The Complexity of Counting Problems
in Equational Matching

Miki Hermann!+ Phokion G. Kolaitis?1

L CRIN (CNRS) and INRIA-Lorraine, BP 239, 54506 Vandoceuvre-lés-Nancy, France.

(e-mail: hermann@loria.fr)

? Computer and Information Sciences, University of California, Santa Cruz, CA 95064,
U.S.A. (e-mail: kolaitis@cse.ucsc.edu)

Abstract

We introduce a class of counting problems that arise naturally in equational
matching and study their computational complexity. If E is an equational theory,
then #E-Matching is the problem of counting the number of complete minimal E-
matchers of two given terms. #E-Matching is a well-defined algorithmic problem
for every finitary equational theory. Moreover, it captures more accurately the com-
putational difficulties associated with finding complete sets of minimal E-matchers
than the corresponding decision problem for E-matching does.

In 1979, L. Valiant developed a computational model for measuring the complex-
ity of counting problems and demonstrated the existence of #P-complete problems,
i.e., counting problems that are complete for counting non-deterministic Turing
machines of polynomial-time complexity. Using the theory of #P-completeness, we
analyze the computational complexity of #E-matching for several important equa-
tional theories E. We establish that if E is one of the equational theories A, C, AC,
I, U, ACI, Set, ACU, or ACIU, then #E-Matching is a #P-complete problem. We
also show that there are equational theories, such as the restriction of AC-matching
to linear terms, for which the underlying decision matching problem is solvable in
polynomial time, while the associated counting matching problem is #P-complete.

1 Introduction and Summary of Results

Since the pioneering work of Plotkin [Plo72] over twenty years ago, the study of match-
ing and unification modulo a fixed equational theory E has occupied a central place in
automated deduction and has found numerous applications to several other branches of
computer science, including logic programming, program verification, and database query
languages. Researchers in this area have investigated a variety of equational theories and
have examined in depth certain algorithmic aspects of matching and unification modulo
an equational theory E.

*Partially supported by Institut National Polytechnique de Lorraine grant 910 0146 R1.

tPart of the research reported here was carried out while this author was visiting CRIN & INRIA-
Lorraine supported by the University of Nancy 1 and INRIA-Lorraine. Research of this author is also
supported by a 1993 John Simon Guggenheim Fellowship and by NSF Grant CCR-9108631.

There are two main algorithmic problems arising in the study of E-matching and
E-unification. The first is a decision problem, namely, given two terms s and ¢, decide
whether or not there is an E-matcher (or an E-unifier) of s and ¢. The second problem
is to design matching and unification algorithms such that, given two terms s and ¢, the
algorithm terminates and returns a set which is empty, if s and ¢ are not E-matchable
(respectively, not E-unifiable), or, otherwise, is a complete set of E-matchers of s and ¢
(respectively, a complete set of E-unifiers). The second problem is, of course, meaningful
only for theories for which the first problem is solvable and which, moreover, are finitary,
i.e., for every term s and ¢ there is a finite set of complete E-matchers (E-unifiers). For
such theories, algorithms for the second problem should preferably return a complete set
of minimal E-matchers (minimal E-unifiers).

Benanav, Kapur, Narendran [BKN87] and Kapur, Narendran [KN86] established that
the decision problem for E-matching is NP-complete for many important equational
theories E, including associativity A, commutativity C, associativity-commutativity AC,
and extensions of AC with idempotency I or existence of unit U. Benanav, Kapur, and
Narendran [BKN87] discovered also one exception to these NP-completeness phenomena,
namely they proved that the decision problem for AC1-matching is solvable in polynomial
time, where AC1 is AC restricted to linear terms, i.e., every variable occurs at most once
in a term being matched. Concerning E-unification, Kapur and Narendran [KN92a]
showed that the decision problem for AC-unification is NP-complete, which came as a
surprise, since the prevailing intuition is that AC-unification is harder than AC-matching
and, thus, this decision problem ought to have complexity higher than NP.

Although it is undoubtedly useful to pinpoint the computational complexity of the
underlying decision problem, in practice 1t is far more important to analyze the complex-
ity of E-matching and E-unification algorithms that return complete sets of (minimal)
E-matchers or (minimal) E-unifiers. So far, relatively little progress has been made in
deriving tight upper and lower bounds for the complexity of such algorithms. A notable
exception is the case of AC-unification for which Kapur and Narendran [KN92b] found
an algorithm that runs in doubly exponential time and returns a complete set of AC-
unifiers, albeit not necessarily a minimal one. This upper bound is quite tight, since
Domenjoud [Dom92] produced a set of AC-unification problems with n variables whose
complete set of minimal AC-unifiers has O(22n) elements.

Assume that E is some finitary equational theory and A is an algorithm such that,
given two terms s and ¢ as input, it returns a complete set of minimal E-matchers of s
and t, if s and ¢t can be matched. In this case, the algorithm A can also be used to
compute the cardinality of a complete set of minimal E-matchers. Thus, we are able
to solve at the same time a counting problem associated with E-matching, namely the
problem of counting the number of complete minimal E-matchers. Notice that this
problem is always well defined, since it is known (cf. [FH86]) that for every two terms s
and t all sets of complete minimal E-matchers of s and ¢ are of the same cardinality.
Our goal in this paper is to initiate a systematic study of the computational complexity
of counting problems in equational matching. We believe that these counting problems
are quite natural and that they deserve to be studied in their own right. Moreover,
we feel that counting problems reflect more accurately the computational difficulties of
equational matching than the corresponding decision problems do.

