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systems withmembership constraints [Com91]. Primal grammars are yet another schema-tization of in�nite families of terms, but on the contrary to other schematizations (whichusualy exploit a more complicated notion, such as higher order terms or some sort ofconstraints) they are presented by a generating terms plus a canonical rewrite system. Aswe will see later, primal grammars correspond exactly with the class of crossed systems.The idea of this paper originated from two di�erent sources. On the one hand,this paper develops further the type of schematization introduced by Chen, Hsiang, andKong [CHK90, CH91]. The second source was the paper of Sattler-Klein [SK91].2 Basic notation and de�nitionsIt is supposed that the reader is familiar with the theory of rewrite systems. For reviewssee e.g. [DJ90, Bac91]. The used notation is conform with that of [DJ91].Denote by T (F ;X ) the set of all terms over variables X and symbols F . Var(t)denotes the set of all variables in the term t. Head(t) denotes the function symbolheading term t.Pos(t) denotes the set of positions of the term t. The subset of variable positions of t isdenoted by VPos(t), the subset of non-variable positions of t by FPos(t). The expressiona � b denotes a position a above the position b. The expression a k b denotes that thepositions a and b are parallel (incomparable). A subterm of t at a position a 2 Pos(t) isdenoted by tja. Denote by s[t]a a new term obtained from the term s after replacing itssubterm sja by t. Denote by s[�]a a context of s with a hole at the position a.Denote a substitution �:X �! T (F ;X ) by [x1 7! t1; : : : ; xn 7! tn] when the terms tiare substituted for the variables xi. A term t instantiated by a substitution � is denoted byt�. Denote by Dom(�), VRan(�), and Var(�) the variable domain, variable range, andall variables (union of variable domain and variable range) of a substitution �, respectively.A rewrite rule is an ordered pair of terms s! t such that Var(t) � Var(s). A termrewriting system (or rewrite system) is a �nite set of rules R = fs! t j s; t 2 T (F ;X )g.A rewriting relation �!R is the smallest relation containing R, closed under substitutionand replacement. The relation ��!R denotes the re�exive and transitive closure of �!R,the relation  �R denotes the converse of �!R, the equivalence relation � !R denotesthe re�exive, symmetric, and transitive closure of �!R. The normal form of a term t wrta terminating rewrite relation �!R is denoted by t#R.Denote by ~a ambiguously either the vector of distinct objects ha1; : : : ; ani, or the se-quence of distinct objects a1; : : : ; an, or else the set fa1; : : : ; ang. Therefore the expression~f(~x) means f1(x1; : : : ; xk); : : : ; fn(x1; : : : ; xk).Suppose that � is a precedence on F . A lexicographic path ordering �lpo on T (F ;X )is de�ned by s = f(~s) �lpo g(~t) = t if one of the following holds: 9si 2 ~s such thatsi �lpo t, or f � g and 8ti 2 ~t we have s �lpo ti, or f � g and ~s �lexlpo ~t, where �lexlpo is thelexicographic extension of the ordering �lpo.2.1 Crossed systemsThe sum [Her90a] of ' and  is the substitution ' 4  de�ned as [x 7! x' j x 2Dom('); x' 6= x]. The iterative operator turtle [Her90a] on �,  , and ' is de�ned



inductively by T0(�;  ; ') = �4 ' and Tn+1(�;  ; ') = ( 4 Tn(�;  ; '))4 '.Recall that the crossed rewrite systems present a su�cient pattern for descriptionand recognition of divergent rewrite systems. For crossed systems see Examples 5.1, 5.2and 5.3, or the paper [Her90b].De�nition 2.1 [KH90] The rewrite rules s1 ! t1 and s2 ! t2 (with supposed disjointvariables) form a forward [. . . a backward] crossed rewrite system if [t1 is not avariable,] there are substitutions �2 [. . . substitutions �1], '1, '2 in own variables of s2 [. . .of s1], an idempotent substitution �1 [. . . substitution �2], and positions a 2 FPos(s1),b 2 FPos(t2) [. . . and a position b 2 FPos(s1)] such that1. h�1; �2i is the most general semi-uni�er of s1ja [. . . of s1jb] and s2:s1ja�1 = s2�2 [. . . s1jb�1 = s2�2],2. h'1; '2i is the most general semi-uni�er of t2jb and s2 [. . . of t1 and s1jb]:t2jb'1 = s2'2 [. . . t1'1 = s1jb'2],3. Dom('1) \ (Var('2) [ Var(�2)) = ; or Var('1) \ (Dom('2) [ Dom(�2)) = ;[. . . Dom('1)\ (Var('2)[Var(�1)) = ; or