
A Semantical Method To Reduce Branching In
Tableau Proofs

Alessandro Avellone, Guido Fiorino, and Ugo Moscato

Dipartimento di Metodi Quantitativi per l’Economia, Università
Milano-Bicocca,Piazza dell’Ateneo Nuovo, 1, 20126 Milano, Italy,
{alessandro.avellone,guido.fiorino,ugo.moscato}@unimib.it

Abstract. We describe a technique, we call it Semantical Constraint
Propagation (SCP), to reduce branching in tableau proofs. SCP is appli-
cable to classical logic and the same ideas can adapted to other logics.
At the end of this note we give the results obtained with our theorem
prover PITP for propositional intuitionistic logic with SCP turned on
and off.

1 Introduction

The main concern in proofs for classical, modal and description logics is to bound
branching, which is the source of inefficiency. Both for clausal and non-clausal
theorem proving, a great deal of research has been done in order to bound
branching and many techniques employed in clausal theorem proving have been
generalized or adapted to non-clausal theorem proving ([3, 2, 5, 4, 1]).

Here we are interested in tableau systems. The contribution of this note
is a technique, we call it Semantical Branching Propagation (SCP for short),
to bound branching in tableau proofs. Although in this note we consider the
Smullyan tableau calculus for propositional classical logic, the same ideas can be
applied to other logics. SCP is a strategy to select branching formulas in tableau
proofs and is justified by semantical considerations. It can be inserted in a the-
orem prover together with the well known optimization techniques. We present
some experimental results of a C++ implementation (PITP) for propositional
intuitionistic logic. We have tested our implementation on the ILTP Library ([6])
and on formulas generated at random.

2 Preliminary and Notation

In order to describe SCP, we take as main reference the Smullyan calculus for
propositional classical logic (Cl) provided in [7]. The rules of the calculus are
given in Figure 1. The meaning of the signs T and F is explained in terms of
realizability as follows. Let σ be a classical model, then σ �TA (σ realizes TA)
iff σ |= A (where |= is the usual binary relation between models and formulas)
and σ � FA iff σ 6|= A. A signed formula (swff for short) is a formula prefixed
with T or F. Given a set S, σ � S iff σ realizes every swff in S. A proof table

α
T(A ∧B)
F(A ∨B)
F(A → B)

α1

TA
FA
TA

α2

TB
FB
FB

α
T(¬A)
F(¬A)

α1, α2

FA
TA

β
F(A ∧B)
T(A ∨B)
T(A → B)

β1

FA
TA
FA

β2

FB
TB
TB

S, α

S, α1, α2

(α)

S, β

S, β1|S, β2

(β)

Fig. 1. Tableau calculus for propositional classical logic

(or proof tree) for S is a tree, rooted with S and obtained by the subsequent
application of the rules of the calculus. When a rule (γ), γ ∈ {α, β}, is applied to
a set S, we say that S is expanded by the rule (γ) and that the swff γ is expanded.
A set S is contradictory if {TA,FA} ⊆ S and S is final if S is contradictory
or S contains atomic formulas only. A closed proof table is a proof table whose
leaves all contain contradictory sets. Closed proof tables are the proofs of the
calculus. By the soundness and completeness of the calculus above, a formula
A is classically valid iff there exists a closed proof table starting from {FA}.
Given a non-contradictory set of swffs S, with σS we denote the classical model
defined as follows: for every atom p, σS |= p iff Tp ∈ S and we call σS the model
underlying S. Moreover, we call core of σS the set {p|Tp ∈ S or Fp ∈ S with
p an atom}. A classical model σ′ extends σS if σ′ behaves as σS on the core of
σS . We remark that if σS 7 H and PV(H) is included in the core of σS , then,
for every model σ′ extending σS , σ′ 7 H holds, where with PV(H) we denote
the atoms occurring H.

3 Description of SCP

We attained SCP while we were engaged in the implementation of PITP, a the-
orem prover for propositional intuitionistic logic (Int) based on a non-analytical
tableau calculus. SCP is always applicable in Cl deductions. On the other hand,
by the meaning of implication and negation in Int, in intuitionistic theorem
proving SCP is not always applicable. Despite this, the performances of PITP
with SCP are far better than PITP without SCP.

