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La G�eom�etrie du Parall�elismeLa th�eorie des machines s�equentielles est bien aboutie. Tous les mod�eles decalcul connus (et même inconnus, par la th�ese de Church) sont �equivalents ence sens qu'ils calculent la même classe de fonctions. Qu'ajoute alors l'�etude desmachines parall�eles �a cet �etat de fait ? En e�et un mod�ele du parall�elisme nepourra pas calculer plus de fonctions qu'un mod�ele s�equentiel. Par contre, il ya un sens en lequel on peut esp�erer un gain de temps (en g�en�eral d'un facteurlin�eaire, parfois superlin�eaire) par un calcul parall�ele. Sur ce point tous lesmod�eles du parall�elisme ne sont pas �equivalents. Plus g�en�eralement, les mod�elesexistants du parall�elisme ne sont pas �equivalents quant aux comportementsdynamiques dont ils rendent compte.Un des plus anciens mod�eles aussi bien des machines s�equentielles que parall�eles,les syst�emes de transitions, d�ecrivent bien les �etats d'une machine, les branche-ments entre les di��erents 
ots d'ex�ecution possibles, mais codent le parall�elismepar l'entrelacement d'actions. Cela veut dire en particulier que la con
uenceforte est indistinguable du parall�elisme sur le graphe �etats transitions.D'autres mod�eles ont �elabor�e sur cette remarque, et ont \d�ecor�e" les syst�emesde transitions avec des indications sur les comportements permis, �a partir detel ou tel �etat. Par exemple, les syst�emes de transitions asynchrones rajoutentaux syst�emes de transitions standards une relation binaire sur les transitions,dite relation d'ind�ependance. Quand deux actions entrelac�ees sont ind�epen-dantes, elles peuvent être ex�ecut�ees en parall�ele, alors que si elles ne l'�etaientpas, cet entrelacement repr�esenterait leur exclusion mutuelle. Les \trace au-tomata", ou les \concurrent automata" sont d'autres formes de cette mêmeid�ee, ce dernier ayant notamment repris l'id�ee des \r�esidus" du �-calcul pourexprimer l'interf�erence entre deux actions.Les syst�emes de transitions standards avaient d'attrayant le fait que un certainnombre de comportements dynamiques au cours du calcul (con
uence, branche-ments, �etats �naux etc.) se lisaient directement sur le graphe �etats transitions,c'est �a dire sur la g�eom�etrie du mod�ele. Ce n'est plus vrai des mod�eles d�ecor�esdans lesquels on ne sait plus repr�esenter la g�eom�etrie des ex�ecutions.Pour rem�edier �a cela, examinons la �gure 0.1. Le dessin (i) d�ecrit l'entrelace{ment de deux actions a et b. On peut imaginer que chacune des deux actionsporte un axe, sur lequel on peut lire le temps local d'ex�ecution. Un chemind'ex�ecution dans lequel un processeur calcule un peu de a tandis qu'un autrecalcule un peu de b est �gur�e en (ii). C'est un chemin croissant en chacune desdeux coordonn�ees partant de l'�etat initial, arrivant �a l'�etat �nal, et �a l'int�erieur5



6 La G�eom�etrie du Parall�elismeFigure 0.1: Non-d�eterminisme (i), recouvrement dans le temps (ii) abstrait parune transition de dimension 2 (iii).
a b

(i) (ii) (iii)du carr�e d�elimit�e par l'entrelacement de a et b. Tous les chemins asynchronescouvrent donc l'int�erieur de ce carr�e. Voulant dans un premier temps n'autoriserque des observations discr�etes sur le comportement de syst�emes parall�eles, onabstrait les �etats de l'int�erieur du carr�e par l'int�erieur du carr�e lui-même, appel�etransition de dimension deux, ou 2-transition (car g�eom�etriquement de dimen-sion deux). Alors, la pr�esence de trous contraint l'ex�ecution �a rester unidimen-sionnelle, c'est �a dire qu'elle est �equivalente �a la pr�esence d'exclusions mutuelles.Remplir ces trous revient �a autoriser les comportements asynchrones.Tout ceci se g�en�eralise bien �evidemment aux dimensions sup�erieures �a deux.Ex�ecuter n actions en parall�ele, revient �a se trouver sur des chemins �a l'int�erieurd'un hypercube de dimension n, ou n-cube. Il faut �egalement pouvoir rendrecompte des allocations de nouveaux processus sur des processeurs, ainsi que dela composition s�equentielle entre processus. Cela nous am�ene �a consid�erer desformes sur lesquelles se font les ex�ecutions construites en collant des hypercubesde toutes dimensions ensemble, selon leurs bords. Ceci est connu en topologiealg�ebrique combinatoire sous le nom de complexe cellulaire, et plus pr�ecis�ementde complexe cubique. Mais contrairement �a la formalisation habituelle, il nousfaut �egalement nous souvenir de la direction du temps. On y arrive si on diviseles op�erateurs bords en deux op�erateurs bords, les op�erateurs bords d�ebut, etles op�erateurs bords �n.Un hypercube de dimension n a 2n bords, hypercubes de dimension n� 1. Ona donc 2n op�erateurs bord agissant sur un hypercube de dimension n, divis�esen n op�erateurs bord d�ebut et en n op�erateurs bord �n. Cela se particulariseau cas bien connu des automates standards, dans lequel on ne trouve que destransitions de dimension un, et pour lesquels on n'a donc que deux op�erateursbord, un op�erateur d�ebut, et un op�erateur �n.Une premi�ere d�e�nition formelle est donc comme suit. On appelle automatesemi-r�egulier M toute suite (Mn) d'ensembles de n-transitions avec leurs op�era-teurs bords d�ebut d0i et �n d1i , Mn d0i-d1j- Mn�1for all n 2 N and 0 � i; j � n� 1, v�eri�antdki � dlj = dlj�1 � dki



La G�eom�etrie du Parall�elisme 7(i < j; k; l = 0; 1) et 8n;m n 6= m; Mn \Mm = 0.Si l'on d�e�nit de plus une notion de simulation (et donc de morphisme) entreces automates, on obtient une cat�egorie et des constructions alg�ebriques int�eres-santes sur ces objets. On montre ais�ement que les automates semi-r�eguliersforment un topos �el�ementaire.Le produit cart�esien entre deux automates existe et est par d�e�nition le plusgrand automate dont chacun des deux automates de d�epart est une impl�emen-tation. On prouve qu'il s'agit du produit synchronis�e des automates.On peut �egalement former l'union (ou coproduit) de deux automates. C'est leplus petit automate impl�ementant chacun des deux automates de d�epart.L'ensemble des simulations d'un automate vers un autre peut �egalement êtremuni d'une structure naturelle d'automate semi-regulier, c'est �a dire en partic-ulier que l'\�evaluation" est une simulation. Cela implique que les n-transitionsde cet \espace de fonctions" sont essentiellement des �evaluations synchronesd'un processus param�etr�e en dimension n en un argument lui aussi de dimen-sion n (c'est un appel de n proc�edures classiques, en parall�ele).Il y a aussi un automate \objet de v�erit�e" qui classi�e les sous-automates.On construit �egalement un produit tensoriel repr�esentant l'ex�ecution parall�elesans interf�erence de deux automates. C'est une op�eration qui cr�ee du paral-l�elisme et donc qui augmente la dimension des objets en consid�eration.On a aussi un espace de fonction qui est associ�e �a ce nouveau produit. Unen-transition de cet espace de fonction est maintenant une fonction qui allouedynamiquement (au moment de l'appel, c'est �a dire de l'�evaluation) un proces-sus de dimension n (ou n \threads" en parall�ele). Ces op�erateurs correspondenteux �a des fragments de logique lin�eaire, tandis que les op�erateurs \synchrones"correspondaient �a une logique intuitioniste.Dans le deuxi�eme chapitre de la th�ese, on d�e�nit �egalement des variantes de cemod�ele de base.La premi�ere est ce que l'on nomme les automates partiels. L'id�ee est d'autoriserles fonctions bords �a n'être que partiellement d�e�nies, et donc g�eom�etriquement,�a pouvoir consid�erer des formes non ferm�ees. Cela exprime ainsi la possibilit�ed'avoir des calculs parall�eles en point mort, ou ne bloquant que quelques unsdes processeurs disponibles. C'est une g�en�eralisation de la m�ethode classiqueutilis�ee en s�emantique d�enotationnelle pour exprimer les calculs ne terminantpas (symbole ?).Une deuxi�eme variante consiste �a s'autoriser �a parler de multi-ensembles d'acti{ons (et donc d'ensembles de chemins) en passant aux sommes formelles en-gendr�ees par les ensembles de n-transitions. Pour parler encore plus pr�ecis�e-ment des chemins, et en particulier pour être �a même de d�ecrire la cyclicit�eou l'acyclicit�e d'un automate, on s�epare l'indice de dimension n indexant lesensembles Mn en deux indices, un de temps p, un autre q �egal �a la dimensionmoins le temps. On obtient ainsi des ensembles Mp;q pour d�e�nir un automateM , contenant les p + q-transitions pouvant être ex�ecut�ees au temps t. Unepremi�ere �elaboration sur ces id�ees nous am�ene �a d�e�nir les automates r�eguliers.Une classe plus importante est celle des automates g�en�eraux. En utilisant la



8 La G�eom�etrie du Parall�elismestructure de module libre engendr�e par les n-transitions, on peut collecter lesbords d�ebut en un seul op�erateur bord, @0 et tous les bords �n en @1. Onobtient ainsi une structure tr�es proche des complexes doubles de modules (�al'exception pr�es de la condition faible sur l'intersection des sous-modules Mp;q)dont la formalisation suit.Un automate g�en�eral est un R-module libre M muni de,� une d�ecomposition: M = �p;q2ZZMp;q, telle que 8p; q,Mp;q \ (�r+s6=p+qMr;s) = 0� deux di��erentielles @0 and @1, compatibles avec la d�ecomposition, donnant�a M une structure une structure de bicomplexe:@0 :Mp;q �!Mp�1;q@1 :Mp;q �!Mp;q�1@0 � @0 = 0; @1 � @1 = 0; @0 � @1 + @1 � @0 = 0On peut d�e�nir de même que pour les automates semi-r�eguliers une notionde simulation donc de morphisme. Dans le cas des automates g�en�eraux, lesmorphismes sont tout simplement des fonctions lin�eaires commutant avec @0 et@1, donc sont des morphismes de complexes de modules respectivement pourles complexes (M; @0) et (M; @1). Quand l'automate ne contient pas de cycle,alors M est un vrai complexe double de modules, et les morphismes sont alorsdes vrais morphismes de bicomplexes.Remarquons toutefois que toutes ces structures sont non-�etiquet�ees. La �ndu chapitre deux y rem�edie, et d�e�nit les �etiquetages comme des morphismes�a valeur dans l'automate des �etiquettes. Cet automate est le plus souventconstitu�e d'une somme de tores en toutes dimensions.Rendus �a ce point, il est naturel de se poser la question de connâ�tre les rap-ports entre les mod�eles anciens, et ceux bas�es sur les automates de dimensionsup�erieure. C'est l�a l'objet du troisi�eme chapitre. On y �etudie tout d'abordles possibles traductions entre syst�emes de transitions ordinaires et les auto-mates semi-r�eguliers �etiquet�es, tout du moins d'un type particulier. Si l'ond�esire conserver l'intuition op�erationnelle, c'est �a dire interpr�eter les transitionsdes automates standards par des 1-transitions de HDA, on a essentiellement �avoir si il existe un adjoint �a gauche ou �a droite au foncteur inclusion ou �a desfoncteurs qui se r�eduisent �a l'identit�e sur les syst�emes de transitions standards(quand on identi�e la cat�egorie des syst�emes de transitions �a une certaine souscat�egorie �1sr des automates semi-r�eguliers de dimension un). On prouve qu'enfait, on a les deux.Le foncteur inclusion I : �1sr ! �sr est adjoint �a gauche du foncteur troncationT1 : �sr ! �1sr . Ce foncteur \oublie" toutes les transitions de dimension plus�elev�ee que 1, donc creuse des trous dans un automate semi-r�egulier jusqu'�a enfaire un automate standard.



La G�eom�etrie du Parall�elisme 9Le foncteur troncation (g�en�eralis�e) Tn : �sr ! �nsr est adjoint �a gauche dufoncteur Gn : �nsr ! �sr. Ce dernier, en un sens homologique (et homotopique)tr�es pr�ecis, comble tous les trous de dimension sup�erieure ou �egale �a n.En bref, la paire de foncteurs adjoints (I; Tn) (g�en�eralis�ee de la paire (I; T1))correspond �a une interpr�etation des syst�emes de transitions dans laquelle tousles niveaux de parall�elisme k (k � n) sont interpr�et�es comme des entrelacementsd'ex�ecutions asynchrones de n actions. La paire de foncteurs adjoints (Tn;Gn)quand �a elle correspond �a une interpr�etation dans laquelle toutes les exclusionsmutuelles de niveau k (s�emaphore initialis�e au d�ebut �a la valeur k, k � n) sontidenti��ees au niveau de parall�elisme k + 1.Ces consid�erations se transportent au cas des syst�emes de transitions asyn-chrones. On a �egalement une strat�egie d'allocation maximale pour laquelletoutes les exclusions mutuelles de niveau k (k � 2) sont interpr�et�ees commedes niveaux de parall�elisme k + 1. La strat�egie d'allocation minimale identi�etoutes les exclusions mutuelles �a des ex�ecutions parall�eles. On a les mêmesconclusions avec les traces de Mazurkiewitz dont on se sert pour relier les auto-mates de dimension sup�erieure aux structures d'�ev�enements premi�eres en util-isant les r�esultats d'adjonctions classiques. Ceux-ci nous permettent �egalementde comparer avec les arbres de synchronisations, les syst�emes de transitionsd�eterministes et les langages de Hoare.Tout cela semble indiquer que le mod�ele des automates de dimension sup�erieuresemble bien meilleur pour formaliser les propri�et�es d'allocation du parall�elismeque d'autres mod�eles op�erationnels (�a l'exception probable des r�eseaux de P�etricependant).Le chapitre quatre ouvre la deuxi�eme partie de la th�ese consacr�ee �a l'utilisationdes automates pour la d�e�nition s�emantique de langages.On commence donc par l'�etude g�en�erale des propri�et�es cat�egoriques des dif-f�erentes classes de HDA, et plus particuli�erement des automates de dimensionsup�erieure g�en�eraux. On montre que ces automates forment une cat�egorie com-pl�ete et co-compl�ete.Tout comme dans le cas semi-r�egulier, le coproduit correspond au choix non-d�eterministe. Par contre c'est un biproduit, c'est �a dire que le produit cart�esienest identi��e �a la somme directe.Les limites directes permettent de construire des automates in�nis par leursapproximations �nies (par exemple), et donc permettent de d�e�nir des agentsr�ecursifs.On peut �egalement d�e�nir un produit tensoriel (le produit parall�ele sans in-terf�erence) et un foncteur Hom correspondant. Cette fois, la cat�egorie estsym�etrique monoidale. Si on se restreint aux automates avec un nombre �nid'�etats et de transitions, on peut même d�e�nir un dual, contenant les �ev�ene-ments correspondants, de dimension oppos�ee, faisant ainsi de cette sous-cat�ego{rie une cat�egorie �-autonome (et même compacte ferm�ee).En�n on prouve dans le chapitre trois que les automates semi-r�eguliers sontune abstraction des automates r�eguliers qui eux-mêmes sont une abstractiondes automates g�en�eraux.



10 La G�eom�etrie du Parall�elismeOn utilise les propri�et�es cat�egoriques de ces diverses classes d'automates auchapitre cinq. La cat�egorie des sous-objets d'un automateD (c'est �a dire la souscat�egorie de �=D compos�ee des monomorphimes, modulo les isomorphismes)est une alg�ebre de Heyting dans le cas semi-r�egulier (puisque c'est alors un topos�el�ementaire) et un treillis complet dans tous les cas. On peut donc s'int�eresser�a l'utiliser comme treillis de d�enotations pour des programmes, avec d�e�nitionsr�ecursives de domaines (comme D). C'est d'autant plus int�eressant que cesd�enotations sont naturellement des ensembles de traces avec structure, c'est �adire sont des ensembles dans lesquels on peut lire le temps auquel les branche-ments, les con
uences, les exclusions mutuelles, les allocations de processus etc.sont e�ectu�es.On applique tout cela �a un langage similaire �a CCS et on donne sa s�emantiquevraiment parall�ele sous deux formes. La premi�ere est sous format SOS, parr�egles d'inf�erences. La deuxi�eme est une s�emantique cat�egorique.On peut �egalement g�en�eraliser ces domaines s�emantiques pour prendre en com{pte des valeurs de variables. Pour cela, on repr�esente les �etats par des substitu-tions de valeurs aux variables (c'est �a dire des environnements) et les actions pardes homotopies entre la fonction identit�e sur les environnements et la fonctionqu'elle doit calculer sur l'�etat de la machine. On met cela en pratique sur unsimple petit langage imp�eratif parall�ele �a m�emoire partag�ee. En utilisant unetransformation de type \`Continuation Passing Style" on obtient une s�eman-tique pour un langage similaire si ce n'est que le produit parall�ele \statique"est remplac�e par un op�erateur dynamique \fork".Le chapitre six ouvre la troisi�eme partie d�edi�ee aux propri�et�es dites g�eom�e{triques. C'est l�a la grande originalit�e du mod�ele des automates de dimensionsup�erieure, que de voir des propri�et�es classiques, ou moins classiques �a traversune intuition g�eom�etrique et d'utiliser ensuite les ressources de la topologiealg�ebrique pour formaliser et r�esoudre certains probl�emes.On commence dans ce chapitre par d�e�nir les propri�et�es g�eom�etriques les plussimples �a d�e�nir et �a calculer. Dans cette cat�egorie vient tout ce qui peutse d�e�nir �a partir des groupes d'homologie Hk(M; @0) pour les complexes demodules avec l'op�erateur @0 et Hk(M; @1) pour les complexes de modules avecl'op�erateur @1. On peut r�esumer les principaux r�esultats comme suit.� l'ensemble des �etats initiaux engendre H0(M; @1).� l'ensemble des �etats �naux engendre H0(M; @0), donc un automate divergesi H0(M; @0) = 0.� l'ensemble des branchements en dimension k union les points morts in-verses en dimension k (k � 1, k = 1 constitue les branchements d'automa{tes au sens classique union les transitions n'ayant pas d'�etat de d�epart)engendre Hk(M; @0).� de fa�con duale, l'ensemble des con
uences en dimension k union l'ensembledes points morts de k processeurs engendre Hk(M; @1).



La G�eom�etrie du Parall�elisme 11Sachant que l'homologie cellulaire est ind�ependante de la subdivision choisie,ces propri�et�es g�eom�etriques sont invariantes par ra�nement par des proces-sus purement parall�eles, sans branchements. De plus on connait beaucoup demoyens de calculs de ces groupes d'homologie.En particulier, l'homologie du produit tensoriel est donn�e par la formule deKunneth, celle de son adjoint �a droite, par la formule des coe�cients universels,et celle des intersections et unions peut être d�etermin�ee en utilisant certainessuites exactes telles la suite exacte de Mayer-Vietoris. On applique tout celaau calcul exact inductif (sur la syntaxe) des branchements et con
uences destermes CCS, puisque l'on avait pu �ecrire sa s�emantique avec les op�erateursproduit tensoriel, somme etc. dans le chapitre pr�ec�edent. Les calculs sont unpeu longs et techniques mais sont exacts et complets.On examine ensuite une application directe de ces propri�et�es, les �equivalencess�emantiques dites \branching-time" comme la bisimulation, qui caract�erisent lestemps auquels les choix sont faits dans un automate. On d�e�nit tout d'aborddes versions de la bisimulation forte tenant compte des strat�egies d'allocationsd'actions (puisque reliant les n-transitions entre elles) puis on montre qu'ellesconservent les branchements modulo l'�etiquetage. C'est �a dire que modulo desprobl�emes sp�eci�ques �a l'�etiquetage des automates, deux HDA bisimulation�equivalents ont les même groupes d'homologie pour les complexes en @0 (lesbranchements). Cela permet de montrer qu'il ne peut y avoir aucun termeCCS representant l'allocation dynamique de trois actions sur deux processeurs.Le chapitre suivant entreprend l'�etude des automates d'un point de vue homo-topique. Deux chemins sont homotopes si et seulement si l'un peut se d�eformercontinument en l'autre dans l'automate. Autrement dit, deux chemins sont ho-motopes si on peut toujours passer localement �a travers des 2-transitions, c'est�a dire utiliser des relations de commutations entre deux actions ind�ependantes(puisque sans interf�erence), pour aller de l'un �a l'autre. Donc les classes dechemins modulo homotopie ne sont jamais que les ordonnancements essentielsd'actions (1-transitions) dans un automate, modulo les relations d'ind�epen{dance.Remarquons que si la relation d'�equivalence \homotopie" est bien la notion clas-sique d'homotopie, les \groupes d'homotopie" qui nous int�eressent sont d'unenature quelque peu di��erente, comme le montre la �gure 0.2. Ceci est du �a lacontrainte de non-inversibilit�e du temps, ou autrement dit de la croissance deschemins.En fait, le \groupe d'homotopie orient�e" n'est pas naturellement un groupe,c'est plutot un monoide. En e�et, on ne peut pas consid�erer comme dans le casclassique des lacets �a partir d'un point base, que l'on peut composer de fa�con�evidente, mais seulement des chemins croissants d'un point �a un autre, qui euxne sont composables que lorsque la �n de l'un est �egale au d�ebut de l'autre.En fait, on peut plonger ce monoide dans un groupe un peu plus gros, sanstoutefois perdre l'information essentielle sur la direction du temps. Ensuite,il faut pouvoir consid�erer un groupe fondamental orient�e pour l'ensemble d'unautomate, et pas seulement pour les chemins d'un point �xe �a un autre. Celase fait dans chaque \composante connexe" par amalgamation, en identi�ant la
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Figure 0.2: Les 4 g�en�erateurs du groupe fondamental orient�e, les 3 g�en�erateursdu groupe fondamental classique
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La G�eom�etrie du Parall�elisme 13Figure 0.3: Un automate connexe mais pas connexe par chemins croissants
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loi de groupe �a la concat�enation de chemins.La notion d'automate connexe est elle aussi di��erente, quand on se restreint �aconsid�erer des chemins croissants (voir �gure 0.3). Sur l'exemple plus bas, laforme est connexe au sens classique mais ne l'est plus dans le cas orient�e.La contrainte de non-inversibilit�e pose �egalement des probl�emes de d�e�nition desgroupes d'homotopie de dimension sup�erieure. Les chemins de dimension deuxpar exemple sont des surfaces dont les bords sont deux chemins de dimensionun d'un même point initial vers un même point �nal. De fa�con plus g�en�erale,un chemin de dimension n est une collection de n-cubes dont les bords sontdeux (n � 1)-chemins dont les bords sont �egaux. La relation d'homotopie surces n-chemins est alors la d�eformation �a travers les (n + 1)-cubes. De mêmequ'en dimension un, ceci ne forme pas naturellement un groupe, mais plutot un\double monoide", ou même une 2-cat�egorie. On a en e�et deux concat�enationspossibles. L'une est induite par la concat�enation des bords des n-chemins,l'autre est une composition transversale, qui a deux n-chemins de bords p1, p2et p2, p3 respectivement associe un n-chemin de bord p1, p3. On peut encoreplonger cette structure dans un groupe pour lequel ces deux op�erations deconcat�enations sont identi��ees �a la loi de groupe. De même on peut amalgamertous ces groupes en un groupe d'homotopie orient�e en dimension n.Ces groupes d'homotopies v�eri�ent des propri�et�es semblables aux groupes stan-dards. On peut d�emontrer un analogue des th�eor�emes d'Hurewicz qui relientles groupes d'homotopies aux groupes d'homologie sous certaines conditions.Ici, les groupes d'homologie correspondant sont les groupes d'homologie avec



14 La G�eom�etrie du Parall�elismeles bords totaux (@0 � @1) relatifs aux bords des n-chemins consid�er�es.De même, on a un th�eor�eme de Seifert/Van Kampen qui permet de calculerle groupe fondamental orient�e d'une union de deux automates en fonction dugroupe fondamental de chacun des deux automates et de leur intersection, souscertaines conditions. Une tentative de preuve d'un th�eor�eme de Van Kam-pen pour les groupes d'homotopie de dimension sup�erieure est faite, �a traversl'introduction de groupes d'homotopie d�e�nis par suspension. Nous ne savonspas encore si nous sommes en mesure de prouver ce r�esultat (analogue �a ceuxde [BH81b, BH81a]).Le chapitre suivant est consacr�e aux premi�eres applications de cette th�eoriehomotopique, et en particulier, nous essayons de montrer ses liens avec d'autresprobl�emes informatiques et math�ematiques.Nous examinons en premier lieu le th�eor�eme de Squier qui donne un crit�erepour savoir si un monoide peut etre pr�esent�e par un un syst�eme de r�eecriturecanonique �ni. C'est en un certain sens le premier r�esultat de calculabilit�e quenous consid�erons. Le r�esultat est que si un monoide M est pr�esent�e par un sys-t�eme de r�eecriture canonique �ni alors ses groupes d'homologie Hi(M) sont tousde type �ni. On peut prouver cela en suivant la m�ethode de Groves et d�e�nirune r�esolution de ZZ par des ZZM -modules libres, en tant que ZZM -module, �apartir d'un syst�eme de r�eecriture canonique �ni. Rappelons que construire unr�esolution pour un monoide M est la même chose que construire un espacecontractile X sur lequel M agit librement. On peut ais�ement imaginer que Xest la repr�esentation g�eom�etrique d'un automate de dimension sup�erieure, dontle langage est M (ou qui \accepte" ou \reconnait" M). La pr�esence de trousdans cet automate signi�rait la non-con
uence du syst�eme de r�eecriture. DoncX est naturellement contractile lorsque l'on peut pr�esenter M par un syst�emede r�eecriture canonique �ni.Une deuxi�eme application de type crit�ere de calculabit�e peut être trouv�e dans ledomaine des protocoles de syst�emes distribu�es. Dans le chapitre sur la th�eoriehomotopique, on s'�etait beaucoup aid�e d'un exemple tir�e des bases de don-n�ees parall�eles. On dit qu'un syst�eme de transactions est s�equentialisable si etseulement si pour toute ex�ecution possible, il existe un entrelacement des trans-actions qui donne le même r�esultat (c'est �a dire que les ex�ecutions sont �equiva-lentes, ou homotopes, aux entrelacements). Dans le cas des monoides pr�esent�espar des syst�emes de r�eecritures canoniques �nis, on avait une propri�et�e encoreplus forte que la s�equentialisation. Dans cette partie, on veut savoir si l'on peutcalculer certaines fonctions (comme le consensus, le pseudo-consensus etc.) defa�con distribu�ee et robuste. Par robuste, on entend le fait que certains desprocessus sont autoris�es �a mourir sans pour autant a�ecter le d�eroulement del'ex�ecution des processus vivants. On impose donc une contrainte de fort d�e-couplement (de forte asynchronie) entre les di��erents processus. Le cas extrême�etant le cas \sans attente" o�u N�1 parmi N processus sont autoris�es �a mourir.Dans ce cas les automates d�ecrivant les ex�ecutions possibles sont N -connexes(au sens de la th�eorie homotopique orient�ee). Cela implique que les di��erentescoupes �a temps constant de cet automate sont (N � 1)-connexes au sens clas-sique du terme. Le consensus, imposant un choix, donc une non-connexit�e de



La G�eom�etrie du Parall�elisme 15la derni�ere coupe (alors que la coupe au temps initial �etait connexe) est doncnon-calculable sans attente.On revient �egalement dans ce chapitre sur deux points �a peine abord�es pr�ecedem-ment. Le premier est l'adjonction entre les syst�emes de transition ordinaireset les automates de dimension sup�erieure, par la strat�egie d'allocation maxi-male. On prouve que l'on a bien n-connexit�e de l'interpr�etation qui r�esulte del'adjonction, donc que l'interpr�etation en question correspond �a un calcul \sansattente". Le deuxi�eme est dans le même esprit. En utilisant la s�emantique deCCS par automate de dimension sup�erieure donn�ee pr�ecedemment, on prouveque l'on ne peut pas impl�ementer d'exclusion mutuelle dans un sous-ensemblede CCS purement asynchrone (sans action compl�ementaire). Cela revient �adire que dans un mod�ele de machine �a m�emoire partag�ee avec acc�es par lec-ture/�ecriture non-atomique, on ne peut impl�ementer d'exclusion mutuelle (oude s�emaphore).Jusqu'�a pr�esent, on avait essay�e d'utiliser des invariants topologiques de mani�ereexacte pour prouver l'impossibilit�e de calculer certaines fonctions. Dans lechapitre qui suit, on essaie d'approximer le calcul de ces invariants, et en par-ticulier des ordonnanceurs, pour v�eri�er des protocoles ou des programmes.Cette th�eorie de l'approximation est bas�ee sur l'interpr�etation abstraite.On peut montrer que le calcul des groupes d'homotopie, et donc des ordon-nanceurs, est une interpr�etation abstraite de la s�emantique, en utilisant leth�eor�eme de Seifert/Van Kampen. Ensuite, en utilisant le th�eor�eme d'Hurewicz,on peut même donner un algorithme pour calculer le groupe fondamental (lesordonnanceurs sur un processeur). Ceci permet de veri�er des protocoles desyst�emes distribu�es de fa�con automatique ou de v�eri�er qu'un programme peuts'impl�ementer sur une architecture parall�ele contrainte. Il su�t de calculer lesobstructions si elles existent (qui vivent dans un groupe d'homologie) �a la d�e-formation d'une forme (la s�emantique du programme) sur une sous-forme (las�emantique du programme sous contraintes).D'un point de vue dual, si l'on part d'un ordonnanceur s�equentiel arbitraired'un programme, trouver une extension maximale de cette trajectoire dansune vari�et�e de trajectoires autoris�ee est la parall�elisation du programme. Nousdonnons �egalement un algorithme pour r�esoudre ce probl�eme (dans le chapitresuivant).Ces th�eories de l'ordonnancement peuvent s'inscrire dans un cadre plus g�en�erald'approximations de la s�emantique des programmes par interpr�etation abstraite.C'est l�a l'objet du chapitre 9.On dit que l'on a un domaine Da (domaine abstrait) qui est une interpr�etationabstraite d'un domaine Dc (domaine concret) d�es lors que l'on peut exhiberune paire de foncteurs adjoints (�; 
) entre �=Dc et �=Da. En fait, en g�en�eralon se limite �a consid�erer des sous-cat�egories de �=Dc et de �=Da.En particulier, si l'on se limite �a la sous-cat�egorie des objets de Dc et de Darespectivement, qui sont des treillis complets, alors on obtient la notion classiqued'interpr�etation abstraite par correspondance de Galois.C'est le cas pour le repliage sur des �etats, ou des transitions, o�u l'on transforme



16 La G�eom�etrie du Parall�elismeun HDA en un autre o�u certains �etats et transitions sont identi��es. C'est uneabstraction utile de la s�emantique dans la pratique car elle permet de r�eduire lenombre d'�etats et de transitions �a consid�erer pour une analyse de programmes.C'est �egalement le cas pour la troncation �a une dimension maximale de tran-sition donn�ee (qui permet de se limiter �a l'�etude du syst�eme de transition surune machine �a un nombre born�e de processeurs).Mais la g�en�eralisation est utile dans le cas des calculs d'ordonnanceurs caron trouve bien que le calcul du �1 sur les �elements d'un domaine concret estune interpr�etation abstraite, mais les ordonnanceurs ne sont en aucun cas lesmonomorphismes �a valeur dans un domaine abstrait mais seulement certainsmorphismes. L'image du treillis des sous-objets de Dc par cette abstractionn'est qu'un pr�eordre.Les deux derniers chapitres de cette th�ese �etudient la possibilit�e d'�etendre lemod�ele des automates de dimension sup�erieure de deux fa�cons di��erentes.La premi�ere est une tentative de d�e�nir une alg�ebre de cubes plus conven-able par l'adjonction de fonctions d�eg�en�erescences permettant de plonger toutetransition de dimension n dans l'ensemble des transitions de dimension n + 1.Cette construction est utile pour deux raisons. Tout d'abord, elle permettrait(on montre en tout cas que c'est un bon candidat) de d�e�nir l'homotopie defa�con compl�etement combinatoire, tout comme cela a �et�e r�ealis�e pour les en-sembles simpliciaux. En�n, cela nous permettrait d'avoir une construction plusclassique de la synchronisation (�a la Nivat) de deux automates par produit syn-chronis�e, avec un m�elange ad�equat de synchronisation et de parall�elisme (lesd�eg�en�erescences font en sorte que le produit parall�ele est maintenant un pro-duit cart�esien). Tout cela n'est encore qu'une tentative, qui devra être compar�eeaux nombreux travaux sur les alg�ebres de cubes (en particulier [BH81b]).La deuxi�eme extension est d'incorporer au mod�ele une notion de temps. L'id�eeest maintenant de raisonner dans une g�eom�etrie continue. Un HDA avec tempsest une sorte de vari�et�e topologique, sur laquelle est plaqu�ee une structureobservationnelle, un complexe cubique singulier. Localement, cette vari�et�e estune vari�et�e di��erentielle. Sur chaque espace tangent, on d�e�nit une norme.Cela nous permet de d�e�nir la longueur d'un chemin, que l'on prend �egal �a sontemps d'ex�ecution. Le chapitre montre que cela est raisonnable pour donnerdes s�emantiques, �a la fois en style SOS et en style cat�egorique.
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IntroductionSequential machines can be studied by examining their operational behaviours{ that is by looking at their state transition graphs. One of the fundamentalproperties that we might want to study is con
uence of the performed com-putation. This is obviously a property of a highly geometric nature: we mustbe able to complete all non-deterministic applications of con
icting reductionsby some other reductions that all converge to the same result; i.e. we musthave diamond shapes in the state transition graphs describing the sequences ofoperations of our sequential machines.For concurrent machines, the geometric properties of computation are moreintricate. Purely (interference free) asynchronous executions of two processesare con
uent and therefore recognizable geometrically as diamonds (or squares).There could also be cubical shapes in the transition graph. These could arise indi�erent ways. If there are three processes, then their asynchronous executionwill generate cubes just like the asynchronous execution of two processes gener-ates squares. Another way that cubes could arise is if there are fewer than threeprocesses, but the actions of some process may be chosen non-deterministically,yielding squares or cubes; this is similar to the situation that arises when study-ing the con
uence of sequential machines. The intuitive di�erence between theformer way in which cubical shapes can arise and the latter is that in the formersituation we are allowed to consider that we have spent any arbitrary amountof time in the respective sequential processes, and so in some sense all pathsin the interior of the cubical shapes might be part of valid executions. In con-trast, in the latter situation two or more dimensions of the cubic shapes ariseby non-deterministic choice, which remains sequential and does not allow usto go in the interior of the cubes (and, to generalize, hypercubes). In order todistinguish these two behaviors, we abstract interiors of squares, cubes, etc. as2-dimensional transitions, 3-dimensional transitions, and so forth. This leadsto a generalization of ordinary automata to what we call Higher-DimensionalAutomata (HDA in short), as �rst proposed in [Pra91b] and [vG91].The main contribution of this thesis is to develop a few of the possible theoriesof such automata and to study interesting \geometric properties" of concur-rent executions using this model. This is still conceived as an introduction tousing geometry for solving problems in concurrency theory. Some sections areattempts { and not \de�nitive" solutions { to de�ne the necessary concepts.35



36 IntroductionFirst of all, we remind the reader of a few models for concurrency (Chapter1), in particular the operational ones which distinguish the non-deterministicchoices from \true concurrency". This chapter will enable us to have the basicconcepts of concurrency theory at hand, and we will recognize most of them inthe HDA models.The geometry of the operational models can be made clear by using techniquesfrom combinatorial algebraic topology, (the semi-regular HDA introduced inthe �rst sections of Chapter 2) and from homological algebra (the general HDAintroduced at the end of Chapter 2). Semi-regular HDA are collections of cubesof all dimensions glued together: they are cubical complexes, a particular caseof combinatorial cell complexes, a standard notion of algebraic topology. Thesein turn generate a weak form of bicomplexes of modules, the general HDA.Even if the techniques are new in computer-science, we can de�ne notions fromstandard transition systems' theory: SOS rules, denotational semantics usingthe categorical structure of the models (see also Chapter 4). Some other HDA-based models are de�ned which re�ne the basic semi-regular one: partial HDAwhich can also express deadlocking behaviours and labeled HDA which add anotion of observation.The relationships with other models are extensively studied in Chapter 3. Itis shown in particular that some formal adjunctions between some transition-system-based models and HDA correspond to the di�erent possible allocationson a certain number of processors. For instance, for asynchronous transitionsystems, the independence relation I between actions a, b is interpreted asa 2-transition \aIb", but aIb and bIc and cIa can be interpreted either as a3-transition (maximal allocation strategy) or just as the six 2-transition bound-aries of that 3-transition.Then, we study the categorical properties of general HDA. The categorical con-structions bear computer-scienti�c meanings. As customary since [Win88], theyare very much like operators used in process algebra. These constructions arealso similar to the standard ones for complexes of modules. The situation isslightly complicated by the fact that the complexes which formalize HDA arenot quite bicomplexes. These technical di�culties are addressed in Chapter4. It is proven that general HDA and labeled HDA form autonomous cate-gories. Interesting subcategories are shown to be �-autonomous. We introducein Chapter 5 the use of some of the categorical properties we have studied inorder to give semantics to simple languages, like a CCS-like process algebra.The �eld of algebraic topology o�ers several techniques for giving an algebraicdescription of topological properties of geometric objects. For instance, we candevelop a theory of homology of HDA in the standard way (see for instance[CE56] or [ML63]). To each HDA we associate a sequence of modules thatcharacterizes the essential branchings and mergings in the HDA. This is the aimof Chapter 6. These homology modules seem to be more amenable to automatedcomputation than the fundamental groups associated with homotopy theory.The computation of the homology of programs in the language of Chapter5 (i.e. its branchings and mergings) is done using general techniques fromhomological algebra. But homotopy is also interesting for many reasons, in



Introduction 37particular for scheduling properties (as shown for the two-phase protocol forconcurrent databases in [Gun94]) and so it must be studied in its own right.This is started in Chapter 7. Schedulers are actually derivable from the HDAsemantics by abstract interpretation. This gives algorithms and approximationtechniques for verifying protocols and even for parallelizing programs, as shownin Chapter 9, where a general theory is sketched.Various applications come in Chapter 8. First of all we make a link (both for-mal and intuitive) between serialization issues and word problems in monoids.Monoids whose word problem can be solved by a �nite canonical systems areconstrained in such a way that their homology groups are of �nite dimension.This is a geometric property of the execution in the canonical rewriting sys-tems, very similar to serializability, which �ts well into the HDA framework(even if �rst exposed in other terms, in particular in [Gro91]). Then we showthat some of the homotopical properties of concurrent executions enable usto solve some problems about protocols for distributed systems. The idea isagain that some geometric properties must be preserved during the executionof purely asynchronous processes and therefore some decision tasks cannot besolved by asynchronous machines. We follow the presentation of M. Herlihy etal., but put it in a semantic perspective. This will be re�ned in Chapter 10where a \non-degenerate" homotopy theory (i.e., a homotopy theory which isnot a homology theory) will be developed by adapting the homotopy theory ofsimplicial complexes on cubical complexes. This will extend it in particular toall general HDA, whereas the one discussed in Chapter 7 was only applicableon free general HDA generated by acyclic semi-regular HDA. As an application,we will give a semantic view of the construction of the wait-free protocols of[HS94] in more general terms.Finally, we give hints in Chapter 11 about a possible extension of the theory ofHDA in order to deal with real-time systems.Remark Some chapters come from articles written by me and co-authors.In particular, the notion of general HDA was developed in [GJ92] where thepoint of view of homology theory was described and an application to CCS andbisimulation was given. A category of HDA was de�ned in [Gou93] togetherwith an application to the semantics of a toy imperative language. This wascontinued in [CG93] with application to Linda-based languages and their ab-stract interpretation. Finally, a sketch of the theory of schedulers as an abstractinterpretation of an HDA semantics was given in [Gou95].Notations In the following, we use two special symbols at the beginning ofsections, de�nitions or theorems,� (y): can be saved for second reading� (�): indicates that the following is of classical inspiration. If not well-known, it uses at least very classical arguments.





Part IAbstract Models forConcurrency
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Chapter 1Models for concurrencySequential computation can be modeled through many di�erent formalisms.One of the oldest, the Turing machine, gives a very mechanical view on com-putation [Dav58]. Lambda calculus, and all combinatory logics (see [Bar84] or[HLS72] for a survey) put more the emphasis on passing arguments to functions(�-reduction) and using elementary computations (like �-rules). Post systems,Random Access Machines, Markov systems are other examples among manymore models for sequential computations.All of them are actually equivalent and Church's thesis asserts that all modelsfor sequential computation we may think of will be equivalent to these as well.The equivalence considered here is rather basic and takes the form of a simpleinput/output relation: all the models cited above compute the same class offunctions on the integers, the class of \computable functions".This may seem to be the �nal answer to all questions in computer science butthis is not quite the case. Even for sequential machines for which the dynamicproperties of the execution do not appear as essential, we may sometimes beinterested in measuring the complexity of algorithms as a number of steps ofelementary computations in some model. Here the relationship is less obvious[vEB90] and the equivalence between all the models is broken (for linear-timereductions, not for poly-time reductions).A fundamental motivation for concurrency is gaining time by executing severalactions at the same moment. A concurrent machine with N processors willnever compute more functions than a sequential machine1 nor will it changethe complexity class of an algorithm since speedup is in general2 at most linear(by a factor of at most N). But a concurrent machine might exhibit some veryimportant dynamic properties that sequential machines would only implementin a fairly trivial manner. For instance a two processor machine might deadlockbecause each processor is waiting for a value that the other processor is holding.A two processor machine with shared memory may also have unpredictablebehaviour if the concurrent accesses to shared items are not carefully taken1By Church's thesis.2There are combinatorial search problems where one processor can inform other processorsto stop searching and for which speedup can be more than linear.41



42 CHAPTER 1. MODELS FOR CONCURRENCYcare of. Finally, the speedup can only be determined by modeling in a precisemanner which actions may overlap in time.Sequential models are not very well suited for all this and more speci�c modelshave appeared for dealing with some aspects of concurrent computation. Ob-viously, any of the existing set theories would su�ce for modeling concurrentmachines: we could well use as many predicates and logical formulas we maythink of to derive properties of programs. This was Floyd's view for instancebut it is not the view we take here.We follow here the approach of [SNW94] and [WN94]. In order to comparemodels and see what kind of property they are describing, we de�ne a notion ofobservation of programs expressed in a natural manner in the models, throughmorphisms de�ning the allowed transformations from an object of the model toanother. This makes models into categories and questions then naturally ariseabout what natural3 constructions we can make in these models. Surprisinglyenough, most of the categorical (i.e. natural) constructions bear striking re-semblance with combinators of process algebras and give models of fragmentsof linear logic. We now review some of these models before concentrating on afew basic ones in Chapter 3.Most of the models somehow include a notion of state of the program or machinedescribed. In some models, a given state can only occur once and for all. In someothers, a state can occur repeatedly because it does not include the history ofall completed actions but rather contains only the accessible information at thetime the program has reached it. For instance the state might be the values of allvariables used. The classi�cation used in [SNW94] is between behaviour model(states occur once) and system model (states occur repeatedly). Examples ofthe former are all kinds of event based models like event structures [Win88],geometric automata [Gun92], pomsets [Pra86], event spaces [Pra91a] all kindsof trace based models like Mazurkiewitz traces [Maz88], synchronization trees[Mil80], Hoare languages [Hoa81] etc. Examples of the latter kind are Petrinets [BRG87], all kinds of transition systems like transition systems [Kel76],asynchronous transition systems [Bed88], concurrent machines [Shi85], traceautomata [Shi85] transition systems with independence [SNW94] etc.We begin by looking at the most well known models (coming directly from thesequential world) i.e. the transition system based models.1.1 A few transition systems1.1.1 Ordinary transition systemsTransition systems are one of the most famous models of computation. Theyare nothing but state transition graphs and can be pictured as such. Lookfor instance at Figure 1.1. We have �ve states �, �, 
, � and � representing,for example, the value of the variables of a program at di�erent times of its3Not using any kind of coding. The natural constructions should be explainable only interms of allowed transformations/observations.



1.1. A FEW TRANSITION SYSTEMS 43Figure 1.1: A transition system
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δ εexecution. We have also six transitions, two as, two bs, c and d. a, b, c and dare four instructions of a program which change the state of the machine fromthe source of its corresponding arrow to its target.This is generally formalized using a transition relation. We use the same nota-tions as in [WN94].De�nition 1 A transition system is a structure (S,i,L,Tran) where,� S is a set of states with initial state i� L is a set of labels, and� Tran � S � L� S is the transition relationTransition systems are made into a category by de�ning morphisms to be somekind of simulation [WN94]. The idea is that a transition system T1 simulatesa transition system T0 if as soon as T0 can �re some action a in some context,then T1 can �re a as well in some related context. A morphism f : T0 ! T1de�nes the way states and transitions of T0 are related to states and transitionsof T1.De�nition 2 Let T0 = (S0; i0; L0; Tran0) and T1 = (S1; i1; L1; Tran1) be twotransition systems. A morphism f : T0 ! T1 is a pair f = (�; �) where,� � : S0 ! S1,� � : L0 ! L1 are such that �(i0) = i1 and(s; a; s0) 2 Tran0 ) (�(s); �(a); �(s0)) 2 Tran1This de�nition di�ers from the one of [WN94] in that it rules out \partial" mor-phisms. Partial morphisms allow T1 to be idle when T0 carries on computation.De�nition 3 Let T0 = (S0; i0; L0; Tran0) and T1 = (S1; i1; L1; Tran1) be twotransition systems. A partial morphism (or morphism in [WN94]) f : T0 ! T1is a pair f = (�; �) where,� � : S0 ! S1,



44 CHAPTER 1. MODELS FOR CONCURRENCY� � : L0 ! L1 is a partial function. (�; �) are such that{ �(i0) = i1,{ (s; a; s0) 2 Tran0 and �(a) is de�ned implies (�(s); �(a); �(s0)) 2Tran1. Otherwise, if �(a) is unde�ned then �(s) = �(s0).As in [WN94], the di�erence between the two kinds of morphisms can be �xedby adding \idle" transitions to transition systems, very similar in spirit tothe lifting of domains in denotational semantics [GS90, Plo84], where partialfunctions from D to D are considered total (and strict) from D? to D? where? is a new element such that 8x, ? � x.An idle transition is a transition � such that � goes from a state s to the samestate s: \it does not change the state of the machine". Consider the followingcompletion T� = (S�; i�; L�; Tran�) of a transition system T = (S; i; L; Tran),� S� = S,� i� = i,� L� = L [ f�g,� Tran� = Tran [ f(s; �; s)=s 2 Sg.It basically adds idle transitions to each state of an automaton. Now, a mor-phism f = (�; �) (with � a total function) from (T0)� to (T1)� such that �(�) = �is the same as a partial morphism f 0 from T0 to T1 by identifying � with \un-de�ned". Conversely, a partial morphism f = (�; �) from T0 to T1 can beidenti�ed with f� = (�; ��), ��(x) = � if and only if �(x) is unde�ned (look atFigure 1.2 for an example). It is then obvious that the categorical constructionswith partial morphisms will be the same as the categorical constructions with(total) morphisms on \lifted" transition systems.For the sake of simplicity, we will not use these extensions to our \total" mor-phisms, though we will make an attempt to add them in Chapter 10. Wewrite TS for the category of transition systems with \total" morphisms. Wename TSA its subcategory where we restrict to transition systems labeled onan alphabet A.One of the aspects of the classi�cation of concurrent models of [SNW94] dealsdirectly with concurrency. Some models are only simulating concurrency andare called interleaving models whereas others distinguish concurrent executionsfrom simulations on a one processor machine and are called non-interleaving ortruly concurrent models. In transition systems, one can simulate the parallelexecution of two actions a and b as the \interleaving" a then b or b then a(see Figure 1.3). Interleaving models rely on the notion of indivisible or atomicactions, which makes them unsatisfactory for practical use where we would liketo be able to abstract away processes from unnecessary details at �rst, andthen re�ne the semantics when we ask for more precision. Interleaving modelsare compelled to detail every part of a program execution [vGG89]. Moreover,



1.1. A FEW TRANSITION SYSTEMS 45Figure 1.2: A partial morphism of transition systems and its correspondingtotal morphism
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46 CHAPTER 1. MODELS FOR CONCURRENCYinterleaving models are not suited for giving semantics to most distributed pro-grams since equating all the possible executions with some linear ordering ofatomic actions means imposing a global clock as a ruler of the system. Finally,no possible discussion of the allocation of processes on the processors is pos-sible since all executions in the interleaving approach are equivalent to someexecution on a one processor machine.The answer to this last problem is not quite given by all truly concurrentmethods as we will show in Chapter 3. We really have to de�ne a level ofparallelism as well as a level of mutual exclusion. We propose here to re�nethis third axis in the classi�cation of Winskel et al. [SNW94] into a real \levelof parallelism/level of mutual exclusion" axis. Let us �rst review some of thetruly-concurrent transition systems.1.1.2 Asynchronous transition systemsAsynchronous transition systems were introduced independently in [Bed88] and[Shi85]. They can be thought of as generalizations of Mazurkiewicz trace lan-guages to be discussed in Section 1.2.2. The important thing is that theyactually do distinguish between the interleaving of two actions and their truly-concurrent execution. This is coded using a binary independence relation. Thefollowing de�nition is taken from [WN94].De�nition 4 An asynchronous transition system is (S,i,E,I,Tran) where- (S,i,E,Tran) is a transition system and- I � E �E is an irre
exive symmetric relation (the \independence" relation)such that,(1) e 2 E ) 9s; s0 2 S; (s; e; s0) 2 Tran(2) (s; e; s0) 2 Tran ^ (s; e; s00) 2 Tran) s0 = s00(3) e1Ie2 ^ (s; e1; s1) 2 Tran ^ (s; e2; s2) 2 Tran ) 9u; (s1; e2; u) 2 Tran ^(s2; e1; u) 2 Tran(4) e1Ie2 ^ (s; e1; s1) 2 Tran ^ (s1; e2; u) 2 Tran ) 9s2; (s; e2; s2) 2 Tran ^(s2; e1; u) 2 TranIn the following, we actually relax condition (1) stating that all events shouldbe used.Condition (2) says that the underlying transition system should be deterministic(e could not be a random generator). Conditions (3) and (4) are picturedrespectively in Figures 1.4 and 1.5. They deal with the con
uence of transitionscoming from independent actions. Many di�erent conditions of this kind can bestudied. The next section deals with one of the possible re�nements of those.Morphisms f are then morphisms of transition systems preserving the indepen-dence relation I , i.e. aIb) f(a)I 0f(b)



1.1. A FEW TRANSITION SYSTEMS 47Figure 1.4: Condition (3) for asynchronous transition systems
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This makes asynchronous transition systems into a category, written ATS.The category of asynchronous transition systems over an alphabet E is namedATSE .1.1.3 Trace automataTrace automata are very similar to, but slightly more general than the \for-ward stable asynchronous systems" of [Bed88], an instance of the asynchronoustransition systems of the last section. They have been mostly used for givingoperational models for non-deterministic data
ow networks [Kah74, KM77].De�nition 5 A trace automaton is a tuple A = (E;Q; T ) where,� E is a concurrent alphabet, i.e. a set of events equipped with a symmetric,irre
exive binary relation kE called the concurrency relation,� Q is a set of states,� T � Q � (E [ f�g) � Q is a set of transitions. Transitions are picturedthe usual way with arrows.These data are required to satisfy the following conditions,� q �! r if and only if q = r,� if q a! r and q a! r0 then r = r0 (similar to condition (2) of asynchronoustransition systems),



48 CHAPTER 1. MODELS FOR CONCURRENCYFigure 1.6: Permutation equivalence and residuals
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� for all states q and events a, b, if akEb, q a! r and q b! s then for somestate p there exist transitions s a! p and r b! p (similar to condition (3)of asynchronous transition systems).We can de�ne a notion of permutation equivalence on traces of these traceautomata. This equivalence equates traces which are \essentially the same".As a matter of fact, when two actions a and b are independent, i.e. akEb then aband ba are just two sequential views of the same parallel execution, and thereforeshould be equated. This equivalence is de�ned as the least congruence � withrespect to concatenation of �nite traces such that q a! r b! p and q b! s a! p are�-related if akEb. We will see again such equivalence relations between traceslater on (Chapter 7). They are related to scheduling problems in concurrentsystems and serializability.The quotient of the traces by � with the internal law induced by concatenationis a partially commutative monoid (as we will see in Mazurkiewitz trace the-ory). The permutation equivalence is actually generated by the more interestingpermutation preorder de�ned as follows.If � is the inclusion of traces then de�ne the permutation preorder v to bethe transitive closure of � [ �. The set of equivalence classes of traces of atrace automata with the permutation preorder is then a Scott domain, and evenan event domain (a domain of con�guration of an event structure, see Section1.2.1). This gives a relation with the models of �-calculus [Bar84].Operationally, this view can be re�ned with the notion of residual. Given twotraces t and u which begin at the same state, the residual of t by u is whatis left of t after the part of u that overlaps with it has been \cancelled". Inparticular, t v u if and only if the residual of t by u is essentially nothing (anidentity in the formalization of the following section).Again it has much of the 
avour of the residuals of �-calculus as de�ned in [L�78]which were designed to help understand con
uence (look at Figure 1.6). Theresidual operation has been formalized and leads to the concurrent transitionsystems of next section.



1.1. A FEW TRANSITION SYSTEMS 491.1.4 Concurrent transition systemsThese were introduced as a truly-concurrent operational model for concurrencyin [Sta89].De�nition 6 A concurrent transition system (CTS) is a structure (G; ") where,� G = (O;A; dom; cod; id) is a graph with identities i.e.,{ O is the set of proper states,{ A is the set of proper transitions,{ dom : A! O maps transitions to their start states,{ cod : A! O maps transitions to their �nal states,{ id : O ! A maps each s 2 O to a distinguished transition (theidle transitions of section 1.1.1) ids such that dom(ids) = s andcod(ids) = s.� ": Coin(G#)! A# is the residual operation where,{ G# is the augmented graph (O#; A#; dom; cod; id) with,� O# = O [ f
g (
 does not belong to O),� A# = A [ f!q=q 2 O#g, dom(!q) = q, cod(!q) = 
.{ Coin(X) (where X is a graph) is the set of coinitial transitions, i.e.the set of pairs (t; u) of transitions t, u of X which have the samestart states.subject to the following conditions,(1) for all t 2 A# and u 2 A# (see Figure 1.6),(a) dom(t " u) = cod(u),(b) cod(t " u) = cod(u " t).(2) for all t : q ! r 2 A#,(a) idq " t = idr,(b) t " idq = t,(c) t " t = idr.(3) for all coinitial t, u, v in A#, (v " t) " (u " t) = (v " u) " (t " u) (the\cube axiom", see Figure 1.7)(4) for all coinitial t, u in A#, if t " u and u " t are both identities thent = u.Coinitial transitions t, u of a CTS are called consistent if t " u is a propertransition (i.e. is in A and not in A#).As usual, morphisms are simulations,



50 CHAPTER 1. MODELS FOR CONCURRENCYFigure 1.7: Cube axiom
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De�nition 7 A morphism of concurrent transition systems is a pair of maps� = (�O; �A) : (O;A; dom; cod; id; ")! (O0; A0; dom0; cod0; id0; "0) such that,� �O : O ! O0 and �A : A ! A0 are functions such that dom0 � �A =�O � dom, cod0 � �A = �O � cod and �A � id = id0 � �O (simulation of theunderlying state transition graph, a \total morphism" of Section 1.1),� if t, u are consistent proper transitions of C then �(t " u) = �(t) "0 �(u).We extend morphisms to non-proper transitions by taking �(!q) = !�(q).This makes concurrent transition systems into a category we denote CTS.1.1.5 Transition systems with independenceTransition systems with independence are transition systems enriched with anotion of concurrency in order to model true concurrency. This model hasbeen introduced in [SNW94] and can be considered as a variation of such deco-rated transition systems as concurrent automata [Sta89] or asynchronous tran-sition systems [Bed88]. We recall their formal de�nition, which can be foundin [SNW94] or [WN94]. The independence relation between actions is now afunction of the state as well. This re�nes a lot the precision of the model.De�nition 8 A transition system with independence is a structure (S,sI,L,Tran,I) where (S; sI ; L; Tran) is a transition system and I � Tran2 is anirre
exive, symmetric relation such that(i) (s; a; s0) � (s; a; s00) ) s = s00 (condition (2) of asynchronous transitionsystems),



1.1. A FEW TRANSITION SYSTEMS 51(ii) (s; a; s0)I(s; b; s00) ) 9u (s; a; s0)I(s0; b; u) ^ (s; b; s00)I(s00; a; u) (similar tocondition (3) of asynchronous transition systems),(iii) (s; a; s0)I(s0; b; u) ) 9s00(s; a; s0)I(s; b; s00) ^ (s; b; s00)I(s00; a; u) (similar tocondition (4) of asynchronous transition systems),(iv) (s; a; s0) � (s00; a; u)I(w; b;w0)) (s; a; s0)I(w; b;w0).where � is least equivalence on transitions including the relation R de�ned by,(s; a; s0)R(s00; a; u), 8>>><>>>: (s; a; s0)I(s; b; s00) and(s; a; s0)I(s0; b; u) and(s; b; s00)I(s00; a; u)Morphisms are de�ned as being the total morphisms de�ned in [SNW94]: theseare morphisms of the underlying transition system which preserve indepen-dence, i.e., pair of maps (�; �) with �, a map between states, and � a mapbetween labels such that� (s; a; s0) 2 Tran) (�(s); �(a); �(s0)) 2 Tran0� (s; a; s0)I(s; b; s0)) (�(s); �(a); �(s0))I(�(s); �(b); �(s0))We call TSI the category of transition systems with independence with totalmorphisms.Now, to be complete, we review the Petri nets model as they are system modelsand truly concurrent models of concurrency, as all these transition systems.They can be thought of as \distributed transition systems". This view hasbeen taken in [DDNM88] in order to give a truly concurrent semantics of CCS(Section 1.3) using Petri nets.1.1.6 Petri netsIf they can be considered as distributed systems, the formalism they rely on isquite di�erent and is based on a \token game".De�nition 9 A Petri net N = (P; T; pre; post) consists of,� P is a set of places,� T is a set of transitions,� pre : T ! ~P is the pre-condition map, where ~P denotes the set of multisetsof P ,� post : T ! ~P is the post-condition map.



52 CHAPTER 1. MODELS FOR CONCURRENCYFigure 1.8: A Petri net graphical representation: mutual exclusion between aand b
baThe places represent resources which might be used by one or more processes.This is formalized by the notion of marking. A marking is a multiset of places.The pre-condition map describes how transitions \consume" resources and thepost-condition map shows how transitions \create" new resources. This de�nesa transition relation between markings. If M and M 0 are two markings of somenet N , and t is a transition of N we write M [tiM 0 for \t �res from M to M 0"if and only if9M 00 2 ~M;M = M 00 + pre(t) and post(t) +M 00 = M 0Petri nets are generally represented graphically (see Figure 1.8 and Figure 1.9)as follows,� places are circles,� transitions are squares,� arcs from places to transitions with a suitable multiplicity are used torepresent the pre-condition map,� arcs from transitions to places (again with multiplicity) represent thepost-condition map,� markings are tokens put in suitable places.As many of the models we have already discussed, Petri nets exist in several ver-sions. The one we have just de�ned is very often called P/T nets, standing forPlace/Transition nets. A particular case of it is C/E nets, i.e. Condition/Eventnets. Places are now conditions which can only be true or false. True is iden-ti�ed with one token, and false with no token occupying a place. Therefore,C/E nets are particular P/T nets in which there can be at most one token percondition. A special case of C/E nets is an occurence net. It is a C/E net inwhich a transition can only be �red exactly once.P/T, C/E and occurence nets can be made into categories with the notion ofmorphism that we de�ne below.



1.2. BEHAVIOURAL MODELS 53Figure 1.9: A Petri net graphical representation: truly concurrent execution ofa and b
a bAll Petri nets we consider now will be given with an initial marking M0, sothat we write a net as N = (P; T;M0; pre; post). Following [WN94] we de�nemorphisms to be maps preserving initial markings and events when de�ned.De�nition 10 Let N = (P; T;M0; pre; post) and N 0 = (B0;M 00; E 0; pre0; post0)be two nets. A morphism f : N ! N 0 consists of,� a relation � � B � B0 such that �op is a partial function from B0 to B,� a partial function � : E ! E 0 such that,{ �M0 = M 00,{ � � pre(e) = pre � �(e),{ � � post(e) = post � �(e).As usual in this chapter, we restrict to morphisms which are total functions.This means that � and � in the above de�nition are total functions. We havean isomorphic category of Petri nets if all nets are \lifted" by adding an idleevent � with pre(�) = post(�) = ;.As a direct consequence of the de�nition, morphisms preserve the transitionrelation i.e. if M [eiM 0 in N then �M [�(e)i�M 0 in N 0.The category of Petri nets with morphisms described as in De�nition 10 isnamed PN , the one with total morphisms is PNt.Petri nets have inspired most of the event based models. We present a few ofthem below.1.2 Behavioural models1.2.1 Event structuresEvent structures describe a concurrent system through the occurrence of someevents, like \some action has taken place", \the state of the machine has beenchanged" etc. This is done through a partial ordering � on the set of events E.



54 CHAPTER 1. MODELS FOR CONCURRENCYWhen two events are not related by �, they are candidates for being executedin parallel, since no event has to precede the other. To be able to model mutualexclusions as well, we use a con
ict relation # between events. e0#e1 if andonly if e0 and e1 cannot take place at the same moment.Then events e0 and e1 are truly concurrent when one is not before the other andif they are not in con
ict. This can be written in symbols as a \concurrency"relation co: (e0 co e1) i� not ((e0 � e1) or (e1 � e0) or (e0#e1))The formal de�nition is as follows,De�nition 11 A prime event structure is a structure (E;�;#) where E isa set of events partially ordered by � called the causal dependency relationand where # � E � E is a symmetric irre
exive relation, the con
ict relationsatisfying,� fe0=e0 � eg is �nite (axiom of \�nite causes"),� e#e0 and e0 � e00 implies e#e00 (con
ict is hereditary).A labeled event structure (E;�;#; l; L) is composed of an event structure (E;�;#), a set of labels L and a labelling function l : E ! L.Then morphisms of event structures are de�ned as follows.De�nition 12 Let S = fE;�;#g and S 0 = fE 0;�0;#0g be event structures.A morphism of event structures from S to S 0 is a partial function f : E ! E 0such that,� if f(e) is de�ned then fe0=e0 � f(e)g � f(fe00=e00 � eg,� if f(e0) and f(e1) are both de�ned then f(e0)#f(e1) or f(e0) = f(e1)implies e0#e1 or e0 = e1.Here again, we can restrict to \total" morphisms, i.e. to functions f : E ! E 0such that,� fe0=e0 � f(e)g � f(fe00=e00 � eg),� f(e0)#f(e1) or f(e0) = f(e1) implies e0#e1 or e0 = e1.Morphisms of labeled event structures are pairs(�; �) : (E0;�0;#0; l0; L0)! (E1;�1;#1; l1; L1)such that � is a morphism of event structures from (E0;�0;#0) to (E1;�1;#1)and � : L0 ! L1 is a function satisfying � � l0 = l1 � �.This forms the category LES of labeled event structures.



