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Topological Deformation of Higher Dimensional AutomataPhilippe Gaucher(�), Eric Goubault(��)(�)Institut de Recherche Math�ematique Avanc�ee, ULP et CNRS,7 rue Ren�e Descartes, 67084 Strasbourg Cedex(��)LIST (CEA - Recherche Technologique)DTSI-SLA, CEA F91191 Gif-sur-Yvette CedexJune 2001AbstractA local po-space is a gluing of topological spaces which are equipped with a closedpartial ordering representing the time 
ow. They are used as a formalization of higherdimensional automata (see for instance [FGR99]) which model concurrent systems incomputer science. It is known [Gau00b] that there are two distinct notions of defor-mation of higher dimensional automata, \spatial" and \temporal", leaving invariantcomputer scienti�c properties like presence or absence of deadlocks. Unfortunately, theformalization of these notions is still unknown in the general case of local po-spaces.We introduce here a particular kind of local po-space, the \globular CW-complexes",for which we formalize these notions of deformations. Globular CW-complexes aredesigned to be to local po-spaces what CW-complexes are to topological spaces.After localizing the category of globular CW-complexes by spatial and temporaldeformations, we get a category (the category of dihomotopy types) whose objects upto isomorphism represent exactly the higher dimensional automata up to deformation.Thus globular CW-complexes provide a rigorous mathematical foundation to studyfrom an algebraic topology point of view higher dimensional automata and concurrentcomputations.Contents1 Introduction 22 Globular CW-complexes 62.1 Closed partial order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Informal justi�cation of the de�nition of globular CW-complexes . . . . . . 72.3 Globular CW-complex : de�nition and examples . . . . . . . . . . . . . . . 92.4 Morphism of globular CW-complexes . . . . . . . . . . . . . . . . . . . . . . 121



3 Relation with other formalizations 123.1 Gluing closed partial orderings . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Globular CW-complex and local po-space . . . . . . . . . . . . . . . . . . . 133.3 Globular CW-complex and precubical set . . . . . . . . . . . . . . . . . . . 224 Dihomotopy equivalence 264.1 S-dihomotopy equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2 T-dihomotopy equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 Dihomotopy equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Links between homotopy types and dihomotopy types 325.1 Path space between two points . . . . . . . . . . . . . . . . . . . . . . . . . 335.2 Homotopy and dihomotopy types . . . . . . . . . . . . . . . . . . . . . . . . 365.3 Towards a Whitehead theorem . . . . . . . . . . . . . . . . . . . . . . . . . 386 Why non-contracting maps ? 407 Concluding remarks and some open questions 421 IntroductionAlgebraic topological models have been used now for some years in concurrency theory(concurrent database systems and fault-tolerant distributed systems as well). The ear-lier models, progress graph (see [CES71] for instance) have actually appeared in operatingsystems theory, in particular for describing the problem of \deadly embrace"1 in \multi-programming systems".The basic idea is to give a description of what can happen when several processesare modifying shared resources. Given a shared resource a, we see it as its associatedsemaphore that rules its behaviour with respect to processes. For instance, if a is anordinary shared variable, it is customary to use its semaphore to ensure that only oneprocess at a time can write on it (this is mutual exclusion). Then, given n deterministicsequential processes Q1; : : : ; Qn, abstracted as a sequence of locks and unlocks on sharedobjects, Qi = R1a1i :R2a2i � � �Rnianii (Rk being P or V 2), there is a natural way to understandthe possible behaviours of their concurrent execution, by associating to each process acoordinate line in Rn. The state of the system corresponds to a point in Rn, whose ithcoordinate describes the state (or \local time") of the ith processor.1as E. W. Dijkstra originally put it in [Dij68], now more usually called deadlock.2Using E. W. Dijkstra's notation P and V [Dij68] for respectively acquiring and releasing a lock on asemaphore. 2
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Figure 1: Example of a progress graphConsider a system with �nitely many processes running altogether. We assume thateach process starts at (local time) 0 and �nishes at (local time) 1; the P and V actionscorrespond to sequences of real numbers between 0 and 1, which re
ect the order of theP 's and V 's. The initial state is (0; : : : ; 0) and the �nal state is (1; : : : ; 1). An exampleconsisting of the two processes T1 = Pa:Pb:V b:V a and T2 = Pb:Pa:V a:V b gives rise to thetwo dimensional progress graph of Figure 1.The shaded area represents states which are not allowed in any execution path, sincethey correspond to mutual exclusion. Such states constitute the forbidden area. An exe-cution path is a path from the initial state (0; : : : ; 0) to the �nal state (1; : : : ; 1) avoidingthe forbidden area and increasing in each coordinate - time cannot run backwards. We callthese paths directed paths or dipaths. This entails that paths reaching the states in thedashed square underneath the forbidden region, marked \unsafe" are deemed to deadlock,i.e. they cannot possibly reach the allowed terminal state which is (1; 1) here. Similarly, byreversing the direction of time, the states in the square above the forbidden region, marked\unreachable", cannot be reached from the initial state, which is (0; 0) here. Also noticethat all terminating paths above the forbidden region are \equivalent" in some sense, giventhat they are all characterized by the fact that T2 gets a and b before T1 (as far as resourcesare concerned, we call this a schedule). Similarly, all paths below the forbidden region arecharacterized by the fact that T1 gets a and b before T2 does.On this picture, one can already recognize many ingredients that are at the center ofthe main problem of algebraic topology, namely the classi�cation of shapes modulo \elasticdeformation". As a matter of fact, the actual coordinates that are chosen for representing3
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Va VbPb

Pa

Pb

Vb

VaFigure 2: The progress graph corresponding to Pa:V a:Pb:V b j Pa:V a:Pb:V bthe times at which P s and V s occur are unimportant, and these can be \stretched" in anymanner, so the properties (deadlocks, schedules etc.) are invariant under some notion ofdeformation, or homotopy. This is only a particular kind of homotopy though, and thisexplains why a new theory has to be designed. We call it (in subsequent work) directedhomotopy or dihomotopy in the sense that it should preserve the direction of time. Forinstance, the two homotopic shapes, all of which have two holes, of Figure 2 and Figure 3have a di�erent number of dihomotopy classes of dipaths. In Figure 2 there are essentiallyfour dipaths up to dihomotopy (i.e. four schedules corresponding to all possibilities ofaccesses of resources a and b) whereas in Figure 3, there are essentially three dipaths up todihomotopy.Progress graphs have actually a nice topological modelisation; they are compact order-Hausdor� spaces (see [Nac65], [Joh82]), i.e. are compact Hausdor� spaces with a closed(global) partial order. More general topological models are needed in general, in which thepartial order is only de�ned locally, and have been introduced and motivated in [FR96],[FGR98] and [FGR99]. The precise de�nitions and properties are given in Section 2.The natural combinatorial notion which discretizes this topological framework is that ofa precubical set, which is a collection of points (states), edges (transitions), squares, cubesand hypercubes (higher-dimensional transitions representing the truly-concurrent executionof some number of actions). This is introduced in [Pra91] as well as possible formalizationsusing n-categories, and a notion of homotopy. These precubical sets are called Higher-Dimensional Automata (HDA) following [Pra91] because it really makes sense to considera hypercube as some form of transition (as in transition systems, used in semantics of4
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Figure 3: The progress graph corresponding to Pb:V b:Pa:V a j Pa:V a:Pb:V bprogramming languages). We show the precise relation between this model and the newtopological model we introduce here (\globular CW-complexes") in Section 3.3, the relationbetween local po-spaces and cubical sets can be found in [FGR99].There are other formulations of the same problems using homological methods [Gou95],strict globular !-categories [Gau00c]. An important motivation in these pieces of work isthat of \reducing the complexity" of the semantics (given by a local po-space for instance)by considering deformation retracts. The classi�cation of the possible concurrent semantics(and behaviours) should then be the result �nding the right \(di-)homotopy types". Thiscalls for a suitable notion of (di-)homotopy equivalence, and for starting with a reasonablecategory of local po-spaces. In the case of ordinary homotopy theory, we have to restrictto the category of CW-complexes; the category of topological spaces being far too big forpractical purposes. The situation is even worse here, we not only have to restrict on thetopology part, but also on the local po-structures.We give in this paper a notion of CW-complex, called globular CW-complex whichmeets the basic requirements of what we expect to be a \directed cellular complex". Ithas been obtained by mimicking the well-known concept of CW-complexes, but built from\directed" cells. This is the purpose of Section 2. Still in the same section, we introducethe fundamental functor called the Globe functor, from the category of topological spacesto the category of po-spaces. This functor is the key to understanding how things work inthe directed situation. In particular, it yields an embedding of the category of homotopytypes into the new category of dihomotopy types (Theorem 5.9). This embedding has a lotof important consequences that we sketch in the perspectives section of [Gau01a].5



Once the right notion has been given, we make explicit the link between the globularCW-complexes and some geometric notions above mentioned, that is the local po-spacesand the precubical sets in Section 3. We prove that every globular CW-complex is alocal po-space indeed (Theorem 3.3) and that there exists a geometric realization of anyprecubical set as a globular CW-complex (subsection 3.3).Next in Section 4 we recast in the globular CW-complex framework the notion of spa-tial and temporal deformations informally presented in [Gau00b] and whose consequencesare informally explored in [Gau01a]. For that we construct, by localization of the cate-gory of globular CW-complexes with respect to appropriate morphisms, three categorieswhose isomorphism classes of objects are exactly the globular CW-complexes modulo spatialdeformations (Theorem 4.7), the globular CW-complexes modulo temporal deformations(Theorem 4.11) and at last the globular CW-complexes modulo spatial and temporal de-formations together (Theorem 4.15). This latter category will be called the category ofdihomotopy types.Then Section 5 is devoted to make explicit the link between homotopy types and diho-motopy types. The introduction of the path space of a globular CW-complex between twopoints of its 0-skeleton is the essential ingredient in the proof of Theorem 5.7 and Corol-lary 5.8. This allows us to derive the embedding theorem Theorem 5.9 which states thatthere exists an embedding of the category of the homotopy types into that of the dihomo-topy types. This notion of path spaces also allows us to provide a conjectural statementfor the analogue of the Whitehead theorem in the directed framework, and to check it inthe case of globes.Section 6 focuses on a very striking reason why it is necessary to work with \non-contracting" maps everywhere. It was not really possible to justify this axiom while thede�nition of globular CW-complexes was being given in Section 2. Only one reason isdescribed. Indeed there are lots of other algebraic reasons which are out of the scope ofthis paper.2 Globular CW-complexesThis section is devoted to the introduction of the category glCW of globular CW-complexesand to the comparison with the usual notion of CW-complex.2.1 Closed partial orderDe�nition 2.1. Let X be a topological space. A binary relation R on X is closed if thegraph of R is a closed subset of the cartesian product X �X.It is a well-known fact that any topological space X endowed with a closed partial orderis necessarily Hausdor� (see for instance [Nac65], [Joh82]).6



