Individual Discrete Logarithm in $GF(p^k)$ (last step of the Number Field Sieve algorithm)

Aurore Guillevic

INRIA Saclay / GRACE Team

École Polytechnique / LIX

CATREL Workshop 2015, Oct. 2nd

Solving actual practical problem: Given a **fixed** finite field GF(q),

Huge massive precomputation (weeks, months, years)

Solving actual practical problem: Given a **fixed** finite field GF(q),

Solving actual practical problem: Given a **fixed** finite field GF(q),

Solving actual practical problem: Given a **fixed** finite field GF(q),

• Logjam: GF(q) = GF(p) (standardized) prime field

Solving actual practical problem: Given a **fixed** finite field GF(q),

- Logjam: GF(q) = GF(p) (standardized) prime field
- Pairing-based cryptosystems: $GF(q) = GF(p^2)$, $GF(p^6)$, $GF(p^{12})$

Solving actual practical problem: Given a **fixed** finite field GF(q),

• Logjam: GF(q) = GF(p) (standardized) prime field

• Pairing-based cryptosystems: $GF(q) = GF(p^2)$, $GF(p^6)$, $GF(p^{12})$

Could we compute individual discrete logs in $GF(p^2)$, $GF(p^6)$, $GF(p^{12})$ in less than 1 min?

DLP in the target group of pairing-friendly curves

Why DLP in finite fields \mathbb{F}_{p^2} , \mathbb{F}_{p^3} ,...?

In a subgroup $\mathbb{G} = \langle g
angle$ of order ℓ ,

- $(g, x) \mapsto g^x$ is easy (polynomial time)
- $(g, g^x) \mapsto x$ is (in well-chosen subgroup) hard: DLP.

pairing:	\mathbb{G}_1	\times	\mathbb{G}_2	\rightarrow	\mathbb{G}_T
	\cap		\cap		\cap
	$E(\mathbb{F}_p)$		$E(\mathbb{F}_{p^k})$		$\mathbb{F}_{p^k}^*$

- where E/\mathbb{F}_p is a *pairing-friendly* curve
- G₁, G₂, G_T of large prime order ℓ (generic attacks in O(√ℓ): take e.g. 256-bit ℓ)
- 1 ≤ k ≤ 12 embedding degree: very specific property (specific attacks (NFS): take 3072-bit p^k)

DL records in small characteristic

- X Small characteristic:
 - supersingular curves E/\mathbb{F}_{2^n} : $\mathbb{G}_T \subset \mathbb{F}_{2^{4n}}$, E/\mathbb{F}_{3^m} : $\mathbb{G}_T \subset \mathbb{F}_{3^{6m}}$

Practical attacks (first one and most recent):

- Hayashi, Shimoyama, Shinohara, Takagi: GF(3^{6.97}) (923 bit field) (2012)
- Granger, Kleinjung, Zumbragel: GF(2⁹²³⁴), GF(2⁴⁴⁰⁴) (2014)
- Adj, Menezes, Oliveira, Rodríguez-Henríquez: GF(3⁸²²), GF(3⁹⁷⁸) (2014)
- Joux: $GF(3^{2395})$ (with Pierrot, 2014), $GF(2^{6168})$ (2013)

Theoretical attacks: Quasi-Polynomial-time Algorithm (QPA)

- [Barbulescu Gaudry Joux Thomé 14]
- [Granger Kleinjung Zumbragel 14]

Common used pairing-friendly curves

- ✓ Curves over prime fields E/\mathbb{F}_p where QPA does NOT apply (with log $p \ge \log \ell \approx 256$ bits, s.t. $k \log p \ge 3072$)
 - supersingular: $\mathbb{G}_T \subset \mathbb{F}_{p^2}$ $(\log p = 1536)$
 - [Miyaji Nakabayashi Takano 01] (MNT): G_T ⊂ F_{p³} (log p = 1024), F_{p⁴} (log p = 768), F_{p⁶} (log p = 512)
 - [Barreto Naehrig 05] (BN): $\mathbb{G}_T \subset \mathbb{F}_{p^{12}}$ (log p = 256, optimal)
 - [Kachisa Schaefer Scott 08] (KSS): G_T ⊂ F_{p¹⁸} (used for 192-bit security level: 384-bit ℓ, log p = 512, k log p = 9216)

Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

• MNFS [Coppersmith 89]: \mathbb{F}_p , [Barbulescu Pierrot 14], [Pierrot 15]: \mathbb{F}_{p^k}

Specific to pairing target groups, when $p = P(x_0)$, with deg $P \ge 2$

- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

Theoretical attacks in non-small characteristic fields

Variants of NFS, generic fields

• MNFS [Coppersmith 89]: \mathbb{F}_p , [Barbulescu Pierrot 14], [Pierrot 15]: \mathbb{F}_{p^k}

Specific to pairing target groups, when $p = P(x_0)$, with deg $P \ge 2$

- [Joux Pierrot 13]
- [Barbulescu Gaudry Kleinjung 15] Tower NFS

These attacks were not taken into account in the 3072-bit target field recommendation.

