On the Relation Between Primitive Recursion,
Schematization, and Divergence

Miki HERMANN*
CRIN (CNRS) and INRIA-Lorraine
Campus Scientifique, BP 239,
54506 Vandeeuvre-les-Nancy, France

e-mail: Miki.Hermann@loria.fr

Abstract

The paper presents a new schematization of infinite families of terms called the
primal grammars, based on the notion of primitive recursive rewrite systems. This
schematization is presented by a generating term and a canonical rewrite system. It
is proved that the class of primal grammars covers completely the class of crossed
rewrite systems. This proof contains a construction of a primal grammar from a
crossed rewrite system.

1 Introduction

Infinite sequences of terms, equations, rules or substitutions of common origin (sometimes
called infinite families of ...) appear frequently at different moments within equational
reasoning, automated deduction, and logic programming. One of these moments is e.g.
the divergent behavior of the completion procedure when it is applied to certain rewrite
systems. There exists sufficient conditions, presented in the form of patterns called crossed
rewrite systems, whose presence guarantees the divergence. Unfortunately, there exist
finitely presented decidable equational theories which imply a divergent behavior of the
completion procedure. Nevertheless, sometimes there is a need to use even this infinite
canonical rewrite system. Therefore one may want to capture by finite means the infinite
family of rules originating from a crossed system. Other possibility for the use primal
grammars presents equational unification when an infinite set of (most general) unifiers
is generated.

Schematizations present a suitable formalism to cope directly, by finite means, with
infinite families. To our knowledge, so far there are four schematizations of infinite fam-
ilies. These are the meta-rules [Kir89|, the term schemes |Gra88], the recurrence do-
mains [CHK90], with their subclass w-terms [CH91]| called also p-terms, and the rewrite

*Partially supported by Institut National Polytechnique de Lorraine grant 910 0146 R1.



tization of infinite families of terms, but on the contrary to other schematizations (which
usualy exploit a more complicated notion, such as higher order terms or some sort of
constraints) they are presented by a generating terms plus a canonical rewrite system. As
we will see later, primal grammars correspond exactly with the class of crossed systems.

The idea of this paper originated from two different sources. On the one hand,
this paper develops further the type of schematization introduced by Chen, Hsiang, and
Kong [CHK90, CH91]. The second source was the paper of Sattler-Klein [SK91].

2 Basic notation and definitions

It is supposed that the reader is familiar with the theory of rewrite systems. For reviews
see e.g. [DJ90, Bac91]|. The used notation is conform with that of [DJ91].

Denote by 7 (F,X) the set of all terms over variables X' and symbols F. Var(t)
denotes the set of all variables in the term ¢t. Head(t) denotes the function symbol
heading term ¢.

Pos(t) denotes the set of positions of the term ¢. The subset of variable positions of ¢ is
denoted by VPos(t), the subset of non-variable positions of ¢ by FPos(t). The expression
a < b denotes a position a above the position b. The expression a || b denotes that the
positions @ and b are parallel (incomparable). A subterm of ¢ at a position a € Pos(t) is
denoted by t|,. Denote by s[t], a new term obtained from the term s after replacing its
subterm s|, by ¢. Denote by s[-], a context of s with a hole at the position a.

Denote a substitution o: X — T (F,X) by [¢1 + t1,...,2, — 1,] when the terms ¢,
are substituted for the variables x;. A term t instantiated by a substitution ¢ is denoted by
to. Denote by Dom(c), VRan(o), and Var(o) the variable domain, variable range, and
all variables (union of variable domain and variable range) of a substitution o, respectively.

A rewrite rule is an ordered pair of terms s — t such that Var(t) C Var(s). A term
rewriting system (or rewrite system) is a finite set of rules R ={s — t | s,t € T(F,X)}.
A rewriting relation — g is the smallest relation containing R, closed under substitution
and replacement. The relation —x denotes the reflexive and transitive closure of —3g,
the relation +—p denotes the converse of —sp, the equivalence relation <+—p denotes
the reflexive, symmetric, and transitive closure of — . The normal form of a term ¢ wrt
a terminating rewrite relation — g is denoted by ¢|g.

