
Order-Theoretic, Geometric and Combinatorial Models ofIntuitionistic S4 ProofsJean Goubault-Larrecq,G.I.E. Dyade & Projet Coq, Inria Rocquencourt,domaine de Voluceau, 78153 Le Chesnay Cedex, France(Jean.Goubault@dyade.fr)and�Eric Goubault,CEA Saclay, LETI/DEIN/SLA,91191 Gif-sur-Yvette, France(goubault@aigle.saclay.cea.fr)May 20, 1999AbstractWe propose a few models of proof terms for the intuitionistic modal propositional logic S4. Some ofthem are based on partial orders, or cpos, or dcpos, some of them on a suitable category of topologicalspaces and continuous maps. A structure that emerges from these interpretations is that of augmentedsimplicial sets. This leads to so-called combinatorial models, where simplices play an important role:the point is that the simplicial structure interprets the 2 modality, and that the category of augmentedsimplicial sets is itself already a model of intuitionistic propositional S4 proof terms. In fact, this categoryis an elementary topos, and is therefore a prime candidate to interpret all proof terms for intuitionisticS4 set theory. Finally, we suggest that geometric-like realizations functors provide a recipe to build othermodels of intuitionistic propositional S4 proof terms.1 IntroductionThere are now several di�erent proof term languages for intuitionistic S4 [BdP92, BdP96, PW95, MM96,GL96a, GL96b], with applications in partial evaluation [DP96, WLP98], in higher-order abstract syntax[Lel97], etc. These calculi are related, in that we can translate from one to any other. Some of these calculiare even intertranslatable in an untyped setting. Our goal in this paper is to develop a few models of typedproof term languages, much as Scott's cpos provided models for the typed and untyped �-calculi. Hopefully,this will bring some enlightenment as to what the basic proof term constructions mean.We develop several such models, starting from the ones that are closest to Scott models of the �-calculus:these are order-theoretic models, based on complete partial orders (cpos), which we present in Section 3. Wedon't care much about the syntax of proof terms for intuitionistic S4, but we would like to eventually arriveat what we call combinatorial models, which are very much related to �evQH [GL96b], and are related toconstructions of simplicial algebra [May67]. We shall explain these combinatorial models last, in Section 5.Until then, since �evQH is a bit too complex, we shall use the equivalent �S4H -calculus [GL96a], a completionof Bierman and De Paiva's calculus [BdP92, BdP96] which we recapitulate in Section 2. The geometricalrealization of these combinatorial model (in the sense of Milnor's geometrical realization for simplicial sets[May67]) yield nice topological spaces that we shall present in Section 4. We conclude in Section 6.Acknowledgements: The �rst author wishes to thank the people attending the Types'98 workshop,where he talked about a few ideas that eventually led to this work; among which Michael Mendler, HealfdeneGoguen and James McKinna. 1

2 SyntaxAlthough we don't really wish to delve into the details of syntax, we have to �x a choice: before we �ndmodels of intuitionistic S4 proof terms, we have to de�ne what these proof terms are. We shall limit ourselvesto a pretty minimal proof term language. We actually consider minimal intuitionistic S4, which capturesthe core of the logic: formulae, a.k.a. types, are de�ned by the grammar:F ::= A j F � F j 2Fwhere A ranges over a �xed set of so-called atoms, a.k.a. base types.We shall use (for convenience) �S4 as a language of proof terms for S4 [BdP92, BdP96, GL96a]. The rawterms of this language are de�ned by the grammar:s; t ::= x j tt j �xF � t j unbox t j box t with �where � is an explicit substitution, that is, a substitution that appears as an explicit component of terms.A substitution � is any �nite mapping from variables xi to terms ti, 1 � i � n, and is written fx1 :=t1; : : : ; xn := tng; its domain dom� is the set fx1; : : : ; xng. The yield of � is de�ned as Sx2dom � fv(�(x)),mutually recursively with the set of free variables fv(t) of the term t, de�ned by: fv(x)=̂fxg, fv(st)=̂ fv(s)[fv(t), fv(�x � t)=̂ fv(t) n fxg, fv(unbox t)=̂ fv(t), fv(box t with �)=̂ yld�. Moreover, we assume that, in anyterm of the form box t with �, fv(t) � dom�; we also assume Barendregt's naming convention, namely thatno variable occurs both free and bound, or bound at two di�erent places|bound variables are x in �x � tand all variables in dom� in box t with �.Substitution application t� is de�ned by: x�=̂�(x) if x 2 dom�; x�=̂x if x 62 dom�; (st)�=̂(s�)(t�);(�x � t)�=̂�x � (t�) provided x 62 dom� [yld�; (unbox t)�=̂ unbox(t�); (box t with �0)�=̂ box t with (�0 � �),where substitution concatenation �0 � � is de�ned as fx1 := t1; : : : ; xn := tng � �=̂fx1 := t1�; : : : ; xn := tn�g.Terms are equated modulo �-conversion, de�ned as the smallest congruence � such that:�xF � t � �yF � (tfx := yg)box t with fx1 := t1; : : : ; xn := tng � box tfx1 := y1; : : : ; xn := yng with fy1 := t1; : : : ; yn := tngprovided the right-hand side is de�ned, and y1, . . . , yn are pairwise distinct variables in the second case.All these de�nitions are a bit technical. The unbox operator is a kind of \eval", or also of \comma"operator in Lisp. To emphasize the analogy, we shall sometimes write ev(t) or ,t for unbox t. Thebox operator is a bit more complex. Let's �rst de�ne a special case of box: for any term t such thatfv(t) = fx1; : : : ; xng, let `t be box t with fx1 := x1; : : : ; xn := xng|to be formal, we should really writebox tfx1 := x01; : : : ; xn := x0ngwith fx01 := x1; : : : ; x0n := xng, but this would be on the verge of being unread-able. Then `t behaves like \quote" t in Lisp, or more exactly, \backquote" t. This will become moreapparent from the reduction rules and the typing rules below. Then, provided dom� = fv(t), box t with � isexactly (`t)�: this is a syntactic closure in the sense of [BR88], namely a quoted term t together with anenvironment � mapping free variables of t to their values.The typing rules, which encode a natural deduction system for minimal intuitionistic S4 are as follows[BdP92, BdP96], where �, �, . . . , are typing contexts, which are lists of bindings of the form x : F , where xis a variable, F is a type, and no two bindings contain the same variable in any given context:(Ax)�; x : F;� ` x : F� ` s : F � G � ` t : F (� E)� ` st : G �; x : F ` t : G (� I)� ` �xF � t : F � G� ` t : 2F (2E)� ` unbox t : F � ` ti : 2Fi; 1 � i � n x1 : 2F1; : : : ; xn : 2Fn ` t : G (2I)� ` box t with fx1 := t1; : : : ; xn := tng : 2GThe exchange rule: �; x : F; y : G;� ` t : H�; y : G; x : F;� ` t : H2

is easily seen to be admissible, so we can consider typing contexts as multisets instead of lists. In particular,this means that there is no choice to be made as to the order of the variables x1, . . . , xn in the contextx1 : 2F1; : : : ; xn : 2Fn in the right premise of rule (2I).Note that, given � and t, there is at most one typing derivation of a judgement � ` t : F ; in particular,the type F of t is unique when � is known.De�ne the convertibility relation = on �S4-terms as the smallest congruence such that [BdP92, BdP96,GL96a]:(�) (�x � s)t = sfx := tg (unbox) unbox(box t with �) = t�(gc) box t with fx1 := t1; : : : ; xn := tng = box t with fx2 := t2; : : : ; xn := tng provided x1 62 fv(t)(ctr) box t with fx1 := t1; x2 := t2; : : : ; xn := tng =box tfx1 := x2g with fx2 := t2; : : : ; xn := tng if t1 � t2(box) box t with fx1 := t1; x2 := t2; : : : ; xn := tng =box tfx1 := `sg with fy1 := s1; : : : ; ym := sm; x2 := t2; : : : ; xn := tngprovided t1 � box s with fy1 := s1; : : : ; ym := smgRule (unbox) is much like Lisp's rule for evaluating quoted expressions: observe that it mostly states thatevaluating `t, by ev(`t), equals t. Rule (box) can be seen either as an inlining rule, allowing one to inlinethe de�nition of x1 as `s inside the body t of the box `t, or logically as a box-under-box commutation rule.(gc) is a garbage collection rule, while (ctr) is a contraction rule. Note that the choice of x1 as distinguishedvariable in these three rules is not essential, and we might have chosen any other xi, as substitutions are sets,and bindings xi := ti permute. We don't care here about orienting these equations, as reduction semanticsare not the purpose of this paper.We shall also introduce the following extensional equalities:(�) �xF � tx = t provided x 62 fv(t)(� box) box (unbox x) with � = x� for every variable xyielding an enriched notion of conversion that we write =� .The idea of �nding models of intuitionistic S4 proof terms is to �nd categories C with products, wheretypes F are interpreted as objects [[F]], contexts �=̂x1 : F1; : : : ; xn : Fn are interpreted as products[[�]]=̂[[F1]] � : : : � [[Fn]], and each term t is interpreted as a family [[t]] of morphisms [[� ` t : F]] from [[�]]to [[F]], for every � and F such that � ` t : F is derivable. Moreover, all equations s = t between terms in�S4, resp. �S4 with the extensional equalities, should induce corresponding equalities [[s]] = [[t]] of interpreta-tions. If an interpretation [[-]] satis�es all the above, we shall say that it is sound with respect to �S4, resp.�S4 with the extensional equalities.3 Some Order-Theoretic ModelsRecall that a dcpo is any partial order (E;�) that is directed-complete in the sense that every non-emptydirected subset of E has a least upper bound E ". A subset S is directed provided that every two elementsx, y of S have a least upper bound in S. We don't require our dcpos to be pointed, namely to have a bottomelement. There are some pros and cons to this: we develop a model based on dcpos in Section 3.1, thenmodify it to use pointed dcpos instead in Section 3.2.3.1 Using Dcpos, Without BottomLet us build our �rst interpretation, [[-]]s, in an informal way at �rst.A function f from the dcpo F to the dcpo G is continuous if and only if f is monotonic and f(E ") =f(E) " for every non-empty directed subset E of F , where f(E)=̂ff(v) j v 2 Eg. The set of all continuousfunctions from F to G, ordered pointwise, is again a dcpo which we note F ! G.Interpreting types as dcpos, we let [[F � G]]s=̂[[F]]s ! [[G]]s. Application st is interpreted as appli-cation, or more formally [[� ` st : G]]s is de�ned as the (continuous) function mapping every g 2 [[�]]s to3

[[� ` s : F � G]]s(g)([[� ` t : F]]s(g)), where F is the unique type such that � ` t : F is derivable. Abstrac-tion �xF � t is interpreted by: [[� ` �xF � t : G]]s is the (continuous) function mapping every g 2 [[�]]s to the(continuous) function mapping every v 2 [[F]]s to [[�; x : F ` t : G]]s(g; v). This is curri�cation; indeed, thecategory of dcpos with continuous functions as morphisms is cartesian closed.Before we go on, let us say that variables are interpreted by letting [[x1 : F1; : : : ; xn : Fn ` xi : Fi]]s mapevery (v1; : : : ; vn) in [[F1]]s � : : :� [[Fn]]s to vi, which is the only natural choice.For each dcpo F , de�ne Fh1i as the following partially ordered set: the elements of Fh1i are pairs (x; y)of elements of F such that x � y; the ordering on Fh1i is de�ned by: (x; y) � (x0; y0) if and only if x = x0and y � y0. Note that the non-empty directed subsets of Fh1i are the sets of pairs (x; y), where x is �xedand y ranges over some non-empty directed subset E of F such that x � z for every z 2 E. Every suchdirected subset has (x;E ") as least upper bound, so Fh1i is indeed a dcpo. Note, by the way, that Fh1ihas no bottom element in general, since (?;?), the only candidate for a bottom, is incomparable with mostelements of Fh1i.We can think of any element (x; y) in Fh1i as being a given initial value x for some program, which weshall sometimes understand as some syntactical description of this program, plus a promise that the programwill eventually evaluate to y. As in usual Scott domain theory, y is more precise than x, i.e., x � y.Now unbox t evaluates to the �nal value of the program t, that is, it evaluates the promise of the boxedvalue t: de�ne unbox(x; y) as y. Formally, [[� ` unbox t : F]]s is the function mapping every g 2 [[�]]s to�2([[� ` t : 2F]]s(g)), where �2 is the second projection. This function is continuous, because by assumption[[� ` t : 2F]]s is continuous, application is continuous, and �2 is easily seen to be continuous.Conversely, de�ne quoting as follows: letting � be x1 : 2F1; : : : ; xn : 2Fn, then [[� ` `t : 2G]]s is the func-tion mapping every g=̂((v1; w1); : : : ; (vn; wn)) in [[�]]s to ([[� ` t : G]]s((v1; v1); : : : ; (vn; vn)); [[� ` t : G]]s(g))in [[2G]]s. More synthetically, let dup(v) denote (v; v), let �1 be the �rst projection, and for every func-tion f , let map f (x1; : : : ; xn) denote the tuple (f(x1); : : : ; f(xn)). Then [[� ` `t : 2G]]s maps g 2 [[�]]s to([[� ` t]]s(map(dup ��1)(g)); [[� ` t]]s(g)). The interpretation of box t with � will follow by taking it to bethe same as (`x)�, namely: let � be fx1 := t1; : : : ; xn := tng, and assume that � ` ti : 2Fi is derivablefor all i, 1 � i � n. Then we de�ne [[� ` box t with � : 2G]]s as the function mapping every g 2 [[�]]s to([[� ` t : G]]s(map(dup ��1)(d)); [[� ` t : G]]s(d)), where d=̂([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)).Now this really needs to be explained and justi�ed. So let's look at some fundamental special cases.Recall that, in Hilbert-style presentation, S4 obeys the necessitation rule:If ` F is provable, then ` 2F is, too.Given ` t : F , let 't be a proof term for 2F ; in Lisp parlance, this is analogous to quoting, a specialcase of backquoting. A natural choice is to de�ne 't=̂ box t with fg. Its interpretation is: [[` 't : 2F]]s() =dup([[` t : F]]s()). In other words, quoting is duplication: quoting x returns x together with the promisethat the �nal value will be exactly x, and no computation will occur when evaluating x.It is important to note that dup (quoting) is not continuous in general. In fact, dup is not even monotonicin general: when v � w, dup(v) � dup(w) only if v = w. This is normal: F � 2F is not provable in generalin S4, so there does not need to be any continuous function in the Scott model from [[F]]s to [[2F]]s.S4 also obeys the axioms: (K) 2(F � G) � 2F � G(T) 2F � F(4) 2F � 22FThe �S4-calculus provides standard proof-terms for these formulae. In the case of (T), this is unbox,or more precisely, �x2F � unbox x, which we have already discussed. For (K), take �x2(F�G) � �y2F �box (unbox x1)(unbox x2) with fx1 := x; x2 := yg, that is, �x2(F�G) � �y2F � `(,x,y) in Lisp-like notation.The interpretation of this term is the function that maps (f; g) 2 [[2(F � G)]]s to the function that maps(x; y) 2 [[2F]]s to (f(x); g(y)). This is easily seen to be continuous.Finally, for (4), we take �x2F � boxx0 with fx0 := xg, or more informally �x2F � `x. This is a kind ofanalogue to Lisp's kwote function, which takes a value and returns a quoted term that evaluates to this veryvalue. Indeed, in the model, this term is the function that maps (x; y) 2 [[2F]]s to ((x; x); (x; y)) in [[22F]]s.4