Last DL records, with the NFS-DL algorithm

$175 \times faster$
slow
slow

[Logjam]: see weakdh.org [BGGM15]: Barbulescu, Gaudry, G., Morain [BGIJT14]: Bouvier, Gaudry, Imbert, Jeljeli, Thomé This talk:

- Faster individual discrete logarithm in \mathbb{F}_{p^k} , especially k = 2, 3, 4, 6
- Apply to pairing target group $\mathbb{G}_{\mathcal{T}}$
- source code: part of http://cado-nfs.gforge.inria.fr/

NFS – Number Field Sieve algorithm

1. Polynomial selection: $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

Polynomial selection: compute f(x), g(x) with $\varphi = \gcd(f,g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

2. Relation collection

Polynomial selection:

- compute f(x), g(x) with
- ¹. $\varphi = \gcd(f, g) \pmod{p}$ and
 - $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$
- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid p^k 1$.
- → here we know the discrete log of a subset of elements.

Polynomial selection:

compute f(x), g(x) with

1. $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.

Polynomial selection:

compute f(x), g(x) with

1. $\varphi = \gcd(f, g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

2. Relation collection

- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- ➡ here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm

massive precomputation

Polynomial selection:

compute f(x), g(x) with

1. $\varphi = \gcd(f,g) \pmod{p}$ and $\mathbb{F}_{p^k} = \mathbb{F}_p[x]/(\varphi(x))$

massive precomputation

- 2. Relation collection
- 3. Linear algebra modulo $\ell \mid \rho^k 1$
- → here we know the discrete log of a subset of elements.

1. Individual target discrete logarithm for each given DLP instance

- not so trivial
- this talk: practical improvements very efficient for small k

Individual Discrete Logarithm

Preimage in $\mathbb{Z}[x]/(f(x))$ and ρ map

Randomized target $T = t_0 + t_1 X + t_2 X^2 \in \mathbb{F}_{p^3}^* = \mathbb{F}_p[X]/(\varphi(X))$ Simplest choice of preimage **T**: $\mathbf{T} = \mathbf{t}_0 + \mathbf{t}_1 x + \mathbf{t}_2 x^2 \in \mathbb{Z}[x]/(f(x))$, with $\mathbf{t}_i \equiv t_i \pmod{p}$.

We can always choose **T** s.t.

•
$$|\mathbf{t_i}| < p$$

deg **T** < deg *f*

We need $\rho(\mathbf{T}) = T$

(where ρ is simply a reduction modulo (φ, p) when f (resp. g) is monic)

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in$

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in \Box$

- booting step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \ldots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $\underbrace{q_1 \cdots q_i}_{i}$ ×(elements in DL database),

too large: $B_0 < q_i \le B_1$

UNTIL $q_i \leq B_1$

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in [$

- booting step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \ldots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $q_1 \cdots q_i$ ×(elements in DL database),

too large: $B_0 < q_i \leq B_1$

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)
 - $\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$

end while

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in [$

- booting step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize Norm(**T**) = $q_1 \cdots q_i$ ×(elements in DL database),

too large: $B_0 < q_i \leq B_1$

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

Given G and a log database s.t. for all $p_i < B_0$, log $p_i \in [$

- booting step (a.k.a. smoothing step):
 DO
 - 1.1 take t at random in $\{1, \dots, \ell 1\}$ and set $T = G^t T_0$ (hence $\log_G(T_0) = \log_G(T) - t$)
 - 1.2 factorize $\underbrace{\text{Norm}(\mathbf{T})}_{\text{reduce this}} = \underbrace{q_1 \cdots q_i}_{\text{too large: } B_0 < q_i < B_1} \times (\text{elements in DL database}),$