Denote by @ ambiguously either the vector of distinct objects (ai,...,a,), or the se-
quence of distinct objects ay, ..., a,, or else the set {ay,...,a,}. Therefore the expression
F(E) means fi(er,.owi)s o faler, o).

Suppose that > is a precedence on F. A lexicographic path ordering >, on T (F,X)
is defined by s = f(§) >0 g(f) =t if one of the following holds: Js; € § such that
Si Zipo L, 0r f = g and Vi; € { we have s >ipo ti, or [ =g and § >§;ﬂf 1, where >§;ﬁ is the
lexicographic extension of the ordering .

2.1 Crossed systems

The sum [Her90a] of ¢ and ¢ is the substitution ¢ A ¢ defined as [v — xpp | « €
Dom(p),xpp # x]. The iterative operator turtle [Her90a| on o, ¢, and ¢ is defined



Recall that the crossed rewrite systems present a sufficient pattern for description
and recognition of divergent rewrite systems. For crossed systems see Examples 5.1, 5.2

and 5.3, or the paper [Her90b].

Definition 2.1 [KH90| The rewrite rules s; — t1 and s3 — 1o (with supposed disjoint
variables) form a forward [... a backward/ crossed rewrite system if [t; is not a
variable, [ there are substitutions oy [. .. substitutions o1/, @1, @2 in own variables of s5 [. ..
of s1/, an idempotent substitution oy [... substitution o/, and positions a € FPos(s1),

b € FPos(ty) [... and a position b € FPos(s1)] such that

1. (o1,09) is the most general semi-unifier of s1l, [... of s1]s] and sa:
81|a0'1 = S$2029 [ .. 81|bO'1 = 820'2],

2. (p1,¢2) is the most general semi-unifier of ta]y and sy [... of t1 and s1y/:
t2|b991 = 5202 [ ot = 51|b‘P2];

3. Dom(p1) N (Var(pz) U Var(oz)) =0 or Var(pr) N (Dom(ps) U Dom(os)) = 0
[-.. Dom(p1) N (Var(pz) UVar(or)) =0 or Var(er) N (Dom(py) UDom(oy)) = 0).

This definition is a simplified and cumulated version of those given in [KH90]. The latter,
more general, definitions treat the case of crossed systems consisting of more than two
rules, exploiting the notion of an overlap closure [GKMS83| sy »— t5 (51 »—> 1) instead of
a simple rewrite rule sy — t3 (s1 — t1). From the formal point of view the closure is
treated in the same way as the rule, therefore we use the simplified definition(s) for our
purposes.

It is evident from Definition 2.1 of crossed systems that Dom(¢1) N Dom(ez) = 0.

Theorem 2.2 [KH90| Let S = {s; — t1,52 — 2} form a forward (... a backward)
crossed system. Assume that each nontrivial eritical pair (so[t'cl.,to) computed by the
completion procedure from S and an ordering > satisfies so[t'c). = to (... satisfies to »
solt'o].). A fair completion procedure without interreduction produces from S the sequence
of rules

forward case backward case
Uy — U1 = (5101[t202]a),01 — tio1p1 up — vy = tiopr — (3101[t202]b),01
Uprl —7 Upr1 = UpWy [t2wn]ab" — Uplop, Upgl = Upt1 = tlwn — S1Wy [Unwn]b

called the iterated family Z(S), where

Wn = ((ﬂ-n A (991 A TN—1(¢7 ¥25 991))) U (992 A TN—1(¢7 ¥25 991)))pn-|—1

with ¢ = oy in forward case and ¢ = oy in backward case, is the iterative substitution
and

forward case backward case
T = |tn = a]a, € Var(uplas)] m™ = [, — 2| 2, € Var(ualy)]
P = [z a, |2 € Var(sy)] pn = [ a, |2 € Var(s)]

is a pair of fold/unfold substitutions for explicit variable renaming.



