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Abstract. We adapt and combine work on rewriting-based decision procedures for T -
satisfiability and SER graphs, a graph-based method defined for abstract congruence
closure, to build graph-based decision procedures and compute extended canonizers
for the theory of equality and the theory of lists à la Shostak. Based on graphs our
approach addresses implementation issues that were lacking in previous rewriting-
based decision procedure approaches and which are important to argue its viability.

1 Introduction

In [9] we have introduced the concept of extended canonizer as the basic modularity concept
to design a combination schema featuring the efficiency of Shostak method [11] and the
modularity of the one by Nelson and Oppen [7]. An extended canonizer ecan is a module
which allows us to canonize terms with respect to a given theory T and a given T -satisfiable
set of equalities Γ , so that the uniform word problem for T , i.e. T |= Γ ⇒ s = t, reduces
to the problem of checking the identity ecan(Γ )(s) = ecan(Γ )(t), where ecan(Γ )(s) and
ecan(Γ )(t) are the “extended canonical forms” of s and t respectively. More specifically,
let T be a Σ-theory with decidable uniform word problem and Γ be a conjunction of Σ-
equalities. Given any T -satisfiable Γ , an extended canonizer for T is a function ecan(Γ ) :
T (Σ,X) → T (Σ ∪ K, X), such that, for any terms s, t, we have T |= Γ ⇒ s = t iff
ecan(Γ )(s) = ecan(Γ )(t), where K is a set of fresh constant symbols such that Σ ∩ K = ∅.
Each of these constants represents a distinct sub-terms in Γ and permit us to obtain a flat
set of equalities. Note that this transformation obviously preserves satisfiability. We assume
Â to be a simplification ordering (see e.g. [2]), which is total on ground terms and such that
t Â c for each non-constant term t ∈ T (Σ∪K) and constant c of K. Then, by the exhaustive
application of the rules of the superposition calculus (called saturation) [8], we obtain a
canonical rewrite system, which is confluent and terminating and permits us to define our
extended canonizer ecan(Γ )(s) for any ground term s of T (Σ) (see [9] for details). Notice
that if a theory T admitting an extended canonizer ecan is also convex, then it is always
possible to build a satisfiability procedure for T by recalling that Γ ∧ ¬e1 ∧ · · · ∧ ¬en is T -
unsatisfiable if and only if there exists some i ∈ {1, . . . , n} such that Γ∧¬ei is T -unsatisfiable
or equivalently T |= Γ ⇒ ei.

In [9] we have briefly described how to build extended canonizers for some important
theories like the theory of equality and the theory containing a commutative function symbol,
by extending the rewriting approach to satisfiability procedure described in [1]. However,
for lack of space, the discussion in [9] is sketchy and does not address complexity and
implementation issues which are important to argue the viability of the proposed concept.

In this paper, we overcome this shortcoming and we describe how to build extended
canonizers for the theory of equality and the theory of lists à la Shostak3. To this end,
we adapt and generalize the concept of SER graphs. SER graphs [10], a specialized version

? This work is supported by the National Science Foundation under grant ITR-0326540.
3 The theory of lists à la Shostak is defined by the axioms: cdr(cons(X, Y )) ≈ X,

car(cons(X, Y )) ≈ Y , cons(car(X), cdr(X)) ≈ X.



of the SOUR graphs [6] that were developed for general completion, present an efficient
graph-based method that combines the key ideas of completion [5] and abstract congruence
closure [3] to provide a graph-based decision procedure for the word problem of the under-
lying (ground) equational theory.The corresponding disadvantage is that it permits us to
obtain a convergent rewrite system over the original signature only by further transforming
the graph. Directed (SER) graphs that support full structure sharing are used to repre-
sent terms and equalities. Each vertex v is labeled by (i) a function symbol of Σ denoted
by Symbol(v), and (ii) a constant of K denoted by Constant(v). The vertices labeled by
constants of K represent terms or more generally equivalence classes of terms. Edges carry
information about subterm relationships between terms (S), rewrite rules (R) and unordered
equalities (E). We write u−E v and u →R v to denote equality and rewrite edges (between
vertices u and v), respectively. Subterm edges are also labeled by an index, and we write
u →i

S v. Informally, this subterm edge indicates that v represents the i-th subterm of the
term represented by u. This graph structure provides a suitable basis for computing (ab-
stract) congruence closures as graph transformation rules as described in [10]. The efficiency
of SER graphs crucially depends on the use of a simple ordering (that needs to be defined
only on K), rather than a full term ordering.

