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La Géométrie du Parallélisme

La théorie des machines séquentielles est bien aboutie. Tous les modeles de
calcul connus (et méme inconnus, par la these de Church) sont équivalents en
ce sens qu’ils calculent la méme classe de fonctions. Qu’ajoute alors I’étude des
machines paralleles & cet état de fait 7 En effet un modele du parallélisme ne
pourra pas calculer plus de fonctions qu’un modele séquentiel. Par contre, il y
a un sens en lequel on peut espérer un gain de temps (en général d’un facteur
linéaire, parfois superlinéaire) par un calcul parallele. Sur ce point tous les
modeles du parallélisme ne sont pas équivalents. Plus généralement, les modeles
existants du parallélisme ne sont pas équivalents quant aux comportements
dynamiques dont ils rendent compte.

Un des plus anciens modeles aussi bien des machines séquentielles que paralléles,
les systemes de transitions, décrivent bien les états d’une machine, les branche-
ments entre les différents flots d’exécution possibles, mais codent le parallélisme
par l'entrelacement d’actions. Cela veut dire en particulier que la confluence
forte est indistinguable du parallélisme sur le graphe états transitions.

D’autres modeles ont élaboré sur cette remarque, et ont “décoré” les systemes
de transitions avec des indications sur les comportements permis, a partir de
tel ou tel état. Par exemple, les systemes de transitions asynchrones rajoutent
aux systemes de transitions standards une relation binaire sur les transitions,
dite relation d’indépendance. Quand deux actions entrelacées sont indépen-
dantes, elles peuvent étre exécutées en parallele, alors que si elles ne I’étaient
pas, cet entrelacement représenterait leur exclusion mutuelle. Les “trace au-
tomata”, ou les “concurrent automata” sont d’autres formes de cette méme
idée, ce dernier ayant notamment repris I'idée des “résidus” du A-calcul pour
exprimer 'interférence entre deux actions.

Les systemes de transitions standards avaient d’attrayant le fait que un certain
nombre de comportements dynamiques au cours du calcul (confluence, branche-
ments, états finaux etc.) se lisaient directement sur le graphe états transitions,
c’est & dire sur la géométrie du modele. Ce n’est plus vrai des modeles décorés
dans lesquels on ne sait plus représenter la géométrie des exécutions.

Pour remédier & cela, examinons la figure 0.1. Le dessin (i) décrit entrelace—
ment de deux actions @ et b. On peut imaginer que chacune des deux actions
porte un axe, sur lequel on peut lire le temps local d’exécution. Un chemin
d’exécution dans lequel un processeur calcule un peu de @ tandis qu’un autre
calcule un peu de b est figuré en (ii). C’est un chemin croissant en chacune des
deux coordonnées partant de I’état initial, arrivant a 1’état final, et a 'intérieur
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Figure 0.1: Non-déterminisme (i), recouvrement dans le temps (ii) abstrait par
une transition de dimension 2 (iii).

() (i) (i)

du carré délimité par ’entrelacement de a et b. Tous les chemins asynchrones
couvrent donc 'intérieur de ce carré. Voulant dans un premier temps n’autoriser
que des observations discretes sur le comportement de systemes paralleles, on
abstrait les états de I'intérieur du carré par I'intérieur du carré lui-méme, appelé
transition de dimension deux, ou 2-transition (car géométriquement de dimen-
sion deux). Alors, la présence de trous contraint I’exécution a rester unidimen-
sionnelle, c’est & dire qu’elle est équivalente a la présence d’exclusions mutuelles.
Remplir ces trous revient & autoriser les comportements asynchrones.

Tout ceci se généralise bien évidemment aux dimensions supérieures a deux.
Exécuter n actions en parallele, revient a se trouver sur des chemins a 'intérieur
d’un hypercube de dimension n, ou n-cube. Il faut également pouvoir rendre
compte des allocations de nouveaux processus sur des processeurs, ainsi que de
la composition séquentielle entre processus. Cela nous amene a considérer des
formes sur lesquelles se font les exécutions construites en collant des hypercubes
de toutes dimensions ensemble, selon leurs bords. Ceci est connu en topologie
algébrique combinatoire sous le nom de complexe cellulaire, et plus précisément
de complexe cubique. Mais contrairement a la formalisation habituelle, il nous
faut également nous souvenir de la direction du temps. On y arrive si on divise
les opérateurs bords en deux opérateurs bords, les opérateurs bords début, et
les opérateurs bords fin.

Un hypercube de dimension n a 2n bords, hypercubes de dimension n — 1. On
a donc 2n opérateurs bord agissant sur un hypercube de dimension n, divisés
en n opérateurs bord début et en n opérateurs bord fin. Cela se particularise
au cas bien connu des automates standards, dans lequel on ne trouve que des
transitions de dimension un, et pour lesquels on n’a donc que deux opérateurs
bord, un opérateur début, et un opérateur fin.

Une premiere définition formelle est donc comme suit. On appelle automate

semi-régulier M toute suite (M,,) d’ensembles de n-transitions avec leurs opéra-
teurs bords début d¥ et fin d!,

49
Mn :Z: Mn—l
1
J
foralln € ¥ and 0 < ¢,7 < n— 1, vérifiant

df odé = d;_l odF
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(i<j,k,l=0,1)etVn,mn#%m, M,NM,=0.

Si I'on définit de plus une notion de simulation (et donc de morphisme) entre
ces automates, on obtient une catégorie et des constructions algébriques intéres-
santes sur ces objets. On montre aisément que les automates semi-réguliers
forment un topos élémentaire.

Le produit cartésien entre deux automates existe et est par définition le plus
grand automate dont chacun des deux automates de départ est une implémen-
tation. On prouve qu’il s’agit du produit synchronisé des automates.

On peut également former I'union (ou coproduit) de deux automates. C’est le
plus petit automate implémentant chacun des deux automates de départ.

L’ensemble des simulations d’un automate vers un autre peut également étre
muni d’une structure naturelle d’automate semi-regulier, c’est & dire en partic-
ulier que ’“évaluation” est une simulation. Cela implique que les n-transitions
de cet “espace de fonctions” sont essentiellement des évaluations synchrones
d’un processus paramétré en dimension n en un argument lui aussi de dimen-
sion n (c’est un appel de n procédures classiques, en paralléle).

Il y a aussi un automate “objet de vérité” qui classifie les sous-automates.

On construit également un produit tensoriel représentant ’exécution parallele
sans interférence de deux automates. C’est une opération qui crée du paral-
lélisme et donc qui augmente la dimension des objets en considération.

On a aussi un espace de fonction qui est associé & ce nouveau produit. Une
n-transition de cet espace de fonction est maintenant une fonction qui alloue
dynamiquement (au moment de ’appel, c’est a dire de ’évaluation) un proces-
sus de dimension n (ou n “threads” en parallele). Ces opérateurs correspondent
eux a des fragments de logique linéaire, tandis que les opérateurs “synchrones”
correspondaient a une logique intuitioniste.

Dans le deuxieme chapitre de la these, on définit également des variantes de ce
modele de base.

La premiere est ce que ’on nomme les automates partiels. L’idée est d’autoriser
les fonctions bords a n’étre que partiellement définies, et donc géométriquement,
a pouvoir considérer des formes non fermées. Cela exprime ainsi la possibilité
d’avoir des calculs paralleles en point mort, ou ne bloquant que quelques uns
des processeurs disponibles. C’est une généralisation de la méthode classique
utilisée en sémantique dénotationnelle pour exprimer les calculs ne terminant
pas (symbole L).

Une deuxiéme variante consiste a s’autoriser a parler de multi-ensembles d’acti—
ons (et donc d’ensembles de chemins) en passant aux sommes formelles en-
gendrées par les ensembles de n-transitions. Pour parler encore plus précisé-
ment des chemins, et en particulier pour étre a méme de décrire la cyclicité
ou lacyclicité d’un automate, on sépare 'indice de dimension n indexant les
ensembles M,, en deux indices, un de temps p, un autre g égal a la dimension
moins le temps. On obtient ainsi des ensembles M, , pour définir un automate
M, contenant les p + ¢-transitions pouvant étre exécutées au temps t. Une
premiere élaboration sur ces idées nous amene a définir les automates réguliers.
Une classe plus importante est celle des automates généraux. En utilisant la
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structure de module libre engendré par les n-transitions, on peut collecter les
bords début en un seul opérateur bord, dy et tous les bords fin en 9;. On
obtient ainsi une structure trés proche des complexes doubles de modules (a
l'exception pres de la condition faible sur 'intersection des sous-modules M, ,)
dont la formalisation suit.