Loosely speaking, the idea behind SCP can be explained from a semantical
point of view: a tableau proof can be seen as an attempt to build a model satis-
fying a set of formulas. The construction of such a model proceeds by increasing
the information necessary to define the model. Step by step the accuracy of
the model increases. This process stops if we get contradictory information, this
means that no model can exist, or when we have enough information to build up
a model. Thus every branch of a tableau proof ends with a contradiction or with
a set of atomic formulas S and from such a set S a model can be immediately
defined. During the proof the semantical content of a set is not used to drive the
proof. From the semantical content of a set S we can decide which among many
branching formulas in S has to be used to expand S. Moreover, under certain

2

semantical conditions although a set is not contradictory we can deduce that it
is not realizable (thus by a subsequent application of the rules of the calculus we
will get a closed proof table). Finally, from certain semantical conditions we can
deduce that a non-final set is realizable (thus by applying the rules of the cal-
culus we will get a branch ending in a set which is final and non-contradictory).
Let us explain what we mean for semantical content and drive a proof by an
example. Let S = {F(P0 ∧ P2),F(P0 ∧ P4),F(P2 ∧ P4),F(P1 ∧ P3),F(P1 ∧
P5),F(P3 ∧ P5),T(P0 ∨ P1),T(P2 ∨ P3),T(P4 ∨ P5)}. Since σS realizes the
F-swffs in S but σS does not realize none of the T-swffs of S, then we choose one
of the T-swffs, let us suppose β = T(P0∨P1). The rule (β) is applied to S and
S1 = (S\{β})∪{TP0} and S2 = (S\{β})∪{TP1} are the subsequent sets of S.
Now consider S1. Since σS1 realizes TP0 and all the F-swffs in S1, but does not
realize neither T(P2 ∨ P3) nor T(P4 ∨ P5), we choose one of them, let us sup-
pose β = T(P2∨P3). The rule (β) is applied to S1 and S3 = (S1 \{β})∪{TP2}
and S4 = (S1 \ {β}) ∪ {TP3} are the subsequent sets of S1. Now, since σS3

does not realize neither F(P0 ∧ P2) nor T(P4 ∨ P5) we expand S3 by choosing
one of them, let us suppose β = T(P4 ∨ P5). The rule (β) is applied to S3 and
S5 = (S3 \ {β})∪ {TP4} and S6 = (S3 \ {β})∪ {TP5} are the subsequent sets.
Now F(P0∧P2), F(P2∧P4), F(P0∧P4) are not realized by σS5 . By applying
the rule (β), with β any of them, we get two contradictory sets. The proof goes
similarly for S2, S4 and S6. We emphasize that in the proof above, to every set
S is applied a rule (β) such that σS 7 β. By choosing β-swffs at random we
would have a huge closed proof table.

SCP exploits the fact that every non contradictory set S in the tableau proof
defines a classical model σS as follows: if Tp ∈ S, then σS(p) = true, otherwise
σS(p) = false. If σS realizes S, then we can stop the expansion of S and by
the completeness of the calculus we deduce that σS realizes the starting set of
the tableau proof. If σS does not realize S, then (in general) we do not know if
there exists a model satisfying S and we must expand S in a new set S′ with
the aim to describe with more accuracy the possible model satisfying S and S′.
The first remark to be done is that if we want add information to the model
described by S it is more promising to choose a swff X ∈ S such that σS 7 X,
thus the subsequent set S′ describes a model σS′ realizing X if σS′ satisfies the
immediate subformula(s) of X. This choice is important if X is a β-swff. The
expansion of a set S by using a swff X such that σS � X is useless work. Thus
SCP states:

Let S be a non-final set S. If σS 7 S and β-swffs are the only formulas
occurring in S, then choose β ∈ S such that σS 7 β and apply the rule (β)
to S.

We can generalize SCP to α and β formulas:

Let S be a non-final set S. If σS 7 S, then (i) if there exists a α-swff H ∈ S
such that σS 7 H, then apply the rule (H) to S. Otherwise (ii) choose a
β-swff H ∈ S such that σS 7 H and apply the rule (H) to S.

3

SCP preserves the completeness of the calculus. As a matter of fact, if a branch
of a proof table starting from S ends with a non-contradictory set S′, then SCP
and the definition of σS′ imply σS′ � S′. The rules of the calculus are invertible,
and this implies σS′ � S.

From an analysis of the previous example we realize that we can further
improve SCP. The underlying model of every subsequent set of S3 extends the
model σS3 . Since TP0,TP2 ∈ S3, every subsequent set of S3 contains TP0 and
TP2. It follows that every model extending σS3 does not realize F(P0∧P2). This
implies that S3 is not realizable. Thus expanding S3 is pointless since F(P0∧P2)
is not realizable by the models extending σS3 . This is immediately clear if we
apply the rule (β) to S3 with β = F(P0 ∧ P2), indeed the subsequent sets are
both contradictory. Summarizing, a set S is not realizable if σS does not realize
a formula H ∈ S and PV(H) is included in the core of σS (this condition has a
syntactic and more general counterpart when the technique of [5] is used). Since
the semantic check allows us to deduce that a set S is not realizable without to
expand S to a closed proof table, some work is spared.

