
A Further Step in the Incremental Design Process:
Incorporation of an Increment Specification

Cécile Braunstein1 and Emmanuelle Encrenaz2

1 University Paris 6 - LIP6 - CNRS – France
cecile.braunstein@lip6.fr

2 Laboratoire Spécification et Vérification - ENS Cachan - CNRS – France
emmanuelle.encrenaz@lsv.ens-cachan.fr

Abstract. Writing relevant properties for a realistic component’s specification
is not easy. In [1], we formalized an incremental design process. A component
is obtained from a simpler component and some new behaviors modeled by an
increment. From a component at a step i of the design process, its specification
can be derived into a part of the specification of the same component at a step
i + 1. The obtained specification is exactly the set of rules necessary to check
the non-regression between two components. In the present paper, we extend the
transformation rules, previously stated, in considering that the increment verifies
a set of CTL formulas. This allows to build automatically a larger set of formulas
that is the entire specification of the component at step i+1.

1 Introduction

In [1], we defined an incremental process to design hardware components. This ap-
proach is very close to the way some hardware designers proceed : after having sketched
the rough structure of the data part and its synchronization in the simplest case, one
takes into account new events and defines the new behaviours they induce. The new
behaviours may not override previously existing ones, and there is no deletion of be-
haviours. The design of a component is performed step by step, the designer starts with
the simplest component that does not take into account all the possible events its en-
vironment may produce. Then the component is complexified in a stepwise manner by
considering one (or a small number of) new events at each step. For example, while de-
signing a processor, one may start by assuming that the cache will always hit a request
and in a second step, add the new event cache miss and the corresponding management.
We propose a framework that helps designers to focus on one problem at a time. The
main advantage is the guarantied-by-construction non-regression of the transformed
model with respect to the previous one.

The way several increments interfere with each other has been extensively studied
in the context of feature inconsistencies detection in telecommunication or software
plug-ins. For instance, Plath and Ryan have proposed in [4, 2] a feature integration
automating tool coupled with model-checkers. Our purpose is slightly different and is
grounded on a much simpler definition of the increment than the feature integration
definition. Indeed, our increment is monotonic: there is no overriding of behaviours, all

2 Cécile Braunstein and Emmanuelle Encrenaz

behaviours that were in the simple component are preserved in the more complex one
and new behaviours are tagged with a particular value, thus one can recognize them.
Hence property-preservation or transformation results we propose are stronger.

The incremental design process allows one to derive a specification for a simple
component into a part of the specification of a more complex one. The purpose of this
paper extends these transformations by assuming that the increment verifies a set of
CTL formulas (we add a specification to the increment). This assumption induces a
reacher set of transformations; this alleviates the task of re-writing the specification of
the complex component from the previous one.

2 Increment definition

The incremental design process, starts from an initial step where the rough structure
of the data-path and the control part is defined. Then the designer proceeds to the im-
plementation of the simplest cases up to the most complex ones. This is accomplished
by adding new functionalities without overriding nor deleting previous behaviours. In
a general way, hardware designers represent their architecture with Moore machines
and the semantic of CTL is defined over Kripke structure. For sake of conciseness, we
do not introduce the Moore machine and its link to Kripke structure but we consider
that component’s behaviours are represented as Kripke structure. The translation be-
tween Moore machine and Kripke structure is well-known and can be automatically
computed ([3]).

Definition 1. Each signal is defined by a variable name, s and an associated finite def-
inition domain Dom(s).
Let E be a set of signals. A configuration c(E) is the conjunction of the association : for
each signal in E, one associates one value of its definition domain. The set of all con-
figurations c(E) is named C (E).

Definition 2. A Kripke structure is a 5-tuple K = 〈S,s0,AP,L ,R〉 where: S is a finite set
of states; S0 ⊆ S is the set of initial states; AP = I ∪O is a finite set of atomic propo-
sitions, I is a set of input signals and O the set of output signals; L = {l0, . . . , l|AP|−1}
is a vector of | AP | functions. Each function defines the value of exactly one atomic
proposition; for all 0 ≤ i ≤|AP| we have li : S → B; for all s ∈ S, we have that li(s) is
true iff the atomic proposition associated to li is true in s. R ⊆ S× S is the transition
relation.