1.2. BEHAVIOURAL MODELS 55This is the �rst \non-operational" model of concurrency we have been consid-ering. But it is actually quite easy to recover the operational intuition in theevent based models. We only have to collect \compatible" events, linearly or-dered by the time at which they may happen. This leads to the de�nition ofcon�gurations.Let (E;�;#) be an event structure. Its set of con�gurations D(E;�;#) is theset of those subsets x � E which are,� con
ict-free: for all e; e0 2 x, e is not in con
ict with e0,� downwards-closed: for all e; e0, e 2 x and e0 � e implies e0 2 xFollowing [WN94] we write D0(E;�;#) for the set of �nite con�gurations.Now the notion of causal dependency in an execution of an event structure isgiven through the \enabledness" relation.Let e 2 E and c 2 D(E;�;#) then we say that e is enabled at a con�gurationc, written c ` e if,(i) e 62 c,(ii) fe0=e0 � e ^ e0 6= eg � c,(iii) e0 2 E and e0#e implies e0 62 cFinite con�gurations are traces when we linearly order their elements by causaldependency. fe1 < e2 < : : : < eng is a securing for c if and only if fe1; : : : ; ei�1g `ei for i = 1; : : : ; n. We write also securings as strings e1 : : : en.Events are one side of a duality [Pra92] for which automata are the other side.A general framework in which automata and schedules (event based models) �tvery nicely has been recently introduced by Vaughn Pratt under the name ofChu spaces [Pra94a, Pra94b].The event structures we have de�ned are not the most general event structuresdescribed in the literature, and the discussion about con�gurations gives usthe generalization we are looking for. The most general ones are as follows.Instead of reasonning only on partial orders of events, we consider directlypartial histories, i.e. �nite consistent sets of events. This is described by Conin the following de�nition. Con also takes the information about con
icts intoaccount so we do not need the # relation any longer. But the dynamics has tobe described now. It is addressed by the enabling relation j=.De�nition 13 [Win88] An event structure is a triple (E;Con; j=) where,� E is a set of events,� Con is a nonempty set of �nite subsets of E, called the consistency pred-icate which satis�es,X 2 Con ^ Y � X =) Y 2 Con



56 CHAPTER 1. MODELS FOR CONCURRENCYFigure 1.10: A parallel switch
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0� j=� Con� E is the enabling relation which satis�es,X j= e ^X � Y ^ Y 2 Con =) Y j= eWhat have we gained now?It can be shown in a very precise manner [Win88] that these event structures aremore general in the sense that an event can now be enabled in di�erent ways.An event can be caused by more than one con�guration (see Figure 1.10 andFigure 1.11). We say that event structures can exhibit OR causality whereasprime event structures cannot.This is a problem most of the models for concurrency based on partial ordershave (like pomsets [Pra86] etc.). They can exhibit AND causality, i.e. an eventcan only occur if and only if some other events have all occured before. Thisdistinction between AND and OR causality was used in [Gun92] to analyseMilner's notion of con
uence (closer to our notion of serializability than to thestandard notion of con
uence on transition systems). In short, Con
uence =Determinism+fAND,ORg Causality (here determinism is the \determinacy" ofMilner, [Mil83]).Technically, prime event structures have the same domains of con�gurations(the �nitary prime algebraic domains) as the so-called stable event structures.These are event structures (E;Con; j=) for which there is a partial order ofcausal dependency on each con�guration. They satisfy the following stability



1.2. BEHAVIOURAL MODELS 57axiom which ensures that there is always a minimal set of event occurrencesenabling any event,X j= e ^ Y j= e ^X [ Y [ feg 2 Con =) X \ Y j= eIt is not a surprise that the domains of con�gurations of stable event structuresare isomorphic to the dI-domains of Berry [Ber79] since the latter arose in thecontext of the search for a precise de�nition of sequentiality. As a matter offact, one of the ancestors of event structures were precisely the concrete datastructures of Kahn and Plotkin used to de�ne domains of \sequential" functions(see [Cur86, BC82] for a survey).Then, as in the sequential case, some models can be linear time or branchingtime i.e. some models express only deterministic behaviours while other distin-guishes the time when (non-deterministic) choices are made. The event based,the transition based models and the Petri nets models above are all branchingtime as well as synchronization trees whereas among the trace based modelsonly the Mazurkiewitz traces and Hoare languages are linear time.We de�ne below a generalised version of Mazurkiewitz trace languages as canbe found in [WN94].1.2.2 Mazurkiewitz tracesIn this section, we slightly generalize the asynchronous transition systems inorder to allow the \independence" relation to vary according to the local stateof the machine. In the literature, this has not been developed for transitionsystems (except in TSI) but rather on the language side of the automata theory,i.e. the Mazurkiewitz trace theory. We introduce the generalization as it has�rst been done in [SNW94].De�nition 14 A generalized trace language is a triple (M; I; L) where,� L is a set of symbols,� M � L�,� I : M ! 2L�L is a function which associates to each s 2 M a relationIs � L� L.such that, if we de�ne �= to be the least equivalence relation on L� such thatsabu �= sbau if aIsb, and,� for all s 2M , Is is symmetric and irre
exive,� (I is consistent) s �= s0 implies Is = Is0,� (M is I-closed) aIsb implies sab 2M ,� (I is coherent)(i) aIsb and aIsbc and cIsab implies aIscb,



58 CHAPTER 1. MODELS FOR CONCURRENCY(ii) aIsc and cIsb implies (aIsb if and only if aIscb).De�nition 15 Let (M; I; L) and (M 0; I 0; L0) be generalized trace languages. Apartial function � : L! L0 de�nes a morphism from (M; I; L) to (M 0; I 0; L0) ifand only if,� � preserves words: s 2M implies ��(s) 2M 0,� � respects independence:aIsb and �(a), �(b) are de�ned implies �(a)I 0��(s)�(b) where �� is an ex-tension of � on words de�ned as follows,{ ��(�) = �,{ ��(sa) = 8<: ��(s)�(a) if �(a) is de�ned��(s) otherwiseThey form the category GTLp. It is proven in [SNW94] thatGTLp is equivalentto the category of deterministic labeled event structure de�ned in the previoussection. We give an account of this proof in Section 3.4.Once again, we restrict to the category GTL of generalized Mazurkiewitz traceswith \total morphisms" i.e. � : L! L0 a function such that,� � preserves words i.e. s 2M implies ��(s) 2M 0,� � respects independence: aIsb implies �(a)I 0��(s)�(b) where �� is an ex-tension on words de�ned as follows,{ ��(�) = �,{ ��(sa) = l�(s)�(a)GTLL is the subcategory of GTL of generalized Mazurkiewitz traces on analphabet L.Now, the category of Mazurkiewitz traces can be seen as a full subcategory ofGTL. Recall that a Mazurkiewitz trace language is a triple (M; I; L) where,� L is a set of symbols,� M � L�,� I is a symmetric irre
exive relation on L such that,{ I is pre�x-closed: sa 2M implies s 2M for all s 2 L� and a 2 L,{ M is I-closed: sabt 2 M and aIb implies that sbat 2 M for alls; t 2 L� and all a; b 2 L,{ M is coherent: sa 2M and sb 2M and aIb implies sab 2M for alls 2 L� and all a; b 2 LTo see that Mazurkiewitz traces are a special case of generalized Mazurkiewitztraces as the name suggests, we only have to see that I de�nes a constantfunction from M to 2L�L satisfying axioms of De�nition 14.



1.3. SEMANTICS OF A FEW PROCESS ALGEBRAS 591.3 Semantics of a few process algebrasThere has been an attempt to de�ne a calculus for parallel processes whichwould be as foundational as �-calculus for functional computation. In someway, this approach has not succeeded yet, but all process algebras introducedsince at least twenty years have brought a good understanding of the basicbehaviours that concurrent programs may exhibit. Some of them have evenbeen used to give semantics to some real concurrent languages.We present below a small selection of these process algebras for di�erent pur-poses. The �rst one is to have a few examples of toy languages at hand forshowing how to use some of the abstract models of concurrency we have de-scribed to give semantics. The second one is to show di�erent paradigms forparallel computation that will enable us to recognize or to infer some interestingconstructions in Higher-Dimensional Automata.1.3.1 CCSIn this section we focus on pure CCS. The original language [Mil89] actuallyhad values, variables and channels. Pure CCS is a simpli�cation of it in whichcommunications along channels are abstracted in the following way,� we forget about actual values traveling on channels,� we also forget the names of variables, leaving only the name of the channel,� now, to receive a value into the variable x on channel a, i.e. a?x, isabstracted by a,� to send a value n on channel a, i.e. a!n is abstracted by the complementaryaction a.Therefore, communication is abstracted by synchronization of an action anda complementary action. This synchronization is \observable" through theoccurrence of an \invisible action" � .The syntax of pure CCS is now (where � ranges over actions, complementaryactions and � , and f is a function on actions that commutes with x! x),t ::= nil (idle process)j t1 + t2 (choice operator)j t1 j t2 (parallel composition)j �:t (pre�xing)j t1nc restriction operatorj p[f ] relabellingj rec x:t(x) recursive agent



60 CHAPTER 1. MODELS FOR CONCURRENCYSemantics The �rst semantics [Mil83] was given in terms of synchronizationtrees (acyclic transition systems). It is very often given using SOS rules [Plo81]describing transition systems as follows,�:t �- t (1.1)ti �- t0it1 + t2 �- t0i (1.2)t1 �- t01t1 j t2 �- t01 j t2 (1.3)t2 �- t02t1 j t2 �- t1 j t02 (1.4)t1 �- t01 t2 �- t02t1 j t2 �- t01 j t02 (1.5)t �- t0 � 6= c and � 6= ctnc �- t0nc (1.6)t �- t0t[f ] f(�)- t0[f ] (1.7)rec x:t[x] � - t0t[rec x:t[x]] �- t0 (1.8)Rule 1.1 indicates that �:t can �re an � action at �rst.Rule 1.2 shows that t1 + t2 behaves as t1 or t2 once and for all.Rules 1.3 and 1.4 de�ne t1 j t2 by their interleaving.Rule 1.5 takes care of the synchronization between complementary actions,which when \annihilating" each other produce a silent � action.The restriction operator is de�ned by Equation 1.6. The restriction appliesboth on an action and its corresponding complementary action.Rule 1.7 de�nes in an obvious manner the relabelling operator.Finally rec x:t[x] is similar to the \in�nite term" t[t[: : : [nil]]]. This is Equation1.8.A \denotational" semantics can also be given in ordinary transition systems us-ing their categorical properties. We recall here the basic categorical constructswe have with partial morphisms of ordinary transition systems and their inter-pretations as can be found in [WN94],



1.3. SEMANTICS OF A FEW PROCESS ALGEBRAS 61Figure 1.12: Coproduct of two Petri nets
baa b+ =� the cartesian product is a form of synchronized product plus interleaving(those transitions with a � transition as one of their components),� the �bered coproduct is the non-deterministic choice of CCS,� the CCS restriction operator is obtained through a strong cartesian lifting,� the CCS relabelling operator corresponds to a strong cocartesian liftingconstruction,� the CCS pre�xing and parallel operators do not really correspond to anycategorical combinator in the category of transition systems.A \denotational" semantics can also be given using Petri nets even if categoricalconstructions in PN are not easy to �nd. But it is shown in [WN94] that atleast the following constructs are available,� the coproduct of two nets is roughly the non-deterministic sum of thenets (see Figure 1.12 and Figure 1.13 for an example). The behavioursare really those of a non-deterministic choice only for the so called safenets (see [WN94]).� the product of two nets corresponds to a synchronization of the two nets.An example is given in Figure 1.14.A di�erent approach using Petri nets has been used in [DDNM88]. The viewtaken there is that Petri nets are nothing but distributed transition systems.Then the CCS-terms are decomposed into local processes which are given astandard kind of operational semantics. Some other approaches with Petri netsaccount for subsets of CCS only as in [GM84] and [DCDMPS83].Trying to be as complete as possible, a semantics using event structures hasbeen given in [Win88] and semantics using partial orderings have been given in[DDNM85] and [DM87]. In [Gup94], a semantics is also given in terms of ChuSpaces.We will see in Chapter 5 how to give a truly-concurrent operational semanticsof CCS both in denotational and SOS form with the model we introduce innext chapter.



62 CHAPTER 1. MODELS FOR CONCURRENCYFigure 1.13: Allowed transitions of Figure 1.12

Figure 1.14: Product of two Petri nets
a b =
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1.3. SEMANTICS OF A FEW PROCESS ALGEBRAS 631.3.2 Communicating Sequential ProcessesThis calculus was introduced in [Hoa85]. Several syntaxes are commonly used(from one near Dijkstra's GC to one resembling CCS). CSP has about the sameprimitives as CCS, but the synchronization mechanism is slightly di�erent. Thesyntax of \valued" CSP is as follows,t ::= �?X ! t input on channel � and store in variable X , then do tj �!a! t output value a on channel � and then do tj t1 jj t2 (parallel composition)j t12t2 (choice operator)j l : t labellingj �x:t(x) recursive agent, for t a guarded expressionA semantics in terms of labeled transition systems can be found in [BHR84]and also for instance in [Win93].In this calculus, we have chosen to represent values and variables. Therefore,the states of the transition system will be of the form hc; �i, where c is a CSPprogram and � is a store (i.e. a function from variables to values).We do not go through the whole semantics of this CSP language since it is verysimilar to the CCS one. We specify only the parallel operator,hc0; �i �- hc00; �0ihc0 jj c1; �i �- hc00 jj c1; �0ihc1; �i �- hc01; �0ihc0 jj c1; �i �- hc0 jj c01; �0iCSP with no values has the following syntax,P ::= SKIP j STOP j a! P jP ;Q j P \ Q j PkQ jPkj Q j Pna j repeat PPkj Q denotes the interleaving of P withQ. PkQ is the lockstep synchronizationof P with Q. This means that this process must synchronize each action of Pand Q with the same name.A denotational (truly-concurrent) semantics of CSP with no values using eventstructures has also been proposed in [Win88].



64 CHAPTER 1. MODELS FOR CONCURRENCY1.3.3 �-calculusHere, we will restrict to the monadic �-calculus. We refer the reader to [Mil91]for details on how to generalize this to the polyadic case.As Robin Milner says [Mil91],\The work on �-calculus really began with a failure, at the time Iwrote about CCS, the Calculus of Communicating Systems [Mil80].This was the failure, in discussion with Mogens Nielsen at Aarhusin 1979, to see how full mobility among processes could be handledalgebraically. The wish to do this was motivated partly by Hewitt'sactor systems, which he introduced much earlier. Several years later,Engberg and Nielsen succeeded in giving an algebraic formulation.The �-calculus is a simpli�cation and strengthening of their work."Let X be a set of names. Typical elements are x, y, etc. We use p, q, etc.to range over the set P of processes. They are constructed according to thefollowing syntax,p ::= 0 empty processj Pi2I �i:pi sum of �nitely many processesj p j q parallel compositionj !p replicationj �xp restriction operatorThe pre�xes �i in the sum above represent atomic actions which can be of thefollowing form,� x(y) means \input some name, call it y, along the link named x",� xy means \output the name y along the link named x"Before de�ning an operational semantics (based on ordinary transition systems)we �rst de�ne a structural congruence �= on terms,� processes which only di�er by a change of bound names are identi�ed,� + and j are commutative on the equivalence classes modulo �=,� p+ 0 �= p and p j 0 �= p,� !p �= p j!p,� �x0 �= 0 and �x�yp �= �y�xp,� if x is not a free name in p then �x(p j q) �= p j �xq.



1.4. REAL-TIME SYSTEMS 65As for CCS, syntactic terms will be states of the transition system, but thistime, they will be taken modulo the structural congruence �=.The transitions are now expressed in SOS form as follows,(: : :+ x(y):p) j (: : :+ xz:q) - p[z=y] j qp - p0p j q - p0 j qp - p0�xp - �xp0q �= p p - p0 p0 �= q0q - q0Example 1 The following example (taken from [Mil91]) exempli�es the kindof mobility that can be achieved using the �-calculus.Consider the terms P = xy:0, Q = x(u):uv:0 and R = xz:0 and the processX = P j Q j R.P can send y to Q and R can send z to Q, but not both. Therefore the twoalternatives for the result are 0 j yv:0 j xz:0 or xy:0 j zv:0 j 0. R has thusbecome yv:0 or zv:0. The communication has determined which channel R cannext use for output, y or z.1.4 Real-time systemsBy real-time system we mean here a sequential or concurrent machine whosestates depend on one or several clocks, i.e. whose evolution is constrained by(some measures of) time. Examples are everywhere in real life: alarm clocks,co�ee machines (which give you back your money if you are too long to chooseyour beverage), \real-time languages" and of course ordinary computers, whichalways have a clock to trigger signals etc.Restricting to real-time software and languages would give a rather partialview. In synchronous languages such as ESTEREL [BC85], LUSTRE [CHPP87]and StateCharts [Har87] the execution times of actions are considered to beinsigni�cant with respect to the time constants of the external signals (whichare actually the inputs to the programs). This approach has many bene�ts. Inparticular, it is much easier to design applications and to prove them correctwith respect to timed speci�cations.This simpler view has much in
uenced the semantic models. There are but avery few models considering that actions take time (see [Jos89] though). Herewe follow [Jos89],\A crucial aspect of \real-ness" of many real-time systems isthat they have a limited set of computational resources such as



66 CHAPTER 1. MODELS FOR CONCURRENCYprocessors, memory, channels etc. whose use must be scheduledappropriately for the real-time program to meet its deadlines. Inthese cases, the real-time program must be seen as a concurrentprogram which is executed on a system with limited resources andit is necessary for the limitations to be represented in the associatedsemantic models."1.4.1 Models of real-timeIn [Hen91], real-time models were considered good enough if they were re�n-able, digitizable, and operational. This means in particular that we shouldbe able to look at a real-time system at di�erent levels of precision (this rulesout formalisms depending on a base of time) and that its description should bebased on systems of transitions. We focus on these kinds of models below.Timed transition systems [HMP93] assume a global �ctitious real-valuedclock. They are based on ordinary transition systems on which they add re-quirements about the minimal and maximal delays between which actions haveto be enabled in order to be �red. In this model, transitions take no time.Formally, a Timed Transition System (TTS) is S = (S; i; E; Tran; l; u) where,� (S; i; E; Tran) is a transition system4,� l is a collection l� 2 IN of minimal delays for actions � 2 E,� u is a collection u� 2 IN [ f1g of maximal delays for actions � 2 ETraces, called timed execution sequences in [HMP93] are sequences (�i; Ti)i2IN,�i 2 S and Ti 2 IR such that,� (�i)i2IN is a trace of the underlying transition system,� \time never decreases" i.e.8i 2 IN; (Ti+1 = Ti) _ ((Ti+1 > Ti) ^ (�i+1 = �i))� \time diverges" i.e. 8t 2 IR; 9i � 0; Ti � t� \a transition � has to be enabled at least l� time units in order to be�red" i.e. for every transition � 2 E and i � 0, j � i with Tj < Ti+ l� , if� is taken at position j of � then � is enabled on �i,� \a transition � cannot be enabled for more than u� time units withoutbeing taken" i.e. for every transition � 2 E and i � 0, there exists j � iwith Tj � Ti+ u� such that either � is not enabled on �j or � is taken atposition j of �.4In fact it has been introduced in a di�erent way in [HMP93] where states are assignmentsof values to variables. The transition system is also required to contain all idle transitions,i.e. transitions from state s to s, for any s.



1.4. REAL-TIME SYSTEMS 67Figure 1.15: A timed B�uchi automaton
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a,x:=0Timed automata [AD91] generalize �nite state machines over in�nite strings.They consist mainly of �nite sets of locations and �nite sets of real-valuedclocks. Again, transitions take no time and states are waiting periods for clockconstraints to be satis�ed.Formally, if X is a set of clocks, we de�ne the set �(X) of clock constraints �inductively as follows, � := x � c j c � x j :� j �1 ^ �2where x is a clock in X and c is a constant in the time domain.Then a timed transition table is a tuple h�; S; S0; C; Ei where,� � is a �nite alphabet,� S is a �nite set of states,� S0 � S is a set of start states,� C is a �nite set of clocks and,� E � S � S � �� 2C � �(C) gives the set of transitions.Edges, or transitions, are (s; s0; a; �; �) 2 E going from state s to state s0 oninput symbol a. � � C gives the clocks to be reset with this transition and �is a clock constraint over C. Several kinds of accepting criteria can be given:B�uchi, Muller etc. to these automata. Then they accept timed languageswhich are pairs of a language of the underlying untimed automaton and timingconstraints (see Figure 1.15) which accepts the language f((ab)!; �)=9i; 8j �i; (�2j < �2j�1 + 2g).Finally, a very general and quite ad hoc model5 for real-time systems advocatedby Leslie Lamport [AL91a] consists in using TLA (Temporal Logics of Actions)as a base for specifying (and verifying) programs and in adding a new variable,now, denoting the value of the global clock. This is more a coding than anythingelse. In particular, extra-TLA formulas are necessary to describe the essentialproperties of now and some problems about non-Zenoness are di�cult to solve(see the discussion in [AL91a]).As we have seen, most of the semantic models for real-time systems assumethat transitions do not take time, and states bear time changes. This view has5Even if it is not directly based on transition systems, this model has strong connectionswith operational semantics in general.



68 CHAPTER 1. MODELS FOR CONCURRENCYdeeply in
uenced the numerous process algebras that have appeared in the lastfew years. Before choosing one which will exemplify the use of timed higher-dimensional automata for giving semantics to toy languages, we review some ofthem as well as discuss their di�erences. We will follow the very good survey[NS92] as a basis for discussion.All process algebras rely on a \two-phase functioning scheme". This means thattheir executions alternate from a synchronous part where all the componentsagree for the time to progress to an asynchronous part during which the progressof time is blocked. This view, which might be close to the \real" behaviour ofsome hybrid systems lead to technical di�culties hiding some of the real issuesof real-time systems modeling. In particular deadlock-freeness, i.e. the factthat no process can block the progress of time is a technical di�culty of thesemantical model and is certainly not an actual property of interest for real-timesystems.Some of the real-time process algebras are simple extensions of well-knownuntimed process algebras,� TCSP [RR88a, Sch91, DS89] is a simple extension of CSP [Hoa85] with{ a delay operator t:P (it behaves as P after exactly t time units),{ a weak timeout operator: behaves as P and then executes Q after dtime units.� TeCCS [MT90], TiCCS [Yi90] are extension s of CCS [Mil89] with{ a time-lock 0 (for TeCCS),{ a delay operator which we write (t):P (for both): it behaves as Pafter exactly d time units,{ unbounded idling: �P can act as P after any amount of time (forTeCCS),{ a pre�xing operator a@vP which executes a and then behaves as Pwith the time variable v by any time (TiCCS).� ACP� [BB90] based on ACP [BK84] with{ �(d) a time-lock at time d,{ time-stamped actions: absolute stamps like a(d) performing actiona at time d or relative ones like a[d] (d 2 IR) performing action a dtime units after the previous action has been performed,{ an integral operator Rv2V P (v) which behaves as P with the timevariable v replaced by any value of V .� ATP [NRSV90] with{ unbounded idling: bPc! may perform actions from P or idle as muchas it wants,



1.4. REAL-TIME SYSTEMS 69{ a start-delay operator: bPcd(Q) behaves as P for at most d timeunits and then executes Q.� TPL [HR91] with{ a delay operator (t):P : it behaves as P after exactly t time units,� U � LOTOS [BL91] with{ a delay operator (t):P : it behaves as P after exactly t time units,{ an operator asap (as soon as possible). It enforces the urgency of aset of actions in the whole execution of a process.All of them are \deadlock-free" in the sense that no process can block theprogress of time, except in ACP�, TeCCS and U � LOTOS in which \timelocks" are used to detect inconsistencies in speci�cations.All of them have also the \action urgency" property. This means that someactions must be �red without delay. In TCSP , TiCCS and TPL these areonly the invisible actions.TCSP , TiCCS and U � LOTOS are the only ones which satisfy the counter-intuitive \persistency" property, i.e. the fact that the progress of time cannotsuppress the ability to perform an action.Finally, only TCSP has the \�nite-variability" [BKP86] or \non-Zenoness" or\well-timed{ness" property. This prevents any Zeno process to be representablein that only �nitely many actions can be performed in a �nite time interval. Itis realized at the expense of a complicated theory by enforcing a system delaybetween two actions of a sequential process.We will propose a model for real-time systems based on a truly concurrentoperational model in Chapter 11 which does not need complicated assumptionson time to describe plausible timed behaviours.Summary We have described some of the models of concurrency that are usedfor giving semantics to languages and for the description of the basic conceptsof concurrency theory. In particular, we have focused on the operational mod-els for true concurrency, i.e. those models which have actions as basic bricksand which distinguish non-determinism from concurrency. In order to be ascomplete as possible, we have followed the classi�cation of [WN94] around thenotions interleaving/truly-concurrent, behaviour/model and linear/branching.We will follow in the next chapters their use of category theory for compar-ing models and constructing process algebras from the structure of the models.Other views on the notion of morphism can be put forward [Abr93a, Abr93b],this should be applied to the HDA model in some future work. We have alsowritten some examples of the use of these models of concurrency for givingsemantics to toy languages, like the process algebras CCS and CSP. We haveended this survey chapter by discussing some of the extensions of classical se-mantic models to deal with real-time systems. We will also propose an extensionof the HDA model to real-time HDA in the last chapter of this thesis.
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Chapter 2An introduction to HigherDimensional Automata2.1 IntroductionGeometry has been suggested as a tool for modeling concurrency using higher-dimensio{nal objects to describe the concurrent execution of processes. Thiscontrasts with earlier models based on interleaving of computation steps tocapture all possible behaviours of a concurrent system. Such models must nec-essarily commit themselves to a speci�c choice of atomic action which makesthem unable to distinguish between the execution of two truly concurrent ac-tions and of two mutually exclusive actions as these are both modeled by theirinterleaving. This constrasts also with models of true concurrency for whichthe asynchronous executions are not \�rst-class" transitions. This was the caseof asynchronous transition systems (see Chapter 1) for which we have an inde-pendence relation but no notion of \real" asynchronous execution.In [Pra91b] and [vG91] Pratt and van Glabbeek advocate a model of concur-rency based on geometry and in particular on the notion of a higher{dimensionalautomaton (HDA). Higher{dimensional automata are generalizations of theusual non{deterministic �nite automata as described in e.g. [HU79]. The basicidea is to use the higher dimensions to represent the concurrent execution ofprocesses. Thus for two processes, a and b, we model the mutually exclusiveexecution of a and b by the automatons3��b� I@@as1 s2I@@a ��b�s0whereas their concurrent execution is modeled by including the two{dimensionalsurface delineated by the (one{dimensional) a{ and b{transitions as a transitionin the automaton. This is pictured as 71



72 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAs3��b� I@@as1 ab s2I@@a ��b�s0A computation is a path in this higher{dimensional automaton.We begin by giving a �rst combinatorial description of HDA under the name\semi-regular HDA". They are very practical since their de�nition is very sim-ple. However they are not powerful enough for us to speak about some impor-tant geometric properties of the computations.As a matter of fact, several properties of computational relevance are deter-mined by the topology of the HDA. For example a HDA is deterministic if forany two paths in the automaton one can be transformed into the other in acontinuous fashion, i.e. non{determinism arises from holes in the automatonthat prevent the transformation of one path into another. Furthermore certaindi�erences in the topologies of two HDA imply that a computation is possiblein one HDA but not the other, i.e. information about the topology of HDA canbe used to answer questions about, for instance, bisimulation (see Section 6.5)between the HDA. To be able to speak about all these properties, we have tointroduce the notion of general HDA. We add up a few useful decorations, likelabelling at the end of this chapter.2.2 Basic de�nitionsHere we present two algebraic formalizations of the \geometric" transition sys-tems we are interested in. These are inspired by many well-known mathemat-ical techniques from algebraic topology and homological algebra so we presenta short note �rst for mathematically oriented readers.The �rst model, called semi-regular HDA has its direct inspiration in the sim-plicial techniques for describing geometric shapes. The name itself comes fromthe so-called \semi-simplicial complexes" [HW60] since we have only face op-erators and no degeneracy ones. Instead of using simplicial complexes, we usecubical ones (like in [Ser51]). Mathematicians will note that here we are reallyinterested in the combinatorial complex itself and not just as a tool to com-pute invariants of some geometrical shape. This view will be postponed untilSection 2.2.4 where the cubical complex generates a double complex. Logiciansand category theoreticians will easily recognize that this combinatorial modelis an instance of what is called a topos, or an \intuitionistic set theory".The second one, called general HDA is the fully algebraic treatment of thecombinatorial structure of the semi-regular HDA. This means that the combi-natorics is made hidden by looking at some induced \weak" double complexstructure, but some of the geometric characteristics of the HDA are made ap-parent through homology functors. The aim of the remaining chapters will thenbe to show why these notions are of importance in computer science.



2.2. BASIC DEFINITIONS 732.2.1 Semi-regular HDAWe begin by presenting a very simple geometric model for true concurrency,based on ideas by Vaughan Pratt and Rob van Glabbeek [Pra91b, vG91] andformalized in di�erent ways in [Gou93, GJ92].Operational models for concurrency start with (ordinary) transition systemsas we have seen in Chapter 1. This de�nition has already some geometryin it since we are all used to represent them as arrows (transitions) betweenstates (points or small circles). But this does not provide us with a semanticsstable by re�nement [vGG89] nor does it distinguish non-determinism fromtruly concurrent (or asynchronous) execution.As we have seen, a possible answer is to decorate the transition systems withsome relation prescribing the independence of some actions (or transitions).This can be done in more than one way; just to mention a few: asynchronoustransition systems [Bed88, Shi85], concurrent automata [Sta89] and transitionsystems with independence [WN94]. We comment on the former only and referthe reader to Chapter 1 for a detailed discussion of these operational models.The decoration (the independence relation I) added to ordinary transition sys-tems is enough to make the distinction between non-determinism and trueconcurrency. Suitable re�nement operators can be de�ned as well on thesestructures.There is a slight problem though. The level of parallelism is not de�ned in a veryprecise manner. This is due to the fact that the independence relation is only abinary one. We can interpret \aIb and bIc and cIa" once and for all as either\a, b and c can be run asynchronously" (maximal parallelism assumption) or \nomore than two among the three actions a, b and c can be run asynchronously"(minimal parallelism assumption). We insist on the \once and for all" in thelast sentence, since changing the interpretation of the independence relation fordi�erent transition systems would amount to assume implicit (external to themodel) conventions. We come back to these interpretation issues in Chapter 3.Of course, a straightforward generalization would be to replace the binary re-lation I by an n-ary relation. This could be done (though we do not have anypointers in the literature) but we have in mind to be able to add some featuresto our model like real-time (Part V) and the generalization then seems toocomplicated.This problem can be tackled if we get back to our geometric intuition. Thingshave been made overly unnatural by adding an object (the independence rela-tion) which is not of the same nature as transitions and states. Just think ofaIb as an abstraction of all possible asynchronous executions of a and b. As in[Pra91b], this can be pictured as the �lled-in square at the right-hand side ofFigure 2.1, distinguishing it in a striking manner with the interleaving at theleft-hand side of the same �gure. Notice that geometrically, the interior of thesquare consists of the union of all paths where executions of a and b overlap\in time" (middle picture of Figure 2.1). Time already makes its way into themodel, though not quanti�ed yet.As a direct generalization, asynchronous execution of n transitions give rise



74 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAFigure 2.1: Non-determinism (i) versus overlap in time (ii) abstracted by atransition of dimension 2 (iii).
a b

(i) (ii) (iii)to hypercubes of dimension n, called n-transitions (ordinary transitions are 1-transitions, states are 0-transitions). Interestingly enough, all this has a veryneat algebraic formulation.We present the geometric shapes we are interested in as unions of points, seg-ments, squares,: : :, hypercubes, i.e., as collections of n-transitions (n 2 IN).We glue them together by means of boundary relations (see Figure 2.2), givenby two boundary operators: d0, the start boundary operator and d1 the endboundary operator. They generalize the source and target functions for ordi-nary automata.Consider �rst a segment, 0 I - 1The object of dimension one I has as source boundary d0(I) = 0, and as targetboundary d1(I) = 1. What should we do for the square?(0; 0) a- (0; 1)A(1; 0)b? a0- (1; 1)b0?This corresponds to the asynchronous execution of actions a and b (a0 and b0are copies of transitions of label a and b respectively). The object of dimension2 \interior of the square" A should certainly have two source boundaries, up tothe order on fa; bg, d00(A) = a and d01(A) = b since from state (0; 0) we can �rea and b. Similarly, it should have two target boundary operators d10(A) = a0and d11(A) = b0 since from the parallel execution of a and b (represented byA) we can �rst end action a (giving \residue" b0) or action b (giving \residue"a0). We will see this again when speaking about paths. Notice that with thisordering on vertices, we have, d0(d01(A)) = (0; 0) = d0(d00(A)) and d1(d01(A)) =(1; 0) = d0(d10(A)).This generalizes easily to the cube,



2.2. BASIC DEFINITIONS 75(0; 0; 0) b - (1; 0; 0)@@aR @@R(0; 1; 0) - (1; 1; 0)(0; 0; 1)c? - (1; 0; 1)?@@R @@R(0; 1; 1)? - (1; 1; 1)?The object of dimension 3, \interior of the cube" D, has three source bound-aries, the three faces containing (0; 0; 0), and three target boundaries, the threefaces containing (1; 1; 1).Let A, B and C be the faces (respectively)((0; 0; 0); (1; 0; 0); (0; 0; 1); (1; 0; 1))((0; 0; 0); (0; 1; 0); (0; 0; 1); (0; 1; 1))((0; 0; 0); (1; 0; 0); (0; 1; 0); (1; 1; 0))Let A0, B0 and C0 the faces parallel to A, B and C respectively.Set d00(D) = A, d01(D) = B, d02(D) = C and d10(D) = A0, d11(D) = B0, d12(D) =C0. Then d00(A) = b, d01(A) = c, d00(B) = a, d01(A) = c, d00(C) = a, d01(C) = b.We verify that, d0i (d0j(D)) = d0j�1(d0i (D))for all i < j.This algebraic relation can be seen as corresponding to the cube axiom of con-current transition systems (Section 1.1.4) describing the (strong) con
uenceof actions a, b and c. This is a bit more general here since the cube axiomcorresponds to the view that we run every program on no more than two pro-cessors, identifying the strong con
uence of any two actions among three withthe parallel execution on three processors. Here the decomposition of the cubeshows that the boundary of an asynchronous execution of three processes is the\interleaving" of all possible asynchronous executions on two processors.This can be generalized to higher levels of parallelism. We can show that forany hypercube of dimension n, we can choose an ordering on vertices, squaresetc. such that the 2n boundary operators verify the commutation rules1,dki � dlj = dlj�1 � dkifor k = 0; 1, l = 0; 1 and i < j.Now we can glue these elementary shapes in order to get HDA. This is exem-pli�ed in Figure 2.2. We verify on the example the commutation rule betweenthe source and target boundary operators d0 and d1 respectively.



76 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAFigure 2.2: Glueing of elementary shapes to get a semi-regular HDA.
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1We can then introduce these formally under the name of unlabeled semi-regularHDA.De�nition 16 An unlabeled semi-regular HDA is a collection of sets Mn (n 2IN) together with functions Mn d0i-d1j- Mn�1for all n 2 IN and 0 � i; j � n� 1, such thatdki � dlj = dlj�1 � dki(i < jandk; l = 0; 1) and 8n;m n 6= m; Mn \Mm = ;.Elements x of Mn (dim x = n) are called n-transitions (or states if n = 0).In order to be able to study \natural" constructions on HDA, we de�ne a notionof morphism between them. As customary in recent work in concurrency[WN94], morphisms look like simulations. We set morphisms to be structure-preserving maps. In geometrical terms, morphisms preserve shapes, time (everytransition is mapped onto a transition), and orientation.De�nition 17 Let M and N be two semi-regular HDA, and f a family fn :Mn ! Nn of functions. f is a morphism of semi-regular HDA if and only iffn � d0i = d0i � fn+1fn � d1i = d1i � fn+1for all n 2 IN and 0 � i � n.This de�nes the category �sr of semi-regular HDA.We write �nsr for the full subcategory of �sr consisting of semi-regular HDAwhose elements are transitions of dimension less than or equal to n.1Very much like the ones we have for simplicial complexes.



2.2. BASIC DEFINITIONS 77Figure 2.3: A path and its inclusion morphism in a semi-regular HDA.
A

a b’
a

b

b’

a’

p

p

p0

2

4

p =
1

p =
3There is a truncation functor Tn : �sr ! �nsr de�ned by, Tn(M)m = Mm ifm � n and Tn(M)m = ; if m > n. Its e�ect can be interpreted as restrictingto behaviour on n processors.Now, traces of execution are described as sequences of states and transitionssatisfying certain properties. A path is to be understood as a sequence ofallocation (case (ii) below) of one action at a time on a new processor or deal-location (case (i) below) of one action at a time (i.e. its execution has endedon a given processor). An example of a path in an automaton M is given inFigure 2.3 together with its inclusion morphism into M (M simulates all of itspaths).De�nition 18 A path in a semi-regular HDA M is p = (p0; : : : ; pn) such thatp0 and pn are states and8k; 0 < k < n; 9j;8>>><>>>: pk�1 = d0j(pk) (i)or;pk+1 = d1j(pk) (ii)The de�nition of paths explains why the morphisms are (higher-dimensional)simulations. The commutation with the start boundary operator d0 for examplecan be seen as asserting: \wheneverM �res a new action,N �res a similar one".For k = 1 we are always in case (i) and for k = n � 1 we are always in case(ii). n is the length of p. If p does not verify any particular condition on thestates p0 and pn then p is called partial. If p0 is an initial state, i.e. a state suchthat there is no 1-transition t with d10(t) = p0, then p is a semi-partial path. Ifpn is a �nal state as well, i.e. a state for which there is no 1-transition t withd00(t) = pn, then p is a total path.Categorical and Combinatorial PropertiesWe �rst note that semi-regular HDA form a higher-order type theory (see[LS86]).Proposition 1 �sr is an elementary topos. Moreover it is complete and co-complete.



78 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAProof. There is actually a better way to formulate the de�nitions of semi-regular HDA, in order to study their algebraic properties.Let 2 be the free category2 whose objects are [n], where n 2 IN, and whosemorphisms are generated by, [n] �0i-�1j- [n� 1]for all n 2 IN� and 0 � i; j � n � 1, such that �ki �lj = �lj�1�ki (i < j) .Now, the category 2Set of functors from 2 to Set (morphisms are naturaltransformations) is isomorphic to �sr. Therefore ([LS86] and [MM92]) it is anelementary topos. It is complete and co-complete because Set is complete andco-complete. 2This formulation of the de�nition of �sr enables us to describe combinatoriallythe shapes we are dealing with. Let D[n] be the semi-regular HDA Hom2([n]; �)(where Hom2 is the Hom functor in the category 2).(*) De�nition 1 A singular n-cube of a HDAM is a morphism � : D[n] !M .(*) Lemma 1 The set of singular n-cubes of a semi-regular HDA M is in one-to-one correspondence with Mn. The unique singular n-cube corresponding toa n-cube x 2Mn is denoted by �x : D[n] ! M . It is the unique singular n-cube� such that �(Id[n]) = x.Proof. By Yoneda's lemma. Recall that �sr is isomorphic to the categoryof functors from 2 to Set. Then the D[n] are the representable functors andNat(D[n];M) �= M([n]), where M is a functor from 2 to Set. This translatesto �sr(D[n];M) �= Mn. 2(*) Proposition 1 Let M be a semi-regular HDA. The following diagram isco-cartesian (for n 2 IN),ax2Mn+1 _D[n+1] `x2Mn+1 _�x- Tn(M)ax2Mn+1D[n+1]�? `x2Mn+1 �x- Tn+1(M)�?where _D[n+1] = Tn(D[n+1]) and _�x = �xj _D[n+1].2Such a category exists by general theorems. It is actually isomorphic to a poset categorywhich we will not describe here.



2.2. BASIC DEFINITIONS 79Proof. It su�ces to prove that the diagram below (in the category of sets) iscocartesian for all p � n+ 1,ax2Mn+1( _D[n+1])p `x2Mn+1 ( _�x)p- (Tn(M))pax2Mn+1(D[n+1])p�? `x2Mn+1 (�x)p- (Tn+1(M))p�?since colimits (hence pushouts) are taken pointwise in a functor category intoSet.For all p < n + 1, the inclusions are in fact bijections, and the diagram is thenobviously cocartesian.For p = n + 1, the complement of `x2Mn+1 ( _D[n+1])p in `x2Mn+1 (D[n+1])p is theset of copies of cubes Id[n+1], one for each cube of Mn+1. This means that themap `x2Mn+1 (�x)p induces a bijection from the complement of `x2Mn+1 ( _D[n+1])ponto the complement of (Tn(M))p. This implies that the diagram is cocartesianfor p = n+ 1 as well. 2This lemma states that the truncation of dimension n + 1 of a semi-regularHDAM is obtained from the truncation of dimension n ofM by attaching somestandard (n+ 1)-cubes D[n+1] along the boundary _D[n+1] of n+ 1 dimensionalholes. This is the basic property of combinatorial cell complexes [LW69] andthis will be used when passing from discrete to continuous geometry in Part V(real-time systems).Computer-scienti�cally, the previous proposition states that the shapes de-scribed by the class of semi-regular HDA is a sensible one since we go froma skeleton of dimension n to a skeleton of dimension n + 1 by adding someindependence relations, or dually, by cancelling some mutual exclusions.We proceed by decribing the main categorical combinators in two ways. Wepresent their de�nition in terms of sets of transitions and boundary operatorsand in a SOS-like metalanguage we now de�ne.In this meta-language, we wish to enumerate the transitions of higher-dimensio{nal transition systems in a format similar to the usual SOS one.Semi-regular HDA can be seen as the union of its sub-HDA generated by asingle n-transition. From that point of view, enumerating the n-transitions canbe seen as enumerating these sub-HDA. We choose3 to abstract these by thepair of their initial and �nal states and the generating n-transition, that is, for3There are other choices which in particular describe higher-dimensional traces in a moreaccurate way. We prefer to use this abstraction here because it is simpler and relates toHoare-like formalisms for proving partial correctness of programs.



80 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAt a n-transition of M ,(s t- s0) =fd�1�1 : : : d�k�k (t)=k � n; �i = 0; 1g �Mwhere s = d00d01 : : : d0n�1(t) and s0 = d10d11 : : : d1n�1(t) are the initial and �nalstates of t in M respectively. Then, we de�ne an entailment relation j= torelate M to its sub-HDA, and we write,M j= s a - s0 , (s a - s0) �MNotice that for all M and states s of M we may write,M j= s s- sConversely, given a set of SOS-like rules of the formP1 j=u1 a1- v1 : : : Pn j=un an- vnP j= u a - vwe can get back to a semi-regular HDA: this is called the interpretation of theSOS rules. This is done by considering the set of rules as a positive inductivede�nition [CC92b].We say that a set of SOS rules is adequate with respect to a categorical com-binator if and only if its interpretation is isomorphic to the application of thecategorical combinator.This being settled, we can describe the categorical combinators.All limits and colimits are computed \pointwise" (see [ML71]) in a functorcategory. Translating this back from the functor category to the category ofsemi-regular HDA we obtain,� the cartesian product of two semi-regular HDA F;G is the semi-regularHDA F � G with (F � G)n = Fn �Gnand d�k[F �G] = d�k[F ]� d�k[G]In SOS form, only one rule is required,Q j=u t - v Q0 j=u0 t0- v0 dim t = dim t0Q�Q0 j=(u; u0) (t; t0)- (v; v0)It can be interpreted as the synchronized product of Q and Q0, wheretheir respective transitions are forced to be executed in a synchronousmanner. It is adequate.



2.2. BASIC DEFINITIONS 81� the coproduct of two semi-regular HDA F;G is(FaG)n = Fn [ Gnd�k[FaG](x) = 8<: d�i [F ](x) if x 2 Fnd�k[G](x) if x 2 GnIn SOS form, we need two rules,Q j= u t- vQaQ0 j=u t- vQ0 j= u0 t0- v0QaQ0 j=u0 t0- v0These show that the coproduct acts like the non-deterministic choice +of CCS (Section 5.4).� In the isomorphic functor category, the Hom-functor right-adjoint to thecartesian product is given by Yoneda's lemma. If we write D[n] for therepresentable functor (where Hom2 is the Hom-functor in the category2) D[n] = Hom2([n]; �), the right adjoint ) is,G) H([n]) = Nat(D[n] �G;H)and for f 2 G) H([n]),G) H(��k)(f) :D[n�1] �G - H(u; v) - f(u � ��k ; v)(Nat denotes here the set of natural transformations). This translates to,(G) H)n = ff : D[n] �G! H=f morphismgd�k[G) H ](f) :D[n�1] �G - H(u; v) - f(u � ��k; v)In SOS form,G j=u t- v G) H j=u0 t0- v0 dim t = dim t0H j=u0(u) t0(t) - v0(v)Note that it looks like the elimination rule for ) in intuitionistic logic.This is due to general constructions of categorical logic. It is not fullyadequate since we would need an introduction rule (but this in turn needsjudgments including variables).Before carrying on deeper into the categorical structure of semi-regular au-tomata, we give a few pictures and examples.



82 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAFigure 2.4: Coproduct of two automata (left) and amalgamated sum of thesame automata (right).
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+ +Example 2 � In Figure 2.4, we have drawn the coproduct of two HDAand an amalgamated sum, where the initial points have been identi�ed.This amalgamated sum (pushout) represents an internal choice4 as inTS (Section 1.3.1) whereas the coproduct (or direct sum) is an externalchoice. It can be seen as a coproduct in the category of semi-regular HDAequipped with a basepoint, and morphisms preserving them. This categoryis interesting since it is mimicking the one of standard automata, wherethe basepoint is the initial state.� In Figure 2.5, we have pictured a cartesian product of two semi-regularHDA as well as a �bered product (pullback). The �bered product hereonly synchronizes actions that are mapped by l onto the same transition.This will be one of the basic remarks for de�ning the category of labeledHDA. l corresponds to a labelling function and the �bered product is asynchronization �a la CSP (Section 1.3.2).� Finally, we have drawn a very simple example of a \function space" HDA(Figure 2.6). It can be seen to represent at least synchronous functioncalls. Let f : V ar � Prog ! Res be a morphism between semi-regularHDA V ar (for values of \variables"), Prog (for \program" traces) andRes (for \result"). f computes the value of the result when the programis executed with initial values represented by V ar. Now this morphism is\equivalent" to Proc = curry(f) : V ar ! (Prog ) Res) which gives thedi�erent \specializations" of f when applied to particular values. On theother side of the adjunction, we have a synchronous evaluation morphismeval : (V ar; Proc)! Res.The category �sr also has features from linear logic [Gir87].Proposition 2 �sr is a monoidal closed category.As a sketch of proof we construct a tensor product and its right-adjoint. De�nea tensor product F 
 G of two semi-regular HDA F and G (to represent theparallel composition with no interference as in [Gou93]) to be(F 
 G)n = [i+j=n Fi � Gj4There is a parameter \hidden" in the initial state which makes the choice between thetwo branches.



2.2. BASIC DEFINITIONS 83Figure 2.5: A cartesian product (left) and a �bered product (right).
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84 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAand, for x 2 Fi; y 2 Gj ,d�k[F 
G](x; y) = (d�k[F ](x); y) if k � i� 1d�k[F 
G](x; y) = (x; d�k�i[G](y)) if k > i� 1For example, � � � 
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The corresponding (adequate) rule for the tensor product isQ j=u t - v Q0 j=u0 t0- v0Q
 Q0 j=u 
 u0 t
 t0- v 
 v0Notice that the tensor product creates transitions of higher-dimensions (it isdi�erent from the \synchronous" product) that precisely express the asynchronyin their execution. In the example above we have� �
 �
 
 a
 b- � 
 ��a6 
b6j=The tensor product has a right-adjoint, because it commutes with colimits (byproposition II.1.3 of [GZ67]), which is given again by Yoneda's lemma. We noteit by |�, and it is de�ned by,(G|� H)n = ff : D[n] 
G! H=f is a morphismgand for f 2 (G |� H)n; d�k[G|� H ](f) :D[n�1] 
G - H(u; v) - f(u � ��k ; v)Finally, its SOS rule isG j=u t- v G|� H j=u0 t0- v0H j=u0(u) t0(t) - v0(v)In G|� H we have functions which fork new actions (dynamically). In� � �|� 
�a6 �a6 
b6there is for instance a 1-transition \fork the b action" (using the � notation forfunctions) �x:x
 
 �x:x
 b- �x:x
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2.2. BASIC DEFINITIONS 85More generally, using the same kind of arguments that we had on the syn-chronous function space, we can call G|� H the asynchronous function space.It contains in particular analogues to Remote Procedure Calls in a quite ab-stracted way, since its elements are functions which evaluate their argumentsin parallel with their own execution. This is a quite powerful kind of mobilityof processes even if it is di�cult to see the exact relationship with the mobilityattained in �-calculus (Section 1.3.3) or CHOCS [Tho89].We will not need the exponentials of linear logic [Gir87] in the sequel. Never-theless, we give one possible construction here for completeness of this chapter.For A a semi-regular HDA, let !A be de�ned by (!A)n = ; for all n 6= 0 and(!A)0 = A0. It de�nes an endofunctor on �sr . Let now d :!!!�! and e :!! Idbe the natural transformations de�ned by: d(A) is the identity morphism on!A, e(A) is the inclusion morphism of A0 into A. (!; d; e) is a comonad. Now,standard results (see [AL91b] for instance) give the interpretation of all non-commutative intuitionistic linear logic in �sr. The intuitionistic logic, retractof this linear logic in the comonad (!; d; e) is the classical logic of the powersetof states (on which Hoare logics are based).(y) Geometric realizationWe are trying now to give an explicit geometric representation of semi-regularHDA. This is done in the same style as the geometric realization functor betweensimplicial sets and CW-complexes (see for instance [GZ67] or [May67]).This will prove useful, not only for formalizing the way we picture HDA butalso in the future for giving hints about how to go from discrete time (IN or ZZ)to continuous time (IR).Let 2n be the standard cube in IRn+1 (n � �1),2n = f(t0; : : : ; tn)=8i; 0 � ti � 1g2�1 = f0gand let �ki , 0 � i � n, be the continuous functions (n � 0),2n � �0i 2n�12n�1�1i 6de�ned by, �ki (t0; : : : ; tn�1) = (t0; : : : ; ti�1; k; ti; : : : ; tn�1)And, for n = 0, �00(0) = (0)�10(0) = (1)



86 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAThen,Lemma 1 �ki �lj = �lj+1�ki (i � j)Proof. Let i � j, and (t0; : : : ; tn) 2 2n. Then,�ki (�lj(t0; : : : ; tn)) = �ki (t0; : : : ; tj�1; l; tj; : : : ; tn)= (t0; : : : ; ti�1; k; : : : ; l; tj; : : : ; tn)= �lj+1(�ki (t0; : : : ; tn))2We notice that �k verify the dual equations that dk verify in all semi-regularHDA.Consider now, for a semi-regular HDA M (on Set), the set R(M) = `n;x2Mn(x;2n). Each (x;2n) inherits a topology given by the standard one on Rn+1,thus R(M) is a topological space with the disjoint sum topology.Let � be the equivalence relation induced by the identities:8k; i; n; 8x 2Mn+1; 8t 2 2n; n � 0; (dki (x); t) � (x; �ki (t))Let jM j= R(M)= �. It has a structure of topological space induced by R(M).jM j is called the geometric realization of M .(*) Lemma 2 Let f : X �! Y be a morphism between the two semi-regularHDA X and Y. Then f induces a continuous map j f j from j X j to j Y j.(*) Proof. De�ne R(f) : R(X) �! R(Y ) by: R(f)((x; t)) = (f(x); t). It isobviously a continuous map.Suppose (x; t) � (y; s). Then there exists (y1; s1); :::; (yu; su) such that (y1; s1) =(x; t), (yu; su) = (y; s) and 8g, 9k; j, dkj (yg) = yh and sg = �kj (sh) with h = g+1or h+ 1 = g.We show by induction on u that R(f)((x; t)) � R(f)((y; s)), thus inducinga map from j X j to j Y j. We just have to show that R(f)((x; t)) �R(f)((y2; s2)), the result will be proven using the induction hypothesis.Suppose 9k; j, dkj (x) = y2 and t = �kj (s2). But dkj (f(x)) = f(dkj (x)). Thus,dkj (f(x)) = f(y2) and t=�kj (s2), which proves the result. 2(*) Proposition 2 j � j is a functor from �sr to Top, the category of topolog-ical spaces with continuous maps.



2.2. BASIC DEFINITIONS 87(*) Proof. By Lemma 2 we see that we just need to prove that, for any twosemi-regular morphisms f and g, j f �g j=j f j � j g j. This is straightforward. 2We can de�ne an analogue of the singular complex functor (called here \cubica-lation"), which is well-known to be a right-adjoint to the geometric realizationfunctor between simplicial sets and CW-complexes.De�nition and lemma 1 For X 2 Top, let S(X) be the semi-regular HDAde�ned as follows:� S(X)n is the set of singular cubes, i.e. the maps f : 2n ! X,� the operators dki are de�ned by the following equations, for f 2 S(X)n,dki (f) = f � �kiProof. The result is a direct consequence of Lemma 1. 2Proposition 3 S induces a functor from Top to �sr.Proof. We �rst have to de�ne the action of S on morphisms in Top. Let fbe a morphism from X to Y in Top. De�ne S(f) on elements of S(X)n, i:2n ! X , to be S(f)(i) = f � i : 2n ! Y . Therefore the image of an elementof S(X)n by S(f) is an element of S(Y )n. We now have to verify that S(f)commutes with dkj to show that S(f) is a semi-regular morphism:dkj (S(f)(i)) = dkj (f � i)= f � i � �kj= S(f)(dkj (i))Then, for any two morphisms f and g, we have for all i element of S(X)n,S(g � f)(i) = g � f � i = S(g) � S(f)(i). S is a covariant functor. 2We call cubicalation of an object X of Top any sub-semi-regular HDA M ofS(X) with j M j= S(X). Any such sub-HDA corresponds to a choice of atime-
ow.(*) Theorem 1 S is right-adjoint to j.j.(*) Proof. We prove that there exist two natural transformations� : Id! S(j : j)� :j S j! Id



88 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATA(respectively the unit and counit of the adjunction) such thatS �S- S(j S j) S�- Sj � j j � j �- j S(j � j) j � j � j- j � jare the identity.We can �rst show that: (A) : M ,! S(jM j)(B) : j S(X) j,! Xin a natural manner for all M semi-regular HDA and X object of Top. Webegin by (A). For all n, we have the identity arrows on 2n which induce theisomorphisms: for all x, Id : 2n ! (x;2n). These in turn induce injectivemorphisms fx : 2n !jM j, because M is an amalgamated sum of the (x;2n).The (fx)x form a subset N of S(j M j). It is an easy exercise to show thatN is closed under the action of the dki . Thus N is a sub-semi-regular HDA ofS(jM j). The naturality of the inclusion arrowM ,! S(jM j) is most obvious.This de�nes what is to be the unit of the adjunction.Now, we come to (B). Elements of S(X)n are f : 2n ! X . Now, j S(X) j isan amalgamated sum of (x;2n), x 2 S(X)n. The x induce on x̀ (x;2n) andthen on j S(X) j an injective morphism in Top. It is an easy exercice to showthat these arrows are natural in X . This de�nes what is to be the counit of theadjunction.Then, we have to verify that two compositions of natural transformations arethe identity. This is easy veri�cation. 2This implies that j � j commutes with all colimits. In particular (+ is theamalgamated sum): jM +N j=jM j [ j N j2.2.2 (y) Partial HDAUp to now, all transitions were required to terminate. Nothing in semi-regularautomata represents deadlocking behaviour. Partial HDA are de�ned for thispurpose: they are semi-regular HDA with \missing" boundaries, meaning thatsome transitions may never terminate if evaluated (deadlocking behaviour).Partiality is very much used in all areas of semantics, and many studies havebeen published on the properties that some categories of partial maps have or donot have. To mention but a few, Plotkin [Plo85], Moggi [Mog86], Curien (par-tial categories), Carboni (bicategories of partial maps, [Car86]) and Robinson,Rosolini ([RR88b], categories of partial maps and p-categories) have all studieddi�erent versions of categories of partial maps. It is the case in all these verygeneral and quite constrained de�nitions that not all categorical properties arepreserved when going from a category A to a category PA of partial maps onA constructed out of A. Here we use a very pragmatic approach. The formalde�nitions are as follows,



2.2. BASIC DEFINITIONS 89De�nition 19 A partial HDA (or PHDA in short) is a collection of sets Mn(n 2 IN) together with partial functionsMn d0i-d1j- Mn�1for all n 2 IN and 0 � i; j � n� 1, such thatdki dlj = dlj�1dki (i < j; k; l = 0; 1)whenever both sides of the equality are well de�ned5 and8n;m; n 6= m; Mn \Mm = ;We write dki (x) = ? when dki is unde�ned in x. In this case, we say that x hasno boundary dki .Then we de�ne the category of partial HDA P� by giving a notion of morphism,De�nition 20 Let M and N be two partial HDA, and f a family of partialfunctions (fn)n :Mn ! Nn. f is a morphism of partial HDA if and only iffn � d0i = d0i � fn+1fn � d1i = d1i � fn+1for all n 2 IN, whenever both sides of the equalities are de�ned6.f(x) = ? corresponds to mapping a n-transition to an idle transition.In the following example, we label missing boundaries by ?.Example 3 � � a- ?a is an action that deadlocks on one processor,� ?��a� @@?R� A ?@@bR ��?�?A deadlocks two processors.5M is called closed partial if moreover when one side is unde�ned, the other is unde�nedas well. They form a full subcategory of partial HDA isomorphic to the category of functorsfrom 2 to ~Set, the category of sets with partial maps. I owe R�egis Cridlig the idea thatnon-closed partial HDA are necessary for giving semantics to some languages (see [Cri95])and that partial HDA in general should be studied in their own right.6For closed partial HDA we restrict to morphisms for which both sides of the equalityshould be unde�ned at the same time. This gives us the subcategory CP�.



90 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAThe study of their categorical properties is made easy by what we know onsemi-regular automata.De�nition and lemma 2 The coproduct of M , N partial HDA is the partialHDA Pn = Mn [Nndki [P ] = dki [M ]adki [N ]Proof. We have two canonical morphisms inl : M ! P and inr : N ! Pde�ned in a straightforward manner. We verify that if we have two morphismsf : M ! Q and g : N ! Q then there exists a unique h : P ! Q such thath � inl = f and h � inr = g. There is no other way than setting h(x) = f(x) ifx 2M , h(x) = g(x) if x 2 N . h is a morphism. 2De�nition and lemma 3 The cartesian product of two partial HDA M andN is the partial HDA P = M �N ,Pn = Mn �Nndki (x; y) = 8<: (dki (x); dki (y)) if both boundaries are de�ned? otherwiseProof. Let p1 : P ! M and p2 : P ! N be the two projections. They aremorphisms of partial HDA since for instance p1(dki (x; y)) = p1(dki (x); dki (y)) =dki (p1(x; y)) if both boundaries are de�ned and if not p1(dki (x; y)) = ? =dki (p1(x; y)).Now if f : Q!M and g : Q! N are two morphisms then h : Q! P de�nedby h(x; y) = (f(x); g(y)) is a morphism. 2In the subcategory of closed partial HDA cartesian products may not exist.De�nition 21 For M and N two partial HDA de�ne P = M 
N by,Pn = [i+k=n Mi �Nkand for (x; y) 2Mi �Nk,duv(x; y) = 8>>><>>>: (duv(x); y) if duv(x) de�ned and v < i(x; duv�i(y)) if duv�i(y) de�ned and v � i? otherwise



2.2. BASIC DEFINITIONS 91We de�ne P = M ) N as,Pn = ff : D[n] �M ! N=f is a morphismgd�k[M ) N ](f) :D[n�1] �M - N(u; v) - f(u � ��k ; v)Similarly, we de�ne P = M |� N as,Pn = ff : D[n] 
M ! N=f is a morphismgd�k[M ) N ](f) :D[n�1] 
M - N(u; v) - f(u � ��k ; v)Lemma 2 ) (resp. |�) is right-adjoint to � (resp. 
) in P�sr .Proof. Let f 2 P�(M�N;P ). Let g be the function de�ned onM with rangethe set of partial functions fromN to P by g(m)(n) = f(m;n) (m 2M;n 2 N).We prove that g actually takes values in N ) P .Let m 2 M , suppose m 2 Mi. Let # m = fd�1i1 : : :d�kik (m)=0 � k � ig. Thenthere is a unique morphism �m : D[i] !# m with �m(Id) = m similarly to thetotal case. It is also called the singular cube associated with the cube m. Now,g(m)(n) = f � (�m � Id)(Id; n). By de�nition f � (�m � Id) 2 N ) P , andn! (Id; n) is an isomorphism. Therefore g(m) takes values in N ) P .Now we have to prove that m ! g(m) is a morphism of partial HDA, i.e.that g(d�k(m)) = d�k(g(m)) whenever both sides are well de�ned. g(d�k(m)) =f � (�d�k(m) � Id). Now by de�nition of the boundary operators in N ! P ,d�(g(m))(Id; n) = g(m)(��k; n)= f � (�d�k(m) � n)(Id; n)= g(d�k(m))The proof for |� goes along the same lines. 2A further generalization is to consider transitions that belong to more generalcategories than Set. We can also separate collections of objects of dimension ninto collections of objects indexed by two indices p; q with dimension p + q, inorder to be able to trace the propagation on paths. This will prove useful whenspeaking about homology and homotopy.2.2.3 Regular automataHere, we choose n-transitions to be elements of modules or vector-spaces. Thiswill enable us to speak about �nite collections of transitions internally (seeChapter 7).



92 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAIn all the rest of the text, R is a principal commutative domain(we refer to Appendix A for details).Looking again at Figure 2.2, we see that we can decompose M as follows.Set M0;0 = (�), M1;0 = (a) � (b), M1;�1 = (�) � (
), M2;�1 = (d) � (c),M2;�2 = (�)� (�),M3;�2 = (c0)� (d0), M3;�3 = (�) and M3;�1 = (C) (where (x)is the module generated by x and � is the direct sum of modules). The 1-path(b; c; d0) can now be conveniently identi�ed with the formal sum b+ c+ d0.De�nition 22 A regular HDA is a direct decomposition of a free R-module Mas M =Mp;q�0 Mp;qtogether with boundary operatorsd0i :Mp;q !Mp�1;qd1j :Mp;q !Mp;q�1(0 � i; j � p+ q � 1) such thatdki � dlj = dlj�1 � dki(for all i < j and k = 0; 1, l = 0; 1).Morphisms of regular HDA are f : M ! N with f = (fp;q)p;q, where fp;q :Mp;q ! Np;q are module homomorphisms such that fp;q � d0i = d0i � fp+1;q andfp;q � d1j = d1j � fp;q+1 for all i; j with 0 � i; j � p+ q. The category of regularHDA is denoted by �r .We will also consider cyclic regular automata which are regular HDA in whichsome elements of Mp;q and Mp0;q0 , p0 + q0 = p+ q may be identi�ed.They form a category �cr .The formal relationships with the semi-regular and partial models will be post-poned until Part II.2.2.4 General HDAGeneral HDA are a generalization of semi-regular HDA that abstract away fromthe combinatorics of transitions. They will prove also to be the right place inwhich we can speak of the geometry of a higher-dimensional transition system.De�nition and lemma 4 Let A be the function from �sr to diagrams in thecategory of free R-modules with,A(Mp;q) @0- A(Mp�1;q) : : :A(M) = ...A(Mp;q�1)@1? : : :



2.2. BASIC DEFINITIONS 93such that A(Mp;q) is the free module generated by Mp;q and,@0 = i=p+q�1Xi=0 (�1)id0i@1 = i=p+q�1Xi=0 (�1)id1ithen,� @0 � @0 = 0� @1 � @1 = 0� @0 � @1 + @1 � @0 = 0� A lifts to morphisms f and A(f) � @0 = @0 � A(f), A(f) � @1 = @1 � A(f).Proof. Easy veri�cation. 2We will generally write M for the free R-module generated by M and by anabuse of notation, it will also mean the general HDA generated by a semi-regular, or a regular automaton M .Notice also that closed partial HDA give rise to the same algebraic struc-ture through a slightly generalized functor A which maps \missing bound-aries" (the unde�ned ?) onto 0. It seems that non-closed HDA are some-what too unstructured for deriving an interesting algebraic structure. Regu-lar HDA obviously provide us with boundary operators @0 and @1 verifying@20 = @21 = @0@1 + @1@0 = 0.All this motivates the generalization,De�nition 23 A (unlabeled) higher dimensional automaton ( HDA) is a R-module M with two gradings associated to two boundary operators @0 and @1,that is, consists in:� a decomposition: M= Pp;q2ZZMp;q, such that8n;0@ Xp+q=n Mp;q1A \0@ Xr+s6=n Mr;s1A = 0� two di�erentials @0 and @1, compatible with the decomposition, giving Ma structure of bicomplex: @0 :Mp;q �!Mp�1;q@1 :Mp;q �!Mp;q�1@0 � @0 = 0; @1 � @1 = 0; @0 � @1 + @1 � @0 = 0



94 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAThere are many more relations between semi-regular HDA, partial HDA andgeneral HDA. These will be developed in Part II. Note that here we have gener-alized as well to negative dimensional transitions. Their interest will be shownin Chapter 4. For our mathematically oriented readers, note that a generalHDA is only a \weak" bicomplex (or double complex or complex of complex,see Appendix A) in the sense that we do not have a direct decomposition of Monto the Mp;q.Sometimes we explicitly write the boundary operators with the HDA: (M ,@0,@1). @0 is called the source boundary operator and @1 is the target bound-ary operator. When we want to specify the domain and codomain of theseboundary operators, we write @p;q0 for @0 : Mp;q �! Mp�1;q and @p;q1 for@1 : Mp;q �! Mp;q�1. If M is in fact a direct sum of Mp;q, that is, whenM is a free bigraded bidi�erential R-module, then M is said to be an acyclicHDA, name which will be justi�ed in Lemma 12.If M is a �nite-dimensional module, then M is called a �nite state automaton.Remark: A \standard" unlabeled automaton can be given the structure of a(unlabeled) higher-dimensional automaton. Let (A,�,�,I ,F ) be an automaton;A is a set of states, � is a set of transitions, � is the transition relation, � �P(A� �� A), I is the set of initial states, F is the set of �nal (or accepting)states. De�ne M by 8p; q; p+ q = 0;Mp;q = R�Mod(A)8p; q; p+ q = 1;Mp;q = R�Mod(�)Let DF be the setDF = fa 2 A= 6 9�; a0; (a; �; a0) 2 � and a 62 Fg (it is the setof deadlocks of the automaton). Let DI = fa0 2 A= 6 9(a; �; a0) 2 � and a0 62 IgThen, @0(�) = a, (9a0 2 A; (a; �; a0) 2 �) ^ (a 2 AnDI)@1(�) = a0 , (9a 2 A; (a; �; a0) 2 �) ^ (a0 2 AnDF )Last but not least, @j are null functions on M0.This construction projects all deadlocks onto 0 and all \false" initial states onto0.Example 4(1) M0;1 = (a) @0- M�1;1 = (1)M0;0 = (�)@1? @0- M�1;0 = 0@1?



2.2. BASIC DEFINITIONS 95with @0(a) = 1 and @1(a) = �, is an acyclic �nite state HDA. It comesfrom the standard automaton (A;�; �; I; F ) with A=f1; �g, � = fag,� = f(1; a; �)g, I = f1g and F = f�g.(2) M0;1 = (a) @0- M�1;1 = (1)M0;0 = (1)@1? @0- M�1;0 = 0@1?with @0(a) = 1 and @1(a) = 1, is a �nite state HDA which is not acyclic.(3) M1;1 = (A) @0- M0;1 = (a)� (b) @0- M�1;1 = (1)M1;0 = (a0)� (b0)@1? @0- M0;0 = (�)� (�)@1? @0- M�1;0 = 0@1?M1;�1 = (
)@1? @0 - M0;�1 = 0@1? @0- M�1;�1 = 0@1?with @0(A) = a�b, @1(A) = a0�b0, @0(a) = @0(b) = 1, @1(a) = @0(b0) = �,@1(b) = @0(a0) = � and @1(a0) = @1(b0) = 
. It is an acyclic �nite stateHDA.(4) M0;1 = (a)� (b) @0- M�1;1 = (1)M1;0 = (a0)� (b0) @0- M0;0 = (�)� (�)@1? @0- M�1;0 = 0@1?M1;�1 = (
)@1? @0 - M0;�1 = 0@1? @0- M�1;�1 = 0@1?with @0(a) = @0(b) = 1, @1(a) = @0(b0) = �, @1(b) = @0(a0) = � and@1(a0) = @1(b0) = 
. It is an acyclic �nite state HDA.Actually, all these HDA are the result of the application of functor A to semi-regular HDA. We can give pictures of their geometric realization (respectively):



96 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATA(1) 1 a- �(2) ?� �	1 a(3) ���b� @@a0R1 A 
@@aR ��b0��(4) ���b� @@a0R1 
@@aR ��b0��In general we consider free R-modules (see Appendix A). But non-free oneshave an interest of their own, as the example below demonstrates.Example 5 Let R = ZZ. All ideals of R are then of the form nZZ, n 2 ZZ.Let M be the following HDA (using the notations of Appendix A),� M1;0 = (a)2,� M0;0 = (�)2,� all others are null.with boundary operators @0(a) = � and @1(a) = �. Then a is a cyclic transitionsuch that 2a = 0, i.e. such that we only look at the number of times we gothrough modulo 2. This is a form of built-in congruence analysis [Gra90].