De�nition 2.2. A pair (X;6X) where X is a topological space and 6X a closed partialorder is called a global po-space.In most cases, the partial order of a global po-space X will be simply denoted by 6.Here are two fundamental examples of global po-spaces for the sequel :1. The achronal segment I is de�ned to be the segment [0; 1] endowed with the closedpartial ordering x 6Iy if and only if x = y.2. The oriented segment �!I is de�ned to be the segment [0; 1] endowed with the closedpartial ordering x 6�!I y if and only if y � x is non-negative.We will describe gluings of global po-spaces (i.e. local po-spaces) in Section 3.1.2.2 Informal justi�cation of the de�nition of globular CW-complexesLet n > 1. Let Dn be the closed n-dimensional disk de�ned by the set of points (x1; : : : ; xn)of Rn such that x21 + � � �+ x2n 6 1 endowed with the topology induced by that of Rn. LetSn�1 = @Dn be the boundary of Dn for n > 1, that is the set of (x1; : : : ; xn) 2 Dn suchthat x21+ � � �+x2n = 1. Notice that S0 is the discrete two-point topological space f�1;+1g.Let D0 be the one-point topological space. And let en := Dn � Sn.Every HDA can be seen as a pasting of n-cubes or of n-globes, depending on whetherone chooses the cubical approach or the globular approach to model the execution paths,the higher dimensional homotopies between them and the compositions between them (seeSection 1 and [Gou00] for more explanations). In dimension 2, the fundamental \unit" isthe square of Figure 4 oriented from the point (0; 0) to the point (2a; 0), going up to (a; b)and down to (a;�b) (a > 0, b > 0).If we want to characterize the C1-paths (i.e. the continuous paths with continuousderivatives) (X(t); Y (t)) in the cartesian system of coordinates (X; Y ) such that(X(0); Y (0)) = (0; 0); (X(1); Y (1)) = (2a; 0)which are non-decreasing with respect to each side of the lozenge viewed as another systemof coordinates (x; y), one has x(t)�!U + y(t)�!V = � X(t)Y (t) �where �!U = � a�b � �!V = � ab �7
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bFigure 4: The 2-dimensional globular cell
X

TIMEFigure 5: Symbolic representation of Glob(X) for some topological space Xand we want x0(t) > 0 and y0(t) > 0 where x0 and y0 are the derivative functions of xand y respectively. With m = b=a, an easy calculation gives 2bx(t) = mX(t) � Y (t) and2by(t) = mX(t) + Y (t) and therefore the condition x0(t) > 0 and y0(t) > 0 is equivalent toclaiming that mX 0(t) > jY 0(t)j. At the limit where the 2-dimensional 2-cell is representedas the quotient topological space D1 � [0; 2a] divided by the relations (x; 0) = (y; 0) and(x; 1) = (y; 1) for every x; y 2 D1, m = 0 almost everywhere and the above conditionbecomes Y 0(t) = 0. These calculations are intended to justify De�nition 2.4 of the n-dimensional globular cell.So the fundamental ingredient in all further constructions is the Globe functor (Figure 5)de�ned as follows, which gives rise to a particular family of local po-spaces. Let X be atopological space. The globe of X , Glob(X) is the quotient of the product space X � [0; 1]by the relations (x; 0) = (x0; 0) and (x; 1) = (x0; 1) for any x; x0 2 X . By convention, the8



equivalence class of (x; 0) (resp. (x; 1)) in Glob(X) will be denoted by � (resp. �). We canin fact partially order Glob(X) using the standard order 6I on I = [0; 1] as follows :Proposition 2.3. Let X be a Hausdor� topological space and consider the partial orderingof X�I de�ned by R = f((x; t); (x; t0)); (x; t; t0) 2 X�I�I and t 6I t0g. Then its image bythe canonical surjection s from X � I to Glob(X) is a closed partial ordering on Glob(X).The partial order relation on Glob(X) is as follows:� (x; 0) 6 (x0; t0) for all x; x0; t0 2 X �X � I ,� when t; t0 2]0; 1[�]0; 1[, (x; t) 6 (x0; t0) i� x = x0,� (x0; t0) 6 (x; 1) for all x; x0; t0 2 X �X � I .Proof. By the homeomorphism (x; t; x0; t0) 7! (x; x0; t; t0) fromX�I�X�I toX�X�I�I ,one sees thatR is a closed subset ofX�I�X�I if and only if Diag(X)�f(t; t0) 2 I�I; t 6t0g is a closed subset of X �X � I � I where Diag(X) is the diagonal f(x; x)=x 2 Xg ofX . Since X is Hausdor�, then its diagonal is closed and R as well. By de�nition of thequotient topology, s(R) is closed if and only if s�1 � s(R) is a closed subset of X � I . Itsu�ces then to notice that s�1 �s(R) = ((X � f0g)� (X � I))[((X � I)� (X � f1g))[Rto complete the proof.2.3 Globular CW-complex : de�nition and examplesLet �!D n+1 := Glob(Dn) and �!S n+1 := Glob(Sn) for n > 0. Notice that there is a canonicalinclusion of po-space �!S n � �!D n+1 for n > 1. By convention, let �!S 0 := f0; 1g with thetrivial ordering (0 and 1 are not comparable). There is a canonical inclusion from�!S 0 � �!D 1which is a morphism of po-spaces.De�nition 2.4. For any n > 1, �!Dn � �!S n�1 together with the closed partial orderinginduced by I is called the n-dimensional globular cell. More generally, every pair (X;6), where X is a topological space and 6 a closed partial ordering on X, isomorphic to�!D n � �!S n�1 for some n will be called a n-dimensional globular cell.Now we are going to describe the process of attaching globular cells.1. Start with a discrete set of points X0.2. Inductively, form the n-skeleton Xn from Xn�1 by attaching globular n-cells �!e n�via maps �� : �!S n�1 �! Xn�1 with ��(�); ��(�) 2 X0 such that3 : for every non-decreasing map � from �!I to �!S n�1 such that �(0) = � and �(1) = �, there exists0 = t0 < � � � < tk = 1 such that �� � �(ti) 2 X0 for any 0 6 i 6 k which must satisfy3This condition will appear to be necessary in the sequel.9



(a) for any 0 6 i 6 k� 1, there exists a globular cell of dimension di with di 6 n� 1 i : �!D di ! Xn�1 such that for any t 2 [ti; ti+1], �� � �(t) 2  i(�!D di) ;(b) for 0 6 i 6 k � 1, the restriction of �� � � to [ti; ti+1] is non-decreasing ;(c) the map �� � � is non-constant ;Then Xn is the quotient space of the disjoint union Xn�1F��!Dn� of Xn�1 with acollection of �!D n� under the identi�cation x � ��(x) for x 2 �!S n�1� � @�!D n�. Thus asset, Xn = Xn�1F��!e n� where each �!e n� is a n-dimensional globular cell.3. One can either stop this inductive process at a �nite stage, setting X = Xn, or onecan continue inde�nitely, setting X = SnXn. In the latter case, X is given the weaktopology : A set A � X is open (or closed) if and only if A\Xn is open (or closed) inXn for some n (this topology is nothing else but the direct limit of the topology of theXn, n 2 N). Such a X is called a globular CW-complex and X0 and the collection of�!e n� and its attaching maps �� : �!S n�1 �! Xn�1 is called the cellular decompositionof X .As for usual CW-complexes (see [Hat] Proposition A.2.), a globular cellular decom-position of a given globular CW-complex X yields characteristic maps �� : �!D n� ! Xsatisfying :1. The mapping �� ��!Dn���!S n��1 induces an homeomorphism from �!e n� to its image.2. All the previous globular cells are disjoint and their union gives back X .3. A subset of X is closed if and only if it meets the closure of each globular cells of Xin a closed set.We will consider without further mentioning that the segment �!I is a globular CW-complex, with f0; 1g as its 0-skeleton.Proposition and De�nition 2.5. Let X be a globular CW-complex with characteristicmaps (��). Let 
 be a continuous map from �!I to X. Then 
([0; 1])\X0 is �nite. Supposethat there exists 0 6 t0 < � � � < tn 6 1 with n > 1 such that t0 = 0, tn = 1, such that forany 0 6 i 6 n, 
(ti) 2 X0, and at last such that for any 0 6 i 6 n � 1, there exists an �i(necessarily unique) such that for t 2 [ti; ti+1], 
(t) 2 ��i(�!Dn�). Then such a 
 is calledan execution path if the restriction 
 �[ti;ti+1 ] is non-decreasing.Proof. Obvious.By constant execution paths, one means an execution paths 
 such that 
([0; 1]) =f
(0)g. The points (i.e. elements of the 0-skeleton) of a given globular CW-complexes Xare also called states. Some of them are fairly special:10



De�nition 2.6. Let X be a globular CW-complex. A point � of X0 is initial (resp. �nal)if for any execution path � such that �(1) = � (resp. �(0) = �), then � is the constant path�.Proposition 2.7. If X is a CW-complex, then Glob(X) is a globular CW-complex bysetting Glob(X)0 = f�; �gfor x 2 X.Proof. X is a CW-complex hence is described by cells and attaching maps. There existstopological spaces Xn with X = SnXn with the weak topology and �� : Sn�1 �! Xn�1(for � belonging to some set of indexes) continuous maps which describe how to go fromXn�1 to Xn; we have the following co-cartesian diagram:Sn�1 ��- Xn�1Dni ? - Xn?where i is the inclusion of Sn�1 into Dn as its boundary @Dn.Let us describe inductively Glob(X) as a globular CW-complex. We begin by settingGlob(X)0 = f�; �g. Then we apply inductively the functor Glob(�) on the co-cartesiandiagram above: Glob(Sn�1) �= �!S n Glob(��)- Glob(Xn�1)Glob(Dn) �= �!D n+1Glob(i) ? - Glob(Xn)?First of all, it is easy to see that Glob(i) induces a homeomorphism from �!S n onto theboundary @�!Dn+1 of �!D n+1, therefore is the inclusion morphism we expect. We now haveto check that Glob(��) is a correct attaching map for globular CW-complexes. For (x; u) 2Glob(Sn�1) (x 2 Sn�1, u 2 �!I ), we have Glob(��)(x; u) = (��(x); u). We have to seethat it is non-decreasing. Let (x; u) and (x0; u0) be two elements of Glob(Sn�1) such that(x; u) 6 (x0; u0). We have the following cases:� u = 0 then Glob(��)(x; u) = �, thus is less or equal than Glob(��)(x0; u0),11



