uni�able), or, otherwise, is a complete set of E-matchers of s and t(respectively, a complete set of E-uni�ers). The second problem is, of course, meaningfulonly for theories for which the �rst problem is solvable and which, moreover, are �nitary ,i.e., for every term s and t there is a �nite set of complete E-matchers (E-uni�ers). Forsuch theories, algorithms for the second problem should preferably return a complete setof minimal E-matchers (minimal E-uni�ers).Benanav, Kapur, Narendran [BKN87] and Kapur, Narendran [KN86] established thatthe decision problem for E-matching is NP-complete for many important equationaltheories E, including associativity A, commutativity C, associativity-commutativity AC,and extensions of AC with idempotency I or existence of unit U. Benanav, Kapur, andNarendran [BKN87] discovered also one exception to these NP-completeness phenomena,namely they proved that the decision problem for AC1-matching is solvable in polynomialtime, where AC1 is AC restricted to linear terms, i.e., every variable occurs at most oncein a term being matched. Concerning E-uni�cation, Kapur and Narendran [KN92a]showed that the decision problem for AC-uni�cation is NP-complete, which came as asurprise, since the prevailing intuition is that AC-uni�cation is harder than AC-matchingand, thus, this decision problem ought to have complexity higher than NP.Although it is undoubtedly useful to pinpoint the computational complexity of theunderlying decision problem, in practice it is far more important to analyze the complex-ity of E-matching and E-uni�cation algorithms that return complete sets of (minimal)E-matchers or (minimal) E-uni�ers. So far, relatively little progress has been made inderiving tight upper and lower bounds for the complexity of such algorithms. A notableexception is the case of AC-uni�cation for which Kapur and Narendran [KN92b] foundan algorithm that runs in doubly exponential time and returns a complete set of AC-uni�ers, albeit not necessarily a minimal one. This upper bound is quite tight, sinceDomenjoud [Dom92] produced a set of AC-uni�cation problems with n variables whosecomplete set of minimal AC-uni�ers has O(22n) elements.Assume that E is some �nitary equational theory and A is an algorithm such that,given two terms s and t as input, it returns a complete set of minimal E-matchers of sand t, if s and t can be matched. In this case, the algorithm A can also be used tocompute the cardinality of a complete set of minimal E-matchers. Thus, we are ableto solve at the same time a counting problem associated with E-matching, namely theproblem of counting the number of complete minimal E-matchers. Notice that thisproblem is always well de�ned, since it is known (cf. [FH86]) that for every two terms sand t all sets of complete minimal E-matchers of s and t are of the same cardinality.Our goal in this paper is to initiate a systematic study of the computational complexityof counting problems in equational matching. We believe that these counting problemsare quite natural and that they deserve to be studied in their own right. Moreover,we feel that counting problems re�ect more accurately the computational di�culties ofequational matching than the corresponding decision problems do.Counting problems arise naturally in many areas of computer science and combinato-rial mathematics. In 1979, Valiant [Val79a] developed a computational model for classi-



fying the complexity of counting problems and introduced the class #P of functions thatare computed by a counting Turing machine in polynomial time, i.e., a non-deterministicTuring machine that runs in polynomial time and has an auxiliary output device on whichit prints in binary notation the number of its accepting computations on a given input.Valiant [Val79a] showed that the class #P has complete problems under certain restrictedtype of reductions that either preserve the number of solutions (parsimonious reductions)or, at least, make it possible to compute the number of solutions of one problem fromthe number of solutions of another problem (counting reductions). Quite often, NP-completeness proofs for decision problems can be translated to #P-completeness proofsfor the corresponding counting problems by observing that the polynomial transformationin the proof of NP-hardness preserves the number of solutions. In particular, this is thecase for #3-SAT, the prototypical #P-complete problem, which asks for the number ofsatisfying assignments of a 3CNF Boolean formula. On the other hand, Valiant [Val79a]demonstrated the existence of polynomial-time decision problems, such as perfect match-ing in bipartite graphs, whose associated counting problem is #P-complete. Several otherproblems were subsequently shown to exhibit this behavior in Valiant [Val79b].In this paper, we apply the theory of #P-completeness to the study of counting prob-lems in equational matching. If E is a �nitary equational theory, then the #E-MatchingProblem is the problem of computing the cardinality of a complete set of minimal E-matchers of two given terms s and t. We examine several important equational the-ories E and �rst show that their #E-Matching problem is a member of the class #P.Usually, membership of a counting problem in #P follows more or less directly from thede�nition of the problem. This, however, turns out not to be the case with countingproblems in equational matching. In fact, proving that a particular #E-Matching prob-lem is in #P often requires extensive use of di�erent syntactic and structural propertiesof the underlying equational theory E. After deriving upper bounds for the complexityof counting problems in equational matching, we obtain tight lower bounds and, thus,establish that #E-Matching is a #P-complete problem for several equational theories E.In particular, we show the #P-completeness of #A-Matching, #C-Matching, and #AC-Matching. Similar #P-completeness results are obtained for the equational theories ofidempotency I, existence of unit U, their AC extensions, and the restriction of ACI toSet matching. We also examine AC1-matching, the restriction of AC-matching to linearterms and establish that #AC1-Matching is #P-complete. This is achieved by show-ing that the problem of counting the number of perfect matchings in bipartite graphscan be reduced in a parsimonious way to #AC1-Matching. Since AC1-matching hasa polynomial-time decision problem (cf. [BKN87]), we have a new manifestation of thephenomenon that a counting problem can be harder than its associated decision problem.The results reported here on the one hand give a rather complete picture of thecomplexity of counting problems in equational matching and on the other yield a newfamilyof #P-complete problems of di�erent character than the counting problems studiedthus far by researchers in computational complexity.2 Counting Problems in Equational MatchingIn this section, we will de�ne the basic concepts and introduce the family of countingproblem arising in equational matching. We also present here a minimum amount of thenecessary background material from computational complexity and uni�cation.