Un automate général est un R-module libre M muni de,

e une décomposition: M = X M, 4, telle que Vp, ¢,

Ry

My, 0 (2T+5¢p+qMT,S) =0

o deux différentielles dy and dy, compatibles avec la décomposition, donnant
a M une structure une structure de bicomplexe:

80 . Mp,q — Mp—l,q

81 :Mp7q —>Mp7q_1
80080:0, 81081:0, 80081-|—81080:0

On peut définir de méme que pour les automates semi-réguliers une notion
de simulation donc de morphisme. Dans le cas des automates généraux, les
morphismes sont tout simplement des fonctions linéaires commutant avec dy et
01, donc sont des morphismes de complexes de modules respectivement pour
les complexes (M,dy) et (M,01). Quand 'automate ne contient pas de cycle,
alors M est un vrai complexe double de modules, et les morphismes sont alors
des vrais morphismes de bicomplexes.

Remarquons toutefois que toutes ces structures sont non-étiquetées. La fin
du chapitre deux y remédie, et définit les étiquetages comme des morphismes
a valeur dans 'automate des étiquettes. Cet automate est le plus souvent
constitué d’'une somme de tores en toutes dimensions.

Rendus a ce point, il est naturel de se poser la question de connaitre les rap-
ports entre les modeles anciens, et ceux basés sur les automates de dimension
supérieure. C’est la I'objet du troisieme chapitre. On y étudie tout d’abord
les possibles traductions entre systemes de transitions ordinaires et les auto-
mates semi-réguliers étiquetés, tout du moins d’un type particulier. Si ’on
désire conserver I'intuition opérationnelle, c’est & dire interpréter les transitions
des automates standards par des 1-transitions de HDA, on a essentiellement &
voir si il existe un adjoint a gauche ou a droite au foncteur inclusion ou a des
foncteurs qui se réduisent a I'identité sur les systemes de transitions standards
(quand on identifie la catégorie des systemes de transitions a une certaine sous
catégorie T!, des automates semi-réguliers de dimension un). On prouve qu’en
fait, on a les deux.

Le foncteur inclusion Z : Y1 — Y, est adjoint & gauche du foncteur troncation
7 :7T, — TiT. Ce foncteur “oublie” toutes les transitions de dimension plus
élevée que 1, donc creuse des trous dans un automate semi-régulier jusqu’a en
faire un automate standard.



La Géométrie du Parallélisme 9

Le foncteur troncation (généralisé) T, : T, — Y7 est adjoint & gauche du
foncteur G, : Y7 — T,,. Ce dernier, en un sens homologique (et homotopique)
tres précis, comble tous les trous de dimension supérieure ou égale a n.

En bref, la paire de foncteurs adjoints (Z,7),) (généralisée de la paire (Z,71))
correspond a une interprétation des systemes de transitions dans laquelle tous
les niveaux de parallélisme k (k > n) sont interprétés comme des entrelacements
d’exécutions asynchrones de n actions. La paire de foncteurs adjoints (7),,G,,)
quand a elle correspond a une interprétation dans laquelle toutes les exclusions
mutuelles de niveau k (sémaphore initialisé au début a la valeur k, £ > n) sont
identifiées au niveau de parallélisme k + 1.

Ces considérations se transportent au cas des systémes de transitions asyn-
chrones. On a également une stratégie d’allocation maximale pour laquelle
toutes les exclusions mutuelles de niveau k£ (kK > 2) sont interprétées comme
des niveaux de parallélisme k& + 1. La stratégie d’allocation minimale identifie
toutes les exclusions mutuelles & des exécutions paralleles. On a les mémes
conclusions avec les traces de Mazurkiewitz dont on se sert pour relier les auto-
mates de dimension supérieure aux structures d’événements premieres en util-
isant les résultats d’adjonctions classiques. Ceux-ci nous permettent également
de comparer avec les arbres de synchronisations, les systemes de transitions
déterministes et les langages de Hoare.

Tout cela semble indiquer que le modele des automates de dimension supérieure
semble bien meilleur pour formaliser les propriétés d’allocation du parallélisme
que d’autres modeéles opérationnels (& I’exception probable des réseaux de Pétri
cependant).

Le chapitre quatre ouvre la deuxieme partie de la these consacrée a 1’utilisation
des automates pour la définition sémantique de langages.

On commence donc par 1’étude générale des propriétés catégoriques des dif-
férentes classes de HDA, et plus particulierement des automates de dimension
supérieure généraux. On montre que ces automates forment une catégorie com-
plete et co-complete.

Tout comme dans le cas semi-régulier, le coproduit correspond au choix non-
déterministe. Par contre c’est un biproduit, c’est a dire que le produit cartésien
est identifié a la somme directe.

Les limites directes permettent de construire des automates infinis par leurs
approximations finies (par exemple), et donc permettent de définir des agents
récursifs.

On peut également définir un produit tensoriel (le produit paralléle sans in-
terférence) et un foncteur Hom correspondant. Cette fois, la catégorie est
symétrique monoidale. Si on se restreint aux automates avec un nombre fini
d’états et de transitions, on peut méme définir un dual, contenant les événe-
ments correspondants, de dimension opposée, faisant ainsi de cette sous-catégo—
rie une catégorie *-autonome (et méme compacte fermée).

Enfin on prouve dans le chapitre trois que les automates semi-réguliers sont
une abstraction des automates réguliers qui eux-mémes sont une abstraction
des automates généraux.
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On utilise les propriétés catégoriques de ces diverses classes d’automates au
chapitre cing. La catégorie des sous-objets d’un automate D (c’est & dire la sous
catégorie de T/D composée des monomorphimes, modulo les isomorphismes)
est une algebre de Heyting dans le cas semi-régulier (puisque c’est alors un topos
élémentaire) et un treillis complet dans tous les cas. On peut donc s’intéresser
a l'utiliser comme treillis de dénotations pour des programmes, avec définitions
récursives de domaines (comme D). C’est d’autant plus intéressant que ces
dénotations sont naturellement des ensembles de traces avec structure, c’est a
dire sont des ensembles dans lesquels on peut lire le temps auquel les branche-
ments, les confluences, les exclusions mutuelles, les allocations de processus etc.
sont effectués.

On applique tout cela a un langage similaire a CCS et on donne sa sémantique
vraiment parallele sous deux formes. La premiere est sous format SOS, par
regles d’inférences. La deuxiéme est une sémantique catégorique.

On peut également généraliser ces domaines sémantiques pour prendre en com—
pte des valeurs de variables. Pour cela, on représente les états par des substitu-
tions de valeurs aux variables (c’est & dire des environnements) et les actions par
des homotopies entre la fonction identité sur les environnements et la fonction
qu’elle doit calculer sur I’état de la machine. On met cela en pratique sur un
simple petit langage impératif parallele & mémoire partagée. En utilisant une
transformation de type “‘Continuation Passing Style” on obtient une séman-
tique pour un langage similaire si ce n’est que le produit parallele “statique”
est remplacé par un opérateur dynamique “fork”.

Le chapitre six ouvre la troisieme partie dédiée aux propriétés dites géomé—
triques. C’est 1& la grande originalité du modele des automates de dimension
supérieure, que de voir des propriétés classiques, ou moins classiques a travers
une intuition géométrique et d’utiliser ensuite les ressources de la topologie
algébrique pour formaliser et résoudre certains problemes.

On commence dans ce chapitre par définir les propriétés géométriques les plus
simples a définir et & calculer. Dans cette catégorie vient tout ce qui peut
se définir a partir des groupes d’homologie Hy(M,dy) pour les complexes de
modules avec 'opérateur dy et Hy(M, ;) pour les complexes de modules avec
l'opérateur ¢d¢. On peut résumer les principaux résultats comme suit.

o l'ensemble des états initiaux engendre Ho(M, 01).

o lensemble des états finaux engendre Ho(M, dy), donc un automate diverge

si Ho(M, 80) = 0.

e ’ensemble des branchements en dimension k union les points morts in-
verses en dimension k (k > 1, k = 1 constitue les branchements d’automa—
tes au sens classique union les transitions n’ayant pas d’état de départ)
engendre Hy(M, dp).

o defacon duale, ’ensemble des confluences en dimension £ union ’ensemble
des points morts de k processeurs engendre Hy(M, ;).
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Sachant que I’homologie cellulaire est indépendante de la subdivision choisie,
ces propriétés géométriques sont invariantes par raffinement par des proces-
sus purement paralleles, sans branchements. De plus on connait beaucoup de
moyens de calculs de ces groupes d’homologie.