We define an increment as adjunction of a new functionality (or a set of functionali-
ties) to a initial Kripke structure. Intuitively, an increment represents the reaction of the
system to a set of new event e. A new event is represented by a new3 set of signals added
on the input interface of the system. The event may be active or not. The occurrence of
the new event induces new behaviours and a new set of output signal.

Definition 3. An event e = 〈I+,CACT (I+),CQT (I+)〉 is such that

I+: The set of new input signals and their definition domain, I∩ I+ = /0.

3 This can be extended to model the appearance of new value of existing signals (see [1])

Title Suppressed Due to Excessive Length 3

CACT (I+): The set of configurations representing the occurrence of the new event. If
one such configuration occurred the event would be said to be active. We denote
c qt a configuration belonging to CQT .

CQT (I+): The set of configurations representing the absence of the new event. If one
such configuration occurred the event would be said to be quiet. We denote c act a
configuration belonging to CACT .

We have CACT (I+)∪CQT (I+) = C(I+) and CACT (I+)∩CQT (I+) = /0. We note ¬c act ∈
CQT and ¬c qt ∈CACT .

When a designer adds the management of the new event, he may want to specify
this new behaviour only. In practice, it is easier to think about the increment in term of
an independent functionality. Thus the increment is seen as a component4 that will be
plugged into the initial model to enrich the initial behaviours. This new functionality
is triggered by an active configuration of the new event. We present a new definition
of the increment, it is more precise than the one described in [1], that focused on the
triggering of the new functionality.

Definition 4. Increment
Let Ki be an initial structure, an increment applied to Ki is a 3-tuple

INC = 〈KINC ,Ri→INC ,RINC→i〉 such that KINC is defined as follows

SINC : the set of new reachable states;
S0INC ⊆ SINC : the set of initial states such that
APINC = APi ∪ I+ ∪O+: the set of atomic propositions, I+ and O+ are the set of new

input and output signals;
LINC: Vector of | APINC | labeling functions;
RINC = SINC ×SINC: the set of new transitions.

And the connection between Ki and KINC is such that: Ri→INC ⊆ Si × S0INC such that
((s1,c1),(s2,c2)) ∈ Ri→INC iff (s1,c′1) ∈ Si, c1 = c′1 ∧ c act ; RINC→i ⊆ SINC ×Si

We define SPECINC the set of CTL formulas verified by all initial states of KINC .
SPECINC is the specification of the new functionality. We say that KINC |= ϕ iff ∀s0 ∈
S0INC ,KINC ,s0 |= ϕ.

The component at step i+1 of the design is represented as a Kripke structure Ki+1
obtained by adjunction of the model Ki and the increment KINC connected as defined by
Ri→INC and RINC→i. Our design process preserves pre-existing behaviours, if the new
event does not occur Ki+1 behaves exactly as Ki. In the incremented model, all states
that were in the simplest model are labeled with a quiet value (c qt). All states at the
boundary of the simplest model and the increment structure, are labeled with an active
value (c act) (see fig.1).

Definition 5. Incremented Kripke structure Ki+1
Let Ki an initial model, let INC = 〈Ri→INC ,RINC→i,KINC〉 be an increment, the incre-
mented Kripke structure Ki+1 is defined such that :

4 As a consequence the increments that do not induce new states can not be considered by this
framework.

4 Cécile Braunstein and Emmanuelle Encrenaz

Si+1 ⊆ S′i ∪S′′i ∪SINC: with S′
i the set of state coming from Si with an extended label :

a = (s,c) ∈ S′i iff (s,c′) ∈ Si and c = c′ ∧ c qt; S′′
i the set of state coming from Si

with an extended label : a = (s,c) ∈ S′′
i iff (s,c′) ∈ Si and c = c′∧ c act

S0i+1 = S0i

APi+1 = APi ∪ I+ ∪O+: the set of atomic propositions, I+ and O+ are the set of new
input and output signals;

Li+1 = LINC • L′
i: Vector of | APi+1 | labeling functions, • is the concatenation func-

tion and L′
i is the vector of labeling function of Ki extends with the new atomic

propositions ;
RINC = Ri→INC ∪RINC→i ∪R′

i ∪RINC: R′
i is s.t. ((s1,c1),(s2,c2)) ∈ R′

i iff (s1,c′1) and
(s2,c′2) are in Si and c1 = c′1 ∧ e qt, c′2 = ∧e qt or c′2 = c2 ∧ c act.