2.1 Counting Problems and the Class #PA counting Turing machine is a non-deterministic Turing machine equipped with anauxiliary output device on which it prints in binary notation the number of its acceptingcomputations on a given input. A counting Turing machine has time complexity t(n) if thelongest accepting computation of the machine over all inputs of size n is at most t(n). Byvarying the functions t(n), we obtain di�erent complexity classes of counting functions.Thus, #P is the class of functions that are computable by counting Turing machinesof polynomial-time complexity. Similarly, #EXPTIME is the class of functions thatare computable by counting Turing machines of exponential-time complexity. CountingTuring machines and the complexity class #P were introduced and studied in depth byValiant [Val79a, Val79b]. Here, we will work with a slightly di�erent, but essentiallyequivalent, description of the class #P that appears in Kozen [Koz92].Assume that � and � are nonempty alphabets and let w: �� ! P(��) be a functionfrom the set �� of strings over � to the power set P(��) of ��. If x is a string in ��, thenwe refer to w(x) as the witness set for x and to the elements of w(x) as witnesses for x.Every such witness function w can be identi�ed with the following counting problem w:given a string x in ��, �nd the number of witnesses for x in the set w(x). In what follows,jxj is the length of a string x, and jSj is the cardinality of a set S.De�nition 2.1 ([Koz92]) The class #P is the class of counting problems w such that:(1) There is a polynomial-time algorithm to determine, for given strings x and y, ify 2 w(x);(2) There exists a natural number k � 1 (which can depend on the counting prob-lem w) such that jyj � jxjk for all y 2 w(x).A typical member of #P is the counting problem #SAT: given a string x encodinga Boolean formula, �nd the number of truth assignment satisfying x. In this case, thewitness set w(x) consists of all truth assignments (encoded as strings) satisfying x.Counting problems relate to each other via counting reductions and parsimonious re-ductions, which are stronger than the polynomial-time reductions between NP-problems.De�nition 2.2 Let w: �� ! P(��) and v: �� ! P(��) be two counting problems.A polynomial many-one counting (or weakly parsimonious) reduction from w to vconsists of a pair of polynomial-time computable functions �: �� ! �� and � :N ! Nsuch that jw(x)j = � (jv(�(x))j). A parsimonious reduction from w to v is a countingreduction �, � from w to v such that � is the identity function.A counting problem w is #P-hard if there are counting reductions from it to allproblems in #P. If in addition w is a member of #P, then we say that w is #P-complete.Proving that a counting problem is #P-hard is viewed as evidence that this problem istruly intractable. Actually, in complexity theory it is generally believed that #P-hardproblems are not members of the class FPH, the functional analog of the polynomial hier-archy PH. In particular, no #P-hard problem is known to belong to the class FPNP of allfunctions that are computable in polynomial time using NP oracles (cf. Johnson [Joh90,section 4.1]). Thus, to the extent of course that one can compare decision problems withcounting problems, a #P-completeness result suggests a higher level of intractability thanan NP-completeness result.