2.2. BASIC DEFINITIONS 97(*) Lemma 3 Let M be a HDA. Let N be the module M with the followingdecomposition: Nn = Xp+q=nMp;qThen @0 � @1 gives N the structure of graded di�erential module. We writeN=Tot(M) (for total complex).Proof. Obviously (@0 � @1)(Nn+1) � Nn. Moreover, (@0 � @1) � (@0 � @1) =@0 � @0 + @1 � @1 � (@0 � @1 + @1 � @0) = 0. Finally, we have to verify that Nn isa grading of N. We compute:Nn \Nm = Xp+q=n Mp;q \  Xr+s=m Mr;s!thus, if n 6= m, Nn \Nm = 0.2Conversely, one can reconstruct the two gradings of a HDA M (this translationis precisely de�ned in Part II, Chapter 5), given the grading of Tot(M), up to atranslation of the indexes of a multiple of (1,-1). We will use this to abbreviate,when possible, the two indexes to one (the one given by Tot). This extends tothe indexes one can give to @0, @1.For x in Mp;q, we say that x is of dimension p+ q, denoted by dim x = p + q.Elements of dimension 0 are called states, elements of positive dimension n aren-transitions, elements of negative dimension n are n-events (see Chapter 4 fora justi�cation of the name event).If we have decided on a generating set, or even a basis B for M , which will beoften the case, we call elementary states, transitions, and events, the states,transitions, events respectively which are elements of B. It is the case forinstance when a general HDA comes from the application of functor A to asemi-regular HDA or a partial HDA.M is said to be bounded below (resp. above) if there exists N such that allelements of dimension lower (resp. greater) than N are null.Example 6 Examples (1), (2), (3) and (4) are bounded below and above. Inexample (3), dim A = 2, dim a = dim b = dim a0 = dim b0 = 1 and dim 1 =dim � = dim � = dim 
 = 0. a, b, a0, b0, A, �, �, 
 form a basis B.De�nition 24 A path (of length n) in a HDA M is a sequence of elements ofB=fbig, a given generating set of M, p=(pi)0�i�n such that:p0; pn 2M0dim pi � 08i; @0(pi) =Xj �jbj ; with bk = pi�1 and �k 6= 0 or@1(pi) =Xj �jbj ; with bk = pi+1 and �k 6= 0



98 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAA n-dimensional path is a path whose elements are of dimension lower than (orequal to) n.Notice that the basis appears directly from the application of the functor A(from semi-regular HDA to general HDA) to paths of semi-regular HDA. Itis the same notion as the paths for regular automata when choosing a basisstable by the application of the boundary operators (this is always possible toconstruct such bases)Example 7 In example (3), the di�erent paths (for the basis B=f1,�, �,
,a,b,a0,b0,Ag) are subsequences of:(i) (1; a; �; b0; 
)(ii) (1; a; A; b0; 
)(iii) (1; a; A; a0; 
)(iv) (1; b; �; a0; 
)(v) (1; b; A; a0; 
)(vi) (1; b; A; b0; 
)This means that:� we have chosen B as the set of observable actions� (i) describes the sequential execution of a then b0� (ii): suppose process a is executed on processor 1, and process b is executedon processor 2. Then this path reads:from the idle state 1, processor 1 �res athen processor 2 �res concurrently b (transition A)then while processor 2 computes, processor 1 terminates a (transition b0:copy of b)then processor 2 also goes to an idle state, making the whole system haltto state 
.� (iii): keeping the same assumptions as in (ii) about the processors, thispath reads:from the idle state 1, processor 1 �res athen processor 2 �res concurrently b (transition A)then while processor 1 computes, processor 2 terminates b (transition a0:copy of a)then processor 1 also goes to an idle state, making the whole system haltto state 
.



2.2. BASIC DEFINITIONS 99� (iv) describes the sequential execution of b then a0� (v): from the idle state 1, processor 2 �res bthen processor 1 �res concurrently a (transition A)then while processor 1 computes, processor 2 terminates b (transition a0:copy of a)then processor 1 also goes to an idle state, making the whole system haltto state 
.� (vi): from the idle state 1, processor 2 �res bthen processor 1 �res concurrently a (transition A)then while processor 2 computes, processor 1 terminates a (transition b0:copy of b)then processor 2 also goes to an idle state, making the whole system haltto state 
.Notice that (ii),(iii),(v) and (vi) are maximal parallelism paths.Paths as they are de�ned are not very easy to use. A useful notion is that ofn-path, where we restrict actions to be of dimension n and where we collect allpossible ways in which n-transitions can end.De�nition 25 A n-path p is a �nite sequence (pi)i=1;:::;k of n-transitions suchthat (for all 1 � i < k) @1(pi) = @0(pi+1).To end the �rst part of this algebraic formulation of HDA, we need a notionof morphism to specify the \allowed" observations. For bicomplexes, there is astandard de�nition of morphism of bidegree (r; s) where r and s are integers.We will restrict to r = s = 0: observations are then some kind of simulations.De�nition 26 (see [Lan93a]) Let (r; s) be a pair of integers. Let f be a func-tion between two HDA (M; @0; @1) and (N; @ 00; @ 01), union of linear functions fi:Mp;q ! Np+r;q+s (f is bigraded). Then f is called a morphism (of HDA) ofbidegree (r; s) if the fi verify:8p; q; 8x 2Mp+1;q; 8y 2Mp;q+1; fp;q(@0(x)) = (�1)r+s@0(fp+1;q(x));fp;q(@1(y)) = (�1)r+s@1(fp;q+1(x)):A morphism of bidegree (0,0) is just called a morphism.The category whose objects are HDA and whose morphisms are morphismsof degree (0; 0) is denoted by �. Its restriction to acyclic HDA is �a. Therestriction to free modules is �F . �F and � coincide when R is a �eld. Thelower index f is reserved throughout this text to HDA whose underlying moduleis �nitely generated.



100 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAExample 8 � A typical monomorphism (injection) is an inclusion,
 
��b0� I@@a0�b06 i - � �I@@a ��b�1a6 1with i(a) = a, i(b0) = b0, i(1) = 1, i(�) = � and i(
) = 
.� A typical epimorphism (surjection) is a folding,���a�1 s- 1 a- �@@a0R �0with s(a) = s(a0) = a.These examples give a pretty much accurate picture of what morphisms are,since as in the category Set, all morphisms can be written as the compositionof an epimorphism and of a monomorphism7. They also provide us with a hintabout the labelling of HDA.Before coming to labels, we de�ne the notion of subHDA ,De�nition and lemma 5 Let (M; @0; @1) and (N; @ 00; @ 01) be two HDA. ThenN is a sub-HDA of M if and only if 8p; q, Np;q is a sub-module of Mp;q and@ 0jjNp;q = @jjNp;q (j = 0; 1). Sub-HDA of M can be identi�ed with monomor-phisms into M .Proof. Easy. 22.2.5 Labeled HDAA category of labeled HDALet P be a (unlabeled) HDA. Labelling P consists in identifying some tran-sitions of P to a common token. This identi�cation of \physical" transitions(those of P ) by labels can be thought of as a folding, or as a projection mor-phism onto a \labelling" HDA L. Thus labels are transitions of L, equivalenceclasses of transitions of P .7This will be entailed by the existence of quotient objects (see Chapter 3).



2.2. BASIC DEFINITIONS 101Example 9 ������a �1 l - ?� �	1 a@@@@@a0R �0with l(a) = l(a0) = a.De�nition 27 A labeled HDA (over L) is a pair (M; l) composed of an unla-beled HDAM , and a morphism l :M �! L. A morphism f : (M; l) �! (M 0; l0)of labeled HDA is a morphism of HDA between M and M 0 such that l0 � f = l.Hence the category of labeled HDA over L is the slice category �=L. Thecategories of labeled semi-regular HDA, labeled acyclic HDA, labeled regularand labeled partial HDA are the subcategories of �=L formed by changing �into �sr , �a, �r and P�sr respectively in the above de�nition.Example 10 let L be the HDA such that L0 = (1), L1 = (a)�(b) with @j(a) =@j(b) = 1. Let M be the HDA of example (4). De�ne a module homomorphisml by l(a) = l(a0) = a; l(b) = l(b0) = b and l(1) = l(�) = l(�) = l(
) = 1. Then lis a morphism, and (M; l) is a labeled HDA over L.More generally, we can be interested in transformations between labels as well(like restriction and relabelling of CCS-like process algebras, Section 1.3.1). Forthis to be expressible in our framework, we have to consider the category �!of arrows of �. Objects are arrowsA x - Band morphisms between x and y are pairs of morphisms (in �f ) (f; g) such thatthe following diagram commutes,A x - BCf? y - Dg?g is a relabelling function.



102 CHAPTER 2. HIGHER DIMENSIONAL AUTOMATAFigure 2.7: A subset with two one-transitions of T2 of the labelling automatonL (torus shaped { dashed lines materialize a 2-transition -).
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a

Some labellingsWe will often have a set A of actions and corresponding to that set there will bea \natural" labelling HDA. Let LA (or L when the context makes it clear whatset of actions it is based on) be the semi-regular HDA de�ned by (see Figure2.7),� L0 = f1g, L1 = A, Lk = Ak,� 8x 2 L1, d00(x) = d10(x) = 1� 8k � 2; 8(x1; : : : ; xk) 2 Lk , d0i (x1; : : : ; xk) = (x1; : : : ; xi; xi+1; : : : ; xk),and d1i = d0iBy extension, we will call LA the, respectively, regular, general HDA generatedby the previous semi-regular HDA.LA is natural in that, on the one hand, it gives the ordinary labelling to standardautomata as one can see in Example 10 and, on the other hand, it is a \natural"generalization (see Figure 2.7). We will come back to that more formally in thenext chapter.Finally, notice that the SOS format generalizes to labeled HDA. We de�ne anentailment relation j= to relate l :M ! L to its sub-HDA, and we write,M j= s a - s0 , 9t; l(t) = a; (s t - s0) �MNotice that for all M and states s of M we may write,M j= s l(s)- sSummary In this chapter, we have introduced the main categories of HDAwhich we will use in the following chapters. First, we introduced the semi-regular HDA and showed that they correspond geometrically to unions of hy-percubes of all dimensions, i.e. computer-scienti�cally to sequences of allo-cations and deallocations of processes on processors, making them suitable for



2.2. BASIC DEFINITIONS 103expressing dynamic properties of interest of concurrent systems. It was shown inparticular that synchronized products are cartesian products, parallel composi-tions are tensors, forking processes are in function spaces and non-deterministicchoices correspond to sums. Together with the \denotational" or categoricalsemantics approach, we developed a SOS-like notation for the description of allsemi-regular HDA. It was shown that some SOS-rules did match perfectly thecategorical constructions.Then we introduced some re�nements of this base model. Partial HDA adda \natural" notion of deadlocking behaviours to semi-regular HDA. The maincategorical properties were shown to be preserved. Regular HDA are semi-regular HDA \over R-modules". This means that they add some deadlockingbehaviours (by using the zero of R-modules) and they internalize the notionof �nite collection of transitions, hence of �nite path. Last but not least, thegeneral HDA abstract away from the combinatorics of regular HDA and gener-alize them by adding the notion of event. The structure they give is a \weak"double complex of R-modules structure. We ended by giving a way to labelthese transition systems in a natural manner (as \labelling" morphisms).
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Chapter 3Relationship with othermodels of concurrencyIn this chapter, we show that some kinds of transition systems (like ordinaryones, asynchronous ones) can be interpreted within the HDA model in di�erentnatural ways according to the level of parallelism and mutual exclusion prop-erties we are willing to observe. At the end of the chapter we also use some ofthe adjunctions of [WN94] to relate these interpretations with event structuresand Mazurkiewitz traces.3.1 Transition systems and HDAConsider the category C of labeled Higher-Dimensional Automata consisting ofmorphisms l :M ! L (L �xed once and for all) such that(H) : (8i; d0i (x) = d0i (x0)) ^ (8i; d10(x) = d10(x0))^ l(x) = l(x0), x = x0i.e. of \well" labeled HDA such that there is only one representative of agiven action between two given states. This does in no way restrict the powerof expression of HDA if we keep in mind that labels and states are the onlyobservable objects.The morphisms in this category are as usual f = (g; h) : (l : M ! L) ! (l0 :M 0 ! L) with g : M ! M 0 and h : L ! L such that the following diagram iscommutative, M g- M 0L?l h- L?l0By abuse of notation, we will identify f , g and h in the following.We will also consider in the following the category Cp (respectively Cp0) ofpairs (l : M ! L; s) with l 2 T1(C) (respectively l 2 C) and s 2 M0 (the\initial" state) and morphisms preserving initial states (\pointed" HDA). Cp0is the category of Higher-dimensional Transition Systems (HTS).105



106 CHAPTER 3. RELATIONSHIP WITH OTHER MODELSWe prove that Cp is isomorphic to TSA. As a matter of fact, the categories arede�ned in quite similar terms. States of ordinary transition systems are of thesame nature as states of labeled HDA and source and target representation oftransitions is nothing but a functional interpretation of the relation Tran.This is done formally by constructing two functors U : TSA ! Cp and V : Cp!TSA inverse of each other,� (M; l :M ! L; i) = U(S;A; Tran; j) with{ M0 = S,{ M1 = fas;s0=a 2 A; s a! s0 2 Trang,{ i = j,{ d00(as;s0) = s, d10(as;s0) = s0,{ l(as;s0) = a, l(s) = 1,� (S;A; Tran; j) = V(M; l :M ! L; i) with,{ S = M0,{ j = i,{ s a! s0 2 Tran i� 9x 2 M1, such that l(x) = a, d00(x) = s andd10(x) = s0,Action of the functors on morphisms is as follows,� if f = (�; �) : (S0; A0; Tran0; j0) ! (S1; A1; Tran1; j1) is a morphism oftransition systems then{ U(f)(as;s0) = �(a)�(s);�(s0),{ U(f)(s) = �(s) (s 2M0)� if f : (l0 : M0 ! L; i0) ! (l1 : M1 ! L; i1) is a morphism in Cp thenV(f) = (�; �) : V(l0 :M0 ! L; i0)! V(l1 : M1 ! L; i1) with{ �(s) = f(s) (s any state of V(l0 :M0 ! L; i0)),{ �(a) = f(a) (a any label in V(l0 :M0 ! L; i0))Now, in order to compare the category of higher-dimensional transition systemswith ordinary transition systems we only have to look at how to retract Cp0 ontoits subcategory Cp. This boils down to looking at the di�erent adjunctions wehave between �1sr = T1(�sr) and �sr .We have mainly two di�erent adjunctions between �1sr and �sr using T1 (to keepthe underlying ordinary transitions unchanged in the interpretation) among allthe possible ones. These adjunctions are nothing but comparisons of models byabstract interpretations [CC92a].Lemma 3 The inclusion functor I : �1sr ! �sr is left-adjoint to the truncationfunctor T1 : �sr ! �1sr.The truncation functor Tn : �sr ! �nsr is left-adjoint to a functor Gn : �nsr !�sr.



3.1. TRANSITION SYSTEMS AND HDA 107Proof. For the �rst part of the lemma, we associate to every morphism of�sr , f : I(M)! N a morphism of �1sr, T1(f) : T1(I(M)) = M ! T1(N). Thisis actually a bijective mapping between these two kinds of morphisms since forevery morphism g :M ! T1(N) in �1sr, the compositef : I(M) I(g)- I(T1(N)) j - Nwhere j : I(T1(N)) ! N is the natural inclusion of I(T1(N)) into N , is itsinverse mapping.For the second part of the lemma, notice that �sr is,� small co-complete (see Chapter 2),� well-co-powered,� has small hom-sets,� and has a small generating set (the D[n]).Moreover, �nsr has also small hom-sets, so it is enough to verify, by Freyd'sspecial adjoint functors theorem (see [ML71]) that Tn commutes with colimits.This is obvious. 2The functor Gn has actually a nice interpretation.Lemma 4 (m-connectedness1 of Gn(X) for all m � n) Let X 2 �nsr. Gn(X) isthe least (for the inclusion ordering) semi-regular HDA such that,� X � Gn(X),� any morphism f : _D[m] ! Gn(X) (m � n) can be extended to a morphismD[m] ! Gn(X) where _D[m] = Tm�1(D[m]).This means that all (m� 1)-interleavings2 (m � n) are interpreted under Gn as(i.e. mapped by Gn onto) truly concurrent executions of m actions (see Chapter8).These adjunctions now induce the adjunctionsTSA Umin-�Vmin Cp0 Vmax-�Umax TSAUmin represents ordinary transition systems of TSA literally, i.e. every transi-tion is mapped by Umin onto a 1-transition. The implicit parallelism that mayhave been in a transition system is discarded by Umin and is just interpreted asinterleaving. This corresponds to the traces on a one processor machine.1See for instance [Spa66].2Or (m� 1)-mutual exclusion, that is the execution of m actions under the constraint thatno more than m� 1 actions can be run asynchronously. Its traces are represented by _D[m].This behaviour is easily programmed using semaphores [Dij68].



108 CHAPTER 3. RELATIONSHIP WITH OTHER MODELSFigure 3.1: Example of minimal allocation and then maximal allocation.On the contrary, Umax detects all possible interleavings and interpretsthem uniquely as purely concurrent executions. No bound on the di-mension of transitions generated is put: this corresponds to traces on a machinewith in�nitely many processors. Umin describes the minimal allocation (ona multi-processor machine) strategy, given an ordinary transition system,whereas Umax describes the maximal allocation strategy3 (see Figure 3.1).Intermediate interpretations (or allocations) of ordinary transition systems canbe found if we use the similar adjunctions (m < n)�msr I-�Tm �nsr Tm-�Gnm �msrThen under the interpretation induced by (Tm;Gnm),all k-mutual exclusions are identi�ed with level of parallelism equalto k + 1 if k � m.We will actually prove this in a more general context, using methods fromhomological algebra in Chapter 8.Under the interpretation induced by (I; Tm),all levels of parallelism k (k � m) are interpreted as interleavings ofasynchronous executions of m actions.3.2 Asynchronous transition systems and HDALet ATSE be the full subcategory of ATS consisting of asynchronous transitionsystems on a given set of events E. We show that the pair of adjoint functors(Umin,Vmin) (resp. (Umax, Vmax)) induces a pair of adjoint functors (E ;F)(resp. (G;H)) between ATSE and the full subcategory dCp0 of Cp0 consisting ofdeterministic higher-dimensional transition systems, i.e. HDA satisfyingl(t) = l(t0) ^ d00(t) = d00(t0)) d10(t) = d10(t0)(for t; t0 1-transitions). It corresponds to a minimal allocation strategy (resp.maximal allocation strategy).3I owe Alan Mycroft (at WSA'93) the idea of developping the interpretation of suchadjunctions.



3.2. ASYNCHRONOUS TRANSITION SYSTEMS AND HDA 109We �rst de�ne functors E ;F , dCp02 E-�F ATSE(dCp2 is the full subcategory of dCp0 consisting of transition systems of dimen-sion less than or equal to two) by,� (P; j; l; L)=F(S; i;E; I; Tran) with,{ j = i, P0 = S,{ P1 = fts;s0=s t! s0 2 Trang,{ d00(ts;s0) = s, d10(ts;s0) = s0 and l(ts;s0) = t,{ P2 = fabs;s0;s00;u=aIb^as;s0 2 P1^bs;s00 2 P1^bs0;u 2 P1^as00;u 2 P1g,{ d00(abs;s0;s00;u) = as;s0 , d01(abs;s0;s00 ;u) = bs;s00 , d10(abs;s0;s00 ;u) = bs0;u,d11(abs;s0;s00;u) = as00;u and l(abs;s0;s00;u) = (a; b).� E(P; P l! L; j) = (S; i; E; I; Tran) with,{ i = j, S = P0,{ s t! s0 2 Tran, �9x 2 P1; l(x) = t ^ d00(x) = s ^ d10(x) = s0�{ aIb if and only if 9C 2 P2, l(C) = (a; b)F has the same action on the underlying ordinary transition system of anasynchronous transition system as functor U . Similarly for E which acts as Von the underlying ordinary transition systems. F �lls in all interleavings of twoindependent actions by 2-transitions. E imposes two actions to be independentif and only if there exists a truly concurrent execution of them somewhere inthe labeled HDA.The action on morphisms is again easy to de�ne.Let f = (�; �) : (S; i; E; I; Tran) ! (S0; i0; E 0; I 0; Tran0) be a morphism ofasynchronous transition systems. Then g = F(f) : F(S; i; E; I; Tran) !F(S 0; i0; E 0; I 0; Tran0) is de�ned by,� g(s) = �(s) for s 2 F(S; i; E; I; Tran)0,� g(ts;s0) = �(t)�(s);�(s0) for ts;s0 2 F(S; i; E; I; Tran)1,� g(abs;s0;s00;u) = �(a)�(b)�(s);�(s0);�(s00);�(u)for abs;s0;s00 ;u 2 F(S; i; E; I; Tran)2.Finally, for g : (P; P l! L; j)! (P 0; P 0 l0! L; j 0) a morphism of dCp2 we de�nef = (�; �) : E(P; P l! L; j)! E(P 0; P 0 l0! L; j0),� �(s) = g(s) for s state of E(P; P l! L; j),



110 CHAPTER 3. RELATIONSHIP WITH OTHER MODELSFigure 3.2: Example of co-retract F � E
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FoE� let s t! s0 be a transition in E(P; P l! L; j). Then by de�nition of E thereexists x 2 P1 with l(x) = t, d00(x) = s and d10(x) = s0. Then we can set�(t) = l � g(x). This de�nition does not depend on s, s0,Proposition 4 (E ;F) is a pair of adjoint functors.Proof. We verify easily that E � F = Id. We now have to show that theidentity morphism is co-universal (case (iv) of Theorem 2 page 81, [ML71]) moreprecisely that for all (S; i; E; I; Tran) 2 ATSE , Id : EF(S; i; E; I; Tran) !(S; i; E; I; Tran) is universal from E to (S; i; E; I; Tran).Let f = (�; �) : (S1; i1; E; I1; Tran1) = E(P1; j1; l1; L) ! (S; i; E; I; Tran) bea morphism of asynchronous transition systems. Remember that � is a func-tion from (P1)0 = S1 to S and � : E ! E. We de�ne f 0 : (P1; j1; l1; L) !(P; j; l; L) = F(S; i; E; I; Tran) as follows,� f 0j(P1)0 = �,� f 0j(P1)1 is such that for all ts;s0 2 (P1)1, f 0j(P1)1 = �(t)�(s);�(s0),� for all abs;s0;s00;u 2 (P1)2, f 0j(P1)2(abs;s0;s00;u) = �(a)�(b)�(s);�(s0);�(s00);�(u).It is easy to see that Ef 0 = f , hence the universality. 2Composing (E ;F) with (T2;G2) we obtain a pair of adjoint functorsdCp0 E � T2-�G2 � F ATSEcorresponding to amaximal interpretation of the independence relation(maximal allocation strategy).All k-mutual exclusions (k � 2) are interpreted as level of parallelismk + 1.



3.2. ASYNCHRONOUS TRANSITION SYSTEMS AND HDA 111Example 11 � supposing :(aIb) we have,: :��b� I@@a ��b� I@@a: : E-�F : :I@@a ��b� I@@a ��b�: :This shows that 1-mutual exclusions can be expressed under the maximalallocation interpretation of asynchronous transition systems.� Supposing aIb, aIc and bIc the following asynchronous transition systemis mapped onto a �lled-in cube (i.e. onto D[3]),: b - :@@aR @@R: - ::c? - :?@@R @@R:? - :?This shows that 2-mutual exclusions are identi�ed with asynchronous ex-ecution of three actions.The minimal allocation strategy can be obtained very easily through the ad-junction ATSE G-�H dCp01where,� (P; j; l; L)=G(S; i;E; I; Tran) with,{ j = i, P0 = S,{ P1 = fts;s0=s t! s0 2 Trang,{ d00(ts;s0) = s, d10(ts;s0) = s0 and l(ts;s0) = t,� H(P; P l! L; j) = (S; i; E; I; Tran) with,{ i = j, S = P0,{ s t! s0 , �9x 2 P1; l(x) = t ^ d00(x) = s ^ d10(x) = s0�,{ I = E � E.



112 CHAPTER 3. RELATIONSHIP WITH OTHER MODELSFigure 3.3: Co-retract H � G
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HoGAgain, G and H act as U and V respectively on the underlying ordinary transi-tion systems. This time, G forgets all the information about the independenceof actions whereas H considers all actions to be independent.The actions of morphisms are straightforward.Proposition 5 (G;H) is a pair of adjoint functors.Proof. It is easy to see that G � H = Id. We now have to verify that forall (P; j; l; L) 2 dCp01, Id : GH(P; j; l; L) ! (P; j; l; L) is universal from G to(P; j; l; L).Let f : (P1; j1; l1; L) = G(S1; i1; E; I1; Tran1) ! (P; j; l; L) be a morphism ofHDA. We de�ne a morphism of asynchronous transition systems f 0 = (�; �) :(S1; i1; E; I1; Tran1)! (S; i; E; I; Tran) as follows,� �(s) = f(s) for s 2 S1 = (P1)0,� �(e) = f(e) for all e 2 E.This de�nes a morphism of asynchronous transition systems since for all e, e0,eI1e0 =) f 0(e)If 0(e0) because aIb is always true for any a, b.It is then easy veri�cation to see that Gf 0 = f , hence the universality of Id. 2Composing this with (I; T1), we get the minimal allocation strategy (on oneprocessor) of asynchronous transition systems.Under this interpretation, all mutual exclusions and concurrent exe-cutions are identi�ed.3.3 Mazurkiewitz traces and HDAWe de�ne a pair (V ;W) of adjoint functors between the subcategory GTLL ofGTL (where the alphabet is �xed to L) and Cp2 as follows,If (M; I; L) is a generalized Mazurkiewitz trace we set V(M; I; L) to be theHDA (l : P ! L; j) with,� j = �,



3.3. MAZURKIEWITZ TRACES AND HDA 113� P0 = f[s]�==s 2Mg,� P1 = f([s]�=; [sa]�=)=s 2M; a 2 Lg, d00([s]�=; [sa]�=) = [s]�=, d01([s]�=; [sa]�=) =[sa]�= and l([s]�=; [sa]�=) = a,� P2 = fab[s]�==s 2M; a 2 L; b 2 L; aIsbg and,{ d00(ab[s]�=) = ([s]�=; [sa]�=),{ d01(ab[s]�=) = ([s]�=; [sb]�=),{ d10(ab[s]�=) = ([sb]�=; [sba]�=),{ d11(ab[s]�=) = ([sa]�=; [sab]�=),{ l(abs) = a
 b.If (l : P ! L; j) is a HTS then de�ne W(l : P ! L; j) = (M; I; L) with,� M = f(l(x0); : : : ; l(xn))=(j; x0; s1; x1; : : : ; xn; sn+1) is a path in P g,� Let (j; x0; s1; x1; : : : ; xn; sn+1) be a path of dimension 1 in P .s = (l(x0); : : : ; l(xn)) 2 M . Then set aIsb if and only if there is C 2 P2such that d00d01(C) = sn+1 and l(C) = a
 b.This means that the strings of the Generalized Mazurkiewitz trace are preciselytraces in the HDA, and the independence relation is once again read in the 2-transitions of the HDA.In the following, we actually restrict to CCp2 the subcategory of deterministicand connected HTS, i.e. the subcategory of HTS (l : P ! L; j) such that forall state s of M there exists a unique path from j to s.Proof. We �rst prove that W � V = Id. Let (M; I; L) 2 GTLL and de�ne,V(M; I; L) = (l : P ! L; j)W(l : P ! L; j) = (M 0; I 0; L0)Let s 2 M , s = a0 : : : an (ai 2 L). Then we can see by a straightforwardinduction on n that ([�]�=; x0; [a0]�=; : : : ; xn; [s]�=) is a path of dimension one inP , where xi = ([a0 : : : ai�1]�=; [a0 : : : ai]�=). This implies, by de�nition ofW , thatl(x0) : : : l(xn) which is equal to a0 : : :an is in M 0. Therefore M �M 0.Conversely, let a0 : : : an 2 M 0. Then there exists (j; x0; s1; x1; s2; : : : ; xn; sn)a 1-path in P such that l(xi) = ai. Then, l(x0) : : : l(xn) = a0 : : :an 2 M .Therefore M = M 0.Now, aI 0sb if and only if s = l(x0) : : : l(xn) and there is C 2 P2 such thatd00d01(C) = sn+1 and l(C) = a 
 b. By construction, this is equivalent toC = ab[s]�= and aIsb.Now, we prove that when we restrict to deterministic connected HDA, there isa natural transformation V � W ! Id. Let (M; I; L) = W(l : P ! L; j) and(l0 : P 0 ! L; j 0) = V(M; I; L). Then j 0 = � = j. Let t 2 P0. As P is connected,there is a unique 1-path from j to t in P0. Let s be its trace in L. We de�ne a



114 CHAPTER 3. RELATIONSHIP WITH OTHER MODELSgraded function f = (fi)i from P to P 0 by �rst setting f(t) = [s]�=. For x 2 P1,de�ne f1(x) = (f0(d00(x)); f0(d10(x))). For A 2 P2 with l(A) = a 
 b, de�nef2(A) = ab[f0(d00d01(A))]�= . It is easy to see that f de�nes a morphism of HDAfrom P to P 0. Moreover, it is natural in its argument. It de�nes the co-unit ofthe adjunction. The fact that it is universal from V to Id is left to the reader. 2Example 12 � Let (M; I; L) be,{ L = fa; bg,{ M = f�; a; b; ab; bag,{ I is the constant function from M to 2L�L such that for all t 2 M ,xI(t)y if and only if x = a, y = b or x = b, y = aThen by the pair of adjoint functors above, we see that it corresponds tothe HDA, [ab]�=��� I@@[a]�= ab[�]�= [b]�=I@@ ���[�]�=� Let (M; I; L) be,{ L = fa; bg,{ M = f�; a; b; ab; bag,{ I is the constant function from M to 2L�L such that for all t 2 M ,x; y 2 L, xI(t)y is false.This corresponds via the pair of adjoint functors above to the HDA,[ab]�= [ba]�=[a]�=6 [b]�=6I@@ ���[�]�=The allocation strategies deriving from this pair of adjoint functors are of thesame kind as for asynchronous transition systems. Basically, we have a maxi-mal allocation strategy which identi�es all k-mutual exclusions withlevel of parallelism k+1 when k � 2, and a minimal allocation strategywhich does not express any level of parallelism strictly more than 2.



3.4. EVENT STRUCTURES AND HDA 1153.4 Event structures and HDAWe use the equivalence with deterministic labeled event structure (in [SNW94])to have interpretations of HDA in terms of a truly concurrent, linear time,behavioural model of concurrency.It is proven in [SNW94] that one particular full subcategory of labeled eventstructures, the categoryDES of so-called deterministic labeled event structuresand the category of generalized trace languages are equivalent.This is proven with the partial morphisms only, and we review this constructionin order to show that it works also for total morphisms.We derive a generalized Mazurkiewitz trace language (M; I; L) from a labeledevent structure (E;�;#; l; L) if we suppose it is deterministic, i.e., for anycon�guration c and any pair of events e; e0 2 E, whenever c ` e, c ` e0 andl(e) = l(e0) then e = e0 as follows,� M = fl�(e1 : : : en)=fe1; : : : ; eng is a securingg. Notice that as (E;�;#; l; L)is deterministic, M is in bijection with the set of strings of events. Callthis bijection Sec,� Is = f(a; b)=sab 2M;Sec(sab) = xe0e1; and e0coe1gConversely, we can de�ne a deterministic labeled event structure (E;�;#; l; L)from a generalized Mazurkiewitz trace language (M; I; L).Events in (M; I; L) are just traces identi�ed in a suitable way, using the inde-pendence relation. Formally, let � be the least equivalence such that,� aIsb implies sa � sba,� s � s0 implies sa � s0athen the set of events occuring in s 2M is de�ned to beEv(s) = f[u]�=u is a non empty pre�x of sgEvent [s]� is now before event [s0]� ([s]� � [s0]�) if and only if for all u 2 M ,[s0]� 2 Ev(u) implies [s]� 2 Ev(u).Events [s]� and [s0]� are in con
ict if and only if for all u 2 M , [s]� 2 Ev(u)implies [s0]� 62 Ev(u).Finally, l([s]�) = a if and only if s = s0a for some s0.These two transformations between Generalised Mazurkiewitz Traces and De-terministic Labelled Event Structures extend to functors which actually de�nean equivalence of categories [SNW94].Example 13 � We recall that the following Generalized Mazurkiewitz TraceLanguage (M; I; L) de�nes a mutual exclusion between letters a and b,{ L = fa; bg,



116 CHAPTER 3. RELATIONSHIP WITH OTHER MODELS{ M = f�; a; b; ab; bag,{ I is the constant function from M to 2L�L such that for all t 2 M ,x; y 2 L, xI(t)y is false.and corresponds (by the equivalence above) to the Deterministic LabelledEvent Structure (E;�;#; l; L),{ E = f�; a; b; ab; bag,{ � is the pre�x ordering on strings of as and bs,{ a#b, ab#ba, a#ba, b#ab,{ l and L are the obvious labellings.� The following Generalized Mazurkiewitz Trace Language (M; I; L) de�nesthe concurrent execution of actions a and b,{ L = fa; bg,{ M = f�; a; b; ab; bag,{ I is the constant function from M to 2L�L such that for all t 2 M ,xI(t)y if and only if x = a, y = b or x = b, y = a.and corresponds (by the equivalence above) to the Deterministic LabelledEvent Structure (E;�;#; l; L),{ E = f[�]; [a]; [b]g,{ [�] � [a], [�] � [b],{ there is no con
ict,{ L = fa; bg and l([a]) = a, l([b]) = b.� Using the maximal allocation strategy for Mazurkiewitz traces and theequivalence with event structures, we see that the semi-regular HDA (rep-resented here via the adjunction with Top),: :��c� I@@a:e6 ac :��b� I@@a ��c�: ab :I@@a ��b�:is represented by the labeled event structure,e # cI@@a6 b6



3.5. OTHER MODELS 1173.5 Other modelsIn [SNW94], it is proved that we have the following adjunctions (the arrowsgo from the more concrete to the more abstract models), together with theadjunctions we have proven4,Top � �sr � TS I@@dTSLES6 � ST6I@@HL6where LES is the category of labeled event systems (equivalent to generalizedMazurkiewitz traces and pomsets without autoconcurrency), ST is the categoryof synchronization trees, HL the category of Hoare languages and dTS thecategory of deterministic labeled transition systems.Summary We have constructed formal correspondences (pairs of adjoint func-tors) in the style of [WN94] between some of the operational models of Chapter1 and the semi-regular HDA of Chapter 2. The di�erence with [WN94] is thatwe are looking at a variety of adjunctions between models and at their meaningin terms of properties of dynamic behaviours that are forgotten.There is in particular an isomorphism of categories between the category oflabeled transition systems and a category of labeled semi-regular HDA of di-mension 1. This in turn induced di�erent ways to understand diamond shapes intransition systems. One way was to interpret them as purely non-deterministicinterleavings, i.e. as an execution on one processor and another was to inter-pret them as purely asynchronous executions (on some number of processors).These interpretations were shown to be pairs of adjoint functors (or abstract in-terpretations) and to correspond to di�erent allocation strategies (the minimalone for the former, the maximal one for the latter).Then we showed that these adjunctions could be generalized to \decorated"transition systems like asynchronous transition systems and generalized Mazur{kiewitz traces. The independence relation of ATS corresponds to a 2-transition(in fact many of them) and we have shown that di�erent allocation strategiescould be formalized. The independence relation of GTL was also shown to cor-respond to 2-transitions, but this time depending on a local state. We ended thechapter by using some of the results of [WN94] which gave us correspondenceswith event structures, Hoare languages and synchronization trees.This gives a hint why HDA seem to be well suited for studying allocationstrategies (and scheduling properties) of concurrent systems, since we have anotion of level of parallelism and its dual, a level of mutual exclusion. This willbe used in Chapter 7.4This is actually a commutative diagram.



118 CHAPTER 3. RELATIONSHIP WITH OTHER MODELS
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Chapter 4Categorical properties ofHDAIn this chapter, we consider constructions on the category � of HDA withmorphisms of degree (0; 0), and on the full subcategory �a of acyclic HDA. Someof these will bear a striking resemblance to operators of process algebra (thisis much in accordance with the results by Glynn Winskel on deriving processalgebras from the categorical constructions on several models of concurrency).Some others will have no known equivalent and will be discussed as new notions,except of course if we had already seen them in the previously studied categoriesof semi-regular, regular and partial HDA.4.1 Limits and colimits4.1.1 Zero objectLemma 5 0 is the zero object in categories � and �a, that is, is both theirinitial and terminal object.Proof. Obvious: there is only one morphism from 0 to any HDA M (initialobject property) and only one morphism from an HDA M to 0 (�nal objectproperty). 24.1.2 Finite limits and colimitsLemma 6 Categories �, �a are �nitely complete.Proof. We just need to prove that kernels and cartesian products exist inthese categories.Let P and Q be two HDA. Let M = P � Q as sets, and de�ne on M :� a structure of R-module by 8a 2 R, 8(x; y) 2 M , a(x; y) = (ax; ay), and8(x; y); (z; t) 2M , (x; y) + (z; t) = (x+ y; z + t)121



122 CHAPTER 4. CATEGORICAL PROPERTIES OF HDA� two boundary operators by 8(x; y) 2M , @j((x; y)) = (@j(x); @j(y))� two compatible gradings by Mi;j = Pi;j � Qi;jIt is a simple veri�cation to see that M is a HDA and is the cartesian productof M and N in the above mentioned categories.Now for kernels (or equalizers), let P , Q and f; g : P �! Q be respectivelyHDA and morphisms of HDA. Let M = fx=f(x) = g(x)g = Ker (f � g). Itis obviously a subHDA of P , and together with its inclusion morphism into Pforms the equalizer of P , Q, f and g. 2Remarks� �F has in general only cartesian products and not equalizers.� � has cartesian products and initial and �nal objects which coincide,thus it cannot be cartesian closed otherwise it would be a completelydegenerated category (all objects would be isomorphic).We have the notion of kernel of a morphism (equalizer of this morphism andthe map 0). This enables us to study the existence of quotients. Let P , Q andR be three HDA, Q � P , and f : P ! R a morphism of HDA such that Kerf is a sub-HDA of Q. Then the quotient P=Q of P by Q, together with its\canonical projection" p : P ! P=Q, if they exist, are the unique HDA andepimorphism such that, P f - R�����9! ~f�P=Qp?Lemma 7 Categories �a and � have quotient objects.Proof. We begin to prove it for acyclic automata. Quotient objects exist inthe category of R-modules, so we can de�ne, as modules, for Q sub-HDA of P ,(P=Q)i;j = Pi;j=Qi;jThey come together with projections pi;j : Pi;j ! Pi;j=Qi;j.We can de�ne also boundary operators @ 00 and @ 01 from Pi;j=Qi;j to Pi�1;j=Qi�1;jand from Pi;j=Qi;j to Pi;j�1=Qi;j�1 respectively, by,@ 00([x]Qi;j) = [@0(x)]Qi�1;j@ 00([x]Qi;j) = [@0(x)]Qi;j�1where [y]A denotes the class of y modulo A. It is a valid de�nition since if wehave two representants x and x0 of the same class modulo Qi;j , @0(x)�@0(x0) 2



4.1. LIMITS AND COLIMITS 123@0(Qi;j) � Qi�1;j . Same for @1. It is an easy veri�cation to show that the @00,@ 01 are boundary operators and then that this de�nition veri�es the property ofquotient objects with the canonical projection p being the union of the pi;j .For �, we have in particular to verify that the same construction veri�es theproperty that no two elements of di�erent dimension are equal. We follow theconstruction of [Lan93b].Let M be the R-module P=Q = Lk;l2ZZ Pk;l=Qk;l and H the smallest R-moduleof M generated by elements of the form Pk;l pk;l(xk;l) such that,� only a �nite number of xk;l are non null,� xk;l 2Mk;l,� Pk;l xk;l = 0.It is easy to see that M=H , which is by de�nition the R-module underlying theHDA P=Q, is an amalgamated sum of the R-modules Pk;l=Qk;l.Now, we construct the canonical projection p : P ! Pk;l2ZZ Pk;l=Qk;l as follows.Let x =Pk;l xk;l 2 P with xk;l 2 Pk;l. We de�ne p(x) =Pk;l [pk;l(xk;l)] where [y]denotes the equivalence class modulo H .Then, Pk;l xk;l =Pk;l yk;l implies Pk;l pk;l(xk;l) =Pk;l pk;l(yk;l), hence p is well de�ned.It is obviously a surjective module homomorphism. If x =Pk;l xk;l then p(x) = 0implies 9h =�k;l pk;l(hk;l) 2 H such that �k;l pk;l(xk;l � hk;l) = 0. Hence, 8k; l,xk;l � hk;l 2 Nk;l. But by de�nition of H , Pk;l hk;l = 0, therefore x =Pk;l (xk;l �hk;l) 2 N . This proves Ker p = N .Then p induces an isomorphism p : P=Q! M=H =Pk;l Pk;l=Qk;l. 2�F does not have quotient objects in general. For instance, for R = ZZ, M0 =(�), N0 = (2�), then (M=N)0 = (�)2 which is not free.Lemma 8 The categories �, �a are �nitely cocomplete.Proof. We prove �rst that coproducts � exist in these categories. If P and Qare HDA, then de�ne P �Q to be,� as modules, (P �Q)i;j = Pi;j �Qi;j (see [Lan93a] for the de�nition of thedirect sum � on modules),� together with boundary operators @i[P �Q] = @i[P ]� @i[Q] (i = 0; 1).Finally, cokernels exist in the category �: let P , Q and f; g : P �! Q be re-spectively HDA and morphisms of HDA. LetM = Q=Im (f�g) and p : Q!M



124 CHAPTER 4. CATEGORICAL PROPERTIES OF HDAthe canonical surjection. They are HDA and morphism of HDA respectively,by Lemma 7. It is indeed the coequalizer. 2Therefore amalgamated sums exist in the categories � and �a. The amalga-mated sum of X and Y over Z is denoted by X`Z Y .We have only �nite sums in �F in general.De�nition and lemma 6 Let A be a submodule of an HDA M . Then thereexists a smallest sub-automaton of M containing A, denoted by Clos(A). Wede�ne an operation + on submodules of M , by:A+ B = Clos(A) aClos(A)\Clos(B)Clos(B)Remark: Clos is clearly the topological operation of closure. We will see that+ corresponds to the geometric operation of connected sum.We call in1 and in2 respectively, the canonical morphisms from A to A + B,and B to A+B.Example 14 Let M be automaton (1) of Example 4, and let N be the automa-ton M , where a is replaced by a0 and �, by �0. Then M +M 0 can be picturedas: � �0I@@a ��a0�1Notice that cartesian product and coproduct are isomorphic constructions, sowe have biproducts.4.1.3 (y) Enriched structuresActually, the most interesting part of the categorical structure of HDA for useof homological (or K-theory) methods is something which will not be used forgiving semantics of concurrent programs.(*) Lemma 4 � is an abelian categoryProof. (see [ML71])All equalizers are monics. � has a zero object and biproducts. Therefore, it isan additive category.



4.1. LIMITS AND COLIMITS 125This means that �(A;B) for all A and B can be given a structure of commu-tative monoid1 by setting, for f; f 0 : A ! B, f + f 0 = r � (f � f 0) ��, where� and r are the diagonal and co-diagonal morphisms respectively.Moreover, every morphism has a kernel and a cokernel and every monic arrowis a kernel, every epi is a cokernel. This proves that � is an abelian category.24.1.4 Direct and inverse limitsWe �rst recall some notions of algebra, that can be found for example in[Lan93a] or [Mas78]:(*) De�nition 2 Let (I,�) be a directed set, and C be a category. A directsystem of C consists of a function which assigns to each i belonging to I, anobject Ci of C, and to each pair i,j 2 I such that i � j, a morphism Mij : Ci !Cj, such that the following holds:� For any i 2 I, Mii is the identity map of Ci,� If i � j � k, then Mik = MjkMij :For those who are familiar with the language of category theory, a direct systemof C is a covariant functor from the category I (viewed as the graph of � on I)to the category C.(*) De�nition 3 Let C be a category, and M a direct system of C. A directlimit of M2 consists of an object L of C and a collection of morphism pi : Ci !L verifying the two conditions:(i) For any i,j 2 I, i � j, pi = pjMij.(ii) For any object A of C and collection of morphisms qi : Ci ! A satisfyingthe previous property, there exists a unique morphism h : L ! A suchthat for every j 2 I, qj = hpj (universal property).We write: lim! Ci = LNow, we show that the notion of direct limit is functorial, that is, we cancompute a notion of direct limit for maps (to be de�ned) between direct systems.1In modern terminology we would say that � is a CMon-enriched category, where CMonis the category of commutative monoids.2Direct limits are a particular case of colimits, sometimes called �ltered colimits [ML71].



126 CHAPTER 4. CATEGORICAL PROPERTIES OF HDA(*) De�nition 4 [Mas78] A map of a direct system C into a direct system C0consists of an order preserving map f: I ! I 0, and for each i 2 I, a homo-morphism Fi : Ci ! C 0f(i) subject to the following condition: if i � j, thenM 0f(i);f(j) � Fi = Fj �Mi;j.The reader will certainly have recognized that F is a natural transformation(see [FS90]) of the functor M into the functor M 0f .Let us denote by (L; (pi)i�0) and (L0; (p0i)i�0) the direct limits of the directsystems C and C 0 respectively. Now, consider for each i 2 I the homomorphismp0f(i) � Fi : Ci ! L0. Then this collection of homomorphisms veri�es condition(i) of de�nition 3. Hence, by condition (ii) of the same de�nition, there existsa unique homomorphism F1 : L ! L0 such that 8i; p0f(i) � Fi = F1 � pi. Thishomomorphism F1 is called the direct limit of the homomorphisms Fi.lim! is a covariant functor from the category of direct systems of C and mapsof direct systems to C.(*) Lemma 5 Direct limits exist in the category of modules and linear maps.(*) Proof. See [Lan93a]. 2Corollary 1 Direct limits exist in �, �a and DG, the category of graded dif-ferential modules.Proof. Let (Ci; @i0; @i1) be the objets of a direct system of �. Let M i;j be themorphisms from Ci to Cj of this direct system. They respect the gradings, sothey induce morphisms M i;jk;l : Cik;l �! Cjk;l. Let (Lk;l; pik;l) be the direct limitof the direct system Dk;l = (Cik;l;M i;jk;l)i;j of R-modules.Consider now the map (f; F i)i from Dk;l to Dk�1;l:f : I �! I; f = IdF i : Cik;l �! Cik�1;l; F i = @0We have M i;jk�1;l � F i = F j �M i;jk;l because M i;j is a morphism of bicomplex.Therefore, it is a map of direct systems. Let @10 =lim! @i0. We can make thesame construction for F 0i = @1 which leads to an operator @11 : Lk;l �! Lk;l�1,@11 =lim! @i0. We have 8i, @i0 � @i0 = 0. Thus, lim! (@i0 � @i0) = @10 � @10 = 0 byfunctoriality of lim! . Similarly, @11 �@11 = 0 and @0 �@1+@1 �@0 = 0. Moreover,we know that: pik�1;l � @i0 = @10 � pik;lpik;l�1 � @i1 = @11 � pik;lThus, pi is a morphism of HDA between (Ci; @i0; @i1) and (L; @10 ; @11 ). We haveconstructed a cone (L,pi) in �. We have to prove it is universal.



4.2. TENSOR AND HOM 127Suppose we have morphisms p0i: Ci �! L0. Then there exists a unique linearmap h : L �! L0, such that 8i, h � pi = p0i. We already know, by construction,that h respects the two gradings of the HDA L and L0. For x 2 Ci, we haveh(pi(@j(x))) = h(@j(pi(x))) = p0i(@j(x)) = @j(h(pi(x))). Thus, for all i, h is amorphism from Im pi to L0. L is an amalgamated sum of the Im pi, hence his a morphism from L to L0. Therefore, (L; @10 ; @11 ) is the direct limit in �, of(Ci; @i0; @i1).�a is a full subcategory of �. This entails that direct limits exist in �a as well.The proof that direct limits exist in DG is similar. 2Proposition 6 Categories �, �a are cocomplete.Proof. This is entailed by the previous result and Lemma 8. 2Inverse limits are direct limits in the opposite category. We just state:Lemma 9 Inverse limits exist in the categories �, �a.Proof. They exist in the category of R-modules. We conclude by using thesame arguments as for the direct limits. 2Then,Proposition 7 Categories �, �a are complete.Proof. Follows from the �nite completeness and the existence of inverse lim-its. 24.2 Tensor and Hom(*) De�nition and lemma 1 Let M and N be two HDA. De�ne a R-moduleT by: Tp;q =Xk;l Mp�k;q�l 
Nk;land two operators (j=0,1)@j(x
 y) = @j(x)
 y + (�1)(dimx)x
 @j(y)that is, @n;mj = Xp+r=n;q+s=m(@p;qj [M ]
 Id+ (�1)p+qId
 @r;sj [N ])Then T is a HDA, called the tensor product of M and N .



128 CHAPTER 4. CATEGORICAL PROPERTIES OF HDAThe meaning of the amalgamated sum Pk;l Mp�k;q�l 
 Nk;l is intuitively clear.Nevertheless, we prefer to give a more formal de�nition here.If M and N are two acyclic HDA, then the de�nition of the tensor productbecomes the classical one (at least for complexes, see [ML63]),Tp;q =Mk;l Mp�k;q�l 
Nk;lSuppose now that M and N are not acyclic. Let L be the bigraded modulewith, Lp;q =Mk;l Mp�k;q�l 
Nk;land H the sub-module ofLp;q Lp;q such that Hp;q is generated by elements of theform, mp;q 
 nr;s �mp0;q0 
 nr0;s0with,� mp;q 2Mp;q, mp0;q0 2Mp0;q0 , nr;s 2 Nr;s and nr0;s0 2 Nr0;s0 ,� mp;q = mp0;q0 and nr;s = nr0 ;s0 .Now, Tp;q =Xk;l Mp�k;q�l 
Nk;ldenotes the equivalence classes modulo H of elements of Lp;q3. Notice thatthe sign in the boundary formula is the only one compatible with this quotientoperation.Proof. First, we have to verify: @0 � @1 + @1 � @0 = 0.We compute:@m;n0 � @m;n+11 = Xp+r=m;q+s=n�@p;q0 [M] � @p;q+11 [M]
 Id + (�1)r+s@p;q0 [M]
 @r;s1 [N]+(�1)p+q+r+s+1Id 
 @p;q0 [M] � @r;s+11 [N] + (�1)p+q@p;q1 [M]
 @r;s0 [N]�and@m;n1 � @m+1;n0 = Xp+r=m;q+s=n�@p;q1 [M] � @p+1;q0 [M]
 Id + (�1)r+s@p;q1 [M]
 @r;s0 [N]+(�1)p+q+r+s+1Id 
 @p;q1 [M] � @r+1;s0 [N] + (�1)p+q@p;q0 [M]
 @r;s1 [N]�3For more details, one can look at [Lan93b].



4.2. TENSOR AND HOM 129Their sum is equal to zero because of the relations of commutation (or anti-commutation) between @0[M ] and @1[M ] , and between @0[N ] and @1[N ].Secondly,@k � @k(x
 y) = @k �@k[M](x)
 y + (�1)dim xx
 @k[N](y)�= (�1)dim @k[M](x)@k[M](x)
 @k[N](y) + (�1)dim x@k[M](x)
 @k[N](y)= 02This construction is the tensor product of the two complexes associated withM1 and M2 (see [Mas78]). The reader can verify that it is actually a tensorproduct in the category (see for instance [FS90]) of complexes with morphismsgiven by De�nition 26.Example 15 The tensor product of two copies of automaton (1) of Example 4can be pictured as: � 
 �0���
 a0� I@@a
 �0� a 
 a0 �0I@@a ��a0�1This corresponds to the picture we had for the tensor product of semi-regularHDA. The correspondence between the categorical structures of the di�erentkinds of HDA will be made formal in Section 4.3.1.Lemma 10 Let M be an HDA. Then (� 
M), (M 
 �) are endofunctors on �,�a.Proof. Let F (X) = X 
 N . We de�ne the action of F on morphisms f :X �! Y by: F (f) : F (X) �! F (Y ); F (f)(x
m) = f(x)
mF (f) is a morphism, because,@i(f(x)
m) = @i(f(x))
m+ (�1)dimf(x)f(x)
 @i(m)= F (f)(@i(x)
m+ (�1)dimxx
 @i(m))= F (f)(@i(x
m))For acyclic automata, we verify that F (Q)m;n is a bigrading when Qp;q andMr;s are. 2



130 CHAPTER 4. CATEGORICAL PROPERTIES OF HDA(*) De�nition and lemma 2 Let P and Q be two acyclic HDA. We de�neHom(P;Q) as the acyclic HDA whose objects of index p; q are:Hom(P;Q)p;q = Yr;s2ZZHom(Pr;s; Qp+r;q+s)(where Hom(Pr;s; Qp+r;q+s) is the R-module of R-linear maps from Pr;s toQp+r;q+s) and whose boundary operators are:@0(fr;s) = @0[Q] � fr;s � (�1)p+qfr�1;s � @0[P ]@1(fr;s) = @1[Q] � fr;s � (�1)p+qfr;s�1 � @1[P ]for i=0,1, and fr;s being the (r; s) component of some f in Hom(P;Q)p;q.Proof. Easy veri�cation. We have for instance:@0@1f = @0 � @1 � f � (�1)p+q@1 � f � @0 � (�1)p+q@0 � f � @1�(�1)2(p+q)�1f � @1 � @0and,@1@0f = @1 � @0 � f � (�1)p+q�1@0 � f � @1 � (�1)p+q@1 � f � @0 + f � @0 � @1Thus, @0@1f + @1@0f = 0. 2Again, when P and Q are not acyclic, we would have to make more precise themeaning of Qr;s2ZZ Hom(Pr;s; Qp+r;q+s). It is intuitively clear that we want toidentify maps in it which are \equal" on \equal" elements, equality meaninghere the one we may have between elements having di�erent indexes. Theformula above for Hom(P;Q)r;s unfortunately does not work (see [Lan93b] fora counter-example).In fact, if P and Q are general HDA, we need to de�ne Hom(P;Q)r;s to be themodule of morphisms from P to Q of degree (r; s). Note that this de�nitioncoincides with the one we have given in the case of acyclic HDA. The boundaryoperators are de�ned in a similar way. Notice that the signs in these formulaeare the only ones we could choose, compatible with the identi�cation of elementsof the same dimension.Proposition 8 Let M be an HDA. Functors (�
M), (M 
�), Hom(M; �) and(M + �) are !-continuous, that is, preserve direct limits.Proof. Let C = (Ci;Mi;j)i;j be a direct system in � and (D; pi)i =lim! C.For F a functor, F (C) = (F (Ci); F (Mi;j))i;j is a direct system in � and(F (D); F (pi))i is a cone for F (C). We just need to prove it is universal, andthen we will conclude F (D) =lim! F (C). Let (E; qi)i be a cone for F (C) and



4.2. TENSOR AND HOM 131B=fb1; :::; bj; :::g be a generating set for M .We begin by considering the functor F = (M 
 �). For all j, (E; qi;j)i, whereqi;j(x) = bj 
 x, is a cone for C. Thus there exists hj : D �! E such that 8i,qi;j = hj � pi. Now, let h be de�ned on F (D) by h(bj 
 x) = hj(x). h veri�esthe identities qi = h � F (pi), 8i. Thus, using the same arguments as in Lemma1 h is a morphism on Im F (pi), hence h is a morphism from F (D) to E.We have to prove the uniqueness of such an h. Suppose we have h and h0 veri-fying qi = h �F (pi) = h0 �F (pi). Then, h(bj 
 �) = hj and h0(bj 
 �) = h0j verifyqi;j = hj � pi = h0j � pi. Therefore hj = h0j , 8j, and h = h0 (because they aregenerated by the hj and h0j).For F = � 
M , we reason in a similar way.The cases F = (M + �) and F = Hom(M; �) are left to the reader.24.2.1 Autonomous structureLemma 11 � is symmetric monoidal.Proof. The map, A
 B - B 
 Aa
 b - (�1)dim adim bb
 ais a natural (in A and B) isomorphism. Thus � is symmetric monoidal. 2(*) Proposition 3Hom(P 
 Q;R) �= Hom(P;Hom(Q;R))(*) Proof. We verify this �rst when all automata are acyclic.Let Tp;q=Hom(P 
Q;R)p;q and Sp;q= Hom(P;Hom(Q;R))p;q.Notice that, as R-modules (and for any R-modules A, B, C):Hom(A�B;C) �= Hom(A;C)�Hom(B;C)Hom(A
 B;C) �= Hom(A;Hom(B;C))Hom(A;B � C) �= Hom(A;B)�Hom(A;C)Then we have as R-modules:Tp;q = Yr;s2ZZHom(Mk;l Pk;l 
Qr�k;s�l; Rp+r;q+s)�= Yr;s2ZZYk;l Hom(Pk;l 
Qr�k;s�l ; Rp+r;q+s)�= Yr;s2ZZYk;l Hom(Pk;l; Hom(Qr�k;s�l; Rp+r;q+s))



132 CHAPTER 4. CATEGORICAL PROPERTIES OF HDANow, still as R-modules:Sp;q = Yr;s2ZZHom(Pr;s; Hom(Q;R)p+r;q+s)�= YHom(Pr;s; Yi;j2ZZHom(Qi;j; Rp+r+i;q+s+j))�= Yr;s2ZZ Yi;j2ZZHom(Pr;s; Hom(Qi;j; Rp+r+i;q+s+j))�= Tp;qNow, we have to see if this isomorphism of R-modules is an isomorphism ofR-bicomplexes.@j [T ](fi;j;k;l) = @j [R] � fi;j;k;l � (�1)p+qfi;j;k;l � (@j [P ]
 Id[Q])�(�1)p+q+k+lfi;j;k;l � (Id[P ]
 @j [Q])where fi;j;k;l acts on Pk;l 
Qi�k;j�l, and,@j [S](fi;j;k;l) = @j [R]� fi;j;k;l� (�1)p+qfi;j;k;l � @j [Q]� (�1)p+q+k+lfi;j;k;l � @j [P ]where fi;j;k;l is the (i; j)th component of the (k; l)th component of f .In the latter term, fi;j;k;l is in Hom(P;Hom(Q;R))p;q, and in the former, itis in Hom(P 
 Q;R)p;q, by isomorphism u given by u(f)(x 
 y) = (f(x))(y).Applying this to the former relation, we have:u(@j [T ](fi;j;k;l)) = @j [R] � u(fi;j;k;l)� (�1)p;qu(fi;j;k;l) � (@j [P ]
 Id[Q])�(�1)p+q+k+lu(fi;j;k;l) � (Id[P ]
 @j [Q])Thus,@j [T ](fi;j;k;l)(x)(y) = @j [R](fi;j;k;l)(x)(y)� (�1)p+qfi;j;k;l(@j [P ](x))(y)�(�1)p+q+k+lfi;j;k;l(x)(@j [Q](y))This equates @j [T ] with @j [S].The case of � is no more complex but too tedious to be detailed here. 2For f an object of dimension n of Hom(P;Q), we say that:if n > 0 then f increases the degree of parallelism (by n) andif n < 0 then f decreases the degree of parallelism (by n).Now, Hom is a contravariant functor in its �rst argument, and covariant in itssecond argument. Let f : P �! P 0 be a morphism of HDA. Then Hom(f;Q) :Hom(P 0; Q) �! Hom(P;Q) is the morphism such that Hom(f;Q)(h) = h � f .If g : Q �! Q0 is a morphism, then Hom(P; g) : Hom(P;Q) �! Hom(P;Q0)is the morphism de�ned by Hom(P; g)(h) = g � h.



4.2. TENSOR AND HOM 133Example 16 Let a be an elementary object of dimension n in a HDA M .Suppose that fa(x) = a
 x is well de�ned on M . Then dim f = n and @j(f) =f@j(a).(*) Lemma 6 The map eval : Hom(P;Q)
 P �! Q de�ned byeval(ffi;jgi;j ; x)4 = fp;q(x)if x 2 Pp;q, is a morphism (of degree 0), called the evaluation map.Proof. Suppose dim f = n and x 2 Pp;q. Then,@j(eval(ffi;jgi;j 
 x) = @j [Q](fp;q(x))andeval(@j(ffi;jgi;j 
 x) = eval(f@j(fi;j)gi;j 
 x+ (�1)nffi;jgi;j 
 @j(x))= @j [Hom(P;Q)](fp;q)(x)) + (�1)nfp;q(@j [P ](x))= @j [Q](fp;q(x))24.2.2 �-autonomous structuresFinite HDALet (1) be the HDA generated by a state 1, and with null boundary operators.De�nition 28 Let M be a free HDA (M 2 �F ). Then the HDA M� =Hom(M; (1)) is called the dual of M . Elements of M� are called functionals.We now choose for M a basis B. The de�nitions involving B will be non-canonical, but in most applications, the basis comes before the module M (forinstance when M = N , N semi-regular HDA). For x in B, we write x� for thefunctional such that x�(x) = 1 and 8y 2 B, y 6= x, x�(y) = 0.This extends to any element x =Pi �ixi, with xi 2 B by letting x� =Pi �ix�i .Let now �B or simply � be the re
exive and transitive relation onM generatedby the relations:for x; y 2 B x�(@0(y)) 6= 0 =) x � yfor x; y 2 B y�(@1(x)) 6= 0 =) x � yWe say that transition a comes before transition b if a � b. All paths p verifyi < j ) pi � pj . The next lemma shows that acyclic corresponds to ourintuition: the 
ow of paths on an acyclic automaton is partially ordered.4Or eval(ffi;jgi;j 
 x).



134 CHAPTER 4. CATEGORICAL PROPERTIES OF HDALemma 12 If M is acyclic then � is a partial order.Proof. We have to verify that � is antisymmetric. Take a, b such that a � band b � a. Then we have �ve cases,� b�(@0(a)) 6= 0 and a�(@0(b)) 6= 0. Suppose a 2Mp;q, then @0(a) 2Mp�1;q.If b 2Mr;s, b� 2M�r;�s. Then b�(@0(a)) 6= 0 implies that b� 2M�(p�1);�qso r = p � 1 and s = p. Similarly we can prove that @0(a) 2 Mr�1;s.Therefore, p = r � 1 and q = s which is impossible since r = p � 1 ands = p.� b�(@0(a)) 6= 0 and b�(@1(a)) 6= 0. Similar kind of contradiction.� a�(@1(b)) 6= 0 and a�(@0(b)) 6= 0. Contradiction again.� a�(@1(b)) 6= 0 and b�(@1(a)) 6= 0. Contradiction.� a = b. This is the only possibility.2More generally, we can de�ne a bilinear product < �; � > on M by < x; y >=y�(x). We come now to the description of the dual of an HDA.Lemma 13 Let M be a �nite state automaton with basis B. Then M� hasbasis B�, dim b� = �dim b. Moreover, if the boundary operators of M� aredenoted by @�0 and @�1 , then:8x; y 2 B;< @i(x); y >=< x�; @�i (y�) >Proof. The �rst part of the lemma is a well-known fact from module theory.Then, b� is a function which only sends an element of dimension dim b, b, to anelement of dimension 0, namely 1. Thus b� is of dimension �dim b.Now, @�i = Hom(@i; (1)), that is, @�i (f�) = (�1)(dimf�1)f��@i, because @i[(1)] =0. Thus, < x�; @�i (y�) >= (@�i (y�))�(x�) = (�1)(dim y�1)(y� � @i)�(x�). But,9(�i)i, y� � @i = �0x� + �1b�1 + :::+ �nb�n. So < @i(x); y >= y� � @i(x) = �0.We have also (y��@i)� = �0x��+�1b��1 +:::+�nb��n . Thus, (y��@i)�(x�) = �0. 2The operators @�0 and @�1 are respectively called the end boundary operatorand the start boundary operator. By analogy with [Pra92], the dual of tran-sitions, which bear information and change time, are events, which bear timeand change information. Thus, the (standard) boundary operators describe thetemporal beginning and ending of events, whereas the dual boundary operatorsdescribe the information we have at the source point, and the information wehave at the target point. Notice that eval acts on events like sync acts onevents in CML [Rep92]: it synchronizes the event with its argument.



