
Semantic Labelling for
Termination of Combinatory Reduction Systems

Makoto Hamana

Department of Computer Science, Gunma University, Japan
hamana@cs.gunma-u.ac.jp

Abstract. We give a method of proving termination of Klop’s higher-order rewrit-
ing format, combinatory reduction system (CRS). Our method called higher-order
semantic labelling is an extension of Zantema’s semantic labelling for first-order
term rewriting systems. We systematically define the labelling by using the com-
plete algebraic semantics of CRS.

1 Introduction

Rewrite rules appear everywhere in computer science and logic. When reasoning with
such rewrite rules, termination property is important, so we need some way to ensure
termination of rewrite rules. This topic has been extensively investigated in the field of
term rewriting [3]. Higher-order extension of term rewriting are known as several for-
mats: major representatives are Klop’s Combinatory Reduction Systems (CRSs) [13],
Nipkow’s Higher-order Rewrite Systems [15], and Blanqui, Okada and Jouannaud’s
systems [5, 4]. In this paper, we deal with Klop’s CRSs. We give a method to prove
termination (meaning strong normalisation) of a CRS, called higher-order semantic la-
belling. This is an extension of semantic labelling for first-order term rewriting systems
(TRSs) given by Zantema [17].

Background. This paper is based on the algebraic semantics of CRS [11] by Σ-
monoids. The notion of Σ-monoids was introduced by Fiore, Plotkin and Turi [9], then
a higher-order abstract syntax for free Σ-monoids was developed by the author [10]. Full
version paper is available from http://www.keim.cs.gunma-u.ac.jp/˜hamana/hslf.pdf.

2 Preliminaries
CRS. We use the definition of the standard reference [14] of CRSs with a slight modi-
fication of syntax used in [8]. This is the exactly the same one used in [11]. Moreover,
we treat only CRSs built from binding signatures, which we call structural CRSs [11].
Hereafter, we do not explicitly say “structural”. A binding signature Σ is consisting of
a set Σ of function symbols with an arity function a : Σ→ N∗ (N∗ denotes the set of all
finite sequences of natural numbers). A function symbol of binding arity 〈n1, . . . , nl〉,
denoted by f : 〈n1, . . . , nl〉, has l arguments and binds ni variables in the i-th argument
(1 ≤ i ≤ l). For a formal treatment of named variables modulo α-equivalence in CRSs,
we assume the method of de Bruijn levels [9] for the naming convention of variables in
CRSs. We also use the convention that n ∈ N denotes the set {1, . . . , n} (n is possibly
0). Under the method of de Bruijn levels, this n means the set of variables from 1 to n.

2 Makoto Hamana

Fix an N-indexed set Z of metavariables defined by Z(l) , {z | z has arity l} (z is called
a metavariable). A meta-term t is obtained if n ` t is derived from the following rules
for some n ∈ N.

x ∈ n
n ` x

f : 〈i1, . . . , il〉 ∈ Σ n+i1 ` t1 · · · n+il ` tl
n ` f (n+1 . . . n+i1.t1, . . . , n+1 . . . n+il.tl)

z ∈ Z(l) n ` t1 · · · n ` tl
n ` z[t1, . . . , tl]

A meta-term containing no metavariables is called a term. The N-indexed set of all
metaterms is defined by MΣZ(n) = {t | n ` t} generated by an N-indexed set of
metavariables Z. A rewrite rule, written l → r, consists of two meta-terms l and r with
the following additional restrictions: (i) l and r are closed (w.r.t. variables) meta-terms,
(ii) l must be a function term where all meta-applications have the form z[x1, . . . , xn]
with distinct variables xi, (iii) r can only contain meta-applications with meta-variables
occurring in the left-hand side. We may use the notation Z|n ` s → t for a rule or a
rewrite step if metavariables and variables in s and t are included in Z and n respec-
tively. We may also simply write Z ` s → t or n ` s → t if another part is not
important. A valuation θ is a mapping that assigns to n-ary metavariable z a term t
θ : z - λ(x1, . . . , xn).t where all variables in t are included in {x1, . . . , xn}. Any val-
uation is naturally extended to a function on meta-terms. A set of rewrite rules under
the signature Σ is called a CRS and denoted by (Σ,R) or simply R. The CRS rewrite
relation→R is generated by context and safe valuation closure of a given CRS R.