UNTIL $q_i \leq B_1$

- 2. Descent strategy: set $S = \{q_i : B_0 < q_i \le B_1\}$ while $S \neq \emptyset$ do
 - set $B_j < B_i$
 - find a relation $q_i = \prod_{B_0 < q_j < B_j} q_j \times$ (elements in log DB)

•
$$\mathcal{S} \leftarrow \mathcal{S} \setminus \{q_i\} \cup \{q_j\}_{j \in J}$$

end while

3. log combination to find the individual target DL

Finding Boots (booting step)

Norm computation

f monic. $\mathbf{T} = t_0 + t_1 x + \ldots + t_d x^d \in \mathbb{Z}[x]/(f(x)), \ d < \deg f$: $\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\operatorname{deg} f} ||f||_{\infty}^{d}$ with $||f||_{\infty} = \max_{1 \le i \le \deg f} |f_i|$ Example: [MNT01], k = 3, deg g = 3, $||g||_{\infty} = O(p^{1/2})$ D 908761003790427908077548955758380356675829026531247 T = 314159265358979323846264338327950288419716939937510+582097494459230781640628620899862803482534211706798x $+214808651328230664709384460955058223172535940812829x^{2}$ $f = 108x^{6} + 1116x^{5} + 3347x^{4} + 2194x^{3} - 613x^{2} - 468x + 108$ $g = 6x^3 + 34809213412360199593267639x^2 + 34809213412360199593267621x - 6$ Norm_f(**T**)($\approx ||\mathbf{T}||_{\infty}^{6} ||f||_{\infty}^{2}$) = **1017** bits $\sim p^{6}$ $\operatorname{Norm}_{\mathfrak{g}}(\mathbf{T})(\approx ||\mathbf{T}||_{\infty}^{3} ||\mathfrak{g}||_{\infty}^{2}) = \mathbf{665} \operatorname{bits} \sim p^{4}$

Booting step complexity

Given random target $T_0 \in \mathbb{F}_{p^k}^*$, and G a generator of $\mathbb{F}_{p^k}^*$ repeat

- 1. take t at random in $\{1, \ldots, \ell 1\}$ and set $T = g^t T_0$
- 2. factorize Norm(T)

until it is B_1 -smooth: Norm(\mathbf{T}) = $\prod_{q_i \leq B_1} q_i \prod_{p_i \leq B_0} p_i$

L-notation: $Q = p^k$, $L_Q[1/3, \mathbf{c}] = e^{(\mathbf{c}+o(1))(\log Q)^{1/3}} (\log \log Q)^{2/3}$ for $\mathbf{c} > 0$. Norm factorization done with ECM method, in time $L_{B_1}[1/2, \sqrt{2}]$

Lemma (Booting step running-time)

If Norm(**T**) $\leq Q^e$, take $B_1 = L_Q[2/3, (e^2/3)^{1/3}]$, then the running-time is $L_Q[1/3, (3e)^{1/3}]$ (and this is optimal).

Booting step complexity

- \mathbb{F}_p : Norm(preimage) $\leq p = Q$, running-time: $L_Q[1/3, 1.44]$ with $B_1 = L_Q[2/3, 0.69]$ [Commeine Semaev 06, Barbulescu 13]
- med. char. \mathbb{F}_{p^k} , JLSV1 poly. select.: deg $f = \deg g = k$, $||f||_{\infty} = ||g||_{\infty} = O(p^{1/2})$, Norm(preimage) $\leq Q^{3/2}$, running time: $L_Q[1/3, 1.65]$, with $B_1 = L_Q[2/3, 0.91]$ [Joux Lercier Naccache Thomé 09, Barbulescu Pierrot 14]

field	\mathbb{F}_{p}	\mathbb{F}_{p^k}			
polynomial selection		gJL	$JLSV_1$	Conj	
NFS dominating part, c	1.92	1.92	2.42	2.20	
$L_Q[\frac{1}{3}, c]$, 512-bit Q	2 ⁶⁴	2 ⁶⁴	2 ⁸¹	2 ⁷³	
$Norm(\mathbf{T}) < Q^e$	Q	Q	$Q^{3/2}$	Q	
time <i>L_Q</i> [1/3, <i>c</i>], c	1.44	1.44	1.65	1.44	
nb of operations, 512-bit Q	2 ⁴⁸	2 ⁴⁸	2 ⁵⁵	2 ⁴⁸	
q_i bound B_1	2 ⁹⁰	2 ⁹⁰	2 ¹¹⁸	2 ⁹⁰	

