Nondeterminism in Formal Development of
Concurrent Programs: A Constructive Approach

Hassan Haghighi® , Seyyed Hassan Mirian-Hosseinabadi?

Department of Computer Engineering
Sharif University of Technology
Tehran, Iran
haghighi@ce.sharif.edu, mirian@sharif.edu

Abstract. It is now widely accepted that programming concurrent software is a com-
plex, error-prone task. Therefore it is useful to specify, develop, and verify concur-
rent programs using formal methods. In our continuing work, we try to develop a
constructive framework for extracting concurrent programs from their formal specifi-
cations. In this framework, we use CZ specification language and rely on a transla-
tion of CZ set theory into Martin-L&f's theory of types. In this paper, we introduce
the first part of our work in which we regard and track the nondeterminism involved
in Ccz formal specifications of concurrent programs.

Key words: concurrency, constructivism, formal program development, nondetermin-
ism in CZ language, nondeterminism in Martin-L6f's theory of types

1 Introduction

The application of formal methods to the specification of software systems is expected to
increase the level of confidence in the correctness of final programs. However, the gap be-
tween the two phases of formal specification and program development causes this confi-
dence to be degraded yet again during the transition from the specification to the actual
program. Also, for complex programs, such as concurrent ones, verification does not ef-
fectively work. Hence a number of approaches have been proposed for developing pro-
grams from their formal specifications directly. Some methodologies for formal develop-
ment of concurrent (or parallel) systems are stepwise refinement [1], compositional [3, 8],
Owcki-Gries theory-based [4, 10].

In our continuing work, we try to provide a constructive framework for deriving con-
current programs from correctness proofs of their formal specifications in CZ formal
specification language. CZ (Constructive Z) was introduced in [9] as a constructive version
of the Z notation in order to employ the facilities of Z in organizing and manipulating for-
mal specifications and the ability of constructive formalisms in program development. In
[9], Mirian also provided an interpretation of CZ constructive underlying theory, CZ set
theory, in Martin-Lof's theory of types [7]. In our future framework, one can write a speci-
fication of his or her own concurrent program in CZ. Then, by the existing interpretation of
CZ in Martin-L6f's theory of types, this specification can be translated into a correspond-
ing type (or specification) in Martin-L6f's theory of types. Finally, a concurrent program,
which satisfies the initial CZ specification, can be derived from a correctness proof of the
type theoretical specification.

Although many important problems are encountered when developing concurrent sys-
tems, including (dynamic) process creation, multi-threading, communication, scheduling,
mutual exclusion, deadlock, and starvation, in this paper, we only concentrate on a special

problem, namely nondeterminism. Concurrency introduces nondeterminism as a conse-
quence of timing dependencies during process (or thread) creation, synchronisation, and
communication [2, 11, 12]: In a concurrent system, two or more candidates (programs,
processes, threads, or expressions) compete for a common resource (e.g., a lock, an ad-
dress space, a communication network, or a shared memory). To resolve this competition,
a choice should be made whose result is not necessarily deterministic.

Difficult situations may occur when nondeterminism remains unnoticed during specify-
ing, designing, and testing (concurrent) programs. For example, if only one of the possible
executions occurs during testing, the others remain fully untested. In this case, users may
rely on their application's fault-free operation while the program still holds the possibility
for serious bugs. Also, as we have shown in [5], when formal specifications involve im-
plicit nondeterminism, during deriving a program from a correctness proof of an implicitly
nondeterministic specification, only one of the possible behaviors extracts from its proof
tree and appears in the final program. In this way, the competition between concurrent
components, specified in formal specifications of concurrent systems, cannot be imple-
mented.

To solve the above mentioned problems, appropriate notations and semantics, which fa-
cilitate explicit specification of nondeterminism, should be introduced to formal specifica-
tion languages. Also, current frameworks for deriving programs from correctness proofs of
their formal specifications should be extended in a way which preserves the effects of the
specified nondeterminism in final programs. In [6], some basic notations have been added
to CZ language which facilitate explicit specification of nondeterminism. Also, an ap-
proach has been introduced in order to model nondeterminism in type theoretical specifi-
cations. Finally, the existing translation of CZ into Martin-L&f's theory of types [9] has
been extended to map nondeterminate constructs in CZ specifications to their counterparts
in Martin-L6f's theory of types. In this paper, we use this extended translation to extract
concurrent programs from their nondeterministic specifications in CZ.