The following #P-complete problems will be of particular use to us in the sequel.Notice that the underlying decision problem for #3-SAT is NP-complete, while for theother two it is solvable in polynomial time. In fact, the decision problem for Positive2-SAT is trivial, since every positive 2-SAT formula is satis�able.#3-SAT [Val79b]Input: Set V of variables and Boolean formula F over V in conjunctive normal formwith exactly three literals in each clause.Output: Number of truth assignments for the variables in V that satisfy F .#POSITIVE 2-SAT (appeared in [Val79b] as #MONOTONE 2-SAT)Input: Set V of Boolean variables and Boolean formula F over V in conjunctive normalform such that each clause of F consists of exactly two positive literals.Output: Number of truth assignments for the variables in V that satisfy F .#PERFECT MATCHINGS [Val79a]Input: Bipartite graph G with 2n nodes.Output: Number of perfect matchings in G , i.e., sets of n edges such that no pair ofedges shares a common node.2.2 Equational TheoriesA signature F is a set of function symbols of designated arities. If F is a signature and Xis a set of variables, we let T (F ;X ) denote the set of all terms over the signature F and thevariables in X . We also write V (t) for the set of variables occurring in a term t. As usual,a ground term is a term without variables. A substitution is a mapping �:X �! T (F ;X )such that x� = x for all but �nitely many variables x. Thus, a substitution � can beidenti�ed with its restriction on the �nite set Dom(�) = fx 2 X j x� 6= xg, which is calledthe domain of �. A substitution � is ground if x� is a ground term for all x 2 Dom(�).Every substitution can be extended to an endomorphism on the algebra of terms.An equation is a pair of terms l = r. Each equation is viewed as an equational axiom,namely as the �rst-order sentence (8x1) : : : (8xm)(l = r) obtained from the equation byuniversal quanti�cation over all variables occurring in the terms l and r. If E is a setof equational axioms, then the equational theory Th(E) presented by E is the smallestcongruence relation over T (F ;X ) containing E and closed under substitutions, i.e., Th(E)is the smallest congruence containing all pairs l� = r�, where l = r is in E and � is asubstitution. By an abuse of terminology, we will often say �the equational theory E�instead of the correct �the equational theory Th(E) presented by E�. We write s =E t todenote that the pair (s; t) of terms is a member of Th(E).E-equality on terms can be extended to substitutions by setting � =E � if and only if(8x 2 X )(x� =E x�): If V is a set of variables and �; � are substitutions, we put � =VE �if and only if (8x 2 V )(x� =VE x�). We also consider the preorder �VE on substitutionsde�ned by the condition: � �VE � if and only if (9�)(�� =VE �). In turn, this preordergives rise to the following equivalence relation �VE on substitutions:� �VE � () � �VE � and � �VE �:Notice that, in general, � �VE � does not imply that � �VE �, and, by the same token,� �VE � does not imply that � =E �. It is easy to see, however, that these three relationscoincide on ground substitutions with the same domain.



In the sequel, we will be concerned with equational theories presented by �nite setsE whose axioms are among the following:Associativity A(f): f(x; f(y; z)) = f(f(x; y); z)Commutativity C(g): g(x; y) = g(y; x)Idempotency I(f): f(x; x) = xExistence of Unit U(f): f(x; 1) = xHomomorphism H(f , g, h): f(g(x; y)) = h(f(x); f(y))Endomorphism End(f , g): f(g(x; y)) = g(f(x); f(y))We will also consider AC1-Matching, which is the restriction of AC-matching to linearterms, and Set Matching , i.e., the special case of ACI-matching in which there is onlyone ACI-symbol and it occurs on the top of the matched terms.2.3 Counting Matching Problems in Equational TheoriesIn what follows, let s be a term, let V = V (s) be the set of variables of s, and let t bea ground term. An E-matcher of s and t is a substitution � such that s� =E t. If suchan E-matcher exists, then we say that the term s E-matches the ground term t. TheE-matching problem is the decision problem to determine, given a term s and a groundterm t, whether s E-matches t.A complete set of E-matchers of s and t is a set S of substitutions such that thefollowing hold: (1) each substitution � 2 S is an E-matcher of s and t, and, moreover,Dom(�) � V ; (2) for every E-matcher � of s and t, there is a substitution � 2 S suchthat � �VE s. We say that S is a complete set of minimal E-matchers of s and t if, inaddition, every two distinct members of S are �VE -incomparable.In general, it may be the case that s E-matches t, but there is no complete set ofminimal E-matchers of s and t. On the other hand, it is well known that if a completeset of minimal E-uni�ers of s and t exists, then it is unique up to �VE .Proposition 2.3 ([FH86]) Let s be a term, let t be a ground term, and assume that S1and S2 are two complete sets of minimal E-uni�ers of s and t. Then there is a one-to-one and onto mapping f :U1 ! U2 such that f(�) �VE � for every substitution � in U1,where V is the set of variables of s. As a result, all complete sets of minimal E-matchersof s and t are of the same cardinality.From now on, we assume that E is a set of equational axioms such that if s E-matches t, then there exists a complete set of minimal E-matchers of s and t. We let�CSME(s; t) denote the (unique up to �VE ) complete set of minimal E-matchers of sand t, if s E-matches t, or the empty set, otherwise.Siekmann and Szabó [SS82] initiated a study of equational theories based on thecardinalities of the sets �CSME(s; t). In particular, E-matching is said to be unitary iffor every term s and every ground term t we have that j�CSME(s; t)j � 1. E-matchingis said to be �nitary if for every term s and every ground term t the set �CSME(s; t) is�nite. It is well known that AC-matching is �nitary, but not unitary.One might contemplate studying �nitary equational theories by classifying them intoa hierarchy as follows: the �rst level of the hierarchy consists of all unitary theories,while the k-th level of it, k � 2, consists of all theories E such that for every term s and