Optimizing the Preimage Computation

Preimage optimization

 $f,\,\deg f,\,||f||_{\infty},\,g,\,\deg g,\,||g||_{\infty}$ are given by the polynomial selection step (NFS-DL step 1)

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{d}$$

To reduce the norm,

- reduce $||\mathbf{T}||_{\infty}$
- and/or reduce $d = \deg \mathbf{T}$

Previous work

- \mathbb{F}_p : Rational Reconstruction. $T \in \mathbb{Z}/p\mathbb{Z}$, **T** is an integer < p. Rational Reconstruction gives $\mathbf{T} = u/v \pmod{p}$ with $u, v < \sqrt{p}$
 - booting step: we want *u*,*v* to be *B*₁-smooth at the same time, instead of **T** to be *B*₁-smooth. **T** is already split into two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in $\mathbb{F}_2[x]$: $\mathbf{T} = U/V = \frac{u_0 + \dots + u_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}}{v_0 + \dots + v_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}} \text{ reduce degree}$
- [Joux Lercier Smart Vercauteren 06] in \mathbb{F}_{p^k} : $\mathbf{T} = U/V = \frac{u_0 + ... + u_d x^d}{v_0 + ... + v_d x^d}$, where $|u_i|, |v_i| \sim p^{1/2}$ reduce coefficient size

Previous work

- \mathbb{F}_p : Rational Reconstruction. $T \in \mathbb{Z}/p\mathbb{Z}$, **T** is an integer < p. Rational Reconstruction gives $\mathbf{T} = u/v \pmod{p}$ with $u, v < \sqrt{p}$
 - booting step: we want *u*,*v* to be *B*₁-smooth at the same time, instead of **T** to be *B*₁-smooth. **T** is already split into two integers of half size each.
- [Blake Mullin Vanstone 84] Waterloo algorithm in $\mathbb{F}_2[x]$: $\mathbf{T} = U/V = \frac{u_0 + \dots + u_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}}{v_0 + \dots + v_{\lfloor d/2 \rfloor} x^{\lfloor d/2 \rfloor}} \text{ reduce degree}$
- [Joux Lercier Smart Vercauteren 06] in \mathbb{F}_{p^k} : $\mathbf{T} = U/V = \frac{u_0 + ... + u_d x^d}{v_0 + ... + v_d x^d}$, where $|u_i|, |v_i| \sim p^{1/2}$ reduce coefficient size

How much is the booting step improved?

Booting step: First experiments

Commonly assumed: launched at morning coffee ... finished for afternoon tea.

- \mathbb{F}_{p^2} 600 bits (BGGM15 record) was easy, as fast as for $\mathbb{F}_{p'}$ (< one day)
- \mathbb{F}_{p^3} 400 bits and MNT 508 bits were much slower (days, week)
- \mathbb{F}_{p^4} 400 bits was even worse (> one week)

What happened?

• \mathbb{F}_{p^3} : $||\mathbf{T}||_{\infty} = p$, deg f = 6, [JLSV06] method: Norm $(\mathbf{T}) \leq Q \rightarrow c = 1.44$ (but still much slower) • \mathbb{F}_{p^4} : $||f||_{\infty} = O(p^{1/2})$, Norm $(\mathbf{T}) \leq Q^{3/2} \rightarrow c = 1.65$

Booting step: First experiments

Commonly assumed: launched at morning coffee ... finished for afternoon tea.

- \mathbb{F}_{p^2} 600 bits (BGGM15 record) was easy, as fast as for $\mathbb{F}_{p'}$ (< one day)
- \mathbb{F}_{p^3} 400 bits and MNT 508 bits were much slower (days, week)
- \mathbb{F}_{p^4} 400 bits was even worse (> one week)

What happened?

 𝔅 𝑘³: ||𝕇||_∞ = 𝑘, deg 𝑘 = 𝔅, [JLSV06] method: Norm(𝕇) ≤ 𝔅 → 𝑐 = 1.44 (but still much slower)

 𝔅 𝑘⁴: ||𝑘||_∞ = 𝒪(𝑘^{1/2}), Norm(𝕇) ≤ 𝔅^{3/2} → 𝑐 = 1.65

Because of the constant hidden in the O()?

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

•
$$\mathbb{F}_p$$
 is a proper subfield of \mathbb{F}_{p^k}

• target
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now on we assume that the target is monic.