Counting problems arise naturally in many areas of computer science and combinato-
rial mathematics. In 1979, Valiant [Val79a] developed a computational model for classi-

fying the complexity of counting problems and introduced the class #P of functions that
are computed by a counting Turing machine in polynomial time, 1.e., a non-deterministic
Turing machine that runs in polynomial time and has an auxiliary output device on which
it prints in binary notation the number of its accepting computations on a given input.
Valiant [Val79a] showed that the class #P has complete problems under certain restricted
type of reductions that either preserve the number of solutions (parsimonious reductions)
or, at least, make it possible to compute the number of solutions of one problem from
the number of solutions of another problem (counting reductions). Quite often, NP-
completeness proofs for decision problems can be translated to #P-completeness proofs
for the corresponding counting problems by observing that the polynomial transformation
in the proof of NP-hardness preserves the number of solutions. In particular, this 1s the
case for #3-SAT, the prototypical #P-complete problem, which asks for the number of
satisfying assignments of a 3CNF Boolean formula. On the other hand, Valiant [Val79a]
demonstrated the existence of polynomial-time decision problems, such as perfect match-
ing in bipartite graphs, whose associated counting problem is #P-complete. Several other
problems were subsequently shown to exhibit this behavior in Valiant [Val79b].

In this paper, we apply the theory of #P-completeness to the study of counting prob-
lems in equational matching. If E is a finitary equational theory, then the #E-Matching
Problem 1s the problem of computing the cardinality of a complete set of minimal E-
matchers of two given terms s and . We examine several important equational the-
ories E and first show that their #FE-Matching problem is a member of the class #P.
Usually, membership of a counting problem in #P follows more or less directly from the
definition of the problem. This, however, turns out not to be the case with counting
problems in equational matching. In fact, proving that a particular #E-Matching prob-
lem is in #P often requires extensive use of different syntactic and structural properties
of the underlying equational theory E. After deriving upper bounds for the complexity
of counting problems in equational matching, we obtain tight lower bounds and, thus,
establish that #E-Matching is a #P-complete problem for several equational theories E.
In particular, we show the #P-completeness of #A-Matching, #C-Matching, and #AC-
Matching. Similar #P-completeness results are obtained for the equational theories of
idempotency I, existence of unit U, their AC extensions, and the restriction of ACI to
Set matching. We also examine AC1-matching, the restriction of AC-matching to linear
terms and establish that #AC1-Matching is #P-complete. This is achieved by show-
ing that the problem of counting the number of perfect matchings in bipartite graphs
can be reduced in a parsimonious way to #ACI1-Matching. Since ACIl-matching has
a polynomial-time decision problem (cf. [BKN8&T7]), we have a new manifestation of the
phenomenon that a counting problem can be harder than its associated decision problem.

The results reported here on the one hand give a rather complete picture of the
complexity of counting problems in equational matching and on the other yield a new
family of #P-complete problems of different character than the counting problems studied
thus far by researchers in computational complexity.

2 Counting Problems in Equational Matching

In this section, we will define the basic concepts and introduce the family of counting
problem arising in equational matching. We also present here a minimum amount of the
necessary background material from computational complexity and unification.

2.1 Counting Problems and the Class #P

A counting Turing machine is a non-deterministic Turing machine equipped with an
auxiliary output device on which it prints in binary notation the number of its accepting
computationson a given input. A counting Turing machine has time complexity t(n) if the
longest accepting computation of the machine over all inputs of size n is at most ¢(n). By
varying the functions #(n), we obtain different complexity classes of counting functions.
Thus, #P is the class of functions that are computable by counting Turing machines
of polynomial-time complexity. Similarly, #EXPTIME is the class of functions that
are computable by counting Turing machines of exponential-time complexity. Counting
Turing machines and the complexity class #P were introduced and studied in depth by
Valiant [Val79a, Val79b]. Here, we will work with a slightly different, but essentially
equivalent, description of the class #P that appears in Kozen [Koz92].

Assume that ¥ and T' are nonempty alphabets and let w: ¥* — P(I'*) be a function
from the set ¥* of strings over X to the power set P(I'") of T*. If z is a string in *, then
we refer to w(z) as the witness set for x and to the elements of w(xz) as witnesses for x.
Every such witness function w can be identified with the following counting problem w:
given a string « in ¥*, find the number of witnesses for # in the set w(z). In what follows,
|| is the length of a string #, and |S| is the cardinality of a set S.

Definition 2.1 ([Koz92]) The class #P is the class of counting problems w such that:
(1) There is a polynomial-time algorithm to determine, for given strings = and y, if
y € w(z);
(2) There exists a natural number & > 1 (which can depend on the counting prob-
lem w) such that |y| < |2|" for all y € w(z).

A typical member of #P is the counting problem #SAT: given a string & encoding
a Boolean formula, find the number of truth assignment satisfying z. In this case, the
witness set w(x) consists of all truth assignments (encoded as strings) satisfying x.

Counting problems relate to each other via counting reductions and parsimonious re-
ductions, which are stronger than the polynomial-time reductions between NP-problems.

Definition 2.2 Let w:X* — P(T™) and v: II* — P(A*) be two counting problems.

A polynomial many-one counting (or weakly parsimonious) reduction from w to v
consists of a pair of polynomial-time computable functions ¢: %* — II* and : N — N
such that |w(z)| = 7(Ju(e(x))]). A parsimonious reduction from w to v is a counting
reduction o, 7 from w to v such that 7 is the identity function.