every ground term t we have that j�CSME(s; t)j � k. This, however, turns out not to bemeaningful, because Book and Siekmann [BS86] showed that if E is a set of equationalaxioms such that E-matching is not unitary, then E-matching is unbounded , which meansthat for every natural number k � 2 there is a term s and a ground term t such thatj�CSME(s; t)j > k.If E is a set of equational axioms such that E-matching is �nitary, then we associatewith E the following counting problem:#E-MATCHINGInput: A term s and a ground term tOutput: Cardinality of the set �CSME(s; t).Our goal in this paper is to study the computational complexity of #E-Matchingproblems for �nitary equational theories E. In view of the aforementioned result by Bookand Siekmann's [BS86], this appears to be the only reasonable approach to analyzing�nitary theories according to the cardinalities of the sets �CSME(s; t). Notice that ifE-matching is unitary, then the complexity of #E-Matching is essentially the same asthe complexity of the decision problem for E-matching. In particular, if BR is the set ofequational axioms for Boolean rings, then #BR-Matching can be computed in polynomialtime using NP oracles (i.e., it belongs to the class FPNP), since BR-matching is unitaryand its decision problem is in NP (cf. Martin and Nipkow [MN89]).We investigate the computational complexity of the #E-Matching problem for sev-eral �nitary, non-unitary equational theories E and in each case we establish that #E-Matching is a #P-complete problem. A proof of #P-completeness has two distinct parts,namely one must �rst show that the problem at hand is indeed a member of the class#P and then establish that every problem in #P has a counting reduction to it. Weundertake each of these tasks separately in the next two sections.3 Membership of #E-Matching Problems in #PQuite often, membership of a counting problem in #P follows immediately from thede�nition of the problem. This is, for example, the case with most #P-complete problemsconsidered by Valiant [Val79a, Val79b], including #SAT, #3-SAT, #Positive 2-SAT, and#Perfect Matchings. In contrast, if E is an arbitrary �nitary equational theory, then it isnot at all obvious that the associated #E-Matching problem is a member of #P. Actually,as we will soon see, in order to prove that such problems are in #P we must re�ect onparticular properties of the underlying equational theory E.In the sequel, we will make systematic use of the description of #P given in De�ni-tion 2.1. Thus, for each #E-Matching problem considered here we must �nd a function wde�ned on pairs (s; t), where s is a term and t is a ground term, such that the two con-ditions of De�nition 2.1 are ful�lled. At �rst sight, a natural unambiguous choice for thewitness set w(s; t) appears to be the setw(s; t) = f[�]�VE j � is a member of a complete set of minimal E-matchers for s and tg;where [�]�VE is the equivalence class of the substitution � with respect to the congruence�VE . However, since the members of a witness set must be strings over some alphabet,this raises the question of how to represent �VE -equivalence classes by strings. It is clear



that if we take a string consisting of the entire equivalence class (by concatenating allits members), then we may not be able to ful�ll the second condition, because for manyequational theories E, including AC, some �VE -equivalence classes of matchers of s and tmay have exponentially manymembers (in the size of s and t). Thus, our only alternativeis to represent each �VE -equivalence class by a unique canonical representative of it andthen take as witness set the complete set of minimal E-matchers of s and t that are thecanonical representatives of their �VE -equivalence class. In what follows, we show that formany important equational theories it is possible to �nd canonical representatives suchthat both conditions of De�nition 2.1 are satis�ed. These canonical representatives willbe de�ned in a uniform way for the class of regular theories. For each speci�c theory E,however, we will have to use particular properties of E in order to establish that thecanonical representatives satisfy the desired conditions.An equational theory E is regular if for every axiom (l = r) 2 E we have V (l) = V (r).As Fages and Huet [FH86] put it, �in regular theories variables cannot disappear�. Allequational theories considered here are regular. In regular theories each matcher mustbe a ground substitution. Thus, as explained in 2.2, if � and � are E-matchers of theterms s and t, then (� �VE � () � �VE � () � =E �): Using this, one can easily derivethe following result, which appeared �rst in Fages and Huet [FH86, Proposition 4.1].Proposition 3.1 Let E be a regular equational theory, let s be a term, and let t be aground term such that s E-matches t. Then the following are true:(1) There exists a complete sets of minimal E-matchers of s and t.(2) A set S is a complete set of minimal E-matchers of s and t if and only if S is acomplete set of E-matchers of s and t such that no two distinct members of S are equalwith respect to =VE , where V is the set of variables of s.(3) A substitution � is a member of a complete set of minimal E-matchers of s and tif and only if � is an E-matcher of s and t.Let E be a regular equational theory and assume that for every pair of terms sand t such that s E-matches t we have selected a unique representative from each �VE -equivalence class of E-matchers of s and t, where V is the set of variables of s. If [�]�VE =[�]=VE is such an equivalence class, then we let �� denote its selected representative and wesay that �� is the canonical representative of [�]�VE . Once the canonical representativeshave been selected, we can de�ne a canonical witness function w� for #E-Matching suchthat the witness set w�(s; t) consists of the canonical representatives of all equivalenceclasses of E-matchers of s and t. By combining De�nition 2.1 with Proposition 3.1, weobtain the following useful su�cient criterion for membership in #P.Proposition 3.2 Let E be a regular equational theory and let w� be a canonical witnessfunction for #E-Matching such that the following conditions hold:Condition (1a). There is a polynomial-time algorithm to determine, given a term s,a ground term t, and a ground substitution �, whether � is an E-matcher of s and t.Condition (1b). There is a polynomial time algorithm to determine, given a term s, aground term t, and an E-matcher � of s and t, whether � is the canonical representativeof its �VE -equivalence class [�]�VE .Condition (2). There is a natural number k � 1 such that j��j � (jsj + jtj)k for allcanonical representatives �� in w�(s; t).Then the #E-Matching problem is a member of the class #P.