En particulier, ’homologie du produit tensoriel est donné par la formule de
Kunneth, celle de son adjoint a droite, par la formule des coeflicients universels,
et celle des intersections et unions peut étre déterminée en utilisant certaines
suites exactes telles la suite exacte de Mayer-Vietoris. On applique tout cela
au calcul exact inductif (sur la syntaxe) des branchements et confluences des
termes CCS, puisque 'on avait pu écrire sa sémantique avec les opérateurs
produit tensoriel, somme etc. dans le chapitre précédent. Les calculs sont un
peu longs et techniques mais sont exacts et complets.

On examine ensuite une application directe de ces propriétés, les équivalences
sémantiques dites “branching-time” comme la bisimulation, qui caractérisent les
temps auquels les choix sont faits dans un automate. On définit tout d’abord
des versions de la bisimulation forte tenant compte des stratégies d’allocations
d’actions (puisque reliant les n-transitions entre elles) puis on montre qu’elles
conservent les branchements modulo I’étiquetage. C’est a dire que modulo des
problemes spécifiques a I’étiquetage des automates, deux HDA bisimulation
équivalents ont les méme groupes d’homologie pour les complexes en Jdy (les
branchements). Cela permet de montrer qu’il ne peut y avoir aucun terme
CCS representant 'allocation dynamique de trois actions sur deux processeurs.

Le chapitre suivant entreprend 1’étude des automates d’un point de vue homo-
topique. Deux chemins sont homotopes si et seulement si 'un peut se déformer
continument en ’autre dans "automate. Autrement dit, deux chemins sont ho-
motopes si on peut toujours passer localement a travers des 2-transitions, c’est
a dire utiliser des relations de commutations entre deux actions indépendantes
(puisque sans interférence), pour aller de 'un & l'autre. Donc les classes de
chemins modulo homotopie ne sont jamais que les ordonnancements essentiels
d’actions (1-transitions) dans un automate, modulo les relations d’indépen—
dance.

Remarquons que si la relation d’équivalence “homotopie” est bien la notion clas-
sique d’homotopie, les “groupes d’homotopie” qui nous intéressent sont d’une
nature quelque peu différente, comme le montre la figure 0.2. Ceci est du a la
contrainte de non-inversibilité du temps, ou autrement dit de la croissance des
chemins.

En fait, le “groupe d’homotopie orienté” n’est pas naturellement un groupe,
c’est plutot un monoide. En effet, on ne peut pas considérer comme dans le cas
classique des lacets a partir d’un point base, que on peut composer de facon
évidente, mais seulement des chemins croissants d’un point a un autre, qui eux
ne sont composables que lorsque la fin de I'un est égale au début de 'autre.
En fait, on peut plonger ce monoide dans un groupe un peu plus gros, sans
toutefois perdre 'information essentielle sur la direction du temps. Ensuite,
il faut pouvoir considérer un groupe fondamental orienté pour I’ensemble d’un
automate, et pas seulement pour les chemins d’un point fixe & un autre. Cela
se fait dans chaque “composante connexe” par amalgamation, en identifiant la
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Figure 0.2: Les 4 générateurs du groupe fondamental orienté, les 3 générateurs
du groupe fondamental classique

T2
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“laCEtS”

T1
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Figure 0.3: Un automate connexe mais pas connexe par chemins croissants

T2
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| |
| |
Pb Pa Vb Pc Va Vc

loi de groupe a la concaténation de chemins.

La notion d’automate connexe est elle aussi différente, quand on se restreint a
considérer des chemins croissants (voir figure 0.3). Sur ’exemple plus bas, la
forme est connexe au sens classique mais ne ’est plus dans le cas orienté.

La contrainte de non-inversibilité pose également des problemes de définition des
groupes d’homotopie de dimension supérieure. Les chemins de dimension deux
par exemple sont des surfaces dont les bords sont deux chemins de dimension
un d’un méme point initial vers un méme point final. De facon plus générale,
un chemin de dimension n est une collection de n-cubes dont les bords sont
deux (n — 1)-chemins dont les bords sont égaux. La relation d’homotopie sur
ces n-chemins est alors la déformation a travers les (n 4+ 1)-cubes. De méme
qu’en dimension un, ceci ne forme pas naturellement un groupe, mais plutot un
“double monoide”, ou méme une 2-catégorie. On a en effet deux concaténations
possibles. L’une est induite par la concaténation des bords des n-chemins,
l'autre est une composition transversale, qui a deux n-chemins de bords py, po
et pa, ps respectivement associe un n-chemin de bord py, ps. On peut encore
plonger cette structure dans un groupe pour lequel ces deux opérations de
concaténations sont identifiées a la loi de groupe. De méme on peut amalgamer
tous ces groupes en un groupe d’homotopie orienté en dimension n.

Ces groupes d’homotopies vérifient des propriétés semblables aux groupes stan-
dards. On peut démontrer un analogue des théoremes d’Hurewicz qui relient
les groupes d’homotopies aux groupes d’homologie sous certaines conditions.
Ici, les groupes d’homologie correspondant sont les groupes d’homologie avec

T1
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les bords totaux (dy — 01) relatifs aux bords des n-chemins considérés.

De méme, on a un théoréme de Seifert/Van Kampen qui permet de calculer
le groupe fondamental orienté d’'une union de deux automates en fonction du
groupe fondamental de chacun des deux automates et de leur intersection, sous
certaines conditions. Une tentative de preuve d’un théoréme de Van Kam-
pen pour les groupes d’homotopie de dimension supérieure est faite, a travers
I'introduction de groupes d’homotopie définis par suspension. Nous ne savons
pas encore si nous sommes en mesure de prouver ce résultat (analogue a ceux

de [BH81b, BH81al).

Le chapitre suivant est consacré aux premieres applications de cette théorie
homotopique, et en particulier, nous essayons de montrer ses liens avec d’autres
problemes informatiques et mathématiques.

Nous examinons en premier lieu le théoreme de Squier qui donne un critere
pour savoir si un monoide peut etre présenté par un un systeme de réecriture
canonique fini. C’est en un certain sens le premier résultat de calculabilité que
nous considérons. Le résultat est que si un monoide M est présenté par un sys-
téme de réecriture canonique fini alors ses groupes d’homologie H;( M ) sont tous
de type fini. On peut prouver cela en suivant la méthode de Groves et définir
une résolution de Z par des ZM-modules libres, en tant que ZM-module, a
partir d’un systeme de réecriture canonique fini. Rappelons que construire un
résolution pour un monoide M est la méme chose que construire un espace
contractile X sur lequel M agit librement. On peut aisément imaginer que X
est la représentation géométrique d’un automate de dimension supérieure, dont
le langage est M (ou qui “accepte” ou “reconnait” M). La présence de trous
dans cet automate signifirait la non-confluence du systéme de réecriture. Donc
X est naturellement contractile lorsque ’on peut présenter M par un systeme
de réecriture canonique fini.

Une deuxieme application de type critere de calculabité peut étre trouvé dans le
domaine des protocoles de systemes distribués. Dans le chapitre sur la théorie
homotopique, on s’était beaucoup aidé d’un exemple tiré des bases de don-
nées paralleles. On dit qu'un systéme de transactions est séquentialisable si et
seulement si pour toute exécution possible, il existe un entrelacement des trans-
actions qui donne le méme résultat (c’est & dire que les exécutions sont équiva-
lentes, ou homotopes, aux entrelacements). Dans le cas des monoides présentés
par des systemes de réecritures canoniques finis, on avait une propriété encore
plus forte que la séquentialisation. Dans cette partie, on veut savoir si I’on peut
calculer certaines fonctions (comme le consensus, le pseudo-consensus etc.) de
facon distribuée et robuste. Par robuste, on entend le fait que certains des
processus sont autorisés a mourir sans pour autant affecter le déroulement de
I’exécution des processus vivants. On impose donc une contrainte de fort dé-
couplement (de forte asynchronie) entre les différents processus. Le cas extréme
étant le cas “sans attente” ou N — 1 parmi NV processus sont autorisés a mourir.
Dans ce cas les automates décrivant les exécutions possibles sont V-connexes
(au sens de la théorie homotopique orientée). Cela implique que les différentes
coupes a temps constant de cet automate sont (N — 1)-connexes au sens clas-
sique du terme. Le consensus, imposant un choix, donc une non-connexité de
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la derniére coupe (alors que la coupe au temps initial était connexe) est donc
non-calculable sans attente.