4.2. TENSOR AND HOM 135Example 17 The dual of example (1) is:M0;1 = 0 @0- M�1;1 = (1�)M0;0 = (��)@1? @0- M�1;0 = (a�)@1?In this HDA, we have one 1-event namely a�, \waiting for transition a to be�red". The \information" beginning of 1� is a�, the \information" end of �� isa�.Lemma 14 For M a �nite state automaton, M and M�� are isomorphic.Proof. M , M� are isomorphic as R-modules, then M and M�� are also iso-morphic as R-modules. Now, 8x; y 2 B, < @i(x); y >=< x�; @i(y�) >=<@i(x��); y�� >, and as B�� is a basis of M��, these relations imply that @i(x)and @i(x��) decompose the same way, with the same coe�cients on B (resp.B��). Therefore (�)�� is an isomorphism of HDA. 2Let �f be the full sub-category of �F composed of �nite free HDA (in the senseHDA which are modules of �nite dimension). We have,Proposition 9 �f is linear �-autonomous. Moreover, it is compact-closed.Proof. Let ? be any HDA isomorphic to the base ring R. For instance, ? =(1) with @0(1) = @1(1) = 0. Let (�)� be the contravariant functor Hom(�;?).We show that it is a dualizing functor. We already know that there exists anatural isomorphism u : Id �= (�)��. Now, we have to verify that the followingdiagram commutes, Hom(A;B) (�)�- Hom(A�; B�)@@u � � � u�1R Hom(A��; B��)?(�)�This is easy veri�cation. It is also linear since �, hence �f is cartesian.Now, we want to show that ............................................................................................... = 
 (compact-closedness), i.e. for all A and Bin �f , A? 
B? �= (A
B)?.We begin by showing that A? 
 B? �= (B 
 A)? as HDA. The result willbe entailed by the fact that A 
 B and B 
 A are isomorphic. If we look at(A? 
 B?)p;q and (B 
 A)?p;q, we see that they are isomorphic as modules.The isomorphism as modules is u(x? 
 y?) = (y
 x)?. We have now to verifythat it is a morphism in �f .@i(u(x? 
 y?)) = �(�1)dim x+dim y(y 
 x)? � @i



136 CHAPTER 4. CATEGORICAL PROPERTIES OF HDAand,@i(x? 
 y?) = �(�1)dim xx? � @i 
 y? � (�1)dim x+dim yx? 
 y? � @iIn order to compare these equations, we need to write x?�@i as some functional.First, it is easy to show that for all HDA M bounded above and below, thereexists a basis B ofM stable under the application of @i, i.e., (b 2 B)) (@i(b) 2B or @i(b) = 0). This can be proved by choosing �rst a basis B0 for the sub-module of objects of maximal degree of M , and then construct inductively thebases Bn of the sub-modules of objects of M of lesser degree by completing@0(Bn�1) [ @1(Bn�1).Then, as �nite HDA are bounded above and below, we can choose bases A andB for HDA A and B verifying the previous property. Suppose that x 2 A andy 2 B.Now, the equation x? � @i(a) = 1 has as solution an a�ne space whose originsare the a such that @i(a) = x. Therefore, x? � @i can be decomposed on thebasis A? of A? as, x? � @i = Xa=@i(a)=xa?Similarly, y? � @i = Xb=@i(b)=y b?Suppose now that a 2 A, b 2 B, then the equation (y 
 x)? � @i(b
 a) = 1 isequivalent to @i(b)
a+(�1)dim bb
@i(a) = y
x. All summands are membersof the basis B 
A of B 
 A. Therefore, its solutions are generated by a and bwith @i(b) = y and a = x or b = y and @i(a) = (�1)dim yx Thus,@i(u(x?
y?)) = �(�1)dim x+dim y0@(�1)dim y Xa=@i(a)=x(y 
 a)? + Xb=@i(b)=y(b 
 x)?1Aand,u(@i(x? 
 y?) = �(�1)dim x Xa=@i(a)=x(y 
 a)? � (�1)dim x+dim y Xb=@i(b)=y(b 
 x)?are equal. This proves the proposition. 2In�nite HDAWe will not develop the case of in�nite HDA here. The problem is to extend theduality from �nite HDA to at least some in�nite HDA. This can be done alongthe lines of [Bar85] by adding topologies to HDA or using Chu's construction(which has recently gained some importance in the computer scienti�c commu-nity, [Pra94a, Pra94b]). Then we get a �-autonomous category of �nite andin�nite HDA in which ............................................................................................... 6= 
. This is left for future work.



4.3. A FORMAL COMPARISON OF THE HDA-BASED MODELS 1374.3 A formal comparison of the HDA-based models4.3.1 Semi-regular and general HDAIn this chapter and in Chapter 2 we have studied the categorical structureof �sr and of � quite extensively. It is clear that many of the categoricalconstructors correspond in one category and in the other. We conclude that� is an abstraction of �sr. Intuitively, we lose in � the combinatorics in theconstruction of HDA that we had in �sr through, for instance, the ordering ofboundaries.First, we have to make precise the relation between the mono-index notationfor transitions, and the bi-index one. Let �2 be the category whose objects Mare sequences (Mp;q)(p;q)2ZZ�ZZ with boundary operatorsd0i :Mp;q !Mp�1;qd1i :Mp;q !Mp;q�1(0 � i; j � p+ q � 1) with dki dlj = dlj�1dki (for i < j) and whose morphisms aref = (fp;q)p;q with (0 � i � p+ q � 1)fp�1;q � d0i = d0i � fp;qfp;q�1 � d1i = d1i � fp;q(the category of \bi-indexed semi-regular HDA")Then we de�ne a functor B : �sr ! �2as follows, whereM andN are semi-regular HDA and f : M ! N is a morphismof semi-regular HDA.� B(M)p;q = Mp+q,� B(dki ) = dki ,� B(f)p;q = fp+qFunctor B makes all automata acyclic.Now we have to abstract away from the combinatorics of boundaries.In Section 2.2.4, we had de�ned a functor A : �2 ! � as follows,A(Mp;q) @0- A(Mp�1;q) : : :A(M) = ...A(Mp;q�1)@1? : : :



138 CHAPTER 4. CATEGORICAL PROPERTIES OF HDAsuch that A(Mp;q) is the free module generated by Mp;q and,@0 = p+q�1Xi=0 (�1)id0i@1 = p+q�1Xi=0 (�1)id1iThen,Lemma 15 A �B : �sr ! � commutes with all colimits.Proof. We verify the commutation with �nite colimits �rst, i.e. with coprod-ucts and coequalizers,A �B(MaN)p;q = R�Mod(Mp+q [Np+q)= A �B(M)p;q �A �B(N)p;qThen for coequalizers, letM f-g- N h- coequ(f; g) = Pbe the coequalizer diagram in �sr for f , g. Then we can check that Pn =Nn=ff(x) = g(x)=x 2Mng. Then,A �B(P )p;q = R�Mod(Pp+q)= R�Mod(Np+q)=Im (A �B(f)� A �B(g))which is seen to be equal to the coequalizer of A�B(f) and A�B(g) in �. Theinduced boundary operators are the boundary operators of the coproduct andcoequalizers in � respectively.Finally, we check that A � B commutes with direct limits. We do not checkthis directly but rather use the fact that the free R-module functor from Setto R �Mod commutes with direct limits since it has the forgetful functor asright-adjoint. This entails that A �B(lim! Mi) =lim! A �B(Mi). 2Notice that A �B does not commute with the cartesian product since in � wehave biproducts whereas � 6= � in �sr.By Proposition II.2.4 of [GZ67] and Lemma 15 we have the existence of D :�! �sr right-adjoint to A �B.Note that the tensor product is also preserved via this adjunction.4.3.2 Regular and general HDAA very similar adjunction exists from regular to general HDA. The proofs goalong the same lines as in previous section. An other way to construct theadjunction could actually use the category of combinatorial HDA of Chapter8 mimicking the classical equivalence between complexes of modules and sim-plicial modules [May67], but this goes beyond the scope of this thesis (look atChapter 10 though).



4.3. A FORMAL COMPARISON OF THE HDA-BASED MODELS 1394.3.3 Semi-regular and regular HDARegular HDA are shown to be a straightforward abstraction of semi-regularHDA where we have the ability to speak about �nite sets of transitions (andeven �nite linear combinations of transitions). The pair of adjoint functorsrelating the two models is based on the classical pair (R �Mod; Forget) (see[ML71]) between Set and R�Mod.Lemma 16 (R �Mod � B;C � Forget) is a pair of adjoint functors between�sr and �r (where C is the right-adjoint of B).Proof. This is due to the fact that (R �Mod; Forget) is a pair of adjointfunctors [ML71] and (B;C) is a pair of adjoint functors as well (Section 4.3.1). 2We can verify that the pair of adjoint functors in Section 4.3.2 composed withthe pair of adjoint functors of Section 4.3.3 is the same as the pair of adjointfunctors in Section 4.3.1.We can also generalize the (R�Mod; Forget) pair of adjoint functor for havinga pair of adjoint functors between ~Set and R �Mod as follows (X and Y aresets and f : X ! Y is a partial function),� R�Mod(X) = R�Mod(X),� R�Mod(f)(x) = 8<: 0 if f(x) is unde�nedf(x) 2 R�Mod(Y ) otherwise .Then, it is straightforward to see that (R �Mod � B;C � Forget) is a pair ofadjoint functors between CP� and �r.The case of non-closed partial HDA is unclear at this point.4.3.4 The lattice of HDAWe sum up the results of this chapter on formal relationships between all HDA-based models. We write A! B for categories A and B when there is a pair ofadjoint functors A �-�
 Bwhere � is left-adjoint to 
.Then we have the following diagram,��r6I@@�sr6 CP�



140 CHAPTER 4. CATEGORICAL PROPERTIES OF HDASummary In this chapter, we have studied the categorical structure of gen-eral HDA. � and �a were shown to be complete, co-complete autonomouscategories, leading to an interpretation of intuitionistic linear logic. We provedthat the category of HDA with a �nite number of transitions and states formed a�-autonomous category, the dual of a transition being an event \waiting for theaction to be over". Finally, it was formally shown that general HDA are moreabstract than regular and semi-regular HDA (again in the style of [WN94]).



Chapter 5Introduction to semanticdomains of HDA5.1 Basic principlesIn this section, we wish to give a compositional (or denotational) semanticsfor some parallel languages, with denotations being HDA. That is, we wantto describe the \higher-dimensional" traces of programs, generalizing the de-notational semantics using TS, PN etc. (see Chapter 1). In some way, wewould like to bene�t from the advantages of both worlds of denotational andoperational semantics: inductive de�nition and proofs of programs, and powerof expression of behaviour of programs.We �rst have to de�ne what we mean by \domain" of HDA. A domain of HDAis used for giving a denotational semantics of some language L. It should then\contain" all the execution traces of programs of L. But to be interesting forstudying the dynamics of traces, it should certainly not just be the collection ofall these traces. It should be a HDA D such that all execution traces (partial ornot) are subHDA of D. For instance, if D is the �lled in square with edges a, band a0, b0, then the possible traces of the programs written in the correspondinglanguage are the paths described in Example 7 of Chapter 2.Of course this is not a very interesting example. In most cases the opera-tional semantics of L can be given if we have a representation as HDA of some\ground" commands (like assignments for instance), or just some atomic ac-tions as it will be the case in the last section with a CCS-like process algebra.Then we just need to specify that if we have two traces, then we certainly havethe parallel execution of these two traces. This is conveniently described as arecursive domain equation which abstract away from the actual construction ofall needed transitions like,D �= (atomic actions) +D 
DWe study in Section 5.3 the mathematical meaning of such an equation, beforegiving an example of the de�nition of the semantics of a toy language. But �rst141



142 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDAof all, we relate our domains of HDA to domains used in denotational semantics[Plo84].5.2 Domains of HDA in order-theoretic formLet D be a HDA.The category Sub of subobjects of D is a subcategory of the slice category �=Dcomposed of monomorphims x : X ,! D modulo isomorphism, i.e. x : X ,! Dand y : Y ,! D are identi�ed if there exists an isomorphism f : X ! Y suchthat the following diagram is commutative,X f- Y@@xR D?yAs � is complete and co-complete, Sub is actually a complete lattice with thefollowing operations,� Intersection X ^ Y of subobjects X and Y of D is the pullback of thecorresponding morphisms, X ^ Y i - XYj? y - Dx?� Union X _ Y is the pushout of X ^ Y i! X and X ^ Y j! Y� The order to which these lattice operations correspond is (X x! D) �(Y y! D) i� there is a monomorphism f : X ! Y such that y � f = x.Proof. The pullback of a monomorphism by any morphism is a monomor-phism. The composite of two monomorphisms is a monomorphism, hencex � i = y � j is a monomorphism and de�nes X ^ Y as a subobject of D.Moreover, if z : Z ! D is such that z � x and z � y then there exist fx and fysuch that the following diagram is commutative,Z fx- XYfy? y- D?x



5.3. RECURSIVE DOMAIN EQUATIONS 143By the universal property of pullbacks, there exists f : Z ! X ^ Y such thatthe following diagram commutes, Z��������fy AAAAAAAfxUX ^ Y?f	��j @@iRY X@@yR 	��xDThis proves that z � (x ^ y), hence that x ^ y is indeed the greatest lowerbound.For the second part, notice the following. If z : Z ! D is such that x � z andy � z then there exist fx : X ! Z and fy : Y ! Z such that the followingdiagram commutes, X ^ Y	��i @@jRX YAAAAAAAfx U@@xR 	��y��������fyDZz6Moreover, by the universal property of the pushout, there exists a uniquef : X _ Y ! Z such that f � inr = fy and f � inl = fx. There exists alsoa unique u : X _ Y ! D such that u � inr = y and u � inl = x. u actuallyde�nes the union of x and y since as (see the diagram above) z � fx = x andz � fy = y, we have z � f � inr = z � fy = y and z � f � inl = x, hence by unicity,u = z �f (this holds for all z and derived f). Therefore u � z, x � u and y � u,thus u = x _ y. 2This is valid for �, �r, P�, and �sr since all these categories have pullbacksand pushouts. In the case of �sr we can be slightly more precise since we haveseen that �sr is an elementary topos. This implies that Sub is a Heyting algebra(Brouwerian lattice), i.e. a residuated lattice with bottom and top elements.5.3 Recursive domain equations(*) Lemma 7 (see [AL91b]) Let F be a !-continuous functor from � to �.Then, 9D 2 �; D � F (D)



144 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDA(*) Proof. Consider the following sequence of objects and morphisms in �,indexed by i 2 IN:� D0 = F (0)� Di+1 = F (Di)� j0 : D0 �! D1; j0 = 0� ji+1 : Di+1 �! Di+2; ji+1 = F (ji)Then, for i � k, de�ne Mi;k : Di �! Dk by Mi;k = jk�1 � ::: � ji. D =(Di;Mi;j)i�0;i�j is a direct system in �. Let (D; pi)i�0 =lim! D. Consider thedirect system D0 = (Di;Mi;j)i>0;i�j . (D; pi)i>0 is a cone for D0. Let (E; p0i)i>0be another cone for D0, then let p00 = p01 �M0;1; (E; p0i)i�0 is a cone for D, thusthere exists h : D �! E such that p0i = h � pi, i � 0. Thus (D; pi)i>0 is alsouniversal, and lim! D0 = D.But F is a map of direct systems between D and D0. F is !-continuous, soF (lim! D) =lim! D0, that is, F (D) � D. 2All this also gives us a means to label HDA, just knowing the labels of the\atomic actions". Let (M; l) be a labeled HDA over L. Consider now theequation D = M + G(D), where G is !-continuous in each argument. Since(M + �) is !-continuous, Lemma 7 guarantees the existence of a solution to thisequation. Let now DL be the HDA verifying the equation DL = L + G(DL).Consider the direct systems D and L induced respectively by the �rst andsecond recursive equations. We de�ne a map u of direct systems from D to Lby u = (l+IdG(0); l+G(l+IdG(0)); l+G(l+G(l+IdG(0))); : : :). Let l0 : D! DLbe the direct limit of u and in1 : M ! D, in01 : L ! DL be respectively thecanonical monomorphism from M to D and from L to DL. By de�nition of thedirect limit, the diagram, M in1- DLl? in01- DLl0?commutes. Therefore, l0 is a labelling of D which extends l.Example 18 Let D be an HDA verifying D = M + D 
 D1 where M is theHDA: M0 = (1)� (�)� (�0)� (�)� (�0)M1 = (a)� (a0)� (b)� (b0)with @0(a) = @0(a0) = @0(b) = @0(b0) = 1 and @1(a) = �, @1(a0) = �0, @1(b) = �,@1(b0) = �0. Let L be the one de�ned in the previous example. M can be labeledover L by l(a) = l(a0) = a, l(b) = l(b0) = b, l(1) = l(�) = l(�0) = l(�) = l(�0) =1. Then it extends to a labelling of D over DL. For instance, l(a
 �) = a, orl(�0 
 a
 b) = a
 b.1The case of bifunctors covariant and !-continuous in each argument is no more di�cultthan what we have just seen.



5.4. EXAMPLE: A CCS-LIKE LANGUAGE 1455.4 Example: A CCS-like LanguageAs an example, we give the semantics of a CCS-like process algebra,Terms are built on actions which are elements of a set � = faj=j 2 Kg andnil, with operators . (sequential composition), + (choice operator), j (parallelcomposition), a ! a (complementary action), rec (recursion operator) and n(restriction operator). For a better explanation, we have divided the paralleloperator in two operators: k, which is parallel composition without communi-cation, and the general one j.Terms are then formed according to the following grammar:t ::= a (single action)j a (complementary action)j nil (idle process)j t1 + t2 (choice operator)j t1kt2 (parallel composition-no communication)j t1 j t2 (parallel composition-communication)j t1:t2 (sequential composition)j t1nc restriction operatorj rec x:t(x) recursive agent5.4.1 Semantics using semi-regular HDADenotational semanticsWe �rst construct the domain we need. Here we give a denotational semanticswhere denotations are operational behaviours2. Let (aji ), (aji ), (�ki;j) (i; j 2 IN,k 2 K), (aj), (aj) and (�) be the following HDA (informally or geometrically),(aji ) : 1 aji - �ji(aji ) : 1 aji - (�ji )(�ki;j) : 1 �ki;j- �ki 
 �kj (aj) : ?� �	1 aj(aj) : ?� �	1 aj(�) : ?� �	1 �We suppose 1 to be a neutral element for the tensor product (this is formallyrealized by some suitable quotient construction).2We could have given one in a more classical form like input-ouput relations or history ofcommunications.



146 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDALet P and L be the domains given by the recursive equations,P �= (aji )i;j + (aji )i;j + (�ki;j)i;j;k + P 
 PL �= (aj) + (aj) + (�) + L
 LLet l : P ! L be the morphism of HDA de�ned by,� 8(i; j) 2 IN �K, l(aji ) = aj� 8(i; j) 2 IN �K, l(aji ) = aj� 8(i; j; k) 2 IN � IN �K, l(�ki;j) = �� 8(x; y) 2 P � P , l(x
 y) = l(x)
 l(y)We introduce a new operator 
c for dealing with synchronization. We de�ne,for P and Q HDA, P 
c Q by,u 2 (P
cQ)n , 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: u = x
 y; 8>>><>>>: x 2 Pm; y 2 Qn�m;l(x) and l(y) containno complementary actionsu = x
  
(k;i)2T1;(k;j)2T2 �ki;j!
 y; 8>>>>>>><>>>>>>>: x
  
(j;i)2T1 aji! 2 Pm 
(j;i)2T2 aji!
 y 2 Qn+card(T1)�mcard(T1) = card(T2)Notice that this view and the introduction of the �ki;j in the domain D is muchalike the synchronization algebras used in [Win88].The domain of HDA in which we give the semantics of the language is D = l :P ! L. We can actually give it in D = P , and recover the full de�nition byapplying the labelling l.We use the notation (x) to denote the subHDA of D \generated" by x 2 D.This means it is the smallest HDA contained in D and containing x. Then,� [[nil]] = (1)� [[aj ]] = (aji ) for some fresh i� [[ak ]] = (akj ) for some fresh j� [[p + q]] = [[p]]`[[q]] (` is the coproduct in �sr=D, it corresponds to anamalgamated sum in �sr)� [[p:q]] = [[p]]` f 
 [[q]] where f is the subHDA of �nal states of [[p]] de�nedas f = fs 2 [[p]]0=8t 2 [[p]]1; d00(t) 6= sg� [[pkq]] = [[p]]
 [[q]]



5.4. EXAMPLE: A CCS-LIKE LANGUAGE 147� [[p j q]] = [[p]]
c [[q]]� [[pna]] = [[p]]nfx
 aji 
 y; x
 aji 
 yg� [[rec x:p[x]]] =lim! [[pi[nil]]] where the direct limit is taken on the fullsubcategory of �sr=D whose objects are the [[pi[nil]]]Operational semanticsIts operational semantics is then (by results of Section 2.2.1),nil j= 1 1- 1aj j= 1 aj- �ji aj j= 1 aj- �jiQ j= s a- tQ+ Q0 j= s a- tQ0 j= s0 a0- t0Q+ Q0 j= s0 a0- t0Q j= s a- tQ:Q0 j= s a- tQ0 j= s0 a0- t0 f 2 fs 2 Q0=:9t 2 Q1; d00(t) = sgQ:Q0 j= f 
 s0 a0 - f 
 t0Q j= s a- t Q0 j= s0 a0- t0QkQ0 j= s
 s0 a
 a0- t 
 t0Q j= s a- t Q0 j= s0 a0- t0 a 6= a0Q j Q0 j= s
 s0 a
 a0- t
 t0Q j= s x
 a
 y- t Q0 j= s0 z 
 a
 u- t0Q j Q0 j= s
 s0 x
 z 
 � 
 y 
 u - t
 t0Q[rec x:Q[x]] j= s u - trec x:Q[x] j= s u- tThe last two rules have not been shown in Section 2.2.1. They are easy toderive. The last one expresses that [[rec x:Q[x]]] forms a co-cone for the diagram([[Qi[nil]]])i.Last but no least, we have a correctness result,



148 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDAProposition 10 The truncation at dimension one T1([[p]]) is bisimulation equiv-alent to the interleaving semantics of the CCS term p (as de�ned in [Mil89]).Sketch of proof. The rules when restricted to 1-transitions become,(1) aj j= 1 aj- �ji aj j= 1 aj- �ji(2) Q j= s a - tQ+ Q0 j= s a- t(3) Q0 j= s0 a0 - t0Q+Q0 j= s0 a0- t0(4) Q j= s a - tQ:Q0 j= s a- t(5) Q0 j= s0 a0- t0 f 2 fs 2 Q0=:9t 2 Q1; d00(t) = sgQ:Q0 j= f 
 s0 a0 - f 
 t0(6) Q j= s a- t Q0 j= s0 a0- t0QkQ0 j= s 
 s0 a 
 s0- t 
 s0QkQ0 j= s 
 s0 s 
 a0- s 
 t0QkQ0 j= s
 t0 a
 t0- t
 t0QkQ0 j= t
 s0 t
 a0- t
 t0(7) Q j= s a- t Q0 j= s0 a0- t0 a 6= a0QkQ0 j= s
 s0 a
 s0- t 
 s0QkQ0 j= s
 s0 s
 a0- s 
 t0QkQ0 j= s 
 t0 a
 t0- t
 t0QkQ0 j= t 
 s0 t 
 a0- t
 t0(8) Q j= s a- t Q0 j= s0 a- t0Q j Q0 j= s
 s0 �- t
 t0



5.4. EXAMPLE: A CCS-LIKE LANGUAGE 149(9) Q[rec x:Q[x]] j= s u - trec x:Q[x] j= s u- tRules (3) and (9) are just the same as the ones for + and rec in CCS. Rules(6) and (7) are similar since j and k have the same e�ect if applied to actionswhich cannot synchronize (they are not complementary). Therefore, we canrestrict to terms of CCS with no rec nor +.The idea for constructing a bisimulation R between the transition system Tde�ning CCS and the one above U is that the states of T are the subterms yetto be executed and in U they are the concatenations of �nal states of actionsalready executed.Let t be a CCS term. We de�ne Rt as follows,� 1Rtt,� if t aj! t0 and uRtt then (u
 �ji )Rtt0 (�ji is the next �j that has not beenused up to this point).We prove that Rt is the required bisimulation by induction on t. We verify justa few cases,� t = aj and t = aj are immediate.� t = aj :q. By hypothesis we have a bisimulation Rq between the HDArepresenting q and the transition system de�ning q. Now 1Rtt, �jiRtqand (�ji 
u)Rtv if and only if uRqv by de�nition of the family of relationsR�. This obviously de�nes a bisimulation for t.� t = p j q. Easy: rules (6) and (7) precisely de�ne the interleaving ofactions.25.4.2 Semantics using general HDABy the general categorical results of Chapter 4 we know that we can write inthe domain of general HDA (applying functor A of Chapter 2),D �= (aji )i;j + (aji )i;j + (�ki;j)i;j;k +D 
D� [[nil]] = (1)� [[aj ]] = (aji )� [[aj ]] = (aji )



150 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDA� [[p+ q]] = [[p]] + [[q]]� [[p:q]] = [[p]] +H0([[p]]; @0)
 [[q]]� [[pkq]] = [[p]]
 [[q]]� [[p j q]] = [[p]]
c [[q]] (where 
c is an abuse of notation for the image of 
cof �sr under functor A)� [[pnaj]] = [[p]]=fx
 aji 
 y; z 
 aji 
 tg� [[recx:p[x]]] =lim! [[pn[nil]]] where the diagram is composed of all morphisms3of labeled HDA from [[pn]] to [[pn+1]] (for all n).Example 19 (1) We use the inductive construction above to translate theCCS-term (ajb) (which is equal to (akb)). We have:1 a - � 1 b - �to represent [[a]] and [[b]] respectively. We now form the tensor product:�
 ����
 b� I@@a
 �� a
 b �I@@a ��b�1(2) We now compute [[(a+ b)kc]]. � � 
 c - � 
 
��a� a
 c ��a
 
�1 c- 
@@bR b
 c @@b
 
R� � 
 c - � 
 
(3) Let q=(a j a). Then [[q]] is: ���a� @@�
 aR1 � - �
 �@@aR ��a
 ���3This could actually be re�ned by taking the canonical morphisms for the categoricalconstructions, and some well-chosen ones for the tensor product and 
c.



5.5. SEMANTICS OF CONCURRENT LANGUAGES 151(4) We study the translation of the term t = recx:(a:x+b:x). The developmentof t is (t0 = nil; t1 = a:nil + b:nil; t2 = a:(a:nil + b:nil) + b:(a:nil +b:nil); : : :). Thus we have:t0 : 1i0;1??���a�t1 : 1 @@bR �i1;2??�
 ����
 a�� �
 b- � 
 ���a�t2 : 1 @@bR � � 
 a- � 
 �@@� 
 bR � 
 �... ... ...The semantic value of t is then the direct limit of the diagram above.We will see in Part III that if the operational semantics is more intuitive, thedenotational-like gives the characterization of the geometry of the transitionsystem.5.5 Semantics of concurrent languages5.5.1 IntroductionWe extend here our framework in order to give semantics to concurrent lan-guages which handle values. This is done by mimicking the ordinary denota-tional semantics approach [Ten91], using environments to hold values of vari-ables. We also give the corresponding SOS approach.First, we have to de�ne domains for values, and de�ne real states.



152 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDALet V be a set (of values). We write V for the HDA whose states are generatedby V , and whose boundary operators are null. We have already seen an exampleof this construction, for V = f1g; V was written (1). This construction willbe applied for sets of values like IN, or Bool=ftt ;� g. Notice that it is againa functorial construction: if f is a function between two sets V and V 0, thenf (sometimes abbreviated by f), the linear extension of f , is a morphism ofdegree 0 between V and V 0.The same construction can be carried out for any relation on sets of values.Consider for instance a relation R(x; y) on V � V . Construct a \relation" Ron V 
 V , with value in Bool by R(x; y) =def R(x 
 y) = tt , R(x; y) andR(x; y) =def R(x
 y) = (� ), :R(x; y).Now, suppose we have elementary functions on these sets of values. We wantto represent the application of such a function f to a value by a 1-transitionbetween the input value to the output value. The way to do this, is to construct(when it exists in the considered domains) the (@1 � @0)-chain homotopy (see[ML63]) linking the input to the output state, that is the transition between Idand f , denoted by [Id; f ] or �f (\name of f").Suppose we have a domain D of HDA (elements of which are its sub-automata)containing 1-transitions s and t with @0(s) = 1, @1(s) = 0, and @0(t) = 0,@1(t) = 1. Let f and g be two linear maps, and de�ne:[f; g] = s
 f + t 
 gThen, @0 � [f; g] = f � [@0 � f; @0 � g] @1 � [f; g] = g � [@1 � f; @1 � g]and when f and g are morphisms (of any degree),@0 � [f; g] + [f; g] � @0 = f @1 � [f; g] + [f; g] � @1 = gThus, (@1 � @0) � [f; g] + [f; g] � (@1 � @0) = g � fand [f; g] is an (@1 � @0)-chain homotopy between f and g (we will see themeaning of these homotopies in Chapter 7). To come back to our functionf , �f = [Id; f ], then: @0( �f) = Id and @1( �f) = f . We have also, 8x 2 V ,@0( �f(x)) = x and @1( �f(x)) = f(x). Hence we call �f \name of f", because it isthe label of all applications of f .In general, we have to use fresh copies of these t and v to build homotopies.These copies will be denoted by ti and vi, where i is an index (generally in IN).For f a linear function on a HDA V , we de�ne an extension of f on tensorproducts of ti, vi and elements of V by:f(ti) = ti f(vi) = vif(x
 y) = f(x)
 f(y)



5.5. SEMANTICS OF CONCURRENT LANGUAGES 153If f is a morphism (of degree 0) on V , then this extension de�nes a morphismas well. With these conventions, we have the following laws of calculus:f [g; h] = [fg; fh] [g; h]f = [gf; hf ]f�g = [f; fg] �gf = [f; gf ][f; g][k; l] = [[fk; fl]; [gk; gl]]The last equation shows that homotopies compose to give homotopies of higherdimension. We de�ne also for a linear function f (not necessarily a morphism),another linear function, f̂ , called the sequentialization of f , by:f̂(g) = g + f �H0(g; @0)We will see its use later on.5.5.2 An imperative language with shared memoryLet L be the language (�rst-order imperative language - shared memory) whosesyntax is de�ned as follows.Let V ar be a set of variable names (x, y, z...). We consider a set of valuesv 2 V al, containing integers n, booleans tt and � . We write X , Y , Z forobjects which are values or variables. f is any function on V al.The language is formed out of values v, tests t, and expressions e:v ::= xj nj ttj �t ::= R(X; Y ) e ::= nilj x := vj x := h(x; v)j e; e0j e j e0j (t! e)2(t0 ! e0)j rec x:q(x)where x := h(x; v) is a function like (x := v), (x� = v), or (x+ = v) etc.That is, proceeds to an \atomic" operation on a variable. q is any syntacticexpression of L with one hole (a context).This language may be seen as a some subset of Concurrent Pascal, with noprocedures or compound data types.We give the semantics, considering the following domains:� C is the HDA with C0 generated by V ar and @0 = @1 = 0,� V is the HDA with V0 generated by V al and @0 = @1 = 0.



154 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDAWe would like to have environments (i.e. assignments of values to variables)as states of our automata: the domain D to be de�ned should include Env =Hom(C � V; C � V )4.Let f be an element of Env. The elements c 2 C such that f(c) = c arenon-assigned variables. If f and g are two elements of Env, then g � f isthe assignment by f then by g (it might assign some values to some variablesuntouched by f , but does not change any of the assignments made by f).We want also to have all homotopies (all transitions of any dimension) betweenstates. This requires for D to have all tensor products between the ti, vi andelements of D. This leads to de�ning D by the equation:D � (tc;i)c;i � (vc;i)c;i �Hom(C � V; C � V )� C � V + (D 
D)where c is an index lying in the set fx := n; x := h(x; v)=x 2 V ar; v 2 V alg.The domain for the labelling is de�ned by:DL � (tc)c � (vc)c �Hom(C � V; C � V )� C � V + (DL 
DL)The labelling l is induced by l(tc;i) = tc, l(vc;i) = vc. De�ne now the function[u( v] (an elementary substitution) on C � V by:[u( v](u) = v; [u( v](w) = wfor all w 6= u. Therefore, [u( v] = v 
 u�+ Pw 6=u w 
 w� It can be extended toa morphism on D as described in the previous section.The functions h considered in L induce morphisms of the form hx from � 2 Envto Env: hx(�; v)(x) = h(�(x); v) hx(�; v)(y) = �(y)for all y 6= x. Their action is to apply the arithmetic function which h describesto the only x part of the substitution �. For instance, (x := :) induces themorphism [x ( :]. In the case of x+ = v, that is h(x; v) = x + v, we have forexample, hx([x( u][y ( w]; v) = [x( u+ v][y ( x].Then we have a semantic function [[�]]: L ! Env ! Sub(D) (where Sub(D) isthe set of all subHDA of D) given by:for values, [[x]]� = �(x) (5.1)[[n]]� = (n) (5.2)[[tt ]]� = (tt) (5.3)[[� ]]� = (� ) (5.4)for tests, [[R(X; Y )]]� = R([[X ]]�; [[Y ]]�) (5.5)4Env may also be called domain of substitutions, or store. Valid substitutions are alwaysidentity on values.



5.5. SEMANTICS OF CONCURRENT LANGUAGES 155for processes, [[nil]]� = � (5.6)[[x := v]]� = [�; � � [x( [[v]]�]] = � � �[x( [[v]]�] (5.7)[[x := h(x; v)]]�= [�; hx(�; [[v]]�)] = �hx(:; [[v]]�)� (5.8)[[e; e0]]� = ^[[e0]]([[e]]�+ �[[e]]) + � ^[[e0]][[e]] (5.9)[[e j e0]]� = [[e]]([[e0]]�+ �[[e0]]) + [[e0]]([[e]]�+ �[[e]]) + �([[e]][[e0]] + [[e0]][[e]]) (5.10)[[(t! e)2(t0 ! e0)]]� = tt�([[t]]�):[[e]]�+ tt�([[t0]]�):[[e0]]� (5.11)[[rec x:q(x)]]�= lim! [[qn(nil)]]� (5.12)In all these equations, the labelling is implicit: when an homotopy is used forthe semantics of x := v or x := h(x; v), it is formed of some fresh tx:=v;i andvx:=v;i or tx:=h(x;v);i and vx:=h(x;v);i respectively.Equations 5.1, 5.2, 5.3, 5.4 and 5.5 are obvious. In environment �, the seman-tics of variable x is �(x). The constants are interpreted independently of theenvironment. This is much alike the usual equations in ordinary denotationalsemantics for imperative languages [GS90].Equation 5.6 reads \nil does not act on the environment".Equations 5.7 and 5.8, written in two forms, build an homotopy between theenvironment and the transformed one (notice that substitutions compose theother way round). When � is a state, this is just a transition from the input ofh to the output of h.Equation 5.9 applies the sequentialization of [[e0]] to [[e]], that is, applies e0 tothe �nal states of e, and takes the union with the translation of e.Equation 5.10 looks like interleaving, but is not. [[e0]]([[e]]�) is isomorphic to([[e0]])
 ([[e]]�), thus is a good candidate as a parallel composition (see Chapter4). But [[e]] and [[e0]] may not commute if some of their actions are not inde-pendent, therefore we need the term [[e]]([[e0]]�). We may need as well all otherpermutations between �, [[e]] and [[e0]]. There can be non-independence if thereis simultaneous use of some shared item.Equation 5.11 takes the (disjoint or not) union of the two alternatives of theguarded statement.Finally, Equation 5.12 takes the unfolding of a recursive agent as its semantics.The unfolding is represented by the direct limit of the diagram whose objectsare the successive steps of unfolding [[qn(nil)]]�, and whose morphisms are theobvious ones (all morphisms between [[qn�1(nil)]]� and [[qn(nil)]]�).Example 20 � We consider the term x+=1 in the context � = [x( 1]:[[x+ = 1]]� = [�; hx(�; 1)]= [[x( 1]; [x( 2]]Therefore, [[x+ = 1]]� = [x( 1] x+ = 1- [x( 2]



156 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDA� Now, consider the term (x:=1)j(x+=1) in the context � = [x( 0] � [y (42]:[[(x := 1) j (x+ = 1)]]� = [[(x := 1)]]([[(x+ = 1)]]�)+[[(x+ = 1)]]([[(x := 1)]]�)+: : :the dots being terms which are seen to be equal to the previous two ones.But, [[(x := 1)]]� = � � �[x( 1]= [�; [x( 1] � [y ( 42]]Then, [[(x+ = 1)]]([[(x := 1)]]�) = [([[(x := 1)]]�); hx(([[(x := 1)]]�; 1)]= [[[x( 0][y ( 42]; [x( 1][y ( 42]]; [[x( 1][y( 42]; [x( 2][y ( 42]]]which is geometrically realized by a square whose four vertices (only threeof them are disjoint) are [x( 0][y ( 42], [x( 1][y ( 42]], [x( 1][y (42]], and [x( 2][y ( 42].� Let us compute the semantics of (x:=1);(x+=3) in the context � = [x( 0][[(x := 1); (x+ = 3)]]� = ^[[(x+ = 3)]]([[x := 1]]�)= ^[[(x+ = 3)]]([[x( 0]; [x( 1]])= [[(x+ = 3)]]([x( 1]) + [[x( 0]; [x( 1]]= [[x( 1]; [x( 4]] + [[x( 0]; [x( 1]][[(x := 1); (x+ = 3)]]� = [x ( 0] x = 1- [x ( 1] x+ = 3- [x ( 4]� Finally, let e=((x=1?!y:=2)2(x=y?!x:=0)). Then in context � = [x(1][y( 1] we have:[[e]] = tt�([[x = 1?]]�):[[y := 2]]�+ tt�([[x = y?]]�):[[x := 0]]�But, [[x = 1?]]� = tt[[x = y?]]� = ttthus, [[e]] = [[y := 2]]�+ [[x := 0]]�= [[x( 1][y( 1]; [x( 1][y ( 2]] + [[x( 1][y( 1]; [x( 0][y ( 1]]Thus, [x ( 1][y ( 2]��y := 2�[[e]]� = [x ( 1][y ( 1]@@x := 0R[x ( 0][y ( 1]This is a one-dimensional branching at state [x( 1][y( 1]. It describesan internal non-deterministic choice.



5.5. SEMANTICS OF CONCURRENT LANGUAGES 157An alternative semantics �a la SOSStates � describe the store as a substitution between values and variables. Thenwe have by eliminating the context � in the denotational semantics,nil j= � nil- �x := v j= � x := �(v)- � � [x( �(v)]x := h(x; v) j= � x := h(x; �(v))- � � [x( h(x; �(v))]e j= � a - � �(t) = tt(t! e)2(t0 ! e0) j= � a- �e0 j= �0 a0 - �0 �(t0) = tt(t! e)2(t0 ! e0) j= �0 a0- �0e j= � a- � e0 j= �0 a0- �0e; e0 j= � a - �e j= � a- � e0 j= �0 a0- �0 f 2 H0(e; @0)e; e0 j= �0 � f a0 � f- �0 � fe j= � a- � e0 j= �0 a0- �0e j e0 j= � � �0 a � a0- � � �0e j= � a- � e0 j= �0 a0- �0e j e0 j= �0 � � a0 � a- �0 � �q[rec x:q[x]] j= � a - �rec x:q[x] j= � a- �



158 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDA5.5.3 A variant with a Fork operatorWe can replace the parallel composition operator by a fork operator (as in[Hav94] or in [Rep92]).Let Lf be the language whose syntax is as follows.Let V ar be a set of variable names (x; y; z:::). We consider a set of valuesv 2 V al, containing integers n, booleans tt and ff . We write X; Y; Z for ob-jects which are values or variables. f is any function on V al.The language is formed out of values v, tests t, and expressions e:v ::= xj nj ttt ::= R(X; Y )e ::= nilj x := vj e; e0j fork(e)j t! e2t0 ! e0j rec x:q(x)where q is any syntactic expression of Lf with one hole (a context).Now, we give the semantics using the same domain D as before.The semantic function is now slightly more complex:[[:]] : Lf �! Hom(Env;Hom(Hom(D;D);D))The new argument is a context � 2 Hom(D;D) (similar to continuations usedin denotational semantics [Sch86]). Env is the domain of environments, Env =ZHom(C � V; C � V ) = Hom(C � V; C� V ). We propose to give a semanticsusing the \parallel" continuation as follows,for values, [[x]]�� = �(�(x))[[n]]�� = �(�(n))[[tt]]�� = �(�(tt))[[ff ]]�� = �(�(ff))for tests, [[R(X; Y )]]�� = �(R([[X ]]� Id; [[Y ]]� Id))for processes, [[nil]]�� = �(�)



5.5. SEMANTICS OF CONCURRENT LANGUAGES 159[[x := v]]�� = �(� � �[x( ([[v]]� Id)])[[e; e0]]�� = [[e]]� � � ^[[e0]][[fork(e)]]�� = [[e]](��) Id+ �([[e]]�)[[t! e2t0 ! e0]]�� = tt�([[t]]� Id)
 [[e]]��+ tt�([[t0]]� Id)
 [[e0]]��[[rec x:q(x)]]�� = �(lim! [[qn]]� Id)Summary We have shown that using the categorical properties of Chapter 4we could give denotational semantics to some concurrent languages, like CCSor some toy imperative languages. We have shown that HDA could be thoughtof as domains (as in domain theory) of possible executions and that there wereinteresting constructions from denotational semantics which apply to the HDAframework, like recursive domain equations or continuations (in order to modelforking processes). Considerations about the construction of domains for con-current imperative languages lead to a very geometric construction involving\homotopies" that deform some part of a domain to another one in a construc-tive way.Some work remains to be done on recursive domain equations involving con-travariant functors (in particular \re
exive" domains). Languages like CMLcould then be given semantics using HDA in a categorical way. A possibilityseems to be to add some topology that constrains the morphisms between HDA(by considering continuous morphisms only). This has not been formalized yetin a suitable way.
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Chapter 6Basic geometric propertiesGiven the algebraic formulation of HDA, we are now ready to study the verybasic geometric properties of the transition system it represents in purely alge-braic terms, in the style of ordinary homological algebra. This gives de�nitionsas well as means of computations (some of them are given at the end of thischapter). Here we focus on initial and �nal states, branchings and mergings,deadlocks and re�nement. At the end of this chapter we will see applicationsof the classi�cation of these local geometric shapes.6.1 Homology(*) De�nition 5 For (Q,@0,@1) a general HDA, we de�ne two sequences ofhomology (see for instance [ML63]) modules:� Hi(Q; @0) = Ker @i0Im @i0� Hi(Q; @1) = Ker @i1Im @i1where @ij = �p+q=i @p;qj . An element of Ker @ij (i.e. the kernel of the function @ij,the module formed of the x such that @ij(x) = 0) is an i-cycle, and an element ofIm @i+1j (i.e. the image of @ji+1, i.e. @i+1j (Qi+1)) is an i-boundary. An elementof Hi(Q; @0) is called a branching of dimension i. An element of Hi(Q; @1) iscalled a merging of dimension i. We write H�(T; @j) for �k�0 Hk(T; @j):Example 21 � For HDA (1), Example 4, Chapter 2, we have:H0(M; @0) = (�), H0(M; @1) = (1), and the other homology groups arenull.� For HDA (2), all the homology groups are null.� For HDA (3), we have:H0(M; @0) = (
), H0(M; @1) = (1), and the other homology groups arenull. 163



164 CHAPTER 6. BASIC GEOMETRIC PROPERTIES� For HDA (4), we have:H0(M; @0) = (�), H0(M; @1) = (1), H1(M; @0) = (b � a), H1(M; @1) =(b0�a0), and the other homology groups are null. The branching (b�a) ofdimension one expresses the fact that in (4) there is a non-deterministicchoice between actions a and b. The con
uence (b0 � a0) shows that afterthe actions b0 and a0, the system goes to a same (idle) state.(*) Lemma 8 Let f : (K; @) ! (K 0; @ 0) be a morphism of complex. Then finduces a module homomorphism f� : H�(K; @)! H�(K 0; @ 0).(*) Proof. We just have to verify that (for all k):f(Ker @k) � Ker @ 0kand f(Im @k) � Im @ 0kLet x 2 Ker @k, then @(x) = 0, so is f(@(x)) = @(f(x)), thus f(x) belongs toKer @. But f is graded, so f(x) 2 Ker @k.Now, take x in Im @k. Then, x = @(y), with y 2 Kk. f(x) = f(@(y)) = @(f(y)).f is graded, so f(y) 2 K 0k, and then f(x) 2 Im @k.2The previous lemma states that local geometric invariants like the homologygroups are invariants of simulations.6.1.1 Initial and �nal statesIn semi-regular, regular HDA and partial HDA, a �nal state is a state fromwhich no path can begin. Similarly, an initial state is a state to which no pathcan lead to. Applying the A functor we see that,� the module of states of an HDA A(M) is A(M)0 = Ker @0jA(M)0,� a path can begin from a state s if and only if there exists a 1-transition awith s = @0(a) (so s 2 Im @0),� a path can lead to a state s if and only if there exists a 1-transition a with@1(a) = s (so s 2 Im@1).Therefore, it is easy to see that the module generated by the initial states(respectively �nal states) of some semi-regular, regular or partial HDA M isH0(A(M); @1) (respectively H0(A(M); @0)). This is then the most consistentde�nition for general HDA,De�nition 29 We call �nal (or accepting) state of an HDA M any state ofH0(M; @0).



6.1. HOMOLOGY 165Example 22 Consider the (standard) automaton (A;�; �; I; F ) with A = fu,v,wg, � = fa; bg, I = fug, F = fvg and � = f(u; a; v); (u; b; w)g. Then theassociated HDA is M , with: M0 = (u)� (v)� (w)M1 = (a)� (b)and, @0(a) = u = @0(b), @1(a) = v, @1(b) = 0 Obviously, H0(M; @0) = (v) =R�Mod(F ), H1(M; @0) = (a)� (b), H0(M; @1) = (u) and H1(M; @1) = (b).De�nition 30 We call initial state of an HDA M any state of H0(M; @1).Example 23 � Consider the automaton of the previous example. We haveseen that H0(M; @1) = (u): u is an initial state of M .� Let M and N be the following HDA (M and N are composed of one1-transition a, respectively b),M1;0 = (a) - M0;0 = (�)M1;�1 = (�)?N1;0 = (b) - N0;0 = (
)N1;�1 = (�)?Then M 
N� is, (�
 
�) - (�
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 ��) = 0,{ @1(� 
 
�) = � 
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166 CHAPTER 6. BASIC GEOMETRIC PROPERTIESTherefore, according to De�nition 30 the module of initial states for M 
N� is equal to (� 
 ��)� (� 
 ��). Intuitively, the de�nition is coherentwith the interpretation we have of events. � 
 �� and � 
 �� are validinitial states since these are not blocked any longer by waiting for actionb, whereas nothing can be �red from � 
 
� nor from � 
 
� since theexternal b action has not yet been �red.Now we come to deadlocks and their dual, the \initial" deadlocks.6.1.2 Deadlocks and initial deadlocksWe have seen that we needed the partial HDA to handle deadlocks. In partialHDA, the obvious de�nition of a deadlock, is a n-transition (n > 1) from whichno action can be �red. As n > 1, this means that all boundaries, i.e. all ways tocomplete normally the n-transition are missing. Therefore a deadlock of dimen-sion n in A(M) where M is a closed partial HDA is a n-transition t such that@1(t) = 0. All n-deadlocks boundaries of a (n + 1)-transition should be con-sidered equivalent as they essentially describe which actions will not terminateif asynchronously executed. Since we want to distinguish n-deadlocks (whichinvolve only one elementary n-transition) from con
uences (which involve morethan one elementary n-transition), this leads to the following de�nition for gen-eral HDA,De�nition 31 A n-transition leading to (or is) a deadlock in a HDA M isany elementary n-transition of Hn(M; @1). The word deadlock is given to the1-transitions which deadlock M (for n greater than one, we say n-deadlock).Example 24 � The typical 1-deadlock is,1 t- 0We can interpret its unique maximal path as,(1) the processor is in an idle state,(t) the processor is �ring transition t,(0) the processor never terminates the execution of t (no �nal state canbe observed).� In Example 22, b is an action leading to a deadlock.� The typical 2-deadlock is, 0��t� @@0R1 T 0@@t0R ��0�0



6.1. HOMOLOGY 167It is easy to see (examining the di�erents paths) that it describes a programwhich deadlocks two processors.Dually, we can de�ne \initial" deadlocks as actions that can never be �red, butwould terminate if �red. We have already seen them in the construction ofhomotopies (Section 5.5).De�nition 32 A n-transition leading to (or is) an initial deadlock in an HDAM is an elementary n-transition of Hn(M; @0). Again, the word initial deadlockis given to 1-transitions.Example 25 The typical initial 1-deadlock is the dual of the 1-deadlock (t)(under the reversing of time), 0 v - 16.1.3 DivergenceDe�nition 33 A HDA M diverges if and only if it does not have any �nalstate, i.e. if and only if H0(M; @0) = 0Example 26 � Let M be the HDA with M0 = (1), M1 = (a) and @0(a) =@1(a) = 1, represented by, ?� �	1 aThen H�(M; @0) = 0, and M diverges.� The following HDA diverges as well,s0 a1 - s1 a2 - s2 - : : :Dually, an HDA M co-diverges, if it has no beginning.6.1.4 Branchings and mergingsWe have already de�ned branchings and mergings in all dimensions. Branchingsprovide a measure of non-determinism in all dimensions. Mergings reduce thenon-determinism of an automaton. For instance,Example 27 � A typical branching of dimension one is,: :I@@@@@ ������:



168 CHAPTER 6. BASIC GEOMETRIC PROPERTIES� A typical branching of dimension two is,: - :@@@@@R @@@@@R: - ::? - :?@@@@@R :?where the three faces are �lled in.Be careful though and notice that branchings should be called \necessary branch-ings" since for instance, : - :��b� ��b0�� - �0@@aR @@a0R: - :has only one 1-branching, namely (a0 � b0). (a � b) is certainly not one, andthis can be interpreted (in a modal way) as saying that in state �0 a choice isnecessary between a0 and b0 whereas in �, no choice is necessary.De�nition 34 A HDA M is �nitely branching in dimension n if and only ifHn(M; @0) is a free module of �nite dimension. Similarly, we say that M is�nitely merging in dimension n if and only if Hn(M; @1) is a free module of �nitedimension. By M is �nitely branching (resp. merging), with no precision ofdimension, we mean M is �nitely branching (resp. merging) in all dimensions.Notice that if M is �nitely branching then it has �nitely many �nal states, andif M is �nitely merging, then it has �nitely many initial states.Example 28 In all examples we had up to now, automata were �nitely branch-ing and merging.An application of the classi�cation of branchings will be given at the end ofthis chapter for determining necessary conditions for some (branching-time)semantic equivalences. The mathematically inclined reader will have guessedthat typical non-existence (and obstruction) theorems from algebraic topologywill be given computer-scienti�c meaning.



6.2. REFINEMENT OF ACTIONS 1696.2 Re�nement of actionsThe notion of subdivision of cubicalation is directly related to re�nement ofactions by completely deterministic processes (like division of action: a �!a1; a2).De�ne an operator G, the \subdivision" operator byG(I) � (f0g � I)af1g � I))=f(0; 1) = (1; 0)gG(x) = 8<: (0; x) 0 � x � 1=2(1; x� 1=2) 1=2 � x � 1and for all n, G(2n) = G(I)n.G splits I into two equal parts, then I � I � 22 into four equal parts etc. 2ninto 2n equal parts.G(� - �) = � - � - �More precisely,Lemma 17 G : 2n ! G(2n) is an isomorphism in Top and G(2n) is anamalgamated sum of 2n copies of 2n.Proof. Straightforward. 2A morphism f : 2n ! X in Top therefore induces 2n morphisms f1; :::; f2neach one from a copy of 2n in G(2n).Consider now for a semi-regular automaton M the sub-HDA �(M)(M) of S(jM j). Its elementary objects are morphisms fn;k : 2n !jM j. Then,De�nition 35 A (one-step) re�nement of a unlabeled regular HDA M is theautomaton N = Re(M) generated by the objects f1n;k ; :::; f2nn;k for all n and k.Example 29 A one-step re�nement of automaton (3) of Example 1 is::��� @@R: : :��� @@R ��� @@R: : : : :@@R ��� @@R ���: : :@@R ���:



170 CHAPTER 6. BASIC GEOMETRIC PROPERTIESIt is quite easy to prove that H�(Re(M); @j) � H�(M; @j). Therefore, re�ne-ment does not change the essential topological properties of HDA, and thus isa valid technique for abstracting from unnecessary details when analysing pro-grams (see Section 6.5 where invariants of bisimulation equivalence are given interms of the H�). This is nevertheless not the most general kind of re�nementtechniques one can consider (see [Ren93]).For labeled regular automata p : E ! B, the (one-step) re�nement processmust be applied at the same time to E and B:De�nition 36 A (one-step) re�nement of a labeled regular automaton p : E !B is the labeled regular automaton q : N(E)! N(B) with q induced by S(j p j)on G(2n).6.3 Homology functorsNow that we have de�ned some interesting properties in terms of homology, weneed to be able to compute these groups in an e�ective way. Most results herecome from [ML63].6.3.1 Homology of limits and colimits(*) Lemma 9 the homology of T , coproduct of Q and Q0 is:8i; j; Hi(T; @j) = Hi(Q; @j)�Hi(Q0; @j)Proof. Straightforward. 2(*) Theorem 2 The homology functor commutes with the direct limit functor:H�(lim! Ci; lim! @i) = lim! H�(Ci; @i)Proof. See for example [Mas78]. 26.3.2 Homology of tensor products and HomNow the homology groups of the tensor product are given by the K�unnethformula1.1Simpli�ed here to the case where R does not contain any proper torsion subgroup (likeZZ or ZZ2). for a more general formulation, see for instance [ML63].



6.3. HOMOLOGY FUNCTORS 171(*) Lemma 10 For Q and Q0 HDA such that for all i, Hi(Q; @) and Qi areprojective modules, we have:Hk(T; @) = Mi=0:::k(Hk�i(Q; @) 
Hi(Q0; @))Proof. See for example [Mas78] or [ML63]. 2For a HDAM , we write ZjM for the module of cycles (for @j) ofM , and BjMfor the module of boundaries (for @j) of M .Lemma 18 Z0Hom(P;Q)n\Z1Hom(P;Q)n, for P and Q HDA, is the modulegenerated by the morphisms (of HDA) of degree n between P and Q.Proof. The relation f 2 ZjHom(P;Q)n reads:@i � f � (�1)nf � @i = 0Therefore f is a morphism of degree n. 2De�ne Hn(K;L) = H�n(Hom(K;L)). When L = (1), Hn(K;L) is called thenth cohomology group of K.For the next result, we de�ne the notion of exact sequence.(*) De�nition 6 (see [Lan93a]) A sequence of homomorphisms having morethan one term like:G1 f1 - G2 f2 - G3 : : : fn�1- Gnis called exact if and only if8i = 1; :::; n� 2; Im fi = Ker fi+1A short exact sequence is an exact sequence with n=5, G1 = G5 = 0.(*) Lemma 11 (Homotopy classi�cation theorem)For K and L complexes of abelian groups with each Kn free as an abelian group,there is for each n, a short exact sequence0Yp=�1;:::;1Ext(Hp(K); Hp+n+1(L))? � - Hn(Hom(K;L))Yp=�1;:::;1Hom(Hp(K); Hp+n(L))�?0?This sequence splits (though unnaturally in K).



172 CHAPTER 6. BASIC GEOMETRIC PROPERTIESProof. see [ML63]. 2In particular, if all Hp(K) are projective (or the Hp+n+1(L), injective) thenExt(Hp(K); Hp+n+1(L)) = 0and as the previous sequence splits,Hn(Hom(K;L))� Yp=�1;:::;1Hom(Hp(K); Hp+n(L))When K is a HDA with all Hp(K) projective, then Hn(K�) = H�n(K) =(Hn(K))�.6.3.3 Exact sequencesThe aim of this subsection is to show the use of the Mayer-Vietoris exact se-quence to compute the homology of a complex (Q; @), given the homology oftwo subcomplexes (Q1; @) and (Q2; @) whose union is (Q; @), and the homologyof their intersection (Q1 \Q2; @). This will be extensively used in next section.(*) De�nition and lemma 3 Consider the following short exact sequence ofchain complexes:0 - L0 � - L � - L00 - 0then there is a morphism [@] of degree -1, called a connecting homomorphism,such that if (x00) is a sub-R-module of H�(L00; @), then ([@](x00)) = (��1 � @ ���1(x00)) is a sub-R-module of H�(L0; @). Then, the following sequence is alsoexact: H(L0) �� - H(L)I@@@@@[@] 	�������H(L00)Proof. See [Lan93a]. 2(*) Proposition 4 The following sequence, called the Mayer-Vietoris sequence,is exact:: : : - Hn(Q1) �Hn(Q2) i� - Hn(Q) [@]- Hn�1(Q1 \Q2)	����j�Hn�1(Q1) �Hn�1(Q2) i� - : : :



6.4. BRANCHINGS AND MERGINGS OF CCS 173where, i�(x1 � x2) = i1�(x1) + i2�(x2), if i1 : Q1 ! Q and i2 : Q2 ! Q arethe inclusion morphisms from Q1 to Q and from Q2 to Q respectively, j�(x) =j1�(x) � j2�(x), if j1 : Q1 \ Q2 ! Q1 and j2 : Q1 \ Q2 ! Q2 are the inclusionmorphisms from Q1 \Q2 to Q1 and from Q1 \Q2 to Q2 respectively, and [@] isthe connecting homomorphism of De�nition and Lemma 3.Proof. This result is due to the application of De�nition and Lemma 3 to thefollowing exact sequence of R-modules (see for instance [Lan93a]):0 - Q1 \ Q2 - Q1 � Q2 - Q1 + Q2 - 02Remark We �nd again Lemma 9 using Proposition 4. Q1\Q2 is now empty,thus its homology is 0. Therefore we have short exact sequences (for all n):0 - Hn(Q1)�Hn(Q2) - Hn(Q) - 0We conclude that Hn(Q) is isomorphic to Hn(Q1)�Hn(Q2).6.4 Branchings and mergings of CCSIn this section, we use the general HDA semantics of Chapter 5 and results ofthis chapter to compute the branchings and mergings of our CCS-like processalgebra. This computation will be used in next section to (semi-) decide somesemantic equivalences and to prove global results about computability of somefunctions modulo some semantic equivalences.Lemma 19 (Branchings and mergings for CCS) From now on we suppose thatfor all HDA we consider, their underlying modules are projective and theirhomology modules are projective. This is trivially veri�ed when the base ring Ris a division ring (R=ZZ2 or Q)(i) Hi([[a]]; @j) = 8>>><>>>: (1) (i; j) = (0; 1)(�k) (i; j) = (0; 0)0 i > 0(ii) Hi([[a]]; @j) = 8>>><>>>: (1) (i; j) = (0; 1)(�k) (i; j) = (0; 0)0 i > 0



174 CHAPTER 6. BASIC GEOMETRIC PROPERTIES(iii) Hi([[nil]]; @j) = 8<: (1) (i; j) = (0; 0)^ (i; j) = (0; 1)0 i > 0(iv) � H0([[p + q]]; @0) = H0([[p]]; @0) � H0([[q]]; @0) if 9(X;X 0) 2 [[p]] � [[q]],@0(X) = @0(X 0) = (1),� H0([[p+q]]; @0) = (H0([[p]]; @0)�H0([[q]]; @0)) =(1) if 6 9(X;X 0) 2 [[p]]�[[q]], @0(X) = @0(X 0) = 1,� H1([[p+q]]; @0) = H1([[p]]; @0)�H1([[q]]; @0)�R�ModfX�X 0=(X;X 0) 2[[p]]� [[q]]; @0(X) = @0(X 0) = 1g,� Hi([[p+ q]]; @0) = Hi([[p]]; @0)�Hi([[q]]; @0) for all i � 2,� H0([[p+ q]]; @1) = (1),� Hi([[p+ q]]; @1) = Hi([[p]]; @1)�Hi([[q]]; @1) for all i � 1.(v) Hi([[p:q]]; @j) = 8>>><>>>: H0([[p]]; @1) = (1) (i; j) = (0; 1)H0([[p]]; @0)
H0([[q]]; @0) (i; j) = (0; 0)Hi([[p]]; @j)�H0([[p]]; @0)
Hi([[q]]; @j) i � 1(vi) Hi([[pkq]]; @j) = Hi([[p]]; @j)
Hi([[q]]; @j)(vii) Hi([[pna]]; @j) = FA1 � : : : � FAn(H�([[p]]; @j))iwhere,� i � j ) dimAi � dimAj� fu 2 [[p]]=9x; y 2 D; u = x
 ai 
 y _ u = x
 ai 
 yg =R�Mod(A1; : : :An)� 8>>>>>>>><>>>>>>>>: i 6= dimAk; FAk (H�(Q; @))i = Hi(Q; @)i = dim Ak FAk (H�(Q; @))i = 8>>>>><>>>>>: Hi(Q; @) if Hi(Q; @) � Pu6=Ak (u)otherwise,Hi(Q; @)=fv=v 2 Hi(Q; @); v 62 Pu6=Ak (u)g(viii) Hi([[rec x:q[x]]]; @j) =lim! Hi([[qn[nil]]]; @j)where the diagram on which we take the limit is the image of the diagramde�ning rec x:q[x] by the functor Hi.



6.4. BRANCHINGS AND MERGINGS OF CCS 175Proof.(i),(ii),(iii) Direct computation.(iv) Consider �rst a HDA Q and two subHDA Q1 and Q2 such that,� Q1 [ Q2 = Q� Q1 \ Q2 = (�) = H0(Q; @1) = H0(Q1; @1) = H0(Q2; @1)Then,� H0(Q; @0) = H0(Q1; @0)�H0(Q2; @0) if 9(X;X 0) 2 Q1�Q2; @0(X) =@0(X 0) = �� H0(Q; @0) = (H0(Q1; @0) � H0(Q2; @0))=(�) if 6 9(X;X 0) 2 Q1 �Q2; @0(X) = @0(X 0) = �� H1(Q; @0) = H1(Q1; @0)�H1(Q2; @0)�R�ModfX �X 0=(X;X 0) 2Q1 � Q2; @0(X) = @0(X 0) = �g� 8k � 2; Hk(Q; @0) = Hk(Q1; @0)�Hk(Q2; @0)To prove this, we write the Mayer-Vietoris sequence for the complexeswith boundary operator @0 :: : : - Hn(Q1)�Hn(Q2) i� - Hn(Q) [@]- Hn�1(Q1 \Q2)	����j�Hn�1(Q1) �Hn�1(Q2) i� - : : :But, Q1k \Q2k is null for k � 1, so we have short exact sequences:8m � 2; 0 - Hm(Q1)�Hm(Q2) i�- Hm(Q) - 0Therefore, Hm(Q; @0) is isomorphic to Hm(Q1) �Hm(Q2), with isomor-phism i�. Now, we have a long exact sequence,0 - H1(Q1; @0) �H1(Q2; @0) i� - H1(Q;@0) [@0]- H0(Q1 \Q2; @0)	����j�H0(Q1; @0)�H0(Q2; @0) - H0(Q; @0) - 0H0(Q1 \ Q2; @0) = Q1 \ Q2 = (�), so Ker j� = (�) or Ker j� = 0.Im [@0] = Ker j� implies that the �rst case is only possible if 9(X;X 0) 2Q1 � Q2; @0(X) = @0(X 0) = �.(a) Suppose 9(X;X 0) 2 Q1 � Q2; @0(X) = @0(X 0) = �, then j� = 0.Then we have the short exact sequence0 - H1(Q1; @0) �H1(Q2; @0)	����i�H1(Q;@0) [@0] - (�) - 0



176 CHAPTER 6. BASIC GEOMETRIC PROPERTIESFrom this we deduce, H1(Q; @0) is [@0]�1(�)�H1(Q1; @0)�H1(Q2; @0).We conclude by noticing that [@0]�1(�) = R�ModfX�X 0=(X;X 0) 2Q1�Q2; @0(X) = @0(X 0) = �g. We have also a short exact sequence0 - H0(Q1; @0)�H0(Q2; @0) - H0(Q; @0) - 0Therefore H0(Q; @0) = H0(Q1; @0)�H0(Q2; @0).(b) Assume the contrary. Then, Ker j� = 0 = Im [@]0jH1(Q;@0) andH1(Q; @0) = H1(Q1; @0) � H1(Q2; @0). This is what we wanted toprove under the hypothesis 6 9(X;X 0) 2 Q1 � Q2; @0(X) = @0(X 0) =�. We have also a short exact sequence,0 - (�) - H0(Q1; @0)�H0(Q2; @0) - H0(Q; @0) - 0Therefore, H0(Q; @0) = (H0(Q1; @0)�H0(Q2; @0))=(�)Then, notice that for all CCS-terms p, q, by induction, H0([[p]]; @1) = (1)and 6 9(X;X 0) 2 [[p]] � [[q]], @1(X) = @1(X 0) 6= 0. Applying the previousresult to the complexes for @0 and for @1 gives the result.(v) We have [[p:q]] = [[p]] + H0([[p]]; @0) 
 [[q]]. As we always use fresh copiesof atomic actions, [[p]] \ [[q]] = (1). Therefore, [[p]] \ H0([[p]]; @0) 
 [[q]] =H0([[p]]; @0), and the Mayer-Vietoris exact sequence gives,(1) : 8n � 2 0 - Hn([[p]];@i)�Hn(H0([[p]];@0) 
 [[q]]; @i)/���Hn([[p:q]]; @i) - 0(2) : 0 - H1([[p]];@i)�H1(H0([[p]];@0)
 [[q]]; @i) - H1([[p:q]];@i)+����[@i]H0([[p]]; @0) j� - H0([[p]];@i)�H0(H0([[p]];@0) 
 [[q]]; @i)+����H0([[p:q]]; @i) - 0By the K�unneth formula,Hn(H0([[p]]; @0)
[[q]]; @i) = H0([[p]]; @0)
Hn([[q]]; @i)(for all n � 0). Therefore, by (1),8n � 2; Hn([[p:q]]; @i) = Hn([[p]]; @i)�H0([[p]]; @0)
Hn([[q]]; @i)Then, examining (2), we have two cases,� @i = @0: j� is the identity on H0([[p]]; @0). Therefore Ker j� = 0 =Im [@0] soH1([[p:q]]; @0) =H1([[p]]; @0)�H0([[p]]; @0)
H1([[q]]; @0). Thenquotienting the second part of the exact sequence (2) by H0([[p]]; @0)leads to H0([[p:q]]; @0)= H0([[p]]; @0)
H0([[q]]; @0).� @i = @1: j� is an isomorphism between H0([[p]]; @0) and H0([[p]]; @0)
H0([[q]]; @1). Therefore, we have the same result as previously forH1([[p:q]]; @1). Then we quotient the second half of the exact sequence(2) by H0([[p]]; @0)
H0([[q]]; @1) to get H0([[p:q]]; @1) = H0([[p]]; @1) =(1).