Var('1)\ (Dom('2)[Dom(�1)) = ;].This de�nition is a simpli�ed and cumulated version of those given in [KH90]. The latter,more general, de�nitions treat the case of crossed systems consisting of more than tworules, exploiting the notion of an overlap closure [GKM83] s2� t2 (s1� t1) instead ofa simple rewrite rule s2 ! t2 (s1 ! t1). From the formal point of view the closure istreated in the same way as the rule, therefore we use the simpli�ed de�nition(s) for ourpurposes.It is evident from De�nition 2.1 of crossed systems that Dom('1) \ Dom('2) = ;.Theorem 2.2 [KH90] Let S = fs1 ! t1; s2 ! t2g form a forward (. . . a backward)crossed system. Assume that each nontrivial critical pair hs�[t0�]c; t�i computed by thecompletion procedure from S and an ordering � satis�es s�[t0�]c � t� (. . . satis�es t� �s�[t0�]c). A fair completion procedure without interreduction produces from S the sequenceof rules forward case backward caseu1! v1 = (s1�1[t2�2]a)�1 ! t1�1�1 u1! v1 = t1�1�1 ! (s1�1[t2�2]b)�1un+1 ! vn+1 = un!n[t2!n]abn ! vn!n un+1 ! vn+1 = t1!n ! s1!n[vn!n]bcalled the iterated family I(S), where!n = ((�n 4 ('14 Tn�1( ;'2; '1))) [ ('24 Tn�1( ;'2; '1)))�n+1with  = �2 in forward case and  = �1 in backward case, is the iterative substitutionand forward case backward case�n = [xn 7! x j xn 2 Var(unjabn)] �n = [xn 7! x j xn 2 Var(unjb)]�n = [x 7! xn j x 2 Var(s2)] �n = [x 7! xn j x 2 Var(s1)]is a pair of fold/unfold substitutions for explicit variable renaming.



3 Prime rewrite systemsIn addition to the signature of plain symbols F , we consider also another signature ofauxiliary symbols H, where F \H = ;, plus the special symbols successor s and the zeroconstant 0, both not included neither in F nor in H. The auxiliary symbols from H willbe denoted by a hat to distinguish them from the `bare headed' plain symbols from F .The arguments of the function symbols f̂ 2 H are divided into two parts by a semi-colon. Those before the semicolon are called counters, or counter variables if they consistjust of a variable. Each auxiliary symbol f̂ has a counter arity, denoted by arc(f̂ ), indi-cating its number of counters. The set CPos(t) = fa:n j Head(tja) = f 2 H; n � arc(f̂)gis called the set of counter positions in a term t 2 T (F [ H;X ). These are the positionsin t immediately below an auxiliary symbol f̂ , before the semicolon. The set of countervariables of a term t is denoted by CVar(t) = ftja j a 2 CPos(t) \ VPos(t)g.The auxiliary positions of the term t 2 T (F [H;X ) are denoted byPosH(t) = fa 2 FPos(t) j Head(tja) 2 HgThe outermost auxiliary positions of t 2 T (F [H;X ) are denoted byOPosH(t) = fa 2 PosH(t) j a � b or a k b for all b 2 PosH(t)g = lim inf� PosH(t)De�nition 3.1 Suppose there exists a precedence � on the auxiliary symbols H. Theprime rewrite system PH upon H contains for each symbol f̂ 2 H the pair of rewriterules f̂(0; ~x; ~y) ! t1 f̂(s(z); ~x; ~y) ! t2[f̂(z; ~x�(x); ~y)]Awhere A � Pos(t2) is a �nite set of mutually parallel positions incomparable with theauxiliary positions PosH(t2), ~x and ~y are variable vectors, �(x) is the substitution �(x) =[x 7! s(x)], and t1, t2 are terms from T (F [ H [ fsg;X ), such that for both i = 1; 2� for all auxiliary positions a 2 PosH(ti) there exists an auxiliary symbol ĝ 2 H anda subsequence ~w of ~x, such that f̂ � ĝ and tija = ĝ(~w; ~y);� for all variable positions a 2 VPos(ti), which are incomparable with all auxiliarypositions PosH(ti), we have tija = y or tija = ym where y 2 ~y is a variable and m isits mark, with either m 2 f0g [ ~x if i = 1 or m 2 fs(z)g [ ~x if i = 2.Prime rewrite systems are primitive recursive rewrite systems of special type. The mean-ing of ~x�(x) is to transform the variable x into s(x) if x belongs to the variable sequence ~x.Prime rewrite systems violate the requirement Var(r) � Var(l) for rewrite rules l ! rof classic rewrite systems, because there may exist variables V � Var(r) � Var(l) forrules l ! r 2 PH, and therefore they should be considered as production systems. Ifym 2 Var(r)� Var(l) is such a variable in a rule l ! r 2 PH of a prime rewrite systemPH, then the mark m is the counter subterm lja for a counter position a 2 CPos(l) andthe original variable is y 2 Var(l)�CVar(l). For ym we say that the variable y is markedby the counter expression m.