On revient également dans ce chapitre sur deux points & peine abordés précedem-
ment. Le premier est ’adjonction entre les systemes de transition ordinaires
et les automates de dimension supérieure, par la stratégie d’allocation maxi-
male. On prouve que I’on a bien n-connexité de 'interprétation qui résulte de
I’adjonction, donc que I'interprétation en question correspond & un calcul “sans
attente”. Le deuxieme est dans le méme esprit. En utilisant la sémantique de
CCS par automate de dimension supérieure donnée précedemment, on prouve
que 'on ne peut pas implémenter d’exclusion mutuelle dans un sous-ensemble
de CCS purement asynchrone (sans action complémentaire). Cela revient a
dire que dans un modele de machine & mémoire partagée avec acces par lec-
ture/écriture non-atomique, on ne peut implémenter d’exclusion mutuelle (ou
de sémaphore).

Jusqu’a présent, on avait essayé d’utiliser des invariants topologiques de maniere
exacte pour prouver 'impossibilité de calculer certaines fonctions. Dans le
chapitre qui suit, on essaie d’approximer le calcul de ces invariants, et en par-
ticulier des ordonnanceurs, pour vérifier des protocoles ou des programmes.
Cette théorie de I'approximation est basée sur 'interprétation abstraite.

On peut montrer que le calcul des groupes d’homotopie, et donc des ordon-
nanceurs, est une interprétation abstraite de la sémantique, en utilisant le
théoreme de Seifert/Van Kampen. Ensuite, en utilisant le théoréme d’Hurewicz,
on peut méme donner un algorithme pour calculer le groupe fondamental (les
ordonnanceurs sur un processeur). Ceci permet de verifier des protocoles de
systemes distribués de facon automatique ou de vérifier qu’un programme peut
s'implémenter sur une architecture parallele contrainte. Il suffit de calculer les
obstructions si elles existent (qui vivent dans un groupe d’homologie) a la dé-
formation d’une forme (la sémantique du programme) sur une sous-forme (la
sémantique du programme sous contraintes).

D’un point de vue dual, si I’on part d’un ordonnanceur séquentiel arbitraire
d’un programme, trouver une extension maximale de cette trajectoire dans
une variété de trajectoires autorisée est la parallélisation du programme. Nous
donnons également un algorithme pour résoudre ce probleme (dans le chapitre
suivant).

Ces théories de I'ordonnancement peuvent s’inscrire dans un cadre plus général
d’approximations de la sémantique des programmes par interprétation abstraite.
(C’est 1a ’objet du chapitre 9.

On dit que 'on a un domaine D, (domaine abstrait) qui est une interprétation
abstraite d’un domaine D. (domaine concret) deés lors que 1'on peut exhiber
une paire de foncteurs adjoints (a, ) entre T/ D, et T/D,. En fait, en général
on se limite & considérer des sous-catégories de Y/ D. et de T/D,.

En particulier, si ’on se limite & la sous-catégorie des objets de D, et de D,
respectivement, qui sont des treillis complets, alors on obtient la notion classique
d’interprétation abstraite par correspondance de Galois.

C’est le cas pour le repliage sur des états, ou des transitions, ou ’on transforme
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un HDA en un autre ol certains états et transitions sont identifiés. C’est une
abstraction utile de la sémantique dans la pratique car elle permet de réduire le
nombre d’états et de transitions & considérer pour une analyse de programmes.

C’est également le cas pour la troncation a une dimension maximale de tran-
sition donnée (qui permet de se limiter & ’étude du systéme de transition sur
une machine a un nombre borné de processeurs).

Mais la généralisation est utile dans le cas des calculs d’ordonnanceurs car
on trouve bien que le calcul du II; sur les élements d’un domaine concret est
une interprétation abstraite, mais les ordonnanceurs ne sont en aucun cas les
monomorphismes & valeur dans un domaine abstrait mais seulement certains
morphismes. L’image du treillis des sous-objets de D. par cette abstraction
n’est qu’un préordre.

Les deux derniers chapitres de cette these étudient la possibilité d’étendre le
modele des automates de dimension supérieure de deux facons différentes.

La premiere est une tentative de définir une algebre de cubes plus conven-
able par ’adjonction de fonctions dégénérescences permettant de plonger toute
transition de dimension n dans ’ensemble des transitions de dimension n + 1.
Cette construction est utile pour deux raisons. Tout d’abord, elle permettrait
(on montre en tout cas que c’est un bon candidat) de définir ’homotopie de
facon complétement combinatoire, tout comme cela a été réalisé pour les en-
sembles simpliciaux. Enfin, cela nous permettrait d’avoir une construction plus
classique de la synchronisation (& la Nivat) de deux automates par produit syn-
chronisé, avec un mélange adéquat de synchronisation et de parallélisme (les
dégénérescences font en sorte que le produit parallele est maintenant un pro-
duit cartésien). Tout cela n’est encore qu’une tentative, qui devra étre comparée
aux nombreux travaux sur les algeébres de cubes (en particulier [BHS81b]).

La deuxieme extension est d’incorporer au modele une notion de temps. L’idée
est maintenant de raisonner dans une géométrie continue. Un HDA avec temps
est une sorte de variété topologique, sur laquelle est plaquée une structure
observationnelle, un complexe cubique singulier. Localement, cette variété est
une variété différentielle. Sur chaque espace tangent, on définit une norme.
Cela nous permet de définir la longueur d’un chemin, que "on prend égal a son
temps d’exécution. Le chapitre montre que cela est raisonnable pour donner
des sémantiques, a la fois en style SOS et en style catégorique.
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Introduction

Sequential machines can be studied by examining their operational behaviours
— that is by looking at their state transition graphs. One of the fundamental
properties that we might want to study is confluence of the performed com-
putation. This is obviously a property of a highly geometric nature: we must
be able to complete all non-deterministic applications of conflicting reductions
by some other reductions that all converge to the same result; i.e. we must
have diamond shapes in the state transition graphs describing the sequences of
operations of our sequential machines.

For concurrent machines, the geometric properties of computation are more
intricate. Purely (interference free) asynchronous executions of two processes
are confluent and therefore recognizable geometrically as diamonds (or squares).

There could also be cubical shapes in the transition graph. These could arise in
different ways. If there are three processes, then their asynchronous execution
will generate cubes just like the asynchronous execution of two processes gener-
ates squares. Another way that cubes could arise is if there are fewer than three
processes, but the actions of some process may be chosen non-deterministically,
yielding squares or cubes; this is similar to the situation that arises when study-
ing the confluence of sequential machines. The intuitive difference between the
former way in which cubical shapes can arise and the latter is that in the former
situation we are allowed to consider that we have spent any arbitrary amount
of time in the respective sequential processes, and so in some sense all paths
in the interior of the cubical shapes might be part of valid executions. In con-
trast, in the latter situation two or more dimensions of the cubic shapes arise
by non-deterministic choice, which remains sequential and does not allow us
to go in the interior of the cubes (and, to generalize, hypercubes). In order to
distinguish these two behaviors, we abstract interiors of squares, cubes, etc. as
2-dimensional transitions, 3-dimensional transitions, and so forth. This leads
to a generalization of ordinary automata to what we call Higher-Dimensional
Automata (HDA in short), as first proposed in [Pra91b] and [vG91].

The main contribution of this thesis is to develop a few of the possible theories
of such automata and to study interesting “geometric properties” of concur-
rent executions using this model. This is still conceived as an introduction to
using geometry for solving problems in concurrency theory. Some sections are
attempts — and not “definitive” solutions — to define the necessary concepts.
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First of all, we remind the reader of a few models for concurrency (Chapter
1), in particular the operational ones which distinguish the non-deterministic
choices from “true concurrency”. This chapter will enable us to have the basic
concepts of concurrency theory at hand, and we will recognize most of them in

the HDA models.

The geometry of the operational models can be made clear by using techniques
from combinatorial algebraic topology, (the semi-regular HDA introduced in
the first sections of Chapter 2) and from homological algebra (the general HDA
introduced at the end of Chapter 2). Semi-regular HDA are collections of cubes
of all dimensions glued together: they are cubical complexes, a particular case
of combinatorial cell complexes, a standard notion of algebraic topology. These
in turn generate a weak form of bicomplexes of modules, the general HDA.
Even if the techniques are new in computer-science, we can define notions from
standard transition systems’ theory: SOS rules, denotational semantics using
the categorical structure of the models (see also Chapter 4). Some other HDA-
based models are defined which refine the basic semi-regular one: partial HDA
which can also express deadlocking behaviours and labeled HDA which add a
notion of observation.