We now examine speci�c equational theories and for each of them we show that it ispossible to �nd canonical witness functions such that the above conditions are satis�ed.3.1 Verifying Conditions (1a) and (1b)Notice that Condition (1a) amounts to having a polynomial-time algorithm to deter-mine, given a term s, a ground term t, and a ground substitution �, whether s� =VE t.Thus, Condition (1a) is automatically satis�ed by every equational theory E for whichE-equality of terms (i.e., t1 ?=E t2) can be tested in polynomial time.Benanav, Kapur, and Narendran [BKN87] showed that AC-equality can be tested inpolynomial time by reducing this problem to the existence of a matching of given size inbipartite graphs. As pointed out in Kapur and Narendran [KN86], ACI-equality can alsobe tested in polynomial time by using the same algorithm and removing identical argu-ments of an idempotent function after �attening terms. It follows that Set-equality canbe checked in polynomial time as well. By removing units instead of identical argumentsin �attened terms, we can check ACU-equality in polynomial time. ACIU-equality can bechecked in polynomial time by combining ACI-equality testing with ACU-equality test-ing. Another modi�cation of the AC-equality method can be used to test for C-equalityin polynomial time. For this, instead of testing for the existence of a given size matching,we test for the existence of perfect matchings in a graph.A-equality can be tested in polynomial time by �rst reducing the terms to the right-associative form and then checking for syntactic equivalence. I-equality can be testedin polynomial time by �rst reducing each term to its I-normal form using the leftmostinnermost strategy and then checking the reduced terms in I-normal form for syntacticequivalence. The same approach works also for U-equality and, hence, can be extended toIU-equality. H-equality (assuming g 6= h) can be tested in polynomial time by a similarmethod with the leftmost outermost strategy. This extends also to ACH.We now focus on Condition (1b). We will �rst de�ne the canonical representatives ofthe equivalence classes [�]�VE for an arbitrary regular theory E and then show that foreach speci�c equational theory studied here there is a polynomial-time algorithm to �ndthe canonical representative �� of the class [�]�VE from a given member � of it.Recall that if E is a regular theory, s is a term, and t is a ground term, then everyE-matcher of s and t is a ground substitution. If we have a total precedence � on thesignature F , then the lexicographic path ordering �lpo induced by it is a well-foundedordering that is total on ground terms [Der87]. Thus, we can compare two E-matchers� = [x1 7! t1; : : : ; xn 7! tn] and �0 = [x1 7! t01; : : : ; xn 7! t0n] by comparing themlexicographically through the terms ti and t0i, provided the sequence of variables x1,. . . , xn is �xed. Hence, there exists a well-ordering relation �lexlpo on E-matchers andso we can choose the �lexlpo-smallest E-matcher in each equivalence class as its canonicalrepresentative. The above de�nition of canonical representatives is uniform for all regulartheories. What turns out, however, to be di�erent for each speci�c theory consideredhere is the algorithm for computing the canonical representatives in polynomial time.For certain equational theories E it is possible to orient appropriately their axiomsand obtain a convergent rewrite system, i.e., a rewrite system that is both con�uent andterminating . More speci�cally, if we introduce the rewrite rulesA : f(f(x; y); z) ! f(x; f(y; z)) I : f(x; x) ! xH : f(g(x; y)) ! h(f(x); f(y)) U : f(x; 1) ! x;



then the corresponding rewrite systems for A, I, U, IU, and H are convergent. Thus,if E is one of A, I, U, IU, or H, and the substitution � = [x1 7! t1; : : : ; xn 7! tn] isan E-matcher of the terms s and t, then for each term ti we can �nd its normal formti#R, where R is the corresponding convergent rewrite system. This normal form exists,because R is terminating, and is unique, because R is con�uent. Thus, the substitution[x1 7! t1#R; : : : ; xn 7! tn#R] coincides with the canonical representative of [�]�VE .The algorithms for determining E-equality for A, I, U, IU, and H can be also usedto �nd the canonical representatives of ground substitutions in polynomial time. Theleftmost innermost strategy is complete for I, U, and IU, since we cannot create newredexes below a position at which we apply a rewrite rule and each application of arewrite rule eliminates one occurrence of an E-symbol. The leftmost outermost strategyis complete