
Set Operations forRecurrent Term SchematizationsAli Amaniss, Miki Hermann, Denis LugiezCRIN-INRIA & LEIBNIZ-IMAG ?Abstract. Reasoning on programs and automated deduction often re-quire the manipulation of in�nite sets of objects. Many formalisms havebeen proposed to handle such sets. Here we deal with the formalism ofrecurrent terms proposed by Chen and Hsiang and subsequently re�nedby several authors. These terms contains iterated parts and counter vari-ables to control the iteration, providing an important gain in expressivepower. However, little work has been devoted to the study of these termsas a mechanism to represent sets of terms equipped with the correspond-ing operations union, intersection, inclusion, membership. In this paper,we focus on the set operations relevant for this schematization formalismand we discuss several possible de�nitions of these operations. We showhow intersection, membership and inclusion can be solved by previouslyknown algorithms and we prove the decidability of the generalisation oftwo iterated terms, which is the analogy of set union. Moreover, we re-�ne this procedure for computing the generalisation of usual �rst-orderterms using iterated terms, therefore improving Plotkin's algorithm.1 IntroductionThe representation and manipulation of in�nite sets of objects constitutes a keyproblem in automated deduction and logic programming. In fact, theoretical re-sults often imply the existence of an in�nite structure (usually a set) but theexisting tools, e.g. in programming languages, require the manipulated structuresto be �nite. Several solutions have been proposed to overcome this problem. Oneof the simplest solutions consists of using terms with variables that range overthe Herbrand universe generated by a given signature. Unfortunately, very oftenthis representation is not expressive enough or does not meet other structuralrequirements inherent to the schematised set. Other formalisms, like regular treelanguages, are easy to manipulate, e.g. using a corresponding tree automaton,since the set operations are easy to realize, but once more they often lack ex-pressive power, since the sets to model are usually not regular. For this purpose,several authors [CH95,HG97,Sal92,Com95] introduced the recurrent schemati-sations of in�nite sets of terms with structural similarities. In these schemati-sations, the structural similarities are materialised through iterated contexts,? current address: CRIN-INRIA BP 239, 54506 Vandoeuvre les Nancy Cedex FRANCEe-mail: amaniss,hermann,lugiez@loria.fr

where the iteration in a term is controlled by the position and the level of thecontext. The iteration level is usually expressed by integer variables.Schematisation formalisms are useful in several branches of logic and auto-mated deduction. They can represent in�nite complete sets of uni�ers for anequational theory, successive approximations of an in�nite or rational tree, anin�nite set of answers as a result of an unsafe Datalog query, etc. Such recurrentformalisms can be extremely helpful when we need to reason on program be-haviour since we must reason on an in�nite set of states bearing some similarity.If each program state is represented by a term then the program developmentbetween two states is characterised through the unfolding of a context. Hence-forth, the properties usually expressed in temporal logic can be converted to andproved in the formalism of a recurrent schematisation. Another possible appli-cation of recurrent schematisations in logic is model construction as explainedin [CP96]. Yet another application is the recently developed theory of set con-straints [AKW95]. Recurrent schematisations itself can be viewed as a new typeof set constraints, where the constraints on terms are expressed by iterations ofcontexts.Many of the previously evoked applications of recurrent schematisations re-quire the existence of the set operations, like membership, intersection, inclusion,union, and complement. It is surprising to see that most of the work done onrecurrent schematisations deals mainly with matching i.e., membership, and uni-�cation i.e., intersection, but there is almost no work done concerning other setoperations, apart from the general result on equational problems in the �rst-order theory of a schematisation called iterated terms [Pel96]. In this work westudy the positive set operations on the in�nite sets schematised by iteratedterms. These operations are membership, intersection, inclusion, and generalisa-tion which is, in some sense, the analogy to union. We discuss several possiblede�nitions for set operations and exhibit examples of properties that are truefor �rst-order terms but false for iterated terms. Another contribution of thispaper is a generalisation algorithm which computes an iterated term subsumingtwo given iterated terms. This specialised algorithm provides a more subtle gen-eralisation of �rst-order terms which can be especially valuable for applicationsto model construction. The underlying idea is that two incomparable terms aregeneralised not to a variable but to a schematised set including the two terms.2 De�nitionsFor the sake of simplicity, we have chosen Comon's formalism for iterated termsinstead of the more general formalism due to Salzer. Our results could be easilyextended to the later framework but the extra complexity of proofs would makethe main ideas less clear. Our de�nitions for iterated terms and their semanticsare slightly di�erent from the de�nitions of [Com95], but the basic idea is thesame. Let � be a �nite set of function symbols where each symbol has a givenarity, X be a denumerable set of �rst-order variables, N a denumerable set ofinteger variables. The set of usual �rst-order terms is denoted by T�(X), andthe set of ground �rst-order terms is denoted by T� .