Informally, given a program x together with a promise that x will evaluate to y, kwote(x; y) consists of theprogram 'x = (x; x) together with the promise that it will evaluate to a program x whose promise is y.This interpretation is summed up in Figure 1, together with an extension of the notation Fh1i to Fhnifor every n � 0; this will be discussed later on. It is assumed that all interpretations [[A]]s, where A is a basetype, are given.[[F � G]]s =̂ [[F]]s! [[G]]sF ! G =̂ fcontinuous functions from F to Gg pointwise ordering[[2F]]s =̂ [[F]]sh1iFhni =̂ f(vn�1; : : : ; v0; v�1) j vn�1 � : : : � v0 � v�1 2 Fg(vn�1; : : : ; v0; v�1) � (wn�1; : : : ; w0; w�1) i� vn�1 = wn�1; : : : ; v0 = w0; v�1 � w�1[[�; x : F;� ` x : F]]s(g; v; d) =̂ v[[� ` st : G]]s(g) =̂ [[� ` s : F � G]]s(g)([[� ` t : F]]s(g))[[� ` �xF � t : F � G]]s(g) =̂ �v 2 [[F]]s � [[�; x : F ` t : G]]s(g; v)[[� ` unbox t : F]]s(g) =̂ �2([[� ` t : 2F]]s(g))[[� ` box t with � : 2G]]s(g) =̂ ([[� ` t : G]]s(map(dup ��1)(d)); [[� ` t : G]]s(d))where �=̂x1 : 2F1; : : : ; xn : 2Fn; �=̂fx1 := t1; : : : ; xn := tngand d=̂([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g))Figure 1: The Dcpo InterpretationWe now prove that we have got a model of �S4, as expected:Lemma 3.1 For every term t such that � ` t : F is derivable, [[� ` t : F]]s is a continuous function from[[�]]s to [[F]]s.Proof: We �rst claim that: (i) for every continuous function f fromF1h1i�: : :�Fnh1i to F , the function f 0mapping ((v1; w1); : : : ; (vn; wn)) 2 F1h1i � : : :�Fnh1i to (f((v1; v1); : : : ; (vn; vn)); f((v1; w1); : : : ; (vn; wn)))in Fh1i is continuous. First, f 0 is monotonic: if ((v1; w1); : : : ; (vn; wn)) � ((v01; w01); : : : ; (v0n; w0n)), thenv1 = v01, w1 � w01, . . . , vn = v0n, wn � w0n. So f((v1; v1); : : : ; (vn; vn)) = f((v01; v01); : : : ; (v0n; v0n)); andon the other hand f((v1; w1); : : : ; (vn; wn)) � f((v01; w01); : : : ; (v0n; w0n)) since f is monotonic. So indeedf 0((v1; w1); : : : ; (vn; wn)) � f 0((v01; w01); : : : ; (v0n; w0n)). Second, f 0 preserves least upper bounds: let E be anon-empty directed subset of F1h1i� : : :�Fnh1i, we must show that f 0(E ") = f 0(E) ". But E is necessarilya set of values of the form ((v1; w1); : : : ; (vn; wn)), with v1, . . . , vn �xed, and (w1; : : : ; wn) ranging over somenon-empty directed subset E0 of F1� : : :�Fn. Since v1, . . . , vn are �xed, so is f((v1; v1); : : : ; (vn; vn)). Andsince f is continuous, f(E ") = f(E) ", so:f 0(E ") = (f((v1; v1); : : : ; (vn; vn)); f(E "))= (f((v1; v1); : : : ; (vn; vn)); f(E) ")= f(f((v1; v1); : : : ; (vn; vn)); f((v1; w1); : : : ; (vn; wn))) j (w1; : : : ; wn) 2 E0g "= f 0(E) "The Lemma is then proved by structural induction on t. All the cases except when t is a box-term havealready been justi�ed. So let t be of the form box swith fx1 := t1; : : : ; xn := tng, where � ` s : F is provableand �=̂x1 : 2F1; : : : ; xn : 2Fn. By induction hypothesis, [[� ` s : F]]s is continuous. Taking this function asthe f in (i), it follows that the function f 0 mapping d to ([[� ` s : F]]s(map(dup ��1)(d)); [[� ` s : F]]s(d)) iscontinuous. Therefore [[� ` box s with fx1 := t1; : : : ; xn := tng : 2F]]s, which is the function mapping g 2 [[�]]sto f 0([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)) is continuous, since [[� ` ti : 2Fi]]s is continuous for all i,1 � i � n, by induction hypothesis. 2 5

Lemma 3.2 For every term t such that �; x1 : F1; : : : ; xn : Fn ` t : F is derivable, for every terms t1, . . . ,tn such that �;� ` ti : Fi is derivable for every i, 1 � i � n, [[�;� ` tfx1 := t1; : : : ; xn := tng : F]]s is thefunction mapping (g; d), where g 2 [[�]]s and d 2 [[�]]s, to :[[�; x1 : F1; : : : ; xn : Fn ` t : F]]s(g; [[�;� ` t1 : F1]]s(g; d); : : : ; [[�;� ` tn : Fn]]s(g; d))Proof: By structural induction on t. 2Lemma 3.3 If x is not free in t, then for every g 2 [[�]]s, v 2 [[F]]s, d 2 [[�]]s, [[�; x : F;� ` t : G]]s(g; v; d) =[[�;� ` t : G]]s(g; d).Proof: Easy structural induction on t. 2Theorem 3.4 The dcpo interpretation is sound wrt. �S4 with the extensional equalities: for every terms sand t such that � ` s : F and � ` t : F are both derivable, and such that s =� t, we have [[� ` s : F]]s =[[� ` t : F]]s.Proof: We �rst check each �-equivalence rule:� �, �rst rule.[[� ` �yF � tfx := yg : F � G]]s(g) = �v 2 [[F]]s � [[�; y : F ` tfx := yg : G]]s(g; v)= �v 2 [[F]]s � [[�; x : F ` t : G]]s(g; [[�; y : F ` y : F]]s(g; v))(by Lemma 3.2 with �=̂y : F , n=̂1, x1=̂x, t1=̂y)= �v 2 [[F]]s � [[�; x : F ` t : G]]s(g; v) = [[� ` �xF � t : F � G]]s(g)� �, second rule. [[� ` box tfx1 := y1; : : : ; xn := yng with fy1 := t1; : : : ; yn := tng : 2G]]s is the func-tion mapping every g 2 [[�]]s to [[� ` tfx1 := y1; : : : ; xn := yng : G]]s(map(dup ��1)(d); d), whered=̂([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)) and �=̂y1 : 2F1; : : : ; yn : 2Fn. By Lemma 3.2 with� empty, this is also the same as [[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s(map(dup ��1)(d); d), that is,[[� ` box t with fx1 := t1; : : : ; xn := tng]]s(d).An easy induction on the number of �-equivalence rules, then on the structure of terms, now shows that:(i) s � t implies [[� ` s : F]]s(g) = [[� ` t : F]]s(g). We have just shown the base cases, the induction casesare straightforward.� (�): [[� ` (�xF � s)t : G]]s(g) = [[� ` �xF � s : F � G]]s(g)([[� ` t : F]]s(g))= (�v 2 [[F � G]]s � [[�; x : F ` s : G]]s(g; v))([[� ` t : F]]s(g))= [[�; x : F ` s : G]]s(g; [[� ` t : F]]s(g)) = [[� ` sfx := tg : G]]s(g)by Lemma 3.2 with � empty, n=̂1, x1=̂x, t1=̂t.� (unbox):[[� ` unbox(box t with �) : G]]s(g)= �2([[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s(map(dup ��1)(d)); [[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s(d))where d=̂([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g))= [[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s(d)On the other hand:[[� ` t� : G]]s(g)= [[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)) (by Lemma 3.2)= [[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]s(d) 6

� (gc): assume that x1 is not free in t, then [[� ` box t with fx1 := t1; : : : ; xn := tng : 2G]]s(g) equals[[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]s([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)); this is equal to[[x2 : 2F2; : : : ; xn : 2Fn ` t : G]]s([[� ` t2 : 2F2]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)) by Lemma 3.3; but thelatter is just [[� ` box t with fx2 := t2; : : : ; xn := tng]]s(g).� (ctr): assume t1 � t2:[[� ` box tfx1 := x2g with fx2 := t2; : : : ; xn := tng : 2G]]s(g)= ([[x2 : 2F2; : : : ; xn : 2Fn ` tfx1 := x2g : G]]s((dup(�1(v2)); : : : ;dup(�1(vn)));[[x2 : 2F2; : : : ; xn : 2Fn ` tfx1 := x2g : G]]s(v2; : : : ; vn))where v2=̂[[� ` t2 : 2F2]]s(g), . . . , vn=̂[[� ` tn : 2Fn]]s(g))= ([[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]s((dup(�1(v2));dup(�1(v2)); : : : ;dup(�1(vn)));[[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]s(v2; v2; : : : ; vn)) (by Lemma 3.2)= [[� ` box t with fx1 := t1; x2 := t2; : : : ; xn := tng : 2G]]s(g)since indeed t1 � t2 implies [[� ` t1 : F1]]s(g) = [[� ` t2 : F2]]s(g) = v2 by (i).� (box): we shall show that the interpretations of (`s)fx := `tg and of `(sfx := `tg) are equal. Thisspecial case of (box) will be enough to deal with the general case: indeed, (box) is deducible from thelatter, from the fact that s = t implies s� = t� for every well-typed substitution �, and from (gc).So, assume that the free variables of s are among x, x1, . . . , xn, and that x1 : 2F1; : : : ; xn : 2Fn; x :2F ` s : G, and y1 : 2G1; : : : ; ym : 2Gm ` t : F . Then:[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` (`s)fx := `tg : 2G]]s(v1; : : : ; vn; w1; : : : ; wm)= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]s(v1; : : : ; vn;[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(v1; : : : ; vn; w1; : : : ; wm))= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]s(v1; : : : ; vn;[[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(w1; : : : ; wm)) (by Lemma 3.3, n times)= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]s(v1; : : : ; vn;([[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]s(dup(�1(w1)); : : : ;dup(�1(wm)));[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]s(w1; : : : ; wm)))= ([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));dup([[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]s(dup(�1(w1)); : : : ;dup(�1(wm)))));[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(v1; : : : ; vn;([[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]s(dup(�1(w1)); : : : ;dup(�1(wm)));[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]s(w1; : : : ; wm)))On the other hand:[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `(sfx := `tg) : 2G]]s(v1; : : : ; vn; w1; : : : ; wm)= ([[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` sfx := `tg : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));dup(�1(w1)); : : : ;dup(�1(wm)));[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` sfx := `tg : G]]s(v1; : : : ; vn; w1; : : : ; wm))= ([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(dup(�1(v1)); : : : ;dup(�1(vn));dup(�1(w1)); : : : ;dup(�1(wm))));[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(v1; : : : ; vn;7

[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(v1; : : : ; vn; w1; : : : ; wm)))= ([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));[[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(dup(�1(w1)); : : : ;dup(�1(wm))));[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(v1; : : : ; vn;[[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]s(w1; : : : ; wm)))(by Lemma 3.3 2n times)= ([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));([[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(dup(�1(w1)))); : : : ;dup(�1(dup(�1(wm)))));[[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(w1)); : : : ;dup(�1(wm)))));[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(v1; : : : ; vn;([[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(w1)); : : : ;dup(�1(wm)));[[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(w1; : : : ; wm))))= ([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(dup(�1(v1)); : : : ;dup(�1(vn));([[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(w1)); : : : ;dup(�1(wm)));[[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(w1)); : : : ;dup(�1(wm)))));[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]s(v1; : : : ; vn;([[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(dup(�1(w1)); : : : ;dup(�1(wm)));[[y1 : 2G1; : : : ; ym : 2Gm ` t]]s(w1; : : : ; wm))))(because dup ��1 � dup ��1 = dup ��1)= [[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` (`s)fx := `tg : 2G]]s(v1; : : : ; vn; w1; : : : ; wm)� (�): assume that � ` t : F � G is derivable, and x is not free in t, then [[� ` �xF � tx : F � G]]s(g) isthe function mapping every v 2 [[F]]s to:[[�; x : F ` tx : G]]s(g; v) = [[�; x : F ` t : F � G]]s(g; v)([[�; x : F ` x : F]]s(g; v))= [[�; x : F ` t : F � G]]s(g; v)(v) = [[� ` t : F � G]]s(g)(v)by Lemma 3.3. So [[� ` �xF � tx : F � G]]s(g) = [[� ` t : F � G]]s(g), for every g.� (� box): let �=̂fx1 := t1; : : : ; xn : tng, and assume that � ` ti : 2Fi is derivable for each i, 1 � i � n;then: [[� ` box (unbox xi) with � : 2F]]s(g)= ([[x1 : 2F1; : : : ; xn : 2Fn ` unbox xi : F]]s(dup(�1([[� ` t1 : 2F1]]s(g))); : : : ;dup(�1([[� ` tn : 2Fn]]s(g))));[[x1 : 2F1; : : : ; xn : 2Fn ` unbox xi : F]]s([[� ` t1 : 2F1]]s(g); : : : ; [[� ` tn : 2Fn]]s(g)))= (�2(dup(�1([[� ` ti : 2Fi]]s(g)))); �2([[� ` ti : 2Fi]]s(g)))= (�1([[� ` ti : 2Fi]]s(g)); �2([[� ` ti : 2Fi]]s(g)))= [[� ` ti : 2Fi]]s(g)Then, as for (i), an easy induction, whose base cases we have just examined, shows that s = t implies[[� ` s : F]]s(g) = [[� ` t : F]]s. 2Before we go on, notice that the fact that we used dcpos instead of mere cpos does not matter: everythingstill works with cpos instead of dcpos. In fact, even the continuity assumptions on functions were completelysuperuous in this section, and we could have developed the same theory by only considering the categoryof preorders with monotonic functions, instead of dcpos with continuous functions. Continuity will play amore essential role in the next section. 8