� u0 = 1 then Glob(��)(x0; u0) = �, thus is greater or equal than Glob(��)(x; u),� 0 < u < 1 (the case u = 1 is trivial since it implies u0 = 1, which is the previouscase) then u 6 u0 and x = x0. Thus, Glob(��)(x; u) = (��(x); u) 6 (��(x0); u) =Glob(��)(x0; u0).That Glob(��) is non-contracting is due to the fact that Glob(��)(�) 6= Glob(��)(�).Proposition 2.8. Every globular CW-complex is a CW-complex.Proof. This is due to the fact that �!e n� is homeomorphic to en�.2.4 Morphism of globular CW-complexesDe�nition 2.9. The category glCW of globular CW-complexes is the category having asobjects the globular CW-complexes and as morphisms the continuous maps f : X �! Ysatisfying the two following properties :� f(X0) � Y 0� for every non-constant execution path � of X, f � � must not only be an executionpath (f must preserve partial order), but also f �� must be non-constant as well : wesay that f must be non-contracting.The condition of non-contractibility is very analogous to the notion of non-contracting!-functors appearing in [Gau00c]. Notice also that the attaching maps in the de�nition ofa globular CW-complex are morphisms in glCW. This non-contractibility condition willbe justi�ed in Section 6.A non-constant execution path of a globular CW-complex X induces a morphism ofglobular CW-complexes from �!I to X .Proposition 2.10. The functor Glob(�) induces a functor still denoted by Glob(�) fromthe category CW of CW-complexes to the category glCW of globular CW-complexes.Proof. It is an immediate consequence of Proposition 2.7.3 Relation with other formalizations3.1 Gluing closed partial orderingsLet us remind some de�nitions to �x the notations. The category of Hausdor� topologicalspaces with the continuous maps as morphisms will be denoted by Haus. The category ofgeneral topological spaces without further assumption will be denoted by Top.12



Let (X;R) be a global po-space. We say that (U;6) is a sub-po-space of (X;R) if andonly if it is a po-space such that U is a sub topological space of X and such that 6 is therestriction of R to U .LetX be a Hausdor� topological space. A collection U(X) of po-spaces (U;6U) coveringX is called a local po-structure if for every x 2 X , there exists a po-space (W (x);6W (x))such that:� W (x) is an open neighborhood containing x,� the restrictions of 6U and 6W (x) to W (x) \ U coincide for all U 2 U(X) such thatx 2 U . This can be stated as: y 6U z i� y 6W (x) z for all U 2 U(X) such that x 2 Uand for all y; z 2 W (x) \ U . Sometimes, W (x) will be denoted by WX(x) to avoidambiguities. Such a WX(x) is called a po-neighborhood.Two local po-structures are equivalent if their union is a local po-structure. This de�nesan equivalence relation on the set of local partial structures of X . A topological spacetogether with an equivalence class of local po-structures is called a local po-space [FGR99].Notice that a global po-space is a local po-space.A morphism f of local po-spaces (or dimap) from (X;U) to (Y;V) is a continuous mapfrom X to Y such that for every x 2 X ,� there is a po-neighborhood W (f(x)) of f(x) in Y ,� there exists a po-neighborhood W (x) of x in X with W (x) � f�1(W (f(x))),� for y; z 2 W (x), y 6 z implies f(y) 6 f(z).In particular, a dimap f from a po-space X to a po-space Y is a continuous map fromX to Y such that for any y; z 2 X , y 6 z implies f(y) 6 f(z). A morphism f of localpo-spaces from [0; 1] endowed with the usual ordering (denoted by �!I ) to a local po-spaceX is called dipath or sometime execution path.The category of Hausdor� local po-spaces with the dimaps as morphisms will be denotedby LPoHaus. The mapping Glob(�) of Proposition 2.3 yields a functor from Haus toLPoHaus.3.2 Globular CW-complex and local po-spaceWe now relate globular CW-complexes with local po-spaces.Convention In the sequel, for any X and Y two topological spaces, we endow the disjointsum X t Y with the �nal topology induced by both inclusion maps X � X t Y andY � X t Y .Both following lemmas summarize well-known facts about topological spaces : see[Rot88] exercises 8.12 and 8.13. 13



Lemma 3.1. Let � be a closed continuous map from X to Y and let Z � Y . Let U be anopen subset of X containing ��1(Z). Then there exists an open subset V of Y such thatZ � V and ��1(V ) � U .Proof. Let V := Y � �(X �U). Since � is closed, V is a closed subset of Y . The inclusion��1(V ) � U is obvious. Now if z 2 Z, then either z 2 Y ��(X) � V , or z = �(x) for somex 2 X . And x 2 ��1(Z) � U implies x 2 U . Therefore z =2 �(X � U).Lemma 3.2. Let A be a closed subset of X. Let f be a continuous map from A to Y .Consider the quotient topological space X tf Y := (X t Y )= � where � is the equivalencerelation on X t Y generated by f(a; f(a)) 2 (X t Y ) � (X t Y ); a 2 Ag. Let � be thecanonical continuous map from X t Y to X tf Y . Then1. A subset 
 of X tf Y is open (resp. closed) in X tf Y i� ��1(
)\X is open (resp.closed) in X and ��1(
)\ Y is open (resp. closed) in Y .2. As soon as A is a closed subset of X, X � A can be identi�ed to the open subset�(X �A) of X tf Y and Y can be identi�ed to the closed subset �(Y ) of X tf Y .3. If f(A) is a closed subset of Y , then Y � f(A) can be identi�ed to the open subset�(Y � f(A)) of X tf Y and f(A) to the closed subset �(f(A)) of Y .4. If A is compact, then � is a closed map.5. If A is compact and if X and Y are Hausdor�, then X tf Y is Hausdor�.Proof. The set X tf Y is endowed with the �nal topology induced by �. Therefore 
 �Xtf Y is open (resp. closed) i� ��1(
) is open (resp. closed) in XtY hence Assumption 1.Let 
 be an open subset of X�A. Then ��1�(
)\X = 
\ (X�A) is an open subsetof X because of the closedness of A. Therefore X � A and �(X � A) are homeomorphic.Let 
 be an open subset of Y . Then ��1�(
) \X = f�1(
) is an open subset of X and��1�(
)\Y = 
 is an open subset of Y . Therefore Y and �(Y ) are homeomorphic. HenceAssumption 2.Let 
 be an open subset of Y � f(A). Then ��1�(
) \ Y = 
 is an open subset of Ysince f(A) is closed. Therefore Y � f(A) and �(Y � f(A)) are homeomorphic. Let 
 be aclosed subset of f(A). Then ��1�(
) \X = f�1(
) is a closed subset of X since f(A) isclosed and ��1�(
)\ Y = 
 is also a closed subset of Y again since f(A) is closed. HenceAssumption 3. 14



Let F be a closed subset of X t Y . Then��1�(F )= ��1� ((F \ (X � A))[ (F \A) [ (F \ f(A)) [ (F \ (Y � f(A))))= (F \ (X �A)) [ ((F \A) [ f(F \ A))[ �(F \ f(A)) [ f�1(F \ f(A))�[(F \ (Y � f(A))= F [ f(F \ A) [ f�1(F \ f(A))Hence Assumption 4.If z 2 X tf Y , then��1(z) = ���1(z) \ (X �A)� t ���1(z) \A� t ���1(z) \ f(A)�t ���1(z) \ (Y � f(A))�Each of these sets is compact (and sometimes even �nite) therefore ��1(z) is a compactsubset of X t Y . Let z1 and z2 be two distinct elements of X tf Y . Then ��1(z1) and��1(z2) are disjoint compact subsets of X t Y . Since X t Y is Hausdor�, there exists twodisjoint open subsets U1 and U2 of X t Y such that ��1(z1) � U1 and ��1(z2) � U2. ByLemma 3.1, there exists two open subsets V1 and V2 of X tf Y containing respectively fz1gand fz2g such that ��1(V1) � U1 and ��1(V2) � U2. Hence Assumption 5.Theorem 3.3. Every globular CW-complex X is a local po-space.Proof. We prove that attaching globular n-cells to any locally compact local po-space stillde�nes a local po-space. As points are trivial local po-spaces, the theorem will follow froman easy induction.First we say that a local po-structure is small if for all U and V in the open coveringde�ning the local po-structure, 6U and 6V coincide on U \ V . It is easy to see that alllocal po-spaces X admit (in its equivalence class of coverings) a small local po-structure :if WX(x) is a po-neighborhood, then any subset of WX(x) which is a neighborhood of x isalso a po-neighborhood ; hence one can assume that W (x) � U for some U 2 U and hencethat the partial order on WX(x) is induced from U . The po-neighborhoods satisfying thisextra condition are called small po-neighborhoods and they give a neighborhood basis forthe topology on X , since the intersection of two small po-neighborhoods are again a smallpo-neighborhood. Moreover, the covering by the small po-neighborhoods de�nes the localpartial order.Let X be a local po-space: it is de�ned by a covering (U ; (6U)U2U) of open sub-po-spaces of X together with (WX(x);6WX(x)), for all x 2 X , the local neighborhood andthe corresponding partial order. We now only consider any of its small representativesin its equivalence class of local po-structures (we still call X = (U ; (6U)U2U)). �!D n is alocal po-space, which is actually a (global) po-space. So its covering is (�!D n;6�!Dn) withcorresponding (W�!Dn(x) = �!D n;6W�!Dn (x)=6�!D n).15



