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The GGMZ approach

`On the Function Field Sieve and the Impact of Higher Splitting
Probabilities: Application to Discrete Logarithms in F21971 and F23164 '

Faruk Gölo§lu, G., Gary McGuire & Jens Zumbrägel



The GGMZ approach
Let the target �eld be Fqkn with k ≥ 1 small and �xed and n = O(q) .

• Assume there exists h1, h0 ∈ Fqk [X ] of low degree dh s.t.

h1(X q)X − h0(X q) ≡ 0 (mod f ) (1)

where f is irreducible and of degree n

• Let x be a root of f so that Fqkn = Fqk (x) and let y = xq . Then
by (1) we have x = h0(y)/h1(y) and Fqk (x) ∼= Fqk (y)

• Factor base is {x + d : d ∈ Fqk} (observe (y + d) = (x + d1/q)q )

A Basic Identity

For all a, b, c ∈ Fqk we have the following equality in Fqkn :

xq+1 + axq + bx + c =
1

h1(y)
(yh0(y) + ayh1(y) + bh0(y) + ch1(y))

• If both sides split over Fqk then we have a relation
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Bluher polynomials

Let k ≥ 3 and consider the polynomial X q+1 + aX q + bX + c .

If ab 6= c and aq 6= b , this may be transformed into

FB(X ) = X
q+1

+ BX + B , with B =
(b − aq)q+1

(c − ab)q
,

via X = c−ab
b−aq X − a .

Theorem (Bluher '02)

The number of elements B ∈ F×
qk s.t. the polynomial FB(X ) ∈ Fqk [X ]

splits completely over Fqk equals

qk−1 − 1

q2 − 1
if k is odd ,

qk−1 − q

q2 − 1
if k is even .



Degree 1 relation generation: k ≥ 3

• Compute B = {B ∈ F×
qk | X q+1 + BX + B splits over Fqk}

• Since B = (b − aq)q+1/(c − ab)q , for any a, b ∈ Fqk s.t. b 6= aq ,
and B ∈ B , there exists a unique c ∈ Fqk s.t. xq+1 + axq + bx + c
splits over Fqk

• For each such (a, b, c) , test if yh0(y) + ayh1(y) + bh0(y) + ch1(y)
splits; if so then have a relation

• If q3k−3 > qk(dh + 1)! then for dh ≥ 1 constant we expect to
compute logs of degree 1 elements of Fqkn in time

O(q2k+1)

For the base �eld Fq2 , relevant set of triples is

{(a, aq, c) | a ∈ Fq2 and c ∈ Fq, c 6= aq+1}.
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On the �y degree 2 elimination

For Q(x) = x2 + q1x + q0 let Q̄(y) = Q(x)q = y2 + qq1y + qq0 ∈ Fqkn be
an element to be eliminated, i.e., written as a product of linear elements.

• For any univariate polynomials w0,w1 we have

w0(xq) x + w1(xq) =
1

h1(y)
(w0(y) h0(y) + w1(y) h1(y))

• Compute a reduced basis of the lattice

LQ̄ = {(w0(Y ),w1(Y )) ∈ Fqk [Y ]2 : w0(Y ) h0(Y )+w1(Y ) h1(Y ) ≡ 0 (mod Q̄(Y ))}

• In general we have (u0,Y + u1), (Y + v0, v1) , with ui , vi ∈ Fqk , and
for s ∈ Fqk we have (Y + v0 + su0, sY + v1 + su1) ∈ LQ̄

• r.h.s. (y + v0 + su0) h0(y) + (sy + v1 + su1) h1(y) has degree
dh + 1, so cofactor splits with probability ≈ 1/(dh − 1)!

• l.h.s. is (xq + v0 + su0)x + (sxq + v1 + su1) which is of the form

xq+1 + axq + bx + c



On the �y degree 2 elimination

Consider the l.h.s. xq+1 + sxq + (v0 + su0)x + (v1 + su1) .

• Recall B = {B ∈ F×
qk | X q+1 + BX + B splits over Fqk}

• For each B ∈ B we try to solve B = (b − aq)q+1/(c − ab)q for s ,
i.e., �nd s ∈ Fqk that satis�es

B =
(−sq + u0s + v0)q+1

(−u0s2 + (u1 − v0)s + v1)q

by taking GCD with sq
k − s : Cost is O(q2 log qk) Fqk -ops

• Expected probability of success is ≈ 1−
(
1− 1

(dh−1)!