A counting problem w 1s #P-hard if there are counting reductions from it to all
problems in #P. If in addition w is a member of #P, then we say that w is #P-complete.

Proving that a counting problem is #P-hard is viewed as evidence that this problem is
truly intractable. Actually, in complexity theory it is generally believed that #P-hard
problems are not members of the class FPH, the functional analog of the polynomial hier-
archy PH. In particular, no #P-hard problem is known to belong to the class FPNY of all
functions that are computable in polynomial time using NP oracles (cf. Johnson [Joh90,
section 4.1]). Thus, to the extent of course that one can compare decision problems with
counting problems, a #P-completeness result suggests a higher level of intractability than
an NP-completeness result.

The following #P-complete problems will be of particular use to us in the sequel.
Notice that the underlying decision problem for #3-SAT i1s NP-complete, while for the
other two it is solvable in polynomial time. In fact, the decision problem for Positive
2-SAT is trivial, since every positive 2-SAT formula is satisfiable.

#3-SAT [Val79b]

Input: Set V of variables and Boolean formula F' over V in conjunctive normal form
with exactly three literals in each clause.

Output: Number of truth assignments for the variables in V' that satisfy F.

#POSITIVE 2-SAT (appeared in [Val79b] as #MONOTONE 2-SAT)

Input: Set V of Boolean variables and Boolean formula F' over V' in conjunctive normal
form such that each clause of F' consists of exactly two positive literals.

Output: Number of truth assignments for the variables in V' that satisfy F.

#PERFECT MATCHINGS [Val79a]

Input: Bipartite graph G with 2n nodes.

Output: Number of perfect matchings in G | i.e., sets of n edges such that no pair of
edges shares a common node.

2.2 Equational Theories

A signature F is a set of function symbols of designated arities. If F is a signature and X'
is a set of variables, we let 7 (F, X') denote the set of all terms over the signature F and the
variables in X'. We also write V (¢) for the set of variables occurring in a term ¢. As usual,
a ground term is a term without variables. A substitution is a mapping p: X — T (F, X)
such that zp = z for all but finitely many variables z. Thus, a substitution p can be
identified with its restriction on the finite set Dom(p) = {# € X | xp # «}, which is called
the domain of p. A substitution p is ground if xp is a ground term for all z € Dom(p).
Every substitution can be extended to an endomorphism on the algebra of terms.

An equation is a pair of terms | = r. Each equation 1s viewed as an equational axiom,
namely as the first-order sentence (Va1)...(Vap,)(l =) obtained from the equation by
universal quantification over all variables occurring in the terms ! and ». If E is a set
of equational axioms, then the equational theory Th(E) presented by E is the smallest
congruence relation over 7 (F, X') containing E and closed under substitutions, i.e., Th(E)
is the smallest congruence containing all pairs Ip = rp, where [= r is in E and p is a
substitution. By an abuse of terminology, we will often say “the equational theory E”
instead of the correct “the equational theory Th(E) presented by E”. We write s =g ¢ to
denote that the pair (s,?) of terms is a member of Th(E).

E-equality on terms can be extended to substitutions by setting p =g o if and only if
(Vz € X)(zp =g z0). If V is a set of variables and p, o are substitutions, we put p =% o
if and only if (V& € V)(zp =¥ zo). We also consider the preorder <}, on substitutions
defined by the condition: o <}, p if and only if (In)(en =k p). In turn, this preorder
gives rise to the following equivalence relation =}, on substitutions:

p=h o = p<po and o<y p.
Notice that, in general, p gg o does not imply that p Eg o, and, by the same token,
p =y, o does not imply that p =g o. It is easy to see, however, that these three relations
coincide on ground substitutions with the same domain.

In the sequel, we will be concerned with equational theories presented by finite sets
E whose axioms are among the following:

Associativity A(hH): fla, fly, 2) = f(f(z,y), 2)
Commutativity Clg): gz, y) = gy, x)
Idempotency I(f): fle o) =«

EBxistence of Unit (H: fle,) =«
Homomorphism H(f, g, h): flg(z,y)) = h(f(2), f(y)
Endomorphism End(f, 9): flo(x,y) = g(f(2), f(y)

We will also consider AC1-Matching, which is the restriction of AC-matching to linear
terms, and Set Matching, i.e., the special case of ACI-matching in which there is only
one ACI-symbol and it occurs on the top of the matched terms.

2.3 Counting Matching Problems in Equational Theories

In what follows, let s be a term, let V' = V(s) be the set of variables of s, and let ¢ be
a ground term. An E-matcher of s and t 1s a substitution p such that sp =g ¢. If such
an E-matcher exists, then we say that the term s E-matches the ground term ¢. The
E-matching problem is the decision problem to determine, given a term s and a ground
term ¢, whether s E-matches t.

A complete set of E-matchers of s and t is a set S of substitutions such that the
following hold: (1) each substitution p € S is an E-matcher of s and ¢, and, moreover,
Dom(p) C V; (2) for every E-matcher ¢ of s and ¢, there is a substitution p € S such
that p <% s. We say that S is a complete set of minimal E-matchers of s and t if, in
addition, every two distinct members of S are <} -incomparable.

In general, it may be the case that s E-matches ¢, but there is no complete set of
minimal F-matchers of s and . On the other hand, it is well known that if a complete

set of minimal E-unifiers of s and ¢ exists, then it is unique up to =.

Proposition 2.3 ([FH86]) Let s be a term, let t be a ground term, and assume that Sy
and Sy are two complete sets of minimal E-unifiers of s and t. Then there is a one-to-
one and onto mapping f:U; — Us such that f(p) =% p for every substitution p in Uy,
where V' is the set of variables of s. As a result, all complete sets of minimal E-matchers
of s and t are of the same cardinality.