De�nition 1. The class T�(X ;N) of iterated terms is the smallest set suchthat{ if x 2 X then x 2 T�(X ;N){ if s1; : : : ; sn 2 T�(X ;N), f 2 � and arity of f is n thenf(s1; : : : ; sn) 2 T�(X ;N),{ if s; t 2 T�(X ;N); p 2 IPos(t); p 6= � then t[]Np :s 2 T�(X ;N)where IPos(t) is the set of iteration positions of t de�ned by the equalities{ IPos(x) = f�g,{ IPos(f(s; : : : ; sn)) = f�g [1�i�n i:IPos(si){ IPos(t[]Np :u) = ;Example 2. s = f((f(�; x))[]N1 :y; (f(x; �))[]N2 :z) is an iterated term.In the following, the notation t[p u] denotes the replacement of the subtermof t at position p by the term u, the symbol of t at position p is denoted by t(p),p k q means that neither p is a pre�x of q nor the converse. In a term t[]Np :u,the subterm at position p doesn't really matter and can be safely replaced by anew constant � representing the context hole. From now on, we assume that thisreplacement is done in each iteration. Iterated terms contains integer variablesand �rst-order variables.De�nition 3. The set X -V ar(u) of �rst-order variables of u is de�ned by theequalities.{ X -V ar(x) = fxg,{ X -V ar(f(s1; : : : ; sn)) = [1�i�nX -V ar(si),{ X -V ar(t[]Np :s) = X -V ar(s) [fx j 9q 2 Pos(t) p k q; t(q) = xgThe set N -V ar(u) of integer variables of u is de�ned by the equalities.{ N -V ar(x) = ;{ N -V ar(f(s1; : : : ; sn)) = [1�i�nN -V ar(si),{ N -V ar(t[]Np :s) = fNg [N -V ar(t) [N -V ar(s).A term t s.t. N -V ar(t)=X -V ar(t)=; is called a ground term. Substitutionsinstantiate variables. Since we have two kinds of variables, we have two kindsof substitutions. X -substitutions replace �rst-order variables by iterated termsand N -substitutions replace integer variables by linear forms.De�nition 4. A X -substitution � is a �nite set of pairs fx1 t1; : : : ; xp tpgwhere the xi's belong to X and the ti's to T�(X ;N). The domain of �, denotedby Dom(�) is the set fx1; : : : ; xpg. The application of � to a term t is de�nedby the equalities.{ x� = ti if x is some xi, otherwise x� = x,{ f(s1; : : : ; sn)� = f(s1�; : : : ; sn�){ (t[]Np :s)� = t�[]Np :(s�)

The substitution is ground if the ti's are ground. The substitution such thatDom(�) = ; is denoted by idX .We de�ne now the unfolding of integer exponents that we need for de�ningthe substitution of integer variables.De�nition 5. The unfolding of a term t[]Kp :u is de�ned by the equalities.{ t[]np :u = t[: : : t| {z }n [u]p : : :]p| {z }n ,{ t[]n:Mp :u = (t[: : : t| {z }n [�]p : : :]p| {z }n)[]Mp: : : :p| {z }n :u{ t[]N+Mp :u = t[]Mp :(t[]Mp :u)De�nition 6. A N -substitution � is a �nite set of pairs fN1 �1; : : : ; Np �pg where �i is a linear form a0i + �j=1;:::;kiaji :Mj with aji > 0 and the Mj areinteger variables. The domain of � is Dom(�) = fN1; : : : ; Npg.The applicationof � to a term is de�ned by the following equalities.