In addition to the signature of plain symbols F, we consider also another signature of
auzxiliary symbols H, where F N'H = (), plus the special symbols successor s and the zero
constant 0, both not included neither in F nor in ‘H. The auxiliary symbols from H will
be denoted by a hat to distinguish them from the ‘bare headed’ plain symbols from F.

The arguments of the function symbols f € H are divided into two parts by a semi-
colon. Those before the semicolon are called counters, or counter variables if they consist
just of a variable. Each auxiliary symbol f has a counter arity, denoted by ar (f) indi-
cating its number of counters. The set CPos(t) = {a.n | Head(t|,) = f € H,n < arc(f)}
is called the set of counter positions in a term ¢t € T(F U H,X). These are the positions
in t immediately below an auxiliary symbol f , before the semicolon. The set of counter
variables of a term ¢ is denoted by CVar(t) = {t|, | « € CPos(t) N VPos(t)}.

The auziliary positions of the term t € T(F UH,X) are denoted by

Posy(t) = {a € FPos(t) | Head(t|,) € H}
The outermost auxiliary positions of t € T(F UH,X) are denoted by
OPosy(t) = {a € Posy(t)|a<boral| bforalbec Posy(t)} = liminfc Posy(t)

Definition 3.1 Suppose there exists a precedence = on the auxiliary symbols H. The
prime rewrite system Py upon H contains for each symbol f € H the pair of rewrite
rules

J0.79) = & Js(2), &3) = talf(=.5(x): )
where A C Pos(ty) is a finite set of mutually parallel positions incomparable with the

auziliary positions Posy(ts), & and § are variable vectors, §(x) is the substitution §(x) =

[ — s(x)], and t1, ty are terms from T(FUHU{s}, &), such that for both i = 1,2

o for all aulemry positions a € POSy( ;) there exists an auxiliary symbol g € H and
a subsequence @ of , such that f = ¢ and tile = 9(0; 9);

e for all variable positions a € VPos(t;), which are incomparable with all auziliary
positions Posy(t;), we have t;|, =y ort;|, = yn, where y € ¥ is a variable and m is
its mark, with either m € {0} UZ ifi =1 orm € {s(2)}UT if i =2.

Prime rewrite systems are primitive recursive rewrite systems of special type. The mean-
ing of #§(x) is to transform the variable x into s(x) if # belongs to the variable sequence 7.
Prime rewrite systems violate the requirement Var(r) C Var(l) for rewrite rules [ — r
of classic rewrite systems, because there may exist variables ¥V C Var(r) — Var(l) for
rules [ — r € Py, and therefore they should be considered as production systems. If
Ym € Var(r) — Var(l) is such a variable in a rule [ — r € Py of a prime rewrite system
Py, then the mark m is the counter subterm [|, for a counter position a € CPos(l) and
the original variable is y € Var(l) — CVar(l). For y,, we say that the variable y is marked
by the counter expression m.



rules are called flat.

Example 3.2 Suppose that H = {f,g, iL} and f g > h. The rewrite system

(0, w32,y) = h(w;z,y) h(0; — A(z)

g T, y)
g(s(v),wiz,y) = glv,wia,y)* §lv, wyz,y) h(s(w);z,y) — Blyw).h(w;z,y)

is prime, whereas each of the following systems contains a counterexample to the Defini-
tion 3.1:

o f(s(u),v,w) — f(u,s(v),w) * f(u,v,s(w ) does not match the right-hand side of
prime rewrite systems because f(u,s(v),w) and f(u,v,s(w)) are different.

o f(s(u), z) — F(g(u; f(u, x))) is contrary to the fact that auxiliary symbols cannot
be encapsulated.

o {f(s(u)) — Q(u)*f(u), g(s(u)) — f(u)—l—f](u)} violates the precedence requirement
on the auxiliary symbols: these two rules would imply f > g > f.

All prime rewrite systems are confluent because they are orthogonal and left-linear.
Prime rewrite systems are terminating since we can construct a lexicographic path or-
dering >, for each prime system. The precedence > on auxiliary symbols H can be
enlarged to plain symbols F in the following way: ‘v’f € H Vg € F we define f > ¢g. This
enlarged precedence, together with the left-to-right status of all auxiliary symbols, defines
the required ordering.