Let f : �!S n�1 �! X be an attaching map4 of a globular n-cell �!e n. We construct thetopological space Z = �!D ntfX as de�ned by Lemma 3.2. Let � : �!DntX ! �!D ntfX be thecanonical surjective map. We have a commutative diagram in the category of topologicalspaces: �!S n�1 f - X�!D ni ? �2 - Z�1?where i is the inclusion map and �1, �2 are de�ned by the push-out diagram. Of course,�1 is injective since i is injective. We identify �1 with � restricted to X and also identify�2 with � since it is the composition of the inclusion map from�!Dn to �!Dn tX with �.As �!S n�1 is compact, by Lemma 3.2, point 3 and 4, we know that � is a closed mapand Z is Hausdor� (this holds true by induction again). Therefore f(�!S n�1) is closed sinceit is compact. Thus by point 3 of Lemma 3.2, Xn�!S n�1 can be identi�ed with the opensubset �(Xnf(�!S n�1)) of Z and f(�!S n�1) with the closed subset �(f(�!S n�1)) of Z.Similarly, �!S n�1 is a closed subset of �!D n so by point 2 of Lemma 3.2, �!D nnf(�!S n�1)can be identi�ed with the open subset �(�!Dnnf(�!S n�1)) of Z and X can be identi�ed withthe closed subset �(X) of Z. We use these identi�cations below.Take now z 2 Z; we are going to construct a neighborhood Uz of z in Z together witha local po-structure on Uz , making Z into a local po-space with the local po-structure(Uz ;�Uz)z2Z :(1) Suppose z 2 �!D nnf(�!S n�1) (see Figure 6). We de�ne Uz = �!D nnf(�!S n�1) that wenoticed is identi�ed with an open subset of Z, and a binary relation �Uz on Uz suchthat u �Uz v if u 6�!Dn v. �Uz is obviously a partial order.(2) Suppose z 2 Xnf(�!S n�1) (see Figure 7). We have noticed that Xnf(�!S n�1) can beidenti�ed with an open subset of Z. WX(z) is an open subset of �!D n t X contain-ing ��1(fzg) = fzg since z is in X and � is injective on this part. Therefore, byLemma 3.1, there exists Uz open of Z containing fzg such that ��1(Uz) � WX(z).We de�ne the partial ordering �Uz to be the same as 6WX(z) on Uz .(3) The only remaining possibility is that z 2 f(�!S n�1) (see Figure 9). Let us �rstsubdivide the segment [0; 1]; take six elements of ]0; 1[ 0 < a < b < c < d < e < f < 1.We let (see Figure 8),4We consider one attaching map at a time only, the argument easily transposes to any number of attachingmaps. 16
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Figure 8: The subdivision of an oriented circle.
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{ F1 = [e; 1][ [0; b], with partial order 6F1 de�ned by, for x 2 [e; 1] and y 2 [e; 1]or x 2 [0; b] and y 2 [0; b], it is the usual partial order induced by [0; 1] and forx 2 [e; 1] and y 2 [0; b], x 6F1 y.{ F2 = [a; d], with the usual partial order.{ F3 = [c; f ], with the usual partial order.We notice that if we identify 0 with 1, ( �F1;6F1), ( �F2;6F2) and ( �F3;6F3) is a smalllocal po-structure on the circle and the canonical surjection from the po-space �!I tothis local po-space is a morphism of local po-spaces.We de�ne �!D ni = f(x; t) j x 2 Dn�1; t 2 Fig (similarly �!S n�1i = f(x; t) j x 2 Sn�2; t 2Fig) closed subset of �!Dn. The partial orders 6Fi induce partial orders 6�!Dni on �!Dni .As X is locally compact, we can �nd Wz a closed neighborhood of z contained inWX(z).Consider the composite map �i:�!D ni tWz �i &&LL
LL

LL
LL

LL

� // �!D n tX�
���!D n tf XIt is a closed continuous map as a composition of two closed continuous maps. Thereexists (a non-necessarily unique) (w; t) 2 Sn�2��!I such that f(w; t) = z. Necessarily,t belongs to some �Fiz . We have��1iz (fzg) � �!Dniz tWzthus by Lemma 3.1 there exists an open neighborhood Uz of z such that��1iz (Uz) � �!D niz tWzLet UXz be the subset Uz \�(X) of Z and UDz be the subset Uz \ (�(�!Dnnf(�!S n�1)))of Z. This is a partition of Uz . Notice that we can identify elements of UDz withelements of �!D nn�!S n�1 and elements of UXz with elements of X . By construction,UDz � �!D nizn�!S n�1iz . We now de�ne a binary relation �Uz on Uz as follows:{ for u; v 2 UXz , u �Uz v if u 6WX(z) v,{ for u; v 2 UDz , u �Uz v if u 6�!D niz v,19



{ for u 2 UXz and v 2 UDz ,� if iz = 1, u �Uz v if u 6WX (z) f(�) and 0 < t(v) < a, (t(v) is the uniqueparameter in F1 such that v = (w; t(v)) for some w),� if iz = 2, u �Uz v if u 6WX(z) f(�),� if iz = 3 we can never have u �Uz v.{ for u 2 UDz and v 2 UXz ,� if iz = 1, u �Uz v if f(�) 6WX(z) v and b < t(u) < 1,� if iz = 2 we can never have u �Uz v,� if iz = 3, u �Uz v if f(�) 6WX(z) v.This de�nes a partial order indeed. Re
exivity and transitivity are obvious. We nowcheck antisymmetry. Let u and v be two elements of Uz such that u �Uz v andv �Uz u. If u and v both belong to UXz or UDz it is obvious that this implies u = v,since the relation �Uz coincide with one of the partial orders 6WX (z) or 6�!D ni in thatcase. Suppose u 2 UXz , v 2 UDz with,{ iz = 1, we have by de�nition u 6WX (z) f(�) and 0 < t(v) < b and f(�) 6WX(z) uand e < t(v) < 1, which is of course impossible,{ iz = 2, v �Uz u is impossible by de�nition,{ iz = 3, u �Uz v is impossible by de�nition.It follows that (Uz;�Uz)z2Z de�nes a small local po-structure since by construction, forz 6= z0, the partial orders �Uz and �Uz0 coincide on the intersection Uz\Uz0 (if non-empty).It then su�ces to set WZ(z) := Uz .The following proposition is crucial to prove the functoriality of the above construction.Theorem 3.4. The previous embedding induces a functor from the category of globularCW-complexes to that of local po-spaces.Proof. Let X and Y be two globular CW-complexes and f : X ! Y be a morphism ofCW-complexes. The globular cellular decomposition of X yields a set of characteristicmaps �� : �!Dn� ! X satisfying :1. The mapping �� ��!Dn���!S n��1 induces an homeomorphism from �!e n� to its image.2. All the previous globular cells are disjoint and their union gives back X .3. A subset of X is closed if and only if it meets the closure of each globular cells of Xin a closed set. 20



where � runs over a well-ordered set of indexes � (one can suppose that � is a �nite ortrans�nite cardinal). One can suppose that the mapping � 7! n� is non-decreasing. LetX [�1] = ;. Let � be an ordinal with � 6 �. If � is a limit ordinal, let X [�] = lim�! �<�X [�].If � = 
 + 1 for some ordinal 
, then let X [�] = �!D n� t�� X [
]. Notice that X [
] is closedin X [�].We are going to prove by trans�nite induction on � the statement P (�) : For anyglobular CW-complex X and for any set of characteristic maps �� : �!Dn� ! X as above,a morphism of globular CW-complexes from X to Y induces a morphism of local po-spacesfrom X [�] to Y .Necessarily the equality n0 = 0 holds therefore P (0) is true. Now let us suppose thatP (�) holds for � < � and some � > 1. We want to check that P (�) then holds as well. If� = 1, then X [�] is either the two-point discrete space, or a loop. So P (1) holds. So let ussuppose � > 2.There are two mutually exclusive cases :1. The case where � is a limit ordinal. Let x 2 X [�]. Then x 2 X [�] for some � < �and the induction hypothesis can be applied ; the result follows from the fact thatthe direct limit is endowed with the weak topology.2. The case where � = 
 + 1 for some cardinal 
. Then X [�] = �!D n� t�� X [
] with theabove notations. With the notation and identi�cation as in the proof of Theorem 3.3,one has three mutually exclusive cases :� x 2 X [
]n��(�!S n��1) : in this case, the induction hypothesis can be applied ;� x 2 �!D n�n��(�!S n��1) : let WY (f(x)) be a po-neighborhood of f(x) in Y ;then f�1(WY (f(x))) is an open of �!D n� ; there exists a basis of �!D n� by globalpo-spaces so there exists a po-neighborhood Wx of x in �!Dn� such that Wx �f�1(WY (f(x))) ;� x 2 ��(�!S n��1) : let �� be the canonical closed map from �!D n� t X [
] toX [�] ; by induction hypothesis, f � �� �X [
]: X [
] ! Y is a morphism of po-spaces ; therefore there exists a po-neighborhood Wf(x) of f(x) in Y and apo-neighborhood Wx of x in X [
] such thatWx � (f � �� �X [
])�1 �Wf(x)�So (��)�1(fxg) 2 �!Dn� tWx and by Lemma 3.1, there exists an open Vx of X [
]such that (��)�1(Vx) 2 �!D n� tWx. Then let us considering the Ux of the proofof Theorem 3.3. Since f is continuous, f�1(Wf(x)) is open and; 6= Vx \ Ux \ f�1(Wf(x)) � f�1(Wf(x))21



We now prove an interesting tool for constructing globular complexes.Theorem 3.5. Let Z be a compact local po-space, let Y be a closed subset of Z, and let�!e be a globular n-cell in Z with �!e \ Y = ;. Suppose there exists a relative isomorphism5of globular CW-complexes � : (�!Dn;�!S n�1) //(�!e [ Y; Y ). Set f = �j�!S n�1. then theobvious map (induced by � and by IdY )	 : Yf = �!Dn tf Y //�!e [ Yis an isomorphism of local po-spaces.Proof. The map 	 is clearly bijective. Let g be the canonical map from �!DntY to �!Dntf Yand let 
 be an open subset of �!e [Y . Then g�1	�1(
) = ��1(
\�!e )t(
\Y ) is an opensubset of �!Dn t Y , therefore 	 is continuous. So �!e [ Y is compact and therefore 	 is anhomeomorphism. The fact that 	 preserves the structure of local po-spaces is obvious.3.3 Globular CW-complex and precubical setWe are going to show that in fact, there is a geometric realization functor (which should behomotopically equivalent to the former one composed with the realization of precubical setsas local po-spaces of [FGR99] in some sense) transforming a precubical set into a globularCW-complex. We �rst need a few (classical) remarks.De�nition 3.6. [BH81] [KP97] A precubical set (or HDA) consists of a family of sets(Mn)n>0 and of a family of face maps Mn @�i //Mn�1 for � 2 f0; 1g and 1 6 i 6 n whichsatis�es the following axiom (called sometime the cube axiom) :@�i @�j = @�j�1@�i for all 1 6 i < j 6 n and �; � 2 f0; 1g.If M is a precubical set, the elements of Mn are called the n-cubes. An element of Mnis of dimension n. The elements of M0 (resp. M1) can be called the vertices (resp. thearrows) of K.Let M and N be two HDA, and f a family fn : Mn ! Nn of functions. The family fis a morphism of HDA if and only if fn � @�i = @�i � fn+1 for all n 2 N and 0 6 i 6 n. HDAtogether with these morphisms form a category which we denote by �Set. Conventionally,this category can be identi�ed with the set-valued pre-sheaves of some small �nite freecategory �, and therefore it is cocomplete.5Meaning that � is an isomorphism of globular CW-complexes from �!D n to �!e [ Y such that it restrictsto an isomorphism of globular CW-complexes from �!S n�1 � �!Dn to Y � �!e [ Y .22