In section 2, we investigate the relationship between concurrency and nondeterminism.
Relying on the results of [6], in section 3, we introduce a template for extracting concur-
rent programs from their formal (nondeterministic) specifications in CZ. The last section is
devoted to the conclusion and directions for future work.

2 Concurrency and Nondeterminism

Nondeterminism is frequently encountered when reasoning about concurrent systems [2,

11,12]:
. Threads are created so that they share the same address space which authorizes nondeter-
ministic effects.
. In a concurrent system, many facilities or resources need to be shared by several processes

(or threads). In other words, both processes and threads need to synchronise among them in
order to cooperate effectively when sharing resources. When several processes (or threads)
compete for the same resource, nondeterministic effects arise.

. Processes (or threads) can communicate with each other either via shared variables or via
message passing. Communication by shared variables is similar to the synchronisation meth-
ods. It is based on the assumption that processes share common memory and communicate via
shared variables which are stored within it. When communicating by message passing, proc-
esses are assumed to share a communication network and exchange data in messages by send
and receive primitives. In this case, nondeterministic behavior may be observed in both sharing
the communication network and using wild card receives. A call to a receive operation with a
wild card as the source identifier allows a message from any process to be accepted. Thus the

unpredictable arrival order of messages may influence the program's behavior in a nondeter-
ministic way.

The simple Example 2.1 shows a nondeterministic choice among some concurrent can-
didates which compete for a common resource.

Example 2.1 Assume that there are a number of concurrent (or parallel) components, co-
ordinated by a common coordinator. The communication between each component and the
coordinator is established by sending synchronisation messages via a shared communica-
tion network. Two components cannot send their messages along the shared network si-
multaneously. The following operation schema specifies an operation which nondetermin-
istically selects a component with the identifier x from n + 1 concurrent components to
communicate with the coordinator (This specification involves implicit nondeterminism):

The operation schema SelPos can be also considered as a specification of an operation
which selects a message among n + 1 received messages at a wild card receive command.[]

3 A Template for Extracting Concurrent Programs

In [6], we have introduced a framework which enables us to specify nondeterminism ex-
plicitly in CZ specification language and then translate nondeterministic CZ specifications
into their counterparts in Martin-L6f's theory of typest. In this section, we suggest a tem-
plate which utilizes this framework for developing concurrent programs.

According to the discussions of section 2, it can be easily implied that in all of the non-
deterministic situations in concurrent environments, a set of rival items has been given
from which one element, that satisfies a condition, must be selected. For example, at a
wild card receive operation, we should select a process (from the set of available proc-
esses) which has sent a message to the receiver, or in a concurrent database, a transaction
should be selected (from the set of active transactions) whose first operation does not con-
flict with the current lock base.

Now we consider a generalized form of the operation schema SelPos (in example 2.1)
which specifies a competition among some concurrent components and is (implicitly) non-
deterministic. In the following CZ specification, the operation schema SelComp specifies
an operation which selects one winner from some concurrent candidates. X, ..., X, are in-
put or before state variables, and alt! is an output variable which corresponds to the identi-
fier of the selected candidate (the winner). This candidate should satisfy the predicate
(condition) P which is the combination of the pre and the postconditions of SelComp.

1 The reader is assumed to be familiar with this work.

_ SelComp

X1€T1

Xm € T
alt! e N

P(X4, .., Xm, alt!)

The previous specification involved implicit nondeterminism. To make it explicit, we
use the notions of multi-schema and nondeterministic variable [6] as follows (The variable
alt! becomes nondeterministic):

- MSelComp

X1€T1

Xm € T
alt! e &N

P(Xy, ..., Xm, alth)

To extract a program from the above specification, we apply the extended function ¢ [6]
to the schema MSelComp step by step. The result of these applications is the following
type in Martin-Lof's theory of types:

[(MSelComp].=TTou € (6(T1)) " ..., am € (6(Tw))". 2B € &N [P(auy, ..., am, B))c

Since a nondeterministic choice among concurrent candidates is bounded, the above
specification can be interpreted as follows:

[MSelComp]. = TTou € (5(T1)), ..., am € (¢(Tw))". 2ndv € List(N).

1B e N . InList(B, ndv) < [P(a, ..., am, B)Ic
Finally, we can extract a program from a correctness proof of the above type theoretical
specification.

We can use the above results as a general template to extract concurrent programs from

their formal nondeterministic specifications in CZ. In example 3.1, we apply this template
to the simple example 2.1.

Example 3.1 To extract a program from the operation schema SelPos, we replace it by a
multi-schema MSelPos whose nondeterminism is explicit:

— MSelPos

n? e N
x! € &N

x!<n?