4 Generators and folded forms

If all counter positions of a term ¢ € T(FUH, X') are occupied by variables, i.e. CPos(t) C
VPos(t), then the term ¢ is called a generator. We say also that a generator is a term
with open counters.

Denote by N' = {s°(0) | + € N} the infinite set of terms representing natural numbers.
A (partial) enumerator for a generator ¢ is a ground substitution & X — A such that
Dom(&) = CVar(t) (Dom(&) C CVar(t)). A (partial) enumerator ¢ is called basic if for
all variables @ € Dom(£) we have ¢ = 0. Denote by =(¢) (7=(t)) the set of all possible
(partial) enumerators for the generator ¢, called the (partial) enumeration of t.

Speaking about the normal form t£] p,, makes sense only for flat prime rewrite systems
Py, otherwise the prime rewrite systems may introduce new variables.

4.1 Production of fresh variables

A difficult problem in describing an infinite sequence of rewrite rules produced during
divergence or an infinite sequence of unifiers as a solution of an equational unification
problem is how to create fresh variables and how to manage properly this creation. This



of a prime rewrite system for rewriting, not only the variables but also their marks get
instantiated. This allows us to obtain richer structures as normal forms of enumerated
generators using the prime rewrite systems. This is the case e.g. if the divergence makes
new variables to appear originating from variable renamings during superpositions (see
Theorem 2.2), or if an infinite sequence of unifiers in an equational unification problem
creates new variables for the same reason.

Example 4.1 Consider an equational unification [FH86] with the symbols Fy = {a, b},
Fi =g}, Fo = {[}, and the set of equations £/ = {f(b,2) = z, g(f(2,y)) = g(y)}. The

unification problem g(z) =} g(a) has the infinite sequence of unifiers

[ +— a], [t = f(yo,a)], [x = flyr, fyo,a))], ..., [ = f(Ynyo oy flyo,a) .. )], ...

This sequence can be produced from the generator x — iL(Z, y) using the prime system

h(0y) — a h(s(z)iy) = fly=2h(zy)
under the condition that we know to rename the variable y., marked by the counter
expression z, in the term f(y.,-) into the variables yo, y1, ..., Yn.

Assume that a term ¢ € T(F U H,X'), with all counter variables enumerated, contains
variables in a redex of t headed by an auxiliary symbol h and suppose that these variables,
marked by a counter, appear in the right-hand side r of a rewrite rule [ — r € Py, where
Head(l) = h at a position not below h (we say that these variables get unfolded by the
rule [ — r), exactly as the variable y in the Example 4.1. During a rewrite step, these
variables must be renamed, which is done by “marking” them, and which means they
receive a subscript created according to the rule [ — r being applied. Actually, this mark
is the value of one counter expression of iL, in Example 4.1 it is the counter variable z.
The rewriting relation coupled with the marking process is called marked rewriting.

Marking a term means the application of a substitution at positions not below an
auxiliary symbol f € H and also the evaluation of the counter expressions as marks by
the same substitution. Let us denote by t e ¢ such an application of a substitution o,
formally defined as

f(i)oyo = [f(ieyo) if f&H,

fla)eyo = f(u) if feH,
Y O T = YOms if y,, 1s a marked variable,
yeyo = yo if y is an unmarked variable,

for each term vector «.

Definition 4.2 (Marked rewriting) Let ¢,t' € T(F UH,X) be two enumerated terms
and Py be a prime rewrite system. We write t =p,, t' iff

e there exist an outermost position a € OPosy(t), a rewrite rule | — r € Py and a
substitution o, such that t|, = lo; and

o ' =1t[reyo,



The expression m ey o yields the value of the mark m, determined by the match o, for
each marked variable y,, € Var(r). According to the choice of the mark of a variable, we
get decreasing, increasing or stable markings of the variables within the marked rewriting
relation =p,,.