The advantage of SER graphs is that they allow us to easily reuse ideas to build decision
procedures developed in the rewriting approach [1] in a direct and natural way. They permit
us to compute normal forms with respect to both an extended and the original signature by
a suitable post-processing phase (by using compression and selection rules [3]). Besides we
believe that they provide us with refined characterization of the computational complexity
of the developed algorithms, which is not the case for [1] because of the abstract notion of
computation (i.e. a calculus) used.

In this paper we assume the reader is familiar with standard terminology of equational
logic and rewriting (see e.g. [2]). In the following let Σ be a set of function symbols and K
be a set of constants such that Σ ∩ K = ∅. We call Σ the (basic) signature, and Σ ∪ K the
extended signature. This paper is organized in the following way. In section 2 we show how
to build decision procedures and compute extended canonizers for the theory of equality and
the theory of lists à la Shostak in our framework and we conclude in section 3.

2 SER Graphs for Extended Canonizers

In this section we describe how to combine and adapt work from [9, 10] to build decision
procedures and compute extended canonizers for the theory of equality and the theory of lists
à la Shostak. In particular we show how SER graphs represent the state of the procedures
whose computations are described by a suitable set of transition rules ST (applied on an
initial SER graph) and how to compute extended canonizers from saturated SER graphs.

2.1 From SER Graphs to Extended Canonizers

Initial SER Graph An initial SER graph, DAG(Γ ), represents a set of equalities Γ as
well as the subterm structure of terms in Γ . It is characterized by the following conditions:
(i) If Symbol(v) is a constant, then v has no outgoing subterm edges; and (ii) if Symbol(v)
is a function symbol of arity n, then there is exactly one edge of the form v →i

S vi, for each
i with 1 ≤ i ≤ n.

The term Term(v) represented by a vertex v is recursively defined as follows: If Symbol(v)
is a constant, then Term(v) = Symbol(v); if Symbol(v) is a function symbol of arity n, then
Term(v) = Symbol(v)(Term(v1), . . . , T erm(vn)), where v →i

S vi, for 1 ≤ i ≤ n. Evidently,
Term(v) is a term over signature Σ. We require that distinct vertices of DAG(Γ ) represent
different terms. Moreover, we insist that DAG(Γ ) contain no rewrite edges and that each



equality edge u −E v correspond to an equality s ≈ t of Γ (with u and v representing s
and t, respectively), and vice versa. The vertices of the graph DAG(Γ ) also represent flat
terms over the extended signature Σ ∪ K. More specifically, if Symbol(v) is a constant,
then ExtTerm(v) = Constant(v), and if Symbol(v) is a function symbol of arity n, then
ExtTerm(v) = Symbol(v)(Constant(v1), . . . , Constant(vn)), where v →i

S vi, for 1 ≤ i ≤ n.

SER Graph Transformations Rules The SER graph transformation rules are formally
defined as pairs of tuples of the form (Es, Ee, Er, V, K, KC, C) → (E′

s, E′
e, E′

r, V ′, K′,
KC ′, C ′), where the individual components specify a graph, an extended signature, and an
ordering on constants, before and after rule application. Specifically,

– the first three components describe the sets of subterm, equality, and rewrite edges,
respectively;

– the fourth component describes the set of vertices4;
– the fifth component describes the extension of the original signature Σ;
– the sixth component describes the (partial) ordering on constants. Specifically, KC is a

set of “ordering constraints” of the form {ci Â cj | ci, cj ∈ K}. (A set of such constraints
is considered satisfiable if there is an irreflexive, transitive relation on K that meets all
of them); and

– the last component describes the function C that associates a constant of K and a
constant of Σ to a vertex of the graph. The signature of C is V → K × Σ. Let
Dom(f) be the domain of a function f and update(f, i, e) be a function f ′ which is
identical to f for every value in Dom(f) except for i for which f ′(i) = e. Indeed,
dom(update(f, i, e)) = dom(f) ∪ {i}.

Correctness Exhaustive application of the graph transformation rules is sound in that
the equational theory represented over Σ-terms does not change. It terminates; this can
be proved by assigning a suitable weight to graphs that decreases with each application
of a transformation rule. It is complete in that the (extended) rewrite system that can be
extracted from the final graph is convergent.

Extended Canonizers Computing an extended canonizer ecan(Γ )(s) of a term s ∈ T (Σ)
considering a set of ground equalities Γ and a theory T is performed by saturating the initial
SER Graph DAG(Γ ) w.r.t. a set of transformation rules ST to obtain a graph G′ and by
(recursively) integrating s to this saturated graph.