Remark: Prime rewrite systems without marked variables on the right-hand side of therules are called �at.Example 3.2 Suppose that H = ff̂ ; ĝ; ĥg and f̂ � ĝ � ĥ. The rewrite systemf̂(0; v; w;x; y) ! ĝ(v;w;x; y)f̂ (s(u); v; w;x; y) ! f̂ (u; v; w;x; y) + (f̂(u; v; w;x; y) + f̂ (u; v; w;x; y))ĝ(0; w;x; y) ! ĥ(w;x; y) ĥ(0;x; y) ! A(x)ĝ(s(v); w;x; y) ! ĝ(v;w;x; y) � ĝ(v;w;x; y) ĥ(s(w);x; y) ! B(yw):ĥ(w;x; y)is prime, whereas each of the following systems contains a counterexample to the De�ni-tion 3.1:� f̂(s(u); v; w) ! f̂(u; s(v); w) � f̂ (u; v; s(w)) does not match the right-hand side ofprime rewrite systems because f̂(u; s(v); w) and f̂(u; v; s(w)) are di�erent.� f̂(s(u);x)! F (ĝ(u; f̂(u;x))) is contrary to the fact that auxiliary symbols cannotbe encapsulated.� ff̂(s(u))! ĝ(u)�f̂(u); ĝ(s(u))! f̂ (u)+ĝ(u)g violates the precedence requirementon the auxiliary symbols: these two rules would imply f̂ � ĝ � f̂ .All prime rewrite systems are con�uent because they are orthogonal and left-linear.Prime rewrite systems are terminating since we can construct a lexicographic path or-dering �lpo for each prime system. The precedence � on auxiliary symbols H can beenlarged to plain symbols F in the following way: 8f̂ 2 H 8g 2 F we de�ne f̂ � g. Thisenlarged precedence, together with the left-to-right status of all auxiliary symbols, de�nesthe required ordering.4 Generators and folded formsIf all counter positions of a term t 2 T (F[H;X ) are occupied by variables, i.e. CPos(t) �VPos(t), then the term t is called a generator. We say also that a generator is a termwith open counters.Denote by N = fsi(0) j i 2 Ng the in�nite set of terms representing natural numbers.A (partial) enumerator for a generator t is a ground substitution �:X �! N such thatDom(�) = CVar(t) (Dom(�) � CVar(t)). A (partial) enumerator � is called basic if forall variables x 2 Dom(�) we have x� = 0. Denote by �(t) (��(t)) the set of all possible(partial) enumerators for the generator t, called the (partial) enumeration of t.Speaking about the normal form t�#PH makes sense only for �at prime rewrite systemsPH, otherwise the prime rewrite systems may introduce new variables.4.1 Production of fresh variablesA di�cult problem in describing an in�nite sequence of rewrite rules produced duringdivergence or an in�nite sequence of uni�ers as a solution of an equational uni�cationproblem is how to create fresh variables and how to manage properly this creation. This



is done in the prime rewrite systems by means of the marked variables. During the useof a prime rewrite system for rewriting, not only the variables but also their marks getinstantiated. This allows us to obtain richer structures as normal forms of enumeratedgenerators using the prime rewrite systems. This is the case e.g. if the divergence makesnew variables to appear originating from variable renamings during superpositions (seeTheorem 2.2), or if an in�nite sequence of uni�ers in an equational uni�cation problemcreates new variables for the same reason.Example 4.1 Consider an equational uni�cation [FH86] with the symbols F0 = fa; bg,F1 = fgg, F2 = ffg, and the set of equations E = ff(b; x) = x; g(f(x; y)) = g(y)g. Theuni�cation problem g(x) =?E g(a) has the in�nite sequence of uni�ers[x 7! a]; [x 7! f(y0; a)]; [x 7! f(y1; f(y0; a))]; : : : ; [x 7! f(yn; : : : ; f(y0; a) : : :)]; : : :This sequence can be produced from the generator x 7! ĥ(z; y) using the prime systemĥ(0; y) ! a