By applying g to MSelPos, the following type theoretical specification is obtained:
[MSelPos].=TTa. € N . Xy e List(N) . [T Be N . InList(8,) < B < o

We can finally extract a program from a correctness proof of the above specification.
Part of this proof is shown in Appendix A. The resulting program is

prog = Ao Ryy(a, ({0), p), ((s(x)) ~ fst(y), a))

p and q are the correctness proofs of z=(0) and v=(s(x)) " fst(y), respectively. The ex-
tracted program is a recursive function which results in the sequence (0) for a=0. Also, in
the recursive step (computing the output for a=s(x)), the result is equal to (s(x)) fst(y). *
is the symbol of concatenation of two sequences and fst(y) is the output for a=x. For each
o € N, prog produces a sequence consisting of all possible outputs and thus preserves the

competition among concurrent components. 0

4 Conclusions and Future Work

In this paper, we have introduced part of our continuing work in which we try to develop a
constructive framework for extracting concurrent programs from their formal specifica-
tions in CZ. Although many important problems are encountered when developing concur-
rent systems, we have only concentrated on their inherent nondeterminism. This research
proceeds to examine other problems within our constructive framework.

References

1. R. J. R. Back, “Refinement of Parallel and Reactive Programs”, Lecture Notes for the
Summer School on Program Design Calculi, Germany, Springer-Verlag, pp. 73-92, 1993.

2. M. Broy, “A Theory for Nondeterminism, Parallelism, Communication, and
Concurrency”, Theoretical Computer Science, vol. 45, no. 1, pp. 1-61, 1986.

3. K. M. Chandy and M. Charpentier, “An Experiment in Program Composition and Proof”,
Formal Methods in System Design, vol. 20, pp. 7-21, 2002.

4. D. Goldson and B. Dongol, “Concurrent Program Design in the Extended Theory of
Owicki and Gries”, in Proc. CATS 2005, Australia, 2005.

5. H. Haghighi and S. H. Mirian, “Nondeterminism in Type Theoretical Specifications”, in
Proc. of the 10™ Annual CSI Computer Conference, Iran, 2004.

6. H. Haghighi and S. H. Mirian, “An Approach to Nondeterminism in Translation of CZ
Set Theory into Martin-L6f's Theory of Types”, in Proc. Foundations of Software Eng.
Conf. (Fsen 2005), LNTCS 159, 2006.

7. P. Martin-L&f, “An Intuitionistic Theory of Types: Predicative Part”, H.E. Rose and J.C.
Sheperdson (Editors), in Proc. Logic Colloquium 73, North Holland, pp. 73-118, 1975.

8. D. Meier and B. Sanders. “Composing Leads-to Properties” Theoretical Computer
Science, vol. 243, no. 1-2, pp. 339-361, 2000.

9. S. H. Mirian, “Constructive Z”, Ph.D. dissertation, Dept. Comp. Sci., Essex Univ., 1997.

10. S. Owicki and D. Gries, “Verifying Properties of Parallel Programs: An Axiomatic
Approach”, Commun. ACM, vol. 19, no. 5, pp. 279-285, 1976.

11. E. Spiliopoulou, “Concurrent and Distributed Functional Systems”, Ph.D. dissertation,

Dept. Computer Science, Bristol Univ., 1999.
12. C. S. Pitcher, “Functional Programming and Erratic Nondeterminism”, Ph.D.
dissertation, Trinity College, Oxford Univ., 2001.

Appendix A

Extracting a program from the multi-schema
MSelPos

A=YveList(N) o [IBMN o InList(p, v) <& P =+ o prog=>ta et t=Rzxy(a,u,l)
B=TIp=MN e InList(B, v) = B <+ o u=(zp) z={0)
I'=oeN, xeN, ye A[x/a]

f=(vq) v={3(x); 1st(y)

Hyp Hyp Hyp
=N ‘— z={0) e }» head(v) = s(x) ol F tail(v) = fst(y)
s » A
Hyp
oeN F zeList(N) aeN FPEB[0-"'0’-][2-;”;’]
21
s }‘ us A[0/ct]
W Hyp S
N fype / I' |- veListN) I' |- qeB[sx)/a][vA]
ass

- 21
oeN }» aslN oelN F us Al0/a] oM, xeN, ye Al F fe Als(x) o]

Ne

Il

oeMN } teA

prog € (ITo.eMN ¢ XyeList(N) « [Tp=MN o« InList(p, v) < B =+)