The small category � can be described as a category whose objects are [n], where n 2 Nand whose morphisms are generated by,[n� 1] �0i-�1j- [n]with 1 6 i; j 6 n and satisfying the opposite of the cube axiom, i.e. ��j ��i = ��i ��j�1 for all1 6 i < j 6 n and �; � 2 f0; 1g.There is a truncation functor Tn : �Set ! �Set de�ned by, Tn(M)m = Mm if m 6 nand Tn(M)m = ; if m > n.Now, let D[n] be the representable functor from � to Set with D[n]([p]) = �Set([p]; [n]).We de�ne the singular n-cubes of a HDA M to be any morphism � : D[n] !M .Lemma 3.7. The set of singular n-cubes of a HDA M is in one-to-one correspondencewith Mn. The unique singular n-cube corresponding to a n-cube x 2 Mn is denoted by�x : D[n] !M . It is the unique singular n-cube � such that �(Id[n]) = x.Proof. The proof goes by Yoneda's lemma.There is only one morphism in � from a given [n] to itself, the identity of [n], henceD[n]nfIdg is a functor which has only as non-empty values the D[n]([p]) with p < n (\it isof dimension n� 1"). We write @D[n] for this functor. For � a natural transformation fromD[n] to M , we write @� for its restriction to @D[n].Proposition 3.8. Let M be a HDA. The following diagram is co-cartesian (for n 2 N),`x2Mn+1 @D[n+1] Fx2Mn+1 @�x- Tn(M)`x2Mn+1 D[n+1]� ? Fx2Mn+1 �x- Tn+1(M)� ?where @D[n+1] = Tn(D[n+1]) and @�x = �xj@D[n+1].Proof. We mimic the proof of [GZ67]: it su�ces to prove that the diagram below (in thecategory of sets) is cocartesian for all p 6 n+ 1,`x2Mn+1(@D[n+1])p Fx2Mn+1 (@�x)p- (Tn(M))p`x2Mn+1(D[n+1])p� ? Fx2Mn+1 (�x)p- (Tn+1(M))p� ?since colimits (hence push-outs) are taken point-wise in a functor category into Set.23



For all p < n+1, the inclusions are in fact bijections, and the diagram is then obviouslycocartesian.For p = n+1, the complement of Fx2Mn+1(@D[n+1])p in Fx2Mn+1(D[n+1])p is the set ofcopies of cubes Id[n+1], one for each cube ofMn+1. This means that the map Fx2Mn+1(�x)pinduces a bijection from the complement of Fx2Mn+1(@D[n+1])p onto the complement of(Tn(M))p. This implies that the diagram is cocartesian for p = n+ 1 as well.This lemma states that the truncation of dimension n+1 of a HDAM is obtained fromthe truncation of dimension n ofM by attaching some standard (n+1)-cubes D[n+1] alongthe boundary @D[n+1] of (n + 1)-dimensional holes. In fact, any precubical set M is thedirect limit of the diagram consisting of all inclusions Tn�1(M) ,! Tn(M), hence is also thedirect limit of the diagram consisting of all the cocartesian squares above.We are quite close to the globular CW-complex de�nition. What we need now is the(classical) notion of geometric realization. Let �n be the standard cube in Rn (n > 0),�n = f(t1; : : : ; tn)j8i; 0 6 ti 6 1g�0 = f0gand let �ki : �n�1 ! �n, 1 6 i 6 n, k = 1; 2, be the continuous functions (n > 1),�n � �0i �n�1�n�1�1i 6de�ned by, �ki (t1; : : : ; tn�1) = (t1; : : : ; ti�1; k; ti; : : : ; tn�1)Consider now, for a precubical set M , the set R(M) = FnMn��n. The setsMn havethe discrete topology and �n is endowed with the topology induced as a subset of Rn withthe standard topology thus R(M) is a topological space with the disjoint sum topology.Let � be the equivalence relation induced by the identities:8k; i; n; 8x 2Mn+1; 8t 2 �n; n > 0; (@ki (x); t) � (x; �ki (t))Let jM j = R(M)= � have the quotient topology. The topological space jM j is calledthe geometric realization ofM . This actually yields a functor from �Set to Top by settingfor f : X ! Y a morphism in �Set, R(f) : R(X) �! R(Y ) by: R(f)((x; t)) = (f(x); t).This functor commutes with colimits since it is a left adjoint functor (the right adjointbeing a singular cube functor, see [FGR99]).24



Thus, the geometric realization of a precubical setM is the direct limit of the diagram:`x2Mn+1 @�n+1 Fx2Mn+1 j@�xj- jTn(M)j`x2Mn+1 �n+1� ? Fx2Mn+1 j�xj- jTn+1(M)j� ?since it is easily shown that,� jD[n+1]j is homeomorphic to �n+1,� the inclusion of @D[n+1] into D[n+1] induces an homeomorphism between j@D[n+1]jonto the boundary @�n+1 of the standard (n+ 1)-cube.Obviously, each �x induces a homeomorphism from @�n+1 onto a connected component ofjTn+1(M)jnjTn(M)j, which is homeomorphic to the interior of an (n+1)-cube, and to en+1.This shows that at least, jM j is a CW-complex. We are now going to show that this directlimit can be slightly transformed so as to produce a globular CW-complex.First, let us consider the following \change of coordinates" on �n; de�ne h : �n ! �nwith h(t1; � � � ; tn) = 1n 0@ nXi=1 ti; t2 � nXi=1;i 6=2 ti; � � � ; tj � nXi=1;i 6=j ti; � � � ; tn � nXi=1;i 6=n ti1AThen h is a homeomorphism from �n onto h(�n). We are now using h to \slice" �nin pieces. For t 2 I , let Ct = h�1 (f(t; t2; � � � ; tn)j(t; t2; � � � ; tn) 2 h(�n)g). For all t with0 < t < 1, Ct is homeomorphic toDn�1. For t = 0 and t = 1, Ct is homeomorphic to a point.This implies that �n is homeomorphic to Glob(Dn�1) = �!Dn, via an homeomorphism wecall � : �n ! Glob(Dn�1). De�ne a partial order on �n by x 6gl y if and only if �(x) 6 �(y)(using the partial order on Glob(Dn�1)). Then by de�nition, (�n;6gl) is isomorphic as apo-space to �!Dn (through �). Notice also that ��1(@�!D n) = @�n. We are now ready forthe construction of a globular CW-complex out of M .� We start with X0 = `x2M0 �0.� We form inductively the n-skeleton Xn from Xn�1, that we prove (again by inductionon n) to be homeomorphic to jTn�1(M)j, by attaching globular n-cells �!e n�x via maps��x : �!S n�1 �! Xn�1, where �x is any singular n-cube of M . The attaching map isde�ned as the composite:��x : �!S n�1 ��1- @�n j@�xj- jTn�1(M)j � Xn�1What will remain to be shown is that this is non-decreasing and non-contracting.25



� X = SnXn with the weak topology (the direct limit of the diagram composed of theattaching maps).We now check that the attaching maps are non-decreasing and non-contracting. Firstof all, for any x 2 Mn, we consider �x : D[n] ! M , the unique morphism of precubicalsets such that �(IdD[n]) = x 2 Mn. We have to check that if y 6gl z in (IdD[n]; @�n),then j�xj(x) 6gl j�xj(z) in (x;�n) 2 M . All points of jD[n]j have a representative in(IdD[n];�n), i.e. can be written as (IdD[n]; t1; � � � ; tn) with 0 6 ti 6 1 (for all i, 1 6 i 6 n).Now, j�xj(IdD[n]; t1; � � � ; tn) = (x; t1; � � � ; tn), hence j�xj preserves trivially the partial order6gl of �n, hence j�xj � ��1 preserves it as well.Since ��1(@�!D n) = @�n, @�x also preserves 6gl.Now, take an execution path � starting from � (or arriving at �) in �!S n�1, and supposethat ��x � � is a constant path of Xn�1. Then �x � ��1 � � has constant coordinates in(x;�n) 2 jTn(M)j, which means, since �x acts as the identity on these coordinates, that� is a constant path of �!S n�1. Furthermore, ��x(�) = �x(Id[n]; (0; � � � ; 0)) which is also�x(�00d01 � � � �0n�1;�0), so is equal to (�00�01 � � ��0n�1(x);�0) which belongs to Tn(M)0 = M0.Similarly, ��(�) belongs to X0.Proposition 3.9. The above construction induces a functor from the category of HDA�Set to the category glCW of globular CW-complexes.Proof. By de�nition, a morphism a semi-cubical set sends a n-cube to another n-cube. Sothe realization as globular CW-complexes induce clearly a morphism of glCW.4 Dihomotopy equivalenceAs pointed out in [Gau00b], there are two types of deformations of HDA which leaveunchanged its computer-scienti�c properties : the spatial ones and the temporal ones. Theaim of this section is to de�ne in a precise manner these notions. In other terms, we aregoing to construct three categories whose isomorphism classes of objects are respectivelythe globular CW-complexes modulo spatial deformations, modulo temporal deformationsand modulo both kinds of deformations together.We meet in this section a few set-theoretic problems which must be treated carefully.So two universes U and V with U 2 V are �xed. The sets are the elements of U . Onewants to construct categories whose objects are sets and whose the collection of morphismsbetween any pair of objects is a set as well. So by category, one must understand a V-small category with U -small objects and U -small homsets. By large category, one mustunderstand a category with V-small objects, and V-small homsets whose set of objects isnot V-small [Bor94]. 26



4.1 S-dihomotopy equivalenceIntuitively, the spatial deformations correspond to usual deformations orthogonally to thedirection of time. This is precisely what a S-dihomotopy does.De�nition 4.1. Let f and g be two morphisms from the globular CW-complex X to theglobular CW-complex Y . Then f and g are S-dihomotopic if there exists a continuous mapH from X � I to Y such that (writing Ht = H(�; t)),� H0 = f , H1 = g and for any t 2 [0; 1],� Ht is a morphism of globular CW-complexes from X to Y .When this holds, we write f �Sdi g. The map H is called a S-dihomotopy from f to g. Thisde�nes an equivalence relation on the set of morphisms of globular CW-complexes from Xto Y . The quotient set is denoted by [X; Y ]Sdi.For comparison purposes, the set of continuous maps up to homotopy from X to Y willbe denoted by [X; Y ] and the corresponding equivalence relation by �.If X and Y are two globular CW-complexes, a S-dihomotopy H : X � I! Y withoutfurther precisions means that for every t 2 I, Ht = H(�; t) is a morphism of globularCW-complexes from X to Y and therefore that H is a S-dihomotopy between H0 and H1.In particular, this means that given x 2 X0, the image of the map t 7! H(x; t) isincluded in the discrete set X0, and therefore that it is the constant map. Therefore, iff and g are two S-dihomotopic morphisms of globular CW-complexes, then f and g willcoincide on the 0-skeleton of X .The latter remark leads us to introducing the cylinder functor IS associated to thenotion of S-dihomotopy. If X is a CW-complex, let ISGlob(X) := Glob(X � I). Nowfor any globular CW-complex X , let us de�ne ISX inductively on the globular cellulardecomposition of X in the following manner :1) Let IS(X)0 := X0 ;2) Let us suppose the n-skeleton IS(X)n de�ned for n > 0 ; For every (n+1)-dimensionalglobular cell (Glob(Dn); � : Glob(Sn�1) ! Xn) of X , the globular CW-complexGlob(Dn � I) is attached to IS(X)n by the attaching map IS� : Glob(Sn�1 � I)!IS(X)n.3) Then the direct limit ISX is a globular CW-complex.Topologically, ISX is the quotient of X � I by the relations fx0g � I= fx0g for everyx0 2 X0 (since X0 is discrete, this relation is closed and the quotient is then still Hausdor�).Let �h be the morphism from X to IS(X) with �h(x) = (x; h) and � be the canonical mapfrom X � Ito IS(X). Then, 27