The relationships with other models are extensively studied in Chapter 3. It
is shown in particular that some formal adjunctions between some transition-
system-based models and HDA correspond to the different possible allocations
on a certain number of processors. For instance, for asynchronous transition
systems, the independence relation I between actions a, b is interpreted as
a 2-transition “alb”, but alb and blc and cla can be interpreted either as a
3-transition (maximal allocation strategy) or just as the six 2-transition bound-
aries of that 3-transition.

Then, we study the categorical properties of general HDA. The categorical con-
structions bear computer-scientific meanings. As customary since [Win88], they
are very much like operators used in process algebra. These constructions are
also similar to the standard ones for complexes of modules. The situation is
slightly complicated by the fact that the complexes which formalize HDA are
not quite bicomplexes. These technical difficulties are addressed in Chapter
4. It is proven that general HDA and labeled HDA form autonomous cate-
gories. Interesting subcategories are shown to be x-autonomous. We introduce
in Chapter 5 the use of some of the categorical properties we have studied in
order to give semantics to simple languages, like a CCS-like process algebra.

The field of algebraic topology offers several techniques for giving an algebraic
description of topological properties of geometric objects. For instance, we can
develop a theory of homology of HDA in the standard way (see for instance
[CE56] or [ML63]). To each HDA we associate a sequence of modules that
characterizes the essential branchings and mergings in the HDA. This is the aim
of Chapter 6. These homology modules seem to be more amenable to automated
computation than the fundamental groups associated with homotopy theory.
The computation of the homology of programs in the language of Chapter
5 (i.e. its branchings and mergings) is done using general techniques from
homological algebra. But homotopy is also interesting for many reasons, in
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particular for scheduling properties (as shown for the two-phase protocol for
concurrent databases in [Gun94]) and so it must be studied in its own right.
This is started in Chapter 7. Schedulers are actually derivable from the HDA
semantics by abstract interpretation. This gives algorithms and approximation
techniques for verifying protocols and even for parallelizing programs, as shown
in Chapter 9, where a general theory is sketched.

Various applications come in Chapter 8. First of all we make a link (both for-
mal and intuitive) between serialization issues and word problems in monoids.
Monoids whose word problem can be solved by a finite canonical systems are
constrained in such a way that their homology groups are of finite dimension.
This is a geometric property of the execution in the canonical rewriting sys-
tems, very similar to serializability, which fits well into the HDA framework
(even if first exposed in other terms, in particular in [Gro91]). Then we show
that some of the homotopical properties of concurrent executions enable us
to solve some problems about protocols for distributed systems. The idea is
again that some geometric properties must be preserved during the execution
of purely asynchronous processes and therefore some decision tasks cannot be
solved by asynchronous machines. We follow the presentation of M. Herlihy et
al., but put it in a semantic perspective. This will be refined in Chapter 10
where a “non-degenerate” homotopy theory (i.e., a homotopy theory which is
not a homology theory) will be developed by adapting the homotopy theory of
simplicial complexes on cubical complexes. This will extend it in particular to
all general HDA, whereas the one discussed in Chapter 7 was only applicable
on free general HDA generated by acyclic semi-regular HDA. As an application,
we will give a semantic view of the construction of the wait-free protocols of
[HS94] in more general terms.

Finally, we give hints in Chapter 11 about a possible extension of the theory of
HDA in order to deal with real-time systems.

Remark Some chapters come from articles written by me and co-authors.
In particular, the notion of general HDA was developed in [GJ92] where the
point of view of homology theory was described and an application to CCS and
bisimulation was given. A category of HDA was defined in [Gou93] together
with an application to the semantics of a toy imperative language. This was
continued in [CG93] with application to Linda-based languages and their ab-
stract interpretation. Finally, a sketch of the theory of schedulers as an abstract
interpretation of an HDA semantics was given in [Gou95].

Notations In the following, we use two special symbols at the beginning of
sections, definitions or theorems,

e (1): can be saved for second reading

e (*): indicates that the following is of classical inspiration. If not well-
known, it uses at least very classical arguments.
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Chapter 1

Models for concurrency

Sequential computation can be modeled through many different formalisms.
One of the oldest, the Turing machine, gives a very mechanical view on com-
putation [Dav58]. Lambda calculus, and all combinatory logics (see [Bar84] or
[HLS72] for a survey) put more the emphasis on passing arguments to functions
(f-reduction) and using elementary computations (like é-rules). Post systems,
Random Access Machines, Markov systems are other examples among many
more models for sequential computations.

All of them are actually equivalent and Church’s thesis asserts that all models
for sequential computation we may think of will be equivalent to these as well.
The equivalence considered here is rather basic and takes the form of a simple
input/output relation: all the models cited above compute the same class of
functions on the integers, the class of “computable functions”.

This may seem to be the final answer to all questions in computer science but
this is not quite the case. Even for sequential machines for which the dynamic
properties of the execution do not appear as essential, we may sometimes be
interested in measuring the complexity of algorithms as a number of steps of
elementary computations in some model. Here the relationship is less obvious
[VEB90] and the equivalence between all the models is broken (for linear-time
reductions, not for poly-time reductions).

A fundamental motivation for concurrency is gaining time by executing several
actions at the same moment. A concurrent machine with N processors will
never compute more functions than a sequential machine! nor will it change
the complexity class of an algorithm since speedup is in general? at most linear
(by a factor of at most V). But a concurrent machine might exhibit some very
important dynamic properties that sequential machines would only implement
in a fairly trivial manner. For instance a two processor machine might deadlock
because each processor is waiting for a value that the other processor is holding.
A two processor machine with shared memory may also have unpredictable
behaviour if the concurrent accesses to shared items are not carefully taken

1By Church’s thesis.
2There are combinatorial search problems where one processor can inform other processors
to stop searching and for which speedup can be more than linear.
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care of. Finally, the speedup can only be determined by modeling in a precise
manner which actions may overlap in time.

Sequential models are not very well suited for all this and more specific models
have appeared for dealing with some aspects of concurrent computation. Ob-
viously, any of the existing set theories would suffice for modeling concurrent
machines: we could well use as many predicates and logical formulas we may
think of to derive properties of programs. This was Floyd’s view for instance
but it is not the view we take here.

We follow here the approach of [SNW94] and [WN94]. In order to compare
models and see what kind of property they are describing, we define a notion of
observation of programs expressed in a natural manner in the models, through
morphisms defining the allowed transformations from an object of the model to
another. This makes models into categories and questions then naturally arise
about what natural® constructions we can make in these models. Surprisingly
enough, most of the categorical (i.e. natural) constructions bear striking re-
semblance with combinators of process algebras and give models of fragments
of linear logic. We now review some of these models before concentrating on a
few basic ones in Chapter 3.

Most of the models somehow include a notion of state of the program or machine
described. In some models, a given state can only occur once and for all. In some
others, a state can occur repeatedly because it does not include the history of
all completed actions but rather contains only the accessible information at the
time the program has reached it. For instance the state might be the values of all
variables used. The classification used in [SNW94] is between behaviour model
(states occur once) and system model (states occur repeatedly). Examples of
the former are all kinds of event based models like event structures [Win88],
geometric automata [Gun92], pomsets [Pra86], event spaces [Pra9la] all kinds
of trace based models like Mazurkiewitz traces [Maz88], synchronization trees
[Mil80], Hoare languages [Hoa81] etc. Examples of the latter kind are Petri
nets [BRGS8T7], all kinds of transition systems like transition systems [Kel76],
asynchronous transition systems [Bed88], concurrent machines [Shi85], trace
automata [Shi85] transition systems with independence [SNW94] etc.

We begin by looking at the most well known models (coming directly from the
sequential world) i.e. the transition system based models.

1.1 A few transition systems

1.1.1 Ordinary transition systems

Transition systems are one of the most famous models of computation. They
are nothing but state transition graphs and can be pictured as such. Look
for instance at Figure 1.1. We have five states a, 3, 7, 6 and € representing,
for example, the value of the variables of a program at different times of its

?Not using any kind of coding. The natural constructions should be explainable only in
terms of allowed transformations/observations.
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Figure 1.1: A transition system

execution. We have also six transitions, two as, two bs, ¢ and d. a, b, ¢ and d
are four instructions of a program which change the state of the machine from
the source of its corresponding arrow to its target.