for H, provided g 6= h, since each application of the rewrite rule eliminates oneoccurrence of the symbol g. Moreover, in each case the number of steps in the derivationis linear in the size of the input substitution.The above method does not work for AC or for C. For the case of AC, we use thefollowing polynomial-time algorithm to �nd canonical representatives. Given an AC-matcher � = [x1 7! t1; : : : ; xn 7! tn], transform each term ti to its right-associative formand �atten it, obtaining this way the �attened term �ti. The �attening is done fromleft to right, i.e., if f is an AC-symbol, then a subterm f(s1; f(s2; f(: : : f(sk�1; sk)))) inthe right-associative form is �attened to f(s1; : : : ; sk). After this, for each subterm of �tiheaded by an AC-symbol we sort the immediate subterms in a bottom-up way. Thismeans that a �attened subterm f(s1; : : : ; sk) is permuted to f(s�(1); : : : ; s�(k)), wheres�(k) �lpo s�(k�1) �lpo � � � �lpo s�(2) �lpo s�(1). This way, we obtain the �attenedand sorted term t�i , 1 � i � n, and, hence, the representative ��. The same method,without transformation to the right-associative form and without �attening, works for C.Transformation to the right-associative form is polynomial, �attening is polynomial (cf.[BKN87, KN92a]), sorting of terms is polynomial, the lexicographic path ordering iscomputed in polynomial time [Sny93], and the number of AC-symbols (C-symbols) islimited by the size of the input �. Thus, the algorithm runs in polynomial time.The AC extensions of the rewrite systems I, U, IU, and H are con�uent and ter-minating modulo AC (although the termination must be proved by an AC-compatibleordering). Thus, we can proceed hierarchically. First, we rewrite an E-matcher � tothe AC-normal form �+ with respect to the con�uent and terminating rewrite system Rmodulo AC. The system R corresponds to one for I, U, IU, or H. Then the E-matcher �+is transformed to �� using the previously described method for AC. This hierarchicalmethod is correct, since rewriting modulo AC means rewriting AC-equivalence classes.Thus, we have R-equivalence classes and within them AC-equivalence classes.3.2 Verifying Condition (2)An equational theory E is permutative if for each axiom (l = r) 2 E the multisets ofsymbols in l and r are equal. The theories A, C, AC are permutative, whereas if a theorycontains idempotency I, unit U, homomorphism H, or endomorphism End as one of itsaxioms, then it is not permutative. If E is a permutative theory and s, t are terms suchthat s =E t, then jsj = jtj. It follows that if E is a permutative theory, s is a term, and tis a ground term such that s E-matches t, then for every E-matcher � of s and t we havethat j�j � jtj, since s� =E t. Thus, Condition (2) holds for every permutative theory. By



combining the above remarks with our �ndings in the preceding Section 3.1, we obtainour �rst result establishing membership of several #E-Matching problems in #P.Theorem 3.3 Let E be one of the equational theories A, C, AC. Then the #E-Matchingproblem is in the class #P.In order to analyze non-permutative theories, we turn again to the rewrite systemsused in the previous Section 3.1. We say that an equational theory E is simplifying iffor every axiom (l = r) 2 E, the term r is a proper subterm of the term l. By the sametoken, we say that a rewrite system R is simplifying if for every rewrite rule (l ! r) 2 R,the term r is a proper subterm of the term l. If E and Q are two equational theories, thenE is Q-simplifying if for every axiom (l = r) 2 E � Q there exists a proper subterm l0of l, such that l0 =Q r. A rewrite system R is Q-simplifying if for every rewrite rule(l! r) 2 R there exists a proper subterm l0 of l such that l0 =Q r.Clearly, the theories I, U, and IU are simplifying, while the theories ACI, ACU, andACIU are AC-simplifying. It is also clear that if a rewrite step l �!R r is carried outin a simplifying rewrite system R, then jrj < jlj. Using these facts, it is not hard toverify that Condition (2) holds for each of the equational theories I, U, IU, and their ACextensions. This completes the proof of our second result about membership in #P.Theorem 3.4 Let E be one of the equational theories I, U, IU, Set, ACI, ACU, andACIU. Then the #E-Matching problem is in the class #P.Finally, we consider the homomorphism axiom H and its AC extension. Although thehomomorphism rewrite rule f(g(x; y)) ! h(f(x); f(y)) increases the size of terms, eachapplication of it eliminates one occurrence of the symbol g. This makes it possible toderive a bound on the size of canonical representatives, namely