Our solution

Lemma

Let $T \in \mathbb{F}_{p^k}$. Then $\log(T) = \log(u \cdot T) \pmod{\ell}$ for any u in a proper subfield of \mathbb{F}_{p^k} .

•
$$\mathbb{F}_p$$
 is a proper subfield of \mathbb{F}_{p^k}

• target
$$T = t_0 + t_1 x + \ldots + t_d x^d$$

• we divide the target by its leading term:

$$\log(T) = \log(T/t_d) \pmod{\ell}$$

From now on we assume that the target is monic. Similar technique in pairing computation: Miller loop denominator elimination [Boneh Kim Lynn Scott 02]

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} :

• $f = 108x^6 + 1116x^5 + 3347x^4 + 2194x^3 - 613x^2 - 468x + 108$

•
$$\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$$

• $\mathbf{T} = t_0 + t_1 x + x^2$

• define
$$L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$$

• LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/3})$

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : • $f = 108x^6 + 1116x^5 + 3347x^4 + 2194x^3 - 613x^2 - 468x + 108x^4$ • $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$ • $\mathbf{T} = t_0 + t_1 x + x^2$ • define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$ $\rho(\varphi) = 0 \in \mathbb{F}_{p^k}$

• LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \le C \det(L)^{1/6} = O(p^{1/3})$

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : • $f = 108x^6 + 1116x^5 + 3347x^4 + 2194x^3 - 613x^2 - 468x + 108x^4$ • $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$ • $\mathbf{T} = t_0 + t_1 x + x^2$ • define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$ $\rho(p) = 0 \in \mathbb{F}_{p^k}$

• LLL(*L*) outputs a short vector *r*, linear combination of *L*'s rows. $r = \lambda_0 p + \lambda_1 p x + \lambda_2 T + \lambda_3 \varphi + \lambda_4 x \varphi + \lambda_5 x^2 \varphi$. $r = r_0 + \ldots + r_5 x^5$, $||r_i||_{\infty} \leq C \det(L)^{1/6} = O(p^{1/3})$

We want to reduce $||\mathbf{T}||_{\infty}$. Example with \mathbb{F}_{p^3} : • $f = 108x^6 + 1116x^5 + 3347x^4 + 2194x^3 - 613x^2 - 468x + 108x^4$ • $\varphi = x^3 - yx^2 - (y+3)x - 1 \ y \in \mathbb{Z}$ • $\mathbf{T} = t_0 + t_1 x + x^2$ • define $L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ t_0 & t_1 & 1 & 0 & 0 & 0 \\ \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 & 0 \\ 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 & 0 \\ 0 & 0 & \varphi_0 & \varphi_1 & \varphi_2 & 1 \end{bmatrix}$ $\rho(p) = 0 \in \mathbb{F}_{p^k}$

LLL(L) outputs a short vector r, linear combination of L's rows. r = λ₀p + λ₁px+λ₂T+λ₃φ + λ₄xφ + λ₅x²φ. r = r₀ + ... + r₅x⁵, ||r_i||_∞ ≤ C det(L)^{1/6} = O(p^{1/3})
log ρ(r) = log(T) (mod ℓ)

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{d}$$

•
$$\operatorname{Norm}_f(r) \le ||r||_\infty^6 ||f||_\infty^5 = O(p^2) = O(Q^{2/3}) < O(Q)$$

MNT example: $\log Q = 508$ bits

	Norm _{f} (T)		$Norm_g(\mathbf{T})$		$L_Q[1/3, c]$		$q_i \leq B_1 =$	
	Q ^e	bits	Q^e	bits	С	time	$L_{Q}[\frac{2}{3}, c]$	
Nothing	Q^2	1010	$Q^{4/3}$	667	1.58	2 ⁵³	2 ¹⁰⁹	
[JLSV06]	Q	508	$Q^{5/3}$	847	1.44	2 ⁴⁸	2 ⁹⁰	
This work	$Q^{2/3}$	340	Q	508	1.26	2 ⁴²	2 ⁶⁹	

$$\operatorname{Norm}_{f}(\mathbf{T}) = \operatorname{Res}(f, \mathbf{T}) \leq A ||\mathbf{T}||_{\infty}^{\deg f} ||f||_{\infty}^{d}$$

•
$$\operatorname{Norm}_f(r) \le ||r||_\infty^6 ||f||_\infty^5 = O(p^2) = O(Q^{2/3}) < O(Q)$$