– If s is a constant c of Σ and c labels a vertex v of G′, v represents s.
– If s is a constant c of Σ that is not present on G′, a new vertex v labeled by c and a

new constant cnew are added to G′ to represent s.
– If s = f(s1, . . . , sn), a new vertex v labeled by f and a new constant cnew are added to

G′ to represent s. The terms si representing vi are recursively integrated to the graph
such that there is exactly one S edge of the form v →i

S vi, for each i with 1 ≤ i ≤ n.

A marker # is added to point on the vertex v representing s. The graph is saturated w.r.t.
the same set of transformation rules ST . ecan(Γ )(s) is computed by following the marker
#:

– If the marker points on a vertex v with an outgoing R edge to a vertex w, ecan(Γ )(s) =
Constant(w).

– Otherwise, ecan(Γ )(s) = ExtTerm(v).
4 Note that, in the theory of equality, vertices are deleted only. In the theory of lists à la Shostak

vertices are added and deleted.



2.2 Extended Canonizers for the Theory of Equality
The set of transformation rules ST is {Orient, SR, RRout, RRin, Merge}. Orient, replaces
an equality edge, v−E w, by a rewrite edge, v →R w, provided Constant(v) Â Constant(w).
The ordering Â needs to be defined on constants in K not on terms over Σ∪K. The SR rule
replaces one subterm edge by another one. In logical terms it represents the simplification
of a subterm by rewriting, or in fact the simultaneous simplification of all occurrences of a
subterm, if the graph presentation encodes full structure sharing for terms. The RRout (see
figure 15 ) and RRin rules each replace one rewrite edge by another. They correspond to
certain equational inferences with the underlying rewrite rules (namely, critical pair compu-
tations and compositions, which for ground terms are also simplifications). The RRin rule
is useful for efficiency reasons, though not mandatory. If the rule is applied exhaustively,
the resulting rewrite system will be a right-reduced rewrite system over the extended signa-
ture. The Merge rule collapses two vertices that represent the same term over the extended
signature into a single vertex. It ensures structure full sharing.
2.3 Extended Canonizers for the Theory of Lists à la Shostak
The set of transformation rules ST is {Orient, SR, RRout, RRin, Merge, CrdCons,
CarCons, CardCdrCons}. Orient , SR, RRout and RRin rules are the same as in sec-
tion 2.2. However, the ordering Â needs to be defined on K∪{cons, car, cdr} such for c ∈ K,
cons, car, cdr Â c. Rewriting and computing critical pairs in the presence of the axioms of
the theory of lists à la Shostak requires extending the equalities of Γ [4]. These extension
computations are implemented by the CrdCons, CarCons (see figure 1) and CardCdrCons
rules each corresponding to one of the axioms of the theory of lists à la Shostak.
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Fig. 1. RRout and CarCons Graph Transformation Rules

2.4 Example

Figure 2a presents the construction of DAG(Γ ), where Γ = {car(c) ≈ d, cdr(c) ≈ e, cons(i, j)
≈ k} and K = {c1, . . . , c9}. Considering the ordering {c5 Â c6, c7 Â c8, c12 Â c9, c10 Â
c1, c11 Â c2, c4 Â c3} we obtain the graph on figure 2b and the equivalent convergent rewrite
system over the extended signature: {c12 → c9, c5 → c6, c7 → c8, c10 → c1, c11 →
c2, c4 → c3, cons(c6, c8) → c12, car(c9) → c5, cdr(c9) → c7, car(c3) → c10, cdr(c3) →
c1, cons(c1, c2) → c4}. Using the graph we have: ecan(Γ )(car(c)) = c6.

3 Conclusion and Discussion

We have presented a new graph-based method for building graph-based decision proce-
dures and compute extended canonizers for the theory of equality and the theory of lists
5 Because of lack of space we present only RRout and CarCons in this paper on figure 1.
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Fig. 2. a) Initial DAG for Γ = {car(c) ≈ d, cdr(c) ≈ e, cons(i, j) ≈ k}, b) Saturated graph on the
extended signature

à la Shostak. The method combines the key ideas of the rewriting-based approach for T -
satisfiability and SER graphs. We believe that our approach allows for efficient implemen-
tations and a visual presentation that better illuminates the basic ideas underlying the
construction of decision procedures for convex theories and the computations of extended
canonizers. We plan to provide detailed complexity results in a next version of this paper
and are in the process of implementing our method.
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