)qk−3

• Hence need qk−3 > (dh − 1)! to eliminate Q̄(y) with good
probability: Expected cost is

O(q2(dh − 1)! log qk) Fqk -ops



Alternative solution �nding

We need to compute s ∈ Fqk that satisfy the equation:

B =
(−sq + u0s + v0)q+1

(−u0s2 + (u1 − v0)s + v1)q

• Use an explicit Fqk/Fq basis {1, α, . . . , αk−1} , and introduce
Fq -variables s0, . . . , sk−1 s.t. s = s0 + s1α + · · ·+ sk−1α

k−1

• Gives a quadratic system, solvable in O((k
( 2k
k+1

)
)ω) Fq -ops

• For �xed k , dh and q →∞ this method has cost O(1) Fq -ops,
i.e., it has polylogarithmic complexity
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Computing DLPs in F24404

On 30/1/14 we (GKZ) announced the solution of a DLP in the Jacobian
of H0/F2 : Y 2 + Y = X 5 + X 3 over F2367 , which has a subgroup of
prime order r = (2734 + 2551 + 2367 + 2184 + 1)/(13 · 7170258097) and
embedding degree 12.

• F212 = F2[U]/(U12 + U3 + 1) = F2(u)

• F2367 = F2[X ]/(I (X )) = F2(x) where I (X ) the irreducible degree
367 divisor of h1(X 64)X − h0(X 64) , with

h1 = X 5 + X 3 + X + 1, h0 = X 6 + X 4 + X 2 + X + 1

• F212·367 is then the compositum of F212 and F2367

For small degree elimination, represent F212 as Fq2 with q = 26 , k = 2:

• F26 = F2[U]/(T 6 + T + 1) = F2(t)

• F212 = F26 [V ]/(V 2 + tV + 1) = F26(v)



Factor base logs and initial descent

To have enough relations for degree one elements of F24404/F212 we
would need q2k−3 > (6 + 1)! . So we used relations in F28808/F224 :

• F224 = F26 [W ]/(W 4 + W 3 + W 2 + t3) = F26(w)

Gal(F224/F2) acts on the degree 1 factor base {x + a | a ∈ F224} :

(x + a)2
367

= x + a2
367

= x + a2
7

=⇒ factor base has 699, 252 elements and linear system was solved in
4896 core hours on a 24 core cluster.

Initial descent: We performed a continued fraction initial split, then
degree-balanced classical descent to degrees ≤ 8 in 38224 core hours.



Eliminating small degree elements over F212

We used Joux's small degree elimination, our degree 2 elimination and
one other idea.

Joux's method: For Q ∈ Fq2 [X ] of degree D > 2 let F ,G have degree
< D . Consider

G (X ) ·
∏
α∈Fq

(F (X )− αG (X )) = F (X )qG (X )− F (X )G (X )q

• F (q)(y),G ((h0/h1)(y)),F ((h0/h1)(y)),G (q)(y) have small degree

• Insisting r.h.s. ≡ 0 (mod Q̄(y)) results in bilinear quadratic system

• For solutions check if the cofactor is (D − 1) -smooth

1 2 3 4

1 2 3 4 5 6 7 8

F224

F212

ι ιs
s

s
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Degree 2 elimination over F224

Let Q̄(y) ∈ F224·367 be an element to be eliminated.

• As before we have y = x64 and x = h0(y)/h1(y) , and for any
univariate polynomials w0,w1 we have

w0(xq) x + w1(xq) =
1

h1(y)
(w0(y) h0(y) + w1(y) h1(y))

• A reduced basis for the lattice LQ̄ is (u0,Y + u1), (Y + v0, v1) , with
ui , vi ∈ F224 . For s ∈ F224 , (Y + v0 + su0, sY + v1 + su1) ∈ LQ̄

• r.h.s. 1
h1(y) ((y + v0 + su0) h0(y) + (sy + v1 + su1) h1(y)) has degree

dh + 1 = 7, so cofactor splits with probability ≈ 1/5!

• l.h.s. is xq+1 + sxq + (u00 + sv00)x + (u10 + sv10) , which splits if

B =
(s64 + u0s + v0)65

(u0s2 + (u1 + v0)s + v1)64

• Probability of success is ≈ 1− (1− 1/5!)64 ≈ 0.415, but ampli�ed
to near certainty using recursive techniques



New `traps' in the descent

During the descent, we encountered several polynomials Q̄(Y ) that were
not eliminable via Joux's method.