Binding algebras. Algebraic semantics of CRSs is given by binding algebras. Let F be
the category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as objects, and
all functions between them as arrows m → n. This is the category of object variables
by the method of de Bruijn levels (i.e. natural numbers) and their renamings. We use
the functor category SetF. An object of SetF may be called a presheaf . The functor
δ : SetF → SetF for “index extension” is defined by (δL)(n) = L(n + 1) for L ∈ SetF.
To a binding signature Σ, we associate the signature functor Σ : SetF → SetF given by
ΣA =

∐
f :〈n1,...,nl〉∈Σ

∏
1≤i≤l δ

ni A. A Σ-algebra is an algebra of this functor. The presheaf
of variables V ∈ SetF is given by V(n) = n. The N-indexed set of all metaterms MΣZ
generated by Z forms a free Σ-monoid [10]. Moreover, when Z = 0 (empty set), MΣ0
forms an initial V +Σ-algebra and an initial Σ-monoid [9, 10].

Algebraic semantics of rewriting. For a presheaf A, we write ≥A for a family of pre-
orders {≥A(n)}n∈N, where ≥A(n) is a preorder on a set A(n) for each n ∈ N. Let (A1,≥A1

), . . . , (Al,≥Al), (B,≥B) be presheaves equipped with preorders. A map f : A1 × · · · ×
Al - B in SetF is weakly monotone if all n ∈ N, all a1, b1 ∈ A1(n), . . . , al, bl ∈ Al(n)
with ak ≥A(n) bk for some k and a j = b j for all j , k, then f (n)(a1, . . . , al) ≥B(n)
f (n)(b1, . . . , bl). A weakly monotone V+Σ-algebra (A,≥A) is a V+Σ-algebra equipped
with preorders such that every operation is weakly monotone. For a V + Σ-algebra A,
a term-generated assignment φ : Z - A is a morphism of SetF that is a compos-
ite Z - MΣ0 - A when the second morphism is a homomorphism. A V+Σ-
algebra A satisfies a rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) = φ∗(n)(r) for all term-
generated assignments φ : Z - A. A model A for a CRS (Σ,R) is a V+Σ-algebra A
that satisfies all rules in the weakening closure R◦ (cf. [11]) which means rules allow
free variables in their instances. A weakly monotone V+Σ-algebra (A,≥A) satisfies a
rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) ≥A(n) φ

∗(n)(r) for all term-generated assignments

Semantic Labelling for Termination of Combinatory Reduction Systems 3

φ : Z - A. A quasi-model A for (Σ,R) is a weakly monotone V+Σ-algebra A that
satisfies all rules in the weakening closure R◦.

3 Higher-Order Semantic Labelling

We assume that Z is an N-indexed set of metavariables, Σ is a binding signature and M
is a V+Σ-algebra. We introduce labelling of functions symbols: choose for every f ∈ Σ
a corresponding non-empty set S f of labels, called sort set. The binding signature Σ
for labelled function symbols is defined by Σ = { fp | f ∈ Σ, p ∈ S f } where the
binding arity of fp is defined to be the binding arity of f . A function symbol is labelled
if S f contains more than one element. For unlabelled f , the set S f containing only
one element can be left implicit; in that case we write f instead of fp. Choose for
f : 〈i1, . . . , il〉 ∈ Σ, a sort map that is a morphism of SetF defined by 〈〈−〉〉 f : δi1 M ×
· · · × δil M - KS f where KS f ∈ SetF is the constant presheaf defined by KS f (n) =
S f . The sort map was originally called a projection, denoted by π f in [17]. Then, as
in the case of ordinary signature, we define MΣZ by the presheaf of all meta-terms
generated by the labelled signature Σ. Let φ : Z - M be an assignment. The labelling
map φL : MΣZ - MΣZ is a morphism of SetF defined by φL

n(x) = x, φL
n(z[~t]) =

z[φL
n~t], φ

L
n(f (n+~i1.t1, . . . , n+~il.tl)) = f〈〈φ∗n+i1 (t1),...,φ∗n+il (tl)〉〉

f
n
(n+~i1.φL

n+i1
t1, . . . , n+~il.φL

n+il
tl). For a

given CRS (Σ,R), we define the labelled rules by R = {Z ` ~n.φL
nl→ ~n.φL

nr | Z ` ~n.l→
~n.r ∈ R, assignment φ : Z - M}. Thus R is a set of rewrite rules on labelled terms
in MΣZ(0). So, (Σ,R) forms a CRS that gives rewriting on Σ-terms. The labelling map
φL preserves R-rewrite structures, hence we have the main theorem of this paper.