MNT example: $\log Q = 508$ bits

	Norm _f (T)		$\operatorname{Norm}_{g}(\mathbf{T})$		$L_Q[1/3, c]$		$q_i \leq B_1 =$	
	Q^e	bits	Q^e	bits	с	time	$L_{Q}[\frac{2}{3}, c]$	
Nothing	Q^2	1010	$Q^{4/3}$	667	1.58	2 ⁵³	2 ¹⁰⁹	
[JLSV06]	Q	508	$Q^{5/3}$	847	1.44	2 ⁴⁸	2 ⁹⁰	
This work	$Q^{2/3}$	340	Q	508	1.26	2 ⁴²	2 ⁶⁹	

Faster descent

\mathbb{F}_{p^4} : JLSV₁ polynomial selection and booting step improvement

\mathbb{F}_{p^4} of 400 bits

[JLSV06] first method: choose f of degree 4 and very small coefficients, and set g = f + p. Booting step on f side, with the $\mathbf{T} = U/V$ method.

FΔ

Relation collection and Linear algebra do not scale well for large p

We use JLSV06 other method: deg f = deg g = k, $||f||_{\infty} = ||g||_{\infty} = p^{1/2}$ p = 314159265358979323846270891033 of 98 bits (30 dd)

- ℓ = 9869604401089358618834902718477057428144064232778775980709 of 192 bits
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$
- $g = 560499121639105x^4 + 4898685125033473x^3 3362994729834630x^2$ -4898685125033473x + 560499121639105

 $\varphi = g$

Terribly slow booting step (more than one week)

Terribly slow booting step

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

define

Γp	0	0	0]	
 0	р	0	0	
0	0	р	0	
$\lfloor t_0$	t_1	t ₂	1	

• dim 4 because $max(\deg f, \deg g) = 4$

- compute LLL(*L*), get *r*, $||r||_{\infty} \approx p^{3/4}$, Norm_{*f*}(*r*) $\approx ||r||_{\infty}^4 ||f||_{\infty}^3 \approx p^{9/2} = Q^{9/8}$ of 450 bits!
- Booting step, number of operations: 2⁴⁴
- Large prime bound B₁ of 82 bits

Terribly slow booting step

•
$$T = t_0 + t_1 x + t_2 x^2 + x^3$$

• define
 $L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \leftarrow \text{ could we find something else, monic?}$

 \mathbb{F}_{n^4}

• dim 4 because $max(\deg f, \deg g) = 4$

- compute LLL(*L*), get *r*, $||r||_{\infty} \approx p^{3/4}$, Norm_{*f*}(*r*) $\approx ||r||_{\infty}^4 ||f||_{\infty}^3 \approx p^{9/2} = Q^{9/8}$ of 450 bits!
- Booting step, number of operations: 2⁴⁴
- Large prime bound B₁ of 82 bits

F-4

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is of degree k - 2 instead of k - 1.

FΔ

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is of degree k - 2 instead of k - 1.

• define
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix}$$

• LLL(L) \rightarrow short vector r linear combination of L's rows $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$

F 2

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is of degree k - 2 instead of k - 1.

• define
$$L = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ t'_0 & t'_1 & 1 & 0 \\ t_0 & t_1 & t_2 & 1 \end{bmatrix} \begin{bmatrix} \rho(p) = 0 \in \mathbb{F}_{p^k} \\ T' \\ T \end{bmatrix}$$

• LLL(L) \rightarrow short vector r linear combination of L's rows $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$ • $\rho(r) = \lambda_2 T' + \lambda_3 T = \underbrace{(\lambda_2 u + \lambda_3)}_{\in \text{ subfield } \mathbb{F}_{p^{k/2}}} T$

FΔ

Lemma

Let $T \in \mathbb{F}_{p^k}$, k even. We can always find $u \in \mathbb{F}_{p^2}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is of degree k - 2 instead of k - 1.