• All were factors of h1(Y ) · c + h0(Y ) for c ∈ F212 or F224 and
hence h0(Y )/h1(Y ) ≡ c (mod Q̄(Y ))

• =⇒ r.h.s. equals F (q)(Y )G (c) + F (c)G (q)(Y ) (mod Q̄(Y ))

• This can't be zero mod Q̄(Y ) if the degrees of F and G are
smaller than the degree of Q̄ , unless F and G are both constants

• However, writing h1(Y ) · c + h0(Y ) = Q̄(Y ) · R(Y ) we have
Q̄(Y ) = h1(Y ) · ((h0/h1)(Y ) + c)/R(Y ) = h1(Y ) · (X + c)/R(Y )

• Hence log(Q̄(y)) ≡ log(x + c)− log(R(y)) , since log(h1(y)) ≡ 0

• In all the cases we encountered, the log of R(y) was solvable

• Note that these traps are di�erent to those identi�ed by Cheng,
Wan and Zhuang, which are factors of h1(X q)X − h0(X q) (or of
h1(X )X q − h0(X ) if using Joux's representation)
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The GKZ QPA

1 2Fqkn

4

Fq2kn 21

8

Fq4kn 21

16

Fq8kn 21

. . . . . . 2e

...

...

F
q2

e−1kn 21

• For an arbitrary element h we compute random h′ = h + r · I s.t.
deg h′ = 2e > 4n and h′ is irreducible (Wan '97), then descend.

• Complexity is tree arity to the power depth = qlog2 n+o(log q)
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Eliminating smoothness heuristics

• If dh ≤ 2, then r.h.s. cofactor of Q̄(y) is at most linear =⇒ no
smoothness heuristics needed for the descent

• Using a technique due to Enge-Gaudry, one can obviate the need to
compute the factor base logs by performing a descent of gαihβi for
base g , target h and random αi , βi , more than qk times

Hence no smoothness heuristics are needed!
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Hence no smoothness heuristics are needed!



Ensuring the elimination step works

To eliminate a degree 2 element Q̄(y) over Fqkd , we need to �nd a
Bluher value B and an s ∈ Fqkd that satisfy

B =
(−sq + u0s + v0)q+1

(−u0s2 + (u1 − v0)s + v1)q

Theorem (Helleseth-Kholosha '10)

For kd ≥ 3 the set of elements B ∈ F×
qkd s.t. X q+1 + BX + B splits

completely over Fqkd is the image of Fqkd \ Fq2 under the map

u 7→ (u − uq
2

)q+1

(u − uq)q2+1

Thus need lower bound for #{(s, u) ∈ Fqkd × (Fqkd \ Fq2)} on the curve

(u−uq
2

)q+1(−u0s2+(u1−v0)s+v1)q−(u−uq)q
2+1(−sq+u0s+v0)q+1 = 0



Main results

Theorem

Given a prime power q > 61 that is not a power of 4 , an integer

k ≥ 18 , coprime polynomials h0, h1 ∈ Fqk [X ] of degree at most two and

an irreducible degree l factor I of h1X
q − h0 , the DLP in F×

qkl where

Fqkl
∼= Fqk [X ]/(I ) can be solved in expected time

qlog2 l+O(k)

Using Kummer theory, such hi are known to exist for l = q − 1, giving:

Theorem

For every prime p there exist in�nitely many explicit extension �elds Fpn

for which the DLP in F×pn can be solved in expected quasi-polynomial

time

exp
(
(1/ log 2 + o(1))(log n)2

)
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The GKZ QPA

`On the discrete logarithm problem in �nite �elds of �xed characteristic'
(previously `On the Powers of 2')

arxiv:1507.01495

G., Thorsten Kleinjung & Jens Zumbrägel

arxiv:1507.01495


(actual) Concluding remarks

• Implementing examples can be very informative

• Degree 2 elimination seems to be fundamental, sometimes complex,
and theoretically very interesting (see Thorsten's talk next)

• Proving observations can be hard but worthwhile, especially due to
presence of `unknown unknowns'

• Some basic unanswered questions:

• Can one remove the �eld heuristic?
• Do faster algorithms exist for small characteristic?
• Do faster algorithms exist for large(r) characteristic?



A comparison between the QPAs

BGJT GKZ
Field rep. Heuristic Heuristic

Elimination step Heuristic (x 2) Proven
Tree arity O(q2) q
Complexity qO(log n/ log log q) qlog2 n+o(log q)

Practicality Not yet Yes, in F32395 and F21279
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