Proposition 1. Let M be a model of (Σ,R). If we have CRS rewriting n ` s →R t on
MΣ0n, then for the assignment φ : 0 - M, we have rewriting n ` φL

n s →R φL
nt on

MΣ0n.

Theorem 2 (Higher-order semantic labelling). Let M be a model of a CRS (Σ,R).
Then, (Σ,R) is terminating if and only if (Σ,R) is terminating.

We need separately a way to prove termination of the labelled system. For this
purpose, we use Blanqui’s version of General Schema for “new definition of IDTS”
([6] Def. 1). Structural CRSs used in the present paper can be seen as a subclass of
Blanqui’s IDTSs. Hence we can use General Schema as a criteria of termination of
structural CRSs. In our experience, this is the most powerful decidable method to prove
termination of CRSs. General Schema uses a precedence which is a partial order on
function symbols occurring in a CRS.

Example 3 (CRS for prefix sum). Consider the following CRS P for computing the
prefix sum of a list i.e. the list with the sum of all prefixes of a given list using the
higher-order function map [7].

map(a.f[a], nil) → nil ps(nil) → nil
map(a.f[a], x : xs)→ f[x] : map(a.f[a], xs) ps(x : xs)→ x : ps(map(a.x + a, xs))

4 Makoto Hamana

Unfortunately, General Schema cannot show termination of the CRS P because the
argument of ps in the right-hand side of the last rule is not a subterm of the argument
of ps in the left-hand side. So we use higher-order semantic labelling. The CRS P is
formulated under the binding signature Σ = {map : 〈1, 0〉,S, ps : 〈0〉, 0, nil : 〈〉,+, “ :
” : 〈0, 0〉}. We take the presheafMn , (Nn → N) of all functions onN for a model ofP.
The operations are defined by mapM0

(f , y) = y, ps(x) = x, :M0 (x, y) = y + 1, nilM0 =

0, x +M0 y = 0. The idea of this model is “to count the number of cons’s”. We label the
function symbol ps and assume that other function symbols are unlabelled. We use the
natural numbers N as the sort set S ps. The sort map is defined by 〈〈x〉〉ps

0 = x. Then, we
have the labelled rules ps0(nil) → nil, psi+1(x : xs) → x : psi(map(a.x + a, xs)) for all
i ∈ N. General Schema succeeds in showing termination of this labelled CRS with the
precedence psi > ps j > map > nil, : for i > j ∈ N.

The quasi-model version of the semantic labelling theorem is obtained similarly.
Define the CRS Decr (called “decreasing rules”) over Σ by fp(~i1.z1[~i1], . . . , ~i1.zl[~il]) →
fq(~i1.z1[~i1], . . . , ~i1.zl[~il]) for all f : 〈i1, . . . , il〉 ∈ Σ and all p >S q ∈ S f , where >S

denotes the strict part of ≥S .

Theorem 4. Let M be a quasi-model for a CRS (Σ,R) and (Σ,R) the labelled CRS with
respect to M. Then (Σ,R) is terminating if and only if (Σ,R ∪ Decr) is terminating.

Example 5 (Monad for the lambda calculus). Consider the following CRS R under
the binding signature Σ = {lift, bind : 〈1, 0〉, app〈0, 0〉, abs : 〈1〉, var, old : 〈0〉, new :
〈〉} and the metavariables Z = {f1, g1, x0, s0, t0}. This is the single base type version of
the rewrite system of multiplication operation of the monad of λ-calculus in [1].

lift(f, new) → var(new) lift(f, old(x)) → bind(a.var(old(a)), f[x])
bind(f, var(x))→ f[x] bind(f, app(s, t))→ app(bind(f, s), bind(f, t))

bind(f, abs(a.g[a]))→ abs(a. bind(b.lift(f, b), g[a]))

It is not straightforward to show termination of this system using known criteria in
higher-order rewriting. In the last rule, bind decomposes the abs construct, but in its
right-hand side, the recursive call of bind happens with the argument b.lift(f, b) which
is structurally bigger than f in the left-hand side. Moreover, lift is defined by using
bind, which seems to be circularity. Due to these reasons, most of RPO-like syntactical
methods for termination of higher-order rewriting fail. When we try to show termination
of R using General Schema, we cannot determine the precedence between the function
symbols lift and bind. This is the same as for the corresponding rewrite rules written in
other formats of higher-order rewriting and termination criteria for them. For the higher-
order rewrite system corresponding to R in the format Inductive Data Type Systems
[5], the higher-order RPO [12] fails to show termination. For the S-expression rewrite
system corresponding to R, the lexicographic path order described in [16] fails to show
termination. For the simply-typed term rewriting system (STTRS) corresponding to R,
the dependency pair technique for STTRSs [2] fails to show termination.