3.2 Using Pointed DcposFor computational relevance, it would be nice to be able to de�ne functions by �xpoints in any type. Thisis possible in ordinary dcpo theory by having each domain F contain a bottom element ?, and de�ning theleast �xpoint of f : F ! F as Y (f)=̂f?; f(?); f2(?); : : : ; fn(?); : : :g ". However, our dcpos don't havebottoms in general, in particular no dcpo of the form Fh1i has a bottom.A natural �x is to lift the latter dcpos, and de�ne [[2F]]p as [[F]]ph1i?, where F? denotes the disjointunion F [f?g, with the ordering �F? such that ? �F? x for all x, and x �F? y if and only if x � y, forall x; y 2 F , where � is the ordering on F .All our dcpos will then be pointed, i.e. they will have a bottom. The modi�ed interpretation [[-]]p isde�ned on Figure 2. [[F � G]]p =̂ [[F]]p ! [[G]]p[[2F]]p =̂ [[F]]ph1i?[[�; x : F;� ` x : F]]p(g; v; d) =̂ v[[� ` st : G]]p(g) =̂ [[� ` s : F � G]]p(g)([[� ` t : F]]p(g))[[� ` �xF � t : F � G]]p(g) =̂ �v 2 [[F]]p � [[�; x : F ` t : G]]p(g; v)[[� ` unbox t : F]]p(g) =̂ �?2 ([[� ` t : 2F]]p(g)) where �?2 (v; w)=̂w; �?2 (?)=̂?[[� ` box t with � : 2G]]p(g) =̂ ([[� ` t : G]]p(map(dup ��?1)(d)); [[� ` t : G]]p(d))where �=̂x1 : 2F1; : : : ; xn : 2Fn; �=̂fx1 := t1; : : : ; xn := tngand d=̂([[� ` t1 : 2F1]]p(g); : : : ; [[� ` tn : 2Fn]]p(g))and �?1 (v; w)=̂w; �?1 (?)=̂?Figure 2: The Pointed Dcpo InterpretationSo quoting still maps v to (v; v), even when v = ?. On the other hand, unbox is a strict function, mapping? to ?. The proof term �x2(F�G) ��y2F �box (unbox x1)(unbox x2)with fx1 := x; x2 := yg realizing (K) stillmaps (f; g) and (v; w) to (f(v); g(w)); it now also maps ? and (v; w) to (?;?), ? and ? to (?;?), and(f; g) and ? to (f(?); g(?)). In particular, it is not strict, i.e. it is lazy in both its arguments. Similarly,the proof term �x2F � box x0 with fx0 := xg for (4) maps (v; w) to ((v; v); (v; w)), and ? to (?;?), so againkwote is given a lazy interpretation.We leave it as an exercise to the reader to show that this interpretation is sound wrt. �S4, and even (�),but not (� box). Indeed, [[� ` box (unbox x) with fx := tg : 2F]]p(g) equals (?;?) when [[� ` t : 2F]]p(g) = ?,and is therefore di�erent from [[� ` t : 2F]]p(g).Adding ? actually leaves more choices as to the de�nition of modal constructions. We may for exampledecide that (K) will be given an interpretation that is strict in its �rst argument, or that (4) will be strict,and so on.3.3 A Note on 2nFLet's return for a short while to the unpointed dcpo interpretation. The types 2nF|meaning F boxed ntimes|gets interpreted as [[F]]sh1i : : :h1i. But it is easy to see that this is isomorphic to [[F]]shni:Lemma 3.5 Fh1i : : :h1i, where there are n occurrences of h1i, is canonically isomorphic to Fhni.Proof: By induction on n. It is enough to show that Fhn+ 1i is canonically isomorphic toFhnih1i. The former is the set of non-decreasing sequences (vn; : : : ; v1; v0; v�1), ordered by � onthe v�1 component, and by equality on all other components. The latter is the space of couples((vn�1; : : : ; v0; v�1); (vn�1; : : : ; v0; v0�1)), with vn�1 � : : : � v0 � v�1 � v0�1, ordered by � on(vn�1; : : : ; v0; v0�1) and by equality of (vn�1; : : : ; v0; v�1), i.e. by � on v0�1 and equality on all the vi's.Map the former sequences (vn; : : : ; v1; v0; v�1) to ((vn; : : : ; v1; v0); (vn; : : : ; v1; v�1)), and conversely map9

((vn�1; : : : ; v0; v�1); (vn�1; : : : ; v0; v0�1)) to (vn�1; : : : ; v0; v�1; v0�1). It is easy to see that this de�nes anisomorphism of dcpos. 2Now the point here is that the de�nition of the spaces Fhni, n � 0, looks very much like that of thenerve of a category [GM96].The notion of nerve applies to all categories, but it will su�ce to explain it in the case of preorders. Thenerve of a preorder F is a graded set Nn(F), n � 0, consisting of all non-decreasing sequences (v0; : : : ; vn)of elements of F . Such elements v are called n-simplices of the nerve, and can be seen as geometric objectsof dimension n, having n + 1 faces that are (n � 1)-simplices: face i is the subsequence where vi has beenremoved. Also, every n-simplex can be coerced to a degenerate (n + 1)-simplex by mapping it to its ithdegeneracy (v0; : : : ; vi�1; vi; vi; vi+1; : : : ; vn), for every i, 0 � i � n.This looks very much like the description of (Fhni)n�0. However, if we wish to be formal, we need a fewadditional simple constructions. A slice F=v�1 is a preorder consisting of elements of the form (v; v�1) withv � v�1; their elements are ordered by: (v; v�1) � (w; v�1) if and only if v � w. The opposite Fop of apreorder F is a preorder whose elements are those of F , and whose preorder �op is such that x�opy if andonly if y � x in F . The dual notion of a slice F=v�1 is called the coslice v�1nF : this is the set of all pairs(v�1; v) with v�1 � v, ordered by (v�1; v) � (v�1; w) if and only if v � w. Note that Fh1i is just the directsum of all coslices of F ; a formally similar notion will be used in Section 4.A few simple computations now show that Fhni is just the same as the union over all v�1 of allNn(v�1nFop). Taking face 0 does unbox, and taking degeneracy 0 does kwote. In other words, moduloa few gadgets like slices and taking opposites, Nn(F), n � 0, is a nerve. Our point here is that the S4 2modality can be essentially interpreted as a geometric construction. This will be more apparent in Section 4.4 Geometric ModelsIt is also possible to interpret types as topological spaces, without any order structure underlying them.Morphisms will be continuous maps, again. But for our category of topological spaces to be cartesian closed,we need an additional restriction. A standard trick is to restrict to compactly generated spaces [Str, ML71]:De�nition 4.1 Say that a subset E of a topological space F is k-closed if and only if f�1(E) is closed inK, for every compact space K and every continuous function f from K to F .A topological space F is compactly generated if and only if for any subset E of F , E is closed if andonly if E is k-closed.Note that every closed subset is k-closed. The converse is the part that is not true of every topological space.Recall that a topological space is Hausdor�, or T2, if and only if, for every two elements x, y such thatx 6= y, there exist opens Ox and Oy such that x 2 Ox, y 2 Oy and Ox \ Oy = ;; and that F is compact ifand only if F is Hausdor�, and from any open cover of F we can extract a �nite subcover of F .Say that F is weakly Hausdor� [Str] if and only if, for every compact space K, for every continuousfunction f from K to F , the image of K by f is closed in F . It is clear that every Hausdor� (T2) spaceis weakly Hausdor�, and that every weakly Hausdor� space is T1, i.e., every singleton fxg is closed. Weshall deal with weakly Hausdor� spaces as this is slightly more general than Hausdor� spaces, but the resultswould be the same with Hausdor� spaces: see [ML71], Chapter 7, Section 8, for an introduction to compactlygenerated Haudor� spaces.Every Hausdor� space can be turned into a compactly generated space by adding a few opens (equiv-alently, a few closed) sets to its topology, this is point (i) below. As this will be more practical, we shallsee topologies as given not by their sets of opens, rather by their sets of closed subsets. Recall also that afunction f is continuous if and only if f�1(O) is open for every open O, if and only if f�1(F) is closed forevery closed subset F . The following Lemma is a summary of some of the results in [Str]:Lemma 4.1 Let the kelley�cation k(F) of the Hausdor� space F be de�ned as follows: the elements of k(F)are those of F , the closed sets of k(F) are the k-closed sets of F . Then:(i) k(k(F)) = k(F), so k(F) is compactly generated;10

(ii) (\There are many compactly generated spaces") Every locally compact Hausdor� space is compactlygenerated;(iii) the category CGWH of compactly generated weakly Hausdor� spaces with continuous maps has products,and the product Qi2I Fi of the family (Fi)i2I is k(Q0i2I Fi), where Q0 denotes the set-theoretic productwith the product topology.(iv) CGWH is cartesian-closed; we shall note the exponential object GF as F ! G.Alternatively, let C0(F ;G) be the space of all continuous maps from F to G, with the compact-opentopology, namely that generated from the basic opens ff continuous from F to G j f(K) � Og, whereK ranges over compacts in F and O over opens in G. Then F ! G = k(C0(F ;G)).(v) if F is locally compact Hausdor�, and G is CGWH, then F ! G = C0(F ;G).(vi) CGWH has sums: the sum of the family (Fi)i2I of CGWH-spaces is the set-theoretical sum qi2IFi,with the sum topology (the least making all injections Fi ! qi2IFi continuous).The compact-open topology is better known, in the special case of uniform, and even of metric spaces, asthe topology of uniform convergence on every compact. This means in particular that, if F is compact, andG is a metric space with distance d, then F ! G is metrizable as well, by de�ning the distance between fand g as maxv2F d(f(v); g(v)). (Note that the max is reached, since F is compact.) The category of CGWHspaces is a kind of souped-up version of that of compact metric spaces, with enough spaces to be cartesianclosed.We now de�ne the interpretation [[-]]t as follows. Let [[F � G]]t=̂[[F]]t ! [[G]]t. We may de-�ne [[�; x : F;� ` x : F]]t(g; v; d) as v, where g 2 [[�]]t, v 2 [[F]]t, d 2 [[�]]t; this is indeed contin-uous from [[�]]t � [[F]]t � [[�]]t to [[F]]t: projections from product objects are morphisms in CGWH,hence continuous. Equally easily, [[� ` st : G]]t is the (continuous) function mapping every g 2 [[�]]t to[[� ` s : F � G]]t(g)([[� ` t : F]]t(g)), and [[� ` �xF � t : F � G]]t is de�ned as the (continuous) function map-ping each g 2 [[�]]t to the (continuous) function mapping each v 2 [[F]]t to [[�; x : F ` t : G]]t(g; v). Thateverything is continuous follows from the fact that CGWH is cartesian closed.It remains to interpret boxed types:De�nition 4.2 Given a CGWH space F , and v0 2 F , let the coslice v0nF be de�ned as the space of allcontinuous functions � from [0; 1] to F such that �(0) = v0, with the compact-open topology.Let then Fh1i=̂ qv02F v0nF , and [[2F]]t=̂[[F]]th1i.Lemma 4.2 For every CGWH space F , Fh1i is CGWH.Proof: Since [0; 1] is compact, in particular it is locally compact Hausdor�, so C0([0; 1];F) is CGWH, byLemma 4.1 (v). Since F is weakly Hausdor�, hence T1, fv0g is closed in F . Because the projection � 7! �(0)is continuous, it follows that v0nF is closed in C0([0; 1];F). Therefore: (a) every subset E of v0nF is closedin v0nF if and only if it is closed in C0([0; 1];F).It also follows from (a) that: (b) for every function f from G to v0nF , f is continuous from G to v0nF ifand only if f is continuous when seen as a function from G to C0([0; 1];F).We can now show that: (c) v0nF is compactly generated. Since every closed subset is automaticallyk-closed, it remains to prove the converse. So let E be k-closed in v0nF . This means that: (*) for everycontinuous f from a compactK to v0nF , f�1(E) is closed. So let f be continuous from an arbitrary compactK to C0([0; 1];F). Since v0nF is closed in C0([0; 1];F), K0=̂f�1(v0nF) is closed in K, hence compact. Therestriction f 0 of f to K0 is then continuous from K 0 to C0([0; 1];F), and its range is included in v0nF , soby (b) f 0 is continuous from K 0 to v0nF . By (*), f 0�1(E) is then closed in K 0, hence in K. But by thede�nition ofK0 and f 0, f 0�1(E) = f�1(E), so f�1(E) is closed in K. As K and f are arbitrary, E is k-closedin C0([0; 1];F). Since the latter is CGWH, E is closed in C0([0; 1];F), hence in v0nF .On the other hand, for every compact space K, every continuous function f fromK to v0nF is continuousfromK to C0([0; 1];F) by (b), so since C0([0; 1];F) is weakly Hausdor�, f(K) is closed in C0([0; 1];F), hencein v0nF since f(K) is by assumption included in the latter. Since K and f are arbitrary, it follows that: (d)v0nF is weakly Hausdor�. 11