Example 4.3 Let us take the enumerated term ¢ = a + f(SS(O), 52(0),0; x). If we apply
the prime rewrite system Py consisting of the rules

A A

f0,u,v;2) — b f(s(z),u,v;x) — Ty * fz,8(u),v5 )

on it, then we get ¢/ = a + (x5 * f(sz(()), 5%(0),0; x)). If we change the second rule of the
prime system to

fs(2),uva) = s fz,s(u),v;2)

we get t' = a + (xq * f(sz(()), 5%(0),0; x)). Finaly changing the second rule into

A

fls(2),u,v;2) — :I:U*f(z,s(u),v;x)

we get t' = a + (x¢ * f(sz(()), 53(0),0;2)) in the marked rewrite relation ¢ =>p,, ¢'. The
normal form #}p,, of the term ¢ will be

A

a+ (w3 (xg % (x1 % b)) for ]i(S(Z),

a+ (xgx (x5 % (x4 % b)) for f(s(z),u,v;a) = xy* f(z,s(u),v;z)  (increasing),

a+ (xo* (xo * (xg*b))) for f(s(z), X)) = Xy k f(z, s(u),v;x) (stable),

respectively.

VST = Tz * f(z,s(u),v;z) (decreasing),

Y

4.2 Primal grammars

We use generators to schematize recursive sets of terms from T (F,X). For this reason
we introduce the primal term grammars.

Definition 4.4 A primal term grammar (or primal grammar for short) G is a 4-tuple
(F,H, Py,t), where F is a signature of plain symbols, H is a signature of auxiliary sym-
bols, Py is a prime rewrite system, and t is a (partially basically enumerated) generator.

The language generated by a primal term grammar G = (F,H, Py,t), denoted by
L(G), is the set of terms L(G) = {t&llp,, | £ € Z(t)}. The generatort is called a folded
form of L(G).

The generator ¢ in Definition 4.4 extends to equations and rules just by considering them
as terms in the extended signature F U {=} and F U {—}, respectively.

The class of w-terms (p-terms) [CHI1] is included in the class of primal grammars.
Let t be a w-term and @ be the finite sequence of all positions such that ¢|,, = ®(h;[b;



N N

bols H = f, the generator t[fi(z1; %), ..., fu(zn; )]z, and the prime system Py containing
the pair of rules

A A

£:0;7) = 1 fils(z:); @) = hil filzi; D))o,

for each ﬁ € H, where & = U; Var(hi[li]s,), such that Q(t) = L(G). No variable treatment
is defined for w-terms, therefore there are no marks.

Like for classical terms, one may want to unify primal grammars. Since the prime
rewrite systems are canonical, the unification of two primal grammars Gy = (F, H1, Py, t1)
and Gy = (F,Ha, Py, . 12) by means of narrowing becomes possible, although it is unde-
cidable in general. This unification problem can be viewed as the unification of the two
generators t; and t; modulo the equational theory presented by the canonical system
Py = Py, U Py, which is equivalent to the intersection of some instances of the infinite
sets L(G) and L(Gy). In this scope, it would be interesting to know which equational
theories are presentable by prime (or iterative) rewrite systems.

If the unification by narrowing is decidable, we can complete finite primal grammar
systems G = {(F,Hi, Pu,,t;) | © = 1,...,n} just by completing the rewrite systems
R(G) = {t; | (F,H;, Pu,,t;) € G}, consisting of the generators in G — which are usual
terms in 7(F UH,X'), — modulo the rewrite system Py = U, Py, .

In the sequel, the partially basically enumerated generators, used in Section 5 as folded
forms for iterated families of rules, containing only one noninstantiated counter variable
are called axioms.

5 Primal grammars for iterated families

We show how to produce a primal grammar (G, based on a prime rewrite system P, for
an iterated family Z(5) of rules originating from a crossed system S during completion,
such that L(G) = Z(5). The application of counters within a primal grammar G =
(F,H, Py,t) becomes evident now. The supporting counters, instantiated by zeros in the
axiom t, serve as interconnection mechanism between dependent auxiliary symbols inside
of the rules in the prime rewrite system Py. The main counter, namely the only one
remaining noninstantiated in the axiom ¢, serves as the index of elements in Z(S). More
precisely, the instantiation of the main counter in the axiom t by s"(0), followed by a
reduction to normal form under the marked rewriting relation = p,,, results in the n-th
element of the iterated family Z(.59).