ĥ(s(z); y) ! f(yz; ĥ(z; y))under the condition that we know to rename the variable yz, marked by the counterexpression z, in the term f(yz; �) into the variables y0, y1, . . . , yn.Assume that a term t 2 T (F [ H;X ), with all counter variables enumerated, containsvariables in a redex of t headed by an auxiliary symbol ĥ and suppose that these variables,marked by a counter, appear in the right-hand side r of a rewrite rule l! r 2 PH, whereHead(l) = ĥ, at a position not below ĥ (we say that these variables get unfolded by therule l ! r), exactly as the variable y in the Example 4.1. During a rewrite step, thesevariables must be renamed, which is done by �marking� them, and which means theyreceive a subscript created according to the rule l! r being applied. Actually, this markis the value of one counter expression of ĥ, in Example 4.1 it is the counter variable z.The rewriting relation coupled with the marking process is called marked rewriting.Marking a term means the application of a substitution at positions not below anauxiliary symbol f̂ 2 H and also the evaluation of the counter expressions as marks bythe same substitution. Let us denote by t �H � such an application of a substitution �,formally de�ned asf(~u) �H � = f(~u �H �) if f 62 H,f(~u) �H � = f(~u) if f 2 H,ym �H � = y�m� if ym is a marked variable,y �H � = y� if y is an unmarked variable,for each term vector ~u.De�nition 4.2 (Marked rewriting) Let t; t0 2 T (F [H;X ) be two enumerated termsand PH be a prime rewrite system. We write t =)PH t0 i�� there exist an outermost position a 2 OPosH(t), a rewrite rule l ! r 2 PH and asubstitution �, such that tja = l�; and� t0 = t[r �H �]a



We denote by t+PH the normal form of t wrt the relation =)PH .The expression m �H � yields the value of the mark m, determined by the match �, foreach marked variable ym 2 Var(r). According to the choice of the mark of a variable, weget decreasing, increasing or stable markings of the variables within the marked rewritingrelation =)PH .Example 4.3 Let us take the enumerated term t = a+ f̂(s3(0); s2(0); 0;x). If we applythe prime rewrite system PH consisting of the rulesf̂ (0; u; v;x) ! b f̂ (s(z); u; v;x) ! xs(z) � f̂(z; s(u); v;x)on it, then we get t0 = a+ (x3 � f̂(s2(0); s3(0); 0;x)). If we change the second rule of theprime system to f̂ (s(z); u; v;x) ! xu � f̂(z; s(u); v;x)we get t0 = a+ (x2 � f̂(s2(0); s3(0); 0;x)). Finaly changing the second rule intof̂ (s(z); u; v;x) ! xv � f̂(z; s(u); v;x)we get t0 = a + (x0 � f̂ (s2(0); s3(0); 0;x)) in the marked rewrite relation t =)PH t0. Thenormal form t+PH of the term t will bea+ (x3 � (x2 � (x1 � b))) for f̂(s(z); u; v;x)! xs(z) � f̂ (z; s(u); v;x) (decreasing),a+ (x2 � (x3 � (x4 � b))) for f̂(s(z); u; v;x)! xu � f̂ (z; s(u); v;x) (increasing),a+ (x0 � (x0 � (x0 � b))) for f̂(s(z); u; v;x)! xv � f̂ (z; s(u); v;x) (stable),respectively.4.2 Primal grammarsWe use generators to schematize recursive sets of terms from T (F ;X ). For this reasonwe introduce the primal term grammars.De�nition 4.4 A primal term grammar (or primal grammar for short) G is a 4-tuple(F ;H; PH; t), where F is a signature of plain symbols, H is a signature of auxiliary sym-bols, PH is a prime rewrite system, and t is a (partially basically enumerated) generator.The language generated by a primal term grammar G = (F ;H; PH; t), denoted byL(G), is the set of terms L(G) = ft�+PH j � 2 �(t)g. The generator t is called a foldedform of L(G).The generator t in De�nition 4.4 extends to equations and rules just by considering themas terms in the extended signature F [ f=g and F [ f!g, respectively.The class of !-terms (�-terms) [CH91] is included in the class of primal grammars.Let t be a !-term and ~a be the �nite sequence of all positions such that tjai = �(hi[bi 