From now on, we assume that E is a set of equational axioms such that if s E-
matches ¢, then there exists a complete set of minimal E-matchers of s and . We let
pCSMg(s,t) denote the (unique up to =}) complete set of minimal E-matchers of s
and t, if s E-matches ¢, or the empty set, otherwise.

Siekmann and Szabd [SS82] initiated a study of equational theories based on the
cardinalities of the sets uCSMg(s,). In particular, E-matching is said to be unitary if
for every term s and every ground term ¢ we have that |uCSMEg(s,?)| < 1. E-matching
is said to be finitary if for every term s and every ground term t the set uCSMg(s, 1) is
finite. It is well known that AC-matching is finitary, but not unitary.

One might contemplate studying finitary equational theories by classifying them into
a hierarchy as follows: the first level of the hierarchy consists of all unitary theories,
while the k-th level of it, & > 2, consists of all theories E such that for every term s and

every ground term ¢ we have that |CSMg(s,)| < k. This, however, turns out not to be
meaningful, because Book and Siekmann [BS86] showed that if E is a set of equational
axioms such that E-matching is not unitary, then E-matching is unbounded, which means
that for every natural number k& > 2 there is a term s and a ground term ¢ such that
|pCSMg(s,t)| > k.

If E 1s a set of equational axioms such that E-matching is finitary, then we associate
with E the following counting problem:

#E-MATCHING
Input: A term s and a ground term ¢
Output: Cardinality of the set uCSMg(s,).

Our goal in this paper is to study the computational complexity of #E-Matching
problems for finitary equational theories E. In view of the aforementioned result by Book
and Siekmann’s [BS86], this appears to be the only reasonable approach to analyzing
finitary theories according to the cardinalities of the sets uCSMg(s,t). Notice that if
E-matching is unitary, then the complexity of #E-Matching is essentially the same as
the complexity of the decision problem for E-matching. In particular, if BR is the set of
equational axioms for Boolean rings, then #BR-Matching can be computed in polynomial
time using NP oracles (i.e., it belongs to the class FPNP), since BR-matching is unitary
and its decision problem is in NP (cf. Martin and Nipkow [MIN89]).

We investigate the computational complexity of the #E-Matching problem for sev-
eral finitary, non-unitary equational theories E and in each case we establish that #E-
Matching is a #P-complete problem. A proof of #P-completeness has two distinct parts,
namely one must first show that the problem at hand 1s indeed a member of the class
#P and then establish that every problem in #P has a counting reduction to it. We
undertake each of these tasks separately in the next two sections.

3 Membership of #E-Matching Problems in #P

Quite often, membership of a counting problem in #P follows immediately from the
definition of the problem. This is, for example, the case with most #P-complete problems
considered by Valiant [Val79a, Val79b], including #SAT, #3-SAT, #Positive 2-SAT, and
#Perfect Matchings. In contrast, if E is an arbitrary finitary equational theory, then it is
not at all obvious that the associated #E-Matching problem is a member of #P. Actually,
as we will soon see, in order to prove that such problems are in #P we must reflect on
particular properties of the underlying equational theory E.

In the sequel, we will make systematic use of the description of #P given in Defini-
tion 2.1. Thus, for each #E-Matching problem considered here we must find a function w
defined on pairs (s, %), where s is a term and ¢ is a ground term, such that the two con-
ditions of Definition 2.1 are fulfilled. At first sight, a natural unambiguous choice for the
witness set w(s,t) appears to be the set

w(s,t) = {[p]Eg | p is a member of a complete set of minimal E-matchers for s and ¢},

where [p]Eg is the equivalence class of the substitution p with respect to the congruence

=Y. However, since the members of a witness set must be strings over some alphabet,
this raises the question of how to represent =¥ -equivalence classes by strings. It is clear

that if we take a string consisting of the entire equivalence class (by concatenating all
its members), then we may not be able to fulfill the second condition, because for many
equational theories E, including AC, some =} -equivalence classes of matchers of s and ¢
may have exponentially many members (in the size of s and t). Thus, our only alternative
is to represent each Eg—equivalence class by a unique canonical representative of it and
then take as witness set the complete set of minimal F-matchers of s and ¢ that are the
canonical representatives of their =} -equivalence class. In what follows, we show that for
many important equational theories it is possible to find canonical representatives such
that both conditions of Definition 2.1 are satisfied. These canonical representatives will
be defined in a uniform way for the class of regular theories. For each specific theory E,
however, we will have to use particular properties of E in order to establish that the
canonical representatives satisfy the desired conditions.

An equational theory F is regular if for every axiom (I = r) € E we have V(I) = V(r).
As Fages and Huet [FH86] put it, “in regular theories variables cannot disappear”. All
equational theories considered here are regular. In regular theories each matcher must
be a ground substitution. Thus, as explained in 2.2, if p and ¢ are E-matchers of the
terms s and ¢, then (p <k 0 <= p =% ¢ <= p =g o). Using this, one can easily derive
the following result, which appeared first in Fages and Huet [FH86, Proposition 4.1].

Proposition 3.1 Let E be a reqular equational theory, let s be a term, and let t be a
ground term such that s E-matches t. Then the following are true:

(1) There exists a complete sets of minimal E-matchers of s and t.

(2) A set S is a complete set of minimal E-matchers of s and t if and only if S is a
complete set of E-matchers of s and t such that no two distinct members of S are equal
with respect to :g, where V' is the set of variables of s.