3 Incorporation of the increment’s specification

Return Connection between KINC and Ki

An increment adds some new states and transitions useful for the new event manage-
ment. The active configuration of the new event represent a border from Ki to KINC . This
border is well identified (first occurrence of c act in Ki+1) and the set of CTL transfor-
mation defined in [1] takes advantage of this particularity. We would like to identify
such border from KINC to Ki to represent the return after the new functionality has been
processed. If such border exists one can extend the set of CTL transformation of [1] to
take into account the specification of the increment.

We identified three types of return from KINC to Ki : (1) KINC never returns to Ki

(RINC→i = /0) (figure 1(a)); (2) KINC may return to Ki without any further assumption
(RINC→i 6= /0 (figure 1(b)); (3) KINC may return to Ki and a border can be identified:
RINC→i 6= /0 is such that ∀((s1,c1),(s2,c2)) ∈ RINC→i,c1 ∈CRT N where CRTN is a set of
identified return configuration. Unlike the active value, the return value does not only
depend on the input signals configuration. Indeed, the end can be stated by a final output
signals configuration as well as the return to a quiet configuration of the input signals
or even by a internal signal configurations. The return value is a set of configuration
of all atomic propositions : CRT N ⊂ C (APINC). with c rtn ∈ CRT N(APINC) and c rtn 6∈
CRT N(APINC).
Automatic construction of the specification of Ki+1
We stated in [1], a general CTL-property transformation : from the specification of Ki

we directly obtain a part of the specification of Ki+1. In the present paper, we extend
this result by giving the rules to incorporate the increment’s specification into a new
part of specification Ki+1. This new transformation depends on the return connection
from KINC to Ki.
Case 1 If there is no return from KINC , the specification of KINC holds in Ki+1 as soon
as the active value holds.

Theorem 1. Let Ki+1 be a Kripke structure obtained by applying the increment INC to
Ki such that RINC→i = /0 we have :
KINC |= ϕ ⇒∀s0 ∈ S0i+1 ,Ki+1,s0 |= A(e qtW(e act ∧AXϕ))
W stands for the ”weak until” operator.

Title Suppressed Due to Excessive Length 5

Ki

S′i

KINC

c qt

c qt c qt

c qt c act

c act

c act

S′′i

(a) Ki+1 Without return

Ki

S′i

KINC

c qt

c qt

c qt

c qt c act

c act

c act

S′′i

(b) Ki+1 With return

S′i
S′′i

Ki
KINC

c qt

c qt

c qt

c qt c act

c act

c act
c rtn

c rtn

(c) Ki+1 With a return value

Fig. 1. The three increment structures

Proof. Sketch. Let Ki be a Kripke structure, INC an increment, such that KINC |= ϕ
and Ki+1 the incremented Kripke structure. In Ki+1, all the behaviours corresponding
to Ki have all their states labeled with c qt and all infinite path in Ki are also in Ki+1.
Moreover all new behaviours added by the increment are only reachable through a state
labeled with c act. From an outgoing transition from a state in Si, a state sinc in S0INC is
reached and by hypothesis, this state models ϕ. Hence Ki+1 has some infinite path along
which c qt holds and as soon as KINC is reached ϕ holds, thus Ki+1 |= A(e qtW(e act∧
AXϕ)).