�]; Ni; li). For all such !-terms t there exists a primal grammar G with the auxiliary sym-bols H = ~̂f , the generator t[f̂1(z1;~x); : : : ; f̂n(zn;~x)]~a, and the prime system PH containingthe pair of rules f̂i(0;~x) ! li f̂i(s(zi);~x) ! hi[f̂i(zi;~x)]bifor each f̂i 2 H, where ~x = Si Var(hi[li]bi), such that 
(t) = L(G). No variable treatmentis de�ned for !-terms, therefore there are no marks.Like for classical terms, one may want to unify primal grammars. Since the primerewrite systems are canonical, the uni�cation of two primal grammarsG1 = (F ;H1; PH1 ; t1)and G2 = (F ;H2; P 0H2 ; t2) by means of narrowing becomes possible, although it is unde-cidable in general. This uni�cation problem can be viewed as the uni�cation of the twogenerators t1 and t2 modulo the equational theory presented by the canonical systemPH = PH1 [ P 0H2 , which is equivalent to the intersection of some instances of the in�nitesets L(G1) and L(G2). In this scope, it would be interesting to know which equationaltheories are presentable by prime (or iterative) rewrite systems.If the uni�cation by narrowing is decidable, we can complete �nite primal grammarsystems G = f(F ;Hi; PHi; ti) j i = 1; : : : ; ng just by completing the rewrite systemsR(G) = fti j (F ;Hi; PHi; ti) 2 Gg, consisting of the generators in G � which are usualterms in T (F [H;X ), � modulo the rewrite system PH = Sni=1 PHi .In the sequel, the partially basically enumerated generators, used in Section 5 as foldedforms for iterated families of rules, containing only one noninstantiated counter variableare called axioms.5 Primal grammars for iterated familiesWe show how to produce a primal grammar G, based on a prime rewrite system PH, foran iterated family I(S) of rules originating from a crossed system S during completion,such that L(G) = I(S). The application of counters within a primal grammar G =(F ;H; PH; t) becomes evident now. The supporting counters, instantiated by zeros in theaxiom t, serve as interconnection mechanism between dependent auxiliary symbols insideof the rules in the prime rewrite system PH. The main counter , namely the only oneremaining noninstantiated in the axiom t, serves as the index of elements in I(S). Moreprecisely, the instantiation of the main counter in the axiom t by sn(0), followed by areduction to normal form under the marked rewriting relation =)PH, results in the n-thelement of the iterated family I(S).Before presenting the theorem concerning this statement, let us consider some exam-ples to explain the principles of the constructions developed in the sequel.Example 5.1 [Her90b] Consider the forward crossed systemd(x0 � (x0 
 y0)) ! y0 g(x)� y ! g(x� (x� y))where a = 1, b = 1, �1 = [x0 7! g(x); y0 7! y], �2 = [y 7! g(x)
 y], '1 = [x 7! g(x)], and'2 = [y 7! g(x)� y]. The iterated family has the formd(gn(x� (x� (g(x)� : : : (gn(x)
 y))))) ! y (1)