By (c) and (d), v0nF is CGWH, hence the sum space Fh1i is CGWH by Lemma 4.1 (vi). 2Compared to the [[-]]s interpretation, we have replaced pairs (v; w) with v � w by continuous paths leadingfrom v to w. It is interesting to see these paths as speci�cations of processes starting at time 0 and stoppingat some later time that we decide to name 1. Then:� Quoting, which used to map v to (v; v) in the dcpo model, will be the function ' : v 2 F 7! (�� 2[0; 1] � v) 2 Fh1i mapping v to the constant path that stays at v. Because of the topology we put onFh1i, ' is not continuous in general. This is a feature: it represents semantically the fact that althoughwe can deduce 2F from F , there is in general no proof of F � 2F .More precisely, if ' is continuous, then it maps every connected component C of F to some connectedsubspace of Fh1i, hence to a subspace of some vnF : it follows that C must be the singleton set fvg,for every C. In other words, ' is continuous from F to Fh1i if and only if F is totally disconnected.� (K), which used to map (f; g) and (v; w) to (f(v); g(w)), will here be the function ?mapping every path� from �(0)=̂f 2 F ! G to �(1)=̂g 2 F ! G, and every path � from �(0)=̂v 2 F to �(1)=̂w 2 F tothe path � ? �=̂�� 2 [0; 1] � �(�)(�(�)). In terms of processes, this is synchronous parallel application.In general, de�ne � ? (�1; : : : ; �n), where � 2 (F1 � : : :�Fn ! G)h1i and �i 2 Fih1i for every i,1 � i � n, as �� 2 [0; 1] � �(�)(�1(�); : : : ; �n(�)).� (T) is interpreted by the ev function, de�ned here as the projection mapping � 2 Fh1i to �(1). Interms of processes, this is the function waiting for its argument process � to terminate, and which thenreturns the �nal value �(1) of �.� (4) is a bit more complex. Remember that it used to map (v; w) to ((v; v); (v; w)) in the dcpo model.The function kwote which realizes it here will map the path � 2 Fh1i to the path of paths � 2 Fh1ih1isuch that �(�)(� 0) = �(�:� 0), where �:� 0 is the ordinary product of �; � 0 2 [0; 1]. That is, � is a pathfrom the constant path �(0) = '(�(0)) to the path �(1) = �. In terms of processes, kwote(�) is aprocess that starts from the syntactic description '(�(0)) of the process �, and eventually returns theactual process � at time 1. This is therefore an interpretation in terms of higher-order processes, thatmay compute other processes.We then de�ne [[� ` box t with fx1 := t1; : : : ; xn := tng : 2G]]t as the function mapping every g 2 [[�]]t to'([[� ` t : G]]t) ? (kwote([[� ` t1 : 2F1]]t(g)); : : : ; kwote([[� ` tn : 2Fn]]t(g))), where �=̂x1 : 2F1; : : : ; xn :2Fn|a similar formula in fact works also for the dcpo interpretation [[-]]s. More synthetically, de�ne [[-]]t onterms as in Figure 3.[[�; x : F;� ` x : F]]t(g; v; d) =̂ v[[� ` st : G]]t(g) =̂ [[� ` s : F � G]]t(g)([[� ` t : F]]t(g))[[� ` �xF � t : F � G]]t(g) =̂ �v 2 [[F]]t � [[�; x : F ` t : G]]t(g; v)[[� ` unbox t : F]]t(g) =̂ [[� ` t : 2F]]t(g)(1)[[� ` box t with � : 2G]]t(g) =̂ �� 2 [0; 1] � [[� ` t : G]]t(�1(�); : : : ; �n(�))where �i(�)=̂�� 0 2 [0; 1] � [[� ` ti : 2Fi]]t(g)(�:� 0); 1 � i � nFigure 3: The Geometric InterpretationFor every function f , let fjA be the restriction of f to the set A.Lemma 4.3 For every CGWH spaces F and G, f : F ! Gh1i is continuous if and only if the following twoconditions are satis�ed, for every connected component C of F :(i) for every x; y 2 C, f(x)(0) = f(y)(0);(ii) fjC is continuous from C to C0([0; 1];G). 12

Proof: Only if: since C is connected and f is continuous, the image f(C) is connected. But everyv0nG, v0 2 G, is both open and closed in Gh1i by construction, so every connected subset of Gh1i is aconnected subset of some v0nG, v0 2 G. In particular, for every x; y 2 C, f(x) and f(y) are both in v0nG, sof(x)(0) = v0 = f(y)(0), therefore (i) holds. On the other hand, since f is continuous, fjC is also continuousfrom C to Gh1i, hence also from C to v0nG. But the topology of v0nG is a subset topology of C0([0; 1];G),so (ii) holds.If: assume that (i) and (ii) hold for every connected component C of F . Let v0 be f(x)(0) for somex 2 C. By (i), v0 does not depend on the choice of x, and therefore f(C) � v0nG. By (ii), and since thetopology of v0nG is a subset topology of C0([0; 1];G), fjC is continuous from C to v0nG, hence also from Cto Gh1i. For every open O in Gh1i, f�1(O) is the union of fjC�1(O), when C ranges over the connectedcomponents of F , and is therefore open. So f is continuous from F to Gh1i. 2Lemma 4.4 Let C be a connected component of F1 � : : : � Fn, where each Fi is CGWH. Then C �C1 � : : :�Cn, where Ci is a connected component of Fi for each i, 1 � i � n.Proof: Every connected component of Fi is both open and closed in Fi, so every product C1 � : : :� Cnis both open and closed in the product Q01�i�nFi (with the product topology). Since every closed set isk-closed, C1 � : : : � Cn is also both open and closed in Q1�i�nFi. Let S be the set of all n-tuples ofconnected components (C1; : : : ; Cn) as above such that C \ (C1 � : : :� Cn) 6= ;. Since C \ (C1 � : : :� Cn)is both open and closed in C, and since C is connected, there can be at most one element (C1; : : : ; Cn) in S.It follows that C � C1 � : : :�Cn. 2Lemma 4.5 For every term t such that � ` t : F is derivable, [[� ` t : F]]t is a continuous function from[[�]]t to [[F]]t.Proof: We �rst establish a few claims. First: (a) ev : � 2 Fh1i 7! �(1) is continuous. Let F be anyclosed subset of F , then ev�1(F) = f� 2 Fh1i j �(1) 2 Fg = Sv02Ff� 2 v0nF j �(1) 2 Fg = Sv02Ff� 2C0([0; 1];F) j �(0) = v0; �(1) 2 Fg = Sv02F (��10 (fv0g) \ ��11 (F)), where �� is the projection � 7! �(�),which is continuous from C0([0; 1];F) to F . So Fv0=̂��10 (fv0g) \ ��11 (F) is closed in C0([0; 1];F), hencealso in v0nF . Recall that a set is closed in a sum space if and only if it is closed in every summand. Here,ev�1(F)\(v0nF) = Fv0 is closed in every summand v0nF of Fh1i, so ev�1(F) is closed. Since F is arbitrary,ev is continuous.We now claim that: (b) ? is continuous from (F1 � : : :�Fn ! G)h1i � F1h1i � : : :�Fnh1i to Gh1i. Forconvenience, when x=̂(�; �1; : : : ; �n), we shall also write � ? (�1; : : : ; �n) as (?)(x). Let C be any connectedcomponent of (F1 � : : :� Fn ! G)h1i�F1h1i� : : :�Fnh1i. By Lemma 4.4, C � C0�C1� : : :�Cn, whereC0 is some connected component of (F1 � : : :�Fn ! G)h1i, C1 is some connected component of F1h1i, . . . ,Cn is some connected component of Fnh1i. In particular, C0 is included in some f0n(F1� : : :�Fn ! G), C1is included in some v1nF1, . . . , Cn is included in some vnnFn. So for every (�; �1; : : : ; �n) 2 C, �(0) = f0,�1(0) = v0, . . . , �n(0) = vn. Therefore, for every x=̂(�; �1; : : : ; �n) and y=̂(�0; �01; : : : ; �0n) in C, (?)(x)(0) =�(0)(�1(0); : : : ; �n(0)) = f0(v0; : : : ; vn) = �0(0)(�01(0); : : : ; �0n(0)) = (?)(y)(0), so condition (i) of Lemma 4.3is satis�ed. On the other hand, ? is continuous from C0([0; 1]; (F1� : : :�Fn ! G))� C0([0; 1];F1)� : : :�C0([0; 1];Fn) to C0([0; 1];G) because ? is de�ned from abstractions and applications only, and CGWH iscartesian closed. So given any closed subset F of C0([0; 1];G), (?)jC�1(F) = (?)jC�1(F \ (f0(v0; : : : ; vn)nG)),since the range of (?)jC is included in f0(v0; : : : ; vn)nG. But f0(v0; : : : ; vn)nG is closed in C0([0; 1];G), soF \ (f0(v0; : : : ; vn)nG) is closed again, therefore (?)jC�1(F) is closed, hence closed in C. So ? is continuousfrom C to C0([0; 1];G), therefore condition (ii) of Lemma 4.3 is satis�ed. It follows that ? is continuous.Similarly, we claim that: (c) kwote is continuous fromFh1i to Fh1ih1i. Again, this will be by Lemma 4.3.Let C be any connected component of Fh1i, in particular C � v0nF for some v0 2 F . So for every � 2 C,�(0) = v0, and therefore kwote(�)(0) = (��; � 0 ��(�:� 0))(0) = �� 0 ��(0) = �� 0 �v0. In particular, condition (i)is satis�ed: for every �; �0 2 C, kwote(�)(0) = �� 0 � v0 = kwote(�0)(0). We now show condition (ii).Given any closed set F of Fh1ih1i, kwotejC�1(F) = kwotejC�1(F \ ((�� 0 � v0)nFh1i)) = kwotejC�1(F \((�� 0 � v0)n(v0nF))) is closed in C0([0; 1];F). Indeed, (�� 0 � v0)n(v0nF)) is closed in C0([0; 1]; C0([0; 1];F)),and kwotejC is continuous from C0([0; 1];F) to C0([0; 1]; C0([0; 1];F)), since abstraction, application andmultiplication are. So kwotejC�1(F) is closed in C, hence kwotejC is continuous.13

Finally, we claim that: (d) provided F is CGWH, for every continuous functions fi : F ! Gi, h=̂�v 2F � (f1(v); : : : ; fn(v)) is continuous from F to Q1�i�nGi. To do this, we shall show that, for every closedsubset F of Q1�i�n Gi, h�1(F) is k-closed in F . So let K be any compact space, and f be any continuousmap from K to F . To show that h�1(F) is k-closed, we have to show that f�1(h�1(F)) is closed in K. Butf�1(h�1(F)) = (h � f)�1(F), and h � f is trivially continuous from K to Q01�i�nGi. Recall that F is closedin Q1�i�nGi, so F is k-closed in Q01�i�n Gi; by de�nition of being k-closed, using the compact K and thefunction h � f , f�1(h�1(F)) is closed in K. Since K and f are arbitrary, h�1(F) is k-closed in F . Since Fis CGWH, h�1(F) is closed in F . Because F is arbitrary, h is continuous.We now prove the Lemma by structural induction on t. It remains to show this in the cases of termsof the form unbox t or box t with �. In the �rst case, this follows from (a). In the second case, recallthat we can write f=̂[[� ` box t with fx1 := t1; : : : ; xn := tng : 2G]]t as the function mapping every g 2 [[�]]tto '([[� ` t : G]]t) ? (kwote([[� ` t1 : 2F1]]t(g)); : : : ; kwote([[� ` tn : 2Fn]]t(g))), where �=̂x1 : 2F1; : : : ; xn :2Fn. In particular, observe that '([[� ` t : G]]t) makes sense, because [[� ` t : G]]t is continuous by induction.Then f is continuous by (b), (c) and (d). (Note that the left argument to ? is constant.)2Lemma 4.6 For every term t such that �; x1 : F1; : : : ; xn : Fn ` t : F is derivable, for every terms t1, . . . ,tn such that �;� ` ti : Fi is derivable for every i, 1 � i � n, [[�;� ` tfx1 := t1; : : : ; xn := tng : F]]t is thefunction mapping (g; d), where g 2 [[�]]t and d 2 [[�]]t, to :[[�; x1 : F1; : : : ; xn : Fn ` t : F]]t(g; [[�;� ` t1 : F1]]t(g; d); : : : ; [[�;� ` tn : Fn]]t(g; d))Proof: As for Lemma 3.2. 2Lemma 4.7 If x is not free in t, then for every g 2 [[�]]t, v 2 [[F]]t, d 2 [[�]]t, [[�; x : F;� ` t : G]]t(g; v; d) =[[�;� ` t : G]]t(g; d).Proof: Easy structural induction on t. 2Theorem 4.8 The [[-]]t interpretation is sound wrt. �S4 with the extensional equalities: for every terms sand t such that � ` s : F and � ` t : F are both derivable, and such that s =� t, we have [[� ` s : F]]t =[[� ` t : F]]t.Proof: As for Theorem 3.4. We only deal with the rules (unbox), (box), and (� box), where the di�cultyresides.We �rst note that: (a) ev('v) = v for every v 2 F . Indeed, ev('v) = ('v)(1) = v.Also: (b) ev(v?(w1; : : : ; wn)) = (ev(v))(ev(w1); : : : ; ev(wn)). Indeed, ev(v?(w1; : : : ; wn)) = (v?(w1; : : : ;wn))(1) = (�� 2 [0; 1] � v(�)(w1(�); : : : ; wn(�)))(1) = v(1)(w1(1); : : : ; wn(1)) = (ev(v))(ev(w1); : : : ; ev(wn)).Let's examine rule (unbox): let � be fx1 := t1; : : : ; xn := tng, and � be x1 : 2F1; : : : ; xn : 2Fn, then:[[� ` unbox(box t with �) : G]]t(g)= ev('[[� ` t : G]]t ? ([[� ` t1 : 2F1]]t(g); : : : ; [[� ` tn : 2Fn]]t(g)))= (ev('[[� ` t : G]]t))(ev([[� ` t1 : 2F1]]t(g)); : : : ; ev([[� ` tn : 2Fn]]t(g))) (by (b))= [[� ` t : G]]t(ev([[� ` t1 : 2F1]]t(g)); : : : ; ev([[� ` tn : 2Fn]]t(g))) (by (a))= [[�;� ` t : G]]t(g; ev([[� ` t1 : 2F1]]t(g)); : : : ; ev([[� ` tn : 2Fn]]t(g))) (by Lemma 4.7)= [[� ` t� : G]]t(g) (by Lemma 4.6)Now for rule (box): as in Theorem 3.4, we show that (`s)fx := `tg and `(sfx := `tg) have the sameinterpretations. So, assume that the free variables of s are among x, x1, . . . , xn, and that x1 : 2F1; : : : ; xn :2Fn; x : 2F ` s : G, and y1 : 2G1; : : : ; ym : 2Gm ` t : F . Then:[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` (`s)fx := `tg : 2G]]t(v1; : : : ; vn; w1; : : : ; wm)= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]t(v1; : : : ; vn;14