6.4. BRANCHINGS AND MERGINGS OF CCS 177(vi) We have [[pkq]] = [[p]]
 [[q]]. Therefore, (vi) is a direct consequence of theK�unneth formula.(vii) We �rst compute the homology of (Q2; @) given the ones of (Q1; @), (Q; @),and (Q1\Q2; @). The �rst case which is of interest for us is the one whenwe deal with bicomplexes, @ = @0, and we have a projection2 p whosekernel is a sub-R-module of the set of 1-transitions Q1, Q1 = Ker p �@(Im p)� @1(Im p), Q2 = Q=Ker p. The following result corresponds tothe simpler case Ker p = (a), a is not in the boundary of any 2-transition.We prove,� 8k � 2; Hk(Q2; @) = Hk(Q; @)� for k = 0; 1, we have two cases:(1) 6 9X 6= a; @(X) = @(a), then{ H1(Q2; @) = H1(Q; @){ H0(Q2; @) = H0(Q; @)� (@(a))(2) 9X 6= a; @(X) = @(a), then{ H1(Q2; @) = H1(Q; @)=R�Modfa�X=@(X) = @(a); X 6= ag{ H0(Q2; @) = H0(Q; @)We have the Mayer-Vietoris sequence,: : : - Hn(Q1)�Hn(Q2) i� - Hn(Q) [@]- Hn�1(Q1 \Q2)	����j�Hn�1(Q1) �Hn�1(Q2) i� - : : :But, Q1 \ Q2 = @(Ker p) � @1(Ker p) = f@(a); @1(a)g is composed onlyof two states. Therefore 8n � 2; Hn�1(Q1 \ Q2) = 0. This implies8k � 2; Hk(Q; @) = Hk(Q1; @)�Hk(Q2; @) = Hk(Q2; @)Now, noticing thatH0(Q1; @) = (@1(a)),H0(Q1\Q2; @) = (@(a))�(@1(a))and H1(Q1; @) = 0, we have a long exact sequence,0 - H1(Q2; @) i2� - H1(Q;@)	����[@](@(a)) � (@1(a)) j�- (@1(a)) �H0(Q2; @) i�- H0(Q;@) - 0We have j�(@(a)) = j1�(@(a))� j2�(@(a)) = 0� j2�(@(a)).But Ker j� = Im [@], so if 9X 6= a; @(X) = @(a) (case (2)), then X �a 2 H1(Q; @) because a is not in the boundary of any 2-transition, and[@](X � a) = @(a) 2 Ker j�, thus j2�(@(a)) = 0 and j�(@(a)) = 0.2We recall that a projection is an idempotent endomorphism on a R-module V , uniquelycharacterized by its kernel (or its image because V = Im p� Ker p).



178 CHAPTER 6. BASIC GEOMETRIC PROPERTIESOtherwise (case (1)), 6 9X 6= a; @(X) = @(a), and j2�(@(a)) = @(a) =j�(@(a)).We have also j�(@1(a)) = j1�(@1(a))� j2�(@1(a)) = @1(a) � x, x verifyingi�(@1(a)� x) = @1(a) + x = 0, so x = �@1(a).Therefore, in case (1), Ker j� = 0, and in case (2), Ker j� = (@(a)).Factoring3, we get a short exact sequence for each case:(1) 0 - (@(a)) � (@1(a))	����j�(@1(a))�H0(Q2; @) i� - H0(Q;@) - 0(2) 0 - (@1(a))	����j�(@1(a)) �H0(Q2; @) i�- H0(Q;@) - 0We deduce that in case (1), H0(Q2; @) = H0(Q; @)� (@(a)), and in case(2), H0(Q2; @) = H0(Q; @).Considering the left-hand side of the long exact sequence of the beginning,we have short exact sequences for each case:(1) 0 - H1(Q2; @) i2�- H1(Q; @) [@] - 0(2) 0 - H1(Q2; @) i2�- H1(Q; @) [@]- (@(a)) - 0Thus, in case (2), H1(Q2; @) = H1(Q; @)=[@]�1(@(a)) = H1(Q; @)=R �Modfa�X=@(X) = @(a); X 6= ag, and in case (1), H1(Q2; @) = H1(Q; @).More generally, let Q be a bicomplex. Let @ be one of its boundaryoperators. We consider the projection p from Q to Q, with Ker p = (A),A being a n-transition (n � 2) of Q which is not is the boundary of any(n + 1)-state. Let Q1 be the smallest subHDA of Q containing Ker p,Q2 = Q=Ker p. ThenH0(Q1; @) = (�)8i � 1; Hi(Q1; @) = 0H0(Q1 \ Q2; @) = (�)Hn�1(Q1 \ Q2; @) = (x)8i � 1; i 6= n� 1; Hi(Q1 \ Q2; @) = 03i.e. considering the quotient map induced by j� j� from (@(a) � @1(a))=(Ker j�) to(@1(a))�H0(Q;@).



6.4. BRANCHINGS AND MERGINGS OF CCS 179And then,8k; k � n+ 1 _ 0 � k � n � 2 Hk(Q2) = Hk(Q)Ker jn�1� = 0 =) �Hn�1(Q2) = Hn�1(Q)� (x) ^ Hn(Q2) = Hn(Q)�otherwise,Ker jn�1� = (x) =) �Hn�1(Q2) = Hn�1(Q) ^ Hn(Q2) = Hn(Q)=[@]�1(x)�(the condition Ker jn�1� = (x) means that there exists a branching ofdimension n in Q at x). This is due to the fact that the Hk(Q; @) are thesolutions of the following equations (Mayer-Vietoris):(ES1) : 0 - H1(Q2) i1�- H1(Q) [@]1- (�) j0�- (�)�H0(Q2) i0�- H0(Q) - 0(ESk) : 0 - Hk(Q2) ik�- Hk(Q) - 0 8k; k � n+ 1 _ 2 � k � n � 2(ESn) : 0 - Hn(Q2) in�- Hn(Q) [@]n- (x) jn�1� - Hn�1(Q2) in�1� - Hn�1(Q) - 0By (ESk) we immediately conclude8k; k � n+ 1 _ 2 � k � n � 2 Hk(Q2) = Hk(Q)If we examine (ES1), we have to notice that j0�(�) cannot be equal tozero, thus (ES1) splits into two short exact sequences, giving the resultfor k = 0 and k = 1.Then, for (ESn), we have a discussion on jn�1� . We have two cases, inwhich the sequence splits into two short exact sequences. In the �rst case:Ker jn�1� = 0, and we have:0 - (x) jn�1� - Hn�1(Q2) in�1� - Hn�1(Q) - 00 - Hn(Q2) in� - Hn(Q) - 0And in the second case, Ker jn�1� = (x), and we have:0 - Hn�1(Q2) in�1� - Hn�1(Q) - 00 - Hn(Q2) in� - Hn(Q) [@]n- (x) - 0Combining all these results proves (vii).(viii) This is a direct consequence of Lemma 2.2



180 CHAPTER 6. BASIC GEOMETRIC PROPERTIES6.5 Application: Semantic EquivalencesIn this section, we make the �rst move from local geometric properties likebranchings and mergings to geometric properties of paths of HDA. We willshow that the local properties provide valuable information about these globalgeometric properties like branching-time semantic equivalences. The methodol-ogy we are adopting is to de�ne properties combinatorially (using semi-regular,partial or regular HDA), because they are closer to the computer scienti�c in-tuition and then use general HDA and local invariants to characterize them.To get usual de�nitions of semantic equivalences to work (as those in [vG90])which are made using ordinary transition systems we give a notation for \tran-sitions" read in paths,De�nition 37 Let 	(Q), for l : Q ! L a labeled HDA, be the set of paths(partial or total) of Q. Let ! be the following subset of 	(Q) � L � 	(Q):p �! p0 if and only if p = (p1; :::; pn), p0 = (p1; :::; pn; q) with l(q) = �. Asusual, we de�ne �;��! to be the transitive closure of the relation �! on 	(Q), and�! to be the transitive closure of the relation L! de�ned by p L- p0 , 9�,p � - p0.Using these two de�nitions of paths, we can generalize the notions of traceequivalence, failure equivalence, ready set equivalence etc. Except for the �rstone, all these semantic equivalences are \branching-time" equivalences. We re-fer to [vG90] for details about the standard de�nitions of semantic equivalencesfor parallel programs.6.5.1 Linear-time semantic equivalencesDe�nition 38 (Trace semantics)For M a labeled HDA over L, with labelling l, let P(M) be the set of all semi-partial paths of M . Then, two labeled HDA (over L) (P; l), (Q; k) are traceequivalent if and only if l(P(P))=k(P(Q)).As we are to do in the following, this de�nition can specialize to one in whichwe only consider \homogeneous" paths, i.e. l : M ! L and k : P ! L areH-trace equivalent if and only if l(Pn(M)) = k(Pn(P )) for all n � 1. Bothde�nitions quite obviously generalize ordinary trace equivalence. For instance,the two following automata are trace and H-trace equivalent,: a - : b - : : a - : b - :@@@@@c R @@@@@a R: : c - :



6.5. APPLICATION: SEMANTIC EQUIVALENCES 181Trace equivalence does not respect the branchings nor the mergings. It is alinear-time semantic equivalence.6.5.2 Branching-time equivalencesFailure equivalenceDe�nition 39 Let � be a semi-partial path of a labeled HDA (M; l) over L,and X be a set of states and transitions of L. Then (l(�); X) is a failure pairfor M if and only if � cannot be extended by �ring transitions whose labels arenot in X. Two labeled automata P and Q are failure equivalent if and only iftheir sets of failure pairs are equal.Consider the failure pairs (l(�); X) with X , set of 1-transitions of L. Take thesmallest such set X . If it is void, then this means that �n4 is a �nal state ofM . Reciprocally, if we have a failure pair of the form (l(�); ;) then �n is a �nalstate. This proves that l�(H0(M; @0)) is preserved by failure equivalence.Now, suppose it is not void, and contains two distinct 1-transitions a and b.Then by hypothesis, there exists x and y with@0(x) = @0(y) = �np(x) = a p(y) = bThus, x� y is a 1-cycle for @0.We take for granted now that (M; l) is a labeled automaton such that all statesare reachable.Suppose thatM is a standard automaton, i.e. has only states and 1-transitions.It follows that x � y is a generator of H1(M; @0) and a � b is a generator ofl�(H1(M; @0)). Reciprocally, if we have a generator u of l�(H1(M; @0)), then ucan be taken as l(x) � l(y), with x and y elements of the chosen basis of M ,and @0(x) = @0(y). Call this state �, and let � be a semi-partial path of lengthn such that �n = �. It is easy to see that there exists a failure pair (�;X)with fx; yg � X . This implies that l�(H1(M; @0)) is preserved under failureequivalence5 .Readiness equivalenceDe�nition 40 (Readiness equivalence)(l(�); X) is a ready pair for an HDA M if and only if, � is a semi-partial pathof length n, X is a set of states and transitions of L such that � can only beextended by elements of X. P and Q are ready equivalent if they have the samesets of ready pairs.As for failure equivalence, we see that l�(H0(M; @0)) is preserved, and for stan-dard automata, l�(H1(M; @0)) is also preserved.4n is the length of �.5This is the basic requirement for being called branching-time semantic equivalence



182 CHAPTER 6. BASIC GEOMETRIC PROPERTIESBisimulation equivalenceFirst Approach - inhomogeneous paths Here we follow the lines of [GJ92].De�nition 41 S is a bisimulation between (Q; l) and (Q0; l0) if:� S is a relation between the states, events and transitions of Q and Q0� initial states are related to initial states� (s; s0) 2 S ) (8 q a path for Q such that 9i, qi = s, 9q0 a path for Q0such that 9j, q0j = s0 and (qi+1; q0j+1) 2 S, l(qi+1) = l(q0j+1))� (s; s0) 2 S ) (8q0 a path for Q0 such that 9j, q0j = s0, 9q a path for Qsuch that 9i, qi = s and (qi+1; q0j+1) 2 S, l(qi+1) = l(q0j+1))(Q; l) and (Q0; l0) are bisimulation equivalent if and only if there exists a bisim-ulation between them.This notion of bisimulation equivalence \naturally" generalizes the usual notion(as found in [Mil89]) of observational equivalence, or bisimulation equivalenceon one dimensional automata. Two HDA are bisimulation equivalent if andonly if each time one can �re a transition (of any dimension) then the othercan �re the same. This bisimulation implies that not only are we looking at thetime choices are made for �ring ordinary transitions, but also we are looking atthe allocation of the di�erent actions through time. This is what we are goingto prove in the rest of this section.One can verify that bisimulation equivalence implies readiness equivalence,which in turn implies failure equivalence and then trace equivalence. Noticealso that for standard automata, these notions coincide with the usual ones.We have just added the opportunity to observe simultaneous actions we couldnot before, because we could not express them in the semantics. This meansthat we can observe schedules on any number of processes.In our setting, the description of bisimulation equivalence is more complex thanin the sequential case. Nevertheless, we can show that it is still a branching (inour sense) time equivalence, that is, it locally preserves some geometric shapes.Example 30 � The labeled HDA represented as,1 10	��a @@aR(i) : � � (ii) : �0a?	��b @@cR
b? �c? �0 
 0are not bisimulation equivalent since in (i) the choice of a copy of a impliesthat we have already chosen if we will do b or c whereas in (ii) this choiceis made after �ring a. Notice that (i) (see the semantics of CCS, Chapter5) corresponds to the CCS term a:b + a:c whereas (ii) is a:(b+ c). Thisis the classical example in CCS a:(b+ c) 6= a:b+ a:c.



6.5. APPLICATION: SEMANTIC EQUIVALENCES 183� The labeled HDA (i) represented as,: b - :@@aR @@R: - ::c? - :?@@R @@R:? - :?and the one (ii) represented as,� �0	�� I@@a ��a� @@R
 1 
 0I@@ 	��b��������b @@cRAAAAAAAc U ���� �0�00 �00AAAAAAAU ��������
 00where all the squares are �lled in are not bisimulation equivalent since in(ii), choosing a transition a imposes which transition we can �re concur-rently in the future whereas in (i), this choice is not yet done. Lookingat the semantics of CCS of Chapter 5, the reader should be able to con-vince himself that (ii) corresponds to the term akb + bkc + cka and that(i) corresponds to no term (this will be proved later on).We begin by looking at bisimulation equivalence for semi-regular HDA.De�nition 42 Let M be a semi-regular HDA and x a state of M . The localskeleton of dimension n at x is Vn(x) subHDA of M generated by,Wn(x) = fy 2M=dimy = k � n ^ d00d01 : : : d0k�1(y) = xgLet Vx be the amalgamated sum of all the Vn(x), n 2 IN. The �rst n (if itexists) such that Vn(x) = Vn+1(x) is called the local dimension of M at x. Byconvention, if no such n exists, we say that the local dimension is in�nite.Now we state the result which proves that bisimulation equivalence preserveslocal branchings:



184 CHAPTER 6. BASIC GEOMETRIC PROPERTIESLemma 20 (Local test)Let (P; l) and (Q; k) be two labeled semi-regular path-connected HDA overL. If they are bisimilar then 8x, 9y, and 8y, 9x, with semi-partial paths px(resp. py) ending at x (resp. y) such that l(px) = k(py) in both cases andH�(l(Vx(P )); @0)) = H�(k(Vy(Q)); @0)).Proof. Let S be a bisimulation between P and Q. Let x be an element of P .P is path-connected, so there exists a path � connecting an initial state i ofP to x. By induction on the length of �, we show that there exists � , a pathconnecting an initial state j of Q to a state y, with �S� . Now, we show thatVx and Vy considered as labeled HDA are bisimulation equivalent.Now, we prove that l(Vx(P )) = l(Vy(Q)). It su�ces to show that for all n,l(Wn(x)) = l(Wn(y)), the result being entailed by considering the smallest HDAgenerated by both terms of the equality. Let t 2 Wn(x) be a transition of dimen-sion k � n. By de�nition ofWn(x), there exists a path (by \maximal allocation"of processors) from x to t, e.g. p = (x = d0k�1 : : : d00(t); d0k�2 : : : d00(t); : : : ; d00(t); t).p can be decomposed, using the transition relation ! as,p0 = (x) l(d0k�2 : : :d00(t))- p1 = (x; d0k�2 : : :d00(t)) - : : :pk�1 = (x; : : : ; d00(t))pk = pl(t)?As �S� , and as �, � end at x and y respectively, we can associate (by inductionon j) to the pj paths qj beginning at y with,pjSqjq0 = (y) l(d0k�2 : : :d00(t))- q1 = (x; d0k�2 : : :d00(t)) - : : :qk�1 = (x; : : : ; d00(t))qkl(t)?Therefore, l(t) 2 l(Q). Moreover, the construction of the path qk above (by\maximal allocation") proves that there exists a transition of dimension k ofWn(y) which has label l(t). Exchanging the roles of P and Q gives l(Wn(x)) =k(Wn(y)).Now, 8n, 8k < n, Hk(l(Vn(x)); @0) = Hk(l(Vx); @0) = Hk(k(Vn(y)); @0) =Hk(k(Vy); @0). 2This test shows that under the observation of labels, bisimulation equivalentautomata are locally isomorphic. As we deal with local shapes, we try toclassify them using homology. The way we extract these local shapes implies



6.5. APPLICATION: SEMANTIC EQUIVALENCES 185that only the homology with respect to @0 (branchings) is relevant: for all kand x, Hk(l(Vx) = Vl(x)[l(Vx)]; @0) � Hk(l(P ); @0). Thus, Hk(l(:); @0) (for all k)is invariant under bisimulation equivalence. This is then a test for bisimulationfor general HDA.Now, notice that this test is still not powerful enough for our purpose. Forinstance, the test of the previous proposition distinguishes the �rst two HDAof Example 30 but not the last two ones. We need to generalize what we havedone.First, we extend the concept of local skeleton. Let X be a semi-regular HDAand a a m-transition of X (and not only a state as we had before). Then thelocal skeleton of dimension n at a is Vn(a) subHDA of X generated by,Wn(a) = fy 2 X=dim y � n ^ d0k�1 : : : d0m(y) = agVa is then the amalgamated sum of all the Vn(a).Then,Lemma 21 (Generalized local test)Let (P; l) and (Q; k) be two labeled semi-regular path-connected HDA over L.If they are bisimilar then 8x transition, 9y transition, and 8y, 9x, with semi-partial paths px (resp. py) ending at x (resp. y) such that l(px) = k(py) in bothcases and H�(l(Vx(P )); @0)) = H�(k(Vy(Q)); @0)).Proof. Similar proof as for the local test. 2Now, this is enough for proving that in the second example of Example 30, thetwo HDA are not bisimulation equivalent. How can we decide this generalizedlocal test, knowing the physical branchings, the labelling and the shape of thedomain?Unfortunately, the more powerful test (as well as easier to decide) which wouldbe l(H�(M; @0)) = k(H�(M; @0)) is not true in general when P and Q arebisimilar. Consider for instance P = (a
a0)+(a0
a00)+(a00
a) and Q = (a
a0)where a, a0 and a00 are three 1-transitions. Suppose k = l, l(a) = l(a0) =l(a00). P and Q are bisimulation equivalent, but l(H2(P; @0)) = (a 
 a) andk(H2(Q; @0)) = 0.We have to make a few assumptions on the labelling to relate these two \lo-cal" tests. An important class of labellings is the one seen in Chapter 2. Let(ai); (bi); : : : (i 2 IN) be 1-transitions and D be the domain given by the recur-sive domain equation,D �=Xi ((ai) + (bi) + : : :) +D 
DThen de�ne a morphism from D to D by l(ai) = a0, l(bi) = b0, : : :, andl(x 
 y) = l(x) 
 l(y). We set L = l(D)=fs� 1=s 2 Dp;�p; p 2 ZZg. Let l beinduced morphism from D to L. Then for such a labelling,



186 CHAPTER 6. BASIC GEOMETRIC PROPERTIESClaim 1 Let k 2 IN, X, Y subHDA of D and x, y states of X, Y respectively.Then, 8(u; v) 2 Vx(X)� Vy(Y );Hk(l(Vu(X)); @0) = Hk(l(Vv(Y )); @0)) 8>>><>>>: l�(Hk(Vx(X); @0))=fa
k0 ; b
k0 ; : : :g=l�(Hk(Vy(Y ); @0))=fa
k0 ; b
k0 ; : : :gTherefore l(Hk(:; @0))=fa
k0 ; b
k0 ; : : :g is invariant under bisimulation equiva-lence.Notice that, as we have higher-order automata (the Hom(P;Q) in Chapter 4),this property allows also for an immediate generalization, which was far fromobvious for bisimulation and higher-order bisimulation.As an application of Lemma 20, we show that some behaviours modulo bisim-ulation equivalence are not implementable using CCS.Lemma 22 There exists an element in the semantic domain D we have usedpreviously for giving semantics to CCS terms, which is not bisimulation equiv-alent to any term of CCS.Proof. (R = ZZ2)Consider the HDA t generated by the three 2-transitions a
 b, a
 c and c
 b.The reader can verify that t = (1)�(@1(a))�(@1(b))�(@1(c))�(@1(a)
@1(b))�(@1(a)
@1(c))� (@1(c)
@1(b))� (a)� (a
@1(b))� (a
@1(c))� (b)� (@1(a)
b)� (@1(c)
 b)� (c)� (c
 @1(a))� (c
 @1(b))� (a
 b)� (a
 c)� (c
 b).We see that a 
 b + a 
 c + c 
 b is in H2(t; @0), because @0(a 
 b) = a + b,@0(a 
 c) = a + c, and @0(c 
 b) = c + b, so a, b, and c are counted twicein @0(a 
 b + a 
 c + c 
 b), and also there is no 3-transitions from whicha
 b+ a
 c+ c
 b could be the boundary of.Now, let z be any CCS-term. We show that no element of l�(H2([[z]]; @0)) canbe of the form a 
 b+ a
 c+ b
 c, then t is not bisimulation equivalent to zby Lemma 20. Assume we have a CCS-term z bisimulation equivalent to t.First of all, we can restrict ourselves to considering terms z only built withactions a, b, and c, and operators +, :, and k. Moreover, no two operators j canbe nested (because we would have 3-transitions, and t does not contain any).Let ai, bi, and ci for a certain number of i's, be physical copies of actions a, b,and c respectively, appearing in [[z]] (coded during the translation of the termz by forming the tensor product of a, b, and c with states)Let x be an element of l�(H2([[z]]; @0)). x corresponds to l� of some sub-vector-space of H2([[z]]; @0). But by the remarks we have made and the K�unnethformula (appearing during the computation of the homology of j-terms), x isof the form Pu;v l�(u 
 v), where u 2 H1(Q; @0) and v 2 H1(Q0; @0), for someautomata Q, and Q0 built with a, b, c, +, etc.



6.5. APPLICATION: SEMANTIC EQUIVALENCES 187A straightforward application of Section 5.4.2 shows that necessarily, u and vare of the form ai + aj , ai + bj , ai + cj , bi + bj , bi + cj or ci + cj . Therefore, xis of the form a 
 a, a 
 a + a 
 b, a 
 a + a 
 c, a 
 b, a 
 b + a 
 c, a 
 c,a
a+a
b+b
b, a
a+a
c+a
b+b
c, a
b+b
b, a
b+a
c+b
b+b
c,a 
 c + b 
 c, and all other terms obtained by a suitable permutation on thesymbols a, b, and c. We see that we cannot obtain a 
 b+ a 
 c+ b
 c fromthese terms. This is a contradiction. 2The term we have exhibited has an interest of its own. It is the dynamic alloca-tion on two processors of three processes (or the typical branching of dimension2 of Section 6.1.4).Second Approach - homogeneous paths Now the observable paths forbisimulation are restricted to homogeneous paths in some Pn(M), the R-moduleof n-paths of M . We authorize observation of �nite sets of paths at the sametime (use of the formal sum of paths, i.e. the addition in the modules of n-paths).De�nition 43 Let l :M ! L and k : N ! L be two labeled HDA. Then a Hn-bisimulation (n � 0) R between M and N is a relation between n-transitions ofM and n-transitions of N such that,(i) aRa0 and bRb0 implies (a+ b)R(a0 + b0),(ii) aRa0 and � 2 R implies �aR�a0,(iii) 0 R 0,(iv) initial states of M are related to initial states of N ,(v) aRa0 and 9p 2 Pn(M) with @0(pi) = a (for some i), then there existsq 2 Pn(N) with @0(qj) = a0 (for some j), k(qj) = l(pi) and @1(pi)R@1(qj),(vi) aRa0 and 9q 2 Pn(N) with @0(qj) = a0 (for some j), then there existsp 2 Pn(M) with @0(pi) = a (for some i), l(pi) = k(qj) and @1(pi)R@1(qj).Let Sn be the following \shift operator". For M a HDA, Sn(M)p;q = Mp+n;qand @0[Sn(M)] = @0, @1[Sn(M)] = @1. Sn is easily seen to de�ne an endofunctorin �. A similar de�nition could be given for semi-regular, partial and regularHDA.The nice thing about Hn-bisimulation is,Lemma 23 The set of Hn-bisimulation between M and N is in one-to-onecorrespondance with the set of H1-bisimulation between Sn�1(M) and Sn�1(N).



188 CHAPTER 6. BASIC GEOMETRIC PROPERTIESProof. Easy veri�cation since Pn(M) = P1(Sn�1(M)). 2As usual we say that M and N are Hn-bisimulation equivalent if and only ifthere exists a Hn-bisimulation between them. The previous lemma shows thatM and N are Hn-bisimulation equivalent if and only if Sn�1(M) and Sn�1(N)are H1-bisimulation equivalent. We are now concentrating on H1-bisimulationequivalence.Lemma 24 If M and N are H1-bisimulation equivalent thenl(Ker @10 [M ]) = k(Ker @10 [N ])Sketch of proof. Let c 2 Ker @10 [M ]. Then c 2 P1(M). 0 is related by thebisimulation R to 0 by (iii) of De�nition 43. Therefore there exists c0 2 N1 suchthat l(c) = k(c0). 2This implies that if looking at H-bisimulation equivalence (i.e. the smallestequivalence subsuming all the Hn, n � 1) between schedulers ofM (see Chapter7) and schedulers ofN then it implies that l�(H�(M; @0)) = k�(H�(N; @0)), thatis the preservation of the labels of the branchings.Another way (closer to the ordinary testing methodology, [DNH83]) to obtainthe result is to remark that conditions (i), (ii) and (iii) make the bisimulationa submodule B of M � N . Now, conditions (v) and (vi) show that as soon(@0(t); @0(t0)) 2 B, where t 2M1, t0 2 N1 and l(t) = k(t0), then (@1(t); @1(t0)) 2B. If we notice that B is a submodule of the pushout (synchronized product),M �L N p1- MN?p2 k- L?land that in M�LN this precisely means that @0(t; t0) and @1(t; t0) are (@0�@1)-connected, we get the following result (generalized easily to any dimension).Lemma 25 Suppose M and N are two connected HDA. Then M and N areHn-bisimulation equivalent if and only if p1(C0) = M0 and p2(C) = N0 whereC is the connected component C of (I; I 0) in M �L N .C represents the maximal bisimulation. The lemma can be interpreted (computer-scienti�cally) as saying that when synchronizing M and N (over their labels)all states of M and N should be reached from the initial state (I; I 0).Finally, we can notice that M and N are H-bisimulation equivalent implies Mand N are bisimulation equivalent. Since H-bisimulation is easier to prove orto negate, the previous proposition lets us think that H-bisimulation shouldbetter be used in practical semantic de�nitions.



6.5. APPLICATION: SEMANTIC EQUIVALENCES 189Summary We showed that many dynamic properties of interest in HDA werein fact local geometric properties, that could be computed or characterized usinghomology theory. Among them were initial and �nal states, deadlocks andinitial deadlocks, divergence, branchings and mergings. We have used classicalresults from homology theory to compute these geometric properties inductivelyon the syntax of CCS. We ended up by showing that some \branching-time"semantic equivalences were preserving branchings indeed. We introduced twokinds of \higher-dimensional" bisimulations for HDA and showed that they werepreserving some local geometric shapes as well, hence giving a semi-decisionprocedure for proving that two HDA are not bisimulation equivalent. As anapplication, we proved that no CCS term could be bisimulation equivalent tothe dynamic allocation on two processors of three processes.
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Chapter 7Serialization and schedulers7.1 Introduction and motivation7.1.1 Scheduling problems in computer scienceThe use of schedulers is somewhat pervasive to many branches of computer sci-ence. We mention below a few application areas, the properties that schedulersare to verify and give some references to the theoretical work done in thesedi�erent �elds.Safety and e�ciency of the implementation of concurrent languagesA real parallel machine has but a limited number of resources. It has limitedmemory, limited number of processing units and many constraints on the wayit can use them. The idealistic view of true concurrency semantics, assumingan in�nite number of processors for instance, is therefore misleading when itcomes to runtime behaviour of programs. It may happen that to badly schedulespawning operations may deadlock (just delay in practice) a process that wouldneed to synchronize with another (not yet executed) process. It may happenas well that some shared resources of the machine have to be used in mutualexclusion.The safety (respectively e�ciency) properties that schedulers must verify aremainly choosing behaviours that will not lead to deadlocks (respectively not de-lay too much the execution of some process) and implementing mutual exclusionof some resources. This last property could well be implemented by standardtechniques (Peterson's algorithm for shared-variables or hardware test-and-setlike operations) independently of programs but this would be at the expense ofe�ciency.Let us take an example extracted from [HMC94] and [PF94]. Many modernCPUs like SPARCs or MIPS pipeline instructions. Of course, their functionalunits, registers or bus are all used in mutual exclusion. Unfortunately thepipelined instructions overlap in time as they use more than one clock cycle andsome of them cannot be executed (unless \structural hazards" occur) within191



192 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.1: MIPS R4000 
oating point unit.instructions/cycle 0 1 2 3 4 5add.s U S+A A+R R+S ; ;add.s U S+A A+R R+S ;where U is unpack, S is shift, A is adder and R is round.a certain number of cycles after some others (see Figure 7.1). We do not wantto use the pipeline in mutual exclusion since we would have to empty it afterevery instruction. The problem addressed in [PF94] is to verify that schedulersfor a single process ensure that structural hazards will not occur (safety). Ina concurrent framework, if there are more processes than processors, we canaddress the new problem of �nding a way to interleave actions from di�erentprocesses executed on the same processor, that verify the constraints while usingthe pipeline at the best of its capabilities (see Example 31).A similar example at a more macroscopic level is given by an I/O bu�er sharedby two or more processes. Some processors (like INTEL's Pentium) are evenmore complex to deal with since some resources may be used by at most twoprocesses in parallel but not three1.This chapter is about the �rst mathematical de�nitions of schedulers within theHDA framework. We will see in Part IV how to get the best scheduler (or anapproximation of it) using abstract interpretation.Example 31 Suppose that we want to execute two instructions add.s one afterthe other on the MIPS R4000 
oating point unit2. Then at cycle 2 the adder Ahas to be used by both instructions (coming from the same thread). The sameholds at cycle 3 for the round unit R. We say in that case that there is anhazard on A at cycle 2 and an hazard on R at cycle 3. A good scheduler shouldhave prevented us from this situation by interleaving the two threads after the�rst add.s and continue with non-con
icting instructions of the second threadfor the pipeline to be emptied a bit before executing the second add.s.Another example of scheduling properties can be found in the parallelizationlitterature. Given a sequential program p, can we decide which parts of it canbe executed in parallel? This is dual to the problems we have described above.Parallelization is about relaxing the constraints on scheduling that a sequentialprogram put arbitrarily. Most approaches up to now are based on programtransformation [LZ93, PP92, SMC91]. We propose here a theoretical frameworkthat enables us to derive a scheduler choosing dynamically the intructions tospawn. The actual algorithms derived from this framework will be developedin Part IV.1It has two integer arithmetic units.2Taken from [PF94].



7.1. INTRODUCTION AND MOTIVATION 193Protocols in distributed/concurrent systemsIn order to have well behaved distributed systems, one very often has to makelocal processors agree on some criterion, like elect a leading one or organize the
ow of information to guarantee the coherence of the global state of the system(by local rules only) like the consensus, set or renaming agreement tasks[Her94]. This is done by de�ning protocols. An example of such a situation isgiven by a parallel machine whose di�erent units communicate by asynchronousmessages along channels which have a given topology (let us say a ring topologyfor instance). Now, a protocol for guaranteeing a global knowledge of some factmust serialize all message passing primitives according to the communicationtopology (in our example of the ring topology, messages are to be waited forfrom say the left neighbour before passing them to the right neighbour). In[Her94] some of these problems are addressed in a static manner (the topologyis �xed once and for all). We propose here to use the dynamic semantics todeal with changing topologies as well3.Another example can be found in concurrent database systems [Ull82]. A trans-action in a database system is de�ned to be any query to the database, likereading or writing entries. The database itself is shared by many processeswhich are sequences of transactions. To ensure the consistency of the databasethe processes have to lock some entries and then unlock them after some oftheir transactions have been executed. Protocols de�ne the way processes lockand unlock items. A good instance of this is the two-phase protocol. Givenprocesses Pi accessing items in sets APi the two-phase protocol consists in lock-ing (giving exclusive access to the locking process) all items in Pi, before alltransactions in Pi and then unlocking (releasing the unique access grants) allitems in APi . There again, the protocol is a constraint on scheduling. Thenotion of consistency of the database or soundness of the protocol is knownas serializability. This means that all schedulers constrained by the protocolmust be equivalent in some sense (at least give the same result). We give ageneral de�nition of serializability, carrying on the work presented in [Gou93],and give a practical test for protocols based on the semantics of the processesand not only on static or syntactic ground. Very recently, Jeremy Gunawardena[Gun94] has given a very clear explanation about why serializability has some-thing to do with homotopy. We �rst recall what the problem is in concurrentdatabases and give a formalization of these notions using higher-dimensionalautomata.7.1.2 A geometric approachInterestingly enough, a graph-based criterion is known for serializability [Ull82].In more general protocols for \decision problems" recent results [Her94] usecombinatorial algebraic topology on static representations of protocols. We willshow here that we can use more general tools from algebraic topology directly on3In many languages, like CM-Fortran with the CMMD library, or CML [Rep92], channelsare de�ned during the execution of the program. They are not physical but they are logicalchannels.



194 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.2: A process graph for two transactions accessing the same shareditem.
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the dynamic semantics of the systems studied to extract the information aboutserializability and about schedulers. We will develop in particular a homotopytheory of oriented paths (next section). Let us explain the intuition about it.The two-phase protocolA concurrent database is composed of a set of shared objects, or items, and a setof processes accessing these items T1; : : : ; Tn, or transactions. The transactionscan be executed in parallel, and one can think of a good example (of economicinterest too!) as being a reservation system of an airline. The items are seatsin the planes and the transactions are individual queries from customers, madein parallel since there may be many di�erent selling points. The basic propertywe want to insure is that no seat is sold twice (at the same time) to di�erentcustomers. This is rather basic since we do not even ask for a priority rule like\�rst arrived, �rst served". In the shared memory paradigm the well-knownmethod for attacking this is to put locks [Dij68] on shared variables. InDijkstra's formalism, for an item a, Pa is the action of locking a and V a is theaction of relinquishing the lock on a. As long as we are only interested in thepolicy of acquiring items and not in their actual values, we can abstract thetransactions in such a way that they are written as strings of Px, V x, x rangingover the shared objects. This is a more important abstraction than one maynotice at �rst. We will come back to that when formalizing these notions.As an example, consider T1 = PaV aT2 = PaV a



7.1. INTRODUCTION AND MOTIVATION 195Figure 7.3: An example of process graph.
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There is an old way to represent these transactions due to Dijkstra again (see[Dij68], look also at [Hoa85]), known as process graphs. We will see that it hasmuch to do with the HDA approach. The idea is to associate to each transactiona \local time" which geometrically is one coordinate in an euclidean space.Supposing that all processes can individually terminate, we may normalize thislocal time for it to range over [0; 1]. A purely asynchronous execution of ntransactions is now any path from (0; : : : ; 0) to (1; : : : ; 1) in the n-cube [0; 1]nwhere the local times, i.e. the coordinates always increase. But the executionsare constrained by the fact that shared objetcs are accessed in mutual exclusion.In Figure 7.2 we have pictured the central square in [0; 1] which is forbidden:a valid path of execution cannot enter it since it is precisely the region inwhich both transactions access the same object a. The more complex exampleborrowed from [Gun94]: T1 = PbPaV bPcV aV cT2 = PaPbV aV bis pictured in Figure 7.3. Using these geometric representations, we have twomain questions,(i) Can the system of transactions deadlock?(ii) Is the system of transactions correct in some sense?



196 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.4: Left and right paths in a mutual exclusion.
left

rightAs for question (i), the answer is geometrically clear (see [CRJ87]). The onlyway a path coming from (0; : : : ; 0) may be stopped before reaching (1; : : : ; 1)is by \meeting" a corner like the dashed one (PaPb, PbPa) in Figure 7.3. Assoon that a path goes into the small dashed rectangle, it cannot reach (1; : : : ; 1).Formally, this question relates to a connectedness result. We will look at thatin Section 7.2.Question (ii) is less immediate since we �rst have to de�ne what the correctnesscondition is. In the airline reservation system example we have only demandedthat no seat be sold twice. This means that some parts of the transactions maybe done in parallel, but that the execution must be su�ciently constrained sothat the resulting reservations are the same as some sequential treatment of thequeries of the customers. In database theory this correctness criterion is knownas \serializability". It has a basic \geometric" formalization in [Ull82] in theform of a topological condition on the \graph of transactions". We show now,following J. Gunawardena [Gun94], that it is even more directly of a geometricnature, and that the serialization property can be read on the process graph.This may seem strange since the correctness criterion seems essentially givenas a condition on states of the system. Do not forget though this assumptionon the representation of transactions as not depending on the actual values ofitems. Surely, some arithmetical operation involved in the booking process maycommute with other operations for some values of the items, but we have tothink that to be true for all values is odd (strange programming at least). Thecondition now is then only on paths of executions. If you look at the forbiddensquare, or mutual exclusion in 7.2 reproduced in 7.4, the values of the items atits top right depend on the way we have reached this point. Going on the left ofthe hole may give di�erent results from going on the right of the hole: just thinkat the following example. The initial value of a is 0. The arithmetic operationsinvolved for the processes when the lock on a has been acquired is a := a+1 forT1 and a := 2�a for T2. Going on the left means doing a := 2�a before a := a+1,result is a = 1. Going on the right means doing a := a + 1 before a := 2 � a,result is a = 2. Instead of looking at the holes, look at the �lled parts of thedrawing 7.2. It becomes obvious now that all paths below (or at the right handside of) the hole are serializable to the right boundary of the square, and thatall paths above (or at the left hand side of) the hole are serializable to the left



7.1. INTRODUCTION AND MOTIVATION 197Figure 7.5: A process graph with two mutual exclusions.
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boundary of the square. Holes appear to be the elements to discover. They arethe obstructions to the \continuous" deformation of paths (homotopy), whichis the \in�nitesimal" serialization equivalence. Here, the system is serializablesince any path can be deformed onto one of the interleavings T1;T2 or T2;T1,i.e. any path gives the same result as a serial execution of the transactions.Let us examine another process graph we may have (see Figure 7.5). Here,the paths \in between" the two holes cannot be deformed onto one of theinterleavings, hence they are not serializable.The aim of protocols for concurrent databases is to provide us with a uniform4way of insuring the consistency of the database. A good example is the two-phase protocol. Every transactions must acquire all locks of all items they willcompute on (�rst phase), compute, and at the end they must release all theirlocks. For instance T1 = PaPbPcV aV bV c veri�es the two-phase protocol (is\two-phase locked") whereas T2 = PaV aPbV b does not. It can be proven bycombinatorial means that it makes all systems of transactions serializable (or inshort, it is serializable). However it does not prevent deadlocks. Geometrically,the proof that it is serializable has been given in [Gun94], and is much moreilluminating than the combinatorial one of, say, [Ull82]. Basically, it is proventhat the n-cubes forbidden by the two-phase protocol form a unique hole in the\centre" of [0; 1]n. It is then easy, using a \radial" homotopy to deform all paths4I.e. independently of what process we want to program.



198 CHAPTER 7. SERIALIZATION AND SCHEDULERSof execution onto one of the interleavings, and then prove the serializability.This proof is not completely satisfactory though. First, we use continuous meth-ods. They are elegant but induce a few complications, like knowing that thepaths correspond to real ones. Secondly, we use a standard theory of homotopywhich authorizes reversal of time. Here, we really need a homotopy theory for\oriented" paths in which the allowed deformations are only transverse to the
ow of time.In the following we develop such a theory, in a discrete framework using Higher-Dimensional Automata. In Part V, we will look at the continuous couterpart.The theory will generalize also to higher-dimensional mutual exclusion prob-lems.The simple theory we are going to develop applies for semi-regular HDA only.Then, we will introduce a more complex theory, generalization of this to \com-binatorial" HDA (Chapter 10) and to general HDA.Protocols for distributed systemsHere, we want to deal with general problems that one can have in programmingdistributed systems. The case of concurrent databases can be considered as a�rst example. More generally, we are concerned with the following type ofproblems,� given a number of hypotheses on the distributed system, like a topologyof the communication network, a speci�cation of the way messages aresent and received (asynchronously, synchronously, with bounded bu�ers,with no loss etc.), or in case of a shared-memory system, a number ofassumptions like sequential/concurrent read/write etc.� given a speci�cation of what we want to program (as a set of distributedprocesses) on that system in the form of conditions on the input valuesaccepted by this set of processes and conditions on the output values thatthis set of processes should compute,� given a number of requirements on the execution of this program, likebeing as most e�cient as it can be, or (it may be seen as a limit case ofthe previous requirement) being robust enough to compute a good partof the output speci�cation even if some processors fail,� the questions are: \Does such an algorithm exist on such machines?" andif the answer is positive, \Can we derive it from the speci�cation of theproblem ?".All this is formalized under the name of decision tasks. Let us �rst give a fewexamples, following the presentation of [HS93] and [Her94].The consensus task (abstraction of the commitment problem in concurrentdatabase theory where transactions have to agree on a common value or abort)is a decision task in which N asynchronous processes begin with arbitrary input



7.1. INTRODUCTION AND MOTIVATION 199values in some set S and must agree at the end on some common value takenfrom S.The renaming task is another decision task in which N asynchronous processesbegin with disjoint values in a set of \names" S and must end with new names(i.e. disjoint values) taken from a much smaller subset S0 of S.Finally the k-set agreement task asks for arbitrary input values (in some set S)but no more than k output values (in S as well). This can be seen as a partialconsensus among the processes.Now, an algorithmmay be constrained in the following way. Call an execution ofa program on a distributed system t-faulty if at most t processes in the programfail. Then an algorithm is t-resilient if it solves a decision task in every t-faultyexecution. An algorithm is wait-free if it is (n � 1)-resilient, where n is thenumber of processes.It is proved for instance in [HS93] that in a shared-memory model with singlereader/sin{gle writer registers providing atomic read and write operations, k-setagreement requires at least bf=kc+1 rounds where f is the number of processesthat can fail. This is done in a very nice geometric framework, and general testsare given for solving t-resilient problems. Not only impossibility results can begiven but also constructive means for �nding algorithms derive from this work(see for instance [HS94]).We will see how it relates to the HDA approach in Section 8.2.3 and in Section10.5.Scheduling problems on modern architecturesModern machine and processor architecture combine many elements that, ifwell used, greatly enhance the performance of the system, but if not, slow downthe computation a lot. Vectorial units or pipelines (see Example 7.1) are anexample. The reason is that some of these elements have good performance (likepipelines) if and only if we can assume a very precise ordering on instructionsexecuted at run-time, whereas others can run almost arbitrary sequences ofoperations. Knowing this, we may reorder the actions to be executed on thelatter elements so that we can use the former elements at the best of theircapabilities.This is the view taken for instance in [AF92] where some elements have strongconsistency requirements (serializability) whereas some others have weak consis-tency requirements only. As we can see, this elaborates on the case of concurrentdatabases in the sense that we need a real classi�cation of all possible orderingsof actions (i.e. of all schedulers) and not only a proof that all schedulers are\equivalent" to one of the interleavings of the transactions.Our approachLet us discuss now what we should consider to be a scheduler of a program ora set of processes in the HDA framework.



200 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.6: A HDA (i) and its set of paths (ii).s3 s3��b� I@@a ��b� I@@as1 ab s2 s1 s2I@@a ��b� I@@a ��b�s0 s0(i) (ii)Figure 7.7: Another HDA (i) and its set of paths (ii)s3 s3��b� I@@a ��b� I@@as1 s2 s1 s2I@@a ��b� I@@a ��b�s0 s0(i) (ii)Suppose we have a real machine with only a �nite number n of processorson which we want to implement a semantics given by HDA. What should weconsider as a valid implementation?We �rst look at an instructive example for n = 1. Suppose the semantics of aprogram P is given by the truly concurrent execution of a and b pictured as the2-transition in (i) of Figure 7.6. Then the valid execution paths are given by (ii)of the same �gure. A scheduler can choose statically to do a then b or b then a.a then b is one scheduler and b then a is another. They are essentially the same(this will be de�ned formally as an equivalence relation between schedules) sincea and b are non-interfering. In a geometrical manner, they are equivalent sinceone can continuously deform one path onto the other through the 2-transitionab (homotopy). In more well-known terms (Mazurkiewitz trace theory) onecan understand ab as a commutation relation between a and b that is, ab isserializable to a then b and serializable to b then a [Ull82].If P were the mutual exclusion between a and b ((i) of Figure 7.7) then do wehave also two equivalent schedulers on a one-processor machine? The answeris no: choosing a-priori to �re a before b is radically di�erent from choosinga-priori to �re b before a. Suppose for instance that a is the action on a process1 of accessing a shared resource R and b is the action on a process 2 of accessingR as well. Then we should think of the two processes to be in competition forR and the scheduler does not have to make one wait for the other to access it�rst if the other was ready to: it is a matter of ine�ciency and it transforms the



7.2. THE GROUP OF CONNECTED COMPONENTS 201properties of the program (livelocks etc.). Moreover, if we are at an abstractlevel of the semantics, (where we have folded together some of the states forinstance) we cannot be sure that the results of the two paths will be the same(look again at example (a := a+ 1) j (a := 2 � a)). We knew that when we hadthe 2-transition in Figure 7.6 because it indicated a non-interfering behaviour,but here we just do not know. This is the abstract point of view implicitlyused for studying protocols and concurrent databases (because they should notdepend on the particular values of the items). There must then be one andonly one scheduler whose trace is represented as (ii) in Figure 7.7. s1 is aninternal choice the parameters of which the scheduler cannot in
uence. There,the \hole" between ab and ba prevents us from deforming one onto the other.We now formalize this in more abstract geometrical terms.7.2 The group of connected componentsFirst of all, what is the amount of external non-determinism in a regular HDA? This is the very �rst question we have to solve because we can only speakabout serializability of computations once a branch of (external) choice hasbeen chosen.The geometric representations of non-determism are of two kinds.The �rst one is an external choice between a and b:: a- :: b- :The second one is an internal choice between the same actions::��a�: @@bR :We see that the degree of external non-determinism is related to the number ofconnected components of the HDA. We therefore come to de�ning this notionin a formal way.Let s and s0 be two states of M , i.e. s; s0 2 M0. We say that s and s0 areconnected and that s comes before s0 (s � s0) if and only if there exists a1-path p of �nite length such that @0(p1) = s and @1(pk) = s0.Recall that a path p of dimension one (or 1-path), of length k and from p; q inan automaton M is a sequence p = (pi)1�i�k of elements of M such that� pi 2Mp+i�1;q�i+1,� d10(pi) = d00(pi+1).



202 CHAPTER 7. SERIALIZATION AND SCHEDULERSLemma 26 If two states s and s0 are such that s � s0 then[s] = [s0] in H0(Tot(M))The reciprocal is false in general.Proof. Notice that H0(Tot(M)) = Tot(M)0=Im(@1 � @0) so we only need toprove: s and s0 are in the same connected component implies 9z 2 Tot(M)1with s� s0 = (@1 � @0)(z),We have p = (pi)i=1;:::;k such that @0(p1) = s and @1(pk) = s0. Therefore if weset z = p1 + p2 + : : :+ pk then,(@1 � @0)(z) = �s+ d10(p1)� d00(p2) + d10(p2)� : : :+ d10(pk�1)� d00(pk) + s0= �s+ s0A counterexample for the reciprocal is given by the branching,s s0I@@a ��b��[s] = [s0] in H0(Tot(M)) but there is certainly no path from s to s0. 2The equivalence relation induced by the preorder � on states is exactly therelation \being in the same connected component". It is entirely classi�ed byH0(Tot(M)). We call ~�0(M) = H0(Tot(M)) the reduced group (or module) ofconnected components of M .In fact, this is not quite enough for our purpose. What we really need toformalize is the fact that a point can be reached from another point by anincreasing path, that is by a path in the automaton. In Figure 7.8, no pathfrom the points in region C can reach the �nal state (the upper right corner ofthe square), so to some extent, this shape should not be considered connected inthe \oriented" setting. We can see that the new notion of connectivity is goingto classify the deadlocks of the system. Nevertheless, this new connectivityis obviously not an equivalence relation, so there is no way to de�ne a set of\oriented" connected components that would partition an automaton.Instead of that we will say that a HDAX is connected in the oriented sense withrespect to the pair of states (�; �) if and only if all states of X are reachablefrom � by a path of X and � is reachable from any state of X by a path of X .7.3 Towards formal de�nitionsLet M be a regular automaton. All automata will be acyclic HDA unlessstated otherwise.



7.3. TOWARDS FORMAL DEFINITIONS 203Figure 7.8: A \non-connected" automaton in the oriented theory
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Let p = (pi)i=1;:::;k be a 1-path. It can be pictured as, for paths of dimensionone, p1 2M1;0 d00- � 2 Ip1 2M2;�1 d00 - =d10?...pk 2Mk;�k+1 d00- =�d10?where � and � are respectively its initial and �nal states.We wish to de�ne geometrically how two paths of dimension one are to beconsidered equivalent in a scheduler. Let us look at the HDA from a di�erentpoint of view. We slice paths into actions that occur at a given time: supposingthat all paths we are interested in begin in M0;0, we say that we are at time iwhen we look at actions in Mi;�i+1.Let p and q be two paths. We say that p and q are elementary equivalentat time i if and only if pi and qi are two ends of a 2-transition A and pj = qjfor j < i � 1 and j > i and if pi�1 and qi�1 are two beginnings of the same2-transition A. This corresponds to the idea of continuously deforming onepath onto the other (or to use a commutation rule between two transitions) likeone can see in Figure 7.9. We de�ne equivalence to be the re
exive transitiveclosure of elementary equivalence.



204 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.9: Step by step deformation (curved arrows) of one path onto an other
Let us picture an example. Consider the automatonM = � b00- ���a� A ��a0�� b- 
@@cR B @@c0R� b0- �and suppose that � is in M0;0. Thus, M can be algebraically de�ned as,M2;0 = (A)� (B) - M1;0 = (a)� (b)� (c) - M0;0 = (�)M2;�1 = (a0)� (b0)� (c0)� (b00)? - M2;�2 = (�)� (
)� (�)? - 0?M2;�2 = (�)� (�)? - 0?0?For instance, the 1-path (a; b00) is elementary equivalent to the 1-path (b; a0) .Similarly (b; c0) and (c; b0) are elementary equivalent but not equivalent to anyof the two former 1-paths.Now, we are looking for an algebraic de�nition of this equivalence.7.4 The fundamental groupThe fundamental group of length kLet P k1 (M) be the set of all 1-paths of length k from I �M0;0 in the semi-regularHDAM (called the \elementary" 1-paths). It generates a sub-R-module of the



7.4. THE FUNDAMENTAL GROUP 205product module M1;0�M2;�1� : : :�Mk;�k+1: the addition and external mul-tiplication are de�ned on each component of the paths. By abuse of notation,we write P k1 (M) for this R-module.Let p = (pi)1�i�k and q = (qi)1�i�k be two elements of P k1 (M). Then we saythat p and q are equivalent or homotopic (p � q) if and only if p � q is inIm (@0� @1) (see [ML63]) in M . The �rst thing to prove is that it correspondsto our geometric de�nition of the last section.Suppose that we have p and q elementary equivalent. Then we have p � q =pi�1�qi�1+pi�qi with pi = d10(A), q = d10(A), pi�1 = d01(A) and pi�1 = d00(A)(for instance) and A is a 2-transition. Therefore, p� q = @1(A)� @0(A).Now, suppose thatM is acyclic and that we have two paths p = (pi)i=1;:::;k andq = (qi)i=1;:::;k such that p � q = (@0 � @1)(X), X 2 M . M is acyclic, so wecan decompose X = Pi=1;:::;k�1 Xi with @0(Xi) � @1(Xi�1) = pi � qi. Each Xican be decomposed onto the basis M of M , i.e. Xi =Pj Xi;j , Xi;j 2 M . Wesuppose that pi and qi are elements of M (i.e. p and q are \natural" generatorsof P k1 (M)). We can suppose that the X1;j (up to reordering and discarding ofredundant ones) are such that (the aij belong to M1),@0(X1;1) = p1 � a11@0(X1;2) = a11 � a12: : :@0(X1;l1) = a1l1�1 � q1We have also, @1(X1;1) = b11 � c11@1(X1;2) = b12 � c12: : :@1(X1;l1) = b1l1 � c1l1where we have ordered the b's and c0s so that @0(c1j) = @1(a1j�1) (where byconvention we set a10 = p11) and @0(b1j) = @1(a1j) (where by convention, a1l1 = q1).This implies that the (a1j ; b1j) and (a1j�1; c1j) are paths of length 2 in M .Then as @0(X2)� @1(X1) = p2 � q2, we can order the X2;j so that @0(X2;j) =uj � vj , with uj = b1f(j) or uj = c1f(j) and vj = b1g(j) or vj = c1g(j), f , g increasingmaps. This enables to complete the paths of length 2 previously de�ned andhave paths of length 3.These paths are de�ned in such a way that they are elementary equivalent fromone to the next through one of the Xi;j . This generalizes to k � 3 by carefullydecomposing X at time slices greater or equal than 3. This tedious proof is leftto the reader.We de�ne the fundamental group ofM for paths of length k to be �k1(M) =P k1 (M)= �.



206 CHAPTER 7. SERIALIZATION AND SCHEDULERSProposition 11 Suppose M = Pp;0�q�k Mp;q is connected in the oriented sensewith respect to all pairs (�; �) 2 I �Mk;�k. Let O be the image of I �Mk;�kby u such that u(x; y) = (x� y) 2 I �Mk;�k. Then,�k1(M) = H1 ((M;O); @0� @1)where H1 ((M;O); @0� @1) is the �rst relative homology group of the pair [ML63]N = (M;O) =M=O and boundary operator @0�@1, i.e. is the quotient moduleKer(@0 � @1)jN1=(@0 � @1)(N2).Proof. Ker(@0�@1)jN1 is the R-module generated by the set of 1-paths ofMstarting from I and of length k since,� if p = (p1; : : : ; pk) is such a path, (@0�@1)(p1+ : : :+pk) = @0(p1)�@1(pk)which is null in N ,� reciprocally, if p 2 Ker(@0�@1)jN1 then, asM is acyclic, p = pl+ : : :+pmwith pi 2M i+1;�i, m � i � l.Suppose that p 6= 0 i.e. that pl 6= 0 and pm 6= 0. We know that (@0 �@1)(p) 2 O.This implies �rst that @0(p)\M0;0 = �1i1+ : : :+�rir (�j 2 R, ij 2 I and@1(p) \Mk;�k = ��1m1 � : : :� �rmr (mr 2 Mk;�k). This entails thatl = 0, m = k � 1.Finally it implies that @0(pi+1) = @0(pi) for all i with 1 � i � k � 2.Decomposing the pi onto the basis Mi+1;�i of M i+1;�i, we �nd elementspji of Mi+1;�i and �ji of R such thatpi =Xj �ji pji@0(pji+1) = @1(pji )These form the decomposition of p onto the set of paths of M from I toMk;�k .Quotienting by (@0� @1)(N2) amounts to taking them modulo homotopy as wehave seen already. 2The functor �k1Let f be a morphism from the semi-regular automaton M to the semi-regularautomaton N . Then f induces a morphism ~fk from the pair (M;O) to thepair (N;O0) for all k. Then ~fk induces H1( ~fk) : H1(M;O) ! H1(N;O0).This de�nes �k1(f) = H1( ~fk) and makes �k1 into a covariant functor from thecategory of semi-regular automata to the category R�Mod of R-modules.All these de�nitions can be made starting from anywhere, not only M0;0. Forinstance, if we consider initial states in Mp;q, we de�ne in a similar manner theR-modules P p;q;k1 (M) and �p;q;k1 (M), and the corresponding functors.



7.4. THE FUNDAMENTAL GROUP 207Figure 7.10: Example of a fundamental group of oriented paths.
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We can also de�ne submodules of these like ��;�1 (M) of paths from a state� 2 Mp;q to a state � 2 Mp+k�1;q�k+1. Proposition 11 has then the followingcounterpart,Proposition 12 Suppose M = Pp;0�q�k Mp;q is an acyclic HDA with � 2 M0;0and � 2Mk;�k, connected in the oriented sense with respect to (�; �). Then,��;�1 (M) = H1 ((M; (�� �)); @0 � @1)Proof. Same as for the proof of Proposition 11 where we replace Mk�k by (�)and I = (�). 2If M was not connected in the oriented sense with respect to (�; �) then theisomorphism would not hold as one can see on Figure 7.8. The boundary of theforbidden region is a cycle for @0�@1 but it is not generated by the set of pathsfrom � to �. This is a condition that one would normally expect in ordinaryhomotopy theory (in Hurewicz theorem [May67]).Example 32 Let M be the acyclic semi-regular HDA whose geometric realiza-tion is shown in Figure 7.10. Then one can check thatKer (@0 � @1)j(M;(���)) = (a+ c+ b00 + d00)� (c+ b0 + c00 + b00)�(a + b+ a0 + b0)� (a0 + d+ a00 + d0)� (c0 + d0 + c00 + d00)Of these generators, only a+c+b00+d00 and c0+d0+c00+d00 are not in Im (@0�@1).Therefore, ��;�(M) = (a+ c+ b00 + d00)� (c0 + d0 + c00 + d00)There are two classes of equivalence of 1-paths modulo homotopy as expected(one can check that there are representants of them which are elementary paths,like a+ c+ b00 + d00 and b+ d+ a00 + c00).



208 CHAPTER 7. SERIALIZATION AND SCHEDULERSRemark: There is no such technicality in the usual de�nitions of homotopygroups since we generally consider loops. Loops are composed in the obviousway, the same for loops of loops etc. This complexi�es the de�nitions of \ori-ented" homotopy modules, and higher-order ones as well as we will see in thefollowing.7.4.1 Functors �p;q1 , �11 and �1(y) Functors �p;q1 and �11In this section, we would like to identify paths of length k as the beginnings ofsome paths of greater length. This will enable us to de�ne a fundamental groupof in�nite paths.Let tk : P p;q;k+11 (M)! P p;q;k1 (M) be the module homomorphism de�ned bytk(x1; : : : ; xk+1) = (x1; : : : ; xk)Then x � y in P p;q;k+11 (M) implies tk(x) � tk(y) in P p;q;k1 (M). Therefore tkinduces (by an abuse of notation) tk : �p;q;k+11 (M)! �p;q;k1 (M). Consider thediagram � = �p;q;01 t0 �p;q;11 t1 : : : tk �p;q;k+11  : : :in the category of R-modules. Inverse limits exist in this category and we de�ne�p;q1 =lim �.Let sp;qk : P p�1;q+1;k+11 (M)! P p;q;k1 (M)be the module homomorphism de�ned by sp;qk (x1; : : : ; xk+1) = (x2; : : : ; xk+1).Then sp;qk induces (by an abuse of notation again) sp;qk : �p�1;q+1;k+11 (M) !�p;q;k1 (M). The diagram,�p�1;q�1;k+11 (M) sp;qk - �p;q;k1 (M)�p�1;q+1;k+21 (M)6tk+1 sp;qk+1- �p;q;k+11 (M)6tkcommutes for all p, q and k. Therefore sp;qk inducessp;q :lim �p�1;q+1;k1 (M)!lim �p;q;k1 (M)i.e. sp;q : �p�1;q+11 (M)! �p;q1 (M)Let � = : : :�p;q1 (M) sp;q �p�1;q+11 (M) : : :We de�ne �11 (M) =lim �.There is no obvious characterisation of �11 in terms of homology. It is awell-known fact that homology does not preserve inverse limits in general (see[Mas78] for instance).



7.4. THE FUNDAMENTAL GROUP 209Figure 7.11: Composition of equivalence classes of paths modulo homotopy.
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The functor �1The real interesting homotopical object is the module of all �nite paths modulohomotopy. The formal de�nition is as follows,De�nition 44 The full fundamental group is�1(X) = ��;�2X0 ��;�1 (X)=f[f ]�;� + [g]�;
 = [f + g]�;
; f , g elementary pathsgThe quotient condition means that a sum of two classes of paths that maycompose is equated to the class of the sum of the two paths. In this homotopygroup, we cannot reverse time, but we can consider collections of \oriented"paths.The de�nition is valid since it is easy to see that if f and f 0 are two homotopicpaths from � to � (respectively g and g0 are two homotopic paths from � to 
)then f + g and f 0 + g0 are two homotopic paths from � to 
.Example 33 Let M be the following semi-regular HDA whose geometric re-alization is shown in Figure 7.11. In this �gure, we have pictured also fourpaths. One can verify that f and f 0 are homotopic elementary 1-paths, andthat [f ] + [g] = [f + g] = [f 0 + g] = [u].CyclesA 1-cycle of length k is a path c 2 P k1 such that @0(c1) = @1(ck) = 0. Theyform a submodule of P k1 called Ck1 . The homotopy relation induces a submodule~�k1(M) = Ck1 (M)= �� �k1(M). Then similarly to the construction of �1(M)we have a reduced homotopy module ~�1(M) � �1(M).Lemma 27 ~�1(M) = H1(M; @0 � @1).



210 CHAPTER 7. SERIALIZATION AND SCHEDULERS7.5 (y) Homotopy of mapsHomotopy for topological spaces is an equivalence relation on loops (paths withthe same beginning and ending) used to classify them up to \continuous defor-mation".Let X be a topological space. If f and g are two continuous functions fromthe segment [0; 1] to X with f(0) = f(1) = g(0) = g(1), i.e. if f and g aretwo (parametrizations of) loops, an homotopy between f and g is a continuousfunction G, G : [0; 1]� [0; 1]! Xsuch that 8x;G(0; x) = f8y;G(1; y) = gG describes the process of continuous deformation between loops f and g.As one would expect, it has an algebraic (discrete) counterpart, known as chainhomotopy.Let (I; @) be the complex such that I0 is generated by s and t and I1 is generatedby u with @(u) = t � s, @(t) = @(s) = 0. I is the analogue of a unit segment.X is now a complex, and f and g are morphisms from the complex I to thecomplex X . We could de�ne a chain homotopy to be, mimicking what we hadin the continuous case, G : I 
 I ! Xwith, 8x;G(s
 x) = f(x)8y;G(t
 y) = g(x)but this is not the standard de�nition. We can show that the existence of sucha G is equivalent to the existence of �, a map of degree 1 between I and Xsuch that, @ � �+ � � @ = f � gTo give a hint of the proof, just think of G and � as being related by G(u
x) =�(x).This gives us the de�nition,De�nition 45 (see [ML63]) Let X and Y be two complexes and f; g : X ! Ybe two morphisms of complexes. A chain homotopy between f and g is a mapof degree one � : X ! Y such that,@ � �+ � � @ = f � gIn the case of bicomplexes, there is a notion of chain homotopy .



7.5. (y) HOMOTOPY OF MAPS 211De�nition 46 (see [CE56]) Let i : P �! Q and j : P �! Q be two mor-phisms. Then i and j are homotopic, written i � j, if and only if: 9�1; �2 mapsof degree (1,0) and (0,1), such that�0@0 + �1@1 + @0�0 + @1�1 = i� j�1@0 + @0�1 = 0�0@1 + @1�0 = 0Then, we have,Lemma 28 Let f : P �! Q and g : P �! Q be two morphisms of HDA. If fand g are bicomplex-homotopic, then Tot(f) and Tot(g) are chain homotopicwith a homotopy � such that �(Pp;q) � Qp+1;q + Qp;q+1. The reciprocal is truefor acyclic automata.Proof. We have maps of degree (1; 0) and (0; 1), �0 and �1 respectively.Consider the map of degree 1 � = �1 � �0 between Tot(P ) and Tot(Q). Then,(@1 � @0) � �+ � � (@1 � @0) = (@0�0 + �0@0 + @1�1 + �1@1)� (@1�0 + �0@1)�(@0�1 + �1@0)= f � gTherefore � is a chain map between f and g, and f and g are (@1 � @0)-chainhomotopic.We prove the reciprocal now. Suppose P and Q are bi-graded R-modules (that isthey are the direct sum of Pm;n, @0 : Pm;n �! Pm�1;n and @1 : Pm;n �! Pm;n�1)and suppose � is a map of degree 1 such that for all m,n, � : Pm;n �! Qm;n+1�Qm+1;n. We can then decompose � into �1��0 where �0 : Pm;n �! Qm;n+1 and�1 : Pm;n �! Qm+1;n. We have (@1�@0)(�1��0)+(�1��0)(@1�@0) = f �g.Thus(@1 � @0) � �+ � � (@1 � @0) = (@0�0 + �0@0 + @1�1 + �1@1)� (@1�0 + �0@1)�(@0�1 + �1@0)= f � gNotice now that for x 2 Pm;n, @1�0(x) 2 Qm+1;n�1, @0�1(x) 2 Qm�1;n+1,but f � g 2 Qm;n. Therefore, @1�0 + �0@1 = 0, @0�1 + �1@0 = 0, and@0�0 + �0@0 + @1�1 + �1@1 = f � g. 2The fundamental group has a characterization through homotopy of regularmaps. This will be shown in Section 7.6.2.



212 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.12: A path X of dimension 2 between two paths p1, p2 of dimension1.
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c7.6 Higher-order homotopy groupsWe have at least two di�erent ways to de�ne higher-order homotopy groups.The �rst one is a direct generalization of the de�nition for the fundamentalgroup. We had two \limiting" (n� 1)-cubes in between which we could deformany sequence of n-cubes. That was de�ned with n = 1. For n = 2 we havea homotopy group of dimension 2 parameterized with two 1-paths p1 and p2,having the same initial and �nal states (see Figure 7.12). Then in order to de�nea \full" homotopy group, we have to glue together all parameterized homotopygroups, and the combinatorics of this glueing operation is much more complexthan in dimension one.The second one is via a \suspension" like construction. This gives numerousproperties, similar to those we have in \standard" homotopy theory of, say,singular simplexes.7.6.1 First de�nitionThe de�nition we give now is \iterative" in the sense that we know what a 1-path between � and � is, or what is a 1-path of length k and that the de�nitionof n-paths between (n� 1)-paths depend on that de�nition.De�nition 47 Let n � 2 and M be an acyclic HDA. Let p1 and p2 be two (n�1)-paths between two (n� 2)-paths � and �. We suppose that pi = (p1i ; : : : ; pki )and that p1i 2 Mn�1+s;�s. The R-module of n-paths between p1 and p2 is theR-module of sequences x = (x1; : : : ; xk�1) such that there exists � 2 R with,� xs 2Mn+s;�s,� @0(xi+1) = @1(xi) + �(pi+11 � pi+12 ),� module operations are pointwise addition and pointwise external multipli-cation.This R-module is named P p1 ;p2n (M).