{ x� = x,{ f(s1; : : : ; sn) = f(s1�; : : : ; sn�),{ (t[]Np :s)� = t�[]�ip :s� if N is some Ni, otherwise (t[]Np :s)� = t�[]Np :s�The substitution is ground when all �i are positive integers. The substitutionsuch that Dom(�) = ; is denoted by idN .A N ;X -substitution � (in short substitution) is a pair (�1; �2) with �1 beingaN -substitution and �2 being a X -substitution. Substitutions are used to de�nethe semantics of an iterated term, i.e. the set of �rst-order terms represented viaunfolding. Indeed two semantics are possible:De�nition 7. (Semantics of iterated terms){ U (s) = fs� j � = (�1; idX) with �1 ground N -substitutions such thatN -V ar(s) � Dom(�)g (free semantics){ UG(s) = ft� j t 2 U (s); � = (idN ; �2) with �2 groundX -substitution such thatX -V ar(t) � Dom(�)g (ground semantics)Example 8. Let s = f(�; x)[]N1 :x0 then U (s) = ff(x0; x); f(f(x0; x); x); : : :g andUG(s) = f(T� ; T�).The main di�erence with previous approaches is that integer variablescan't be assigned the zero value. That means that each unfolding of a term(t[]Np :s) contains at least one occurrence of the pattern t[], therefore all unfold-ings have the same root symbol. This is particularly helpful when we considergeneralisations since it prevents the association between unrelated terms.

3 De�nition issuesWhen dealing with sets of �rst-order terms represented by iterated terms, twoapproaches are possible. The �rst one deals with the syntactical representationsonly, for instance uni�cation and matching are typically related to this approach.The second one relies more on the semantics of terms, as for the inclusion oper-ation. In this section we discuss the implications of each aspect.3.1 Intersection and membershipIntersection and membership can be solved with uni�cation and matching algo-rithms already developed for iterated terms (for instance see ([Com95] for thedescription of an uni�cation algorithm). Let s and t be two iterated terms, andlet u1; : : : ; un be the most general uni�ers of s and t, computed by some uni�-cation algorithm. The intersection problem is settled by the next proposition.Proposition 9. The statement v 2 U (s) \ U (t) holds i� v 2 U (ui) holds forsome i. The statement v 2 UG(s)\UG(t) holds i� v 2 UG(ui) holds for some i.Therefore the most general uni�ers u1; : : : ; un can be used to represent theintersection of the terms s and t. Membership is also straightforward.Proposition 10. The statement s 2 U (t) holds i� s = t� holds for some �.The statement s 2 UG(t) holds i� s = t� holds for some �.The other operations raise more interesting questions.3.2 Matching and inclusionUntil the end of the section, s and t are two terms which do not share variables.The classical de�nition for matching is the following.De�nition 11. (Matching) s matches t i� there exists a substitution � suchthat s = t� holds.An immediate corollary is that the inclusions U (s) � U (t) and UG(s) �UG(t) hold. For �rst-order terms the converse is true, i.e., U (s) � U (t) resp.UG(s) � UG(t) implies that s = t�. Therefore one can ask whether this stillholds for iterated terms. The answer is no in both cases.Example 12. Let us consider the two semantics.{ For the free semantics, let us consider s = f(f(f(a))) and t = f(f(a)). Thenthe terms s = (f(�))[]N1 :f(a) and the term t = f((f(�))[]M1 :a) are twoiterated terms such that U (s) = U (t) holds but there is no substitution �with s = t� or t = s�.{ For the ground semantics, s = f(�; x)[]N1 :x0 and t = f(y; �)[]M1 :y0. ThenUG(s) and UG(t) are both equal to f(T� ; T�) and there is no � such thats = t� nor the converse hold.