[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]t(v1; : : : ; vn; w1; : : : ; wm))= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]t(v1; : : : ; vn;[[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]t(w1; : : : ; wm)) (by Lemma 4.7, n times)= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);�� 0 2 [0; 1] � [[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]t(w1; : : : ; wm)(�:� 0))= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);�� 0 2 [0; 1] � [[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]t(�� 00 2 [0; 1] �w1(�:� 0:� 00); : : : ; �� 00 2 [0; 1] �wm(�:� 0:� 00)))On the other hand:[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `(sfx := `tg) : 2G]]t(v1; : : : ; vn; w1; : : : ; wm)= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` sfx := `tg : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);�� 0 2 [0; 1] �w1(�:� 0); : : : ; �� 0 2 [0; 1] �wm(�:� 0))= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);�� 0 2 [0; 1] �w1(�:� 0); : : : ; �� 0 2 [0; 1] �wm(�:� 0)))= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);[[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]t(�� 0 2 [0; 1] �w1(�:� 0); : : : ; �� 0 2 [0; 1] �wm(�:� 0)))(by Lemma 4.7, n times)= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]t(�� 0 2 [0; 1] � v1(�:� 0); : : : ; �� 0 2 [0; 1] � vn(�:� 0);�� 0 2 [0; 1] � [[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]t(�� 00 2 [0; 1] �w1(�:� 0:� 00); : : : ; �� 00 2 [0; 1] �wm(�:� 0:� 00)))Notice that we have only used the associativity of the product in [0; 1], and that we did not need commuta-tivity.Finally, let's examine (� box). Let �=̂fx1 := t1; : : : ; xn : tng, and assume that � ` ti : 2Fi is derivablefor each i, 1 � i � n; then:[[� ` box (unbox xi) with � : 2F]]t(g)= �� 2 [0; 1] � [[x1 : 2F1; : : : ; xn : 2Fn ` unbox xi : 2Fi]]t(�� 0 2 [0; 1] � [[� ` t1 : 2F1]]t(g)(�:� 0); : : :�� 0 2 [0; 1] � [[� ` tn : 2Fn]]t(g)(�:� 0))= �� 2 [0; 1] � (�� 0 2 [0; 1] � [[� ` ti : 2Fi]]t(g)(�:� 0))(1)= �� 2 [0; 1] � [[� ` ti : 2Fi]]t(g)(�) = [[� ` ti : 2Fi]]t(g)24.1 A Note on 2nF , and SimplicesIf F is a space of points, and Fh1i is a space of paths, what are Fh1ih1i, Fh1ih1ih1i, and so on? Let'sexamine Fh1ih1i �rst. This is a space of paths �, such that each �(�), � 2 [0; 1] is itself a path, so � is akind of square, up to deformation. However, � is continuous and [0; 1] is connected, so the range of � isconnected as well. But the range of � is a subset of Fh1i, which is the direct sum of spaces v0nF , v0 2 F .But in any direct sum of topological spaces, every summand is both open and closed, hence every connectedsubspace is in fact a subspace of some summand. In our case, this means that the range of � is a subset ofv0nF , for some given v0 2 F . In other words, �(�)(0) = v0 for every � , so the range of � assumes the shapeof a triangle, up to deformation: see Figure 4. 15

α (0)

α (1)

β (0)

β ()(0)τ

F (points) <1> (paths)

α

<2> (2-simplices)

β

β (1)

(for any)τ

λτ.β ()(1)τ

β (1) (1)

β (0) (1)

F F

Figure 4: Singular simplicesIn general, de�ne Fhni�, for n � 0, as the set of all extended singular (n� 1)-simplices in F . For everyq � �1, the extended singular q-simplices are the continuous maps from�+q to F , where �+q=̂f(�0; : : : ; �q) j�0 � 0; : : : ; �q � 0; �0+: : :+�q � 1g is the standard extended q-simplex; �+�1 is the singleton containing onlythe empty tuple (). Otherwise, �+q is a polyhedron whose vertices are (0; : : : ; 0) �rst, and second the pointse0, . . . , eq, where ei=̂(�0; : : : ; �q) with �i = 1 and �j = 0 for all j 6= i. This is analogous to the more usualnotion of standard q-simplices �q, for q � 0, which are the sub-polyhedra with vertices e0, . . . , eq, namely�q=̂f(�0; : : : ; �q) j �0 � 0; : : : ; �q � 0; �0 + : : :+ �q = 1g. The singular q-simplices of F are the continuousmaps from �q to F . See Figure 5 for an illustration of what the standard simplices, and standard extendedsimplices, look like.
∆ 0
+

∆ 0

0 1

(a segment)

(a point)

∆ 1
+

0 1

0

1

∆ 1

(a triangle)

(a segment)

∆ 2
+

∆ 2

(a tetrahedron)

(a triangle)

1

0

1

1Figure 5: Standard SimplicesThe topology on Fhni� is given as follows. When n = 0, Fh0i� is isomorphic to F . Otherwise, Fhni� isviewed as the topological sum of all spaces nnF=̂ff 2 C0(�+n�1;F) j fj�n�1 = g, when ranges over allsingular (n� 1)-simplices of F .Lemma 4.9 Fh1i : : :h1i, where there are n occurrences of h1i, is homeomorphic to Fhni�.Proof: By induction on n. The base case is by de�nition, so it remains to show that Fhni�h1i ishomeomorphic to Fhn+ 1i�.On the one hand, we map every � 2 Fhn+ 1i� to '(�) 2 Fhni�h1i, by de�ning '(�)=̂�� 2 [0; 1] ��(�0; : : : ; �n�1) 2 �+n�1 � �(�0; : : : ; �n�1; (1 � �):(1� �0 � : : :� �n�1)). We must show that indeed '(�) 2Fhni�h1i, and that ' is continuous.First, � is in vnn+1F , where v=̂�j�n . So '(�)(�) = �(�0; : : : ; �n�1) 2 �+n�1 ��(�0; : : : ; �n�1; (1� �):(1��0 � : : :� �n�1)) is in nnF for every � 2 [0; 1], where is the singular (n � 1)-simplex �(�0; : : : ; �n�1) 2�n�1 � �(�0; : : : ; �n�1; 0). Note that is independent of � , and that '(�)(�) is continuous in � (recall thatabstraction and application are continuous for the compact-open topology, and that the topology of nnFis exactly the compact-open topology). So '(�) is in wn(nnF), where w=̂'(�)(0), hence it is in Fhni�h1i.Then, observe that ' maps every vnn+1F to wn(nnF), where v 2 C0(�n;F), =̂�(�0; : : : ; �n�1) 2�n�1 � v(�0; : : : ; �n�1; 0), and w=̂�(�0; : : : ; �n�1) 2 �+n�1 � v(�0; : : : ; �n�1; 1 � �0 � : : : � �n�1), and that16

these spaces have exactly the compact-open topology. Since abstraction and application are continuous, 'is continuous on each summand vnn+1F ; so ' is continuous from Fhn+ 1i� to Fhni�h1i.On the other hand, we de�ne a continuous map from Fhni�h1i to Fhn+ 1i� as follows. For every� 2 Fhni�h1i, � is in wnFhni�, where w=̂�(0). Since � is continuous from [0; 1] to Fhni�, and since [0; 1]is connected, the range of � is, too, so it must be included in some nnF . In particular, �(�)j�n�1 = forevery � 2 [0; 1]. Then let: (�)=̂�(�0; : : : ; �n) 2 �+n �(��1��0�:::��n�1��n1��0�:::��n�1 � (�0; : : : ; �n�1) if �0 + : : :+ �n�1 6= 1(�0; : : : ; �n�1) if �0 + : : :+ �n�1 = 1 (�) is in vnn+1F , where v=̂ (�)j�n . Indeed, we just have to check that (�) is a continuous function.Clearly, (�) is continuous over the set of all (�0; : : : ; �n) 2 �+n such that �0 + : : :+ �n�1 6= 1 (�rst caseof the de�nition), as well as over the set of those such that �0 + : : :+ �n�1 = 1 (second case). Then, when(�0; : : : ; �n) 2 �+n tends to (�00 ; : : : ; �0n�1; �0n) in �+n such that �00 + : : :+ �0n�1 = 1, then �((1� �0 � : : :��n�1��n)=(1��0� : : :��n�1))(�0; : : : ; �n�1) tends to (�00 ; : : : ; �0n�1), although (1��0� : : :��n�1��n)=(1��0 � : : :� �n�1) may not tend to any limit. This is because � is continuous, application is continuous and�(�)(�00 ; : : : ; �0n�1) = (�00 ; : : : ; �0n�1) whatever the value of � is.Then, is continuous from wn(nnF) to vnn+1F , for all 2 C0(�n�1;F), all w 2 nnF , and wherev=̂�(�0; : : : ; �n) 2 �n � w(�0; : : : ; �n�1), for similar reasons as '. So is continuous from Fhni�h1i toFhn+ 1i�.It remains to show that ' and are mutually inverse:'((�)) = ' �(�0; : : : ; �n) 2 �+n �(��1��0�:::��n�1��n1��0�:::��n�1 � (�0; : : : ; �n�1) if �0 + : : :+ �n�1 6= 1(�0; : : : ; �n�1) if �0 + : : :+ �n�1 = 1 != �� 2 [0; 1] � �(�0; : : : ; �n�1) 2 �+n�1 �(��1��0�:::��n�1�(1��):(1��0�:::��n�1)1��0�:::��n�1 � (�0; : : : ; �n�1) if �0 + : : :+ �n�1 6= 1(�0; : : : ; �n�1) if �0 + : : :+ �n�1 = 1= �� 2 [0; 1] � �(�0; : : : ; �n�1) 2 �+n�1 � �(�)(�0; : : : ; �n�1) = � ('(�)) = (�� 2 [0; 1] � �(�0; : : : ; �n�1) 2 �+n�1 � �(�0; : : : ; �n�1; (1� �):(1� �0 � : : :� �n�1)))= �(�0; : : : ; �n) 2 �+n �8><>: � ��0; : : : ; �n�1;�1� 1��0�:::��n�1��n1��0�:::��n�1 � :(1� �0 � : : :� �n�1);�if �0 + : : :+ �n�1 6= 1�(�0; : : : ; �n�1; 0) if �0 + : : :+ �n�1 = 1 (hence �n = 0)= �(�0; : : : ; �n) 2 �+n � �(�0; : : : ; �n�1; �n) = �2 Note that (extended) simplices over a space of functions F ! G also have an elegant geometrical interpre-tation. While F ! G is a set of continuous functions, (F ! G)h1i is a set of continuous paths from functionsf to functions g in F ! G, so (F ! G)h1i is a set of homotopies between continuous functions from F toG. The elements of (F ! G)hni�, n � 1, are then known as higher-order homotopies: F ! Gh2i� is the setof homotopies between homotopies, etc. This is a classical construction in algebraic topology [May67].� Comments:We can extend this to full propositional intuitionistic logic, and even to LF, provided we take sheaves of spaces insteadof spaces.5 Combinatorial ModelsThe idea of the combinatorial models is to abstract away from dcpos or CGWH spaces: just take the spacesof extended singular simplices themselves as denotations for the types, and throw away all the topology.17

What we keep is the information on how all simplices are glued together, i.e., along which faces, and whichsimplices are degenerate, i.e., which triangles are really attened and look like lines, and so on. That is,we keep the simplicial structure of the spaces [May67]. This looks reasonable, as the simplicial structureis the one feature that emerged from both the dcpo interpretation (as a nerve) and from the geometricinterpretation (as extended singular simplices). Our thesis is that the simplicial structure is actually all thatwe need to interpret S4 proof terms.5.1 Simplicial Sets, Augmentations, Godement EnrichedFirst, we recall some classical notions. All the notions we introduce in this section are well-known, but weshall explain them at some length, since they are not standard notions in computer science. The only newresult of Section 5.1 is Lemma 5.1, which we use as an illustration.A simplicial set [May67] is a graded set (Kq)q�0, that is, an in�nite sequence of sets Kq indexed byintegers, together with face functions @iq : Kq ! Kq�1 for every 0 � i � q, q � 1, and degeneraciessiq : Kq ! Kq+1 for every 0 � i � q, obeying Equations (i){(vi) below. The elements of Kq are calledq-simplices, or simplices of dimension q. Every q-simplex u, q � 1, has q + 1 faces @0qu, . . . , @qqu: the twoendpoints of the segment �1, the three segments that form the sides of �2, for example (see Figure 5). Onthe other hand, every point (0-simplex) can be seen as a degenerate segment s00u in exactly one way, everysegment u can be seen as a degenerate triangle in two ways s01u or s11u (lift the �rst or the second endpointby an in�nitesimal amount), and so on. Formally, the faces and degeneracies should obey the followingequations:(i) @iq�1(@jqu) = @j�1q�1(@iqu) (ii) siq+1(sj�1q u) = sjq+1(siqu) (iii) @iq+1(sjqu) = sj�1q�1(@iqu)(0 � i < j � q; q � 2) (0 � i < j � q) (0 � i < j � q)(iv) @iq+1(siqu) = u (v) @i+1q+1(siqu) = u (vi) siq�1(@jqu) = @j+1q+1(siqu)(0 � i � q) (0 � i � q) (0 � i < j � q))For example, the space of singular q-simplices of a topological space F is the space of all continu-ous functions from the standard n-simplex �q to F . The faces of � : �q ! F are the functions@iq�=̂�(�0; : : : ; �q�1) 2 �q�1��(�0; : : : ; �i�1; 0; �i+1; : : : ; �q�1), and the degeneracies are siq�=̂�(�0; : : : ; �q+1) 2�q+1 ��(�0; : : : ; �i�1; �i+�i+1; �i+2; : : : ; �q+1). What we have just de�ned is a functor Sing from the categoryof topological spaces, or in fact of CGWH spaces, with continuous functions as morphisms, to the categoryof simplicial sets with simplicial maps as morphisms [May67]. A simplicial map f fromK to L is a collectionof maps fq : Kq ! Lq which \commute with every face and degeneracy", that is such that @iq � fq = fq�1 �@iqfor every 0 � i � q, q � 1, and such that siq � fq = fq+1 � siq for every 0 � i � q. The functor Sing maps thecontinuous function f : F ! G to the simplicial map Sing(f) such that Sing(f)q=̂�� 2 C0(�q;F) � f � �.Another presentation of simplicial sets and simplicial maps is as follows. Let �, the simplicial category,have as objects all sets [q]=̂f0; : : : ; qg, q � 0, and as morphisms all non-decreasing maps � : [m] ! [n]. Asspecial cases of morphisms in �, we �nd �iq : [q � 1] ! [q], for every 0 � i � q, q � 1, which is the onlyinjective increasing function that does not take the value i; and �iq : [q + 1] ! [q], 0 � i � q, which is theonly surjective non-decreasing function that takes the value i twice. It is easy to see that every morphismin � can be written as a composition of �iqs and �iqs. Then the simplicial sets are exactly the functors Kfrom the opposite category �op to the category of sets Set. Indeed, K maps [q] to the set of q-simplices,the morphisms �iq : [q � 1] ! [q] to @iq : Kq ! Kq�1 and �iq : [q + 1] ! [q] to siq : Kq ! Kq+1. Simplicialmaps are just natural transformations between simplicial sets, viewed as functors. See [ML71], Chapter 7,Section 5, where � is called �+ instead. (We use � because this is the name most topologists use.)This categorical way of seeing simplicial sets allows one to de�ne simplicial objects in a category C asfunctors from�op to C. That is, C replaces Set. For example, simplicial topological spaces are just simplicialsets (Kq)q�0, where each Kq is a topological space, and the faces and degeneracies are continuous maps, andmorphisms between simplicial topological spaces are simplicial continuous functions.Another interesting category is that of augmented simplicial sets. These are simplicial sets (Kq)q�0,together with an additional set K�1 and an augmentation � : K0 ! K�1 such that �(@01u) = �(@11u) for everyu 2 K1. The main point in augmented simplicial sets is that fq=̂� � @01 � : : : � @0q de�nes a simplicial map18