(3) A substitution p is a member of a complete set of minimal E-matchers of s and t
of and only if p 1s an E-matcher of s and t.

Let E be a regular equational theory and assume that for every pair of terms s
and ¢ such that s E-matches ¢ we have selected a unique representative from each Eg—
equivalence class of E-matchers of s and ¢, where V' is the set of variables of s. If [p]Eg =
[p]:g is such an equivalence class, then we let p* denote its selected representative and we
say that p* is the canonical representative of [p]Eg. Once the canonical representatives
have been selected, we can define a canonical witness function w* for #E-Matching such
that the witness set w*(s,?) consists of the canonical representatives of all equivalence
classes of E-matchers of s and ¢. By combining Definition 2.1 with Proposition 3.1, we
obtain the following useful sufficient criterion for membership in #P.

Proposition 3.2 Let E be a reqular equational theory and let w* be a canonical witness
function for #E-Matching such that the following conditions hold:

Condition (1a). There is a polynomial-time algorithm to determine, given a term s,
a ground term t, and a ground substitution p, whether p is an E-matcher of s and t.

Condition (1b). There is a polynomial time algorithm to determine, given a term s, a
ground term t, and an E-matcher p of s and t, whether p is the canonical representative
of its =¥, -equivalence class [p]Eg.

Condition (2). There is a natural number k > 1 such that |p*| < (|s| + |t])* for all
canonical representatives p* in w*(s,t).

Then the #E-Matching problem is a member of the class #P.

We now examine specific equational theories and for each of them we show that it is
possible to find canonical witness functions such that the above conditions are satisfied.

3.1 Verifying Conditions (1a) and (1b)

Notice that Condition (1a) amounts to having a polynomial-time algorithm to deter-
mine, given a term s, a ground term ¢, and a ground substitution p, whether sp =} t.

Thus, Condition (la) is automatically satisfied by every equational theory E for which

E-equality of terms (i.e., t; ;E t2) can be tested in polynomial time.

Benanav, Kapur, and Narendran [BKN87] showed that AC-equality can be tested in
polynomial time by reducing this problem to the existence of a matching of given size in
bipartite graphs. As pointed out in Kapur and Narendran [KN86], ACI-equality can also
be tested in polynomial time by using the same algorithm and removing identical argu-
ments of an idempotent function after flattening terms. It follows that Set-equality can
be checked in polynomial time as well. By removing units instead of identical arguments
in flattened terms, we can check ACU-equality in polynomial time. ACIU-equality can be
checked in polynomial time by combining ACI-equality testing with ACU-equality test-
ing. Another modification of the AC-equality method can be used to test for C-equality
in polynomial time. For this, instead of testing for the existence of a given size matching,
we test for the existence of perfect matchings in a graph.

A-equality can be tested in polynomial time by first reducing the terms to the right-
associative form and then checking for syntactic equivalence. I-equality can be tested
in polynomial time by first reducing each term to its I-normal form using the leftmost
innermost strategy and then checking the reduced terms in I-normal form for syntactic
equivalence. The same approach works also for U-equality and, hence, can be extended to
TU-equality. H-equality (assuming g # h) can be tested in polynomial time by a similar
method with the leftmost outermost strategy. This extends also to ACH.

We now focus on Condition (1b). We will first define the canonical representatives of
the equivalence classes [p]=v for an arbitrary regular theory E and then show that for
each specific equational theory studied here there is a polynomial-time algorithm to find
the canonical representative p* of the class [p]Eg from a given member p of it.

Recall that if E' is a regular theory, s is a term, and ¢ is a ground term, then every
E-matcher of s and ¢ is a ground substitution. If we have a total precedence > on the
signature F, then the lexicographic path ordering >i,, induced by it is a well-founded
ordering that is total on ground terms [Der87]. Thus, we can compare two E-matchers
p=lr1 = t,...,xn = ty] and pf = [x1 — t),..., 2, — t,] by comparing them
lexicographically through the terms #; and ¢!, provided the sequence of variables z,

., n 1s fixed. Hence, there exists a well-ordering relation >§;§ on E-matchers and
8o we can choose the >§e§—smallest E-matcher in each equivalence class as its canonical
representative. The above definition of canonical representatives is uniform for all regular
theories. What turns out, however, to be different for each specific theory considered
here is the algorithm for computing the canonical representatives in polynomial time.

For certain equational theories E it is possible to orient appropriately their axioms
and obtain a convergent rewrite system, i.e., a rewrite system that is both confluent and
terminating. More specifically, if we introduce the rewrite rules

A f(f(zy),2) — fle, fly,2) I: flzg,2) — =
B fley) = hUELIE) U S - ow

bl

then the corresponding rewrite systems for A, I, U, IU, and H are convergent. Thus,
if E is one of A, I, U, TU, or H, and the substitution p = [z — t1,..., 2, > 1,] is
an E-matcher of the terms s and ¢, then for each term t; we can find its normal form
tilr, where R is the corresponding convergent rewrite system. This normal form exists,
because R is terminating, and is unique, because R is confluent. Thus, the substitution
[¥1 = t1lR, ..., &n = Lol R] coincides with the canonical representative of [p]Eg.

The algorithms for determining E-equality for A, I, U, IU, and H can be also used
to find the canonical representatives of ground substitutions in polynomial time. The
leftmost innermost strategy is complete for I, U, and IU, since we cannot create new
redexes below a position at which we apply a rewrite rule and each application of a
rewrite rule eliminates one occurrence of an E-symbol. The leftmost outermost strategy
is complete for H, provided ¢ # &, since each application of the rewrite rule eliminates one
occurrence of the symbol g. Moreover, in each case the number of steps in the derivation
is linear in the size of the input substitution.