• define
$$L = egin{bmatrix} p & 0 & 0 & 0 \ 0 & p & 0 & 0 \ t_0' & t_1' & 1 & 0 \ t_0 & t_1 & t_2 & 1 \ \end{bmatrix} egin{array}{c}
ho(p) = 0 \in \mathbb{F}_{p^k} \ T' \ T \end{array}$$

• LLL(L) \rightarrow short vector r linear combination of L's rows $r = r_0 + \ldots + r_3 x^3$, $||r_i||_{\infty} \leq C \det(L)^{1/4} = O(p^{1/2})$ • $\rho(r) = \lambda_2 T' + \lambda_3 T = \underbrace{(\lambda_2 u + \lambda_3)}_{\in \text{ subfield } \mathbb{F}_{p^{k/2}}} T$

• $\log \rho(r) = \log(T) \pmod{\ell}$ Norm_f(r) = $||r||_{\infty}^{4} ||f||_{\infty}^{3} = p^{7/2} = Q^{7/8} < Q$

CATREL Workshop breaking news

Degree-d subfield cofactor simplification

Lemma

Let $T \in \mathbb{F}_{p^k}$, and $d \mid k, 1 < d < k$. We can always find $u \in \mathbb{F}_{p^d}$ and $T' \in \mathbb{F}_{p^k}$ such that $T' = u \cdot T$ and T' is (monic) of degree k - d instead of k - 1.

We use linear algebra to do this in practice:

- find a basis $\{1, U, \dots, U^{d-1}\}$ of $\mathbb{F}_{p^d} \subset \mathbb{F}_{p^k}$
- solve $(u_0 + u_1U + \ldots + u_{d-1}U^{d-1})T = T'$ with $t'_{k-d} = 1, t'_{k-d+1} = \ldots = t'_{k-1} = 0$ i.e. solve modulo p the system

$$\begin{bmatrix} T_{k-d} & (UT)_{k-d} \dots & (U^{d}T)_{k-d} \\ T_{k-d+1} & (UT)_{k-d+1} \dots & (U^{d}T)_{k-d+1} \\ \vdots & \vdots \\ T_{k-1} & (UT)_{k-1} \dots & (U^{d}T)_{k-1} \end{bmatrix} \begin{bmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{d} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• T' = uT is of degree k - d

Example: \mathbb{F}_{p^6} , subfield \mathbb{F}_{p^3}

- $p = 10^{12} + 39 = 100000000039$
- $f = x^6 + 2x^5 + 3x^4 + 4x^3 + 5x^2 + 6x + 7$, nothing special
- $\mathbb{F}_{p^6} = \mathbb{F}_p[z]/(f(z))$, and let U be a root of $x^3 + 2$ in \mathbb{F}_{p^6}
- random target

 $\mathcal{T} = {}_{175247343375} \times {}^{5} + 606947457111 \times {}^{4} + 821185152528 \times {}^{3} + 233479934136 \times {}^{2} + 286091685405 \times {} + 30741878977$

- $U = 123906765420X^5 + 210820130399X^4 + 609700725797X^3 + 529508639774X^2 + 719945573899X + 519020404562$
- $u^{1+p+p^2} = 252075155349 \in \mathbb{F}_p$, meaning $u \in \mathbb{F}_{p^3}$
- $u \cdot T = T' = x^{3} + 336056353764x^{2} + 69072317659x + 636713253760$
- also find $v \in \mathbb{F}_{p^3}$ s.t. $v \cdot T = T''$ of degree 4

Example: \mathbb{F}_{p^6} , subfield \mathbb{F}_{p^3}

Define

$$L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ t_0'' & t_1'' & t_2'' & 1 & 0 & 0 \\ t_0' & t_1' & t_2' & t_3' & 1 & 0 \\ t_0 & t_1 & t_2 & t_3 & t_4 & 1 \end{bmatrix}$$

• compute $LLL(L) \rightarrow short vector r, ||r||_{\infty} = O(p^{1/2}),$ $Norm_f(r) \approx ||r||_{\infty}^6 ||f||_{\infty}^5 = p^{11/2} = Q^{11/12} < Q$

512-bit Q:

- Norm(r) of 470 bits
- special-q bound of 85 bits
- expected number of operations 247

Example: \mathbb{F}_{p^6} , subfield \mathbb{F}_{p^3}

Define

$$L = \begin{bmatrix} p & 0 & 0 & 0 & 0 & 0 \\ 0 & p & 0 & 0 & 0 & 0 \\ 0 & 0 & p & 0 & 0 & 0 \\ t_0'' & t_1'' & t_2'' & 1 & 0 & 0 \\ t_0' & t_1' & t_2' & t_3' & 1 & 0 \\ t_0 & t_1 & t_2 & t_3 & t_4 & 1 \end{bmatrix}$$

• compute $LLL(L) \rightarrow short vector r, ||r||_{\infty} = O(p^{1/2}),$ $Norm_f(r) \approx ||r||_{\infty}^6 ||f||_{\infty}^5 = p^{11/2} = Q^{11/12} < Q$

512-bit Q:

- Norm(r) of 470 bits
- special-q bound of 85 bits
- expected number of operations 2⁴⁷ will still take a week

Finding boots in \mathbb{F}_{p^k} , k even

Lemma

Let $T \in \mathbb{F}_{p^k}$, T is not in a proper subfield. We can always find $u \in \mathbb{F}_{p^{k/2}}$ such that $u \cdot T = T'$ with T' of any degree i, where $k/2 \le i \le k - 1$.