Before presenting the theorem concerning this statement, let us consider some exam-
ples to explain the principles of the constructions developed in the sequel.

Example 5.1 [Her90b| Consider the forward crossed system
dz' (@ @y)) = ¢ g(x) By = gl d (x0y))

where a =1, b=1, 01 = [2' = g(x),y' = y], 02 = [y = g(x) @y}, 1 = [z = g(z)], and
w2 = [y — g(x) @ y]. The iterated family has the form

dg"(z® (z 0 (g(x) ... (¢"(x) @y)))) — y (1)



into left-hand sides of produced rules during the observed divergence. This is captured
by the first part of the prime rewrite system:

f(()?Zy?Zl’;x?y) — x@(x@fy(zyvzxaxvy))

fls(2)s 2 s ay) = g(f(z08(2)s 20 2,y)

A

The folded form of the iterated family (1) is the axiom d(g(f(z,0,0;z,y))) — y.

The auxiliary symbol fy, capturing the iterated instances of the variable y, will be
constructed from the substitutions ,, and oy. The second part of the prime rewrite
system will be

F(0,z2,y) = g(fulze2) @y

A

fy(S(Z)v'Zl’; x,y) — g(fx(zl’; x)) %) fy(sz(Zl’); :z:,y)

originating from the substitutions ¢, and 3.
The same method applies on the variable x, producing the rewrite rules for the auxil-
iary symbol f,:

folOs2) = @ fels(z);2) = g(fulzi2))
We have constructed a prime rewrite system, a mark, and a folded form for the iterated
family (1).
The impact of marking can be nicely observed in the following example taken from a

specification of the reverse operation on lists.

Example 5.2 The proof by consistency of the inductive theorem rev(rev(x)) = « within
the system

revi(nil,y) —  nal revi(za.xb,y) — revi(xb,xa.y) rev(z) — revy(a,nil)
leads to a divergent process with the iterated family

revy(revy(xb, xa.nil),nil) — xa.xb
revy(revy(zb, xar.(xa.nil)),nil) — xa.(xap.xd)

revy(revy(xh, xas.(vay.(zanil))),nil) — za.(zay.(rag.xb))

originating from the forward crossed system
revy(revy(z,nil),nil) — « revi(za.xb,y) — revi(xb,xa.y)

where a« = 1, b = A, 01 = [x — za.xb], o3 = [y — nil], p1 = [xb— za.xb], v = [y —
za.y]. The resulting prime system will be

A f(0, 2y, 24, 203y, xa, xb) — rAevl(xb,vay.fy(zy,za;y,:z;a))

A f(s(z),zy,za,zb;y,:z;a,A:I;b) — f(z,s(zy),za,zb;y,:{;a,xb)
Afy(O,Za;y,l'a) — il Afy(S(Zy),Za;y,xa) - xazy-fy(f;yvza;yvxa)
Jup(0, 205 xa, xb) — b Jen(s(2), 2as xa, xb) = xaye,)- fon(2e, 5(24); 2a, xb)

and the axiom revl(f(v, 0,0,0;y, xa, xb)) — :L'a.fxb(v, 0; xa, xb).



Example 5.3 [Her90b| Consider the backward crossed system
(o f) sy — (ray) 0y (@oy)oy —

where b =1, 01 =[x = 2 O f(y)], oo = [2 = x,y = ()], o1 = [y = f(y)], and
w2 =[x+ & & f(y)]. The iterated family of rules has the form

(oM y)effy)e...ofy)dy) @y = (xdfY)D...0 fly) Dy

We have ty09 = & and s1[-]y = (- @ y). lterated instances of s;[-], are pumped onto
the root of right-hand sides of produced rules during the observed divergence. This will
be captured by a part of the primitive recursive rewrite system as in Example 5.1, only
that ¢, is replaced now by s;:

90,2y, z0i2,y) = @ 9(s(2)s 2y, zeiy) = G(2,8(2y), 203 2, y) © Gy(243Y)
Using the previous system for ¢, we can produce a semi-product of an axiom from the
iterated family, schematizing the right-hand sides:

(o yNaef ) e...afy)ey) @y — §(s7(0),0,0;2 & f(y),y)

The auxiliary symbols g, and g,, capturing the iterated instances of the variables x
and y respectively, are constructed from the substitutions 1, @9, and o , the same way
as in the forward crossed case.