Case 2 If one cannot identify any border from KINC to Ki, one cannot extends the
existing transformation rules.
Case 3 The border between KINC and Ki is identified by some states labeled by c rtn.
This case is the exact symmetric of the connection between Ki and KINC delimited with a
border tagged with the active value of the new event (c act) and for which a set of CTL-
transformation has been stated ([1]). By applying the same reasoning as in [1], we state:
the initial states in KINC in Ki+1 do not satisfy SPECINC anymore (due to the connection
from KINC to Ki), but rather satisfy a new set of specification SPEC′

INC. SPEC′
INC is

automatically obtained from SPECINC by applying the recursive transformation rules
defined below (theorem 2). This theorem is an adaptation of theorem 1 in [1] to fit with
the particular context of its application.
Theorem 2. Let s ∈ KINC and s′ ∈ Ki+1 such that s′ = s.
We claim : for any atomic proposition p ∈ APINC and for any CTL formula Φ, χ and Ψ
(with all their atomic propositions in APINC), KINC ,s |= Φ ⇔ Ki+1,s′ |= Φ′ where Φ′ is
the formula obtained by recursively applying the following transformations:

6 Cécile Braunstein and Emmanuelle Encrenaz

1 Φ = p ⇔ Φ′ = p.
2 Φ = ¬Ψ ⇔ Φ′ = ¬Ψ′.
3 Φ = EXΨ ⇔ Φ′ = c rtn∧EXΨ′.
4 Φ = EFΨ ⇔ Φ′ = E(c rtnUΨ′).
5 Φ = EGΨ ⇔ Φ′ = EG(c rtn∧Ψ′).
6 Φ = E[ΨUχ] ⇔ Φ′ = E[(c rtn∧Ψ′)Uχ′].
7 Φ = E[ΨWχ] ⇔ Φ′ = E[(c rtn∧Ψ′)Wχ′].
8 Φ = AXΨ ⇔ Φ′ = c rtn ⇒ AXΨ′.
9 Φ = AFΨ ⇔ Φ′ = AF(e rtn∨Ψ′).
10 Φ = AGΨ ⇔ Φ′ = A[Ψ′W(e rtn∧Ψ′)].
11 Φ = A[ΨUχ] ⇔ Φ′ = A[Ψ′U((e rtn∧Ψ′)∨χ′)].
12 Φ = A[ΨWχ] ⇔ Φ′ = A[Ψ′W((e rtn∧Ψ′)∨χ′)].

The proof of this theorem is done by induction of the length of the formula to be trans-
formed. It is similar to the one of theorem 1 in [1].

Let us now state the transformation to be applied to the specification of Ki in order to
obtain a part of the specification of Ki+1 taking into account the specification SPECINC

of the increment KINC .
Theorem 3. Let Ki+1 be a Kripke structure obtained by applying the increment INC to
Ki such that RINC→i 6= /0 and ∀(s,s′) ∈ RINC→i, s |= c rtn. We have :
KINC |= ϕ ⇒ Ki+1 |= A(e qtW(e act ∧AXϕ′)), ϕ′ is obtained by applying theorem 2

Proof. Sketch. This is a direct consequence of theorems 1 and 2.

4 Conclusion

The paper proposes a extension of the incremental design process. We are now able to
take into account the specification of the increment in the automatic construction of the
entire specification of the incremented component. This extension enriches the previous
definition, the incremental design process is really suitable for designing real compo-
nent, and was successfully applied to the design and verification of protocol converters
and processor pipelines.
Obviously, the incremental design process guaranties, by construction that the incre-
mented model verifies its specification. There is no need to verify it by model checking.
Rather this specification can be used as an abstraction of the incremented component.
This is the subject of a forthcoming paper.

References

1. C. Braunstein and E. Encrenaz. CTL-property Transformations along an Incremental Design
Process. STTT, 2006. proof are available at www-asim.lip6.fr/˜cecile.

2. F. Cassez, M. Ryan, and P-Y. Schobbens. Proving Feature Non-Interaction with Alternating-
Time Temporal Logic. In S. Gilmore and M. Ryan, editors, Language Constructs for Describ-
ing Features, pages 85–104. Springer Verlag, 2001.

3. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In LICS,
pages 353–362. IEEE Computer Society, 1989.

4. M. Plath and M. Ryan. Feature Integration using a Feature Construct. Science of Computer
Programming, 41(1):53–84, 2001.