This is generally formalized using a transition relation. We use the same nota-
tions as in [WNO94].

Definition 1 A transition system is a structure (S,i,L,Tran) where,

e 5 is a set of states with initial state 1
o L is a set of labels, and

o Tran C 5 x L x S is the transition relation

Transition systems are made into a category by defining morphisms to be some
kind of simulation [WN94]. The idea is that a transition system 77 simulates
a transition system Tj if as soon as Ty can fire some action a in some context,
then T can fire @ as well in some related context. A morphism f : Ty — T}

defines the way states and transitions of Tj are related to states and transitions
of Tl.

Definition 2 Let Ty = (S0, ig, Lo, Trang) and Ty = (51,41, L1, Trany) be two
transition systems. A morphism f : Ty — Ty is a pair f = (0,\) where,

e 0:5 — 51,
o \: Lg— Ly are such that o(ig) = i1 and

(s,a,8') € Trang = (o(s), \a),o(s")) € Trany

This definition differs from the one of [WN94] in that it rules out “partial” mor-
phisms. Partial morphisms allow T; to be idle when T carries on computation.

Definition 3 Let Ty = (S0, ig, Lo, Trang) and Ty = (51,41, L1, Trany) be two
transition systems. A partial morphism (or morphism in [WN94]) f Ty — Ty
is a pair f = (0,\) where,

e 0:5 — 51,
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e \: Lg— Ly is a partial function. (o, ) are such that

- O'(io) = il,
— (s,a,8") € Trang and X a) is defined implies (o(s),
=0

Ma),a(s') €
Trany. Otherwise, if Ma) is undefined then o(s) s

(s)-

As in [WN94], the difference between the two kinds of morphisms can be fixed
by adding “idle” transitions to transition systems, very similar in spirit to
the lifting of domains in denotational semantics [GS90, Plo84], where partial
functions from D to D are considered total (and strict) from D) to D; where
1 is a new element such that Vz, L < z.

An idle transition is a transition # such that * goes from a state s to the same
state s: “it does not change the state of the machine”. Consider the following
completion Ty = (9%, ix, Ls, T'ran,) of a transition system 1" = (5,4, L, Tran),

e 5, =05,
i, =1,
o L.=LU{x},

o Tran, = Tran U {(s,*,s)/s € S}.

It basically adds idle transitions to each state of an automaton. Now, a mor-
phism f = (o, A) (with X a total function) from (75). to (71 )« such that A(x) =
is the same as a partial morphism f’ from Ty to T} by identifying * with “
defined”. Conversely, a partial morphism f = (o,A) from Ty to Ty can be
identified with f. = (o, A,), Ax(z) = * if and only if A(z) is undefined (look at
Figure 1.2 for an example). It is then obvious that the categorical constructions
with partial morphisms will be the same as the categorical constructions with
(total) morphisms on “lifted” transition systems.

For the sake of simplicity, we will not use these extensions to our “total” mor-
phisms, though we will make an attempt to add them in Chapter 10. We
write TS for the category of transition systems with “total” morphisms. We
name 15,4 its subcategory where we restrict to transition systems labeled on
an alphabet A.

One of the aspects of the classification of concurrent models of [SNW94] deals
directly with concurrency. Some models are only simulating concurrency and
are called interleaving models whereas others distinguish concurrent executions
from simulations on a one processor machine and are called non-interleaving or
truly concurrent models. In transition systems, one can simulate the parallel
execution of two actions @ and b as the “interleaving” « then b or b then a
(see Figure 1.3). Interleaving models rely on the notion of indivisible or atomic
actions, which makes them unsatisfactory for practical use where we would like
to be able to abstract away processes from unnecessary details at first, and
then refine the semantics when we ask for more precision. Interleaving models
are compelled to detail every part of a program execution [vGG89]. Moreover,
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Figure 1.2: A partial morphism of transition systems and its corresponding

total morphism

Partial f Z

Totd f’

Figure 1.3: Transition system obtained by interleaving two actions
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interleaving models are not suited for giving semantics to most distributed pro-
grams since equating all the possible executions with some linear ordering of
atomic actions means imposing a global clock as a ruler of the system. Finally,
no possible discussion of the allocation of processes on the processors is pos-
sible since all executions in the interleaving approach are equivalent to some
execution on a one processor machine.

The answer to this last problem is not quite given by all truly concurrent
methods as we will show in Chapter 3. We really have to define a level of
parallelism as well as a level of mutual exclusion. We propose here to refine
this third axis in the classification of Winskel et al. [SNW94] into a real “level
of parallelism/level of mutual exclusion” axis. Let us first review some of the
truly-concurrent transition systems.

1.1.2 Asynchronous transition systems

Asynchronous transition systems were introduced independently in [Bed88] and
[Shi85]. They can be thought of as generalizations of Mazurkiewicz trace lan-
guages to be discussed in Section 1.2.2. The important thing is that they
actually do distinguish between the interleaving of two actions and their truly-
concurrent execution. This is coded using a binary independence relation. The
following definition is taken from [WN94].

Definition 4 An asynchronous transition system is (5,1, .1, Tran) where
- (9,1,F,Tran) is a transition system and

- I C E X FE is an irreflexive symmetric relation (the “independence” relation)
such that,

(1) ec F = 38,8’ c S,(S,e,s’) c Tran
(2) (s,e,s') €Tran A (s,e,s") € Tran = s' = "

(8) erleg A (s,e1,51) € Tran A (s,eq,s2) € Tran = Ju,(s1,ez,u) € Tran A
(s2,e1,u) € Tran

(4) erles A (s,e1,81) € Tran A (sy,ez,u) € Tran = Is2,(8,€2,82) € Tran A
(s2,e1,u) € Tran

In the following, we actually relax condition (1) stating that all events should
be used.

Condition (2) says that the underlying transition system should be deterministic
(e could not be a random generator). Conditions (3) and (4) are pictured
respectively in Figures 1.4 and 1.5. They deal with the confluence of transitions
coming from independent actions. Many different conditions of this kind can be
studied. The next section deals with one of the possible refinements of those.

Morphisms f are then morphisms of transition systems preserving the indepen-
dence relation I, i.e.

alb = f(a)I'f(b)
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Figure 1.4: Condition (3) for asynchronous transition systems

This makes asynchronous transition systems into a category, written ATS.
The category of asynchronous transition systems over an alphabet F is named
AT SE.

1.1.3 Trace automata

Trace automata are very similar to, but slightly more general than the “for-
ward stable asynchronous systems” of [Bed88], an instance of the asynchronous
transition systems of the last section. They have been mostly used for giving
operational models for non-deterministic dataflow networks [Kah74, KM77].

Definition 5 A trace automaton is a tuple A = (F,Q,T) where,

o F is a concurrent alphabet, i.e. a set of events equipped with a symmetric,
irreflexive binary relation ||g called the concurrency relation,

e () is a set of states,

o ' C QX (EU{e}) xQ is a set of transitions. Transitions are pictured
the usual way with arrows.

These data are required to satisfy the following conditions,

o ¢=rifand only if ¢ =r,

o ifq>rand q > v then v =1’ (similar to condition (2) of asynchronous
transition systems),
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Figure 1.6: Permutation equivalence and residuals

bla aAb  reidues

Permutation Strong confluence

e for all states q and events a, b, if a||gb, ¢ = 7 and q L then for some

state p there exist transitions s = p and r 2 p (similar to condition (3)
of asynchronous transition systems).

We can define a notion of permutation equivalence on traces of these trace
automata. This equivalence equates traces which are “essentially the same”.
As a matter of fact, when two actions @ and b are independent, i.e. a||gb then ab
and ba are just two sequential views of the same parallel execution, and therefore
should be equated. This equivalence is defined as the least congruence ~ with

respect to concatenation of finite traces such that ¢ = r LA pand ¢ LA p are
~-related if a||gb. We will see again such equivalence relations between traces
later on (Chapter 7). They are related to scheduling problems in concurrent
systems and serializability.

The quotient of the traces by ~ with the internal law induced by concatenation
is a partially commutative monoid (as we will see in Mazurkiewitz trace the-
ory). The permutation equivalence is actually generated by the more interesting
permutation preorder defined as follows.

If C is the inclusion of traces then define the permutation preorder C to be
the transitive closure of C U ~. The set of equivalence classes of traces of a
trace automata with the permutation preorder is then a Scott domain, and even
an event domain (a domain of configuration of an event structure, see Section
1.2.1). This gives a relation with the models of A-calculus [Bar84].