920,25 2,y) = 2O f(gy(2459)) 9(0y) — y

9e(s(2), 23 0,y) = Ga(z,8(20);2,9) D f(9y(205 ) a(s(z);y) = f(9u(z59))

After considering the previous rewrite rules for ¢, and g,, the iterated family in this
example can be derived from the axiom (§,(z,0;2,y) B y) @y — §(2,0,0;2 & §,(2;y), y)-

We have got once more a prime rewrite system, a mark, and a folded form for the
iterated family.

Theorem 5.4 For each iterated family Z(S), originated from a crossed rewrite system S,
there exists a primal grammar G = (F, H, Py,t) with an axiom t, such that L(G) = Z(S).

Proof: The basic ideas of the proof for forward crossed systems is given. The construction
for backward crossed systems is similar.
First of all, let us introduce some more notation:

Wy = Var(ts) Wy, = Var(s)

1 = Dom(py) 1 = VRan(e1)

Zy = Dom(ps) Vo = VRan(ps)
Tig = T3 UTy Yiz2 = Y1Us

a = {neX|ved} ay(T50) = [ fo(@0) |z e @)
& = {neX|rved} ay(T50) = [v— fo(@0) |z € )
81_? = {Zx eXx | S 3_;12} 0512(17; 17) = [l’ — fgg(ﬁ, 17) | T € 512]
‘él = {neX|zei} 1 o= [z—=s(2)]z€d]

fl2 = {neX |z ept Y2 [z s(2) ]| z € &]
diz = {z €X |z €yt Y12 = [z 5(2) | 2 € ¢

€6 = [Z}; — s(zp) | € 1h — 4] € = [Z}; = 5(2) | & €y — @)
@ = (& —ac)a @ = (dy— )y

Vo= Var(ts]]s) — Var(tals) W = (41 — %) N (%2 — %)



ular parameterized substitutions introducing the supporting symbols f,, and the ~-s are
substitutions for advancing counters. The expression @, means either O if € Dom(¢1)
or Oy if @ € Dom(ys), where O stands for one of the indexed symbols. All variables are
considered to be global, e.g. ¢, N cfg ={z,eX|zedNy}.

Moreover, let Ty(v) = [u + u, | u € V] be the marking substitution for the variables V
with the counter expression z.

Suppose that S = {s; — 11,83 — 5} is the forward crossed system as in Definition 2.1.

The set ‘H contains the main symbol f for keeping track of the manipulations con-
cerning the term t,, together with the supporting symbols fx for each variable = € #15.
The prime rewrite system Py contains the rewrite rules

A —
—

f(0, 65)12; Wr) — talpaa(dy; o) ey Tvuw (N 65)12)
f(S Z)v dia; IBf) — t20é1(d1; gl)[f(zv dy272; IBf)]b oy TVUW(E2 N d12)

for the main symbol f and the rewrite rules

0z = a(on A anldiasin) ew vow(a)
fx(S(Zx)7 dy — {Zx}7 gx) — x(((@l U 992) A a1(d161; 51)) A Oéz(dz’h; 52)) o TVUW(Qx)

for each variable x € #1,, and subsequently also for each supporting symbol fx The union
©1 U 3 is a substitution because Dom(¢p1) N Dom(pz) = 0 from Definition 2.1.
The axiom ¢ is the rule

— — —

s1o101(2, 03 1) [t20205 (2, 0; ) |alf (2, 055 7)]es - = tiovon(z,0547)

The rest is proved by induction on n, proving that t[z — s*(0)[{}p,, is the n-th element
of Z(5). O

Using techniques similar to those of Sattler-Klein [SK91], it is possible to construct a
divergent rewrite system for each primal grammar.