We have t2jb = x � (x � y) and t2[�]b = g(�). Iterated instances of t2[�]b are pumpedinto left-hand sides of produced rules during the observed divergence. This is capturedby the �rst part of the prime rewrite system:f̂(0; zy; zx;x; y) ! x� (x� f̂y(zy; zx;x; y))f̂ (s(z); zy; zx;x; y) ! g(f̂(z; s(zy); zx;x; y))The folded form of the iterated family (1) is the axiom d(g(f̂ (z; 0; 0;x; y)))! y.The auxiliary symbol f̂y, capturing the iterated instances of the variable y, will beconstructed from the substitutions '2, and �2. The second part of the prime rewritesystem will be f̂y(0; zx;x; y) ! g(f̂x(zx;x))
 yf̂y(s(z); zx;x; y) ! g(f̂x(zx;x))� f̂y(z; s(zx);x; y)originating from the substitutions '2 and �2.The same method applies on the variable x, producing the rewrite rules for the auxil-iary symbol f̂x: f̂x(0;x) ! x f̂x(s(z);x) ! g(f̂x(z;x))We have constructed a prime rewrite system, a mark, and a folded form for the iteratedfamily (1).The impact of marking can be nicely observed in the following example taken from aspeci�cation of the reverse operation on lists.Example 5.2 The proof by consistency of the inductive theorem rev(rev(x)) = x withinthe systemrev1(nil; y) ! nil rev1(xa:xb; y) ! rev1(xb; xa:y) rev(x) ! rev1(x; nil)leads to a divergent process with the iterated familyrev1(rev1(xb; xa:nil); nil) ! xa:xbrev1(rev1(xb; xa1:(xa:nil)); nil) ! xa:(xa1:xb)rev1(rev1(xb; xa2:(xa1:(xa:nil))); nil) ! xa:(xa1:(xa2:xb))...originating from the forward crossed systemrev1(rev1(x; nil); nil) ! x rev1(xa:xb; y) ! rev1(xb; xa:y)where a = 1, b = �, �1 = [x 7! xa:xb], �2 = [y 7! nil], '1 = [xb 7! xa:xb], '2 = [y 7!xa:y]. The resulting prime system will bef̂(0; zy; za; zb; y; xa; xb) ! rev1(xb; xazy:f̂y(zy; za; y; xa))f̂(s(z); zy; za; zb; y; xa; xb) ! f̂(z; s(zy); za; zb; y; xa; xb)f̂y(0; za; y; xa) ! nil f̂y(s(zy); za; y; xa) ! xazy:f̂y(zy; za; y; xa)f̂xb(0; za;xa; xb) ! xb f̂xb(s(zb); za;xa; xb) ! xas(za):f̂xb(zb; s(za);xa; xb)and the axiom rev1(f̂(v; 0; 0; 0; y; xa; xb))! xa:f̂xb(v; 0;xa; xb).



A similar situation can be observed in the case of backward crossed systems.Example 5.3 [Her90b] Consider the backward crossed system(x
 f(y))� y ! (x� y)
 y (x0 � y0)
 y0 ! x0where b = 1, �1 = [x 7! x � f(y)], �2 = [x0 7! x; y0 7! f(y)], '1 = [y 7! f(y)], and'2 = [x 7! x� f(y)]. The iterated family of rules has the form((((x� fn+1(y))� fn(y))� : : :� f(y))� y)
 y ! ((x� fn(y)))� : : :� f(y))� yWe have t2�2 = x and s1[�]b = (� � y). Iterated instances of s1[�]b are pumped ontothe root of right-hand sides of produced rules during the observed divergence. This willbe captured by a part of the primitive recursive rewrite system as in Example 5.1, onlythat t2 is replaced now by s1:ĝ(0; zy; zx;x; y) ! x ĝ(s(z); zy; zx;x; y) ! ĝ(z; s(zy); zx;x; y)� ĝy(zy; y)Using the previous system for ĝ, we can produce a semi-product of an axiom from theiterated family, schematizing the right-hand sides:((((x� fn+1(y))� fn(y))� : : :� f(y))� y)
 y ! ĝ(sn(0); 0; 0;x � fn(y); y)The auxiliary symbols ĝx and ĝy, capturing the iterated instances of the variables xand y respectively, are constructed from the substitutions '1, '2, and �1 , the same wayas in the forward crossed case.ĝx(0; zy;x; y) ! x� f(ĝy(zy; y)) ĝy(0; y) ! yĝx(s(z); zy;x; y) ! ĝx(z; s(zy);x; y)� f(ĝy(zy; y)) ĝy(s(z); y) ! f(ĝy(z; y))After considering the previous rewrite rules for ĝx and ĝy, the iterated family in thisexample can be derived from the axiom (ĝx(z; 0;x; y)� y)