from K to the trivial simplicial set K��1 whose sets of q-simplices are K�1, independently of q, and whosefaces and degeneracies all are the identity function. See [And74] for applications. Another presentation is tosay that augmented simplicial sets are graded sets (Kq)q��1 together with face maps @iq : Kq�1 ! Kq anddegeneracies siq : Kq+1 ! Kq, for every i, 0 � i � q, obeying equations (i){(vi), but where the conditionq � 2 is dropped in (i): the augmentation � is just the new face operator @00 .Again, augmented simplicial sets can be seen as functors, this time from �0op to Set, where �0 is thecategory whose objects are [q] for all q � �1 (instead of q � 0 for �), and whose morphisms are againall non-decreasing maps. That is, we just add the object [�1]=̂;. Augmented simplicial maps are naturaltransformations between these functors, that is, collections of functions fq : Kq ! Lq , q � �1, such that@iq � fq = fq�1 � @iq for every 0 � i � q, and such that siq � fq = fq+1 � siq for every 0 � i � q. See [ML71],Chapter 7, Section 5, where �0 is named �.As for simplicial sets, we may also consider augmented simplicial objects in a category C, that is, functorsfrom �0op to C. For example, the augmented simplicial topological spaces are those such that Kq is atopological space for every q � �1, and @iq and siq are continuous.This is all the more relevant to us as:Lemma 5.1 For every CGWH space F , (Fhq + 1i�)q��1 de�nes an augmented simplicial CGWH space,with faces and degeneracies given by:@iq� =̂ �(�q�1; : : : ; �0) 2 �+q�1 ��(�q�1; : : : ; �i+1; 0; �i�1; : : : ; �0)siq� =̂ �(�q+1; : : : ; �0) 2 �+q+1 ��(�q+1; : : : ; �i+2; �i+1 + �i; �i�1; : : : ; �0)for all � 2 Fhq + 1i�, 0 � i � q.Proof: The equations (i){(vi) follow by simple computations. It remains to show that @iq and siq arecontinuous from Fhq + 1i� to Fhqi�, and from Fhq + 1i� to Fhq + 2i� respectively. First, they are clearlycontinuous from C0(�+q;F) to C0(�+q�1;F) and to C0(�+q+1;F) respectively, since 0, +, abstraction andapplication are continuous. Moreover, they map nqF , for every singular q-simplex , to @iqnq�1F and tosiqnq+1F respectively. So they are continuous from Fhq + 1i� to Fhqi�, and to Fhq + 2i� respectively. Thepoint here is that the notations @iqnq�1F and siqnq+1F make sense, because @iq and siq are standardsingular simplices: indeed, �q�1 + : : : �i+1 + 0+ �i�1 + : : :+ �0 = 1 whenever �q�1 + : : :+ �0 = 1 in the �rstcase, and �q+1+ : : : �i+2+(�i+1+ �i)+ �i�1+ : : :+ �0 = 1 whenever �q+1+ : : :+ �0 = 1 in the second case. 2For every � 2 Fhni�h1i, we may convert � to an element (�) of Fhn + 1i� (see Lemma 4.9). Thennotice that @0n((�)) = �(1) = ev�. In other words, ev and taking face number 0 are the same thing.Similarly, kwote and s0 correspond, in that for every � 2 Fhni�h1i, computing s0n((�)) 2 Fhn + 2i�corresponds through ' = �1 (see Lemma 4.9) to an element in Fhni�h1ih1i that happens to be exactlykwote�. Formally, the conversion function '2 from Fhn+ 2i� to Fhni�h1ih1i is de�ned by '2(�)=̂�� 2[0; 1] � '('(�)(�)), and we can check that '2(s0n((�))) = kwote�.However, ' has no interpretation as a face or a degeneracy in any augmented simplicial CGWH space,because it is not continuous in general. Similar computations as for ev and kwote above show that 'corresponds to some additional degeneracy operator s�1q , q � �1, de�ned by s�1q �=̂�(�q+1; : : : ; �0) 2 �+q+1 ��(�q+1; : : : ; �1), which is not continuous in general. This operator obeys the following additional equations:(ii0) s�1q+1(sj�1q u) = sjq+1(s�1q u)(0 � j � q)(v0) @0q+1(s�1q u) = u (vi0) s�1q�1(@jqu) = @j+1q+1(s�1q u)(�1 � q) (0 � j � q))An augmented simplicial set (Kq)q��1 with an additional set of operators s�1q : Kq ! Kq+1, q � �1,obeying equations (ii0), (v0) and (vi0), is called a Godement-enriched simplicial set (see [Tho95], Sec-tion 2.2). Again, it can be described as a functor, as follows. Let �+ be the category whose objectsare [q]+=̂f�1; 0; : : : ; qg, q � �1, and whose morphisms are all non-increasing functions � : [m]+ ! [n]+ that�x �1, i.e., such that �(�1) = �1. Then the Godement-enriched simplicial sets are exactly the functorsfrom �+op to Set. 19

We have just shown that (Fhq + 1i�)q��1 was not only an augmented simplicial CGWH space, but wasalso a Godement-enriched simplicial set. However, it is not in general a Godement-enriched simplicial CGWHspace, because s�1q is not continuous in general|remember that it is a feature, as it explains why F � 2Fis not provable in general.Note that the categories �opSet of simplicial sets and simplicial maps, �0opSet of augmented simplicialsets and augmented simplicial maps, �+opSet of Godement-enriched simplicial sets and Godement-enrichedsimplicial maps, are all cartesian closed. In fact, they are more: as functor categories from some category|�op, �0op, or �+op|to Set, they are elementary toposes [Gol84]. While cartesian closed categories aremodels of proof terms for intuitionistic propositional logic, elementary toposes are models of proof terms forintuitionistic set theory; the proof terms themselves are known as the Mitchell-B�enabou language.We shall need to use the cartesian closed structure of �0opSet, so, even though it is rather complicated,we feel the need to describe it quickly here.First, �0opSet has products: the product F � G of two augmented simplicial sets F and G is de�nedby (F � G)q=̂Fq � Gq, and faces and degeneracies operate componentwise, that is, @iq(v; w)=̂(@iqv; @iqw) andsiq(v; w)=̂(siqv; siqw). Given any two augmented simplicial maps f fromH to F and g fromH to G, the pairinghf; gi is the simplicial map from H to F � G mapping every q-simplex v of H to (fq(v); gq(v)). Conversely,there are two augmented simplicial maps �1 and �2, called the �rst and second projection respectively,de�ned as mapping every q-simplex (v; w) of F � G to v, and to w respectively.The terminal object (truth, in logical terms) is the augmented simplicial set > such that >q=̂f�g forevery q, and all faces and degeneracies are the identity. There is a unique augmented simplicial map � fromany augmented simplicial set F to >, and it maps every simplex to the element �.In general, we may de�ne n-ary products, n � 0, by letting the 0-ary product be >, and the (n+ 1)-aryproduct F1�: : :�Fn+1 be the binary product of F1 with the n-ary product F2�: : :�Fn+1. Given a productF1�: : :�Fn of augmented simplicial sets, we let i, 1 � i � n, denote the ith projection, that is, the augmentedsimplicial map mapping every q-simplex (v1; : : : ; vn) of F1 � : : : � Fn to vi. Note that, because of ourde�nition of n-ary products, (v1; : : : ; vn) denotes (v1; (v2; : : : ; (vn; �) : : :)). In particular, n=̂�1 ��2 � : : : � �2| {z }n�1 times .Conversely, hf1; : : : ; fni denotes tupling: this is an augmented simplicial map from F to G1 � : : :� Gn, forall augmented simplicial maps fi from F to Gi, de�ned so that hf1; : : : ; fni maps every q-simplex v of F to(f1q(v); : : : ; fnq(v)). Because of our de�nition of n-ary products, hf1; f2; : : : ; fni = hf1; hf2; : : : ; hfn; �i : : :ii.Let us describe the exponential objects; this is by far the most complex construction. For every q � �1,let �0[q] denote the augmented simplicial set whose n-simplices, n � �1, are all non-decreasing sequencesof elements of [q] (compare the nerves of Section 3.3), with faces and degeneracies given as follows:(�0[q])n =̂ f(j0; : : : ; jn) j 0 � j0 � : : : � jn � qg@in(j0; : : : ; jn) =̂ (j0; : : : ; ji�1; ji+1; : : : ; jn)sin(j0; : : : ; jn) =̂ (j0; : : : ; ji�1; ji; ji; ji+1; : : : ; jn)Note that �0[�1] is the augmented simplicial set that has one �1-simplex, the empty tuple (), and no simplexin any other dimension. There is only one n-simplex in �0[0], the tuple (0; : : : ; 0), so �0[0] is isomorphic to >.The n-simplices of �0[1] are (0; 0; : : : ; 0; 0), (0; 0; : : : ; 0; 1), (0; 0; : : : ; 1; 1), . . . , (0; 1; : : : ; 1; 1), (1; 1; : : : ; 1; 1).Then, given two augmented simplicial sets F and G, the exponential object GF is the augmented simplicialset whose q-simplices are all augmented simplicial maps from F � �0[q] to G. The �1-simplices in theexponential object are just maps from F�1 to G�1. Since �0[0] is isomorphic to >, 0-simplices in GF areexactly the augmented simplicial maps from F to G. The 1-simplices are known as homotopies betweenaugmented simplicial maps (see e.g. [May67], Proposition I.6.2), and in general the n-simplicies are higherhomotopies (compare Section 4.1).The faces @iqf and degeneracies siqf of higher homotopies f are de�ned by:(@iqf)n(v; x) =̂ fn(v; �iq(x))(siqf)n(v; x) =̂ fn(v; �iq(x))for every augmented simplicial map f from F � �0[q] to G, for every n � �1, for every v 2 Fn, and for20

every x 2 (�0[q])n, and where:�iq(j0; : : : ; jn) =̂ (�iq(j0); : : : ; �iq(jn)) �iq(j)=̂� j if j < ij + 1 if j � i�iq(j0; : : : ; jn) =̂ (�iq(j0); : : : ; �iq(jn)) �iq(j)=̂� j if j � ij � 1 if j > iThe �iq and �iq are, by the way, the same as those we introduced earlier in this section.Application App is an augmented simplicial map from GF �F to G, de�ned by:Appq(f; v) =̂ fq(v; (0; 1; : : : ; q� 1; q))for every (f; v) 2 (GF)q � Fq, q � �1. Note that f is in (GF)q , so it is itself an augmented simplicial mapfrom F ��0[q] to G, and that (0; 1; : : : ; q� 1; q) is an element of (�0[q])q.Conversely, abstraction, i.e. curri�cation � maps every augmented simplicial map f from F �G to H toan augmented simplicial map �(f) from G to HF . To de�ne it, we need to observe that every x 2 (�0[q])ncan be written (j0; : : : ; jn) with 0 � j0 � : : : � jn � q, and is therefore a non-decreasing function i 7! jifrom [n] to [q], that is, a morphism from [n] to [q] in the category �0. Since G, as an augmented simplicialset, is a functor from �0op to Set, it maps x to a map G(x) from Gq to Gn. (For those who would like amore concrete description: x, as a non-decreasing function, can be written as a composite of �is and �is,then G(x) is the composite of the corresponding operators @i and si, in the reverse order.) The de�nition of� is then as follows: ((�(f))q(v))n(w; x) =̂ fn(w;G(x)(v))for every v in Gq, q � �1, w 2 Fn, n � �1, x 2 (�0[q])n. To help type-check this, notice that (�(f))q(v)should be an element of (HF)q, that is, an augmented simplicial map g from F ��0[q] to H. So gn shouldmap every (w; x) 2 Fn� (�0[q])n to some element of Hn. But G(x) is a map from Gq to Gn, so G(x)(v) 2 Gn,and therefore fn(w;G(x)(v)) is well-de�ned and in Hn.5.2 De�ning the Combinatorial ModelNow that we have de�ned all the required notions, we turn to the de�nition of our third and last model, thecombinatorial model. In it, as promised, we forget about all order structures or all topologies, and keep onlythe simplicial structure.In view of Lemma 5.1, the right notion is to de�ne the interpretation [[F]]c of types F as augmentedsimplicial sets. The interpretation of arrow types F � G, of application and of abstraction, follow from thefact that the category �0opSet of augmented simplicial sets is cartesian closed.There is simple way to interpret box types 2F . For disambiguation purposes, write @iKq instead of @iq, siKqinstead of siq for the faces and degeneracies of the augmented simplicial set K. Then we may de�ne [[2F]]c as[[F]]ch1i, where the q-simplices of [[F]]ch1i are the (q+1)-simplices of [[F]]c, q � �1, and @i([[F]]c h1i)q =̂@i+1[[F]]c q+1 ,si([[F]]c h1i)q =̂si+1[[F]]c q+1 , 0 � i � q. That is, [[F]]ch1i is [[F]]c with all dimensions shifted up by 1.Recall now that we wish to interpret S4 proof terms as morphisms in the category at hand, namely�0opSet; in other words, as augmented simplicial maps.There is a simplicial map ev=̂@0 from Fh1i to F , for every augmented simplicial set F : let (@0)q mapevery q-simplex u of Fh1i, q � �1, to @iFq+1u 2 Fq . As suggested in Sections 3.3 and 4.1, @0 will serve asinterpretation of unbox. This de�nition is valid, because u is by de�nition a (q + 1)-simplex of F as well.Moreover, @0 is an augmented simplicial map: for every 0 � i � q, @iFq �(@0)q = @iFq �@0Fq+1 = @0Fq �@i+1Fq+1 (byEquation (i); recall that in the augmented case, the constraint q � 2 is dropped) = (@0)q�1�@i+1Fq+1 = (@0)q�1�@i(Fh1i)q ; and siFq �(@0)q = siFq�@0Fq+1 = @0Fq+2�si+1Fq+1 (by Equation (iii)) = (@0)q+1�si+1Fq+1 = (@0)q+1�si(Fh1i)q .There is also a simplicial map kwote =̂s0 from Fh1i to Fh1ih1i: let (s0)q map every q-simplex u of Fh1i,i.e., every (q + 1)-simplex u of F , to s0q+1u 2 Fq+2 = (Fh1ih1i)q . s0 is again an augmented simplicial map:this is by Equations (ii) and (vi). 21