Proposition 4.2. Let f and g be two morphisms of globular CW-complexes from X toY . Then f and g are S-dihomotopic if and only if there exists a morphism of globularCW-complex H from IS(X) to Y such that H � �0 = f and H � �1 = g.Proof. If such a H exists, then H � � is a S-dihomotopy from f to g. Reciprocally, if His a S-dihomotopy from f to g, then the map t 7! H(x0; t) is constant for any x0 2 X0.Therefore H factorizes by �, giving the required H .The following proposition gives a simple example of S-dihomotopic morphisms :Proposition 4.3. LetX be a CW-complex and consider the globular CW-complex Glob(X)(see Proposition 2.7). Let x 2 X and consider fx the morphism of globular complexes from�!I to Glob(X) de�ned by fx(u) = (x; u). Take x and y two elements that are in the sameconnected component of X. Then fx and fy are S-dihomotopic.Proof. Let 
 be a continuous path in X from x to y (X being a CW-complex, its path-connected components coincide with its connected component). Then H(u; t) := (
(t); u)satis�es the condition of De�nition 4.1.De�nition 4.4. Let X be a globular CW-complex. Then two execution paths (see De�ni-tion 2.5) 
1 and 
2 of X are S-dihomotopic if and only if the corresponding morphisms ofglobular CW-complexes from �!I to X are S-dihomotopic.De�nition 4.5. Let X and Y be two globular CW-complexes. If there exists a morphismf from X to Y and a morphism g from Y to X such that f �g �Sdi IdY and g�f �Sdi IdX,then X and Y are said S-dihomotopic, or S-dihomotopy equivalent and f and g are twoinverse S-dihomotopy equivalences.Notice that in the latter case, f � g and IdY coincide on Y 0 and g � f and IdX coincideon X0. Therefore if f is a S-dihomotopy equivalence fromX to Y then f induces a bijectionbetween both 0-skeletons.Of course, De�nition 4.5 de�nes an equivalence relation.De�nition 4.6. Let F be a functor from glCW to some category C. Then F is S-invariantif and only if for any S-dihomotopy equivalence s, F (s) is an isomorphism in C.Theorem 4.7. Let S be the collection of S-dihomotopies of glCW. There exists a categoryHoS(glCW) and a functor QS : glCW �! HoS(glCW)satisfying the following conditions :� For every s 2 S, QS(s) is invertible in HoS(glCW).28



� For every functor F : glCW �! C such that for every s 2 S, F (s) is invertible in C,then there exists a unique functor G from HoS(glCW) to C such that F = G �QS .Proof. We mimic the classical proof as presented for instance in [KP97] : the main ideaconsists of using the fact that the canonical projection from IS(X) to X is a S-dihomotopyequivalence, having as inverse both �0 and �1.Let HoS(glCW) be the category having the same object as glCW and such thatHoS(glCW)(X; Y ) := [X; Y ]Sdi. Let F : glCW �! C be a functor such that for anys 2 S, QS(s) is invertible in C. The factorization F = G � QS is obvious on the objects.To complete the proof, it su�ces to verify that for two S-dihomotopic morphisms f and g,then F (f) = F (g). By de�nition, there exists H from IS(X) to Y such that H � �0 = fand H � �1 = g. Let pr1 be the canonical projection from IS(X) to X . Then pr1 � �0 =pr1 � �1 = IdX , �0 � pr1 �Sdi IdIS(X) and �1 � pr1 �Sdi IdIS(X). Therefore F (pr1) has asinverse both F (�0) and F (�1). Thus F (f) = F (H) � F (�0) = F (H) � F (�1) = F (g).Proposition 4.8. Let F be a functor from glCW to some category C. Then F is S-invariant if and only if there exists a functor G from HoS(glCW) to C such that F =G �QS.4.2 T-dihomotopy equivalenceNow we want to treat the case of temporal deformations. Figure 10 is a simple example oftemporal deformation of HDA. The obvious morphism f of globular CW-complexes whichsends u on the \concatenation" u1u2 and which is the identity elsewhere should be anequivalence. Unfortunately f does not induce a bijection on the 0-skeletons because of thepoint which appears on the middle of u. So the globular CW-complexes of Figure 10 cannotbe S-dihomotopic. This morphism f induces an homeomorphism between the underlyingtopological spaces. The inverse f�1 is not a morphism of globular CW-complexes becausethe point between u1 and u2 is mapped by f�1 on a point belonging to the interior of theglobular cell u, which is not an element of the 0-skeleton.It is very intuitive to think that morphisms of glCW inducing homeomorphisms onthe underlying topological spaces do not change the computer-scienti�c properties of thecorresponding HDA. In particular, homeomorphisms do not contract oriented segment : thisis exactly the kind of properties expected for T-invariance. Hence the following de�nition :De�nition 4.9. A morphism f of globular CW-complexes from X to Y is a T-dihomotopyequivalence if and only if f induces an homeomorphism on the underlying topological spaces.De�nition 4.10. Let F be a functor from glCW to some category C. Then F is T-invariant if and only if for any T-dihomotopy equivalence t, F (t) is an isomorphism.29



� u // � v
��w FF
(a) A 1-dimensionalglobular CW-complex X �1 u1 // �2 u2 // � v

��w FF
(b) Subdivision of u in XFigure 10: Example of temporal deformationLooking back to Figure 10, one sees that there exists a T-dihomotopy equivalence fromthe left member to the right one, but not in the reverse direction. So a T-dihomotopyequivalence is not necessarily an invertible morphism of glCW.Theorem 4.11. Let T be the collection of T-dihomotopy equivalences. There exists acategory HoT (glCW) and a functorQT : glCW �! HoT (glCW)satisfying the following conditions :� For every t 2 T , QT (t) is invertible in HoT (glCW).� For every functor F : glCW �! C such that for any t 2 T , QT (t) is invertible in C,then there exists a unique functor G from HoT (glCW) to C such that F = G �QT .Proof. There exists a V-small categoryHoT (glCW) satisfying the universal property of thetheorem and constructed as follows : the objects of HoT (glCW) are those of glCW. Theelements of the V-small setHoT (glCW)(X; Y ) where X and Y are two 1-dimensional glob-ular CW-complexes are of the form g1f�11 g2 : : : gnf�1n gn+1 with n > 1 where g1; : : : ; gn+1are morphisms of glCW and f1; : : : ; fn are T-dihomotopy equivalences and where the no-tation f�1 for f T-dihomotopy equivalence is a formal inverse of f (see for example [Bor94]Proposition 5.2.2 for the construction).Let us consider the following commutative diagramX gn+1 // cod(gn+1) dom(fn)fnoo gn // cod(gn)XId OO gn+1// fn �f�1n (gn+1(X))�� OO f�1n (gn+1(X))fnoo

� OO gn // cod(gn)Id OO30



with the notation cod(h) for the codomain of h, dom(h) for the domain of h, and for A asubset of some globular CW-complex Z,A = [x2A\Z0fxg [ [x2AnZ0 ex � Zwhere ex is the smallest globular cell containing x. We see immediately that jAj 6max(2@0; A) where jX j means the cardinal of X and where @0 is the smallest in�nitecardinal, i.e. that of the set of natural numbers. Since fn is an homeomorphism and inparticular is bijective, thenjfn �f�1n (gn+1(X))� j = jf�1n (gn+1(X))j6 max(2@0; jf�1n (gn+1(X))j)= max(2@0; jgn+1(X)j)6 max(2@0; jX j)This diagram remaining commutative in HoT (glCW), it shows that we can supposejcod(gn+1)j 6 max(2@0 ; jX j)and jdom(fn)j 6 max(2@0 ; jX j)with an expression like gnf�1n gn+1. By an immediate induction, we see that with a mor-phism of the form g1f�11 g2 : : : gnf�1n gn+1 lying in HoT (glCW)(X; Y ), we can suppose thatall intermediate objects are of cardinal lower than max(2@0; jX j) which is an U -small car-dinal. Therefore HoT (glCW)(X; Y ) is U -small as well.Proposition 4.12. Let F be a functor from glCW to some category C. Then F is T-invariant if and only if there exists a functor G from HoT (glCW) to C such that F =G �QT .Let us consider the category Hohomeo(glCW) de�ned as follows : the objects are theglobular CW-complexes ; the set Hohomeo(glCW)(X; Y ) is the subset of the set of contin-uous maps from X to Y consisting of composites of morphisms of globular CW-complexesand continuous maps like f�1 where f is a T-dihomotopy. There exists a canonical func-tor F : glCW ! Hohomeo(glCW) inverting all T-dihomotopies. Therefore there exists aunique functor G :HoT (glCW)! Hohomeo(glCW) such that G �Q = F .Question 4.13. Why is G an equivalence of categories ?31



4.3 Dihomotopy equivalenceNow we want to take into account both spatial and temporal deformations together.De�nition 4.14. A morphism of globular CW-complexes is called a dihomotopy equiva-lence if it is the composite of S-dihomotopy equivalence and T-dihomotopy equivalence.Theorem 4.15. Let U be the collection of dihomotopy equivalences. There exists a categoryHo(glCW) and a functor Q : glCW �! Ho(glCW)satisfying the following conditions :� For every u 2 U , Q(u) is invertible in Ho(glCW).� For every functor F : glCW �! C such that for any u 2 U , Q(u) is invertible in C,then there exists a unique functor G from Ho(glCW) to C such that F = G �Q.Proof. Let us consider the U -small diagram of categoriesglCWQS
xxp p p

p p
p p
p p
p p QT

''NN
NN

NN
NN

NN
NHoS(glCW) HoT (glCW)Then the direct limit of this diagram exists in the large category of V-small categories : see[Bor94] Proposition 5.1.7. By reading the construction in the proof of this latter proposition,one sees that the direct limit is actually a category with U -small objects and U -smallhomsets.Proposition 4.16. Let F be a functor from glCW to some category C. Then F is S-invariant and T-invariant if and only if there exists a unique functor G from Ho(glCW)to C such that F = G �Q.Proof. Obvious.De�nition 4.17. The category Ho(glCW) is called the category of dihomotopy types.5 Links between homotopy types and dihomotopy typesRecall that the category of homotopy types Ho(CW) is by de�nition the category of CW-complexes with continuous maps up to homotopy, i.e. if X and Y are two CW-complexes,then Ho(CW)(X; Y ) := [X; Y ]. It is well-known that Ho(CW) is the localization of thecategory CW of CW-complexes with respect to the collection of homotopy equivalences.Theorem 4.7 can be actually considered as a generalization of this fact.32