7.6. HIGHER-ORDER HOMOTOPY GROUPS 213Figure 7.13: Two homotopic 2-paths.
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X= three faces above and behind

Y=three faces in front and belowLet Q(p1;p2;�;�)n (M) be the set of normalized n-paths from p1 to p2 in M (p1 andp2 are normalized (n� 1)-paths beginning at � and ending at �).Supposing pi = (p1i ; : : : ; pki ) and p1i 2Mn�1+s;�s , its elements x 2 Q(p1;p2;�;�)n (M)are x = (x1; : : : ; xk�1) such that� xs 2Mn+s;�s,� @0(xi+1)� @1(xi) = pi+11 � pi+12 ,They form a basis of the R-module P p1;p2n (M).We say that two n-paths p; q 2 P p1;p2n (M) are homotopic, and we write p � qif and only if p� q 2 Im (@0 � @1)5. For instance, paths X and Y between p1and p2 in the �lled-in cube Figure 7.13 are homotopic.We de�ne �p1;p2n (M) = P p1;p2n (M)= �.As in Section 7.4.1 we can de�ne n-cycles which are n-paths c = (ci)i=1;:::;ksuch that @0(c1) = @1(ck) = 0. They form a submodule of P p1;p2n (M) calledCp1;p2n (M). The homotopy relation de�nes a reduced homotopy module ~�n(M).Then,Claim 2 Suppose M is connected with respect to the initial and �nal states ofp1 and p2, and that all Pik(M), k � n� 1 are of dimension one. Then,�p1;p2n (M) = Hn ((M;T ); @0� @1)where T is the image of p1 � p2 under the map u with u(x; y) = x� y.5This actually means that 8i, pi and qi are in the transitive closure of the union of thehomotopy relation in the complex of modules ((Mj;�i+1)j; @0) with the homotopy relation in((Mn�i+2;j)j ; @1). This remark will enable us to generalize the homotopy of oriented pathswe are de�ning on free general HDA generated by semi-regular HDA to the general case ofcombinatorial HDA, hence to all general HDA (see Chapter 10). The transitive closure ofthese homotopy relations seem somewhat related to the spectral sequence of the bicomplex,but this has not been formalized well enough yet.



214 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.14: � and � operations on n-paths
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= X.YThis is an analogue of the general Hurewicz theorem.Similarly to Section 7.4 we want to de�ne �n(M). This is much more di�cultthan it was in dimension one.Let pi = (p1i ; : : : ; pki ) (i = 1; 2; 3) and p0j = (p01j ; : : : ; p0k0j ) (j = 1; 2) be normalized(n� 1)-paths.We de�ne two \composition" operations on normalized n-paths (Figure 7.14),� : Q(p1;p2;�;�)n �Q(p2;p3;�;�)n ! Q(p1;p3;�;�)n� : Q(p1;p2;�;�)n �Q(p01;p02;�;
)n ! Q(p1�p01;p2:p02;�;
)nby, (x1; : : : ; xk�1) � (y1; : : : ; yk�1) = (x1 + y1; : : : ; xk�1 + yk�1)(x1; : : : ; xk�1) � (y1; : : : ; yk0�1) = (x1; : : : ; xk�1; y1; : : : ; yk0�1)given that for normalized 1-paths x = (x1; : : : ; xk�1) and y = (y1; : : : ; yk0�1)between � and � (respectively, � and 
),x � y = (x1; : : : ; xk�1; y1; : : : ; yk0�1)These are well de�ned operations.Proof. We have @0(xi+1 + yi+1)� @1(xi + yi) = pi+11 � pi+13 . This proves that� is well de�ned.Finally, @0(xi+1)�@1(xi) = pi+11 �pi+12 (i = 1; : : : ; k�2) and @0(yj+1)�@1(yj) =pj+11 � pj+12 (j = 1; : : : ; k0 � 2) implies that @0((x � y)j+1) � @1((x � y)j) =(p1 � p01)j+1 � (p2 � p02)j+1 (k = 1; : : : ; k + k0 � 3). This proves that � is well-de�ned. 2Let �= be the least congruence relation (with respect to the R-module structure)on Lp1;p2 �(p1;p2)n (X) such that for all normalized (n � 2)-paths �, �, and 
, forall normalized (n� 1)-paths p1, p2 and p3 between � and �, and p01, p02 between� and 
, and all normalized n-paths X between p1 and p2, Y between p2 andp3, Z between p01 and p02, [X ] + [Y ] �= [X � Y ]



7.6. HIGHER-ORDER HOMOTOPY GROUPS 215Figure 7.15: A picture of P k1 and P k1 
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[X ] + [Z] �= [X:Z]The full homotopy group of dimension n is now,�n(X) =Mp1;p2 �(p1;p2)n (X)= �=7.6.2 (y) Second de�nitionLet P k1 be the regular HDA de�ned by (see Figure 7.15),� (P k1 )0 = f�0; : : : ; �kg,� (P k1 )1 = fu1; : : : ; ukg,� (P k1 )n = 0 (n � 2),� d00(ui) = �i�1, d10(ui) = �i.De�nition 48 We de�ne the n-fpaths of length (k1; : : : ; kn) in M to beHom0(P k11 
 P k21 : : :
 P kn1 ;M)



216 CHAPTER 7. SERIALIZATION AND SCHEDULERSWhen we restrict this de�nition to paths of dimension one, it is easy to see thelink between P�;�1 (M) (� 2 M0;0, � 2 Mk;�k) and 1-fpaths of length k in M .There is in fact a bijection between the x 2 P�;�1 (M) and the ~x 2 Hom0(P k1 ;M)with ~x(�0) = � and ~x(�k) = �. This bijection is given as follows,� Given x, ~x(ui) = x \Mi;�i+1,� Given ~x, x = ~x( Pi=1;:::;k ui).There is also a strong link between 2-fpaths of length (1; k � 1) and 2-pathsbetween two 1-paths of length k, p1 and p2 (each of which beginning at � and�nishing at �).De�nition and lemma 7 Let A be a 2-path of length k � 1 between p1 andp2, two 1-paths of length k from � to �. Therefore, we have (where � 2 R),@0(Ai+1) = @1(Ai)+�(pi+11 �pi+12 ), Then there exists a unique 2-fpath f = fp(A)of length (1; k� 1) such that (1 � i � k),� f(�0 
 ui) = �pi1 (1 � i � k � 1),� f(�1 
 ui) = �pi+12 (1 � i � k � 1),� f(u1 
 �i) = �pi+11 � @0(Ai+1) (0 � i � k � 2),� f(u1 
 �k�1) = pk1,� f(u1 
 ui) = Ai.Proof. We have to verify that f de�nes a morphism of HDA from P 11 
 P k�11to M (see Figure 7.16).We have, @0(f(u1 
 ui)) = @0(Ai)= �(pi1 � pi2)and, f(@0(u1 
 ui)) = f(�0 
 ui)� f(u1 
 �i�1)= �(pi1 � pi1) + @0(Ai)so the two terms are equal. Similarly,@1(f(u1 
 ui)) = @1(Ai)= f(@1(u1 
 ui))Then, @0(f(�0 
 ui)) = �@0(pi1)= f(�0 
 �i�1)= �@1(pi�11 )



7.6. HIGHER-ORDER HOMOTOPY GROUPS 217Figure 7.16: 2-fpaths and 2-paths compared.
A

A

A

p

p

p

p

p

p

p

p
2

2

2

2
1

1

2

3

4

1

2

3

4

1

1

1

1

2

3

and similarly for f(�1 
 ui) and pi2.The last veri�cation we have to make is,@0(f(�0 
 u1)) = f(�0 
 �0)= ��= @0(f(u1 
 �0)and similarly for @1(f(u1 
 �k)) and @1(f(�1 
 uk)). 2This de�nition generalizes easily to a function from (n+1)-paths of length k�1between two n-paths of length k to (n+ 1)-fpaths of length (1; : : : ; 1; k� 1).Let �0 be the homotopy of maps de�ned in Section 7.5. We write �0kn (X) =Hom0(P k1 
 P 11 : : :P 11 ; X)=�0. Notice that (by the adjunction 
, Hom)�0kn (X) = �0k1 (Hom(P 11 ; Hom(: : : ; Hom(P 11 ; X))))We have even better: the higher-order homotopy groups can be computedthrough the suspension and �rst order homotopy functors.De�nition and lemma 8 Let S(X) = Hom(P 11 ; X) be the \suspension" ofX. Then �0kn (X) = �0k1 (Sk�1(X)).Proof. We just have to prove that,



218 CHAPTER 7. SERIALIZATION AND SCHEDULERS(i) if we have two maps f; g : P 
Q! X such that f �0 g, then their curriedversion f̂ ; ĝ : P ! Hom(Q;X) are such that f̂ �0 ĝ as well,(ii) if we have f̂ ; ĝ : P ! Hom(Q;X) homotopic maps, then f; g : P
Q! Xtheir uncurried versions are homotopic maps as well.We will only prove (i) since (ii) is very much similar. We are given a map� : (P
Q)p;q ! Xp�1;q�Xp;q�1 such that, (@1�@0)�+�(@1�@0) = f�g. De�ne�̂(x) = (y ! �(x
 y)). �̂ is a well-de�ned map from Pp;q to (Hom(Q;X)p�1;q� Hom(Q;X)p;q�1). Now,((@1 � @0)�̂)(x)(y) + (�̂(@1 � @0))(x)(y)= (@1 � @0)(�(x
 y)) + �((�1)dim xx
 (@1 � @0)(y)) + �((@1 � @0)(x)
 y)(@1 � @0)(�(x
 y)) + �((@1 � @0)(x
 y))2We can now carry on the comparison between this de�nition of homotopy groupsand the one of Section 7.6.Lemma 29 Let A, B be two (n+1)-paths in M of length k�1 between p1 andp2. Then, A � B , fp(A) �0 fp(B).Proof. Suppose �rst that A � B. Then there is a (n + 2)-transition C suchthat A�B = (@1�@0)(C). This means that C de�nes a (n+2)-path between Aand B. fp(C) can be identi�ed with a map of degree one from (P 11 )
n 
 P k1 toM which can actually be shown to be a homotopy between fp(A) and fp(B).Reciprocally, if we have a map � of degree one from (P 11 )
n 
 P k1 to M whichde�nes a homotopy from fp(A) to fp(B) then Pi=1;:::;k C(u
n1 
 ui) is a (n+ 2)-transition de�ning a homotopy between A and B. 2Proposition 13 If p1 and p2 are (n � 1)-paths in X of length k + 1 then�p1;p2n (X) � �0kn (X) as R-modules.Proof. The transformation fp from P p1;p2n (X) to the R-module of n-fpathsbetween p1 and p2 preserves homotopy by Lemma 29. Moreover, fp is a R-module homomorphism. This entails the result. 2We do not know yet if the full homotopy groups in both de�nitions are isomor-phic.



7.7. SOME PROPERTIES OF THE HOMOTOPY MODULES 2197.7 Some properties of the homotopy modules7.7.1 Combinatorics of �1There is �rst a pathological phenomenon to be described in HDA.De�nition 49 Let M be a semi-regular HDA. A knot of dimension 1 in M isany 2-cube x such that d10d00(x) = d10d01(x).Proposition 14 Let M be a semi-regular HDA and let M 0 be the semi-regularHDA de�ned asM 0 = T1(M)=fd00(x) = d01(x); d10(x) = d11(x)=x 2M2gThen if M is acyclic and has no knots, �1(M) = P1(M 0), i.e., M 0 is a \canon-ical" representant of the retracts of M .Proof. Let s : M ! M 0 be the canonical morphism associated with thequotient construction. We �rst prove that if p; q 2 P�;�1 (M) with p � q thens(p) = s(q). p � q implies that 9A 2M2, p�q = (@0�@1)(A). M2 is generatedby 2-cubes in M therefore there exists (xi)i2I , xi 2 M2, I a �nite index set,and �i 2 R such that A =Pi2I �ixi. Then, p� q =Pi2I �i(d00�d01� (d10�d11))(xi).As M is acyclic, we can choose the xi in order to have xi 2 M2+us;�us . Then,pi� qi = (d00� d01)( Puj=i+s�1 �jxj) + (d10� d11)( Puj=i+s�2 �jxj) if we suppose that� 2 Ms;�s. As in M 0, d00 = d01 and d10 = d11 on 2-transitions, s(pi) = s(qi),hence (by an abuse of notation), s(p) = s(q). Notice that we have not used thehypothesis on knots.Reciprocally, we must show that for all paths of M 0, p0 and q0, from, say �0 to�0, necessarily corresponding via s to paths p and q in M from � to �, p0 = q0implies p � q. We know that there exists p1; : : : ; pk 1-paths of M , from � to �such that p1 = p, pk = q and there exists x1; : : : ; xk�1 2M2 such that for all u,some (pu)iu = dkl (xu) and (pu+1)iu = dkl+1mod2(xu). If M is acyclic and has noknots then we show that necessarily, (restricting to the case where k = 0, theother case is symmetric) (pu)iu+1 = d1l+1mod2(xu) and (pu+1)iu+1 = d1l (xu) (E).As a matter of fact, knowing that M has no knots implies that d10((pu)iu) =d00((pu)iu+1) is distinct from d10((pu+1)iu) = d00((pu+1)iu+1). This means thatwe have to use one of the equations de�ning M 0 as a quotient of M for goingfrom (pu)iu+1 to (pu+1)iu+1. By hypothesis, we only use one 2-transition andthe equations associated with it per \move". Therefore, we can only have theequations (E). This entails that pu � pu+1 hence p � q.Notice that whenever there is a knot in M , there is no representant of retractsof M as a subHDA of M , see Figure 7.17. 2In Figure 7.18, on the left hand side we have drawn \dependent" holes. Noticethat there are four homotopy classes of paths from the bottom left corner to



220 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.17: A knot M (i) an \upper approximation" of the paths modulohomotopy and the corresponding M 0 (ii) that cannot be a retract of M .
Figure 7.18: Two di�erent con�gurations of holes: left is \dependent" holes,right is \independent" ones.
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7.7. SOME PROPERTIES OF THE HOMOTOPY MODULES 221the top right one. On the right hand side, there is an example of \indepen-dent" paths. There are only three distinct homotopy classes of paths (still frombottom left to top right).This shows that �1 is not characterized only by the number of holes as inordinary homotopy theory but also by the way holes are dependent from eachother. Apart from pathological phenomena (knots), Proposition 14 shows thatsemi-regular HDA M are homotopic to \posets of holes".The exact relationship between number of cycles and number of homotopyclasses of paths between two states � and � can be studied through the relativehomology exact sequence [ML63].It reads (where S = (� � �)) and the homology groups in the sequence aretaken with respect to the di�erential d = @1 � @0),: : : - Hn+1(S; 0) i�- Hn+1(Tot(M); 0) j�- Hn+1(Tot(M); S) d�- Hn(S; 0): : :Here, H1(S; 0) = 0, H0(S; 0) = S, therefore,0 - H1(Tot(M); 0) j�- H1(Tot(M); S) d�- S i�- H0(Tot(M); 0) j�- H0(Tot(M); S) - 0that is, 0 - ~�1(M) - �1(M) - S - ~�0(M) - �0(M) - 0where �0(M) = H0(Tot(M); S). We suppose that � and � are connected, so[�] = [�] 2 H0(Tot(M)) and i� = 0, Im d� = S. Therefore,�1(M) = ~�1(M)� d��1(S)�0(M) = ~�0(M)Looking at the dimensions, we see that the number of generating paths mod-ulo homotopy is always greater or equal than the number of generating cyclesmodulo homotopy.7.7.2 Seifert/Van Kampen theoremWe prove the Seifert/Van Kampen theorem for semi-regular HDA, making thishomotopy theory closer to the \standard" one.Theorem 1 Consider the following co-cartesian square de�ning X1 [X2 andX1 \X2 where X1 and X2 are two semi-regular HDA,X1 \X2 j1 - X1X2j2? i2- X1 [X2i1?



222 CHAPTER 7. SERIALIZATION AND SCHEDULERSThen the following square is also co-cartesian,�1(X1 \X2) �1(j1) - �1(X1)�1(X2)�1(j2)? �1(i2)- �1(X1 [X2)�1(i1)?i.e. 8G, 8f1; f2 : �1(Xi) ! G homomorphisms of R-modules, there exists aunique homomorphism of R-modules g : �1(X1[X2)! G such that g��1(i1) =f1 and g ��1(i2) = f2.Proof. Let p 2 P�;�1 (X) be a one dimensional path in X , such that �; � 2X1 \ X2. As X = X1 [ X2, X � X1 � X2 and p decomposes into p1 + p2,p1 2 P�;�1 (X1) and p1 2 P�;�1 (X2). Then [p]X = i�1([p1]X1) + i�2([p2]X2). Thisentails that we have to set f([p]) = f1([p1]) + f2([p2]).We have to show now that this de�nition does not depend on the \subdivision"chosen, i.e. the way we decompose p onto p1 2 P�;�1 (X1) and p1 2 P�;�1 (X2).If p = (p1 � p0) + (p2 + p0) with p0 2 P�;�1 (X1 \X2) then[p]X = i�1([p1 � p0]X1) + i�2([p2 + p0]X2)= i�1([p1])� i�1([p0]X1) + i�2([p2]) + i�2([p0]X2)= i�1([p1]) + i�2([p2]) + �i�2 � j�2([p0]X1\X2)� i�1 � j�1([p0]X1\X2)�= i�1([p1]) + i�2([p2])The de�nition of f does not depend on the representant of [p]X either.If [p]X = [p0]X then p � p0 = (@0 � @1)(A) where A 2 X2. We can writeA = A1+A2 with A1 2 X1 and A2 2 X2 and similarly p = p1+p2, p0 = p01+p02.Then [p]X = i�1([p01 + (@0 � @1)(A1)]X1) + i�2([p02 + (@0 � @1)(A2)]X2)= i�1([p01]X1) + i�2([p02]X2)Therefore, f([p]) = f1([p01]) + f2([p02])= f([p0])Now, we prove that Seifert/Van Kampen's theorem is true also for the fullfundamental group�1(X) = M�;�2X0 ��;�1 (X)=f[f ]�;�+ [g]�;
 = [f + g]�;
gLet [f ]X 2 �1(X). We can decompose it as[f ]X = X(�;�)2S[f�;�]X�;�



7.8. SOME APPLICATIONS 223where S �M0�M0 such that (�; �) 2 S and (�0; �0) 2 S implies � = �0 and � =�0 or � 6= �0 and � 6= �0. We have also [f�;�]X�;� 2 ��;�1 (X) and they decomposeas [f�;�]X�;� = i�1([f1�;�]X1�;�) + i�2([f2�;�]X2�;�). We have already de�ned the g�;� :��;�1 (X) ! G. This leads us to de�ne g : �1(X) ! G as g([f ]X) = P(�;�)2Sg�;�([f�;�]X�;�). If well de�ned, this is the necessary morphism for completingthe pushout diagram. To show that it is well de�ned, we have to show that theformula above does not depend on the \subdivision" or representant chosen of[f ]X .Suppose that [f ]X = P(�;�)2S0 [f�;�]X�;� with an other S0 �M0�M0 verifying thesame condition as S. Then,g0@ X(�;�)2S[f�;�]X�;�1A � g0@ X(�;�)2S0[f�;�]X�;�1A= X(�;�;
)2T g([f + h]�;
 � [f ]�;� � [h]�;
)= X(�;�;
)2T(g1([f1 + h1]�;
 � [f1]�;� � [h1]�;
)+g2([f2 + h2]�;
 � [f2]�;� � [h2]�;
))= 0where we have used a decomposition of f and h in the last equation. 2Let M1, M2 be two sub-HDA of M such that M1+M2 =M . Then as S(M1+M2) = S(M1) + S(M2) and Van Kampen's theorem holds for �1 hence �01 bytransformationM ! ~M , it holds for �0n as well. We take for granted that VanKampen's theorem holds also for �n, n � 2 (see [BH81b, BH81a] for a similarresult).7.8 Some applications7.8.1 SchedulersA n-scheduler should basically execute all possible n-paths up to equivalence.This means that a n-scheduler of an automaton D is a choice of a subHDA Mof D such that all n-paths of D are equivalent (homotopic) to a n-path of M .We call a scheduler a subautomaton of D which is an n-scheduler for all n. Atthe light of the previous sections, this is formalized as follows,De�nition 50 A n-scheduler is a monomorphism (i.e. a co�bration in thehomotopy theory we are considering, see [Bau89]) s :M ! D such that �n(s) :�n(M)! �n(D) is an isomorphism.



224 CHAPTER 7. SERIALIZATION AND SCHEDULERSFigure 7.19: Con
ict in a shared memory parallel machine/concurrent database.
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A scheduler is now a co�bration inducing an isomorphism between all the �n(D)and the �n(M). This is known as a weak equivalence [Bau89]. A basicproperty of the homotopy theory we use is that weak equivalence is the sameas strong equivalence, i.e. a scheduler is a co�bration such that there existss0 : D!M with s � s0 and s0 � s homotopic to the identity. A scheduler is thusthe choice of a weak deformation retract [Spa66] of D.Example 34 � The serializability condition may be rephrased into \all 1-schedulers form a subset of the set of classes of the interleavings of thetransactions".� In Figure 7.19 we have pictured the semantics of the program P1 j P2 whereP1 ::= READA;A := A + 1;WRITEA and P2 ::= READA;A := A +1;WRITEA. In the �gure we have abbreviated READA, A := A+1 andWRITEA by respectively R, +1 and W . The shapes (deformed squares)are all �lled in, indicating concurrency. The states are given by the valueof A. To make the picture easy to read we have chosen to unfold thingsa bit for the central squares, using the value of A read by P1 (secondcomponent of the triple) and the value of A read by P2 (third componentof the triple). The picture thus contains ten squares, the two at the topright corner show the interference while writing the computed value intothe shared variable A. From A = 0 we can have two di�erent results,A = 1 or A = 2. Now the two-phase protocol added to the two processeswill constrain the execution so that all of P1 (respectively P2) is executedbefore all of P2 (respectively P1). These are two equivalent 1-schedulers(linked together by the nine upper squares). The protocol is therefore soundin the sense that it is serializable.Obviously the algorithmic characterization of schedulers is given by the weakequivalence condition and not the strong one since we have practical means forcomputing the homotopy modules (see Part IV for this).



SCHEDULERS, BRANCHINGS AND MERGINGS 2257.8.2 Mutual exclusionTwo actions a and b are in mutual exclusion in a regular automaton M meansthat all 1-schedulers contain the interleaving ab0 + ba0. This is equivalent bywhat we have just seen to (a � b+ b0 � a0) generator of H1(M; @0 � @1). Moregenerally,De�nition 51 A k-mutual exclusion or mutual exclusion of dimension k is anelement of ~�k(M) = Hk(M; @0 � @1).Example 35 � The element X of �sr realized geometrically as,���b0� I@@a0� 
I@@a ��b��has a mutual exclusion of dimension one described by b�a+a0�b0 2 �1(X)since @0(a0 � b0) = 
 � � = @1(b� a).� Suppose X is the boundary of a 3-dimensional cube. X has a mutualexclusion of dimension 2: any two actions can be �red concurrently butno three actions can (a real example is INTEL's Pentium processor, seethe introduction).7.9 Approximation of schedulers, branchings andmergingsLet M be a complex of modules with di�erential @. Suppose that we have a�ltration6 F on M , i.e.0 � F 0M � F 1M � : : : � FnM � Fn+1M =MThen we may de�ne the graded object GrM = �p�0GrpM where GrpM =F pM=F p�1M . It is a di�erential module with the map d : GrpM ! GrpMinduced by @.A spectral sequence is a sequence fEr; drg (r � 0) of bigraded objects Er = �p;q�0Ep;qr together with homomorphisms dr : Ep;qr ! Ep�r;q+r�1 satisfying d2r = 0(i.e. they are di�erentials). Moreover, for all r, Er+1 is the homology of Erwith boundary operator Er+1, i.e. H�(Er) = Er+1.The main result is,6It is �nite here just for the sake of simplicity. For more technical details, see [Lan93a] or[MC85].



226 CHAPTER 8. SERIALISATION AND SCHEDULERS(*) Lemma 12 There exists a spectral sequence fErg with,Ep;q0 = F pMp+q=F p�1Mp+qEp;q1 = Hp+q(GrpM)Ep;q1 = Grp(Hp+q(M))(*) Proof. Here we have to de�ne the limit term Ep;q1 . We are going toconstruct Ep;qr as the quotient module Zp;qr =Bp;qr with,Bp;q0 � Bp;q1 � : : : � Bp;q1 � Zp;q1 � : : :Zp;q1 � Zp;q0and Bp;q1 =[r Bp;qr . Under some nice conditions [CE56], we can assume thatZp;q1 = \rZp;qr making precise the notion of convergence. Here we restrict toan easier case when M is regular, i.e. when for all n, there exists an integeru(n) such that Hn(F p(A)) = 0 for p < u(n). This implies that Zp;qr = Zp;q1for all r > u(p+ q + 1)� p. Therefore we have the convergence of the spectralsequence7.The construction promised is then as follows. Let F p;qM = F pMp+q then,Zp;qr = fx 2 F p;qM=@(x) 2 F p�r;q+r�1MgBp;qr = @(Zp+r�1;q�r+1) + Zp�1;q+1r�12In all cases, Ep;qr+1 is a quotient of a submodule of Ep;qr . In particular it is ofa type at most the type of Ep;qr . The spectral sequence process consists incomputing the homology of M by upper approximations.The main application for us is the spectral sequence associated with a bi-complex M = �p;q�0 Mp;q with boundary operators @0 : Mp;q ! Mp�1;q and@1 :Mp;q !Mp;q�1. We write ((Mn)n; @) for the total complex associated withthis bicomplex (also named Tot(M)). Then we may consider in particular two�ltrations on M ,� the �rst �ltration, 0F pMn = Lp0+q=n;p0�p Mp0;q,� the second �ltration, 00F pMn = Lp+q0=n;q0�q Mp;q0 .Then there are two spectral sequences f0Erg and f00Erg both abutting toH(Tot(M)).Notice that this result still holds if M was only a weak bicomplex (e.g. comingfrom a cyclic automaton) because we only need to consider Tot(M) which is acomplex of modules anyway.7Which can actually be shown to be a direct limit of its terms in this case [CE56].



SCHEDULERS, BRANCHINGS AND MERGINGS 227Example 36 We show here the computation of the spectral sequence f0Erg fora simple HDA (weak bicomplex) M , ���b0� I@@a0� 
I@@a ��b��All steps of computation are represented geometrically,Ep;�0 = 0B@�; � 
I@@a ��b� ;0 ���b0� I@@a00 01CAEp;�1 = Ep;�1 =  �; 0; 0 a0 � b0- 0!The spectral sequence associated with the �rst �ltration show how cycles areextracted from the set of mergings (upper approximation of the cycles) whereasthe spectral sequence associated with the second �ltration show how cycles areextracted from the set of branchings.Summary We have shown that quite a few notions in computer-science relyon the concept of scheduler, or on some \protocol" for scheduling actions orevents in order to have a well-behaved systems. This is the case for protocolsfor concurrent databases, robust (wait-free, t-resilient) protocols for distributedsystems and even for the implementation of parallel languages on constrainedarchitectures (i.e. with �nite number of processes and resources).We have sketched a homotopy theory for semi-regular HDA in which two ex-ecutions are homotopic means they are serially equivalent, i.e. the essentialscheduling properties are preserved between the two executions. We have shownthat the homotopy theory for semi-regular HDA was actually a homology theoryin general HDA. We will see an extension of this in Chapter 10.The main di�erence with \ordinary" homotopy theory is that we do not allowthe paths to go in the reverse direction of time. Hence the homotopy groupswe de�ned is some completion of a homotopy monoid in which the monoidoperation is concatenation of paths. We de�ned also in two di�erent ways thehigher-order homotopy groups. One is through the de�nition of higher-orderpaths. The other uses a \suspension"-like construction. The two are shown torelate in a nice way. We do not know yet if they are fully equivalent.We also proved Van-Kampen's theorem for the fundamental group (to be usedin Chapter 9) and sketched a few combinatorial properties of the fundamentalgroup. It was shown in particular that the di�erence between the fundamentalgroup we de�ne and the ordinary one is that the relative positions of holes domatter in the former whereas they do not in the latter.



228 CHAPTER 8. SERIALISATION AND SCHEDULERSWe ended the chapter by the formal de�nition of schedulers, mutual exclu-sions and a relationship between the local geometric properties of Chapter 6(branchings and mergings) and mutual exclusion properties through a spectralsequence.



Chapter 8Applications of schedulingproperties8.1 Word problems in monoidsThe �rst application we give here deals with the computability of equality using(parallel) term rewriting systems. This application is interesting for two mainreasons. First, it deals with the language side of HDA, which we have notdeveloped up to now. Secondly, the computability problem we are interestingin is about con
uence of term rewriting systems, which is a geometric property.We relate this problem to the serializability issues of the last chapter.We �rst need to recall a few elements about the presentation of monoids andabout the homology of monoids.8.1.1 Presentation of monoidsA presentation of a monoid M is a pair (S;R) with,� S is a set of generators,� R is a set of relations v � w between words v, w over S.such thatM is the quotient of the free monoid S� by the congruence associatedwith R.When both S and R are �nite we say that M is �nitely presented.A rewriting system is nothing but a presentation (S;R) (of a monoid of words)where we orient each relation of R. We write r : v ! w for such an orientedrule, or reduction rule r in R.8.1.2 Homology of monoidsLet (M; 1; �) be a monoid. The ring ZZM of M is the free ZZ-module generatedbyM . The internal multiplication is a simple extension of the multiplication � in229



230 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESM . To be more precise, an element of ZZM is a �nite formal sumPi nimi whereni 2 ZZ and mi 2 M . Then, given two elements x =Pi nimi and x0 =Pi n0im0i,their product is z = x � y =Pi;j (nin0j)mi �m0j .A (left) ZZM -module K is therefore a ZZ-module together with a (left) linearaction of M on K, i.e. a function � : M � K ! K such that 1 � k = k and(m:m0) � k = m � (m0 � k). Then we can understand the external multiplicationx � k of an element k of K by an element x =Pi nimi as meaning Pi ni(mi � k).ZZ itself can be endowed with a ZZM -module structure by specifying a trivialaction ofM onto ZZ. This will be the structure of ZZM -module for ZZ throughoutthis chapter.Now, a free resolution of ZZ by (left) ZZM -modules is an exact sequence,: : : @3- C2 @2- C1 @1- C0 �- ZZ - 0 (R)Such resolutions always exist (for instance the Bar resolution, [ML63]). We willspeci�cally construct one for monoids presented by rewrite rules.We will actually present these resolutions in a geometric manner, where theCi will present di�erent steps of the construction of a geometric shape. Thisgeometric shape is nothing but a contractible space X on which M acts freelyon the left.As there are many di�erent such resolutions, or geometric constructions for thesame object, we are in a need for an algebraic structure characterizing these inthe sense that they will not di�er on di�erent resolutions. This can be calledan invariant as for, say, Betti numbers for topological spaces modulo homotopy.The invariant we consider here is the homology groups de�ned as follows.First, we need to de�ne the tensor product of a ZZM -module C by ZZ over ZZM ,ZZ 
 C. ZZ 
 C is the ZZ-module whose elements are those of C modulo theidenti�cation of x 2 C with m:x for m 2 M . This tensorization is not a (left)exact functor, i.e. it transforms (R) into a sequence which may not be exact.The defect of exactness is measured by the homology groups (or homologyZZ-modules), Hn(M) = Ker (ZZ
 @n)=Im (ZZ
 @n+1)It can be shown that this sequence does not depend on a particular choice of afree resolution, but only on M .Geometrically, this tensorized sequence represents the space of orbits on Xunder the action of M . Its homology is the \algebraic" homology we have justbeen de�ning.8.1.3 An introduction: Squier's methodHere, we construct a particular resolution for a monoid M which is �nitelypresented by rewrite rules (S;R) in the style of [LP90]. The basic idea isthat the monoid M represents a set of traces (on the alphabet S) modulo



8.1. WORD PROBLEMS IN MONOIDS 231some equivalence relation (generated by R). A natural space on which M actscan be based on the automaton which accepts the \language" M , at least indimension less or equal than one. Higher-dimensional transitions will describethe relations R in such a way that \equivalent" traces modulo R will correspondto \equivalent" traces modulo serializability.For x 2 S� we write x for the equivalence class of x induced by R. We constructexplicitely the �rst few terms Ci of a free resolution of M .C0 is the ZZ-module of points. We associate one point to every element of M .This means that C0 = ZZM and as M is presented by (S;R), the generatorsof C0 are the x, x 2 S�. We can set �(m) = 1 for all m 2 M , therefore�(Pi nimi) =Pi ni.C1 is the ZZ-module of edges between points. We ask for all traces of S� tobe accepted so C1 should be generated (as a ZZ-module) by all elements of S�,i.e. words on S. But these traces may start from any point of C0. A traces starting at x is identi�ed with the formal element x[s] (compare with thesequential composition in the HDA semantics of CCS, Section 5.4). So, as a ZZ-module, C1 is generated by x[s], x; s 2 S� and as a ZZM -module, it is generatedby S�. The start boundary of x[s] is obviously @01(x[s]) = x whereas its endboundary should be @11(x[s]) = x s = xs. It is easy to verify that the totalboundary operator @1 = @11 � @01 is such that � � @1 = 0.Let us stop for a moment and give a few examples of what we have constructedup to now. It is nothing but the skeleton of dimension one of an HDA.Example 37 Let M be the monoid presented by (S;R) with,� S = fa; bg,� R = fab! bag.Then M can be identi�ed with IN � IN with pointwise addition since canonicalwords are biaj and (biaj):(bi0aj0) = bi+i0aj+j0 . It is easy to check that theconstruction above gives rise to the grid shaped HDA of Figure 8.1.It is perfectly clear that the skeleton of dimension one we have just built isconnected and that the monoid acts freely on the left on it. What remains tobe done is to interpret the process of normalization of words, i.e. the equivalencegenerated by R. In the example above, all interleavings of a and b are equivalentif they have the same count of a and b. This can be seen by deforming locallyall ab in some trace onto ba. In the HDA context, the deformation should occurthrough a two transition whose boundary will be the interleaving ab+ ba. Wedo the same in the construction of the resolution.Let C2 be the ZZM -module generated by the reduction rules r : v ! w. As aZZ-module, it is generated by all the x[r] where r 2 R and x 2 S�: these are the\translated" reduction rules i.e. the reduction rules applied only at the part oftraces beginning at x.
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a[b]Figure 8.1: A resolution up to dimension one .Now, the only clear thing is the de�nition of the \total" boundary @2 from C2to C1. We set @2(x[r]) = x[v]� x[w]. We can verify that @1 � @2 = 0.In the case where M does correspond to some partially commutative monoid(i.e. to a Mazurkiewitz trace model, see Chapter 1), as in Example 37, it iseasy to �nd a decomposition of the total boundary operator into a start andend operator, making the geometric shape we are building into a skeleton ofdimension 2 of an HDA. It is exempli�ed below,Example 38 We are carrying on with Example 37, now picturing the skeletonof dimension 2,
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ab->baThe reduction rule r : ab ! ba has start boundary @02(r) = [a] � [b] and end



8.1. WORD PROBLEMS IN MONOIDS 233boundary @12(r) = b[a]�a[b]. Notice that the sense in which we decide to orientthe reduction rule decides of the signs (i.e. for semi-regular automata, decidesof the order in which we take all start and end boundaries) in the start and endboundary operators.What should we do in higher dimensions? Remember that we want a con-tractible space X and the space we have been constructing might well not be.It is the case when two reduction rules apply to the same word and do notlead to the same result. Let u = w1rw2 and v = w1sw2 be two elementaryreductions of the same word for which w1 and w2 are maximal subwords and rand s are two di�erent reduction rules. Then the pair (r; s) is called a criticalpair. Critical pairs measure the con
icts in the reduction system. The ideanow is to have the elements of X3 being the critical pairs. This enables us to�ll the holes in X in order to construct a contractible space. Then we have to�ll in the holes in X between the 3-cells (the critical pairs). This is done bysetting X4 to the set of \critical triples" and so on. In this way, the resolutionprocedure amounts to a simple Knuth-Bendix completion procedure.If there is a �nite canonical term rewriting system presenting M , then thecompletion procedure terminates. This means that the set of critical pairs,critical triples etc. are �nite. This in turn implies that all the Xi are �nitelygenerated, hence the homology groups (which are quotient of some submodulesof the Xi) are �nitely generated. This is known as property \FP1". It can beshown that some monoids which have a decidable word problem are not FP1,hence cannot be decided by any �nite canonical rewriting system. This result isthus a geometric characterization of what sort of monoid can compute a �nitecanonical rewriting system.Unfortunately, Squier's construction is uneasy to understand in terms of re-duction machines or to formalize within the HDA framework. In order to bemore precise about what geometry there is in �nite canonical systems, we useanother construction of resolutions proposed by Groves.8.1.4 Groves' constructionGroves in [Gro91] constructs a resolution of the RM -module R using cubicalcomplexes. We recast his construction into the HDA framework, hence the \ho-motopy relations" of [SOK94] will be real homotopies in the homotopy theoryof oriented paths we have de�ned in Section 7.4.The principle of Groves' resolution is to have the contractible space X on whichthe monoid M acts built as follows,� the vertices (generating C0 in the resolution) are the words of ��. Ele-ments of M are identi�ed with R-irreducible words,� the edges (generating C1) are the instances of a single application of arewriting rule in R,� then a suitable covering of this 1-skeleton is constructed using squares(generating C2), cubes (C3) etc.



234 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESWe brie
y review this construction below. Notice thatX is the HDA describingthe reduction of words of ��.First, we need a few graph-theoretic notions.Let n = f0; : : : ; n � 1g. 2n is a directed graph with vertices V (2n) = 2n andedges E(2n) = f(S; x)=S 2 2n; x 2 nnSg. An edge (S; x) of � has beginningd0(S; x) = S and end d1(S; x) = S [ fxg.If � is a directed graph, a n-cube � in � consists of a pair of maps,�V : V (2n)! V (�)�E : E(2n)! P (�)where P (�) is the set of paths in �, such that �V takes the initial and terminalpoints of e 2 E to the initial and �nal points of �E(e) 2 P (�).These graph-theoretic notions give rise to an HDA structure. Let �i : n � 1! n(i = 0; : : : ; n� 1) be de�ned by,�i(j) = 8<: j if j < ij + 1 if j � iIt is well known (from the simplicial world, see [May67] and Appendix B) that�i�j = �j�i+1 (0 � i < j � n� 1).We now have boundary maps, ��i : 2n�1 ! 2nfor � = 0; 1 and i = 0; : : : ; n� 1 de�ned by, for fx1; : : : ; xkg 2 2n�1,�0i (fx1; : : : ; xkg) = f�i(x1); : : : ; �i(xk)g�1i (fx1; : : : ; xkg) = �0i (fx1; : : : ; xkg) [ figwhich verify, �ki �lj = �lj�ki�1for all i; j; k; l with k = 0; 1, l = 0; 1 and 0 � j < i � n� 1.Proof. For fx1; : : : ; xkg 2 2n and i < j,�0i �0j (fx1; : : : ; xkg) = �0i (f�j(x1); : : : ; �j(xk)g)= f�i�j(x1); : : : ; �i�j(xk)g= f�j�i�1(x1); : : : ; �j�i�1(xk)g= �0j �0i�1(fx1; : : : ; xkg)Now, �0i �1j (fx1; : : : ; xkg) = �0i �0j (fx1; : : : ; xkg) [ �0i (fjg)= �0j �0i�1(fx1; : : : ; xkg) [ fjg= �1j �0i�1(fx1; : : : ; xkg)



8.1. WORD PROBLEMS IN MONOIDS 235The other commutation relations are proved in a similar way. This is left tothe reader. 2This implies that a n-cube of a graph � creates a HDA generated by onen-transition, the n-cube itself, and whose objects of lower dimensions are itsiterated boundaries, d�i(f) = f � ��i : 2k�1 ! �where f : 2k ! �. This construction will be used in Chapter 10 where it willbe generalized.The fact that some boundaries of a 2-cube may not be just instances of reductionrules, i.e. edges in the graph �, but rather paths in � is a problem for castingGroves' construction into the HDA framework. We choose to construct the1-transitions to be the paths in �. Let X be the HDA corresponding to Grovesconstruction, we set,� X0 = ��,� X1 = P (�).with the obvious boundary maps. n-cubes in X now correspond to morphismsof HDA � : T1(2n)! Xwhere 2n is considered as the n-dimensional HDA described above and T1 isthe truncation functor of Section 2.2.1.Some shapes in the reduction system are of interest here. We know (see previoussection) that we are interested in some critical pairs, i.e. in con
icts, or non-determinism in the reduction relation. These are introduced here under thename \n-stars". n-stars are \morally" branchings of dimension n in X , thatshould be �lled in the resolution. These are [w; e1; : : : ; en] where w 2 X0 and theei are 1-transitions in X1 which begin at w. These 1-transitions can be emptypaths, in that case the n-star is called degenerate, and can also be repeated inthe sequence e1; : : : ; en. There is a natural product on n-stars induced by theconcatenation in ��.Let [w1; e1; : : : ; ek] be a k-star and [w2; ek+1; : : : ; ek+l] be a l-star. Then theirproduct yields a (k + l)-star as follows,[w1; e1; : : : ; ek]:[w2; ek+1; : : : ; ek+l] = [w1:w2; e1:w2; : : : ; ek:w2; w1:ek+1; : : : ; w1:ek+l]As �� is a free monoid, every n-star admits a unique decomposition as a productof indecomposable stars. Indecomposable n-stars which have neither emptyedges nor repeated edges are called critical. In particular,� a critical 0-star is an element of �,� critical 1-stars are in 1� 1 correspondence with rules in R,� critical 2-stars can be identi�ed with critical pairs.



236 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESFigure 8.2: Product of two 1-cubes
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XWe can also de�ne a product for n-cubes. Let� : T1(2k)! X� : T1(2l)! Xbe a k-cube and a l-cube respectively. Their product �� � is a (k + l)-cube,� � � : T1(2k 
 2l)! Xwith �� �(x; y) = �(x):�(y)The interpretation of the product of n-cubes is easy (look at Figure 8.2). Ak-cube � (respectively a l-cube �) in X represents the parallel execution of k(respectively l) reduction rules. Their product represents the parallel reductionof the k reduction rules acting on the left part of the word �(;):�(;) (i.e. �(;))and of the l reduction rules acting on the right part of the same word (i.e. �(;)).The product of cubes is therefore the parallel product without interference ofdisjoint reduction rules.To every non-degenerate n-cube � we can associate a n-star [�(;);�(f0g); : : : ;�(fn�1g)]. Conversely, to any n-star (which we suppose �rst indecomposable)[w; e1; : : :, en] we can associate a n-cube as follows (see Example 39). Let S � nbe a vertex in 2n. We decompose the word w on which the reduction rules eiact as the concatenation w = a1u1a2 : : :ul�1alwhere the ui are the largest blocks on which some rules ei, i 2 S overlap. Weset �(S) = a1u1a2 : : : ul�1aland �(S; i) is any (reduction) path from �(S) to �(S [ fig).Example 39 Let � = fa1; a2; a3g and R = fRj;i=1 � i < j � 4g where theRj;i are the rules, ajai ! aiaj



8.1. WORD PROBLEMS IN MONOIDS 237(�; R) presents the free commutative monoid on three generators. One critical2-star is, a3a2a1	��R3;2 @@a3R2;1Ra2a3a1 a3a1a2and its associated (canonical) 2-cube � is,�(;) = a3a2a1	��R3;2 @@a3R2;1R�(f0g) = a2a3a1 �(f1g) = a3a1a2a2a1a3?a2R3;1 a1a3a2?R3;1@@R2;1R 	��a1R3;2�(f0; 1g) = a1a2a3The d10 boundary of this 2-cube is the sequence of reductions (a2R3;1,R2;1). Thed11 boundary of � is the sequence of reductions (R3;1,a1R3;2).Now the main result of [Gro91] is,Theorem 2 There is a RM -resolution of R,: : :! Pn ! Pn�1 ! : : :! P0 ! P�1 ! Rwhere,� P�1 = RM ,� Pn (n � 0) is the RM module generated by the critical n-stars.The proof is rather di�cult, and in particular, the de�nition of the boundaryoperators depends on auxiliary operators on n-cubes. We will only describethis construction in a particular case where it gets simpler.To illustrate the relationship with the HDA approach, we prove now that thereexists a bigger resolution in terms of HDA when we begin with a strongly con-
uent rewriting system (�; R) (as the standard presentation of a monoid),Theorem 3 There is a RM resolution of R by an HDA X,: : :! Xn ! Xn�1 ! : : :! X0 ! RM ! RWhere,� X0 is the RM -module generated by ��,� X1 is the RM -module generated by rules of R,



238 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIES� Xn (n � 2) is the R-module generated by the n-cubes of the graph �de�ned by X0 (vertices), X1 (edges).where the boundary operators �n : Xn ! Xn�1 are the total boundary operators@0 � @1 of HDA.Moreover, each Xn is �nitely generated as a RM -module. This implies that Mhas property FP1.Sketch of proof. Xn (n � 2) can be given the structure of RM -module asfollows. Let � : T1(2n)! � be an element of Xn and m 2M . Then the actionof m on � is given by the product of the 0-cube m by the n-cube � which isan element of Xn. As an RM -module, Xn is generated by the n-critical pairsof R. Therefore it is �nitely generated if (�; R) is a �nite strongly con
uentrewriting system.The total boundary operator �n = @0 � @1 : Xn ! Xn�1 is a R-homomorphismverifying �n�n�1 = 0. We �rst have to verify that it is a RM -homomorphism.Let m 2M and � 2 Xn, then, � : T1(2n)! �m : f;g ! �m:� : T1(2n)! �with (m:�)(S) = m:(�(S)). Therefore�n(m:�)(S) = n�1Xi=0(d0i � d1i )(m:�)(S)= n�1Xi=0 �(m:�) � �0i � (m:�) � �1i � (S)= n�1Xi=0 m: �� � �0i � � � �1i � (S)= m:(�n(�))(S)Finally, we have to verify that the sequence,: : : �n+1- Xn �n- : : : �1- X0 �0- RM �- Ris exact, i.e. that it de�nes a resolution of the RM -module R. We just haveto verify it for n � 2. Let x 2 Xn be a cycle for �n. We can suppose thatx is a cycle of length 2 as all cycles are generated by cycles of length 2 (bystrong con
uence). x generates a sum of n-stars x0 = r1[w1; e11; : : : ; e1n] + : : :+rn[wk; ek1; : : : ; ekn] (with coe�cients ri 2 R) by considering the summands x0in x with @0(x0) = 0. By strong con
uence, all these n-stars [wi; ei1; : : : ; ein]can be completed by (n + 1)-cubes ci. It is an easy veri�cation to see thatr1c1 + : : :+ rkck is a (n+ 1)-cube with total boundary x. 2



8.1. WORD PROBLEMS IN MONOIDS 239A similar resolution by HDA in the case of con
uent (and not only strong con-
uent) rewriting systems exists with X1 being generated by all �nite sequencesof rules in R. It is unfortunately too big to prove the FP1 property since thisresolution is in�nite dimensional in general.In a very particular case, things are getting even closer to the standard compu-tational means used by mathematicians to calculate the homology of monoids(or more generally of associative algebras). This case is as follows.The standard presentation by a rewriting system (�; R) for a monoidM is givenby, � � =Mnf1g,� R = fab! ab=a; b 2 �g.The n-stars [w; e1; : : : ; en] are,� w = m1 : : :mn+1,� ei is an application of the rule mimi+1 ! mimi+1.The boundary operators dn : Pn ! Pn�1 of Groves' resolution are de�ned as,writing w as [m1 j : : : jmn+1],dn(w) = m1[m2 j : : : jmn+1]+ (�1)n+1[m1 j : : : jmn]+ nXi=1(�1)i[m1 j : : : j mimi+1 j : : : jmn+1]We recognize here the normalized Bar resolution [ML63]. We would have gotthe unnormalized one if we had chosen a similar presentation with � =M .Notice that the boundary operators (Bar resolution) in the case of the standardpresentation of a monoid are exactly the total boundary operators of the HDAX (look at Example 40).Example 40 abc	��[a j b] @@a[b j c]Rabc [a j b j c] abc@@[ab j c]R 	��[a j bc]abc = abcand the boundary d2 is the total boundary operator,d2([a j b j c]) = a[b j c]� [a j b]� [ab j c] + [a j bc]



240 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESFigure 8.3: A parallel reduction machine based on a �nite canonical TRS
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1 rule per processorThe coincidence between the methods and results proved here on monoids andwhat we have seen about serializability and homotopy for HDA can actually beexplained operationally.Squier's result is about what can compute the normalization function of a �nitecanonical rewriting system. To be more precise and relate this computabilityresult to results in distributed computing we de�ne a parallel reduction machineM (see Figure 8.3) for a given �nite canonical rewriting system (�; R).Let R = fRi=i = 1; : : : ; ng. Then M has n processors, each of which havingto execute the reduction only by rule Ri on the shared word w. Each time anyof the processor has to manipulate part of w, it locks the letters to be reducedand after the reduction unlock this part of the word. Thus M is nothing but a�nite transaction system as we have seen in Section 7.1.2.Now, the geometrical property of this system (or we should say of its HDA se-mantics) is that all paths of execution converge to the same result, i.e. that allpaths are serializable. In fact we have even more in that all serializations givethe same result, but this property is not one of the \geometric" properties wehave characterized. This implies that this machine has a �nitely generated fun-damental group of oriented paths. This corresponds to the �niteness condition(in terms of \homotopy relations") of [SOK94].8.2 Results in protocols for distributed systems8.2.1 A quick surveyThe early results about protocols for distributed systems were using graphtheory.In [BMZ88] a characterization of a class of problems solvable in asynchronousmessage-passing systems in the presence of a single failure was given. No gener-alization to more failures have since been solved using the same kinds of graphtechniques.It was then a rather shared belief that one would have to use more powerfultechniques in that case.The conjecture [Cha90] that the k-set agreement problem cannot be solvedin certain asynchronous systems was �nally proven in three di�erent papersindependently, [BG93], [SZ93] and [HS93].The renaming task, �rst proposed in [ABND+90] was �nally solved in [HS93].There is a wait-free protocol for the renaming task in certain asynchronous



8.2. RESULTS IN PROTOCOLS FOR DISTRIBUTED SYSTEMS 241systems if the output name space is su�ciently large. It was already knownthat there is a wait-free solution for the renaming task for 2n+1 or more outputnames on a system of n+1 asynchronous processors and none for n+2 or feweroutput names. Herlihy and Shavit re�ned this result and showed that therewas no solution for strictly less that 2n+ 1 output names.It was known since [FLP85] that the consensus task was impossible to solve ifprocesses could fail. We actually explain this result in geometric terms usingHDA and Herlihy's construction in Section 8.2.3. But it was also long knownthat a FIFO queue could solve wait-free consensus on a system of two asyn-chronous processors.In fact, if we de�ne the consensus number of a data type as the maximal numberof asynchronous processors (having atomic read and write) on which it canimplement wait-free consensus, then,� atomic Read/Write registers have consensus number 1,� test&set and fetch&add registers, queues, and stacks have consensus num-ber 2,� n-register assignment has consensus number 2n� 2,� load-locked, store-conditional and compare and swap registers have con-sensus number 1.These facts motivated the introduction of the following general problem, reallyabout the power of the architecture of distributed machines. We say that adatatype, or object, is a (m; j)-consensus object if it allows any m-processesto solve j-set agreement tasks. Herlihy and Rajsbaum in [HR94] (see also[BG93]) proved that is is impossible to implement (n + 1; k)-consensus using(m; j)-consensus objects if n=k > m=j.For wait-free protocols, it has be shown [HS94] how to derive the protocol fromthe decision maps in a constructive manner. We recast this in a more generalsemantic framework in Chapter 10.8.2.2 Herlihy's frameworkThe geometric framework of Herlihy et al. [Her94] is based on a representationof the input and output speci�cations in the form of input and output simplicialcomplexes (see Appendix B).A simplex is associated to the states of processes in the following manner,� vertices v are pairs (val(v); id(v)) of local values of process having identi-�er id(v),� we have an edge between v and v0 if and only if v and v0 are compatiblewith the speci�cation we have of the state of the system. It means in allcases that v and v0 must have distinct process identi�ers.



242 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESFigure 8.4: Input complex for the binary consensus.
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Figure 8.5: Output complex for the binary consensus.
(P ,0) (P ,0)

(P ,1) (P ,1)

0 1

0 1� higher-dimensional simplexes include states v1; : : : ; vn if and only if thesestates are compatible with the speci�cation (input or output one). Again,all the id(vi) are distinct.As an example, the consensus task with S = f0; 1g and N processes, called thebinary consensus task has as speci�cation complexes,� the input complex has simplexes of the form ((P0; b0), : : :,(Pn; bn)) with0 � n � N � 1 and bi 2 f0; 1g since all processes can take whateverboolean value they want. It is homeomorphic to a N -sphere (see Figure8.4),� the output complex has simplexes of the form ((P0; 0); : : : ; (Pn; 0)) or((P0; 1); : : : ; (Pn; 1)) since all processes should agree on some commonboolean value. This complex has exactly N connected components (seeFigure 8.5).In full generality, a (n+ 1)-process decision task hI; O;�i is given by an inputcomplex I , an output complex O and a recursive (computable) map � carryingeach m-simplex of I (0 � m � n) to a subcomplex of O of dimension n suchthat,� for all s 2 I , dim s = m, id(s) = id(�(s)),� if s � s0 are two simplexes of I then �(s) � �(s0).



8.2. RESULTS IN PROTOCOLS FOR DISTRIBUTED SYSTEMS 243Figure 8.6: The map � for the binary consensus.
(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆The map � speci�es what are the allowed outcomes of computations from givenstarting values in I (look at Figure 8.6 for an example).A t-resilient protocol solves the (n + 1)-process decision task if and only ifthere is a simplicial set P , called the protocol complex, and a simplicial map� : P ! O such that8s 2 I; n� t � dim s � n; 8u 2 P (s); �(u) 2 �(s)where P (s) is the subcomplex of the protocol complex generated by the exe-cutions in which only processes in id(s) take steps, starting with input valuesfrom val(s).This is actually just saying that a protocol solves a decision task if and only if ityields an output value permitted by the decision task from any given input state.Here we have gained the fact that simplicial maps preserve some topologicalproperties of complexes. Hence impossibility results for �nding protocols forsome decision tasks arise from the topologically incompatible nature of its inputand output complexes.Then, an algorithm for solving such and such decision tasks can be given ingeometrical terms, relating the geometry of the input and output complexes.8.2.3 Wait-free protocolsHere we are interested in the main result of [HS94] which can be roughly statedas follows: \There is a wait-free protocol for solving a given decision task if andonly if its input complex can be continuously stretched and folded to cover itsoutput complex".To relate this to our framework, we �rst need to de�ne input and ouput com-plexes.Let P0; : : : ; PN�1 be N sequential processes which, when run in parallel verifya protocol P solving a decision task D. For the sake of simplicity, we supposethat the processes Pi are reduced to one action ai. The HDA representing the



244 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESprogram in the shared-memory paradigm is then (a0)
 : : :
 (aN�1). The localinput values are collected in the initial state �0 
 : : :
 �N�1 and the verticesvi in the input complex (val(vi); Id(vi)) with val(vi) = �i can be identi�edwith the 1-transitions ai. Compatibility of the vertices means that they begina fully asynchronous execution of the processes Id(vi). This fully asynchronousexecution is represented in the HDA model by the N -transition a0
 : : :
aN�1and in Herlihy's model by an N � 1 simplex containing all the vi. Once more,there is a perfect geometric correspondence between the two models, exceptthe dimension has to be shifted by one. We should think of the HDA modelas the \extension in time" of the simplex-based model. In other terms, theinput/output complexes are a kind of very useful denotational approximationof the operational behaviour given by HDA. Let us be a bit more precise aboutthat.The �nal state �0 
 : : :
 �N�1 contains all output values of the processes. Ina similar manner, the part of the output complex with vertices vi such thatval(vi) = �i can be identi�ed to (up to a shift of dimension one) the \vertical"complex composed of all end boundaries of a0 
 : : :
 aN�1.More generally, let I and O be input and output complexes of a protocol P .Let (si)i and (ti)i be the maximal simplexes in I and O respectively withsi = (v0i ; : : : ; vki ) (dim si = k) and ti = (w0i ; : : : ; wki ) (dim ti = k). We supposewe have a semi-regular HDA D (called domain of HDA in Chapter 5) in whichwe can �re any transition that the distributed system we are considering canexecute, from any state of this machine. By what we have seen previously,the simplices si are in one-to-one correspondance with (dim si + 1)-transitionsin D with initial state v0i 
 : : : 
 vdim sii . As a matter of fact suppose thatthe initial states permitted by the protocol are all in D0;0 then there is a sub-semi-simplicial complex of D, isomorphic to the input complex (seen as a semi-simplicial set). This subcomplex is the \horizontal" complex ((Dn+1;0)n; (d0i )i).The output complex is isomorphic to some subcomplex of D, which we identifynow with ((Dk;n+1�k)n; (d1i )i) if all �nal states are in Dk;�k. In between, thereare all the paths transforming the input into the output complex (see Figure8.7).We need now to see what is a wait-free computation in the HDA model, andwhy this implies that some topological properties are preserved from the inputto the output complexes.Look at Figure 8.8. In (i), the initial state is an internal non-deterministicchoice. If we are not so lucky, the execution will begin by P2 which fails toterminate: P1 will never proceed and the computation is certainly not wait-free. In (ii), the execution is asynchronous between P1 and P2 and whateverhappens to P2, P1 will terminate (one of the possible 1-paths is pictured).Hence, intuitively, to go from state � to state � in a wait free manner, we musthave ��;�1 reduced to one class of paths. In the schedulers' point of view, thisis the same as asking for the possible reordering for all executions of the failingprocesses after the terminating ones. We prove now that this implies that theinput complex can be stretched and folded onto the output complex,



8.2. RESULTS IN PROTOCOLS FOR DISTRIBUTED SYSTEMS 245Figure 8.7: Input and output complex for some domain of HDA D (a 3-cubeC), drawn in Herlihy's way at the right hand side.
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Figure 8.8: The e�ect of a failure of one process in (i)-a mutual exclusion, (ii)-atruly concurrent execution.
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246 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESFigure 8.9: Binary pseudo-consensus input, output complexes and decision map.
(P,0)                           (Q,0)

(Q,1)                           (P,1) (Q,1)                           (P,1)

(P,0)                           (Q,0)

∆Lemma 30 Let D be a semi-regular HDA, I and O its input and output com-plexes respectively. Suppose D has only one initial state �, one �nal state � andthere is exactly one class of paths modulo homotopy from � to � in D. ThenH0(I) = H0(O).Proof. Let p = (p1; : : : ; pk) and p0 = (p01; : : : ; p0k) be two paths in D from � to�. By hypothesis they are homotopic. In particular there exist A and B withp1 � p01 = @0(A) and pk � p0k = @1(B). p1; p01 2 I and pk; p0k 2 O are thereforeconnected in the input and output complexes respectively.As there is exactly one initial state and one �nal state in D, given u 2 I andv 2 O, we can �nd a path p from � to � with p = (u; : : : ; v). This proves thatH0(I) = H0(O) = (�) (i.e. is generated by a unique element). 2More generally, if� D is deterministic in the sense that to each initial state � of D therecorresponds a uniquely connected �nal state �,� D is wait-free in the sense that there is exactly one class of paths modulohomotopy from � to �,then, H0(I) = H0(O) is isomorphic to the R-module of initial states of D.In fact, we cannot say anything purely topological more than that on the inputand output complexes. In particular, we cannot say anything about H1(I)and H1(O). Look at Figure 8.9) de�ning the binary pseudo-consensus tak.H1(I) = (�) whereas H1(0) = 0. But there is actually a way to construct theprotocol from I and O. It can be shown [HS94] that there is a subdivision ofI (\protocol complex") which is mapped on O by a simplicial map. The extrastates added to the ones of I are used by the protocol for solving some internalchoices (look at Figure 8.10). We will be more precise about that in Chapter10.8.3 Application: no algorithm for mutual exclusionNow, we give an application of the HDA semantics of the CCS-like language wede�ned earlier and of the characterization of mutual exclusions. We actually



8.3. APPLICATION: NO ALGORITHM FOR MUTUAL EXCLUSION 247Figure 8.10: Binary pseudo-consensus protocol complex, its deformation ontothe output complex and its implementation.
(P,0)*

(Q,1)*

(P,0)                           (Q,0)

(Q,1)                          (P,1) (Q,1)                          (P,1)

(P,0)                           (Q,0)

The pseudo-consensus between two processes P (variable x) and Q (variable y)on a shared-memory machine with atomic read and write is realized as follows,P := if y = 1 then x := 1;Q := if x = 0 then y := 0;prove a very similar result as the one of the previous section in that we provethat a wait-free portion of CCS cannot implement any mutual exclusion.Lemma 31 (i) Hn(Tot([[nil]])) = 0 for n � 0,(ii) Hn(Tot([[a]])) = 0 for n � 0,(iii) Hn(Tot([[p+ q]])) = Hn(Tot([[p]]))�Hn(Tot([[b]])) for n � 1,(iv) Hn(Tot([[p; q]])) = Hn(Tot([[p]]))�H0([[p]]; @0)
Hn(Tot([[q]])) for n � 1,(v) Hn(Tot([[p j q]])) = Pi+h=n Hi(Tot([[p]]))
Hh(Tot([[q]])) for n � 0,(vi) Hn(Tot([[rec x:q(x)]])) =lim! Hn(Tot([[qn(nil)]])).Proof. (i) and (ii) are direct computations.For (ii), we have Tot([[p+q]])n = Tot([[p]])n�Tot([[q]])n, which entails the resultby Lemma 9.(iv) is an instance of Lemma 9 and K�unneth formula.(v) is K�unneth formula.Finally, (vi) is a consequence of Lemma 2. 2We can prove now that a synchronous subset of CCS cannot implement anymutual exclusion at all.As a subset of CCS, we consider terms built with the usual operators but withno complementary action, making synchronizations impossible. Notice that inthis case, j and k coincide.



248 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESFor convenience, we choose to call labels of actions (de�ning the labelling au-tomaton of the semantic domain) by (ai)i2IN.We therefore only have to show that for all terms t, the (unlabeled) HDA [[t]]contains no mutual exclusion. This is done by induction on the syntax, usingthe computation of the homology we have carried out in Section 6.4.(nil): Hn(Tot([[nil]])) = 0 for n > 0 thus no mutual exclusion.(ai): Same as above.p+ q: for i � 1, we know that Hi(Tot([[p+ q]])) = Hi(Tot([[p]]))�Hi(Tot([[q]])).But by induction, there is no mutual exclusion in q nor in p, so therecannot be any in p+ q.p; q: we know that Hi(Tot([[p; q]])) = Hi(Tot([[p]]))�H0([[p]]; @0)
Hi(Tot([[q]])).Same conclusion as above.p j q: for i � 0, we know thatHn(Tot([[p j q]])) = �i+h=n Hi(Tot([[p]]))
Hh(Tot([[q]]))therefore there cannot be any mutual exclusion in p j q if there was notin p and q.rec x:q(x): The homology modules are the limit of the homology modules ofthe unfolding of rec x:q(x). By induction hypothesis, there is no mutualexlusion in the unfolding. This entails that there is no mutual exclusionin the direct limit.8.4 Some properties of the interpretations of tran-sition systemsWe know that general HDA are an abstraction of semi-regular HDA. The sameholds between general HDA whose elements are of dimension zero or one andsemi-regular HDA of dimension zero and one. T1 and G1 lift to general HDA.In these categories, we can speak internally of some geometric properties. Thisprovides us with a means to describe the functor G1 in geometric terms1 andgives another proof of Lemma 4 in a more general setting.Proposition 15 Let X be a general HDA whose elements are of dimensionzero and one. G1(X) is the smallest HDA2 Y containing X such that(i) : 8k � 1; 8(v; w) 6= (0; 0) 2 Hk(Y; @0)�Hk(Y; @1); @�01 (v) 6= @�10 (w)1And answers a question raised by Alan Mycroft in WSA'93.2Here we restrict to HDA M such that 8x 2 M , x = 0 if and only if @0(x) = @1(x) = 0.This means that we do not consider HDA with elements being at the same time initial and�nal deadlocks (actually, these transitions can never be �red).