These examples give the grounds for introducing the inclusion predicate:De�nition 13. (Inclusion) We say that s is included in t, written s � t, i�UG(s) � UG(t) holds.Inclusion and matching coincide for �rst-order terms, and it is worthwhile tosee if it holds in other cases. Let us ask the following question: if s is a �rst-orderterm, t is an iterated term such that UG(s) � UG(t) holds, does s match t (i.e.,s = t� for some �)? The next example gives the answer.Example 14. Let � = fa; fg with a constant a and a function symbol f of arity2. Let t = f(f(a; a); �)N2 :f(f(f(z1 ; z2); a); z3) and s = f(f(a; a); f(f(x; a);f(f(f(a; a); a); a))). We have that sfx ag = tfN 2; z1 a; z2 a; z3 ag and sfx f(�; �)g = tfN 1; z1 �; z2 �; z3 f(f(f(a; a); a); a)g,therefore UG(s) � UG(t) holds. On the other hand, s 6= t� for any � since �must instantiate the variable N by 1 which is impossible since x clashes with aor by 2 which is forbidden because x clashes with f(z1; z2). �� AA �� AA�� AA�� AA�� AA �� AA �� AA�� AA �� ZZ�� ZZ�� ZZ�� AA ff ffaiteratedpartf fa a aa a ax a a z2z1 a z3s = t = ffff ff �
Fig. 1. Two terms such that UG(s) � UG(t) holds but s doesn't match t3.3 GeneralisationThe same problem occurs for the generalision of iterated terms. Using the samede�nition as in the �rst-order case would result in the following one.De�nition 15. Let s and t be two terms, a generalisation of s and t is a term gsuch that there exist two substitutions �1; �2 where g�1 = s and g�2 = t.A generalisation g is minimal if there is no other generalisation g0 such thatg0 = g�.Since a variable is a generalisation of any pair of terms, the most relevantconcept is that of a minimal generalisation. The above de�nition is not reallysatisfactory, as shown by the following example.

Example 16. Let s = f(f(f(a))) and t = f(f(a)), then g = f(f(�)[]N1 :a) andg0 = (f(�))[]N1 :f(a) are two generalisations of s and t. It is easy to see that theyare minimal but there is no substitution � such that g0 = g� nor g = g0�. Onthe other hand, U (g) = U (g0) and UG(g) = UG(g0).Therefore using the same notion of generalisation for iterated terms as for�rst-order terms leads to counter-intuitive results, since we distinguish betweentwo terms which have the same semantics and that should be therefore identi�ed.This suggests a new de�nition, where generalisations are compared with respectto the ground semantics:De�nition 17. (ground generalisation) A term g generalises the terms s and ti� there exists two substitutions �1; �2 such that s = g�1 and t = g�2. Thegeneralisation g is minimal i� there is no other generalisation g0 such thatUG(g0) � UG(g) where the inclusion is strict.Another possible de�nition refers to the meanings of the terms:De�nition 18. (inductive generalisation) A term g generalises the terms s andt i� UG(s) � UG(g) and UG(t) � UG(g) hold. The generalisation g is minimali� there is no other generalisation g0 such that UG(g0) � UG(g) holds where theinclusion is strict.It is straightforward to see that if g generalises s and t according to the groundsemantics, it generalises s and t according to inductive generalisation. Thereforethe last de�nition computes more generalisations. This is why we shall use theformer de�nition (ground generalisation) instead of the latter one. However thedecidability result that we give holds for both de�nitions.4 Inclusion of iterated termsIn this section we indicate how to solve the inclusion problem, i.e. given s; tdecide whether UG(s) � UG(t) holds.Theorem 19. The inclusion problem is decidable.Proof. Use the general procedure of [Pel96] or [HS96].However the inclusion problem is a special case of equational formulae andits solution doesn't require the full power of the decision procedure. A simplealgorithm has been given by the �rst author in his thesis [Ama96] when thereare no �rst-order variables in the quanti�cation part, i.e., problems of the form8N9M s = t with N = N -V ar(s) and M = N -V ar(t). The rules are similar tothe rules used in the uni�cation algorithm described in [Com95]. Two unfoldingrules are used for elimination of quanti�ed variables. Universally quanti�ed vari-ables lead to a conjunction of the base case (N = 1) and of the inductive case(N = 1 + N 0), whereas existential variables lead to disjunction of these cases.Together with the other uni�cation rules, we eventually eliminate the quanti�ersthrough reasoning on unfolding paths in both terms s and t.