Termination proof. We take the carrierM to be the presheaf of strictly monotone func-
tions onN equipped with the usual order ≥ and its pointwise extension, i.e.Mn = [Nn⇒
N] where [−⇒−] denotes the set of all strictly monotone functions. ThisM also forms

Semantic Labelling for Termination of Combinatory Reduction Systems 5

a monoid in SetF by taking the multiplication as the composition and the unit as the pro-
jections. The Σ-algebra structure onM is defined by liftM0 (f , x) = f (0), bindM0 (f , x) =
f (x)+1, newM0 = 0, oldM0 (x) = 0, varM0 (x) = x, appM0

(x, y) = max(x, y), absM0 (g) =
1. One can easily check thatM with these operations is indeed a quasi-model for R. We
only label the function symbol bind. We choose the sort set S bind = N and the weakly
monotone sort map as 〈〈−,−〉〉bind

0 : [N⇒ N] × N - N, 〈〈 f , x〉〉bind
0 = f (x). Using

this, we have the following labelled CRS R ∪ Decr for all strictly monotone functions
f ∈ [N→ N].

lift(f, old(x)) → bind0(a.var(old(a)), f[x])
bind f (x)(f, var(x)) → f[x] for all x ∈ N
bind f (s)(f, app(s, t)) → app(bind f (s)(f, s), bind f (t)(f, t)) for all s ≥ t ∈ N
bind f (t)(f, app(s, t)) → app(bind f (s)(f, s), bind f (t)(f, t)) for all s < t ∈ N
bind f (1)(f, abs(a.g[a]))→ abs(a. bind f (0)(b.lift(f, b), g[a]))
bindi(f, x) → bind j(f, x) for all i > j ∈ N

With the precedence bindi > bind j > lift > bind0 > var, app, abs, old, new for all
i > j > 0, General Schema succeeds in showing the termination of R ∪ Decr. Hence,
by Thm. 2, we conclude termination of R.

References

[1] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized inductive types. In Proc. of
13th Int. Wksh. on Computer Science Logic, CSL ’99, LNCS 1683, pages 453–468, 1999.

[2] T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In Proceedings of the 16th International
Conference on Rewriting Techniques and Applications (RTA 2005), Lecture Notes in Computer Science 3467, pages
120–134, 2005.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[4] F. Blanqui, J.-P. Jouannaud, and M. Okada. The calculus of algebraic constructions. In Rewriting Techniques and

Applications (RTA 1999), LNCS 1631, pages 301–316. Springer, 1999.
[5] F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive data type systems. Theoretical Computer Science, 272:41–68,

2002.
[6] Frederic Blanqui. Termination and confluence of higher-order rewrite systems. In Rewriting Techniques and Appli-

cation (RTA 2000), LNCS 1833, pages 47–61. Springer, 2000.
[7] Cristina Borralleras and Albert Rubio. A monotonic higher-order semantic path ordering. In Procs. 8th International

Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), LNCS 2250, pages 531–547,
2001.

[8] O. Danvy and K.H. Rose. Higher-order rewriting and partial evaluation. In Rewriting Techniques and Applications,
9th International Conference, (RTA’98), LNCS 1379, 1998.

[9] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. 14th Annual Symposium on Logic
in Computer Science, pages 193–202, 1999.

[10] M. Hamana. Free Σ-monoids: A higher-order syntax with metavariables. In Asian Symposium on Programming
Languages and Systems (APLAS 2004), LNCS 3302, pages 348–363, 2004.

[11] M. Hamana. Universal algebra for termination of higher-order rewriting,. In Proceedings of 16th International
Conference on Rewriting Techniques and Applications (RTA’05), LNCS 3467, pages 135–149. Springer, 2005.

[12] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS’99, pages 402–411. IEEE,
1999.

[13] J.W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam, 1980. volume 127 of Mathematical
Centre Tracts.

[14] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Introduction and survey. Theor.
Comput. Sci., 121(1&2):279–308, 1993.

[15] Tobias Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Computer Science, pages 342–349,
1991.

[16] Y. Toyama. Termination of S-expression rewriting systems: Lexicographic path ordering for higher-order terms. In
Proceedings of the 15th International Conference on Rewriting Techniques and Applications (RTA 2004), Lecture
Notes in Computer Science 3091, pages 40–54, 2004.

[17] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae, 24(1/2):89–105, 1995.