For any simplicial map f fromF to G, we may also de�ne a simplicialmap 'f fromFh1i to Gh1i by letting('f)q map every q-simplex u of Fh1i, that is, every (q+ 1)-simplex u of F , to fq+1(u) 2 Gq+1 = (Gh1i)q. Toenforce some analogy with Godement-enriched simplicial sets, we can also write 'f as s�1f . But, just like' was not continuous in the dcpo or in the geometric model, here s�1 = ' is not a simplicial map.The combinatorial interpretation [[-]]c is summed up in Figure 6. As usual, [[�]]c, where �=̂x1 : F1; : : : ; xn :Fn, is taken to denote the product [[F1]]c � : : :� [[Fn]]c.[[F � G]]c =̂ [[G]]c[[F]]c[[2F]]c =̂ [[F]]ch1i[[�; x : F;� ` x : F]]c =̂ iwhere �=̂x1 : F1; : : : ; xi�1 : Fi�1[[� ` st : G]]c =̂ App � h[[� ` s : F � G]]c; [[� ` t : F]]ci[[� ` �xF � t : F � G]]c =̂ �([[x : F;� ` t : G]]c)[[� ` unbox t : F]]c(g) =̂ @0 � [[� ` t : 2F]]c[[� ` box t with � : 2G]]c =̂ '[[� ` t : G]]c � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ciwhere �=̂x1 : 2F1; : : : ; xn : 2Fn; �=̂fx1 := t1; : : : ; xn := tngFigure 6: The Combinatorial InterpretationWe can now reproduce the lemmas that we have been proving for the dcpo and the geometric interpre-tations:Lemma 5.2 For every term t such that � ` t : F is derivable, [[� ` t : F]]c is an augmented simplicial mapfrom [[�]]c to [[F]]c.Proof: By structural induction on t. Recall that i, App, @0, s0 are augmented simplicial maps, and thattupling, �, ' and composition take augmented simplicialmaps to augmented simplicialmaps. All cases exceptpossibly that of terms of the form box t with � are then trivial. In the latter case, observe that [[� ` t : G]]cis an augmented simplicial map from [[�]]c=̂[[F1]]ch1i � : : : � [[Fn]]ch1i to [[G]]c, by induction hypothesis,so that '[[� ` t : G]]c is an augmented simplicial map from ([[F1]]ch1i � : : :� [[Fn]]ch1i)h1i to [[G]]ch1i. Butby construction ([[F1]]ch1i � : : :� [[Fn]]ch1i)h1i = [[F1]]ch1ih1i � : : : � [[Fn]]ch1ih1i, so: (a) '[[� ` t : G]]c isan augmented simplicial map from [[F1]]ch1ih1i � : : : � [[Fn]]ch1ih1i to [[G]]ch1i. On the other hand, byinduction hypothesis [[� ` ti : 2Fi]]c is an augmented simplicial map from [[�]]c to [[Fi]]ch1i for every i, 1 �i � n, so s0 � [[� ` ti : 2Fi]]c is an augmented simplicial map from [[�]]c to [[Fi]]ch1ih1i, hence: (b) hs0 �[[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci is an augmented simplicial map from [[�]]c to [[F1]]ch1ih1i � : : : �[[Fn]]ch1ih1i. Composing (a) and (b) then proves the claim. 2Lemma 5.3 For every term t such that �1; x1 : F1; : : : ; xn : Fn;�2 ` t : F is derivable, for every terms t1,. . . , tn such that �1;�;�2 ` ti : Fi is derivable for every i, 1 � i � n,[[�1;�;�2 ` tfx1 := t1; : : : ; xn := tng : F]]c= [[�1; x1 : F1; : : : ; xn : Fn;�2 ` t : F]]c �h1; : : : ; k1; [[�1;�;�2 ` t1 : F1]]c; : : : ; [[�1;�;�2 ` tn : Fn]]c; k1 + ` + 1; : : : ; k1 + ` + k2iwhere �1 consists of exactly k1 bindings, �2 of k2 bindings, and � of ` bindings.Proof: By structural induction on t. This is easy, and is based on the following equations, which hold inany cartesian closed category [Cur93]:i � hf1; : : : ; fni = fi (1 � i � n) (f � g) � h = f � (g � h) �(f) � g = �(f � h�1; g � �2i)�2 � hf1; : : : ; fni = hf2; : : : ; fni hf1; : : : ; fni � g = hf1 � g; : : : ; fn � gi2 22

Lemma 5.4 If x is not free in t, then [[�; x : F;� ` t : G]]c = [[�;� ` t : G]]c�h1; : : : ; k; k+ 2; : : : ; k + ` + 1i,where there are exactly k bindings in � and ` in �.Proof: By structural induction on t, as for Lemma 5.3. 2Theorem 5.5 (Soundness) The combinatorial interpretation is sound wrt. �S4 with the extensional equal-ities: for every terms s and t such that � ` s : F and � ` t : F are both derivable, and such that s =� t, wehave [[� ` s : F]]c = [[� ` t : F]]c.Proof: We �rst check each �-equivalence rule:� �, �rst rule. Let � contain k bindings.[[� ` �yF � tfx := yg : F � G]]c = �([[y : F;� ` tfx := yg : G]]c)= �([[x : F;� ` t]]c � h1; : : : ; k+ 1i) by Lemma 5.3= �([[x : F;� ` t]]c) = [[� ` �xF � : F � G]]cIndeed, h1; : : : ; k + 1i is the identity, and composing with the identity does nothing.� �, second rule. [[� ` box tfx1 := y1; : : : ; xn := yng with fy1 := t1; : : : ; yn := tng : 2G]]c= '[[y1 : 2F1; : : : ; yn : 2Fn ` tfx1 := y1; : : : ; xn := yng : G]]c�hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= '[[x1 : 2F1; : : : ; xn : 2Fn ` t : G]]c�hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by Lemma 5.3= [[� ` box t with fx1 := t1; : : : ; xn := tng : 2G]]c� (�). Recall that in any cartesian closed category App � h�(u); vi = u � hv; idi [Cur93]. Then:[[� ` (�xF � s)t : G]]c = App � h[[� ` �xF � s : F � G]]c; [[� ` t : F]]ci= App � h�([[x : F;� ` s : G]]c); [[� ` t : F]]ci= [[x : F;� ` s : G]]c � h[[� ` t : F]]c; id[[�]]c i = [[� ` sfx := tg : G]]cby Lemma 5.3.� (unbox): �rst, note that: (a) @0 �'f = f �@0 for every augmented simplicial map f from F to G, wherethe equality is between two augmented simplicial maps from Fh1i to G. Indeed, for every q-simplex vof Fh1i, (@0 � 'f)q(v) = @0Gq+1 (('f)q(v)) = @0Gq+1(fq+1(v)) = fq(@0Fq+1(v)) (because f is an augmentedsimplicial map) = (f � @0)q(v).Then, observe also that: (b) @0�hf; gi = h@0�f; @0�gi, for every augmented simplicialmaps f fromH toFh1i and g fromH to Gh1i. Indeed, for every q-simplex v in H, (@0 � hf; gi)q(v) = @0q+1(fq(v); gq(v)) =(@0q+1(fq(v)); @0q+1(gq(v))) (since faces operate pointwise) = (h@0 � f; @0 � gi)q(v).Finally: (c) @0 � s0 = idFh1i. Indeed, for every q-simplex v of Fh1i, (@0 � s0)q(v) = @0q+2(s0q+1(v)) = vby Equation (iv) de�ning augmented simplicial sets.By (a), (b), (c), then: (d) @0 � 'f � hs0 � f1; : : : ; s0 � fni = f � hf1; : : : ; fni.Now let � be fx1 := t1; : : : ; xn := tng, �=̂x1 : 2F1; : : : ; xn : 2Fn, and assume that � ` t : G has beenderived, as well as � ` ti : 2Fi for each i, 1 � i � n.[[� ` unbox(box t with �) : G]]c = @0 � [[� ` box t with � : 2G]]c= @0 � '[[� ` t : G]]c � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= [[� ` t : G]]c � h[[� ` t1 : 2F1]]c; : : : ; [[� ` tn : 2Fn]]ci by (d)= [[� ` t� : G]]c by Lemma 5.323

� (gc): observe that: (e) '(f ��2) = 'f ��2 for every augmented simplicial map f fromF to G, and whereboth sides of the equality are viewed as augmented simplicial maps from (H�F)h1i to Gh1i. Indeed,for every q-simplex v in (H� F)h1i, we may write v as (v1; v2), so ('(f � �2))q(v) = (f � �2)q+1(v) =fq+1(v2) = ('f)q(v2) = ('f � �2)q(v).Now assume that x1 is not free in t, then:[[� ` box t with fx1 := t1; : : : ; xn := tng : 2G]]c= '[[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= '([[x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � �2)�hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by Lemma 5.4= '[[x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � �2�hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by (e)= '[[x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � hs0 � [[� ` t2 : 2F2]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= [[� ` box t with fx2 := t2; : : : ; xn := tng : 2G]]c� (ctr): note that: (f) '(f�h�1; idF�Gi) = 'f�h�1; idi for every augmented simplicialmap f fromF�F�G toH, and where the equality is between augmented simplicialmaps from (F � G)h1i toHh1i. Indeed,for every q-simplex (v1; v2) of (F � G)h1i, ('(f � h�1; idF�Gi))q(v1; v2) = (f � h�1; idF�Gi)q+1(v1; v2) =fq+1(v1; (v1; v2)) = ('f)q(v1; (v1; v2)) = ('f � h�1; idi)q(v1; v2).Now assume t1 � t2, then:[[� ` box tfx1 := x2g with fx2 := t2; : : : ; xn := tng : 2G]]c= '[[x2 : 2F2; : : : ; xn : 2Fn ` tfx1 := x2g : G]]c � hs0 � [[� ` t2 : 2F2]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= '([[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � h�1; idi)�hs0 � [[� ` t2 : 2F2]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by Lemma 5.3= '[[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c � h�1; idi�hs0 � [[� ` t2 : 2F2]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by (f)= '[[x1 : 2F1; x2 : 2F2; : : : ; xn : 2Fn ` t : G]]c�hs0 � [[� ` t2 : 2F2]]c; s0 � [[� ` t2 : 2F2]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= [[� ` box t with fx1 := t1; x2 := t2; : : : ; xn := tng : 2G]]csince indeed t1 � t2.� (box): again, we shall show that the interpretations of (`s)fx := `tg and of `(sfx := `tg) are equal.Notice that: (g) s0 � hf; gi = hs0 � f; s0 � gi for every augmented simplicial maps f from H to Fh1i andg from H to Gh1i, where the equality is between augmented simplicial maps from H to (F � G)h1ih1i.Indeed, for every q-simplex v of H, (s0 � hf; gi)q(v) = s0q+1(fq(v); gq(v)) = (s0q+1(fq(v)); s0q+1(gq(v))) =(hs0 � f; s0 � gi)q(v).It follows that, for every s for which this makes sense: (h) [[� ` `s : 2F]]c = '[[� ` s : F]]c � s0. Indeed,[[� ` `s : 2F]]c = '[[� ` s : F]]c � hs0 � 1; : : : ; s0 � ki (where there are k bindings in �) = '[[� ` s : F]]c �s0 � h1; : : : ; ki (by (g)) = '[[� ` s : F]]c � s0.Then, observe that: (i) s0 � �1 = �1 � s0 and s0 � �2 = �2 � s0. Let's deal with the �rst case, as thesecond is entirely similar. This is an equality between simplicial maps from Fh1i � G to Fh1ih1i. Sofor every q-simplex (v1; v2) of Fh1i � G, (s0 � �1)q(v) = s0q+1(v1) = (�2 � s0)q(v).It follows that: (j) s0 � i = i � s0 for every i.Then, note that: (k) s0 � 'f = ''f � s0 for every augmented simplicial map f from F to G, where theequality is between two augmented simplicial maps from Fh1i to Gh1ih1i. Indeed, for every q-simplex24

v of Fh1i, (s0 � 'f)q(v) = s0q+1(fq+1(v)) = fq+2(s0q+1(v)) (because f is an augmented simplicial map)= (''f � s0)q(v).We also have: (l) '(f � g) = 'f � 'g, 'hf; gi = h'f; 'gi, and 'i = i for every i. This is straightforward.Finally, let s1=̂'s0. Then: (m) s0 � s0 = s1 � s0, as an equality between augmented simplicial mapsfrom Fh1i to Fh1ih1ih1i. Indeed, let v be any q-simplex in Fh1i, then (s0 � s0)q(v) = s0q+2(s0q+1(v)) =s1q+2(s0q+1(v)) (by Equation (ii) for augmented simplicial sets) = ('s0)q+1(s0q+1(v)) = (s1 � s0)q(v).So, assume that the free variables of s are among x, x1, . . . , xn, and that x1 : 2F1; : : : ; xn : 2Fn; x :2F ` s : G, and y1 : 2G1; : : : ; ym : 2Gm ` t : F . Let also �n2 denote the n-fold composition of �2.Then: [[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` (`s)fx := `tg : 2G]]c= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]c�h1; : : : ; n; [[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]ciby Lemma 5.3= [[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` `s : 2G]]c�h1; : : : ; n; [[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]c � �n2 i by Lemma 5.4= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c � s0�h1; : : : ; n; '[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � s0 � �n2 i by (h)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�hs0 � 1; : : : ; s0 � n; s0 � '[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � s0 � �n2 i by (g)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1 � s0; : : : ; n � s0; s0 � '[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s0i by (i) and (j)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1 � s0; : : : ; n � s0; ''[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s0 � s0i by (k) and (i)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1 � s0; : : : ; n � s0; ''[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s1 � s0i by (m)On the other hand:[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `(sfx := `tg) : 2G]]c= '[[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` sfx := `tg : G]]c � s0 by (h)= '([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1; : : : ; n; [[x1 : 2F1; : : : ; xn : 2Fn; y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]ci) � s0by Lemma 5.3= '([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1; : : : ; n; [[y1 : 2G1; : : : ; ym : 2Gm ` `t : 2F]]c � �n2 i) � s0 by Lemma 5.4= '([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1; : : : ; n; '[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � s0 � �n2 i) � s0 by (h)= '([[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1; : : : ; n; '[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s0i) � s0 by (i)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1; : : : ; n; ''[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s1i � s0 by (l)= '[[x1 : 2F1; : : : ; xn : 2Fn; x : 2F ` s : G]]c�h1 � s0; : : : ; n � s0; ''[[y1 : 2G1; : : : ; ym : 2Gm ` t : F]]c � �n2 � s1 � s0i25