5 A brute-force solution for the generalisation problemFirst we give some de�nitions needed by the non-uniqueness of generalisations.De�nition 20. A set of generalisations S for two terms s and t is completei� for each generalisation g of s and t there exists some g0 2 S such that theinclusion UG(g0) � UG(g) holds. A set of generalisations is a complete minimalset i� it is complete and contains only minimal generalisations.The following proposition is a straightforward consequence of the de�nition.Proposition 21. A complete minimal set of generalisations is unique modulothe equivalence s � t i� UG(s) = UG(t) holds.Now we show that the set �G(s; t) of minimal generalisations is �nite andalgorithmically computable for any terms s and t. The algorithm �rst computesthe �nite set of all possible generalisations and eliminates the redundant onesin the second pass using the inclusion decision procedure. The idea behind thealgorithm is that instantiation cannot decrease the height of a term. Therefore, ageneralisation has a height smaller than or equal to the generalised terms. Sincethere is only a �nite number of terms with a height smaller than a �xed bound,subsequently there are only �nitely many generalisations. We are going to statethis proof more formally.De�nition 22. The height of a term is de�ned by:{ H(x) = 1, H(�) = 1{ H(f(t1; : : : ; tn) = 1 +MaxfH(t1); : : : ;H(tn)g for n � 1,{ H(t[]Np :u) = MaxfH(t[p �]; jpj+H(u)g. where jpj is the length of p.Example 23. H(f(f(a; a); �)[]N2 :a) = 3, H(f(a; f(a; �))[]N2:2:g(a)) = 4Proposition 24. There are only �nitely many terms (up to variable renaming)of height smaller than a given bound n.Proposition 25. Let t be an iterated term and � a substitution, then the in-equality H(t�) � H(t) holds.Proof. The proof is by structural induction on t.Proposition 26. The set of generalisations of two terms s and t is �nite.Proof. Let g be a generalisation of s and t, then H(g) � H(g�), thereforeH(g) � min(H(s);H(t)). There are only �nitely many distinct (up to renaming)iterated terms of height smaller than some �xed bound (here min(H(s);H(t)),therefore there is only a �nite number of possibilities for g.Theorem 27. There exists an algorithm to compute a set of minimal generali-sations of s and t.

Proof. Enumerate terms of height smaller than min(H(s);H(t)) and check ifthey generalise s and t. Then use the inclusion algorithm to �nd minimal ones.Remark 28. The same property holds for inductive generalisation since the heightof any generalisation of s is bounded by H(s�) where � instantiates the integervariables of s by 1 and the �rst-order variables of s by a constant.6 Generalisation of �rst-order terms using iterated termsIn model construction, a main problem is to describe sets of �rst-order termsrepresenting a model under construction in a compact way. Several authors havesuggested to use iterated terms for such purposes. A weakness of this approachis the generation of iterated terms. The procedure starts with a set of �rst-order terms and at some point infers a representation of a model containingthese terms. The representation must be faithful i.e., must contain the giventerms, compact, and not too general. First-order generalisation usually pro-vides us with a result which is too general, for example the generalisation off(a); f(f(a)); f(f(f(a))); ::: is f(x) whereas iterated terms can provide us witha better approximation (f(�))[]N1 :a. Ad-hoc solutions exist, but there is no sys-tematic treatment of the problem relying on a generalisation algorithm. In thissection we provide a generalisation algorithm for �rst-order terms using iteratedterms. For simplicity, we consider only a generalisation of two terms but thealgorithm can be easily extended to work on a �nite set of terms.6.1 Is the generalisation of �rst-order terms unique?The generalisation of classical terms is unique (up to renaming) and the set of�rst-order terms equipped with the uni�cation and generalisation operations hasa lattice structure. On the other hand uni�cation of iterated terms is �nitaryand it is likely that generalisation is �nitary too. However the uni�cation algo-rithm for iterated terms applied to �rst-order terms computes a unique mostgeneral uni�er. Therefore a natural question is to ask if the same holds for thegeneralisation of �rst order terms using iterated terms. The following exampleshows that this is false whatever de�nition of generalisation is used.Example 29. Let the signature be � = ff; h; a; bg with f and h of arity 1 anda; b two constants. Let s = f(h(f(h(h(a))))) and t = f(h(h(f(b)))).Proposition 30. All de�nitions of generalisation are equivalent for s and t.Since s and t are ground terms U (s) = UG(s) = fsg and U (t) = UG(t) = ftg.Moreover g generalises s and t according to inductive generalisation i� UG(s) �UG(g) and UG(t) � UG(g) which yields s = g�1 for some �1 and t = g�2 forsome �2. Therefore g generalises s and t according to ground generalisation.