 y ! ĝ(z; 0; 0;x� ĝy(z; y); y).We have got once more a prime rewrite system, a mark, and a folded form for theiterated family.Theorem 5.4 For each iterated family I(S), originated from a crossed rewrite system S,there exists a primal grammar G = (F ;H; PH; t) with an axiom t, such that L(G) = I(S).Proof: The basic ideas of the proof for forward crossed systems is given. The constructionfor backward crossed systems is similar.First of all, let us introduce some more notation:~wf = Var(t2) ~wb = Var(s1)~x1 = Dom('1) ~y1 = VRan('1)~x2 = Dom('2) ~y2 = VRan('2)~x12 = ~x1 [ ~x2 ~y12 = ~y1 [ ~y2~c1 = fzx 2 X j x 2 ~x1g �1(~u;~v) = [x 7! f̂x(~u;~v) j x 2 ~x1]~c2 = fzx 2 X j x 2 ~x2g �2(~u;~v) = [x 7! f̂x(~u;~v) j x 2 ~x2]~c12 = fzx 2 X j x 2 ~x12g �12(~u;~v) = [x 7! f̂x(~u;~v) j x 2 ~x12]~d1 = fzx 2 X j x 2 ~y1g 
1 = [z 7! s(z) j z 2 ~c1]~d2 = fzx 2 X j x 2 ~y2g 
2 = [z 7! s(z) j z 2 ~c2]~d12 = fzx 2 X j x 2 ~y12g 
12 = [z 7! s(z) j z 2 ~c12]�1 = [zx 7! s(zx) j x 2 ~y1 � ~x1] �2 = [zx 7! s(zx) j x 2 ~y2 � ~x2]q1 = (~d1 � ~c1)�1 q2 = (~d2 � ~c2)
V = Var(t2[�]b)� Var(t2jb) W = (~y1 � ~x1) \ (~y2 � ~x2)



The ~w-s, ~x-s and ~y-s are plain variables, the ~c-s and ~d-s are counters, the �-s are partic-ular parameterized substitutions introducing the supporting symbols f̂x, and the 
-s aresubstitutions for advancing counters. The expression �x means either �1 if x 2 Dom('1)or �2 if x 2 Dom('2), where � stands for one of the indexed symbols. All variables areconsidered to be global, e.g. ~c1 \ ~d2 = fzx 2 X j x 2 ~x1 \ ~y2g.Moreover, let �V(v) = [u 7! uv j u 2 V] be the marking substitution for the variables Vwith the counter expression z.Suppose that S = fs1! t1; s2! t2g is the forward crossed system as in De�nition 2.1.The set H contains the main symbol f̂ for keeping track of the manipulations con-cerning the term t2, together with the supporting symbols f̂x for each variable x 2 ~x12.The prime rewrite system PH contains the rewrite rulesf̂(0; ~d12; ~wf) ! t2jb�2(~d2; ~y2) �H �V[W (~c2 \ ~d12)f̂ (s(z); ~d12; ~wf) ! t2�1(~d1; ~y1)[f̂(z; ~d12
2; ~wf)]b �H �V [W (~c2 \ ~d12)for the main symbol f̂ and the rewrite rulesf̂x(0; ~dx � fzxg; ~yx) ! x(�24 �1(~d1�1; ~y1)) �H �V [W (qx)f̂x(s(zx); ~dx � fzxg; ~yx) ! x((('1 [ '2)4 �1(~d1�1; ~y1))4 �2(~d2
1; ~y2)) �H �V [W (qx)for each variable x 2 ~x12, and subsequently also for each supporting symbol f̂x. The union'1 [ '2 is a substitution because Dom('1) \ Dom('2) = ; from De�nition 2.1.The axiom t is the rules1�1�1(z;~0; ~y1)[t2�2�2(z;~0; ~y2)]a[f̂(z;~0; ~wf)]ab ! t1�1�1(z;~0; ~y1)The rest is proved by induction on n, proving that t[z 7! sn(0)]+PH is the n-th elementof I(S). 2Using techniques similar to those of Sattler-Klein [SK91], it is possible to construct adivergent rewrite system for each primal grammar.6 ConclusionA new schematization called primal grammars has been introduced, which presents ageneralization of recurrence domains [CHK90, CH91] and which has similarities withmeta-rules [Kir89]. In the proof of Theorem 5.4 an exact method was developed on howto construct primal grammars from iterated families of rules, originating from crossedrewrite systems during completion. Such a construction was not known for the recurrencedomains.Primal grammars can be uni�ed via their generators by narrowing. Subsequently, if theuni�cation by narrowing is decidable, it is possible to complete primal grammar systems.Together with the meta-rules [Kir89] and to a certain extent with the rewrite systems withmembership constraints (in�nite sets of ground equations are considered only) [Com91],the primal grammars represent the only known formalismpermitting completion of in�nitesets of rules.
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