� (�): assume that � ` t : F � G is derivable, and x is not free in t, then:[[� ` �xF � tx : F � G]]c = �(App � h[[x : F;� ` t : G]]c; [[x : F;� ` x : F]]ci)= �(App � h[[x : F;� ` t : G]]c; �1i)= �(App � h[[� ` t : G]]c � �2; �1i) by Lemma 5.4= [[� ` t : G]]csince indeed, in any cartesian closed category �(App � hf � �2; �1i) = f .� (� box). Let @1=̂'@0. Then: (n) @1 � s0 = idFh1i. Indeed, for any q-simplex v in Fh1i, (@1 � s0)q(v) =('@0 � s0)q(v) = @1q+2(s0q+1(v)) = v by Equation (v).Now let �=̂fx1 := t1; : : : ; xn := tng, and assume that � ` ti : 2Fi is derivable for each i, 1 � i � n;then: [[� ` box (unbox xi) with � : 2F]]c= '[[x1 : 2F1; : : : ; xn : 2Fn ` unbox xi : F]]c � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= '(@0 � i) � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci= '@0 � i � hs0 � [[� ` t1 : 2F1]]c; : : : ; s0 � [[� ` tn : 2Fn]]ci by (l)= '@0 � s0 � [[� ` ti : 2Fi]]c = [[� ` ti : 2Fi]]c by (n)25.3 Geometric InterpretationJust as the functor Sing maps every topological space to a simplicial set, and every continuous function toa simplicial map, there is a functor Geom running in the opposite direction mapping every simplicial set Kto a topological space Geom(K) called its geometric realization, and mapping simplicial maps to continuousfunctions [May67]. It can be described as follows: let the copower Kq � �q be the topological sum of Kqcopies of the standard q-simplex �q, or equivalently the topological product of Kq and �q, where Kq isequipped with the discrete topology. Then de�ne Geom(K) as (qq�0Kq ��q)= �, where � is the smallestequivalence relation such that:(@iqx; u) � (x; �iqu) (0 � i � q; q � 1; x 2 Kq; u 2 �q�1)(siqx; u) � (x; �iqu) (0 � i � q; x 2 Kq; u 2 �q+1)where �iq is the standard inclusion of face number i of �q into �q:�iq(�q�1; : : : ; �0)=̂(�q�1; : : : ; �i; 0; �i�1; : : : ; �0)and where �iq is the standard (attening) ith projection from �q+1 to �q:�iq(�q+1; : : : ; �0) =̂ (�q+1; : : : ; �i+2; �i+1 + �i; �i�1; : : : ; �0) (0 � i � q)The idea is that Geom(K) is just a collection of standard extended simplices of all dimensions, gluedappropriately along the faces that should be equated, as speci�ed by the equations that hold in K.Geom(K) is a nice topological space, in that it is a CW-complex, and every CW-complex is compactlygenerated Hausdor� [May67].That Geom is left adjoint to Sing shows how close the notions of topological spaces and of simplicialsets are. In particular, there is a continuous function fromGeom(Sing(F)) to F for every topological spaceF . This continuous function is even surjective. On the other hand, there is a simplicial map from K toSing(Geom(K)) for every simplicial set K, which is in fact an inclusion of simplicial sets (it is injective inevery dimension). 26

Geom and Sing preserve all �nite limits and colimits, which means that products, sums, truth, falsity,etc., correspond exactly in both the worlds of topological spaces and of simplicial sets.Similarly, augmented simplicial sets have geometric realizations, which are just the geometric realizationsof the underlying simplicial sets (see [ML71], Chapter 9, Section 6 and Chapter 7, Section 5, p.174)In Section 5.2, Lemma 5.1, however, we did not resort to Sing to build the augmented simplicial sets thatwe considered next from our CGWH spaces F . Rather, we de�ned a functor XSing mapping each CGWHspace F to XSing(F) whose set of q-simplices, q � �1, was the set Fhqi� of extended singular q-simplicesof F . This functor maps every continuous function f from F to G to an augmented simplicial map g suchthat gq sends every extended singular q-simplex � to f � �.Just as Sing had Geom as a left adjoint, we conjecture that XSing admits a left adjoint which we nameXGeom. This can be described directly as a coend (see [ML71], Chapter 9, Section 6), just like Geom.Or we can give a direct de�nition, similar to that of Geom: given an augmented simplicial set K, let thecopower Kq ��+q be the topological sum of Kq copies of �+q , or equivalently the topological product of Kqand �+q, where Kq is equipped with the discrete topology. Then de�ne XGeom(K) as (qq��1Kq ��+q)= �,where � is the smallest equivalence relation such that:(@iqx; u) � (x; �iqu) (0 � i � q; x 2 Kq ; u 2 �+q�1)(siqx; u) � (x; �iqu) (0 � i � q; x 2 Kq; u 2 �+q+1)Write jv; xj the class of (v; x) modulo �. On morphisms, XGeom maps every augmented simplicialmap f from K to L to the function mapping every jv; xj where v 2 Kq, x 2 �+q, to jfq(v); xj. That thisis well-de�ned, continuous and de�nes a functor is standard: the arguments of [May67], Chapter III, gothrough.Finally, XGeom and XSing should preserve �nite limits and colimits, just as Geom and Sing did, butthey also de�nitely preserve the operators @0 = ev, s0 = Q and ' in both directions (up to isomorphismin the category of CGWH spaces, the isomorphism being given by the pair ', of Lemma 4.9). So theypreserve the whole modal structure.The point that we wish to make is that the combinatorial model gives a recipe to build models ofintuitionistic S4 proofs. Take a combinatorial model, expressed in terms of augmented simplicial sets, anduse any geometric-realization-like functor: this can be done by replacing the sequence of standard extendedsimplices �+q by any other sequence of spaces having operators �iq and �iq verifying the dual of Equations (i){(vi) (obtained by replacing @ by �, s by � and reversing the sense of compositions). This general approachto geometric-like realizations is one of the themes of [GZ67].In fact, the order-theoretic model of Section 3 and the geometric model of Section 4 were found preciselyby considering such geometric realizations in an informal way, and looking at the way quoting and evaluationoperated through the realization. In the geometric case, we posited that Geom should preserve the modalstructure: so for any topological space F , Fh1i should be a space of paths in F , evaluation should be takingface number 0 (so we de�ned ev�=̂@01�=̂�(1)). Quoting some point v should yield some path 'v such that@01('v) = v, i.e., �(1) = v: the canonical way was to take for 'v the constant path that stays at v. In fact,the geometric realization mandates that 'v be exactly this path, for already in the augmented simplicial case' merely shifts dimensions, that is, in a sense, \promotes points to paths in a trivial way". Then ' shouldbe the least continuous that we can, and the simplest way was to impose a topology on paths such that twopaths � and � with �(0) 6= �(0) did not lie in the same connected component. Similar tricks were used toproduce the model of Section 3.A last point before we conclude: how come did we get to the idea that the category of augmentedsimplicial sets would be a model for intuitionistic S4 proofs? It turns out that, if we take the �evQH -calculusof [GL96b]|which is isomorphic to �S4H in the typed case|, this calculus contains a set of operators thatlook very much like faces and degeneracies. In particular (see op.cit. for notations), if we de�ne @iq as themap sending every �evQ-term t of type 2q+1F , 0 � i � q, for any type F , to evi+1t idi of type 2qF , andwhere id0=̂(), and if we de�ne siq as the map sending every �evQ-term t of type 2q+1F , 0 � i � q, to Qi+1tof type 2q+2F , then a quick examination of the rewrite rules of �evQH shows that all Equations (i){(vi)de�ning augmented simplicial sets are valid. So the �evQH -terms modulo conversion form an augmentedsimplicial set. A more careful examination shows that it is even an augmented simplicial CCC, i.e. an27

augmented simplicial object in the category of (small) cartesian closed categories, and also a Godement-enriched simplicial set provided that we de�ne s�1q as a quoting operation, noted t 7! t`[] in op.cit.Another way would have been to observe that the �S4H -calculus itself modulo conversion has all thesyntactic machinery to de�ne a comonad (L; �; �), where L is quoting (L(t)=̂'t = box t with fg), the counit� is ev = @0 = unbox, and comultiplication � is Q = s0 = �t � box x with fx := tg; and that comonads andaugmented simplicial sets are basically the same thing (see [ML71], Chapter 7, Section 6). The fact thatcomonads had something to do with S4 was already known to Bierman and De Paiva [BdP92, BdP96],who suggested that models of intuitionistic S4 proofs should be cartesian closed categories with a monoidalcomonad. (Note that our comonads ('; ev; kwote) are all monoidal, and even on the nose in the simplicialmodel.) Bierman and De Paiva also considered full propositional intuitionistic logic with false, disjunction,and conjunction. Although we seldom mentioned it, all our models do interpret these other connectives aswell, as empty spaces, sums and products respectively. In fact, the combinatorial model even interpretsmodal intuitionistic set theory, as it is an elementary topos.6 ConclusionIt is time to end this journey through models of proof terms for the intuitionistic modal propositional logic S4.We started by presenting a simple model based on dcpos, since it is built with standard tools in theoreticalcomputer science. This model also works with cpos or partial orders. We showed that this model couldbe enriched to allow one to de�ne functions by �xpoints, i.e., by general recursion. In fact, the standardembedding-projection pairs technique can be used to produce models of untyped S4 proof terms, i.e. ofuntyped �S4-terms|this is standard, and did not need to be presented here.We then shifted to an apparently completely di�erent model based on ordinary topological spaces, withjust enough restrictions (the CGWH hypothesis) to get cartesian-closedness. A general theme that emergedfrom these models was the notion of simplices, and the idea that modalities and modal operators combineforces to produce a whole structure of augmented simplicial topological space.This led us to so-called combinatorial models, where simplices play the most important role: every othernotion (products, function spaces, etc.) is de�ned in terms of simplices. This justi�es our claim that simplicesshould be considered as the notion that explains the S4 modality semantically.Combinatorial models arise naturally from the study of �evQH [GL96b], a calculus for intuitionistic S4that directly exhibits an augmented simplicial structure.Finally, combinatorial models are interesting in at least two respects. First, they give us much more thanwhat we expected at �rst, since they actually interpret all proof terms for intuitionistic S4 set theory, notjust propositional logic. Second, combinatorial models are interesting because, in some way, they are basesfor designing other models: we have suggested that a recipe to get a model for S4 proof terms was to de�nesome geometric-like realization functor and look at its range. This is what we have done informally to deriveour order-theoretic and geometric models. Future work will consist in de�ning this recipe formally.References[And74] Michel Andr�e. Homologie des alg�ebres commutatives, volume 206 of Die Grundlagen der mathe-matischen Wissenschaften in Einzeldarstellung mit besonderer Ber�ucksichtigung der Anwendungs-gebiete. Springer-Verlag, 1974.[BdP92] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity revisited. In Logic at Work, Amster-dam, the Netherlands, 1992.[BdP96] G. M. Bierman and Valeria de Paiva. Intuitionistic necessity revisited. Technical Report CSR-96-10, University of Birmingham, School of Computer Science, June 1996.[BR88] Alan Bawden and Jonathan Rees. Syntactic closures. In 1988 ACM Conference on Lisp andFunctional Programming, pages 86{95, 1988.28

[Cur93] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Program-ming. Progress in Theoretical Computer Science. Birkh�auser, Boston, 2nd edition, 1993. (1st ed.,Pitman Publishing, London, and J. Wiley and Sons, New York).[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Conference Recordof POPL '96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages, pages 258{270, St. Petersburg Beach, Florida, 21{24 January 1996.[GL96a] Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 I.Cut elimination. Technical report, University of Karlsruhe, 1996. Available onftp://theory.doc.ic.ac.uk/theory/guests/GoubaultJ/.[GL96b] Jean Goubault-Larrecq. On computational interpretations of the modal logic S4 II.The �evQ-calculus. Technical report, University of Karlsruhe, 1996. Available onftp://theory.doc.ic.ac.uk/theory/guests/GoubaultJ/.[GM96] Sergei I. Gel'fand and Yuri I. Manin. Methods of Homological Algebra. Springer Verlag, 1996.[Gol84] Robert Goldblatt. Topoi: The Categorial Analysis of Logic (Revised Edition), volume 98 of Studiesin Logic and the Foundations of Mathematics. North-Holland, New York, N.Y., 1984.[GZ67] Peter Gabriel and Michel Zisman. Calculus of Fractions and Homotopy Theory, volume 35 ofErgebnisse der Mathematik und Ihrer Grenzgebiete. Springer Verlag, 1967.[Lel97] Pierre Leleu. A modal lambda calculus with iteration and case constructs. Technical ReportRR-3322, Inria, Institut National de Recherche en Informatique et en Automatique, 1997.[May67] J. Peter May. Simplicial Objects in Algebraic Topology. Chicago Lectures in Mathematics. TheUniversity of Chicago Press, 1967.[ML71] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts inMathematics. Springer Verlag, 1971.[MM96] Simone Martini and Andrea Masini. A computational interpretation of modal proofs. In H. Wans-ing, editor, Proof Theory of Modal Logic, pages 213{241. Kluwer, 1996.[PW95] Frank Pfenning and Hao-Chi Wong. On a modal �-calculus for S4. In 11th Conference on Math-ematical Foundations of Programming Semantics, 1995. Extended Abstract.[Str] Neil P. Strickland. Compactly generated spaces. Course Notes for Cambridge Part III course onhomotopy theory, available at http://www.shef.ac.uk/~pm1nps/courses/cgwh.dvi.[Tho95] R. W. Thomason. Symmetric monoidal categories model all connective spectra. Theory andApplications of Categories, 1:78{118, 1995. Available at http://www.tac.mta.ca/tac/volumes/1995/n5/v1n5.ps.Z.[WLP98] Philip Wickline, Peter Lee, and Frank Pfenning. Modal types as staging speci�cations for run-timecode generation. ACM SIGPLAN Notices, 33(5):224{235, May 1998.
29