Proposition 31. The iterated terms �1 = (f(h(�))| {z }iterated part[]N2 :h(x) and�2 = f(h(�)|{z}iterated part[]N1 :f(x)) are two minimal generalisations of s and t.Proof. We have f(g(g(a))) 2 UG(�1) but f(g(g(a))) 62 UG(�2) and f(g(f(a))) 2UG(�2) but f(g(f(a))) 62 UG(�1). One can check that �1 and �2 generalize sand t and that they are minimal.6.2 Di�erences from �rst-order generalisationThe main di�culty of �rst-order generalisation is illustrated by the followingexample. Let s = f(a; a) and t = f(b; b) be two terms. A naive algorithm thatgeneralises arguments when the roots are identical and generates new variablesfor distinct roots would result in f(x; y) when the actual generalisation is f(x; x).The problem is solved by using a bijection between pairs of terms and variables.For iterated terms the problem is more complex.Example 32. Let s = f(a) and t = f(f(a)) be two terms then their �rst-ordergeneralisation is f(x). Indeed, both terms contain an iteration of f(�) at position1 with the same term a after the iteration. Therefore a better proposition isf(�)[]N1 (a), where N is a new variable.Following the previous example, our generalisation algorithm contains a rulethat detects iterations of a common context in the terms s and t to be generalised.In fact, it looks for a path p such that p : : : p (n times) occurs in s and p : : : p(m times) occurs in t. The power but also the additional complexity of ourgeneralisation algorithm resides in this rule. However, a careless generalisationof integer variables causes the same problem as for �rst-order variables.Example 33. Let s = h(f(a); f(b)) and t = h(f(f(a)); f(f(b))) be two terms.First we can decompose upon h (no possible iteration occurs) and compute thegeneralisation of f(a) and f(f(a)) and the generalisation of f(b) and f(f(b)). Asseen previously the �rst one results in f(�)N1 :a with N a new variable and thesecond one in f(�)M1 :b withM a new variable, yielding h(f(�)N1 :a; f(�)M1 :b). Butthe minimal generalisation is h(f(�)K1 :a; f(�)K1 :b) (N andM must be identi�ed).6.3 A generalisation algorithmThe generalisation algorithm described here is intended to be as simple as pos-sible and will be re�ned later on. The following transformation rules compute ageneralisation G(s; t) of two terms s and t, i.e., a term g such that g�1 = s andg�2 = t. Since the variables of s and t are not instantiated, we assume that sand t are ground. The rules are non-deterministic and using all possible choices,we get a set of generalisations that is denoted by Gen(s; t). Non-minimal gener-alisations can appear in this set and we use a cleaning rule to get rid of uselessgeneralisation. In the following, �X is a bijection between pairs of terms and X ,

and �N is a bijection between pairs of integers and N . For any pair of terms,�G(s; t) denotes the set of minimal generalisation of s and t.Rules for generalisation of �rst-order terms(Clash)G(g(s1; : : : ; sm); f(t1; : : : ; tn))! �X (g(s1; : : : ; sm); f(t1; : : : ; tn)) m;n � 0(Decomposition)G(f(s1; : : : ; sn); f(t1; : : : ; tn))! f(g1; : : : ; gn) if gi 2 �G(si; ti) 1 � i � n(Iteration) G(s; t)! U []�N (n;m)p :wif there is some position p, two distinct integers n;m greater than 1 suchthat the following conditions hold:{ for each pre�x q of p, the symbols s(q) and t(q) are the same,{ s = S[]mp :v and t = T []np :u where S = s[p �] and T = t[p �],{ w 2 �G(u; v),{ U = gen(p; s[p �]; t[p �]) where gen is de�ned by:� gen(�; �; �) = �,� gen(i:q; f(u1; : : : ; un); f(v1; : : : ; vn)) = f(g1; : : : ; gi�1; gen(q; ui; vi);gi+1; : : : ; gn) where gj 2 �G(ui; vi).Let Gen(s; t) be the set of all terms G(s; t) computable using the three pre-vious rules. This set can contain non-minimal generalisations, as proved by thenext example.Example 34. Applying the last rule to the terms s = f(a; f(a; g(a))) andt = f(b; g(c)) at position p = 2 and then the decomposition and clash rules, weget G(s; t) = f(x; �)N2 :g(y) where x = �X (a; b) and y = �X (c; a). On the otherhand, applying decomposition �rst, we �nd G(s; t) = f(x; z) withz = �X (f(b; g(a)); g(c)). The second result is not minimal since the inclusionUG(f(x; �)N2 :g(y)) � UG(f(x; z)) holds, but the �rst result is.Therefore we introduce the cleaning rule:(Cleaning) Gen(s; t)! Gen(s; t)� fgg if there is some g0 2 Gen(s; t) suchthat UG(g0) � UG(g) holds.When the cleaning rule is no longer applicable we set �G(s; t) = Gen(s; t).6.4 Termination, correction and completeness of the algorithmIn this section we set the main properties of the algorithm.Proposition 35. The application of the rules Clash, Decomposition, Iter-ation, Cleaning terminates.Proof. Computing �G(s; t) needs to compute �G(u; v) for smaller terms onlyand only a �nite number of paths must be considered by the iteration rule.Proposition 36. �G(s; t) is a complete set of minimal generalisations.

7 ConclusionWe have described the set operations inclusion and union for the recurrentschematization by iterated terms. We showed that together with the member-ship and intersection, solved by matching and uni�cation respectively, these setoperations can be algorithmically solved within the considered formalism. Theinclusion is presented as an extension of matching to in�nite schematized setswith its proper semantics. The union operation is based on the generalisationproblem, where we applied the new idea that two incomparable terms are gen-eralised by an in�nite schematized set containing the given two terms. Thisimproves the usual notion of generalisation due to Plotkin, where incomparableterms were generalised by a variable. We gave a new generalisation algorithm,based on this new idea, that can be applied to several interesting problems inlogic programming, knowledge representation, and automated deduction.Several interesting questions concerning set operations for recurrent schema-tisations remain to be studied. In particular, it would be interesting to knowhow can these notions be developed for other existing recurrent formalisms. Onthe other hand, almost nothing is known concerning the complexity of the deci-sion problem involving the considered set operations, nor about the asymptoticcomplexity of the existing algorithms. These questions are interesting also in thescope of set constraints by recurrent schematisations, since already the decisionproblem in the usual set constraint formalism has a high complexity [BGW93].This complexity classi�cation would allow us to decide upon the practical appli-cability of the existing formalism.References[AKW95] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set con-straints with negative constraints. Inf. and Comp., 122(1):30{44, 1995.[Ama96] A. Amaniss. M�ethodes de sch�ematisation pour la d�emonstration automatique.PhD thesis, Universit�e Henri Poincar�e { Nancy 1, 1996.[BGW93] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are themonadic class. In Proceedings 8th LICS, Montreal (Quebec, Canada), 1993.[CH95] H. Chen and J. Hsiang. Recurrence domains: their uni�cation and applicationto logic programming. Inf. and Comp., 122:45{69, 1995.[Com95] H. Comon. On uni�cation of terms with integer exponent. MathematicalSystem Theory, 28(1):67{88, 1995.[CP96] R. Caferra and N. Peltier. A signi�cant extension of logic programming byadapting model building rules. In Proceedings ELP'96, volume 1050 of LNAI,pages 51{65, 1996.[HG97] M. Hermann and R. Galbav�y. Uni�cation of in�nite sets of terms schematizedby primal grammars. Theoretical Computer Science, April 1997. to appear.[HS96] M. Hermann and G. Salzer. Solution of equational problems in the �rst-ordertheory of recurrent schematizations. Unpublished manuscript, October 1996.[Pel96] N. Peltier. Increasing model building capabilities by constraints solving onterms with integer exponents. submitted to J. Symb. Comp., 1996.[Sal92] G. Salzer. The uni�cation of in�nite sets of terms and its applications. InA. Voronkov, editor, Proceedings of the 1st LPAR, St. Petersburg (Russia),volume 624 of LNAI, pages 409{420. Springer-Verlag, July 1992.