Operationally, this view can be refined with the notion of residual. Given two
traces t and u which begin at the same state, the residual of ¢ by u is what
is left of ¢ after the part of u that overlaps with it has been “cancelled”. In
particular, ¢ C u if and only if the residual of ¢ by u is essentially nothing (an
identity in the formalization of the following section).

Again it has much of the flavour of the residuals of A-calculus as defined in [L78]
which were designed to help understand confluence (look at Figure 1.6). The
residual operation has been formalized and leads to the concurrent transition
systems of next section.
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1.1.4 Concurrent transition systems

These were introduced as a truly-concurrent operational model for concurrency
in [Sta89].

Definition 6 A concurrent transition system (C'TS) is a structure (G, ) where,

o (G =(0,A,dom,cod,id) is a graph with identities i.e.,

— O is the set of proper states,

— A is the set of proper transitions,

— dom : A — O maps transitions to their start states,
— cod : A — O maps transitions to their final states,

—id : O — A maps each s € O to a distinguished transition (the
idle transitions of section 1.1.1) ids such that dom(ids) = s and
cod(ids) = s.

o |: Coin(G#) — A# is the residual operation where,
— G# is the augmented graph (0%, A* dom, cod,id) with,
* O% = 0 U{Q} (Q does not belong to O ),
* A% = AU {w,/q € O%}, dom(w,) = q, cod(w,) = Q.

— Coin(X) (where X is a graph) is the set of coinitial transitions, i.e.
the set of pairs (t,u) of transitions t, u of X which have the same
start states.

subject to the following conditions,

(1) for allt € A* and u € A# (see Figure 1.6),
(a) dom(t ] u) = cod(u),
(b) cod(t | u)=cod(ult).
(2) forallt:q—rc A%,
(a) id, | t = id,,
(b) t1id, =1,
(c) t1t=1id,.
(3) for all coinitial t, w, v in A%, (v 1) T (ult)=(v7]u | (t] u) (the

“cube axiom”, see Figure 1.7)

(4) for all coinitial t, u in A¥, if t T u and u | t are both identities then
t = u.

Coinitial transitions ¢, u of a C'TS are called consistent if ¢ T u is a proper
transition (i.e. is in A and not in A%).

As usual, morphisms are simulations,
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Figure 1.7: Cube axiom

t) A (u by
u) A (thu)

Definition 7 A morphism of concurrent transition systems is a pair of maps

p=(po,pa):(0,A,dom,cod,id, ) — (O', A',dom/ cod',id',1") such that,

¢ po: 0 — O and py : A — A’ are functions such that dom’ o py =
po odom, cod ops = poocod and p4 oid = id' o po (simulation of the
underlying state transition graph, a “total morphism” of Section 1.1),

o ift, u are consistent proper transitions of C' then p(t 1 u) = p(t) 1" p(u).

We extend morphisms to non-proper transitions by taking p(w,) = Wo(q)-

This makes concurrent transition systems into a category we denote CT'S5.

1.1.5 Transition systems with independence

Transition systems with independence are transition systems enriched with a
notion of concurrency in order to model true concurrency. This model has
been introduced in [SNW94] and can be considered as a variation of such deco-
rated transition systems as concurrent automata [Sta89] or asynchronous tran-
sition systems [Bed88]. We recall their formal definition, which can be found
in [SNWO94] or [WNO94]. The independence relation between actions is now a
function of the state as well. This refines a lot the precision of the model.

Definition 8 A transition system with independence is a structure (S,SI,L,
Tran,I) where (S,s', L, Tran) is a transition system and I C Tran?® is an
wrreflexive, symmetric relation such that

(i) (s,a,8) ~ (s,a,8") = s = §" (condition (2) of asynchronous transition
systems),
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(i) (s,a,s)I(s,b,s") = Fu(s,a,s)(s" b,u) A (s,b,s")I(s",a,u) (similar to
condition (3) of asynchronous transition systems),

(iii) (s,a,s")I(s',b,u) = 3s"(s,a,s)1(s,b,5") A (s,b,5")(s",a,u) (similar to
condition (4) of asynchronous transition systems),

(iv) (s,a,8) ~ (" a,u)[(w,b,w") = (s,a,s")[(w,b,w).
where ~ is least equivalence on transitions including the relation R defined by,

(s,a,8VI(s,b,8") and
(s,a,s\R(s",a,u) & < (s,a,s)(s,b,u) and
(s,b,8VI(s",a,u)

Morphisms are defined as being the total morphisms defined in [SNW94]: these
are morphisms of the underlying transition system which preserve indepen-
dence, i.e., pair of maps (o,A) with o, a map between states, and A a map
between labels such that

o (s,a,8) € Tran = (o(s),ANa),o(s")) € Tran’
o (5,0,8)(5,6,5) = (a(s), Ma),0(s)[(0(5), A(b), o(F))

We call T'ST the category of transition systems with independence with total
morphisms.

Now, to be complete, we review the Petri nets model as they are system models
and truly concurrent models of concurrency, as all these transition systems.
They can be thought of as “distributed transition systems”. This view has
been taken in [DDNMS88] in order to give a truly concurrent semantics of CCS
(Section 1.3) using Petri nets.

1.1.6 Petri nets

If they can be considered as distributed systems, the formalism they rely on is
quite different and is based on a “token game”.

Definition 9 A Petri net N = (P, T, pre, post) consists of,

e P is a set of places,
o T is a set of transitions,

o pre: T — P is the pre-condition map, where P denotes the set of mullisets

of P,

e post : T — P is the post-condition map.
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Figure 1.8: A Petri net graphical representation: mutual exclusion between «a

and b

The places represent resources which might be used by one or more processes.
This is formalized by the notion of marking. A marking is a multiset of places.

The pre-condition map describes how transitions “consume” resources and the
post-condition map shows how transitions “create” new resources. This defines
a transition relation between markings. If M and M’ are two markings of some
net N, and ¢ is a transition of N we write M[t) M’ for “¢ fires from M to M’
if and only if

AM" € M, M = M" + pre(t) and post(t) + M" = M’

Petri nets are generally represented graphically (see Figure 1.8 and Figure 1.9)
as follows,

e places are circles,
¢ transitions are squares,

e arcs from places to transitions with a suitable multiplicity are used to
represent the pre-condition map,

e arcs from transitions to places (again with multiplicity) represent the
post-condition map,

e markings are tokens put in suitable places.

As many of the models we have already discussed, Petri nets exist in several ver-
sions. The one we have just defined is very often called P/T nets, standing for
Place/Transition nets. A particular case of it is C/E nets, i.e. Condition/Event
nets. Places are now conditions which can only be true or false. True is iden-
tified with one token, and false with no token occupying a place. Therefore,
C/E nets are particular P/T nets in which there can be at most one token per
condition. A special case of C/E nets is an occurence net. It is a C/E net in
which a transition can only be fired exactly once.

P/T, C/E and occurence nets can be made into categories with the notion of
morphism that we define below.
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Figure 1.9: A Petri net graphical representation: truly concurrent execution of

O O

a and b

O, O,

All Petri nets we consider now will be given with an initial marking My, so
that we write a net as N = (P, T, My, pre, post). Following [WN94] we define
morphisms to be maps preserving initial markings and events when defined.

Definition 10 Let N = (P, T, My, pre,post) and N = (B, M}, F’, pre’, post’)
be two nets. A morphism f: N — N’ consists of,

o a relation § C B x B’ such that 5°° is a partial function from B' to B,
e a partial function n: E — FE' such that,
- ﬁMO = M(/J)
— [opre(e) = preonle),
— [ o post(e) = post o n(e).
As usual in this chapter, we restrict to morphisms which are total functions.
This means that 8 and 7 in the above definition are total functions. We have
an isomorphic category of Petri nets if all nets are “lifted” by adding an idle
event * with pre(x) = post(x) = 0.
As a direct consequence of the definition, morphisms preserve the transition
relation i.e. if M[e)M'in N then SM[n(e))M"in N'.
The category of Petri nets with morphisms described as in Definition 10 is
named PN, the one with total morphisms is PN;.

Petri nets have inspired most of the event based models. We present a few of
them below.

1.2 Behavioural models

1.2.1 Event structures

Event structures describe a concurrent system through the occurrence of some
events, like “some action has taken place”, “the state of the machine has been
changed” etc. This is done through a partial ordering < on the set of events F.
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When two events are not related by <, they are candidates for being executed
in parallel, since no event has to precede the other. To be able to model mutual
exclusions as well, we use a conflict relation # between events. eg#teq if and
only if eg and ey cannot take place at the same moment.