one can easily show thatif � is an H-matcher of s and t, then j��j � 2jtj. Moreover, a similar bound can beobtained for ACH-matchers. Thus, we have established the following result.Theorem 3.5 #H-Matching and #ACH-Matching are both in the class #P.The rewrite rule f(g(x; y)) ! g(f(x); f(y)) for Endomorphism does not eliminate theoccurrence of g. It is an open problem whether #End-Matching is in the class #P.4 #P-Hardness of #E-Matching ProblemsIn this section, we derive lower bounds for the complexity of #E-Matching problems.Theorem 4.1 Let E be one of the equational theories A, C, AC. Then #E-Matching isa #P-complete problem.Proof: (Sketch) As shown in Theorem 3.3, each of these counting problems is a mem-ber of #P. Benanav, Kapur, and Narendran [BKN87] showed that A-matching and C-matching are NP-hard decision problems by reducing 3-SAT to these problems. Thesereductions turn out to be parsimonious and, thus, #A-Matching and #C-Matching are#P-hard problems. Benanav, Kapur, and Narendran [BKN87] also showed that AC-matching is an NP-hard decision problem by reducing Monotone 3-SAT to AC-matching,



where Monotone 3-SAT is the satis�ability decision problem for 3CNF Boolean formulasin which each clause consists either of only positive literals or of only negative literals.The reduction given in [BKN87] is not parsimonious. We show that #AC-Matching is a#P-hard problem by producing a parsimonious reduction of #Positive 2-SAT to it.Consider an instance of #Positive 2-SAT with variables X = fx11; x12; : : : ; xn1; xn2gand clauses C = fc1; : : : ; cng, where ci = xi1_xi2. Let f be an AC-symbol, let g be a n-ary function symbol that is neither associative nor commutative, and let 1 and 0 be twoconstant symbols that will be used to simulate the truth or falsity of a Boolean variable.We also let Y = fy1; : : : ; yng be a set of new variables, one for each clause, such thatX \Y = ;. With each clause ci = xi1 _ xi2, we associate the term f(xi1; xi2; yi) and theground term f(1; 1; 0). We let s denote the term g(f(x11; x12; y1); : : : ; f(xn1; xn2; yn))and let t denote the ground term g(f(1; 1; 0); : : : ; f(1; 1; 0)). In the full paper we showthat the number of truth assignments satisfying c1 ^ � � � ^ cn is equal to the cardinalityof the set �CSMAC(s; t). 2Recall that AC1-matching is the restriction of AC-matching to terms in which eachvariable occurs at most once. Benanav, Kapur, and Narendran [BKN87] showed thatAC1-matching can be decided in polynomial time. In contrast, we show next that thecounting problem associated with AC1-matching is harder than its decision problemTheorem 4.2 #AC1-Matching is a #P-complete problem.Proof: (Sketch) Membership of #AC1-matching in #P is a direct consequence of mem-bership in #P of #AC-matching. We will show that #AC1-matching is #P-hard byproducing a parsimonious reduction from #Perfect Matchings to #AC1-Matching.Suppose that we are given a bipartite graph G = (S; T;E) with 2n nodes, whereS = fs1; : : : ; sng and T = ft1; : : : ; tng is the partition of the nodes. Let a be a constantsymbol, f a unary function symbol, g a (n+1)-ary function symbol that is neither as-sociative nor commutative, and h an AC-symbol. We also consider the sets of variablesX = fxij j i; j = 1; : : : ; ng and Y = fy1; : : : ; yng, where X \ Y = ;.With each node si in the set S we associate the term s�i = g(s1i ; : : : ; sni ; sn+1i ), wheresji = 8<: f(xii) if 1 � i; j � n and i = jxij if 1 � i; j � n and i 6= jyi if 1 � i � n and j = n + 1Intuitively, we view the nodes s1; : : : ; sn in S as vectors of a �matrix�:s�1 = g(f(x11); x12; x13; : : : ; x1n; y1)s�2 = g(x21; f(x22); x23; : : : ; x2n; y2)...s�n = g(xn1; xn2; : : : ; xn;n�1; f(xnn); yn)in which the subterms f(xii) occupy the main diagonal, while the variables y1; : : : ; ynare along the last column. With each node ti in T we associate the ground term t�i =g(t1i ; : : : ; tni ; tn+1i ), wheretji = � f(a) if (sj ; ti) 2 Ea otherwise