Size of coefficients of *r* output by LLL:

- Conjugation method: $||r||_{\infty} = O(p^{1/4})$, Norm_f $(r) = O(Q^{1/2})$
- JLSV1 method: $||r||_{\infty} = O(p^{1/2})$, Norm_f $(r) = O(Q^{1-\frac{1}{2k}}) < O(Q)$

Finding boots in \mathbb{F}_{p^k} , k even

Lemma

Let $T \in \mathbb{F}_{p^k}$, T is not in a proper subfield. We can always find $u \in \mathbb{F}_{p^{k/2}}$ such that $u \cdot T = T'$ with T' of any degree i, where $k/2 \le i \le k - 1$.

Size of coefficients of *r* output by LLL:

- Conjugation method: $||r||_{\infty} = O(p^{1/4})$, Norm_f $(r) = O(Q^{1/2})$
- JLSV1 method: $||r||_{\infty} = O(p^{1/2})$, Norm_f $(r) = O(Q^{1-\frac{1}{2k}}) < O(Q)$

Could we use this lemma to simplify the descent in small characteristic ?

Summary of results

$\mathbb{G}_T \subset$	\mathbb{F}_{p^2}	\mathbb{F}_{p^3}	\mathbb{F}_{p^4}	\mathbb{F}_{p^6}				
Norm bound								
prev.	Q [JL	SV06]	$Q^{3/2}$ (nothing)					
this work	$Q^{1/2}$	$Q^{2/3}$	$Q^{7/8}$	$Q^{11/12}$				
Booting step run	Booting step running time in $L_Q[1/3, c]$							
prev. <i>c</i> (*)	1.	44	1.65					
new c	1.14	1.26	1.38	1.40**				
numerical val	ues for	a 512-b	it Q					
prev. no. of operations	2'	48	2 ⁵⁵					
new no. of operations	2 ³⁸	2 ⁴²	2 ⁴⁶	247				
q_i bound $B_1 = L_Q[2/3, c']$								
previous B_1	2 ⁹⁰		2	2118				
new B ₁	2 ⁵⁷	2 ⁶⁹	2 ⁸³	2 ⁸⁵				

* [CommeineSemaev06, JouxLercierNaccacheThomé09, Barbulescu13, Bar.Pierrot14] ** with cubic subfield simplification

Aurore Guillevic (INRIA/LIX)

Summary of results

- Asiacrypt 2015, Auckland, New Zealand
- online version HAL 01157378
- guillevic@lix.polytechnique.fr

Future work

- optimize the descent: "will it be an algorithm one day?"
- add Barbulescu's early abort strategy (not me)
- find a pairing-target-group version of JLSV1
- \mathbb{F}_{p^6} , $\mathbb{F}_{p^{12}}$

Future work

- optimize the descent: "will it be an algorithm one day?"
- add Barbulescu's early abort strategy (not me)
- find a pairing-target-group version of JLSV1
- \mathbb{F}_{p^6} , $\mathbb{F}_{p^{12}}$

Be careful with the hidden constant in the $O(\cdot)$

DL record computation in \mathbb{F}_{p^4} of 392 bits (120dd)

Joint work with R. Barbulescu, P. Gaudry, F. Morain

- p = 314159265358979323846270891033 of 98 bits (30 dd)
- $\ell \ = \ 9869604401089358618834902718477057428144064232778775980709 \ of \ 192 \ bits$
- $f = x^4 560499121640472x^3 6x^2 + 560499121640472x + 1$
- $g = 560499121639105x^4 + 4898685125033473x^3 3362994729834630x^2$ -4898685125033473x + 560499121639105
- $\varphi = g$
- $G = x + 3 \in \mathbb{F}_{p^4}$
- $T_0 = 31415926535897x^3 + 93238462643383x^2 + 27950288419716x + 93993751058209$

$\log_{G}(\mathsf{T}_{0}) =$

$136439472586839838529440907219583201821950591984194257022 \pmod{\ell}$