5.1 Path space between two pointsBefore going any further, we need to de�ne the notion of path space of a bipointed localpo-space. Intuitively, applying this operator to a (global) po-space like Glob(X) (where Xis a compactly-generated topological space) bipointed by f�; �g must give back X up tohomotopy.De�nition 5.1. A bipointed local po-space is a triple (X;�; �) where X is a local po-spaceand � and � are two points of X. A morphism of bipointed local po-spaces from (X;�; �)to (Y; �; �) is a morphism of po-spaces f from X to Y such that f(�) = � and f(�) = �.The corresponding category is denoted by LPoHaus��.Notice that Glob(�) can be seen as a functor from Haus to LPoHaus�� or from Topto PoTop�� (the category of bipointed topological spaces with a non-necessarily closedpartial ordering) by bipointing Glob(X) by the elements � and �.Proposition 5.2. The functor Glob(�) from Top to PoTop�� commutes with direct lim-its.Proof. Let (Xi)i2I be a family of topological spaces. ThenGlob Gi2IXi! =Gi2I(Xi � [0; 1])�� (z; 0) = (z0; 0) for z; z0 2 Fi2I Xi(z; 1) = (z0; 1) for z; z0 2 Fi2I Xi �Note that for all x 2 Glob �Fi2I Xi� nf�; �g, there exists a unique ix 2 I such thatx 2 Glob(Xix). Let (T; �; �) be a bipointed topological space and for all i 2 I , let�i : Glob(Xi) �! (T; �; �) be a morphism in PoTop��. Let � be the set map fromGlob �Fi2I Xi� to T de�ned by �(�) = �, �(�) = �, and �(x) = �ix(x) (for x 6= � andx 6= �). Take (x; t); (x; t0) 2 Glob �Fi2I Xi� such that (x; t) 6 (x0; t0) We have three possi-bilities:� (x; t) = � and �(x; t) = � 6 �(x0; t0),� (x0; t0) = � and �(x; t) 6 � = �(x0; t0),� � < (x; t) 6 (x0; t0) < �.In the latter case, x = x0 and therefore there exists i0 2 I such that (x; t) and (x0; t0)belong to Glob(Xi0). Then �(x; t) = �i0(x; t) 6 �i0(x0; t0) = �(x0; t0). The set map � iswell-de�ned and continuous because it is the quotient in Top of the direct sum Fi2I �i bythe identi�cations (z; 0) = (z0; 0) for z; z0 2 Fi2I Xi and (z; 1) = (z0; 1) for z; z0 2 Fi2I Xi.Therefore Glob �Fi2I Xi� is the direct sum of the Glob(Xi) for i running over I in PoTop��.So the functor Glob(�) preserves the direct sums.33



Let f and g be two continuous maps from X to Y . Let Z = Y /ff(x) � g(x) j x 2 Xgbe the coequalizer of (f; g) in Top. Then there exists a surjectionGlob(Y ) /fGlob(f)(x; t) � Glob(g)(x; t)g � ((Y /ff(x) = g(x)g )� [0; 1])�� (z; 0) = (z0; 0)(z; 1) = (z0; 1) �which is clearly an homeomorphism. Let (T; �; �) be a bipointed local po-space and let hbe a morphism in PoTop�� from Glob(Y ) to T such that h �Glob(f) = h �Glob(g). Thenh factorizes through Glob(Z) because this latter is the coequalizer of (Glob(f); Glob(g))in Top. It is easily checked that h is a non-decreasing map and therefore a morphism.So Glob(�) preserves the coequalizers. This entails the result by Proposition 2.9.2 of[Bor94].Proposition 5.3. The functor Glob(�) from Top to PoTop�� has a right adjoint thatwill be denoted by (�)?.Proof. The category Top has a generator : the one-point space; it is cocomplete and well-copowered. The result follows from the Special Adjoint Functor theorem [ML98].If X and Y are two topological spaces, the topological space Cop(X; Y ) will be byde�nition the set Top(X; Y ) of continuous maps from X to Y endowed with the compact-open topology : a basis for the open sets consists of the setsN(C;U)where C is any compactsubset of X , U any open subset of Y and N(C;U) := ff 2 Top(X; Y ); f(C) � Ug. Atopological space is compactly generated when its topology coincides with the weak topologydetermined by its compact subspaces. Every locally compact Hausdor� topological spaceis compactly generated. In particular, every CW-complex and every globular CW-complexis compactly generated. The main property of the compact-open topology is the followingone : If X , Y and Z are compactly generated, then one has a natural bijection of setsTop(X � Y; Z) �= Top(X;Cop(Y; Z)) (1)induced by f 7! (x 7! f(x;�)) from the left to the right member and by g 7! ((x; y) 7!g(x)(y)) in the opposite direction. As a matter of fact, the isomorphism (1) as topologicalspaces holds as soon as Y is locally compact Hausdor�.Proposition 5.4. If (X;�; �) is a bipointed local po-space such that X is compactly gen-erated, then (X;�; �)? is homeomorphic to the set of non-decreasing maps 
 from [0; 1] toX such that 
(0) = � and 
(1) = �, endowed with the compact-open topology.Proof. Since [0; 1] is compact,Top(Y � [0; 1]; X)�= Top(Y; Cop([0; 1]; X)):34



This isomorphism specializes to8<:f : Y � [0; 1] �! X; f(y; 0) = � for all y 2 Yf(y; 1) = � for all y 2 Yf(y;�) dipath of X 9=; �= fg : Y �! Cop�;�(I;X)gwhere Cop�;�([0; 1]; X) is the set of non-decreasing continuous maps 
 from [0; 1] to X suchthat 
(0) = � and 
(1) = �. The �rst member is in natural bijection with the morphismsof bipointed po-spaces from Glob(Y ) to X , hence the result.De�nition 5.5. For (X;�; �) 2 PoTop�� with X compactly generated, then the topologicalspace P(X;�; �) := (X;�; �)?nf�gwhere � is the constant path �, is called the path space of (X;�; �), or the path space ofX from � to �. Notice that � 2 (X;�; �)? if and only if � = �.The canonical map i from X to PGlob(X) maps any x 2 X to the dimap t 7! (x; t) ofPGlob(X). Now,Theorem 5.6. For any compactly generated topological space X, the canonical map fromX to PGlob(X) is an homotopy equivalence.Proof. Let � 2 PGlob(X). By de�nition, � is a non-decreasing continuous path from�(0) = � to �(1) = �. Let pr2 be the canonical projection of Glob(X) onto [0; 1]. Since]0; 1[ is open and connected, and pr2 and � are continuous, (pr2 � �)�1(]0; 1[) is open andconnected. Thus we can set (pr2 � �)�1(]0; 1[) =]t�� ; t+� [. Due to the peculiar ordering wehave on Glob(X), � being non-decreasing implies that there exists a unique x(�) 2 X suchthat for t 2]t�� ; t+� [, �(t) = (x(�); pr2��(t)) (i.e. its �rst component is constant on ]t�� ; t+� [).Let �0 2 PGlob(X) and let U be an open of X containing x(�0). Let K�0 be a compactsubset of ]t��0 ; t+�0 [. Then �0 2 N(K�0; U�]0; 1[) and for every � 2 N(K�0; U�]0; 1[),x(�) 2 U . Therefore the map x from PGlob(X) to X is continuous.One has x � i = IdX and for all � 2 PGlob(X), i � x(�) is the dimap t 7! (x(�); t). LetH(�; u)(t) = (x(�); ut+ (1� u)pr2 � �(t))Then H yields a set map from PGlob(X)� Ito PGlob(X) with H(�; 0) = � and H(�; 1) =i � x(�). So it su�ces to check the continuity of H to complete the proof.Consider the set map H 0 from PGlob(X)� I� Ito PGlob(X) de�ned byH 0(�; u; t) = (x(�); ut+ (1� u)pr2 � �(t))35



Let C be a compact subset of Iand U be an open subset of Isuch that pr2 ��0 2 N(C;U)for some �0 2 PGlob(X). Then for any � 2 N(C;X � U), pr2 � �(C) � U . Therefore theset map pr2 : PGlob(X)�! Cop(I;I) de�ned by pr2(�) = pr2 �� is continuous, and the setmap H 0 is continuous as well. Since H is the image of H 0 by the canonical isomorphismTop(PGlob(X)� I� I;PGlob(X)) �! Top(PGlob(X)� I;Cop(I;PGlob(X)))H is continuous as well.5.2 Homotopy and dihomotopy typesWe have now the necessary tools in hand to compare homotopy types and dihomotopytypes.Theorem 5.7. Let X and Y be two compactly generated topological spaces. Let f be amorphism of globular complexes from Glob(X) to Glob(Y ). Then there exists a uniquecontinuous map fS from X to Y up to homotopy such that f is S-dihomotopic to Glob(fS).Proof. Let f0 and f1 be two continuous maps from X to Y such that Glob(f0) and Glob(f1)are S-dihomotopic to f . Let H from Glob(X) � I to Glob(Y ) be a S-dihomotopy fromGlob(f0) to Glob(f1) with Ht := H(�; t), H0 = Glob(f0) and H1 = Glob(f1). Consider theset map h from X � I to Y de�ned by h(x; t) = (x � P(Ht) � i)(x) with the notations ofTheorem 5.6. Then h(x; 0) = (x �P(h0) � i)(x)= (x �PGlob(f0)) (u 7! (x; u))= x (u 7! (f0(x); u))= f0(x)and in the same manner one gets h(x; 1) = f1(x). So it su�ces to prove the continuity ofh to prove the uniqueness of fS up to homotopy. We have already proved in Theorem 5.6the continuity of i and x. Therefore it su�ces to prove the continuity of the set map(
; t) 7! P(Ht)(
) = Ht � 
 from PGlob(X) to PGlob(Y ). This latter map is the composite36



of PGlob(X)� I(
;t) 7!(
;H;t)
��PGlob(X)� Cop(Glob(X)� I;Glob(Y ))� I(
;H;t) 7!(
;Ht)
��PGlob(X)� Cop(Glob(X);Glob(Y ))(
;g) 7!g�

��PGlob(Y )The last map (
; g) 7! g � 
 is the image of the identity map of Cop(Glob(X);Glob(Y )) byTop(Cop(Glob(X); Glob(Y )); Cop(Glob(X); Glob(Y )))�=
��Top(Glob(X) �Cop(Glob(X); Glob(Y )); Glob(Y ))
��Top(�!I � Cop(�!I ;Glob(X))� Cop(Glob(X); Glob(Y )); Glob(Y ))�=
��Top(Cop(�!I ;Glob(X)) �Cop(Glob(X); Glob(Y )); Cop(�!I ;Glob(Y )))and therefore is continuous. At last the set map (H; t) 7! Ht is the image of the identitymap of Cop(Glob(X)� I;Glob(Y )) byTop(Cop(Glob(X)� I;Glob(Y )); Cop(Glob(X)� I; Glob(Y )))
��Top(Glob(X)� I� Cop(Glob(X)� I;Glob(Y )); Glob(Y ))�=
��Top(I� Cop(Glob(X)� I;Glob(Y )); Cop(Glob(X); Glob(Y )))and therefore is also continuous. So h is an homotopy between f0 and f1.Now set fS := x � P(f) � i from X to Y . With the proof of Theorem 5.6, we seeimmediately that fS is continuous. It remains to prove that Glob(fS) is S-dihomotopic tof . We have already seen in the proof of Theorem 5.6 that for � 2 PGlob(X),�(t) = (x(�); pr2 � �(t)) (2)37



for t 2]t�� ; t+� [. For t 2 [0; t�� ] (resp. t 2 [t+� ; 1]), one has by de�nition pr2 � �(t) = 0(resp. pr2 � �(t) = 1) and therefore Equality 2 is still true for any t 2 �!I . So consider thepath �x : t 7! (x; t) of PGlob(X). Then f � �x is an element of PGlob(Y ) and we havef � �x = (x(f � �x); pr2 � f � �x(t)). But x(f � �x) = fS(x). Therefore f = (fS ; pr2 � f).So f is S-dihomotopic to Glob(fS) with the S-dihomotopy H from Glob(X)�Ito Glob(Y )de�ned by H((x; t); u) = (fS(x); ut+ (1� u)pr2 � f(x; t)).Corollary 5.8. Let X and Y be two compactly generated topological spaces. The functorGlob(�) induces a bijection of sets [X; Y ] �= [Glob(X);Glob(Y )]Sdi.We arrive atTheorem 5.9. The mapping X 7! Glob(X) induces an embeddingHo(CW) ,! Ho(glCW):Proof. This is a consequence of Proposition 2.7, Proposition 2.10 and Theorem 5.7.See the consequences of this important theorem in [Gau01a] where a research programto investigate dihomotopy types is exposed.5.3 Towards a Whitehead theoremNow we want to weaken the notion of S-dihomotopy equivalence.De�nition 5.10. Let f be a morphism of globular CW-complexes from X to Y . Then fis a weak S-dihomotopy equivalence if the following conditions are ful�lled :1. the map f induces a set bijection between the 0-skeleton of X and the 0-skeleton ofY .2. for �; � 2 X0, f induces a weak homotopy equivalence from P(X;�; �) to P(Y; f(�);f(�)).Proposition 5.11. Let f be a morphism of globular CW-complexes from X to Y . If f isa S-dihomotopy from X to Y , then f is a weak S-dihomotopy equivalence.Proof. Let g be a S-dihomotopy from Y to X such that f � g �di IdY and g � f �di IdX .Then f � g and IdY (resp. g � f and IdX) coincide on Y 0 (resp. X0). Therefore finduces a bijection of sets from the 0-skeleton X0 to the 0-skeleton Y 0 with inverse therestriction of g to Y 0. Let � and � be two elements of X0. Then f (resp. g) inducesa continuous map f� from P(X;�; �) (resp. g� from P(Y; f(�); f(�))) to P(Y; f(�); f(�))(resp. P(X;�; �)). Let H be a continuous map from Y � Ito Y which is a S-dihomotopy38



from f � g to IdY . Let Hu = H(�; u). By hypothesis, this is a morphism of globular CW-complexes from Y to itself which induces the identity map on Y 0. Let h(
; u) := Hu � 
.Then h(
; u)(0) = Hu(
(0)) = Hu(f(�)) = f(�) and h(
; u)(1) = Hu(
(1)) = Hu(f(�)) =f(�). Moreover h(
; u) is non-decreasing and continuous because it is the composite of twofunctions which are non-decreasing and continuous as well. Therefore h is a set map fromP(Y; f(�); f(�))� Ito P(Y; f(�); f(�)). We have already proved the continuity of similarmaps (as in Theorem 5.7). Therefore f� � g� � IdP(Y;f(�);f(�)). Similarly, we can prove thatg� � f� � IdP(X;�;�). Therefore f is a weak S-dihomotopy equivalence.The converse of Proposition 5.11 gives rise to the followingConjecture 5.12. Let f be a morphism of globular CW-complexes from X to Y . Thenthe following assumptions are equivalent :1. f is a weak S-dihomotopy equivalence.2. f is a S-dihomotopy equivalence.In the case of globes, one has :Proposition 5.13. Let f be a morphism of globular CW-complexes from Glob(X) to Glob(Y )where X and Y are two connected CW-complexes. If f is a weak S-dihomotopy equivalence,then there exists a morphism of globular CW-complexes g from Glob(Y ) to Glob(X) suchthat g�f is S-dihomotopic to the identity of Glob(X) and f �g S-dihomotopic to the identityof Glob(Y ).Proof. The composite x �P(f) � iX // PGlob(X) P(f) // PGlob(Y ) // Yis a homotopy equivalence of CW-complexes because P(f) is an homotopy equivalence byhypothesis and because of Theorem 5.6. Therefore x � P(f) � i has an inverse g up tohomotopy from Y to X . By Corollary 5.8, Glob(x � P(f) � i) � Glob(g) and Glob(g) �Glob(x�P(f)� i) are S-dihomotopic to the identity (resp. of Glob(Y ) and Glob(X)). Againby Corollary 5.8, Glob(x �P(f) � i) and f are S-dihomotopic. ThereforeGlob(g) � f �Sdi Glob(g) �Glob(x �P(f) � i) �Sdi Idand f �Glob(g)�Sdi Glob(x �P(f) � i) �Glob(g)�Sdi Id:39
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GP�X P+XFigure 12: The fundamental diagram for a globular CW-complex X6 Why non-contracting maps ?We would like to explain here why one imposes the morphisms of globular CW-complexes tobe non-contracting in De�nition 2.9, why in De�nition 5.5 the constant dipath is removedfrom P(X;�; �) if � = �. As a matter of fact, there are a lot of technical reasons to do thatwhich will be clearer in the future developments. This section focuses on a very strikingone.The fundamental algebraic structure which has emerged from the !-categorical approach[Gau00c, Gau00a, Gau01b] is the diagram of Figure 11 where C is an !-category. Theanalogue in the globular CW-complex framework is the diagram of Figure 12 where PX isthe space of dipaths between two elements of the 0-skeleton of X , and P�X (resp. P+X)is the space of germs of dipaths starting from (resp. ending at) a point of the 0-skeleton ofX . Let us suppose just for this section that the path space of a globular CW-complex X isde�ned as follows : PX = G(�;�)2X0�X0(X;�; �)?40



and that the semi-path spaces of a globular CW-complex X are de�ned as follows :P�X = G�2X0(X;�)?�P+X = G�2X0(X;�)?+where (X;�)?� (resp. (X;�)?+) is the set of dipaths of X starting from � (ending at �),and endowed with the compact-open topology. Then the maps h� and h+ of Figure 12 areobviously de�ned. HoweverProposition 6.1. (Remark due to Stefan Sokolowski) The topological spaces P�X andP+X are homotopy equivalent to the discrete set X0 (the 0-skeleton of X) !Proof. Let us make the proof for P�X . The canonical map u : X0 ,! P�X sends an � 2 X0on the corresponding constant dipaths of P�X . The map u is necessarily continuous sinceX0 is discrete. In the other direction, let us consider the set map v : P�X ! X0 de�ned byv(
) = 
(0) : such an evaluation map is necessarily continuous as soon as P�X is endowedwith the compact-open topology. Then v � u = IdX0 and u � v is homotopic to IdP�X bythe homotopy H : P�X � I! P�Xde�ned by H(
; u)(t) := 
(tu). The map H is the image of the identity of Cop(�!I ;X) byTop(Cop(�!I ;X); Cop(�!I ;X))�=
��Top(�!I � Cop(�!I ;X); X)�
��Top(�!I � Cop(�!I ;X)� I;X)�=
��Top(Cop(�!I ;X)� I; Cop(�!I ;X))where � is induced by the mapping (t; u) 7! tu from �!I � I to �!I and therefore H iscontinuous.Therefore P�X and P+X de�ned as above contain no relevant information ! This factis exactly the analogue of [Gau00c] Proposition 4.2 which states that the cubical nerve of41



an !-category has a trivial simplicial homology with respect to @� and @+ and which ledto introducing !Cat(I�; C)� and !Cat(I�; C)+.So the correct de�nition of P�X and P+X is :P�X = G�2X0(X;�)?�nf�gP+X = G�2X0(X;�)?+nf�gNow the maps PX ! P�X and PX ! P+X do not exist anymore ! To recover theseimportant maps, it is necessary to set :PX = G(�;�)2X0�X0P(X;�; �)Then the only way to make the mapping P(and also P� and P+) a functor from the cat-egory glCW of globular CW-complexes to that of compactly-generated topological spacesis to impose to morphisms in glCW to be non-contracting as explained in De�nition 2.9.7 Concluding remarks and some open questionsWe have constructed a category of dihomotopy types whose isomorphism classes of ob-jects represent exactly higher dimensional automata modulo deformations leaving invari-ant computer-scienti�c properties as presence or not of deadlock or everything related.This construction provides a rigorous de�nition of S-deformations (De�nition 4.6) and T-deformations (De�nition 4.10) of HDA. Using the de�nitions of [Gau01a], it is trivial toprove the S-invariance of all functors like Hgl� , Hgl�� , etc...Question 7.1. Proving the T-invariance of both semi-globular homology theories Hgl�� .This question is closely related to the topological version of the \thin elements" conjecturewhich states that elements without volume do not produce non-trivial homology classes.Question 7.2. Same question for the biglobular homology de�ned in [Gau00a].By analogy with the situation in usual algebraic topology :Question 7.3. De�ning a notion of weak dihomotopy equivalence on the category of localpo-spaces ; Proving that the localization of the category of local po-spaces with respect tothis collection of morphisms exists and that it is isomorphic to the category of dihomotopytypes. 42
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