The above method does not work for AC or for C. For the case of AC, we use the
following polynomial-time algorithm to find canonical representatives. Given an AC-
matcher p = [21 ~> 11, ..., &, —> 1], transform each term ¢; to its right-associative form
and flatten it, obtaining this way the flattened term #;. The flattening is done from
left to right, i.e., if f is an AC-symbol, then a subterm f(s1, f(s2, f(... f(sk—1,5%)))) in
the right-associative form is flattened to f(s1,...,sg). After this, for each subterm of ¢;
headed by an AC-symbol we sort the immediate subterms in a bottom-up way. This
means that a flattened subterm f(si,...,sx) is permuted to f(sx(1),...,Sx(x)), Where
Sr(k) ™ipo Sm(k—1) >lpo "** ™ipo Sm(2) ~lpo Sx(1)- This way, we obtain the flattened
and sorted term ¢, 1 < ¢ < n, and, hence, the representative p*. The same method,
without transformation to the right-associative form and without flattening, works for C.
Transformation to the right-associative form is polynomial, flattening is polynomial (cf.
[BKN87, KN92a]), sorting of terms is polynomial, the lexicographic path ordering is
computed in polynomial time [Sny93], and the number of AC-symbols (C-symbols) is
limited by the size of the input p. Thus, the algorithm runs in polynomial time.

The AC extensions of the rewrite systems I, U, IU, and H are confluent and ter-
minating modulo AC (although the termination must be proved by an AC-compatible
ordering). Thus, we can proceed hierarchically. First, we rewrite an E-matcher p to
the AC-normal form pt with respect to the confluent and terminating rewrite system R
modulo AC. The system R corresponds to one for I, U, IU, or H. Then the E-matcher pt
is transformed to p* using the previously described method for AC. This hierarchical
method is correct, since rewriting modulo AC means rewriting AC-equivalence classes.
Thus, we have R-equivalence classes and within them AC-equivalence classes.

3.2 Verifying Condition (2)

An equational theory E is permutative if for each axiom (! = r) € E the multisets of
symbols in [and r are equal. The theories A, C, AC are permutative, whereas if a theory
contains idempotency I, unit U, homomorphism H, or endomorphism End as one of its
axioms, then it is not permutative. If E is a permutative theory and s, f are terms such
that s =g ¢, then |s| = [t|. Tt follows that if E is a permutative theory, s is a term, and ¢
is a ground term such that s E-matches ¢, then for every E-matcher p of s and ¢ we have
that |p| < [t], since sp =g t. Thus, Condition (2) holds for every permutative theory. By

combining the above remarks with our findings in the preceding Section 3.1, we obtain
our first result establishing membership of several #E-Matching problems in #P.

Theorem 3.3 Let E be one of the equational theories A, C, AC. Then the #E-Matching
problem is in the class #P.

In order to analyze non-permutative theories, we turn again to the rewrite systems
used in the previous Section 3.1. We say that an equational theory E is simplifying if
for every axiom (I = r) € E, the term r is a proper subterm of the term [. By the same
token, we say that a rewrite system R is simplifying if for every rewrite rule ({ — r) € R,
the term r is a proper subterm of the term [. If E and @ are two equational theories, then
E is Q-simplifying if for every axiom (I = r) € E — Q there exists a proper subterm I’
of [, such that ' =g r. A rewrite system R is Q-simplifying if for every rewrite rule
(I = r) € R there exists a proper subterm [’ of [such that I’ =¢ r.

Clearly, the theories I, U, and TU are simplifying, while the theories ACI, ACU, and
ACIU are AC-simplifying. It is also clear that if a rewrite step | — g r is carried out
in a simplifying rewrite system R, then |r| < |l|. Using these facts, it is not hard to
verify that Condition (2) holds for each of the equational theories I, U, TU, and their AC
extensions. This completes the proof of our second result about membership in #P.

Theorem 3.4 Let E be one of the equational theories I, U, 1U, Set, ACI, ACU, and
ACIU. Then the #E-Matching problem 1is in the class #P.

Finally, we consider the homomorphism axiom H and its AC extension. Although the
homomorphism rewrite rule f(g(z,y)) = h(f(x), f(y)) increases the size of terms, each
application of it eliminates one occurrence of the symbol g. This makes it possible to
derive a bound on the size of canonical representatives, namely one can easily show that
if p is an H-matcher of s and ¢, then |p*| < 2|t|. Moreover, a similar bound can be
obtained for ACH-matchers. Thus, we have established the following result.

Theorem 3.5 #H-Matching and #ACH-Matching are both in the class #P.

The rewrite rule f(g(x,y)) = g(f(2), f(y)) for Endomorphism does not eliminate the
occurrence of g. It is an open problem whether #FEnd-Matching is in the class #P.

4 +#P-Hardness of #E-Matching Problems

In this section, we derive lower bounds for the complexity of #E-Matching problems.

Theorem 4.1 Let E be one of the equational theories A, C, AC. Then #E-Matching is
a #P-complete problem.