Thus, we view the nodes t1; : : : ; tn in T as vectors of another �matrix"t�1 = g(t11; : : : ; tn1 ; f(a))t�2 = g(t12; : : : ; tn2 ; f2(a))...t�n = g(t1n; : : : ; tnn; fn(a)):The intuition behind the second matrix is that it represents the adjacency matrix(extended by the column of fk(a)'s) of the edge relation E of the graph G, where theterms f(a) and a are used to simulate the values 1 and 0, respectively.In the full paper we show that for each i and j, 1 � i; j � n, there is an edge(si; tj) 2 E if and only if the term s�i AC1-matches the ground term t�j . As a result, theabove is a parsimonious reduction of #Perfect Matchings to #AC1-Matching. 2We obtain next lower bounds for #E-Matching, where E is idempotency I, or unit U,or one of the AC extensions of I and U. For this, we need to consider yet another countingproblem, whose #P-completeness was proved in Creignou and Hermann [CH93].#1-in-3-SAT [CH93]Input: Set V of variables and Boolean formula F over V in conjunctive normal formwith exactly three literals in each clause.Output: Number of truth assignments for the variables in V such that they make trueexactly one literal in each clause.A parsimonious reduction from #3-SAT to #1-in-3-SAT is obtained by replacingeach 3-clause ci = li1 _ li2 _ li3 by the clauses ci1 = li1 _ xi2 _ xi3, ci2 = �li2 _ xi2 _ yi2,ci3 = �li3 _ xi3 _ yi3, and ci4 = xi3 _ yi2 _ zi.Theorem 4.3 Let E be one of the equational theories I, U, IU, Set, ACI, ACU, andACIU. Then #E-Matching is a #P-complete problem.Proof: (Hint) By Theorem 3.4, each of these counting problems is a member of #P.The #P-hardness of #I-Matching, #U-Matching, and #ACU-Matching is proved byproducing parsimonious reductions from #1-in-3-SAT. The reduction to #U-Matchingand to #ACU-Matching is an adaptation of the NP-hardness reduction of U-uni�cationand ACU-uni�cation, given in [TA87]. The #P-hardness of IU-Matching and #ACIU-Matching is established by exhibiting parsimonious reductions from Positive 2-SAT toeach of these problems. Finally, the reduction from 3-SAT to Set-matching in [KN86] islinear and, hence, weakly parsimonious. Thus, #ACI-Matching is #P-hard as well. 2Finally, we obtain #P-hardness results for the counting problems associated withthe AC extensions of homomorphism H and Endomorphism End. For this, we produceparsimonious reductions from #Positive 2-SAT. Details are given in the full appear.Theorem 4.4 #ACH-Matching is a #P-complete problem and #ACEnd-Matching is a#P-hard problem.



5 Concluding RemarksIn this paper we introduced and studied the class of #E-Matching problems, which are thecounting problems that ask for the cardinalities of complete sets of minimal E-matchersin some �nitary equational theory E. Using the theory of #P-completeness, we identi�edthe complexity of #E-Matching problems for several equational theories E. The tablebelow summarizes our �ndings and compares the complexity of counting problems inequational matching with the complexity of the corresponding decision problems.Theory Decision Counting Theory Decision CountingA NP-complete #P-complete I NP-complete #P-completeC NP-complete #P-complete U NP-complete #P-completeAC NP-complete #P-complete IU #P-completeAC1 P #P-complete ACI NP-complete #P-completeACH #P-complete Set NP-complete #P-completeACEnd #P-hard ACU NP-complete #P-completeBR NP-complete FPNP ACIU #P-completeAlthough in most cases the NP-completeness of the decision problem is accompaniedby the #P-completeness of the associated counting problem, it should be emphasizedthat in general there is no relation between the complexities of these two problems, asmanifested by the results about AC1 and BR.The work presented here suggests that a similar investigation should be carried outfor #E-Uni�cation problems, i.e., counting problems that ask for the cardinalities of thecomplete sets of minimal E-uni�ers in some �nitary equational theory E. Although ourresults imply that several #E-uni�cation problems are #P-hard, we already know thatthere are equational theories E, such as AC, for which #E-Uni�cation is not a member of#P. Indeed, Domenjoud [Dom92] found AC-uni�cation problems with n variables whosecomplete set of minimal AC-uni�ers has O(22n) elements. Since a counting problemin #P takes values that are bounded by a single exponential in the size of the input,it follows that #AC-Uni�cation is not in #P. It is an interesting open problem to an-alyze the computational complexity of #AC-Uni�cation and to determine whether it iscomplete for some higher counting complexity class, such as #EXPTIME or #PSPACE.Results along these lines will delineate the computational di�erence between matchingand uni�cation in a precise manner and will con�rm the intuition that uni�cation isharder than matching.References[BKN87] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems.Journal of Symbolic Computation, 3:203�216, 1987.[BS86] R. Book and J. Siekmann. On uni�cation: Equational theories are not bounded.Journal of Symbolic Computation, 2:317�324, 1986.[CH93] N. Creignou and M. Hermann. On #P-completeness of some counting prob-lems. Research report 93-R-188, Centre de Recherche en Informatique deNancy, 1993.
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