GEOMETRIC INTERPRETATIONS OF TRANSITION SYSTEMS 249Proof. The fact that G1(X) contains X is obvious.Now, suppose that (i) does not hold. Then there exists u, v 2 Hk(G1(X); @0),w 2 Hk(G1(X); @1), (v; w) 6= (0; 0) with u = @�01 (v) = @�10 (w). Consideringparticular representatives of u, v and w (still written u, v and w), we have usuch that u = @1(v) = @0(w). Let A be a transition of dimension k + 1 de�nedby @0(A) = v, @1(A) = �w. It is well-de�ned since� @0@0(A) = @0(v) = 0 because v is by de�nition a cycle for @0,� @1@1(A) = @1(w) = 0 because w is by de�nition a cycle for @1,� @0@1(A) = �@0(w) = �u = �@1(v) = �@1@0(A).Consider the HDA Y = G1(X) + (A). The counit arrow �X : T1(G1(X))! Xcorresponds in a unique manner via the adjunction to the identity arrow Id :G1(X) ! G1(X). As T1(Y ) = T1(G1(X)), �X : T1(Y ) ! X corresponds in aunique manner via the adjunction to h : Y ! G1(X). Therefore hjG1(X) = Id.Let i : G1(X) ! Y be the inclusion arrow from G1(X) to Y . Then h � i = Idand h�0 � i�0 = Id, h�1 � i�1 = Id on the homology groups. But necessarily,i�0(v) = 0, i�1(w) = 0. One of v or w has to be di�erent from zero, say v. Thenh�0(0) = v 6= 0. This is impossible. Therefore, it is necessary to have property(i) for G1(X).Suppose now that there exists an HDA Y with X � Y � G1(X) with Y 6=G1(X), satisfying property (i). Let u 2 G1(X), u 62 Y . It is necessary tohave dim u � 2 since otherwise u would be already in X and then in Y .Let Z = G1(X)=(u). Z is a HDA containing @0(u) and @1(u). But (v; w) =(@1(u);�@0(u)) 2 Hk(Z; @0)�Hk(Z; @1), @�01 (v) = @�10 (w). One of v, w is di�er-ent from 0, say v. The injection i : Y ,! Z induces i�0 : Hk(Y; @0)! Hk(Z; @0)and i�1 : Hk(Y; @1) ! Hk(Z; @1). We have necessarily i(0) = v which contra-dicts the fact that i is the identity. This proves the result. 2This property can be generalized to the pair of adjoint functors (Tn;Gn) (for alln � 1). Gn(X) is the smallest HDA Y containing X such that8k � n; 8(v; w) 6= (0; 0) 2 Hk(Y; @0)�Hk(Y; @1); @�01 (v) 6= @�10 (w)Notice that for acyclic HDA, the R-submodule U of Hk(Y; @0)�Hk(Y; @1) com-posed of elements (v; w) such that @�01 (v) = @�10 (w) is isomorphic to the sub-module V of Hk(Tot(Y )) generated by cycles of length 2 of Y .Proof. Let y 2 U . We can choose representants v and w such that,� y = ([v]; [w]),� @0(v) = 0,� @1(w) = 0,� @1(v) = @0(w)



250 CHAPTER 8. APPLICATIONS OF SCHEDULING PROPERTIESThen (@1 � @0)(v + w) = @1(v) � @0(w) = 0. This de�nes a map i : U !Hk(Tot(y)) which is actually a homomorphim of R-modules.As Y is acyclic, Hk(Y; @0) and Hk(Y; @1) are generated by elements of the form[x], with x 2 Mk�i;i for some i. This implies that Hk(Y; @0) � Hk(Y; @1) isgenerated by elements of the form ([x]; [y]), x 2Mk�i;i, y 2 Mk�j;j for some i,j. @�01 ([x]) = @�10 ([y]) imposes i = j+1. This shows that a generating set for Uis the ([x]; [y]), x 2 Mk�j�1;j+1, y 2 Mk�j;j for some j. Its image by i consistsof a generating set for V which only contains cycles of length 2.Inversely, let [x] 2 V . As x is of length 2 we can decompose x as x = x1 + x2with x1 2 Mk�i;i and x2 2 Mk�i+1;i�1. This decomposition is unique as Y isacyclic. Now, [x] 2 Hk(Tot(Y )) therefore,� @0(x1) = 0,� @1(x1) = @0(x2),� @1(x1) = 0Therefore ([x1]; [x2]) 2 U . This de�nes an homomorphism of R-modules j :V ! U inverse of i. 2This actually proves Lemma 4 as follows. Let f : _D[n] ! Y be a monomorphismfrom the boundary of an n-cube (n � 1) to a semi-regular HDA Y . f( _D[n])is a cycle of length 2 (this is an abuse of notation, since we should see that inY ). The previous result shows that it should be �lled in so there is a (n+ 1)-transition A such that (@0 � @1)(A) = f( _D[n]). It is easy to see that f can beextended to a morphism of general HDA to D[n] by putting f(Id[n]) = A.Example 41 The element X of �01 realized geometrically as,���b0� I@@a0� 
I@@a ��b��has a mutual exclusion of dimension one described by (b�a; a0�b0) 2 H1(X; @0)�H1(X; @1) since @0(a0 � b0) = 
 � � = @1(b � a). Looking at the proof of thefact that G1 veri�es property (i) as an algorithm for computing G1 as the least�xed point of the operation \�ll in the k-mutual-exclusions by k-transitions"3,G1(X) is easily seen to be equal to (in one iteration),���b0� I@@a0� A 
I@@a ��b��3This is the classical way we can compute homology of CW-complexes by adding cells to\kill" the homotopy.



GEOMETRIC INTERPRETATIONS OF TRANSITION SYSTEMS 251This exempli�es the fact that G1(X) is the automaton in which all actions arescheduled on as many as processors as it can be.Summary We have given the �rst four applications of the theory of Chapter7. We have �rst recast Groves' construction for computing the homology of amonoid presented by a term rewriting system into the HDA framework, showingthat this construction is about the serializability of a �nite number of non-con
icting reduction rules put in parallel. This enabled us to prove (again!) aparticular case of Squier's theorem: the class of monoids presented by a �nitestrongly con
uent rewriting system is strictly included in the class of monoidswith decidable word problem.We have then recast Herlihy's proof that there was no wait-free protocol forconsensus in a semantic framework based on the homotopy theory of HDA.This di�ers from the approach taken by Herlihy et al. in that we consider alsothe geometry of all allowed executions in the distributed machines we consider.Then we proved that a synchronous subset of CCS cannot implement any mu-tual exclusion. At �rst, the aim was to prove that in a concurrent machine,there needed to be an internal mechanism (semaphore etc.) in order to makemutual exclusion expressible. We have not yet completely ful�lled this goal.Our last application was to prove the m-connectedness result of Chapter 3about the right-adjoint of the truncation functor. We used a characterizationof some mutual exclusions in homological terms to show that all maps from theboundary of the standard n-cube could be extended to maps on the standardn-cube.
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Chapter 9Analysis of programs9.1 Abstract interpretation9.1.1 IntroductionHaving de�ned denotational semantics of languages using HDA, we would liketo formalize the abstraction process (in the style of [CC77]) enabling us tocompute the properties which are of interest for us. In particular, we wouldlike to be able to approximate (by folding the execution traces etc.) HDA tomake the computation of the geometric properties of Chapters 6, 7 tractable.But it is not natural to de�ne an order on HDA to �t in the usual abstractinterpretation framework. Surely, a natural order would be the \inclusion"ordering, or \subobject" ordering. This can be de�ned in the same algebraicstyle as we have used up to now, since subobjects of X are monomorphismsinto X . This calls for generalization. From now on, we consider any arrow intoX to be an \element" of X .9.1.2 De�nitionsLet Dc be a domain of HDA in which we have given the semantics of somelanguage L. Dc is called the concrete domain. Let Da be another domain ofHDA, called the abstract domain. Consider C and A to be two subcategoriesof �=Dc and �=Da respectively. Now, an abstract interpretation between Dcand Da is a pair of adjoint functors (�; 
) between C and A,C � 
� - AThat is � and 
 are functors such that there exists natural transformations� : � � 
 ! Id and � : Id! 
 � � such that the following composite arrows arethe identities [ML71], 
 �
 - 
�
 
� - 
� ��- �
� �� - �255



256 CHAPTER 9. ANALYSIS OF PROGRAMSA more general formulation would be to have a category of observations (asin [AM93]) O and a functor F : � ! O to observe HDA. Then an abstractinterpretation is given by an abstract domain Da 2 O and a pair of adjointfunctors between C and D, subcategories of �=Dc and of the comma categoryof arrows F (x)! Da of O respectively,C � 
� - AFor the time being, we restrict to the �rst case (F = Id, O = �). We will seethat it is enough for looking at some interesting dynamic properties of HDA.The standard semantics is given in a subcategory of the category of subobjectsof Dc. The category Sub of subobjects of Dc is a subcategory of the slicecategory �=Dc, and as such is a good candidate for being used as domain (orcodomain) of an abstraction functor. We recall (see Section 5.2) that as � iscomplete and co-complete, Sub is actually a complete lattice with the followingoperations,� Intersection X ^ Y of subobjects X and Y of A is the pullback of thecorresponding morphisms, X ^ Y i - XYj? y - Ax?� Union X _ Y is the pushout of X ^ Y i! X and X ^ Y j! Y� The order to which these lattice operations correspond is (X x! A) �(Y y! A) i� there is a monomorphism f : X ! Y such that y � f = x.Then, if C and A are the subcategories of subobjects of some HDA then a pairof adjoint functors between C and A is actually a Galois connection.But this will not be the case in general, so we will �nd it convenient to useFreyd's special adjoint functors' theorem ([ML71] or [FS90]) in the following,to prove the existence of a right-adjoint to a given functor � : �=Dc ! �=Da.First, we have to show that certain pre-conditions on �=Dc and �=Da areveri�ed.(i) �=A is small co-complete.(ii) �=A and �=B have small hom-sets.(iii) �=A is well-co-powered.(iv) �=A has a small generating set.



9.1. ABSTRACT INTERPRETATION 257Proof. � is small co-complete, thus (i).(ii) is entailed by the fact that � has small Hom-sets: a morphism between Aand B is in particular a set-theoretic function between the sets underlying Aand B.For (iii) we have to prove that epimorphisms in �=A from a given object P , mod-ulo composition with isomorphisms, is a set. A su�cient condition is to have thesame property holding in �. In �, epimorphisms from P and monomorphismsinto P , modulo composition with isomorphisms, are in bijection (consider thekernel of the epimorphism in one way, and the projection onto the image of themonomorphism in the other way). But subobjects of P form a set since P is aset.We now build a small generating set S for �=A.Let T p;q, for p; q 2 ZZ, be the free HDA generated by one transition tp;q 2 T p;qp;q .We set S to be the set of all morphisms from a T p;q to A. Let now p : P ! Aand q : Q! A be two elements of �=A and h; h0 : p! q be two morphisms in�=A such that h 6= h0. Therefore, there exists x 2 P such that h(x) 6= h0(x).We have then p; q 2 ZZ with x 2 Pp;q and by the freeness of T p;q, there is a mor-phism f from T p;q to P with f(tp;q) = x. Thus, h�f 6= h0�f . This proves (iv). 2We know now (see [ML71]) that � has a right-adjoint if and only if it is co-continuous, i.e. it commutes with all colimits.9.1.3 An abstraction: denotational semanticsLet Dc be a concrete domain on which we give semantics to some languageL. Let Da = H0(Dc; @1) 
 H0(Dc; @0) the abstract domain. We consider thefollowing \abstraction" functor 
:
 : �=Dc ! �=Dawith 
(x : X ! Dc) = x�1 
 x�0 : H0(X; @1)
H0(X; @0)! DaThis functor maps an element of Dc to the pair (initial states, �nal states).We know that all the homology functors commute with direct limits, and thatthe tensor product (as it has a right-adjoint) commutes with all colimits. Toverify that 
 is co-continuous, and then that 
 has a right-adjoint by theapplication of the result of last section, we only need to prove that H0(�; @i)commutes with all �nite colimits, i.e. commutes with direct sums and withco-equalizers. The commutation with direct sums is well-known [Mas78].Suppose now that we restrict to automata M such that8s 2M0; @0(s) = @1(s) = 0that is, \no state contains proper events".



258 CHAPTER 9. ANALYSIS OF PROGRAMSLet r be the coequaliser of f; g : a! b,a f -g - b r - cthen we know that c �= b(f�g)(a) and r is the canonical projection from b to c.The commutation of H0(�; @i) is thus expressed asH0� b(f � g)(a); @i� �= H0(b; @i)(f�i � g�i)(H0(a; @i))With the hypothesis that no state of a and b contains proper events, it isequivalent to @i � b1(f � g)(a1)� �= @i(b1)(f � g)(@i(a1))This is straightforward since @i � (f �g) = (f �g)�@i (f and g are morphisms).Example 42 (1) Let Dc be the following domain,u a- vThen Da is, u
 vThe lattice of subobjects of Dc is, (a)(u)� (v)6�� I@(u) (v)I@ ��0Now, the image of this lattice by 
 is� 
(0) = 0 : 0! Da,� 
((u)) = 0 : (u
 u)! Da,� 
((v)) = 0 : (v 
 v)! Da,� 
((u)) = Id(u
v) : (u
 u)� (u
 v)� (v 
 u)� (v 
 v)! Da,� 
((a)) = Id : Da ! Da.(2) We give here a case which is not generally captured by frameworks basedon lattices. Let Dc be the domain,�1 a1- �2 a2- : : :



9.1. ABSTRACT INTERPRETATION 259and consider the abstraction functor \�nal state", F = H0(�; @0). Theabstract domain Da is 0.Consider now the three subobjects X, Y and Z of Dc,X = 0Y = �1 a1- �2Z = DcThen we have inclusion morphisms,X i,! Y j,! Zand in the abstract domain,F (X) = 0 F (i)! F (Y ) = �2 F (j)! 0Therefore, the image of the lattice of subobjects of Dc by F contains thegraph, 0 F (i)-�F (j) �2Thus, this situation cannot be described by a Galois connection betweenthe lattice of subobjects of Dc and another lattice.Notice that 
 and F commute with direct limits. In particular, the endstate of an in�nite trace is the direct limit of the end states of all its �niteapproximations, since the inclusion from one �nite approximation to thenext one induces a null map by F (in homology).An other example, with the same abstraction functor is, de�ning the ab-stract domain Dc as, 0��c� I@@d� A 
I@@a ��b��and considering the three subobjects,0 0X = ��c� Y = ��c�� � 
I@@a ��b��Z = Dc



260 CHAPTER 9. ANALYSIS OF PROGRAMSThen, X i,! Y j,! Zand the image by F is, 0 F (i)-�F (j) 
The interpretation of such a graph structure is that, we may execute (Z)more transitions but get less observable results (than Y ), due to a dead-locking behaviour. We may as well get more results (Y ) if we executemore transitions (than X).9.1.4 A technical abstraction: the image functorWe de�ne here a simple tool used for being able to represent objects in the slicecategory �=D as subobjects of D. Let Sub be the category of sub-HDA of D.De�ne an abstraction functor Im from �=D to Sub by,Im(x : X ! D) = Id : x(X) ,! DIm0BBBB@ X x- D��y�Yf? 1CCCCA = Id : x(X)! y(Y )It maps every arrow x to the subobject of D representing its image.The concretization functor, its right-adjoint, is J given by,J (y : Y ! D) = y � p1 : Y �D! Dwhere p1 is the canonical projection for the cartesian product, p1 : Y �D ! Y .Proof. We haveIm � J (y : Y ! D) = Im(y � p1 : Y �D ! D)= Id : y(Y )! DBut if y : Y ! D belongs to the category Sub, then y = Id and Im � J �= Id.



9.1. ABSTRACT INTERPRETATION 261Now, consider the following (non-commutative) diagram,X����������x AAAAAAAAAx Ux(X)�D	���p1 @@@p2Rx(X) DDi?By de�nition of the cartesian product x(X)�D, there exists a unique hX suchthat x = p1 � hx = p2 � hx. Therefore hx is a morphism between x : X ! Dand J � Im(x) = i � p1 : x(X)! D in the slice category �=D. It is obviouslynatural in X and de�nes what is to be the counit of the adjunction.Finally, we have to verify that, �rst, for all x : X ! D the composition,Im(x) Im(hIm(x))- Im � J � Im(x) Id- Im(x)is the identity. This is obvious since Im(x) = Id.Then, we have to prove that for all y : Y ! D in Sub, the composition,J (y) hJ (y)- J � Im � J (y) J (Id)- J (y)is the identity. But J (Id) � hJ (y) = y = Id since y 2 Sub. 29.1.5 An abstraction: truncationWe consider here a way to reduce the number of transitions of a HDA byreducing the amount of asynchrony we are allowed to observe.Let n be an integer and Da;n the abstract domain de�ned by (Da;n)p;q = (Dc)p;qif p + q � n and (Da;n)p;q = 0 if p + q > n. It is the domain of processes ofdimension at most n.Let now x : X ! Dc be an element of �=Dc. Let X 0 be the sub-HDA of Xconsisting of transitions up to dimension n (\truncation" of X of order n). Wede�ne1 Tn(x) to be the induced morphism from X 0 to Da. For f a morphismbetween x : X ! Dc and y : Y ! Dc, we de�ne Tn(f) to be the inducedmorphism between the truncations of X and Y of order n. This de�nes theabstraction functor.Take A in �=Da;n. Let Y (A) be the diagram in �=Dc, whose objects are allelements x of �=Dc such that Tn(x) is isomorphic to A, and whose arrows are1By slight abuse of notation



262 CHAPTER 9. ANALYSIS OF PROGRAMSall possible morphisms in �=Dc between these objects. We de�ne a functorGn : �=Da;n �! �=Dc to be Gn =lim! Y (�). Then,Lemma 32 (Tn;Gn) is a pair of adjoint functors.This pair of adjoint functors induces a Galois connection between the latticesof sub-HDA of Dc and Da;n (viewed as a sub-category of �=Dc and �=Da;nrespectively).Example 43 Let Dc be the HDA, s3��b0� I@@a0s1 A s2I@@a ��b�s0and set n to 1. Then Da is, s3��b0� I@@a0s1 s2I@@a ��b�s0If we look at the lattices of subobjects of Dc and Da we have a Galois connectionbetween2,
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s9.1.6 An abstraction: foldingIn this section, we de�ne a way to reduce the number of states, transitions, etc.in a HDA by folding together parts of the execution traces.2We only picture here the lattice of connected subobjects of Dc and Da.



9.1. ABSTRACT INTERPRETATION 263Suppose that we are given an epimorphism p from Dc to a domain Da. p canbe interpreted (similar to the labelling morphism) as a folding morphism.This can be lifted to the slice categories �=Dc and �=Da as an abstractionfunctor, Mp(x : X ! Dc) = p � x : X ! DaMp(f : (x : X!Dc)! (y : Y !Dc)) = f : (Mp(x))! (Mp(y))Let now Np be the functor from �=Da to �=Dc de�ned by:� for x0 : X 0 ! Da, Np(x0) is the pullback of x0 along p, i.e. is the \greatest"morphism Np(x0) : X 0 �Da Dc ! Dc such that p �N(x0) = x0 � p1 wherep1 : X 0 �Da Dc ! X 0 is given by the pullback diagram (see [ML71]),8Y����������8u AAAAAAAAA8v UX 0 �Da Dc?9!h	���p1 @@@Np(x0) RX 0 Dc@@@x0R 	���pDa� and for f 0 : (x0 : X 0 ! Da) �! (y0 : Y 0 ! Da), Np(f 0) : X 0 �Da Dc !Y 0 �Da Dc is the unique morphism h in the following pullback diagram:X 0 �Da Dc����������f 0 � p1 AAAAAAAAAN(x0)UY 0 �Da Dc?h	���p01 @@@N(y0) RY 0 Dc@@@y0R 	���pDaThen,Lemma 33 (Mp;Np) is a pair of adjoint functors.Proof. See for instance [MM92]. 2



264 CHAPTER 9. ANALYSIS OF PROGRAMSExample 44 Let Dc and Da be ,1 a - u ?� �	1 aand p : Dc ! Da be the epimorphism de�ned by p(1) = p(u) = 1 and p(a) = a,then (Im�Mp;J �Np) is a Galois connection between the lattices of subobjectsof Dc and Da, (a)(1)� (u)6 (a)��� I@@(1) (u) Im �Mp-�H �Np (1)6I@@ ���0 06What are the abstract operators now, i.e. the abstract counterparts of +, 
and lim! ? This will not be possible to compute them in general, and we mayhave to use safe approximations of them.For H any endofunctor on �=Dc, we say that G, endofunctor on �=Da, is asafe approximation of H if and only if there exists a natural transformationfrom �H
 to G. Notice that it reduces to the usual de�nition when (�; 
) is aGalois connection. The fact that (�; 
) is a pair of adjoint functors implies thatcolimits in �=Da are safe approximations of colimits in �=Dc. For instance,we can take as abstraction of + and lim! , + and lim! respectively. This does nothold for 
 and its abstract version 
a. But we can prove the following:� For the adjunction (Tn;Gn), there is an \expansion law", x 
a y = x 
T0(y) + T0(x)
 y+ P0<k<n Tk(x)
 Tn�k(y).� For the adjunction (Mp;Np), if p is a multiplicative morphism then x
ay = x
 y.9.1.7 Schedulers as an abstract interpretationLet Sc be the category whose objects are equivalence classes of elements ofR�Mod=�n(D) modulo isomorphisms.De�ne now �n : Sub! Scby �n(i :M ,! Dc) = (�n(i) : �n(M)! �n(D))�n(x) provides us with all n-schedulers of automaton x: �n(x) basically returnsthe equivalence class of all retracts of dimension n of x (see Figure 9.1).



9.1. ABSTRACT INTERPRETATION 265An analogue to Van Kampen's theorem holds (Section 7.7.2). Recall that, forall X1 and X2, X1 [X2 and X1 \X2 are well de�ned by the cocartesian squareX1 \X2 j1 - X1X2?j2 i2- X1 [X2?i1Then Van Kampen's theorem asserts that the following diagram in R�Mod iscocartesian as well, �n(X1 \X2) �n(j1) - �n(X1)�n(X2)?�n(j2) �n(i2)- �n(X1 [X2)?�n(i1)Therefore �n commutes with (binary) least upper bounds. In case �n(Dc) isof �nite type (implied by Dc �nite for instance), this proves the existence ofa right-adjoint 
n : R �Mod=�n(Dc) ! Sub to �n by Freyd's special adjointfunctors theorem [ML71]. (�n; 
n) is a pair of adjoint functors or a Galoisconnection3. We strongly believe that this generalizes to modules �n(Dc) ofin�nite type but we do not have yet a proof of that.Figure 9.1 should then be understood as follows. When we have only one pro-cessor, A, B and D have exactly the same schedulers, i.e. they have essentiallyone and only 1-path (D retracts to any of A or B). This means that the bestapproximation of A and B (by 
1 � �1) is D. Only C0 = �1(C) (two paths, i.e.two generators) is di�erent from (non-isomorphic to) A0 = �1(A), B0 = �1(B)and D0 = �1(D) (one path, i.e. one generator). The arrow in Sc going up fromA0 to C 0 is the image by �1 of the inclusion morphism from A to C. Similarly,the arrow going downwards from C 0 to D0 comes from the inclusion morphismof C into D and whose action is to project the hole of C onto 0 (the hole is�lled in D).9.1.8 Dependence orderings and abstract interpretationWe wish here to give constraints on scheduling and schedulers the same pre-sentation via dependence orderings of the form \a < b" meaning action bmust be scheduled just before action a. The logical language L will be con-structed out of predicates \a < b", variables ranging over actions, quanti�ersand connectives from classical logic. We authorize in�nite formulas, so thatquanti�ers are just syntactic sugar. This is the same intuition (but in a moregeneral context) as dependence orderings in Mazurkiewitz trace theory [Maz88]or more recently in concurrent automata [BDK94]. Notice that it is enough tospecify the scheduling properties we had in mind up to now,3We do not ask to have a poset as an abstract domain, it may be a general category (ora preorder as in [CC94]). Notice that (as pictured in Figure 9.1) 
n � �n is an upper closureoperator on Sub, [CC77].



266 CHAPTER 9. ANALYSIS OF PROGRAMSFigure 9.1: A domain of automataD, a subposet SD of Sub and its abstractionto Sc.
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� in Example 31 it su�ces to give a constraint on add.siP (the i-th add.saction executed on the same processor P ; we forget the i index in thesequel) of the form 9x; y 6= add.sP ; add.sP < x < y < add.sP which is justsyntactic sugar for _x;y 6=add.sP ((add.sP < x) ^ (x < y) ^ (y < add.sP )).� the two-phase protocol on two processes P and Q consists in the following.Let AP and AQ be respectively the items that P , respectively Q, accessvia actions Pa and Qb respectively (a 2 AP , b 2 AQ). Then the two-phaseprotocol is a scheduling constraint of the form(^a;c2AP ((locka < Pc) ^ (Pc < unlocka)))^�^b;d2AQ ((lockb < Qd) ^ (Qd < unlockb))�� mutual exclusion properties between two actions a and b can be formalizedby the formula (a < b0) _ (b < a0).More formally, if D is a domain of semi-regular HDA, let L be the following(in�nitary) logic where terms are formed by the following constructions,� for all n > 0 and for all actions or variables a; b in (D)n a < b is in L,� for all formulas p and q in L, p_q, p^q, 8x:p(x) and 9x:p(x) are formulasin L.The syntacticly di�erent predicates on actions are declared non comparableby �. Then � is logical implication. (L,�) is a complete lattice with _ asthe least upper bound operation and the greatest lower bound being ^. It isstraightforward now to show that (L,�) and Sub are equivalent lattices,



9.1. ABSTRACT INTERPRETATION 267Figure 9.2: Sub (simpli�ed, called SD), the denotation p of the program, itssubposet of retracts R and the constraint C.
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� let 
 : L ! Sub be de�ned by{ for a and b of dimension n, 
(a < b) = _fx 2 Sub=8p 2 Pn(x); p =(pi)i�0; 8i; pi = a) pi+1 = b)g,{ 
(p_ q) = 
(p)_ 
(q).� and let � : Sub! L be as usual �(x) = ^fy 2 L=x � 
(y)g.In Figure 9.2 we have pictured a constraint on scheduling C which can bedescribed as C = c < d _ a < b0 as well as a program semantics p. In Figure9.1, the constraints are written next to the corresponding elements of SD.9.1.9 Veri�cation of protocolsGiven a constraint (or protocol) C 2 L and a program p (identi�ed with itssemantics in D), can we �nd a best scheduler for p under constraint C? Thisquestion is two-fold: �rst (veri�cation), can p be scheduled with constraint C?and second, as a side-e�ect, (inference) what is a best way, i.e. a way in whichwe add the minimum number of constraints to C?This problem can be expressed in our framework as follows. What is the max-imal element of the intersection of the subposet of retracts of p with the left-closed set of elements satisfying the constraint C: fy 2 SD=y � Cg? or using ageometric image: \can we retract p onto C \ p?". As an example, a+ b0 is thismaximal element in Figure 9.2. An algorithm is given in next section (whichmainly computes a part of the � of last section).9.1.10 Inference of a best parallelizationHere, we are given a sequential program p (identi�ed with a HDA of dimensionone) and we want to give a meaning to the problem of �nding the \best"parallelization of it. The way we do this is by considering p to be embeddedinto a domain D specifying all possible actions. Practically, this is done byconsidering all traces in which all actions of p are put in parallel. This mayobviously create some interferences or demonstrate the ability to perform someparts of p in parallel. Now, instead of retracting paths onto p, we wish to extend



268 CHAPTER 9. ANALYSIS OF PROGRAMSp as much as we can: we wish to �nd the greatest subHDA of D that retractsonto p. This makes sense since Sub is complete. We derive an algorithm innext section.9.2 Algorithmic detailsAs we do not want to specialize to a particular language or subproblem herewe choose to give generic algorithms which may be optimized for some speci�careas (see the conclusion). The generic algorithm relies on �nding a solution toa central problem cryptographists have (�nding dependence relations amonglines of huge sparse matrices for quadratic sieves for instance). Huge progressis made everyday on �nding good algorithms for solving this problem and theseare then of direct interest for our abstract interpretation. For keeping thingsunderstandable we use only fairly well known algorithms in next sections.9.2.1 Representation of HDAThe �rst simpli�cation is to work with R = ZZ=2ZZ. This makes coe�cientsinto simple booleans. Now boundary operators can be represented as booleanmatrices, and even sparse ones: this means that lines (or line vectors) of thematrices are represented as ordered lists of integers indicating the occurrences ofones. Addition of line-vectors is a fusion of ordered lists which can be performedin linear time in terms of the number of elements in the lists.HDA are represented by the matrices of their boundary operators in everydimension. Whenever we have to work on two HDA one included into theother, we mark some of the line vectors of the greater one to indicate that theygenerate the other HDA as well.Example 45 Let M be the HDA (a square),(A) @0- (a)� (b) - (�)(a0)� (b0)@1? @0- (�)� (
)@1?(�)@1?with @0(A) = a � b, @1(A) = a0 � b0, @0(a) = @0(b) = �, @0(a0) = @1(b) = 
,@0(b0) = @1(a) = � and @1(a0) = @1(b0) = �. Then the matrix representing thetotal boundary operator in dimension 2 is,( a b a0 b0 )� A : 1 1 1 1 �



9.2. ALGORITHMIC DETAILS 269and in dimension 1, ( � � 
 � )0BBBBBB@ a : 1 1 0 0b : 1 0 1 0a0 : 0 0 1 1b0 : 0 1 0 1 1CCCCCCA9.2.2 Representation of program semantics and constraintsWe generate the program semantics by compositional methods like in [Gou93,GJ92] or in Section 5.5 and then compute the abstract operators using stan-dard methods from homology theory or preferably here by SOS-like rules(Chapter 2) that generate all possible transitions. The constraints (given in L)�lter the application of the SOS rules: the ones that verify the constraints arethen transformed into marked lines. For the inference problem, the domain isgenerated by applying all valid rules for all instructions (this should better bedone lazily) and p is marked.Example 46 The CCS term a j b has total boundary matrices as in Example45 using the SOS-rules (or the denotational rules) of Chapter 5.9.2.3 Veri�cationThe algorithm can then be described as follows. Are given n, the representationof the HDA C \ p and p, initial (n � 1)-transitions I (a line vector) and �nal(n � 1)-transitions F (a line vector). The algorithm says if we can n-schedulep under the constraint C. In order to be able to characterize the homotopythrough homology, we have to suppose that p and C \ p do not contain anydeadlock. This means that I and F must represent in an exact manner the setsof initial and �nal states of C and C \ p.We suppose that we have already implemented the following functions:� shift(M : HDA; k : integer) which shifts the dimension index of M byk, i.e. shift(M; k) = N : HDA with Nn =Mn+k ,� quotient(M : HDA; I; F : vector) which returns the HDA M 0 where allstates in I � F are replaced by 0,� tot(M : HDA) which returns the matrices M1 for the boundary operator@0 � @1 in dimension one and M2 in dimension two,We �rst program triangular(U :matrix) = (U 0 :matrix; P :matrix) where U 0is a triangular form of both the submatrix of marked lines of U and a triangularform of U , and P is the matrix of change of coordinates. In this way, null lines



270 CHAPTER 9. ANALYSIS OF PROGRAMSFigure 9.3: The triangular algorithmP = Id� = [1; 2; : : :]u = 1for i = 1 to mfind lj ; marked(lj) and first(lj) = iif found then 8>>>>>>>>>>>>><>>>>>>>>>>>>>: �(u) i�(i) uu u+ 1for k = 1 to m; k 6= jif first(lj) = i then 8<: lk  lj + lkpk  pj + pkfor i = u+ 1 to mfind lj ; not marked(lj) and first(�(lj)) = �(i)if foundthen 8>>>>>><>>>>>>: for k = 1 to m k 6= jif first(�(lj)) = �(k)then 8<: lk  lj + lkpk  pj + pkwhere m, lj , pj and first(lj) denote respectively the number of line vectors inU , the jth line of the matrix U , the jth line of the matrix P and the �rst indexi for which lj(i) is one.of U 0 correspond to generators (whose expression can be read in P ) of Ker Uand the non null lines of U 0 give a basis of Im U .If implemented by (a version of) Gauss method as outlined in Figure 9.3 thenthe worst case complexity of triangular(U) is in O(ij2) where j is the numberof lines in U and i is the maximum number of non-null elements per line in U .If tot(quotient(M; i; F )) = (M1;M2) where M is replaced by shift(M;n � 1)then the null lines of triangular(M1) represent the generators of Ker(@0 � @1)in dimension one, i.e. the generators of the set of 1-paths of M (see [Gou95] orChapter 7).They can be computed in O(nk2n) where kn is the number of n-transitions inM . Similarly, the non-null lines of triangular(M2) represent the generators ofIm(@0 � @1) in dimension two. This can be computed in O(nk2n+1).



9.2. ALGORITHMIC DETAILS 271Figure 9.4: The algorithm n � scheduler1) p = s(p; n� 1)2) (M1;M2) = tot(quotient(p; I; F ))3) (U1; P1) = triangular(M1)4) (U2; P2) = triangular(M2)5) N = 0@ Nu=lines qj of P1 with lj = 0 in U1Nl=non-null unmarked lines of U2 1A6) (N1; Q1) = triangular(N)7) result = (cardfj=nj = 0g == cardfunmarked lines of Nug)The calculus of representants of generators for �1(M) could be done in O((n+k1 + k2)k21 + (n + k1)k22) in the worst case. But here we are interested in asomewhat more speci�c problem.The algorithm n � scheduler(p; C \ p : HDA; I; F : vector) : boolean for veri-fying if we can n-schedule p under constraint C is described in Figure 9.4 andruns in O(n(k2n + k2n+1)) where kn and kn+1 are the number of n transitions(resp. (n+ 1)-transitions) in p.The algorithm works as follows.At lines 1) and 2) are computed the matrices of the boundary operator @0� @1for the transitions of dimension n and n+ 1 of the pair (p; I � F ).The triangulations of lines 3) and 4) are used at line 5) for generating a matrixN whose �rst part (Nu whose lines which correspond to paths in C \ p aremarked) is composed of generators of n-paths of p and whose second part (Nv)is composed of generators of (@0 � @1)(pn+1). The triangulation makes explicitall dependency relations between Nu and Nv, that is, shows how many n-pathsare homotopic in p.The last line veri�es that all n-paths of p are equivalent to some path of C \ pby an easy argument on dimensions.Example 47 Take as domain and constraint those of the example pictured inFigure 9.2. For p, take the �lled in square A. Then, the matrix representationof p is (where the marked lines are underlined), in dimension 1,0BBBBBB@ a : 1 1 0 0b : 1 0 1 0a0 : 0 0 1 1b0 : 0 1 0 1 1CCCCCCAand in dimension 2, D2 = � A : 1 1 1 1 �



272 CHAPTER 9. ANALYSIS OF PROGRAMSIf we run the algorithm 1-scheduler on these data, we �rst add column 4 tocolumn 1 and discard 4 since it is all 1s (this gives the quotient by I � F ). inthe matrix representing the objects of dimension 1. Then we �nd,U1 = 0BBBBBB@ 1 00 10 00 0 1CCCCCCAP1 = 0BBBBBB@ 1 0 0 00 1 0 00 1 1 01 0 0 1 1CCCCCCAand U2 = D2. Then, N = 0BBB@ 0@ 0 1 1 01 0 0 1 1A� 1 1 1 1 � 1CCCAand N1 = 0BBB@ 0 1 1 00 0 0 01 1 1 1 1CCCAThis entails res = (1 = 1) is true, hence p can be implemented on a machinewith constraint C.Example 48 Let us come back to the process graph for the two transactionsT1 = PaV a and T2 = PaV a. Its discretization as an HDA can be pictured asin Figure 9.5. It is obviously 2-phase locked hence serializable. Let us checkthis with our veri�cation algorithm. We must check that it is equivalent to



9.2. ALGORITHMIC DETAILS 273Figure 9.5: A process graph discretized as an HDA (8 2-transitions, 24 1-transitions and 16 states).
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274 CHAPTER 9. ANALYSIS OF PROGRAMSp = T1:T2 + T2:T1. The matrix M , input of the algorithm 1-scheduler is then,

D1 =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 1 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 1 0 0 0 0 0 0 00 0 0 0 1 0 0 0 1 0 0 0 0 0 0 00 0 0 0 1 0 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 1 0 0 1 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 1 0 0 1 0 0 0 00 0 0 0 0 0 0 0 1 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 1 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 1 0 1 00 0 0 0 0 0 0 0 0 0 0 1 0 0 1 00 0 0 0 0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0 0 0 0 0 0 1 0 0 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA



9.2. ALGORITHMIC DETAILS 275And,D2 = 0BBBBBBBBBBBBBBBBBBB@ 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 00 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 00 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
1CCCCCCCCCCCCCCCCCCCATherefore, adding last column to �rst one and discarding the last one, thentriangulating these two matrices, we obtain,

N =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@
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N1 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 10 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 00 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 00 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCAWe check that cardfj=nj 2 N1 = 0g = 9 = cardfunmarked lines of Nug.Therefore it is serializable.9.2.4 InferenceAre given, m, HDA D and p (of dimension one). p consists of the submatrix ofmarked lines of the matrix representation of D. The algorithm is an iterationon the following algorithm parameterized by the dimension n (we call Addn),for n = 1 to m� 1, Addn. We suppose that p does not contain any deadlock.It is basically the same as the one in Figure 9.4 except the result assignmentis replaced by a marking of M2 which describes the (n + 1)-transitions to beadded to p to get its parallelization. The lines marked in U2 are the linescorresponding to the (n + 1)-transitions with non-null coe�cient in line qj ofQ1 such that nj 2 N1 is null and marked. These are the (n+1)-transitions usedfor deforming some path in p to another path in the domain D. This marking isthen translated into a marking ofM2 using the matrix of change of coordinatesP2. It is correct to use the homological characterization of homotopy since itis a \resolution"-like procedure: we start o� with some connected k-connected



9.2. ALGORITHMIC DETAILS 277Figure 9.6: The 1-step inference algorithm Addn1) p = s(p; n� 1)2) (M1;M2) = tot(quotient(p; I; F ))3) (U1; P1) = triangular(M1)4) (U2; P2) = triangular(M2)5) N = 0@ Nu=lines qj of P1 with lj = 0 in U1Nl=non-null unmarked lines of U2 1A6) (N1; Q1) = triangular(N)7) markf2-transitions with non-null coe�cient in line qj of Q1s.t. nj = 0 in N1 and marked(nj)gFigure 9.7: A parallelization example.
AD=

a

c d

b

p=b+dshape to deduce a connected (k + 1)-connected shape, so that Hurewicz holdsat each step of the computation. The complexity is bounded by a function oforder O(n2max1�i�n�1k2i ) (see Figure 9.6).Example 49 Take as domain and program those of the example pictured inFigure 9.7. Then, the matrix representation of D is (where the marked linesare underlined), in dimension 1,0BBBBBB@ a : 1 1 0 0b : 1 0 1 0c : 0 1 0 1d : 0 0 1 1 1CCCCCCAand in dimension 2, D2 = � A : 1 1 1 1 �If we run the algorithm Add1 on these data, we �rst add column 4 to column 1and discard 4 since it is all 1s (this gives the quotient by I � F ) in the matrixrepresenting the objects of dimension 1. Then we �nd,



278 CHAPTER 9. ANALYSIS OF PROGRAMSU1 = 0BBBBBB@ 1 00 10 00 0 1CCCCCCAP1 = 0BBBBBB@ 1 0 0 00 1 0 01 0 1 00 1 0 1 1CCCCCCAand U2 = D2. Then, N = 0BBB@ 0@ 1 0 1 00 1 0 1 1A� 1 1 1 1 � 1CCCAand N1 = 0BBB@ 1 0 1 00 0 0 00 1 0 1 1CCCAQ1 = 0BBB@ 1 0 01 1 11 0 1 1CCCAWe see that line n2 of N1 is marked and is null. It corresponds to line q2 =(1; 1; 1) in Q1. The third component of q2 is one and corresponds to the 2-transition A. This means that it was used for deforming path b + d. Thisentails that A has to be marked as well as a and c. Therefore, p parallelizes toD.9.2.5 OptimizationsWe can think of a number of optimizations,� we can replace Gauss elimination technique by a faster algorithm likestructured elimination or Wiedemann's probabilistic algorithm [Mas69].The latter is quasi-linear in average in terms of the number N of non-null entries of the sparse matrix from which we want to extract lineardependencies. No experiments have been made yet as to know from whichN on this algorithm gives practical pay o�s.� we might also enter an already triangulated matrix for some well-knowndomains. This would obviously greatly simplify the veri�cation algorithm.



9.2. ALGORITHMIC DETAILS 279Summary We have de�ned a particular case of abstract interpretation ofHDA in which all pre-orders we consider are suborders of the simulation pre-order (the one given by arrows in �). This was most suitably formalized usingpairs of adjoint functors instead of the classical Galois connections. We haveshown that there were some interesting abstractions, like the denotational one(looking only at initial and �nal states in the semantics) and the folding one(which identi�es some n-transitions together). We developed in particular anabstract interpretation of the HDA semantics giving all the schedulers of aprogram, using the theory of Chapter 7. This allowed us to develop a veri�ca-tion algorithm (for checking if a program could be implemented using a givenprotocol on a given machine) and a parallelization algorithm.The reader should realize that, as usual, all these abstractions can be composedtogether. In particular, we might use the folding abstraction to reduce thesemantics of programs to �nite HDA on which we can run the veri�cation andparallelization algorithms. For more applications of these abstractions, thereader can look at [CG93, Cri95].
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Chapter 10Combinatorial HDAThe homotopy theory we developed in Chapter 7 was quite degenerate in thesense that it was actually a homology theory. As a matter of fact it was re-stricted to very few HDA, namely those which are generated by the free con-struction on semi-regular HDA. We wish here to extend this to more generalHDA. It is clear from Chapter 7 that what we need is essentially to use somekind of simplicial homotopy theory for both d0 and d1 boundary operators. Thisrequires to add some \degeneracy" operators corresponding to these boundaryoperators. We construct such a model (called combinatorial HDA) in next sec-tion. Then we develop a homotopy theory which we �nally compare with theone of Chapter 7.There is another motivation for this construction. In [HR95] it is proven that\there is no t-resilient k-set agreement protocol on a shared memory machinewith atomic read and write". The proof relies on a form of the \Acyclic CarrierTheorem" [Mun84] which holds only in the simplicial framework because we doneed some \degeneracy operators" (i.e. some idle transitions of any dimension).In [HS94], it is also shown how to extract wait-free protocols from decision tasksin a constructive manner. This is done by subdividing the input complex insuch a manner that the decision map becomes a simplicial map. We use thecombinatorial construction of the �rst section to describe this subdivision. No-tice that the semantic model is more powerful than the \static" one used byHerlihy et al. in that we do not ask for a �xed number of processes interact-ing throughout the distributed computation. The result of [HS94] is thereforegeneralized to distributed machines with, for instance, forking abilities.10.1 Combinatorial HDALet n (n � 0) be the linear order 0 < 1 < : : : < n � 1. It is well known(Appendix B and [May67, GZ67]) that the non-decreasing maps between anyk and l are generated by the maps (0 � i � n), (Face maps)ui : n! n + 1283



284 CHAPTER 10. COMBINATORIAL HDA(Degeneracy maps) vi : n + 1! nde�ned as, ui(k) = 8<: k if k < ik + 1 if k � ivi(k) = 8<: k if k � ik � 1 if k > iThey verify the following commutation rules, the \simplicial relations",8>>>>>>>>>><>>>>>>>>>>: ujui = uiuj�1 (i < j)vjvi = vivj+1 (i � j)vjui = 8>>><>>>: uivj�1 (i < j)Id (i = j; j + 1)ui�1vj (i > j + 1)Now, instead of dealing with simplices, we want to deal with hypercubes.\Oriented" hypercubes can be thought of as the Hasse diagrams of partial orderbetween the states, \to occur before". This leads to considering non-strict-coverpreserving maps, i.e. maps which do not reverse time and which are in someway simulations.We are in particular interested in some maps between k = }(k) and l =}(l). These are generated by the following functions (0 � i � n),�0i : n ! n+1n �i-�i- nn+1 �0i-�1i- nde�ned as follows, �0i (fx1; : : : ; xkg) = fui(x1); : : : ; ui(xk)g�i(S) = fig [ S�i(S) = Snfig�0i (fx1; : : : ; xkg) = fvi(x1); : : : ; vi(xk)g�1i (fx1; : : : ; xkg) = [(ffvi(x1); : : : ; vi(xk)gg � ffigg)where ffx1; : : : ; xkgg, � and [ in the last equality are respectively the multisetcontaining x1; : : : ; xk (may have multiple occurences of some xj), the di�erencebetween multisets and the union which from a multiset returns a set where weforget multiplicities.



10.1. COMBINATORIAL HDA 285Figure 10.1: Action of generating morphisms �1, �0, �1 and �0.
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0 1 0 0 1 0� Notice that only �1i is not additive (i.e. does not always commute with [).We conjecture that these morphisms generate all cover-preserving maps fromany ( k ;�) to any ( l ;�) (look at Figure 10.1 for seeing the actions of theseoperators on the lattices k , represented geometrically).These morphisms verify the following commutation rules,�0j �0i = �0i �0j�1 (i < j)�0j�0i = �0i �0j+1 (i � j)�1j�1i = �1i �1j+1 (i � j)�i�j = �j�i�i�j = �j�i�0j �0i = 8>>><>>>: �0i �0j�1 (i < j)Id (i = j; j + 1)�0i�1�0j (i > j + 1)�1j �0i = 8>>><>>>: �0i �1j�1 (i < j)�i (i = j; j + 1)�0i�1�1j (i > j + 1)�0j �i = 8<: �i�0j (i < j)�i+1�0j (i � i)�0j �i = 8<: �i�0j (i < j)�i+1�0j (i � j)�0j �i = 8<: �i�0j (i � j)�i�1�0j (i > j)



286 CHAPTER 10. COMBINATORIAL HDA�0j �i = 8<: �i�0j (i < j)�i�1�0j (i � j)�1j�0i = 8>>><>>>: �0i �1j+1 (i < j)�1j�1j (i = j; j + 1)�0i�1�1j (i > j + 1)�1j �i = 8>>><>>>: �i�1j (i < j)�0j (i = j; j + 1)�i�1�1j (i > j + 1)�j�i = 8<: �j (i = j)�i�j (i 6= j)�i�i = �iProof. Quite tedious. We derive some of the most interesting equations below.We have already seen in Section 8.1.4 the commutation relations between theboundary operators.Let us �rst give a few hints about the commutation relation between �1 and�0. �1i �0j (fkg) = 8<: fviuj(k)g if uj(k) 6= i and uj(k) 6= i+ 1,; otherwiseBut uj(k) = i or uj(k) = i+ 1 can happen only under two circumstances,(1) k < j and k = i; i+ 1,(2) k � j and k = i� 1; i.We can now make the following assumptions,� if j < i, then case (1) is impossible, whereas case (2) can happen ifk = i� 1 or k = i. Then both �1i �0j (fkg) and �0j�1i�1(fkg) are void. Now,if k 6= i� 1 and k 6= i then by de�nition of the ui and vj , viuj = ujvi�1.This entails the result.� if j > i + 1 then case (2) is impossible whereas case (1) can happen ifk = i or k = i+1. In that case, both �1i �0j (fkg) and �0j �1i�1(fkg) are void.If k 6= i and k 6= i + 1 then the commutation relation between uj and viimplies the result.



10.1. COMBINATORIAL HDA 287� if j = i or j = i+ 1 then it is easy to see that�1i �0i (fkg) = 8<: ; if k = i,fkg otherwiseThis is �i by de�nition.2These relations imply that if we set �1j = �j�0j then,Lemma 34 (�0i ; �0j ) and (�1i ; �1j ) verify the simplicial relations and�0j �1i = 8<: �1i �0j�1 (i < j)�1i+1�0j (i � j)Proof. Simple calculation using the commutation relations just proven previ-ously. It is rather obvious for (�0i ; �0j ). Now for (�1i ; �1j ),� if i > j then, �1i �1j = �1i �j�0j= �j�1i �0j= �j�0j �1i�1= �1j �1i�1� if j = i or j = i+ 1 then, �1i �1j = �1i �j�0j= �0i �0j= Id� �nally, if j > i+ 1 then, �1i �1j = �1i �j�0j= �j�1�1i �0j= �j�1�0j�1�1i= �1j�1�1iFinally, we derive the commutation relations between the two di�erent kinds ofboundary operators,



288 CHAPTER 10. COMBINATORIAL HDA� if j < i then, �0i �1j = �0i �j�0j= �j�0i �0j= �1j �0i�1� otherwise, if j � i then, �0i �1j = �0i �j�0j= �j+1�0i �0j= �1j+1�0i2Let be the category whose objects are the k (k 2 IN) and whose morphismsare generated by the morphisms �0i , �0i , �i, �i and �1i .We call any contravariant functor from the category to some category C acubical object in C or a cubical complex of elements of C1 (as for simplicialcomplexes, see Appendix B). The category of cubical objects in C is denotedC. When C = R�Mod, its elements are called combinatorial HDA.The morphisms of combinatorial HDA are natural transformations. In partic-ular any morphism f from F to G is such that,G(�0i ) � f = f � F (�0i )G(�0i ) � f = f � F (�0i )G(�i) � f = f � F (�i)G(�1i ) � f = f � F (�1i )The image of �0i by any element F of C will be denoted by d0i . SimilarlyF (�0i ) = s0i , F (�i) = ti and F (�1i ) = s1i . We write d1i = d0i ti. The commuta-tion relations we have proven show that (F; d0i ; s0i ) and (F; d1i ; s1i ) are simplicialobjects in C.Example 50 For C = Set, the contravariant functor,n : ! Setk Hom ( k ; n )is called the standard n-cube.1When C = Set this is isomorphic to a subcategory of bipointed sets (private communica-tion by Vaughan Pratt).



10.2. HOMOTOPY THEORY 289There are interesting relationships with semi-regular and general HDA.There is an embedding functor E from 2 to op with,� E(2n) = n ,� E(dkl ) = (�kl )op.Therefore, there is a forgetful functor Fg : Set ! �sr such that Fg(F ) =F �E,Conversely, we know that all elements of �sr are amalgamated sums of standardcubes (see Chapter 2). We can de�ne a completion functor Co : �sr ! Setwhich, given x 2 �sr constructs Co(x) by amalgamating the standard cubes(see Example 50) in the same way the standard cubes in �sr were amalgamatedto yield x. It can be shown that Fg is right-adjoint to Co.Notice that the de�nition of acyclic combinatorial HDA is somewhat di�erentfrom the one for general HDA. Degeneracies are cycles. Let D(M) =Li (Im s0i +Im s1i ) be the module of degenerated elements of a combinatorial HDAM . Thenwe say that that M is acyclic if and only if M=D(M) is acyclic in the usualsense, i.e. there is no x in both Mp;q and Mp0;q0 , p 6= p0, q 6= q0.We will show in Section 10.3 that a general HDA can be represented as acombinatorial HDA on R�Mod and conversely.10.2 Homotopy theoryWe have real simplicial sets in combinatorial HDA based on C = Set. Theones based on (�0; �0) are going to represent the input complexes in Herlihy'sframework (see Chapter 7). The ones based on (�1; �1) are to represent theoutput complexes. What we need to do now is to adapt the homotopy theory wehave developed for semi-regular HDA to the much more general combinatorialHDA. The idea is basically to have \elementary" deformations in our homotopytheory corresponding to an elementary deformation in the simplicial complex(�0; �0) and an elementary deformation in the simplicial complex (�1; �1) (seeFigure 10.2).First we recall (Appendix B) that for a simplicial complex (K; @i; �i) two n-simplexes x; x0 are homotopic (x � x0) if and only if� @ix = @ix0 for all 0 � i � n,� there exists a simplex y 2 Kn+1, the \homotopy", such that,{ @ny = x,{ @n+1y = x0,{ @iy = �n�1@ix = �n�1@ix0 for all 0 � i < n.



290 CHAPTER 10. COMBINATORIAL HDAFigure 10.2: Homotopy in a combinatorial HDA (the curved arrows indicate theelementary deformations { left is the HDA, right is the corresponding simplicialcomplexes)
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AIf K is a Kan complex, for instance if each Kn is a R-module and all the @iand �i are R-module homomorphisms, then � is an equivalence relation on then-simplices of K, n � 0.As for semi-regular HDA, we can decompose combinatorial HDA in order tohave a notion of time. This is done by distinguishing among Mn, R-modulesMp;q such that Mn = Pp+q=n Mp;q and such that,� d0i :Mp;q !Mp�1;q,� d1i :Mp;q !Mp;q�1,� s0i :Mp;q !Mp+1;q,� s1i :Mp;q !Mp;q+1.Let (M; d0i ; d1i ; s0i ; s1i ) be a combinatorial HDA in R � Mod. Then we knowby Lemma 34 that (Mj;�; d0i ; s0i ) = Hj(M) and (M�;j; d1i ; s1i ) = Vj(M) are twosimplicial R-modules, hence are two Kan complexes. Each one of them is thusequipped with a homotopy, �0 and �1 respectively.De�nition and lemma 9 Let S be the relation de�ned on n-cubes of M by,x = (x1; : : : ; xk 2Mk;n�k)Sx0 = (x01; : : : ; x0k 2Mk;n�k), 8>>>>>>>>>>>>><>>>>>>>>>>>>>: xj = x0j ; j 6= i; i+ 1;9y0; Hi�1(xi) �0 Hi�1(x0i)with homotopy y0;9y1; Vi(xi+1) �1 Vi(x0i+1)with homotopy y1;Vi(y0) = Hi�1(y1)Then the transitive closure � of S is an equivalence relation.Let now � and 	 be two states of a combinatorial HDA M . We de�ne the setof 1-paths from � to 	 to be ~M�;	1 = fx 2M1=d00(x) = �; d10(x) = 	g.



10.2. HOMOTOPY THEORY 291Figure 10.3: A 1-path in a combinatorial HDA.
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x = i.e. x = x1 � s00(v1) + x2 � : : :� s00(vn�1) + xnNote that this de�nition is a natural generalization of the de�nition of 1-pathson semi-regular or regular HDA in that we can now use the \idle" transitionsto cancel the intermediate states between � and 	 in the computation of theboundaries of a 1-path (see Figure 10.3).Let �0(M) = f(�;	) 2 M0= there is a 1-path from � to 	g=T be the set of\oriented" connected components, where T is the symmetric closure of T 0 de-�ned as follows,(�1;	1)T 0(�2;	2) if and only if there is a 1-path from �1 to �2 and from 	2to 	1.Now we denote the set of 1-paths from � to 	 modulo homotopy by ��;	1 (M) =~M�;	1 = �.We have an operation ; on paths de�ned as follows,; : ~M�;	1 � ~M	;�1 ! ~M�;�1de�ned by x; y = x+ y� s00(	). This operation is well behaved with respect tohomotopy in the sense that x � x0 and y � y0 implies x; y � x0; y0.Then the full fundamental R-module of M is�1(M) = X(�;	)2M0 ��;	1 (M)=f[p]; [q] = [p; q]gLet now p = (pi)0�i�k be a 1-path. The set of n-loops around p is de�ned tobe, ~Mpn = fx 2Mn=x =Pi xi and8i; j; 0� i � k; 0 � j � n� 1; d0j(xi) = pi; d1j(xi) = pi+n�1gThe nth homotopy set based at p is�pn(M) = ~Mpn= �We say that M is n-connected if dim �pk(M) = 1 for all p and k � n, 1-connected if n-connected for all n.



292 CHAPTER 10. COMBINATORIAL HDA10.3 Homotopy theory of general HDALet M 2 R �Mod. The image of �0i , �0i , �1i , �i and �i by M are writtenrespectively as d0i , s0i , s1i , ti and Ti. We rede�ne in this section only d1i =d0n�itn�i :Mn+1 !Mn (0 � i � n), where Mn is a short notation for M( n ).We also de�ne D(M) to be the module of degenerated elements i.e. D(M) =Pi(Im s0i + Im s1i ).Similarly to the standard construction for proving the equivalence of the cate-gory of simplicial modules with the category of complexes of modules [May67,GZ67], to every combinatorial automatonM we associate a general HDA �(M)by, �(M)n =Mn \Kerd00 \ : : :\Kerd0n�2 \Kerd10 \ : : :\Kerd1n�2as an R-module. The boundary operators @0 and @1 are de�ned as @0 : �(M)n !�(M)n�1, @0 = (�1)n�1d0n�1 and @1 : �(M)n ! �(M)n�1, @1 = d1n�1.We have, @k@k = �dkn�2dkn�1= �dkn�2dkn�2which is 0 on �(M)n by de�nition.Moreover, @0@1 = (�1)n�2d0n�2d1n�1= �(�1)n�1d1n�2d0n�1= �@1@0Therefore @0 � @1 + @1 � @0 = 0. �(M) is a general HDA.Conversely, if P is a general HDA, we de�neG(P )p;q = Pp;q�0@ X1�i+j�p+q�2 Xk=p�i;l=q�j s�uk : : :s�u�s1��vl : : :s1��v� s�uk0 : : :Pi;j1A =Ewhere E is the equational theory of morphisms of op with p + q � 1 > uk >: : : > u� � 0, p+ q � 1 > uk0 > : : : � 0 and p+ q � 1 > vl > : : : > v� � 0 : : :On every G(P )p;q the boundary and degeneracy operators d0, s0 and d1, s1 are8i < p+ q � 1; d0i = d1i = 08x 2 Pp;q; d0p+q�1(x) = (�1)p+q�1@0(x)8x 2 Pp;q; d1p+q�1(x) = @1(x)



10.4. RELATIONSHIP WITH SEMI-REGULAR HDA HOMOTOPY 293and on degenerated elements, the boundaries are given by the equational theoryof morphisms of op.Let P be a general HDA, M = G(P ). Then Pn � Kerd00 \ : : : \ Kerd1n�2because, by de�nition of M , d00; : : : ; d1n�2 = 0 on Pn. Moreover, x = s�i(y), fory 2 Pn�1, y 6= 0, is certainly not in Kerd�0\ : : :\Kerd�n�2, since d�i(x) = y 6= 0.Therefore, �(M) = � � G(P ) = P as a R-module. Notice that @0[� � G(P )] =(�1)n�1d0n�1[G(P )] = @0[P ] and @1[� � G(P )] = d1n�1[G(P )] = @1[P ]. Thisproves that ��G �= Id in ��0, the category of general HDA with no events (allelements are of positive dimension).This shows that � reaches all general HDA of positive dimension. We de�nethe homotopy of a general HDA P by,�n(P ) =def �n(G(P ))Remark: Similarly to the construction in the simplicial case (see [May67],Chapter V), we think that if M is a combinatorial HDA, G ��(M) is a compo-sition of deformations each of which preserving one of the homotopies �0 or �1.Therefore G ��(M) �M . Then �n(�(M)) =def �n(G ��(M)) = �n(M). Thiswould show that the de�nition of homotopy groups we have given for generalHDA agrees with the de�nition we have given on combinatorial HDA.10.4 Relationship with semi-regular HDA homo-topyWe show here that the homotopy theory of combinatorial HDA is an extensionof the homotopy theory of semi-regular HDA since we know by the previoussection that it covers at least all general HDA.Theorem 4 For all �, 	 states of some acyclic semi-regular HDA P , ��;	1 (P )and ��;	1 (Co(P )) are isomorphic R-modules. This implies that �1(Co(P )) �=�1(P ).Proof. To any 1-path p from � to 	 in P , p = (p1; : : : ; pk) we associate~p = p1 + : : :+ pk � s00d10p1 � : : :� s00d10pk�1 in Co(P ). The de�nition is validsince we have the cocartesian square (in �sr),a20 ì _�pi- (d00p1)a(d10p1)a : : :a(d10pk)a21? ì �pi - p?hence a corresponding cocartesian diagram image by Co. This proves thats00d10pi 2 Co(P ) and d10(pi) = d00(pi+1) in Co(P ). Therefore, a simple calculationshows that ~p is a 1-path from � to 	 in Co(P ). In fact, p! ~p is an isomorphism



294 CHAPTER 10. COMBINATORIAL HDAfrom the R-module of 1-paths of P to the R-module of 1-paths of Co(P ), ~M�;	1as we show below.Suppose � 2 P0;0, 	 2 Pk;�k . Let p 2 ~M�;	1 , p = p1 + : : : + pk where pi 2Co(P )i;1�i. We can write (for all i) pi = p0i + �00(xi), where the p0i are in somesupplementary of Im �00 in Co(P ). Then as d10pi = d10p0i + xi, d00pi = d00pi + xi,the fact that p is a 1-path from � to 	 in Co(P ) implies that for all 2 � i � k�1,xi = �d00p0i = �d10p0i�1 and d00p01 = �, d10p0k = 	. Therefore p0 = (p01; : : : ; p0k) isa 1-path in P and p = ~p0.Let now p and q be two 1-paths from � to 	 in P . Suppose p and q areelementary equivalent at time i, i.e. there exists A 2 P2 such that p � q =(@0 � @1)(A).In Hi�1(Co(P )), we have ~pi = pi � s00d00pi and ~qi = qi � s00d00qi. Note thatd00(~pi) = 0 = d00(~qi).Let y0 2 Hi�1(Co(P )) be y0 = A�s00s00d00pi. Then d00(y0) = pi�s00d00pi = ~pi andd01(y0) = qi � s00d00pi = ~qi. Therefore, ~pi and ~q in Hi�1(Co(P )) with homotopyy0.In Vi(Co(P )), ~pi+1 = pi+1 and ~qi+1 = qi+1. Note that d10(~pi+1) = d10(~qi+1).Let y1 = A 2 Vi(Co(P )). Then d10(y1) = ~qi+1 and d11(A) = ~pi+1. Therefore ~qi+1and ~pi+1 are homotopic in Vi(Co(P )) with homotopy y1.Finally, Vi(y1) = A = Hi�1(y0) therefore ~pS~q. This shows that p ! ~p inducesa map from ��;	1 (P ) to ��;	1 (Co(P )).We prove that it is an isomorphism by showing that ~pS~q implies p and q areelementary equivalent.By de�nition of S, we have y0 and y1 such that,� d00(y0) = ~pi and d01(y0) = ~qi, y0 = A+ s00(x),� d10(y1) = ~qi+1 and d11(y1) = ~pi+1, y1 = A+ s10(y).Therefore, d00(y0) = d00(A) + x = pi � s00d00pi. But d00(A) is not in Im s00 there-fore x 2 Im s00. Thus d00(y0)mod Im s00 = d00(A) = pi. Similarly, d01(A) = qi,d10(A) = qi+1 and d11(A) = pi+1 and p and q are elementary equivalent. 2We have no result yet for higher-dimensional homotopy groups.10.5 Construction of wait-free protocolsLet M be a combinatorial HDA, domain of possible executions of processes ona given machine , with some given inputs constrained to terminate with someprescribed output values. In other words, M is the domain speci�ed by somedecision task.We suppose that M�;0 is the �rst non-null line in M and that Mk;� is the�rst non-null column of M . The input complex I of M is then the simplicialcomplex (M�;0; d0; s0) and the output complex O ofM is the simplicial complex



10.5. CONSTRUCTION OF WAIT-FREE PROTOCOLS 295Figure 10.4: A decision map read from a combinatorial HDA
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I O(Mk;�; d1; s1). Notice that points in these complexes correspond to 1-transitionsin M .We de�ne now what is to be the decision map f from I to subcomplexes of O.Let x 2 I0 be a 1-transition. We set,f(x) = fy 2 O0=(p1 = x; p2; : : : ; pk�1; pk = y) 1-path in M gThis means that f sends all 1-transitions of I onto the set of 1-transitions of Owhich belong to the same 1-path of M .Similarly, we de�ne for higher-dimensional transitions (x 2 In, n � 1),f(x) = 8<:y 2 On=8<: 9p; q n-paths of M s.t.(u1 = x; u2; : : : ; uk�n = y) (n+ 1)-path between p and q 9=;We have pictured an example in Figure 10.4 (we have not pictured the de-generate transitions). The decision task is clearly wait-free since the HDA is2-connected. A protocol for solving this decision task should solve the indeter-minacy in the value of f(a). The only way a protocol can do that is by having ahidden variable which will make the choice of taking a to b00 or a to c0 from thevery beginning of the execution. This means that the protocol is a map (whichwill actually be simplicial) from a subdivision �(I) to O. The new points in�(I) are executions of transitions of M where the value of the hidden variabledi�ers from one point to the other. Two protocols and their correspondingmaps are shown in Figure 10.5 together with the subdivided execution domainfrom which they can be extracted as decision maps from its input to its outputcomplex.Now we prove that what is exempli�ed in Figure 10.4 and Figure 10.5 is ageneral phenomenon.



296 CHAPTER 10. COMBINATORIAL HDAFigure 10.5: Wait-free protocols corresponding to a subdivision of a combina-torial HDA
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First of all, we have to de�ne formally what subdivisions are.(*) De�nition 7 [Spa66] A subdivision of a complex A is a complex B suchthat,(1) the vertices of B are points of j A j (where j : j is the geometric realizationfunctor),(2) if S is a simplex of B, there is a simplex T 2 A such that S �j T j,(3) the piecewise linear map j B j!j A j mapping each vertex of B to thecorresponding point of j A j is a homeomorphism.Theorem 5 Let M be a 1-connected combinatorial HDA, I, O and f , itsinput complex, its output complex and its decision map respectively. Then thereexists a subdivision �(I) of I and a simplicial map g : �(I)! O such that forall x 2 I, g(x) � f(x).Sketch of proof. Let x and y be elements of Ik such that d0i (x) = d0i (y) = p0for 0 � i � k � 2. M is 1-connected implies that x �0 y. Similarly, if x and yare elements of Ok such that d1i (x) = d1i (y) = p0 for 0 � i � k � 2, x �1 y asM is 1-connected.O is therefore 1-connected. A classical result [Mun84] asserts that for anysubdivision � if there is a simplicial map � : �( _�[j]) ! O (where �[j] isthe standard simplex of dimension j) then there exists a subdivision � and asimplicial map 	 : �(�[j])! O such that,



10.5. CONSTRUCTION OF WAIT-FREE PROTOCOLS 297� �( _�[j]) = �( _�[j]),� �j�( _�[j]) = 	j�( _�[j]).Therefore we can subdivide I by induction on the dimension. The importantcase is then the base case where we add more points to I .Let x 2 I0. We know that f(x) = fy1; : : : ; ykxg. We add new points to I ,z2; : : : ; zkx , de�ning a subdivision � of I0. We choose to de�ne g by settingg(x) = y1. This is done for all x 2 I0. g is de�ned on vertices so g is a simpli-cial map. The remark above gives us the rest of the subdivision. 2This result enables us to construct a protocol for solving our decision task sinceit is shown in [HS94] that there is an algorithm, the participating set algorithm,that solves the simplex agreement task, whose decision map is precisely the mapg de�ned above. This corresponds to the generalization of the main result of[HS94] to a distributed machine with forking abilities for instance (since we arenot compelled to have a constant dimension in all time slices of the HDA M)and re�nes the result of Section 8.2.3.Summary We re�ned the semi-regular and regular HDA models by addingsome degeneracy operators to the boundary operators describing the way n-transitions are part of (n + 1)-transitions. The degenerate transitions can beseen as the higher-dimensional analogues to the idle transitions of ordinary tran-sition systems (see Chapter 1). They can also be seen as the only constructionthat enables us to have a simplicial complex corresponding to each boundaryoperator. Then a homotopy theory of oriented paths has been constructed us-ing the homotopy theory of each of the simplicial complexes. It was then shownthat this allows us to have a homotopy theory for all general HDA, compatiblewith the one we have just de�ned. It was shown to coincide with the homotopytheory (at least when it comes to the fundamental groups) of Chapter 7 whenrestricted to semi-regular HDA. Finally, we gave an application by recastingHerlihy's method for building wait-free protocols from their decision maps andinput and output complexes in an entirely semantic framework. This gives goodpromise for future generalizations of problems for complex distributed systemslike systems with changing topologies and varying number of processes.
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Chapter 11Timed Higher-DimensionalAutomata11.1 IntroductionIn this chapter, we are proposing an extension of HDA to deal with real-timesystems.Most existing models do not give a natural view on real-time systems (we referthe reader to Chapter 1 for a brief account of models of real-time systems).\Deadlock-freeness" is a property induced by the non-naturality of the base se-mantic model. Many technical details make the intuition about time disappear.One example is \time-determinism": all models should make the passage of timedeterministic. The main problem in process algebras is the choice operator, asreckoned in [HR91],\If two processes are just idling before the environment requestsone of them the choice between them will not be made by the passageof time alone. That is to say, + is not decided by the action �. Thisis necessary to ensure that the passage of time is deterministic."There is no problem as soon as time is measured on actions. Here we follow[Jos89] and use the ability of HDA to represent scheduling properties as abasis for a model of real-time systems where actions take time. A transitionshould really take time in the sense that it corresponds to an abstraction ofsome computation. As a matter of fact, we asked for re�nability so we cannotassume actions to be only \elementary" { almost instantaneous { ones.Unfortunately models for real-time concurrent systems having transitions bear-ing time changes can no longer be based on ordinary transition systems sinceinterleaving of two actions a, b will result in having an execution time equal tothe sum of the times a and b take. This obviously ruins all future reasoning andexplains why this natural idea has never been formalized up to now (except insome restricted way in [CZ91]). A solution is to follow a truly concurrentoperational approach. As more generally scheduling policies of processes onto299



300 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAprocessors have a direct impact on the measure of time1, it appears that weneed more than that.We need to be able to describe the level of parallelism, i.e. the number ofbusy processors at a given time. The main idea is to conceive executions asgeometric shapes. Ordinary transition systems can already be thought of asone-dimensional trajectories. Then the asynchronous execution of n actionsis a trajectory (or transition) of dimension n. We carry on by realizing theseshapes in some euclidean space IRn (Section 11.1.2) as a basic step towardshaving execution time of transitions measured by their length. This situationis abstracted in Section 11.2 where the length depends on a norm associated withevery transition. We construct a category of models (timed HDA) by de�ningmorphisms to be \simulations" (as in recent work in concurrency, [WN94]).A correctness criterion with respect to untimed semantics is obtained by forget-ting the geometry and the norms (Section 11.2.2). Fairness (Section 11.2.1) isalso discussed. In Section 11.2.3, Zeno behaviours are shown to be of a topologi-cal nature. Similarly to fairness properties, we propose to give a choice betweenallowing or not these behaviours.Finally in Section 11.3, the model is shown to be natural in the sense thatparallel composition, non-determistic choice, etc. with suitable timing laws arecategorical combinators in the category of timed HDA. Moreover the modelcovers di�erent paradigms since synchronized product and function spacesare again natural constructions. The category of timed HDA is actually a modelfor non-commutative intuitionistic linear logic. It has then enough categoricalproperties for being used for denotational (or categorical) semantics. ASOS-like metalanguage is de�ned for the operational semanticians and put towork on a toy language.11.1.1 From the untimed to the timed worldIn the formalization of semi-regular, regular and general HDA, we have forgot-ten the geometry. Let us have it back in the manner of the geometric realizationfunctor (Chapter 2).As a matter of fact, in order to introduce time in the model we already have,we are going to represent transitions as real continuous geometric objects. Con-tinuous geometry is good for measuring time: the principle here is to have timemeasured by the length of transitions (or paths). Traces are then real trajec-tories as in mechanics. This is close to intuition, contrarily to most approachestransitions take time. Being interested in program analysis, where transi-tions are in fact abstractions of some complex process, this approach is verynatural. In particular re�nement comes then for free (see Figure 11.4 for aneasy example).We recapitulate the construction of the geometric realization functor.1In most work on analysis of real-time languages, a \maximal parallelism" assumption isassumed. This clearly is too rigid when it comes to real machines, and leads to complicateddiscussions when one wants to change the scheduling policy in a semantics.