Proof: (Sketch) As shown in Theorem 3.3, each of these counting problems is a mem-
ber of #P. Benanav, Kapur, and Narendran [BKN87] showed that A-matching and C-
matching are NP-hard decision problems by reducing 3-SAT to these problems. These
reductions turn out to be parsimonious and, thus, #A-Matching and #C-Matching are
#P-hard problems. Benanav, Kapur, and Narendran [BKN87] also showed that AC-
matching is an NP-hard decision problem by reducing Monotone 3-SAT to AC-matching,

where Monotone 3-SAT is the satisfiability decision problem for 3CNF Boolean formulas
in which each clause consists either of only positive literals or of only negative literals.
The reduction given in [BKN87] is not parsimonious. We show that #AC-Matching is a
#P-hard problem by producing a parsimonious reduction of #Positive 2-SAT to it.

Consider an instance of #Positive 2-SAT with variables X = {@11, 212, ..., Zn1, ¥n2}
and clauses C'= {e¢1, ..., ¢}, where ¢; = &1 V 2;2. Let f be an AC-symbol, let g be a n-
ary function symbol that is neither associative nor commutative, and let 1 and 0 be two
constant symbols that will be used to simulate the truth or falsity of a Boolean variable.
We also let YV = {y1,...,yn} be a set of new variables, one for each clause, such that
X NY =§. With each clause ¢; = ;1 V #;2, we associate the term f(x;1, #;2, y;) and the
ground term f(1,1,0). We let s denote the term g(f(z11,212,31),- .-, f(Zn1, Tn2, Yn))
and let ¢ denote the ground term g(f(1,1,0),..., f(1,1,0)). In the full paper we show
that the number of truth assignments satisfying ¢; A -+ A ¢, i1s equal to the cardinality
of the set pCSMuc(s,t). O

Recall that ACl-matching is the restriction of AC-matching to terms in which each
variable occurs at most once. Benanav, Kapur, and Narendran [BKN87] showed that
ACI1-matching can be decided in polynomial time. In contrast, we show next that the
counting problem associated with ACl-matching is harder than its decision problem

Theorem 4.2 #AC1-Matching is a #P-complete problem.

Proof: (Sketch) Membership of #AC1-matching in #P is a direct consequence of mem-
bership in #P of #AC-matching. We will show that #ACIl-matching is #P-hard by
producing a parsimonious reduction from #Perfect Matchings to #AC1-Matching.
Suppose that we are given a bipartite graph G = (5,7, F) with 2n nodes, where
S={s1,...,8n} and T = {ty,...,1,} is the partition of the nodes. Let a be a constant
symbol, f a unary function symbol, ¢ a (n+1)-ary function symbol that is neither as-
sociative nor commutative, and h an AC-symbol. We also consider the sets of variables
X=Aaj|1,j=1,...,n}and Y = {w1,...,yn}, where X NY = 0.

With each node s; in the set S we associate the term s} = g(s},...,s?, 5?"’1), where
') ifl<ij<nandi=j
s = ;5 ifl1<ij<nandi#j
Yi fl<i<nand j=n+1
Intuitively, we view the nodes s1,...,s, in S as vectors of a “matrix”™:
s1 = g(f(x11), 712,213, ..., T1n, Y1)
sy = g(wa1, f(®22), ®23, ..., Tan, Y2)
5; = g($n1a$n2a~~~a$n,n—1af($nn)ayn)
in which the subterms f(z;;) occupy the main diagonal, while the variables y1, ..., y,

are along the last column. With each node ¢; in 7" we associate the ground term ¢ =
g(th, ..t) where

4= { fla) if (s;,t;) € E

a otherwise

Thus, we view the nodes tq,...,t, in T as vectors of another “matrix"

5 = g(ty,....t7, f(a)
t5 = g(t3,..., 15, f*(a))
o= gttt (a)).

The intuition behind the second matrix 1s that it represents the adjacency matrix
(extended by the column of f*(a)’s) of the edge relation E of the graph (, where the
terms f(a) and a are used to simulate the values 1 and 0, respectively.

In the full paper we show that for each 7 and j, 1 < ¢,j < n, there is an edge
(si,t;) € E if and only if the term s} ACIl-matches the ground term 7. As aresult, the
above is a parsimonious reduction of #Perfect Matchings to #AC1-Matching. O

We obtain next lower bounds for #E-Matching, where E is idempotency I, or unit U,
or one of the AC extensions of I and U. For this, we need to consider yet another counting
problem, whose #P-completeness was proved in Creignou and Hermann [CH93].

#1-in-3-SAT [CH93]
Input: Set V of variables and Boolean formula F' over V in conjunctive normal form
with exactly three literals in each clause.
Output: Number of truth assignments for the variables in V such that they make true
exactly one literal in each clause.

A parsimonious reduction from #3-SAT to #1-in-3-SAT is obtained by replacing
each 3-clause ¢; = l;1 V ;2 V ;3 by the clauses ¢;1 = ;1 V xi9 V 243, ¢ja = lia V @2 V Yi2,
ciz3 =1z V&3V ys, and ¢ = 23V yi2 V 2.

Theorem 4.3 Let E be one of the equational theories I, U, 1U, Set, ACI, ACU, and
ACIU. Then #E-Matching is a #P-complete problem.

Proof: (Hint) By Theorem 3.4, each of these counting problems is a member of #P.
The #P-hardness of #I-Matching, #U-Matching, and #ACU-Matching is proved by
producing parsimonious reductions from #1-in-3-SAT. The reduction to #U-Matching
and to #ACU-Matching is an adaptation of the NP-hardness reduction of U-unification
and ACU-unification, given in [TA87]. The #P-hardness of TU-Matching and #ACIU-
Matching is established by exhibiting parsimonious reductions from Positive 2-SAT to
each of these problems. Finally, the reduction from 3-SAT to Set-matching in [KN86] is
linear and, hence, weakly parsimonious. Thus, #ACI-Matching is #P-hard as well. O

Finally, we obtain #P-hardness results for the counting problems associated with
the AC extensions of homomorphism H and Endomorphism End. For this, we produce
parsimonious reductions from #Positive 2-SAT. Details are given in the full appear.