The computational cost of SCP coincides with a satisfiability check, which is
linear in the length of the input formula. On the other hand avoiding a branching
rule can greatly reduce the size of a proof tree. As intuitive comparison we can
consider the tableau proof of our example when SCP is used or a “blind” proof is
performed by expanding a set with the first β-swff occurring in it. Finally, some
considerations can help to save search time for β-swffs. As an example if S′ is the
set obtained from S by an application of a β-rule and S and S′ contain the same
atomic swffs, then σS = σS′ and this implies that for every H ∈ S, σS � H iff
σS′ �H. Moreover σS′ 7 β1 and σS′ 7 β2. If σS 7 α and S′ = (S \α)∪{α1, α2}
and σS = σS′ , then by the satisfiability check on α we know if σS′ 7 α1 holds or
σS′ 7 α2 holds. Thus, if σS = σS′ , then the satisfiability check can be avoided
or performed on one swff.

In the following tables we give the results of our theorem prover PITP for
propositional intuitionistic logic on the benchmark formulas of ILTP library [6]
and on formulas generated at random. We see that when SCP is turned off the
performances are far worse than when SCP is turned on. We emphasize that in
the case of intuitionistic logic, SCP is applicable only to formulas that do not con-
tain implications and negations (in intuitionistic logic negation and implication
are not interpreted as in classical logic). At present PITP does not implement
optimizations such as backjumping, BCP and semantic branching. Moreover,
no optimization is used to perform the satisfiability check. Summarizing PITP
behaves as follows: first PITP tries to expand α-swffs, then β-swffs, then swffs
requiring backtracking (a case that does not arises in classical logic). When a
β-rule has to be applied to a set S, PITP behaves as follows: (ia) if there exists a
β-swff H such that H only contains ∧ and ∨ connectives, σS 7 H and PV(H) is
included in the core of σS , then PITP returns that S is not realizable. Otherwise
(ib) if there exists a β-swff H such that H only contains ∧ and ∨ connectives
and σS 7 H, then PITP expands H. Otherwise (ii) PITP expands one of the
β-swffs. If PITP is run with SCP turned off, then PITP do not perform (ia)

4

Experimental results on ILTP library: index and CPU time
of the largest formula in the family decided within 600s CPU time

Wff family SCP Off SCP On
SYJ201+1 20 (1170e-3) 20 (30e-3)
SYJ202+1 3 (90e-3) 9 (572860e-3)
SYJ207+1 4 (40030e-3) 4 (40780e-3)
SYJ208+1 4 (2380e-3) 8 (83630e-3)
SYJ209+1 10 (539090e-3) 10 (534330e-3)
SYJ211+1 20 (505960e-3) 20 (504430e-3)
SYJ212+1 11 (501690e-3) 11 (503720e-3)

Experimental results on 2000 random generated formulas with 1000 connectives and 30 variables

< 1 sec 1 to 10 secs 10 to 60 secs 60 to 600 ≥ 600

SCP on 1995 (12) 4 (13) 1 (24) 0 0

SCP off 1264 (29) 88 (332) 36 (1136) 68 (15601) 544 (≥ 326400)

Experimental results on 500 random generated formulas with 100000 connectives and 1000 variables

< 1 sec 1 to 10 secs 10 to 60 secs 60 to 600 ≥ 600

SCP on 11 (7) 432 (2291) 57(653) 0 0

SCP off 115 (61) 137 (336) 26 (807) 16 (3260) 206 (≥ 123600)

Table 1. Experimental Results

and (ib). Since we do not have a propositional classical theorem prover, to have
an idea of the behaviour of SCP in classical theorem proving we run PITP on
random generated formulas of the of the kind A → B, where A and B contain
the same number of connectives and ∧ and ∨ are the only connectives occurring
in them. The results (on a Pentium II Klamath 300 MHz, cache size 512 KB,
RAM 128 MB) are given in Table 1, where for each time interval, the number
of formulas and, in parenthesis, the overall time to decide them are indicated.

References

1. Gabriel Aguilera, Inman P. de Guzmán, Manuel Ojeda-Aciego, and Agust́ın
Valverde. Reductions for non-clausal theorem proving. Theor. Comput. Sci., 266(1-
2):81–112, 2001.

2. Jon William Freeman. Improvements to propositional satisfiability search algorithms.
PhD thesis, University of Pennsylvania, 1995.

3. Fausto Giunchiglia and Roberto Sebastiani. Building decision procedures for modal
logics from propositional decision procedure - The case study of modal K. CADE,
volume 1104 of LNCS, pages 583–597. Springer, 1996.

4. Ian Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsump-
tion. J. Log. Comput., 9(3):267–293, 1999.

5. Fabio Massacci. Simplification: A general constraint propagation technique for
propositional and modal tableaux. TABLEAUX, volume 1397 of LNCS, pages 217–
232. Springer-Verlag, 1998.

6. Thomas Raths, Jens Otten, and Christoph Kreitz. The ILTP library: Benchmarking
automated theorem provers for intuitionistic logic. TABLEAUX, volume 3702 of
LNCS, pages 333–337. Springer, 2005.

7. R.M. Smullyan. First-Order Logic. Springer, Berlin, 1968.

5