6 Conclusion

A new schematization called primal grammars has been introduced, which presents a
generalization of recurrence domains [CHK90, CH91] and which has similarities with
meta-rules [Kir89]. In the proof of Theorem 5.4 an exact method was developed on how
to construct primal grammars from iterated families of rules, originating from crossed
rewrite systems during completion. Such a construction was not known for the recurrence
domains.

Primal grammars can be unified via their generators by narrowing. Subsequently, if the
unification by narrowing is decidable, it is possible to complete primal grammar systems.
Together with the meta-rules [Kir89] and to a certain extent with the rewrite systems with
membership constraints (infinite sets of ground equations are considered only) [Com91],
the primal grammars represent the only known formalism permitting completion of infinite
sets of rules.



I am grateful to Pierre Lescanne who contributed to the readability of the paper.

References

[Bac91]
[CHO1]

[CHK90]

[Com91]

[DJ90]

[DJ91]

[FHS6]

[GKMS3]

[Gra88]

[Her90a]

[Her90b|

L. Bachmair. Canonical equational proofs. Birkhauser, Boston, 1991.

H. Chen and J. Hsiang. Logic programming with recurrence domains. In
J. Leach Albert, B. Monien, and M. Rodriguez Artalejo, editors, Proceedings

18th ICALP Conference, Madrid (Spain), volume 510 of Lecture Notes in Com-
puter Science, pages 20-34. Springer-Verlag, July 1991.

H. Chen, J. Hsiang, and H.-C. Kong. On finite representations of infinite se-
quences of terms. In S. Kaplan and M. Okada, editors, Proceedings 2nd Inter-
national Workshop on Conditional and Typed Rewriting Systems (CTRS90),
Montreal (Canada), volume 516 of Lecture Notes in Computer Science, pages
100-114. Springer-Verlag, June 1990.

H. Comon. Completion of rewrite systems with membership constraints. Re-
search report 699, Laboratoire de Recherche en Informatique, Orsay, France,

1991.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science B: Formal Methods and Se-
mantics, chapter 6, pages 243-309. Elsevier, Amsterdam, 1990.

N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. Bulletin of the
FEuropean Association for Theoretical Computer Science, 43:162-172, February
1991.

F. Fages and G. Huet. Complete sets of unifiers and matchers in equational

theories. Theoretical Computer Science, 43(1):189-200, 1986.

J.V. Guttag, D. Kapur, and D.R. Musser. On proving uniform termination
and restricted termination of rewrite systems. SIAM Journal on Computing,

12(1):189-214, February 1983.

B. Gramlich. Unification of term schemes - theory and applications. SEKI
Report SR-88-18, Universitdat Kaiserslautern, Germany, 1988.

M. Hermann. Chain properties of rule closures. Formal Aspects of Computing,

2(3):207-225, 1990.

M. Hermann. Vademecum of divergent term rewriting systems. In “Avancées
en Programation” — Journées AFCET-GROPLAN, Nice (France), volume 70,
pages 148-164. BIGRE, January 1990.



[Kir89)]

[SK91]

tems. In S. Kaplan and M. Okada, editors, Proceedings 2nd International
Workshop on Conditional and Typed Rewriting Systems (CTRS’90), Montreal
(Canada), volume 516 of Lecture Notes in Computer Science, pages 143-154.
Springer-Verlag, June 1990.

H. Kirchner. Schematization of infinite sets of rewrite rules generated by di-

vergent completion process. Theoretical Computer Science, 67(2-3):303-332,
1989.

A. Sattler-Klein. Divergence phenomena during completion. In R.V. Book,
editor, Proceedings 4th Conference on Rewriting Techniques and Applications
(RTA91), Como (lItaly), volume 488 of Lecture Notes in Computer Science,
pages 374-385. Springer-Verlag, April 1991.