Theorem 4.4 #ACH-Matching is a #P-complete problem and #ACEnd-Matching is a
#P-hard problem.

5 Concluding Remarks

In this paper we introduced and studied the class of #E-Matching problems, which are the
counting problems that ask for the cardinalities of complete sets of minimal E-matchers
in some finitary equational theory E. Using the theory of #P-completeness, we identified
the complexity of #E-Matching problems for several equational theories E. The table
below summarizes our findings and compares the complexity of counting problems in

equational matching with the complexity of the corresponding decision problems.

Theory Decision Counting Theory Decision Counting

A NP-complete | #P-complete || 1 NP-complete | #P-complete
C NP-complete | #P-complete || U NP-complete | #P-complete
AC NP-complete | #P-complete || TU #P-complete
AC1 P #P-complete || ACI NP-complete | #P-complete
ACH #P-complete || Set NP-complete | #P-complete
ACEnd #P-hard ACU NP-complete | #P-complete
BR NP-complete FphF ACIU #P-complete

Although in most cases the NP-completeness of the decision problem is accompanied
by the #P-completeness of the associated counting problem, it should be emphasized
that in general there is no relation between the complexities of these two problems, as
manifested by the results about AC1 and BR.

The work presented here suggests that a similar investigation should be carried out
for #E-Unification problems, i.e.; counting problems that ask for the cardinalities of the
complete sets of minimal E-unifiers in some finitary equational theory E. Although our
results imply that several #E-unification problems are #P-hard, we already know that
there are equational theories E, such as AC, for which #E-Unification is not a member of
#P. Indeed, Domenjoud [Dom92] found AC-unification problems with n variables whose
complete set of minimal AC-unifiers has O(22n) elements. Since a counting problem
in #P takes values that are bounded by a single exponential in the size of the input,
it follows that #AC-Unification is not in #P. It is an interesting open problem to an-
alyze the computational complexity of #AC-Unification and to determine whether it is
complete for some higher counting complexity class, such as #EXPTIME or #PSPACE.
Results along these lines will delineate the computational difference between matching
and unification in a precise manner and will confirm the intuition that unification is
harder than matching.

References

[BKN87] D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems.
Journal of Symbolic Computation, 3:203-216, 1987.

[BS86] R.Book and J. Siekmann. On unification: Equational theories are not bounded.
Journal of Symbolic Computation, 2:317-324, 1986.
[CH93] N. Creignou and M. Hermann. On #P-completeness of some counting prob-

lems. Research report 93-R-188, Centre de Recherche en Informatique de
Nancy, 1993.

[Der87]

[Dom92]

[FHS6]

[Joh90]

[KN86]

[KN92al

[KN92b]

[Koz92]

[MN89]

[Plo72]

[Sny93]

[SS82]

[TAS7]

[Val79a]

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3(1 & 2):69-116, 1987. Special issue on Rewriting Techniques and Applications.

E. Domenjoud. Number of minimal unifiers of the equation axi+- - -+axy, =4¢
By + -+ -+ Byg. Journal of Automated Reasoning, 8:39-44, 1992.

F. Fages and G. Huet. Complete sets of unifiers and matchers in equational
theories. Theoretical Computer Science, 43(1):189-200, 1986.

D.S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity,
chapter 2, pages 67-161. North-Holland, Amsterdam, 1990.

D. Kapur and P. Narendran. NP-completeness of the set unification and match-
ing problems. In J.H. Siekmann, editor, Proceedings 8th International Confer-
ence on Automated Deduction (CADE’86), Ozford (England), volume 230 of
Lecture Notes in Computer Science, pages 489-495. Springer-Verlag, July 1986.

D. Kapur and P. Narendran. Complexity of unification problems with
associative-commutative operators. Journal of Automated Reasoning, 9:261—

288, 1992.

D. Kapur and P. Narendran. Double-exponential complexity of computing a
complete set of AC-unifiers. In Proceedings 7th IEEE Symposium on Logic
in Computer Science (LICS’92), Santa Cruz (California, USA), pages 11-21,
1992.

D.C. Kozen. The design and analysis of algorithms, chapter 26: Counting
problems and #P, pages 138-143. Springer-Verlag, 1992.

U. Martin and T. Nipkow. Boolean unification — the story so far. Journal of
Symbolic Computation, 7(3 & 4):275-294, 1989.

G.D. Plotkin. Building-in equational theories. In B. Meltzer and D. Mitchie,
editors, Machine Intelligence, volume 7, pages 73-90. Edinburgh University
Press, Edinburgh, UK, 1972.

W. Snyder. On the complexity of recursive path orderings. Information Pro-
cessing Letters, 46:257-262, 1993.

J. Siekmann and P. Szabé. Universal unification and classification of equational
theories. In D.W. Loveland, editor, Proceedings 6th International Conference
on Automated Deduction (CADE’82), New York (New York, USA), volume 138
of Lecture Notes in Computer Science, pages 369-389. Springer-Verlag, June
1982.

E. Tidén and S. Arnborg. Unification problems with one-sided distributivity.
Journal of Symbolic Computation, 3(1 & 2):183-202, 1987.

L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189-201, 1979.

[Val79b] L.G. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8(3):410-421, 1979.