11.1. INTRODUCTION 301We associate with every n-transition x a unit cube of dimension n in IRn,2n = f(t0; : : : ; tn)=8i; 0 � ti � 1gThen, similarly to the glueing process for semi-regular HDA (Chapter 2), weglue these cubes together according to the values of the boundary functions. Inorder to do this, we need to de�ne functions characterizing the boundaries ofthese unit cubes in IRn. Let �ki , 0 � i � n, be the continuous functions (n > 0)from 2n�1 to 2n with�ki (t0; : : : ; tn�1) = (t0; : : : ; ti�1; k; ti; : : : ; tn�1)They describe how the boundaries of a cube can be included into it. Then(i � j), �ki � �lj = �lj+1 � �kiConsider now, for a semi-regular HDA M , the setR(M) = [n;x2Mn (x;2n)Each (x;2n) inherits a topology given by the standard one onRn+1, thusR(M)is a topological space with the disjoint sum topology. Let � be the equivalencerelation (the \glueing" relation) induced by the identities: 8k; i, x 2 Mn+1,t 2 2n, n � 0, (dki (x); t) � (x; �ki (t)). LetjM j= R(M)= �It has a structure of topological space induced by R(M). j M j is called thegeometric realization of M . It is easy to make this construction into afunctor from �sr to Top, the category of topological spaces with continuousmaps. As observed in [GZ67], we can actually work in Ke the full subcategoryof Kelley spaces (i.e. compactly generated topological spaces, [AM93]) insteadof the entire category Top. The geometric realization functor has then fairlynice properties. When ranging over Ke it commutes (similarly to [GZ67]) with�nite inverse limits and all colimits. All this gives us a hint about how to de�netimed higher-dimensional automata. A �rst step towards a general de�nition isgiven in next section.11.1.2 Timing a semi-regular HDALet M be a semi-regular HDA. The standard way in mathematics to measurethe length (time) of transitions in jM j is to have a norm k � kx on the tangentspace at every x 2M of the shapes we have.Then the length of a transition a is the integral of the speed kd
(t)dt k
(t) for aparametrization 
 of a (it does not depend on the parametrization chosen).jM j has a well known di�erential structure. On every transition of dimensionn, we put the norm ku1; : : : ; unkx1 ;:::;xn = maxfj u1 j; : : : ; j un jg. The normchosen corresponds to giving all 1-transitions the unit duration and to have



302 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAFigure 11.1: Some paths in a Timed HDAthat when n processes run asynchronously, the time to complete them is themaximum of the times necessary to complete each of them. This correspondsto our view of independent processes running asynchronously.For instance, in Figure 11.1, the geometric realization of the path is of length 2.The fully synchronous execution in the automaton at the right-hand side (thediagonal of the square from the starting point to the end) is of length 1.This view to timed HDA, if encouraging, is not yet satisfactory. We have a veryrigid notion of time in the sense that the norm has to be chosen uniformly forall transitions. We only have to abstract away from a so concrete representationin order to get what we need.Look for instance at the classical billiard example (Figure 11.4): the represen-tation of transitions has been chosen in order to �t to the trajectory of the ball;states are then the coordinates of the point representing them. The picture willbecome more general in next section.11.2 Basic de�nitionsFirst of all, we need a geometric shape X to de�ne a timed HDA, i.e. weneed a topological space. There are many kinds of topological spaces. We haveseen that timing semi-regular HDA only requires Kelley spaces. Actually, Kelleyspaces seem to be a good choice. They have very good algebraic properties: theyform a complete and cocomplete cartesian closed subcategory of Top [AM93].Then we have to give a di�erential structure on X to be able to measure time.It is di�cult to do so in full generality. In particular, when it comes to algebraicproperties, di�erential manifolds are di�cult to handle2. We therefore chooseto present here a very particular mathematical object, in which the di�erentialstructure is given by the transitions.Thus we have to look at transitions now. Intuitively they should be sort ofdeformed cubes (see Figure 11.2). This leads us to de�ne them as almostinclusion functions, i.e. as continuous functions x : 2n ! X (called singularcubes3). They are required to be continuously deformed cubes only in theirinterior since we may want to identify some of their boundaries to get cyclic2Quotients, function spaces are hard work (they need submersion theorems and in�nitedimensional di�erential geometry respectively).3By analogy with singular simplices, [May67].



11.2. BASIC DEFINITIONS 303Figure 11.2: Deformed cubes
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0shapes. This is formalized by saying that all singular cubes x : 2n ! X inducehomeomorphisms from4 �2n to their images5.Moreover, we want X to be covered by all its transitions, i.e. we imposefx( �2n)=n 2 IN; x 2 Xng to partition X , i.e. X is the disjoint union Sn2IN;x2Xnx( �2n). We should be able to take boundaries, i.e. the collection of singularcubes should be stable by composition with ��j (by Section 11.1.1).Finally, on every tangent space TxX =def Txu( �2n) (where x 2 u( �2n), u 2 Xn)of X at x 2 X we have a norm k � kx such that F (x; _x) = k _xkx is a continuousfunction6. The norm can be seen as an in�nitesimal cost for the computationat some point. To sum up things,De�nition and lemma 10 A (unlabeled) timed HDA is a compactly gener-ated Hausdor� topological space X together with a presentation of X by singularcubes, i.e. a sub-HDA of S(X) (a combinatorial cell complex in the terminol-ogy of [LW69]). This means that we have sets Xn containing singular cubesx : 2n ! X stable by composition with ��j. Moreover we impose the followingconditions on X,� fx( �2n)=n 2 IN; x 2 Xng partition X, i.e. X is the disjoint union [n2IN;x2Xnx( �2n),� all singular cubes x : 2n ! X induce homeomorphisms from �2n to its4 �2n denotes the topological interior of 2n i.e. �2n = f0 < ti < 1g, n � 1 and �20 = f0g.5Therefore the singular cubes give a (trivial!) structure of manifold to all the x( �2n).6If F is at least C3 then this de�nes a Finsler space [Run59].Recall that a norm F veri�es the properties, 8k 2 IR, F (x;k _x) =j k j F (x; _x), F (x; _x) � 0and F (x; _x) = 0 if and only if _x = 0, and 8x, _x and _x0, F (x; _x+ _x0) � F (x; _x) + F (x; _x0).



304 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAFigure 11.3: Delay transitions (left) and timeout HDA (right).
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O t ximage. Therefore the singular cubes give a structure of manifold to all thex( �2n).� X is given a family of norms k:kx on every tangent space TxX =defTxu( �2n) (where x 2 u( �2n) ) of X at x 2 X such that,{ F (x; _x) = k _xkx is a continuous function,{ for all k 2 IR, F (x; k _x) =j k j F (x; _x),{ F (x; _x) � 0 and F (x; _x) = 0 if and only if _x = 0,{ for all x, _x and _x0, F (x; _x+ _x0) � F (x; _x) + F (x; _x0).Proof. Things are particularly easy in our case. De�ne the atlas (see AppendixC) Ax of x( �2n) to be composed of the unique chart ( �2n; x�1). It gives x( �2n)the structure of a di�erentiable manifold since �2n is an open subset of IRn andx�1 is an homeomorphism.The local coordinates in the atlas Ax are denoted (x1; : : : ; xn). 2Example 51 (see Figure 11.3)� Let Xt (t 2 IR) be the timed HDA generated by the unique 1-transition�x:tx : 21 ! t21 = f0 � x1 � tg. t21 is equipped with the normk _xkx =j _x j. We will see that it is a delay transition of duration t (similarto the �t operator of timed CCS).� De�ne Tt to be the upper half circle of diameter t centered at coordinates( t2 ; 0) in the plane IR2 (with its standard basis). It is given the structureof a timed HDA with the norm induced by the euclidean one in IR2, andwith the covering of 1-transitions (for � 2 [0; �=2]) x� : 21 ! Tt, x�(u) =(tucos2(�); tusin(�)cos(�)). We will see that it allows us to represent atimeout operator (t is the maximum waiting time).When X is a timed HDA, it is easy to see that the collection of sets Xn de�nesa semi-regular HDA. We de�ne in a similar manner morphisms of timed HDA,



11.2. BASIC DEFINITIONS 305Figure 11.4: A timed HDA representing a billiard ball trajectory (i), and are�ned version (ii).
(i) (ii)De�nition 52 Let X and Y be timed HDA. A continuous function f : X ! Yis a morphism of timed HDA if and only if,(i) for all n-transition x 2 Xn, there exists a n-transition y 2 Yn such that2n x- X@@yR Y?fcommutes (which reads y = f(x)).(ii) f de�nes a di�erentiable function from all the x( �2n) to y( �2n), where x isa n-transition of X and y is its image by f (an n-transition of Y ),(iii) f commutes with all the boundary operators.Actually, since we are in a very special case, (i) implies (ii) since f is then theidentity function in the local coordinates, thus a C1 di�eomorphism.We write T� for the category of timed HDA.Notice that no requirement has been made on the way morphims behave withrespect to time. Choices are not so easy for \computer-scienti�c" reasons as wellas for \technical reasons"7. Nevertheless, we will consider two subcategories ofT�, T�= whose objects are timed HDA and whose morphisms f : X ! Ypreserve time (are isometries), i.e.kdf(u): _ukYf(u) = k _ukXu(where df is the di�erential of f), and T�� whose objects are timed HDA andwhose morphisms f contract time8, i.e.kdf(u): _ukYf(u) � k _ukXu7Categories of metric spaces do not have very good algebraic properties in general. Onemust be careful when de�ning morphisms!8Called conservative functions or non-expansive maps in categories of generalized metricspaces.



306 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATARemark as well that v being a n-transition of X is equivalent to v being amorphism from 2n (whose structure as a semi-regular HDA is generated by theonly n-transition Id) to X .Timed HDA are in particular semi-regular HDA. As such we know what is apath in it (we may add in particular initial and �nal states to timed HDA).But it is not clear however how to decide how much time a transition may take.To answer this question we de�ne \virtual paths" in a timed HDA X as beingparticular curves on X of which paths are abstractions of, in some way.De�nition 53 A virtual path 
 in a timed HDA X is a continuous function
 : [0;1[! X such that,(i) there exist open intervals Ik =]�k ; �k+1[, 1-transitions xk, k = 0; : : : ; m� 1such that �0 = 0, �m =1 and 
jIk : Ik ! xk( �21) (then 
 is of length k),(ii) 
jIk is a di�erentiable function (Ik has the standard di�erentiable structureof IR),(iii) xki � 
jIk are increasing maps.The set of virtual paths from a point u to a point v is denoted by Vi(u; v).To determine the time that a path takes from its initial to its �nal point we usethe metric generated by the norm on X9.De�nition 54 (see [Run59]) The distance inf between two points u and v inX is de�ned to be (with value in IR [1)10,dXi (u; v) = inf
2Vi(u;v) Z 10 kd
dt (t)k
(t)dtWe have also the distance sup between two points (with value in IR [1),dXs (u; v) = sup
2Vi(u;v) Z 10 kd
dt (t)k
(t)dtdXi de�nes a distance function thus a metric on X (generalized in the sense thatit may take in�nite values).In T�=, automata are simulated exactly in the same time (i.e. all virtual pathsand their images have the same length).In T��, we allow to simulate by faster automata. This is a sensible notion ofsimulation since programs can only be safely implemented on faster machinesthan needed11.9This is very close to the intuition behind the metric spaces models for real-time of [RR87].10Where the integral is in fact the sum of the integrals on the open intervals Ik.11There exist important properties that are not preserved when going on a faster machine(see [CZ91]), but this goes beyond the scope of this thesis.



11.2. BASIC DEFINITIONS 307Figure 11.5: A weakly fair path whose untimed version (right) is not fair
p

p

asymptotic behaviour of pExample 52 A simple computation shows now that Xt (Example 51) has lengtht, i.e. has execution time t.For Tt, the 1-transitions x� have execution time from 0 to t. The transition x0leads to the escape sequence, all the other ones lead to the normal ending of theprogram.Finally, a hypercube of dimension n timed as in Section 11.1.2 has maximal ex-ecution time n (all interleavings) and minimal execution time 1 (synchronousexecution of the n 1-transitions, i.e. the diagonal of the hypercube). We post-pone the proof to Section 11.4.1.Similarly to the untimed case, we can de�ne labeled timed HDA to be unla-beled timed HDA plus a labelling morphism in T�. Timed higher-dimensio{nal transition systems are labeled timed HDA together with an initial state.11.2.1 FairnessNotice that we can easily de�ne a time local to a processor. We can takefor granted that in j M j the length of the projection of a path 
 on the ithcoordinate is the cpu time of the ith processor on 
. More generally, we supposethat _xi(d
dt )12 is the in�nitesimal cost of computation on processor i.We propose two notions of fairness.Quantitative weak fairness is expressed as a property of the norm: all pro-cessors must be used for some time on every (fair) paths, i.e.k(0; : : : ; _xi(d
dt ); 0; : : : ; 0)kshould be a strictly positive function of time. This does not say anything aboutcompleting actions on some processor. This only enforces that all processors areused. This does not correspond to any good fairness property in the untimedcase (see Figure 11.5).12Where _xi denotes the ith coordinate in the tangent space.



308 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAFigure 11.6: A strongly fair path and its untimed fair version (right)
p

p

Quantitative strong fairness is a stronger property on the norm: wheneverthe global time diverges, the local times of every processor must diverge as well.One can show (see Figure 11.6) that this corresponds to strong fairness in theuntimed case (when concurrency is modeled by interleaving of actions).11.2.2 Correctness Timed/UntimedSimilarly to the work done in program analysis, we can de�ne a way to go fromthe timed to the untimed world and then back to the timed one which hasspecial properties. It is done in general [CC77] by means of Galois connectionswhich ensure that an analysis (or a non-standard semantics) is correct withrespect to a semantics.Being in a completely categorical framework, the right mathematical tool isthen pairs of adjoint functors. We actually have here a right-adjoint to thefunctor j � j, F t : T�! �sr de�ned by F t(X) = (Xn)n (F t forgets time).Obviously, for all M 2 �sr, F t(jM jt) �=M . Let �X = Id : X ! F t(j X jt).Now, j F t(X) jtn = f(x;2n)�=x 2 Xng where � is the equivalence relationgenerated by, 8t 2 2n�1, (dki (x); t) � (x; �ki (t)). For (x;2n) 2 j F t(X) jtn wehave a morphism x � pr2 : (x;2n)! X . To have them extended to a morphismj F t(X) jt ! X we have to verify that they are well-behaved with respect to �.Let t 2 2n�1 and x 2 Xn. Then (dki (x); t) � (x; �ki (t)). The morphismconstructed from the right side is x � �ki � pr2 = dki (x) � pr2 which is themorphism constructed from the left side. This concludes the construction of�X :j F t(X) jt! X .�X de�nes a natural transformation since �X is natural in X . As a matter offact, let f : X ! Y be a morphism in T� and (x : 2n ! X; t 2 2n) 2j F t(X) jt.j F t(f) jt (x; t) = (f(x); t) and �Y (f(x); t) = f(x)(t) = f(x(t)) = f(�X(x; t)),hence the naturality in X .We prove now that,(1) :F t(X) �Ft(X)- F (j F t(X) jt) F t(�X)- F t(X)= Id(2) : jM jt j �M jt- j F t(jM jt) j �jM jt- jM jt= Id



11.2. BASIC DEFINITIONS 309Figure 11.7: Typical Zeno behaviour and a hybrid system implementing it.
limit point

t

S

S beepsA timed HDA that could represent this behaviour is X with,� X = [0; 1],� X0 = fxi=i 2 IN; xi = 1� 12i g,� X1 = f[xi; xi+1]=i 2 INg and the obvious boundary operators,� the norm is induced by the euclidean norm on [0; 1].We only look at (1) since (2) is similar. For x 2 F t(X) (i.e. x is in some Xn),F t(�X) � �Ft(X)(x) = F t(�X)(x;2n) = x. Therefore F t(�X) � �Ft(X) = Id. Thiscompletes the proof that F t is right adjoint to j � jt.Notice that �X and F t(f) (where f is a morphism of semi-regular HDA) areisometries. This entails that this adjunction restricts to adjunctions betweenT�= and �sr , and T�� and �sr respectively. Having simulations as morphismsin these categories, this shows that simulation properties (and bisimulationones in particular) in the timed world are correct with respect to the corre-sponding ones in the untimed world.11.2.3 Zeno behavioursLet 
 be an in�nite virtual path. If 
([0;1[) is compact, then there is a limitpoint a in the sequence (
(�k))k. Therefore, even if time always increases bystrictly positive steps, there may be a (sub)path in which time \slows down"up to some point.This is exempli�ed by a Zeno kind of paradox (which can be explicitly givena timed HDA representation, Figure 11.7) in which a door is seen to be closedthrough observations of the type \it is closed half way from the end". The timeit needs to be closed is �nite, the number of allowed obervations (transitions)is in�nite. No lower bound whatsoever is imposed on the time of transitions.This precisely creates the paradox.There are easy ways to prevent Zeno paradoxes to occur in a timed HDA X .As they happen when there exist some limit points, it su�ces to prevent themto crop up.A su�cient condition is to have a lower bound on the time transitions take.A better condition is the \�nite variability" property: there should only be a�nite number of actions that can be �red in a �nite time interval.



310 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAWhy not put this condition in the model from the very beginning ?We argue that for hybrid systems (or even just ordinary real-time systems likein [MT90]), it may be interesting to consider Zeno paradoxes as well.Suppose we have a system S in which the temperature t diverges in �nite time(grows at an exponential rate in practise). Suppose also that S is equippedwith a measuring apparatus which beeps every time the temperature grows byone degree Celsius. We model S by a timed HDA in which the states representthe number of times S has beeped (i.e. the temperature of S minus its initialvalue) and the 1-transitions are the delay transitions from one state to the next.Then it implements a Zeno behaviour: no strictly positive lower bound canbe given to the time of execution of any transition. As we do not know theprecision at which time can be measured, we cannot eliminate this Zeno be-haviour when studying the system S. Notice that Timed Transition Systems(Chapter 1) verify the �nite variability condition and thus cannot express Zenobehaviours.11.2.4 Complexity for constrained parallel machinesAn easy computation shows that in the geometric realization of a semi-regularHDA D[n] generated by one n-transition there are minimal and maximal lengthvirtual paths from (0; 0; : : : ; 0) to (1; 1; : : : ; 1) (see Section 11.4.1 for details).There is one minimal length path 
0 (the synchronous execution of n actions) upto parametrization given by (for all t), x1(
0(t)) = x2(
0(t)) = : : : = xn(
0(t)).There are in�nitely many maximal length paths 
1 (the interleavings of partsof n actions) given by, 8t; 9i; 8j 6= i; _xj(
 0(t)) = 0. This entails that in j Dn j,there are n! maximal paths, all of dimension one e.g. the interleavings of nactions, there is one minimal path, the path of maximal dimension.If we measure worst case complexity by the maximum execution time, we seethat truncating the behaviour of a program by Tn, i.e. executing the programon a machine with at most n processors, this worst case complexity gets bigger.This seems to provide a useful framework in which we can assess the complexityof algorithms on constrained parallel machines.11.3 THDA as denotational and operational mod-elsIn this section, we show that T� is a complete and co-complete cartesian closed,monoidal closed category similarly to �sr. Some constructions will be exem-pli�ed in both categories. T�� is shown to be a complete and co-completemonoidal category. T�= has only �ltered limits and colimits and a tensor prod-uct. As customary since [WN94], categorical combinators will be recognized tobe timed-process-algebra sort of combinators (as those of [MT90]).In order to see this, we introduce a SOS-like metalanguage generalizing theone used for semi-regular HDA in Chapter 2 which gives an operational view of



11.3. THDA AS DENOTATIONAL AND OPERATIONAL MODELS 311the constructions. It is actually very close to the Timed Transition Diagramsformalism [HMP93] used to represent Timed Transition Systems in that it addsto ordinary transition systems upper and lower bounds within which actionsare executed.The idea is to write n-transitions a of some timed HDA X as arrows s a�![t1t2] s0where s and s0 are the beginning state (i.e. the beginning state of a beginning1-transition of etc. a beginning (n � 1)-transition of a) and end state of arespectively. t1 is the minimal execution time, t2 the maximum execution timeof a (t2 may be 1 as we are working in IR [ f1g. More formally, we de�ne anentailment relation j= to relate X to its transitions, and we write,X j= s a�![t1;t2] s0 , 8>>>>>><>>>>>>: d00d01 : : : d0n�1x = s;d10d11 : : : d1n�1x = s0;Tx(2n)i (s; s0) = t1;Tx(2n)s (s; s0) = t2Sometimes we specify the dimension n of the n-transition a by writing dim a =n.11.3.1 LimitsDe�nition and lemma 11 Let X and Y be two timed HDA. Then their carte-sian product is the timed HDA Z given by,� Zn = fz : 2n �! 2n � 2n x�y�! X � Y=x 2 Xn; y 2 Yng where � is thediagonal �(x) = (x; x),� Z = [n2IN;z2Zn z(2n) � X � Y ,� k _x; _yk(x;y) = max(k _xkx; k _yky).Proof. X � Y is a topological space with the product topology. We actuallyendow X � Y with the �ner topology de�ned by,\F is closed in X�Y (de�ning the new topology) if and only if for all compactsubsets C of X � Y (under the old product topology) C \ F is closed (againunder the old product topology)".We write K(X � Y ) for the topological space which has the same points asX � Y and whose topology is de�ned by the process above. K(X � Y ) is aKelley space and it is called the \Kelley�cation" of X � Y [ML71].Now, 2n is compact. Thus x(2n), y(2n) are compact topological spaces sincex and y are continuous. This entails that z(2n) = (x� y) ��(2n) is compact.Therefore z(2n) is Kelley as a closed set of the Kelley space X�Y . The colimitZ = [n;z2Zn z(2n) of Kelley spaces is Kelley.



312 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA� : �2n ! �( �2n) and x� y : �2n � �2n ! x( �2n)� y( �2n) are homeomorphismstherefore their composition is a homeomorphism as well. They partition Z.The family of norms is well de�ned and is continuous on Z.Let U be a timed HDA and f , g be two morphisms of timed HDA such that wehave the following diagram, Z	��p1 @@p2RX YI@@f ��g�Uwhere p1 and p2 are the �rst and second projections respectively. p1 and p2 arecontinuous and preserve the n-transitions. They induce the identity functionon the local coordinates. Therefore they are morphisms of timed HDA.De�ne then h : U ! X�Y by h(u) = (f(u); g(u)) for all u in U . We show thath(U) � Z. For all u in U , there exists n and � : 2n ! U such that u 2 �(2n).Then f(�) and g(�) are n-transitions of X and Y respectively. Therefore,z : 2n �! 2n �2n f(�)�g(�)�! X � Yis a n-transition of Z. Finally h(u) 2 z(2n) � Z.This entails that h factorises f and g through p1 and p2 respectively. The factit is the unique such map is obvious. 2It is described operationally by the rule,X j=u t[�1; �2]- v X 0 j=u0 t0[�01; �02]- v0X �X 0 j=(u; u0) (t; t0)[max(�1; �01); max(�2; �02)]- (v; v0)and dim t = dim t0 = dim (t; t0)This shows that this is really a synchronized product (see Figure 11.8) ofthe two automata X and Y .The projections here are not isometries in general, but they are contractingmaps, i.e. dXi (p1(u); p1(v)) � dZi (u; v).Lemma 35 Let X and Y be two timed HDA and f; g : X ! Y be morphismsof timed HDA. Then the timed HDA Z,� Z = fx 2 X=f(x) = g(x)g,� Zn = fx 2 Xn=f(x) = g(x)g,� the family of norms on TZ is induced by the family of norms in TX.



11.3. THDA AS DENOTATIONAL AND OPERATIONAL MODELS 313Figure 11.8: Synchronized product (middle) and coproduct (right) of two tran-sitions (left)
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together with the inclusion map Z � X is the equalizer of f and g.Proof. z(2n) is a sub-Kelley space of X , therefore Z is a sub-Kelley space ofX .Let y 2 X such that f(y) = g(y). There exists x, a n-transition of X , suchthat y 2 x( �2n): y = x(t) with t 2 �2n. u = f(x) and v = g(x) are n transitionsof Y , but u(t) = f(y) = g(y) = v(t). Therefore u( �2n) \ v( �2n) 6= ; and thenu = v. This shows that z( �2n), z 2 Zn partition Z.Finally, let U be a timed automaton and h : U ! X a morphism such thatf �h = g �h. Then for all x, f(h(x)) = g(h(x)) and then h(x) 2 Z. This showsthat (Z;�) is the equalizer equ(f; g). 2Note that the inclusion function is an isometry.Therefore T� is �nitely complete. The following lemma implies it is actually(small) complete.Lemma 36 In�nite products exist in T�.Proof. Let X i be objects of T�. We de�ne X1 to be the timed automatondetermined by the following data,� as a topological space it is K(�i X i),� as a semi-regular automaton it is the product of all the X i,� the norm is de�ned to be the supremum of all norms on all components(which may be in�nite).2Again, the canonical projections are contracting maps.



314 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA11.3.2 ColimitsDe�nition and lemma 12 We de�ne the union of two timed HDA X and Yto be the timed HDA Z with,� Z = X [ Y ,� Zn = Xn [ Yn,� for all u 2 Z, u 2 X and then k _uku is the corresponding norm in X oru 2 Y and then k _uku is the corresponding norm in Y .Z is then the coproduct of X and Y in T�.Proof. Z is a topological space with the disjoint sum topology. With thistopology, it is a Kelley space. Then[n;z2Zn z( �2n) = [n;x2Xn x( �2n)[ [n;y2Yn y( �2n) = X [ Yall of these being disjoint. Moreover, all singular cubes of Z induce homeo-morphisms from �2n to its image and the family of norms is well de�ned andcontinuous.De�ne inl : X ! Z and inr : Y ! Z to be the inclusion functions. They arecontinuous functions preserving the n-transitions and the boundary operators.The local charts on Z are the union of the local charts of X and Y . Thereforeinl and inr induce the identity function on the local coordinates. Hence theyare C1 and are morphisms of T�.Now, if we have T a timed HDA and f : X ! T and g : Y ! T two morphismsof timed HDA then h : Z ! T de�ned by h(inl(x)) = f(x), h(inr(x)) = g(x)is a morphism of timed HDA and is the unique morphism factorizing f and gthrough inl and inr respectively. The union de�nes the coproduct in T�1 aswell. 2Notice that kdinl(u): _ukZinl(u) = k _ukXukdinr(u): _ukZinr(u) = k _ukXuwhich is actually equivalent to,dZi (inl(u); inl(v)) = dXi (u; v)dZi (inr(u); inr(v)) = dYi (u; v)i.e. inl and inr are isometries for the metric di.The union (or coproduct) of two timed HDAX and Y is described operationallyby the two rules,



11.3. THDA AS DENOTATIONAL AND OPERATIONAL MODELS 315X j= u t[�1; �2]- vX [X 0 j= u t[�1; �2]- v X 0 j= u0 t0[�01; �02]- v0X [X 0 j= u0 t0[�01; �02]- v0We recognize a rule for non-deterministic choice (see Figure 11.8) morenatural than the operators + in most of the existing process algebras.Lemma 37 Let X, Y be timed HDA and f , g be morphisms of timed HDAfrom X to Y . Then the timed HDA Z de�ned by,� Z = Y=ff(x) = g(x)g,� Zn = Yn=ff(x) = g(x); x 2 Xng,� k � kZ = k � kY .together with the projection from Y to Z is the coequalizer of f and g.Proof. Z is Y=f(equ(f; g)). Z is given the Kelley Hausdor� quotient topologyand Zn is the quotient in �sr . The Zn partition X . 2Note that the projection is an isometry for di.Lemma 38 T� has in�nite coproducts.Proof. Let X i be objects in T�. De�ne X1 to be the topological colimit ofthe X i. It is a Kelley Hausdor� space. Let X1n be the colimit of the X in in�sr . The X1n partition X1. The norm is taken to be equal to all local normson the X i. 2Note that the canonical injections into this coproduct are isometries.Therefore, T� is a (small) co-complete category.11.3.3 Function spaceProposition 16 T� is a cartesian closed category.Proof. We de�ne, for X and Y two timed HDA, Z = X ) Y to be,� Zn = fz : 2n ! (X ! Y )=z0 : 2n�X ! Y; z0(u; x) = z(u)(x) morphismg,where 2n is considered as the timed HDA with the unique n-transitionId : 2n ! 2n,� Z = [n2IN;z2Zn z(2n) � (X ! Y ),



316 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA� for f 2 Z, k _fkf = supx2X;k _xkXx =1k _f(x) _xkYf(x).We give X ) Y � Hom(X; Y ) the topology induced by the topology ofHom(X; Y ).Let z0 : 2n �X ! Y be a morphism. Then z = curry(z0) : 2n ! (X ! Y ) iscontinuous. Therefore z(2n) is compact hence a Kelley subspace ofHom(X; Y ).Then Z is Kelley as a colimit of Kelley spaces.We prove that X ) Y is the exponent of Y by X in T�.Let f : U � X ! Y be a morphism in T�. We de�ne the function g : U !(X ! Y ) as g(u)(x) = f(u; x). We �rst prove that Im g � X ) Y .Let u 2 U , u 2 v(2n) for some n and some n-transition v : 2n ! U of U . Thenu = v(�) for some � 2 2n. Now, f � (v� Id) is a morphism as a composition ofmorphisms (v is a n-transition, thus a morphism). This means that the functionz : 2n ! (X ! Y ) with z(b)(x) = f � (v � Id)(b; x) is in (X ) Y )n. Noticethat z(�) = g(u). Therefore, g(u) 2 z(2n) � (X ) Y ).We then prove that g is a morphism of timed HDA. Let v be a n-transition of U ,i.e. v : 2n ! U . g � v : 2n ! (X ! Y ) de�nes g0 : 2n �X ! by curry�cation,g0(u; x) = g(v(u))(x) = f(v(u); x). This entails that g0 = f � (v � Id) whichis a morphism of T�. Therefore, g � v 2 (X ))n. g maps n-transitions onton-transitions. Now, g is continuous is a standard result of topology [AM93],since we have chosen the compact-open topology on X ) Y .We end up by proving that the evaluation function eval : X � (X ) Y ) ! Yde�ned by eval(x; f) = f(x) is a morphism of T�. Standard results of topologyshow that eval is continuous. We just have to prove now that eval maps n-transitions onto n-transitions.Let v be an n-transition of X � (X ) Y ). v is given by two n-transitions �of X and � of (X ) Y ), v : 2n �! 2n � 2n ���! X � (X ) Y ). We haveto prove that eval � v is a n-transition of Y . � is a n-transition of X ) Ytherefore, its uncurry�ed version �0 : 2n �X ! Y is a morphism. Notice thateval � v = �0 � (Id� �) and thus is a morphism. By the characteristic propertyof n-transitions this entails that eval � v is a n-transition. 2In T�� we have to restrict to HDA with \ultrametric" norms, i.e. such thatku+ vk � max(kuk; kvk)11.3.4 Tensor productDe�nition and lemma 13 The tensor product of two timed HDA X and Yis the timed HDA Z = X 
 Y de�ned by,� Z = X � Y ,� Zn = fz : 2n �= 2k �2n�k x�y�! Z=x 2 Xk; y 2 Yn�kg� k _x; _yk(x;y) = max(k _xkx; k _yky).



11.3. THDA AS DENOTATIONAL AND OPERATIONAL MODELS 317Figure 11.9: Parallel composition (middle) of two transitions (left) and linearfunction space (right).
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γ δProof. Z is a Kelley space with the Kelley�cation of the product topology.The homeomorphism 2n �= 2k � 2n�k induces a homeomorphism �2n �= �2k ��2n�k . Therefore, the singular cubes of Zn de�ne homeomorphisms from �2n totheir image.Finally, the family of norms is well de�ned and continuous. 2Notice that the semi-regular HDA given by the Zn is the tensor product of thesemi-regular HDA given by the Xn and Yn.The parallel composition with no interference can be de�ned opera-tionally by the rule (see Figure 11.9)X j=u t[�1; �2]- v X 0 j=u0 t0[�01; �02]- v0X 
X 0 j=u
 u0 t
 t0[max(�1; �01); �2 + �02]- v 
 v0and dim t 
 t0 = dim t + dim t0Proposition 17 T� is a monoidal closed category.Proof. There are obvious isomorphisms between (X
Y )
Z and X
(Y 
Z)and X 
20 and X . This shows that T� is monoidal.We now de�ne, for X and Y two timed HDA, Z = X |� Y to be,� Zn = fz : 2n ! (X ! Y )=z0 : 2n
X ! Y; z0(u; x) = z(u)(x) is a morphismg,where 2n is considered as the timed HDA with the unique n-transitionId : 2n ! 2n,� Z = [n2IN;z2Zn z(2n) � (X ! Y ) endowed with the compact-open topol-ogy,� for f 2 Z, k _fkf = supx2X;k _xkXx =1k _f(x) _xkYf(x).



318 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAWe prove that T�(X 
 Y; Z) �= T�(X; Y |� Z) in a similar manner as forX ) Y . 2We conjecture that operationally13,X j=u t[�1; �2]- v X |� X 0 j= u0 t0[�01; �02]- v0X 0 j=u0(u) t0(t)[max(�1; �01); �2 + �02]- v0(v)In X |� X 0 we have functions which fork new actions (dynamically) as �x:b
xin Figure 11.9. The argument of these functions may be computed in parallelwith the body of the function.11.3.5 Labeled timed HDA and THTSDe�nition 55 A labeled timed HDA is a pair (X,l : X ! L) of a timed HDAX and a morphism of timed HDA l. L is called the labelling automaton.Notice that all unlabeled timed HDA X can be considered as labeled timedHDA (X ,Id : X ! X).Example 53 In Figure 11.10 we have pictured the labeled timed HDA (X; l :X ! L) de�ned as follows,� X = f(x; 0)=0 � x � 1g [ f(0; y)=0 � y � 1g considered as a sub-topological space of IR2 with the ordinary topology,� the norms on TX are induced by the norm k(x; y; _x; _y)k = max(j _x j; j _y j)on T IR2 �= IR4,� X1 = fa1; a2g with a1; a2 : 21 ! X de�ned by,{ a1(x) = (x; 0),{ a2(y) = (0; y).� L = 21 equipped with the norm k(x; _x)k =j _x j,� L1 = fag with a : 21 ! L being the identity function,� l(0; y) = y and l(x; 0) = x for all 0 � x � 1 and 0 � y � 1.Notice that if we ask the morphism l to be an isometry (as in Example 53) thenthe labels of actions prescribe the exact time they should take in any context.If we ask the morphism l to be non-expansive then, we are only prescribing alower bound on the time actions with a given label may take.De�nition 56 A timed higher-dimensional transition system (THTS) is a pair((X,l : X ! L),s) where (X,l : X ! L) is a labeled timed HDA and s is a stateof X, called initial state of X. Morphisms of THTS are morphisms of labeledtimed HDA which preserve the initial state.13The untimed part is easy to verify though.



11.4. EXAMPLES 319Figure 11.10: A labeled timed HDA
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X L11.4 Examples11.4.1 Semi-regular HDA as THDAProposition 18 Let M be a semi-regular HDA. Then j M j is a timed HDAwith the family of norms ku1; : : : ; unkx1;:::;xn = maxfu1; : : : ; ung.Proof. Straightforward. 2The norm chosen corresponds to giving to all 1-transitions the unity durationand to give the rule that when n processes run asynchronously the time tocomplete them is the maximum of the times necessary to complete each of them.This corresponds to our view of independent processes running asynchronously.The study of geodesics in jM j reveals the following properties.Proposition 19 In j D[n] j (considered as a timed HDA) there are minimaland maximal length virtual paths from (0; 0; : : : ; 0) to (1; 1; : : : ; 1).� There is one minimal length path 
0 (the synchronous execution of n ac-tions) up to parametrization given by (for all t)x1(
0(t)) = x2(
0(t)) = : : := xn(
0(t))� There are in�nitely many maximal length paths 
1 (the interleavings ofparts of n actions) given by,8t; 9i; 8j 6= i; _xj(
 0(t)) = 0



320 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAProof. Let 
 be a virtual path from (0; 0; : : : ; 0) to (1; 1; : : : ; 1) in j D[n] j.Then, if Ii = ft 2 [0; 1]= _x1(
 0(t)) = 
 0i(t) � 
 0j(t)8j 6= ig,R 10 F (
 0(t))dt = Pi RIi 
 0i(t)dt= RI 
 0k(t)dt+ Pi 6=k RIi (
 0i(t)� 
 0k(t))� 1Moreover, a direct computation shows that the length of 
0 is equal to one.Finally, if there exists k, t 2 Ik and j such that greater than 1.Now, consider the case of maximal length virtual paths.RI F (
 0(t))dt = Pi RIi 
 0i(t)dt� Pi RI 
 0i(t)dt� nNotice that l(
1) =[i RI 
 0i(t)dt = n. 2This entails that in j Dn j,� there are n! maximal paths, all of dimension one e.g. the interleavings ofn actions,� there is one minimal path, the path of maximal dimension.11.4.2 Semantics of a toy languageWe consider the following language (a subset of RTCCS, [Kri91]),P ::= a;P j P j P j nilj P + P j PkP j (t)P j rec x:P [x]The atomic actions a are supposed to take unit time. (t)P can behave like Pafter time t.Semantic domainsAs in Chapter 5 we want to give to terms of the language denotations whichare higher-dimensional transition systems. To this end, we want to de�ne ahuge THDA D (called domain as in [Gou93]) which will contain all possibleoperational behaviours of terms of the language. Elements of the domain, andthus denotations, will be subTHTA of D (i.e. inclusion morphisms into D) asin the untimed case.All this is most conveniently done by recursive domain de�nitions (see [Plo84]).As a matter of fact, we generally want a domain to contain a few speci�ed



11.4. EXAMPLES 321actions and to be closed under such constructs as the parallel composition(the tensor product). ` (and then amalgamated sums { i.e. pushouts { +),� and 
 are covariant functors commuting with colimits, therefore standardresults [AL91b] guarantee the existence of solutions to recursive equations likeD �= U + D 
 D (U is a given THTA) which is precisely a THTA closedunder parallel composition. More complex constructions can be done (similarto the homotopical constructions of [Gou93]), for instance to give domains forimperative languages where states are mappings from variables to actual valuesbut we will not need them here. We will not consider here domains for somefunctional parallel languages (like CML [Rep92] which would involve equationslike D �= U +D 
D +D |� D).Denotational semanticsWe �rst construct the domain we need. Here we give a denotational semanticswhere denotations are operational behaviours14. We recall that for CCS we hadin Chapter 5 semi-regular HDA (aji ), (aji ), (�ki;j) (i; j 2 IN, k 2 K), (aj), (aj)and (�) be the following HDA (informally or geometrically),(aji ) : 1 aji - �i(aji ) : 1 aji - (�ji )(�ki;j) : 1 �ki;j- �ki 
 �kj (aj) : ?� �	1 aj(aj) : ?� �	1 aj(�) : ?� �	1 �Let P and K be the domains given by the recursive equations,P �= (j aji j)i;j + (j aji j)i;j + (j �ki;j j)i;j;k + P 
 PK �= (j aj j) + (j aj j) + (j � j) +K 
KThey are the timed versions of the domains we had for CCS,D �= (aji )i;j + (aji )i;j + (�ki;j)i;j;k +D 
DL �= (aj) + (aj) + (�) + L
 LWe had also l : D ! L the morphism of HDA de�ned by,� 8i 2 IN, l(aji) = aj� 8i 2 IN, l(aji ) = aj14We could have given one in a more classical form like input-ouput relations or history ofcommunications.



322 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA� 8i; j 2 IN, l(�ki;j) = �� 8x; y 2 P , l(x
 y) = l(x)
 l(y)It lifts easily to k =j l j: P ! KWe had introduced as well an operator 
c for dealing with synchronization. 
clifts to timed HDA.The domain of HDA in which we give the semantics of the language is k : P !K. We can actually give it in D = P , and recover the full de�nition by applyingthe labelling l. Then,� [[nil]] = (1)� [[aj ;P ]] = (j aji j)`��ji 
 [[P ]]� for some fresh i� [[aj ;P ]] = (j aji j)`��ji 
 [[P ]]� for some fresh i� [[p + q]] = [[p]]`[[q]] (` is the coproduct in T�=K, it corresponds to anamalgamated sum in T�)� [[pkq]] = [[p]]
 [[q]]� [[p j q]] = [[p]]
c [[q]]� [[(t):P ]] = Xt`(t
 [[P ]], where Xt is de�ned in Example 51� [[rec x:p[x]]] =lim! [[pi[nil]]] where the direct limit is taken on the fullsubcategory of T�=K whose objects are the [[pi[nil]]]Operational semanticsIts operational semantics is then (by results of Section 11.3),nil j= 1 1[0; 0]- 1aj ;P j= 1 aj[1; 1]- �ji aj ;P j= 1 aj[1; 1]- �jiP j= s u[�1; �2] - s0aj ;P j= �ji 
 s u[�1; �2]- �ji 
 s0P j= s u[�1; �2]- s0a;P j= �i 
 s u[�1; �2]- �i 
 s0



11.5. HOMOLOGY AND HOMOTOPY 323Q j= s a[�1; �2]- tQ+ Q0 j= s a[�1; �2]- tQ0 j= s0 a0[�01; �02]- t0Q+ Q0 j= s0 a0[�01; �02]- t0Q j= s a[�1; �2]- t Q0 j= s0 a0[�01; �02]- t0QkQ0 j= s
 s0 a
 a0[max(�1; �01); �2 + �02]- t
 t0Q j= s a[�1; �2]- t Q0 j= s0 a0[�01; �02]- t0a 6= a0Q j Q0 j= s
 s0 a
 a0[max(�1; �01); �2 + �02]- t
 t0Q j= s x
 a
 y[�1; �2]- t Q0 j= s0 z 
 a 
 t[�01; �02]- t0Q j Q0 j= s 
 s0 x
 z 
 � 
 y 
 t[?; ?] - t 
 t0Q[rec x:Q[x]] j= s u[�1; �2] - trec x:Q[x] j= s u[�1; �2]- tThe rule for synchronization has no timing laws since it has to be de�ned by
c. The last rule expresses that [[rec x:Q[x]]] forms a co-cone with the diagram([[Qi[nil]]])i.11.5 Homology and HomotopyWe end this presentation of timed HDA by the comparison between the \con-tinuous geometry" available in this model and the discrete one we have beenextensively studying on (discrete) HDA.



324 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA11.5.1 Cubical versus simplicial homologyWe recall the elements of comparison in Serre's thesis [Ser51] between the sin-gular cube homology theory and the classical singular one based on simplexes.Let Ln be the standard simplex of dimension n in IRn+1, seen here as the setof points (y0; : : : ; yn) with 0 � yi � 1 and Pi=0;:::;n yi = 1. De�ne an application�n : 2n ! Ln by �n(x1; : : : ; xn) = (y0; : : : ; yn) and8>>>>>>>>>><>>>>>>>>>>: y0 = 1� x1y1 = x1(1� x2): : :yn�1 = x1x2 : : : xn�1(1� xn)yn = x1x2 : : : xn�1xnNow we have the following lemma,Lemma 39 Let X be a topological space. The �n induce a morphism � from theR-module of singular chains (classical ones) C(X) to the R-module of singularcubic chains CC(X). � commutes with the total boundary operator.Proposition 20 �� : H�(X)! H 0�(Tot(X)) is an isomorphism.Therefore, cubical homology (for the total complex) and classical singular ho-mology are equivalent. In particular, the homology of the total complex derivedfrom the semi-regular HDA underlying the structure of a timed HDA is isomor-phic to the singular homology of the topological space underlying it.11.5.2 Homotopy of oriented pathsIn this section, we formalize the continuous counterpart of serializability. Werestrict our dicussion to the fundamental group.The fundamental group of oriented pathsLet X be a timed HDA and �, � be points in X . An oriented path from � to� is a continuous function f : I = [0; 1]! Xsuch that,(1) f(0) = �,(2) f(1) = �,(3) xi � f , where xi is the ith local coordinate in Y , are increasing functions.



11.5. HOMOLOGY AND HOMOTOPY 325Condition (3) means that a path should always execute more as time goes: thelocal coordinates measure the amount of time spent on each processor and thesemust increase as the global time goes.The set of paths from � to � is denoted by P�;�1 (X).We have a natural operation on paths, that is, the concatenation of paths.Let f 2 P�;�1 (X) and g 2 P�;
1 (X) then we de�ne f:g : I ! X byf � g(x) = 8<: f(2x) if 0 � x � 1=2g(2x� 1) if 1=2 � x � 1It is easy to see that f � g 2 P�;
1 (X). (f; g) ! f � g is not associative norcommutative. It has a neutral element, the constant path 1� 2 P�;�1 (X) de�nedby 1�(x) = � for all � 2 I .The homotopy relation will then be de�ned �rst for paths with end points �xedand extended in order to behave well with respect to concatenation.Let f; g 2 P�;�1 (X) be two oriented paths in X . A continous function h : I�I !X is a homotopy from f to g if and only if,� for all y 2 I , h(0; y) = f(y),� for all y 2 I , h(1; y) = g(y),� for all x 2 I , y ! h(x; y) is an oriented path from � to � in X .This de�nes an equivalence relation on P�;�1 (X). We write f ��;� g if f and gare two homotopic oriented paths in X from � to �.Proof. h(x; y) = f(y) de�nes a homotopy between f and f .If h is a homotopy from f to g, h0(x; y) = h(1� x; y) de�nes a homotopy fromg to f .Finally, if h1 is a homotopy from e to f and h2 is a homotopy from f to g then,h(x; y) = 8<: h1(2x; y) if 0 � x � 1=2h2(2x� 1; y) if 1=2 � 1de�nes a homotopy from e to g. 2Let ��;�1 (X) be the free R-module generated by the equivalence classes of ori-ented paths from � to �.The homotopy relation behaves well with respect to concatenation. In partic-ular, if f; f 0 2 P�;�1 (X), g; g0 2 P�;
1 (X) such that f ��;� f 0 and g ��;
 g0then f:g ��;
 f 0:g0. Therefore (f; g) ! f:g de�nes an operation, still written(f; g)! f:g on equivalence classes of oriented paths.Now : : P�;�1 (X)= ��;� �P�;
1 (X)= ��;
! P�;
1 (X)=��;
 is associative.



326 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATA(*) Proof. (see [Mas91]) Let f 2 P�;�1 (X), g 2 P�;
1 (X) and h 2 P
;�1 (X).Let F : I � I ! X de�ned by,F (s; t) = 8>>><>>>: f � 4t1+s� if 0 � t � s+14g(4t� 1� s) if s+14 � t � s+24h �1� 4(1�t)2�s � if s+24 � t � 1then F is continuous (because f , g and h are) and,� for each s, t! F (s; t) is an oriented path in X ,� for all t 2 I , F (0; t) = [(f:g):h](t),� for all t 2 I , F (1; t) = [f:(g:h)](t).thus F is a homotopy between (f:g):h and f:(g:h) and ([f ]:[g]):[h] = [f ]:([g]:[h]).2(f; g) ! f � g extends naturally to � : ��;�1 (X) � ��;
1 (X) ! ��;
1 (X) by thedistributive law, (�[x] + �[y]):[z] = �[x]:[z] + �[y]:[z]therefore (f; g)! f:g is bilinear.We are now ready de�ne the homotopy group �1(X), the group of orientedpaths (from anywhere to anywhere) modulo homotopy. The monoid operationon paths is only partially de�ned since two paths have to be composable inorder to have their concatenation de�ned. A way to extend this operation isto think as the concatenation of two non-composable paths ([p] 2 ��;�1 (X) and[p0] 2 ��0;�01 (X) with � 6= �0) as their union, i.e. their sum in the free modules��;�1 (X) � ��0;�01 (X). The addition of two composable paths should also beequated to their concatenation.This means that we want to make the identi�cation[x] + [y] �= [x] � [y]whenever x and y are composable.Therefore, we set, �1(X) =  ��;�2X ��;�1 (X)!= �=Relationship with the standard fundamental groupThe standard fundamental group is de�ned in a similar manner, but the groupstructure, induced by the concatenation of closed paths (or loops) is more nat-ural in some way. We recall the construction below.Let x 2 X . Then the closed paths (or loops) based at x are the continuousfunctions f : I ! X such that f(0) = f(1) = x. A homotopy between twoloops f and g is a continuous function H : I � I ! X such that,



11.5. HOMOLOGY AND HOMOTOPY 327� for all y 2 I , H(0; y) = f(y),� for all y 2 I , H(1; y) = g(y),� for all x 2 I , H(x; 0) = H(x; 1) = x.Two remarks here.First, the concatenation of paths is well de�ned for all loops based at x, whichis a simpler case than for non-closed paths which were not all composable.Therefore, modulo homotopy we have a natural monoid structure.Secondly, we impose no \orientation of time" on paths. Therefore the inverseof a path f , de�ned as f 0 : I ! X with for all x, f 0(x) = f(1 � x), is alsoa path. This implies that we have a natural group structure which we had toarti�cially construct in the oriented path case.The fundamental group �(X; x) is then de�ned to be the group of all loops mod-ulo homotopy, with concatenation as the group law. It can be shown [Spa66]that if x 2 X and y 2 X are in the same connected component, then �(X; x)and �(X; y) are isomorphic groups. In the following, we will suppose that Xis connected, therefore we can write �(X) for any of the �(X; x). We supposealso R = ZZ, then,Proposition 21 The map u : ��;�1 (X)� ��;�1 (X)! �(X) de�ned byu([x]; [y]) = [x� y]is a monomorphism of groups.Relationship with the untimed caseClaim 3 Let M be a timed HDA, �; � 2 X0. Then,��;�1 (M) �= ��;�1 (F t(M))Summary In this chapter we have used the natural geometric representationof semi-regular HDA as a basis for a truly-concurrent operational model forreal-time, where time is measured as the length of paths. Basically, a timedHDA was de�ned as a shape together with an observational structure given bya semi-regular HDA realized on this shape, and a family of norms de�ning thein�nitesimal cost of computation in all directions.We have shown that Zeno behaviours could be expressed without having anincoherent model, that we could express some fairness properties and relate(by abstract interpretation) the discrete observational structure (untimed) tothe timed HDA. This proved that timed HDA is an extension of our previousmodels indeed. Finally we proved that some categorical constructs correspondto process algebraic operators with nice timing laws. In particular, we hada tensor product describing the parallel composition with no interference forwhich the time taken by a system of two processes is the maximum of the timestaken by each of the processes.



328 CHAPTER 11. TIMED HIGHER-DIMENSIONAL AUTOMATAWe ended by giving a few hints about how to extend the homotopy theory wedeveloped in the untimed case. We do not know yet what the \continuous"homotopy theory for oriented paths looks like.



Future workWe have presented in this thesis a geometric theory of concurrent machines.It raises some mathematical problems: some algebraic problems about \weak"bicomplexes, a homotopy theory, etc. We have only presented a fomal basis forsolving these. Some work remains to be done. In particular:� Higher-order homotopy groups are not fully described yet. In the moregeneral context of combinatorial HDA we do not know yet how they relateto the ones de�ned for free general HDA generated by acyclic semi-regularHDA.� We do not yet have any good \continuous" counter-part to this discretehomotopy theory, which would be useful for scheduling problems of real-time systems. As a matter of fact, we would like to see a generalizationof timed HDA so that at least we could relax the condition on fx( �2n)gto partition a timed HDA X . The condition: \the set E = fx( �2n)gveri�es the property 8x; y 2 E, x\ y = ; or x � y or y � x" would allowde�nitions of tangent spaces, norms, etc. and would authorize betterde�nitions of the timeout operator (as all partial executions of a transitionof execution time t would be geometrically included in it).On the more computer-scienti�c side we could think of a number of problems,for instance:� We have not gone too deep into the study of in�nite paths. This couldbe tackled by using an extension of SOS similar to G1SOS.� We would like to carry on some work on verifying \real" protocols fordistributed systems. This might need a good implementation of a versionof the veri�cation algorithm we gave in Chapter 9. We have recentlybegun an implementation in C.We have already carried out some work on logics for HDA (from the categor-ical structure, Hoare-like ones, or even from an interaction categories point ofview) and on a probabilistic extension of HDA. There should be future work tocomplete them. 329



330 Future work



Appendix AMathematical background -Rings, modules andcomplexesLet R be a commutative ring (integral and unitary).We recall the following de�nitions, taken from [Lan93a].A left-module (or simply a module) M over R is an abelian group (writtenadditively) together with an operation of R on M (multiplication), such that,8a; b 2 R, 8x; y 2M , (a+ b)x = ax+ bx and a(x+ y) = ax+ ay.In many cases, when the context makes it clear, we will say module for moduleover R, or R-module.Module homomorphisms (or linear functions) are functions which preserve op-erations plus and multiplication by an element of R, and element 0 (neutral for+).Let M be a module over R, and S a subset of M . Then S is a basis of Mis S is not empty, if all elements of M are obtained as linear combinations ofelements of S (S generatesM), and if 0 cannot be obtained as a non-null linearcombination of elements of S (S is free).M is a free module if and only if it has a basis. We write (a) for the free modulegenerated by a. We writeMod(S) or R�Mod(S) for the module generated bya set S.Note that if R is a �eld, a R-module is a vector space, thus is free in the sensethat all vector spaces admit a base.If M1 and M2 are two free modules, M1 and M2 generated respectively by Sand T , then we write M1 +M2 or Pi Mi for the free module M generated byS [ T . When S \ T = ; we write M =M1 �M2 =�i Mi.We list below some properties of interest about freeness of modules which areused implicitly in most of the proofs of, for instance Section 6.4 and Chapter8. We refer the reader to [Lan93a] for proofs of these facts.First of all, for any ring R, 331



332 RINGS, MODULES AND COMPLEXES� any R-module is isomorphic to a quotient of a free R-module (this factleads to the notion of free resolutions, used in Chapter 8),� if A0 is a sub-module of A such that A0=A is free, then A is isomorphic toA0 � (A=A0).When R is a principal ideal domain, i.e. when R is an integral domain in whichevery ideal is principal (like ZZ, all ideals are of the form n:ZZ, n 2 IN), wecan be much more precise about the structure of R-modules in general. In thiscase, any submodule of a free R-module is free. The only part of a modulewhich needs be classi�ed is therefore the non-free part. This is done throughthe notion of torsion module. If A is a R-module, its torsion sub-module isTorA = fa 2 A=ra = 0 for some r 2 R, r 6= 0g. Then a �nitely generated R-module A is free if and only if it is torsion free (i.e. TorA = 0). It is easy to seethat A=TorA is free. A cyclic module corresponding to some element r 2 R is aR-module A such that r generates the ideal of all elements z annihilating everyelement of A, i.e. 8a 2 A, za = 0 implies 9y 2 R such that z = yr. This leadsto the following theorem, known as the structure theorem for �nitely generatedmodules.Theorem 6 Any R-module A is isomorphic to the direct sum of a free R-module and cyclic modules A1; : : : ; Aq whose corresponding elements r1; : : : ; rq 2R are such that ri j ri+1 for all 1 � i � q�1. The elements r1; : : : ; rq are uniqueup to multiplication by invertible elements of R and together with rank(A) =dim (A=TorA) characterize the module up to isomorphism.In all this text we note (a) for the free R-module generated by a and (a)r forthe cyclic module generated by a with corresponding element r 2 R.Other types of modules than free modules are of interest as well.A module M is a projective module if given an epimorphism � : B �! C, eachmap 
 :M �! C can be lifted to a � :M �! B such that �� = 
. Note thatevery free module is projective, and that every projective ZZ-module is free.Dually, a module M is an injective module if for each � : A �! M and forany monomorphism � : A �! B, there exists � : B �! M such that �� = �.Note that if R is a �eld, then any R-module (i.e. vector space) is injective. AZZ-module is injective if and only if it is divisible, i.e. for each integer m 6= 0and each element d, there is a solution of the equation mx = d.A di�erential module (M; d) (or simply M) is a module M together with agrading M =�i Mi, a function d :M �!M such that for all i, d(Mi+1) �Mi1and such that d � d = 0.A complex of modules is a sequence of modules Mi together with a functiond :M �!M such that for all i d(Mi+1) �Mi and such that d � d = 0.1It is of homology type.



Appendix BMathematical Background -Some basic properties ofsimplicial complexesFor full details on the de�nitions and properties, we refer the reader to [May67]and [GZ67].A simplicial complex is, geometrically, a union of points, segments, triangles,tetrahedra etc. Formally, a simplicial complex K is a set of simplices, that are�nite subsets of a given set K of points, subject to the condition that everynon-empty subset of an element of K is itself an element of K. Look at FigureB.1 for an example: the triangle is the simplex of dimension 2 f0; 1; 2g. Thecondition on subsets of simplices to be simplices as well enforces all segmentsf0; 1g, f0; 2g and f1; 2g to be in the simplicial complex, as well as all pointsf0g, f1g and f2g.Ordering vertices, we get an equivalent de�nition of simplicial complexes asfollows. A n-simplex (or simplex of dimension n, forming the set Kn) is asequence (a0; : : : ; an) of elements of K such that fa0; : : : ; ang is a m-simplex ofK for some m � n. If m is strictly less than n then we say that the n-simplex(a0; : : : ; an) is degenerate.Being a face of some n-simplex (a0; : : : ; an) means forgetting one of the com-ponents of (a0; : : : ; an). This de�nes face operators (0 � i � n),@i(a0; : : : ; an) = (a0; : : : ; ai�1; ai+1; : : : ; an)Figure B.1: A �lled-in triangle seen as a simplicial complex
{0} {1}

{2}

{0,1,2}
{0,2} {1,2}

{0,1}333



334 SIMPLICIAL COMPLEXESThe fact that we can consider fa0; : : : ; ang as degeneratem-simplexes form > nis described by degeneracy operators (0 � i � n),si(a0; : : : ; an) = (a0; : : : ; ai; ai; ai+1; : : : ; an)These operators can be shown to verify the following commutation rules,8>>>>>>>>>><>>>>>>>>>>: @i@j = @j�1@i if i < jsisj = sj+1si if i � j@isj = sj�1@i if i < j@jsj = Id = @j+1sj@isj = sj@i�1 if i > j + 1Now a morphism from a simplicial complex K to a simplicial complex L is amap carrying each vertex of K to a vertex of L. This induces a map from eachsimplex of K to a simplex of L (as unions of the image of each vertex in thesimplex).With the other formulation we have, morphisms are just functions f = (fn)nof graded sets, fn : Kn ! Ln such that,fn@i = @ifn+1fnsi = sifn�1In fact we could have de�ned the category of simplicial complexes (or simplicialsets) as contravariant functors from�, the category whose objects are the linearorders �n = f0 < 1 < : : : < ng and whose morphisms are monotonic maps toSet. As a matter of fact, the dual commutation relations that the @i and sjverify precisely generate all morphisms in �. The reader can check that thenatural transformations in �opSet coincide with what we called morphisms ofsimplicial complexes.With this formulation, the standard n-simplexes, i.e. the n-triangles (trian-gle for n = 2, tetrahedron for n = 3 etc.) are the representable functorsHom(�;�n).This view of simplicial sets enables us to generalize furthermore and de�nesimplicial objects in any category C as the category of contravariant functorsfrom � to C.An interesting case is simplicial objects in R�Mod. They are called simplicialmodules. It can be shown that there is an equivalence of categories betweenthe category of simplicial modules and the category of complexes of modules[May67, GZ67]. An interesting property of simplicial modules is also that theyare Kan complexes and then a homotopy theory can be de�ned in easy ways.



Appendix CMathematical Background -Some basic concepts ofdi�erential geometryManifolds are natural generalizations of curves and surfaces in that they can de-scribe geometric objects of higher dimension and support a di�erential calculus,i.e. a calculus on tangent vectors.A manifold1 is given by the following data (taken from [Die74]).An atlas A of some topological space X is a covering of X by opens Ui (i 2 I)such that,� with each Ui comes a homeomorphism �i : Ui ! Vi where Vi is an openof the topological space IRn (with its standard topology),� �j � ��1i : �i(Ui \ Uj) ! �j(Ui \ Uj) is a C1 di�eomorphism (standardnotion in IRn)(Ui; �i) is called a chart of the atlas.Then a di�erentiable manifold is a topological space X together with such anatlas.The maps xk = prk � �i : Ui ! IR, where prk : IRn ! IR is the kth projection,are called the local coordinates in Ui (for the chart (Ui; �i)). The dimension ofX at x 2 Ui is the least integer n such that �i : Ui ! IRn. It is constant inall connected components of X . Locally (i.e. in some Ui), the manifold \lookslike" an open subset of IRn (look at Figure C.1).The local coordinates can be used as ordinary coordinates in Euclidean ge-ometry. The usual notions (on surfaces for instance), di�erentiable functions,tangent space, sub-manifold, etc. can then be de�ned easily.Let X and Y be two manifolds. A continuous function f : X ! Y is di�eren-tiable if for all charts (U; �) in X and (V;  ) in Y such that f(U) � V ,F =  � fjU � ��1 : �(U)!  (V )1Here we only consider C1 manifolds and C1 di�erentiable functions.335
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is di�erentiable2. The di�erential of f is denoted by df .Now, let x 2 X and f1, f2 be two di�erentiable functions de�ned in a neigh-bourhood W of x and with value in Y . We say that f1 and f2 are tangent at xif, � f1(x) = f2(x),� for a chart (U; �) in X with U � W and a chart (V;  ) in Y such thatf1(U) � V and f2(U) � V the functions  � f1jU � ��1 and  � f2jU � ��1have the same derivative at point �(x).It de�nes an equivalence relation on di�erentiable functions from X to Y .Particularizing this to X = IR, di�erentiable functions from X to Y modulothe tangency relation are called the tangent vectors of Y at point y. Theyactually form a real vector space of dimension n (the same dimension as themanifold) called Ty(Y ) as follows. We de�ne a bijection �� : Ty(Y )! IRn whichassociates the vector d(� � f)(0) with an equivalence class of a di�erentiablefunction f : W ! Y , where W is an open neighbourhood of 0 in IR, such thatf(0) = y.Let (e1; : : : ; en) be the standard basis of IRn, i.e. e1 = (1; 0; : : : ; 0),: : :,en =(0; : : : ; 1). ( _x1 = ��1� (e1); : : : ; _xn = ��1� (en)) is the basis of the IR-vector spaceTy(Y ) associated with the chart (U; �) (with local coordinates (x1; : : : ; xn)).Let X and Y are two manifolds and f : X ! Y is a di�erentiable function. Ifx 2 X , y = f(x) 2 Y and (U; �) is a chart of X at x (respectively (V;  ) is achart of Y at y, the linear function,Tx(f) = ��1 � F 0(�(x)) � �� : Tx(X)! Ty(Y )2This notion is the usual one in IRn.



CONCEPTS FROM DIFFERENTIAL GEOMETRY 337where F =  � fjU � ��1is the local expression of f in charts (U; �) and (V;  ) is the di�erential of f atx. In general we write df(x): _x or df(x; _x) for Tx(f)( _x1; : : : ; _xn).The last notation is justi�ed by the fact that the TxX actually de�ne by amal-gamation a manifold TX called the tangent manifold whose local coordinatesare of the form (x1; : : : ; xn; _x1; : : : ; _xn) if (x1; : : : ; xn) are the local coordinatesin the chart (U; �) ofX and ( _x1; : : : ; _xn) are the corresponding local coordinatesof TxX . TX is a �ber bundle over X .Now the usual laws of di�erential calculus that one has on Euclidean spaces IRnhold on general manifolds.
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