Then events eg and ey are truly concurrent when one is not before the other and
if they are not in conflict. This can be written in symbols as a “concurrency”
relation co:

(eg coe1) iff not ((eg < e1) or (e1 < eg) or (eg#ter))
The formal definition is as follows,

Definition 11 A prime event structure is a structure (F,<,#) where F is
a set of events partially ordered by < called the causal dependency relation
and where # C F X E is a symmelric irreflexive relation, the conflict relation
satisfying,

o {€'/e' < e} is finite (axiom of “finite causes”),

o e#te and ' < €' implies e#te’ (conflict is hereditary).

A labeled event structure (£, <,#,[, L)is composed of an event structure (F, <
,#), a set of labels I and a labelling function [ : £ — L.

Then morphisms of event structures are defined as follows.

Definition 12 Let § = {E,<,#} and 5" = {FE', <, #'} be event structures.
A morphism of event structures from S to S’ is a partial function f: E — E’
such that,

o if f(e) is defined then {€'/e’ < f(e)} C f({e"/e" < e},
o if f(eg) and f(e1) are both defined then f(eo)#f(e1) or f(eg) = f(e1)

implies eg#te or eg = eq.

Here again, we can restrict to “total” morphisms, i.e. to functions f: K — F’
such that,

o {e'/e < fle)} C f({e"/e" < €}),
o f(eg)# f(er)or f(eg) = f(er) implies eg#er or eg = e7.
Morphisms of labeled event structures are pairs
(7,A): (£o, <o, F#o0,lo, Lo) — (E1, <1, #1, 11, L)

such that 7 is a morphism of event structures from (Eo, <o, #0) to (F1, <1, #1)
and A : Lo — L1 is a function satisfying Aolg =1 o 9.

This forms the category LIS of labeled event structures.
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This is the first “non-operational” model of concurrency we have been consid-
ering. But it is actually quite easy to recover the operational intuition in the
event based models. We only have to collect “compatible” events, linearly or-
dered by the time at which they may happen. This leads to the definition of
configurations.

Let (F,<,#) be an event structure. Its set of configurations D(E, <, #) is the
set of those subsets # C F which are,

o conflict-free: for all e, ¢’ € , e is not in conflict with ¢/,

e downwards-closed: for all e,¢’, e € # and €' < e implies ¢’ € ©

Following [WN94] we write D(E, <, #) for the set of finite configurations.

Now the notion of causal dependency in an execution of an event structure is
given through the “enabledness” relation.

Let e € F and ¢ € D(F, <,#) then we say that e is enabled at a configuration
¢, written ¢ F e if,

(i) ed e,
(ii) {e'/e' <ene #e} Ce,
(iii) ¢’ € IV and e'#e implies ¢’ € ¢

Finite configurations are traces when we linearly order their elements by causal
dependency. {e1 < eg < ...< €,}is a securingfor cif and only if {ey,...,e;_1} F
e; for e = 1,...,n. We write also securings as strings e; ...e;.

Events are one side of a duality [Pra92] for which automata are the other side.
A general framework in which automata and schedules (event based models) fit

very nicely has been recently introduced by Vaughn Pratt under the name of
Chu spaces [Pra94a, Pra94b].

The event structures we have defined are not the most general event structures
described in the literature, and the discussion about configurations gives us
the generalization we are looking for. The most general ones are as follows.
Instead of reasonning only on partial orders of events, we consider directly
partial histories, i.e. finite consistent sets of events. This is described by Con
in the following definition. C'on also takes the information about conflicts into
account so we do not need the # relation any longer. But the dynamics has to
be described now. It is addressed by the enabling relation |=.

Definition 13 [Win88] An event structure is a triple (F,Con, |=) where,

o F is a set of events,

o Con is a nonempty set of finite subsets of F, called the consistency pred-
icate which satisfies,

XelConANY CX =Y ec(Con
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Figure 1.10: A parallel switch
switch 0 bulb

switch 1

Figure 1.11: Configurations of events for the parallel switch example

{0,1,b}

{0,b} {1,b}

{0} {1}

e =C Con x FE is the enabling relation which satisfies,

XEFeAXCYAYeCon=Y e

What have we gained now?

It can be shown in a very precise manner [Win88] that these event structures are
more general in the sense that an event can now be enabled in different ways.
An event can be caused by more than one configuration (see Figure 1.10 and
Figure 1.11). We say that event structures can exhibit OR causality whereas
prime event structures cannot.

This is a problem most of the models for concurrency based on partial orders
have (like pomsets [Pra86] etc.). They can exhibit AND causality, i.e. an event
can only occur if and only if some other events have all occured before. This
distinction between AND and OR causality was used in [Gun92] to analyse
Milner’s notion of confluence (closer to our notion of serializability than to the
standard notion of confluence on transition systems). In short, Confluence =
Determinism+{AND,OR} Causality (here determinism is the “determinacy” of
Milner, [Mil83]).

Technically, prime event structures have the same domains of configurations
(the finitary prime algebraic domains) as the so-called stable event structures.
These are event structures (F,Con, =) for which there is a partial order of
causal dependency on each configuration. They satisfy the following stability
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axiom which ensures that there is always a minimal set of event occurrences
enabling any event,

XEFeAnYEernXUuYU{eleCon= XNY |=e

It is not a surprise that the domains of configurations of stable event structures
are isomorphic to the dI-domains of Berry [Ber79] since the latter arose in the
context of the search for a precise definition of sequentiality. As a matter of
fact, one of the ancestors of event structures were precisely the concrete data
structures of Kahn and Plotkin used to define domains of “sequential” functions
(see [Cur86, BC82] for a survey).

Then, as in the sequential case, some models can be [inear time or branching
time i.e. some models express only deterministic behaviours while other distin-
guishes the time when (non-deterministic) choices are made. The event based,
the transition based models and the Petri nets models above are all branching
time as well as synchronization trees whereas among the trace based models
only the Mazurkiewitz traces and Hoare languages are linear time.

We define below a generalised version of Mazurkiewitz trace languages as can

be found in [WN94].

1.2.2 Mazurkiewitz traces

In this section, we slightly generalize the asynchronous transition systems in
order to allow the “independence” relation to vary according to the local state
of the machine. In the literature, this has not been developed for transition
systems (except in 1°'S1T) but rather on the language side of the automata theory,
i.e. the Mazurkiewitz trace theory. We introduce the generalization as it has

first been done in [SNW94].

Definition 14 A generalized trace language is a triple (M, I, L) where,
o L is a set of symbols,
o M C L,

o I: M — 2V%F s a function which associates to each s € M a relation
I, CLxL.

such that, if we define = to be the least equivalence relation on L* such that
sabu =2 sbau if algb, and,

forall s € M, I, is symmetric and irreflexive,

(I is consistent) s = s implies I, = Iy,

(M is I-closed) alsb implies sab € M,

(I is coherent)

(i) alsb and alge and clz b implies alg.b,
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(i1) alsc and clsb implies (algb if and only if alsb).

Definition 15 Let (M, I, L) and (M',I', L") be generalized trace languages. A
partial function A : L — L' defines a morphism from (M,I, L) to (M',I', L") if
and only if,

o ) preserves words: s € M implies \*(s) € M’,

e )\ respects independence:
alsb and Ma), A(b) are defined implies /\(a)Ig*(s)/\(b) where \* is an ex-
tension of A on words defined as follows,

o A*(6) =€,
_ x(sa) = { N($)Ma) if Ma) is defined

A*(s) otherwise

They form the category GI'L,,. It is proven in [SNW94] that GT' L, is equivalent
to the category of deterministic labeled event structure defined in the previous
section. We give an account of this proof in Section 3.4.

Once again, we restrict to the category GT'L of generalized Mazurkiewitz traces
with “total morphisms” i.e. A : L — L’ a function such that,

o )\ preserves words i.e. s € M implies A*(s) € M’,

e )\ respects independence: alsb implies /\(a)Ig*(s)/\(b) where A\* is an ex-
tension on words defined as follows,
- M(e) = ¢,
— N(sa)=1"(s)\(a)
GT Ly is the subcategory of GTL of generalized Mazurkiewitz traces on an
alphabet L.

Now, the category of Mazurkiewitz traces can be seen as a full subcategory of
GTL. Recall that a Mazurkiewitz trace language is a triple (M, I, L) where,

e L is a set of symbols,
o M C L™,
e [ is a symmetric irreflexive relation on L such that,

— I is prefix-closed: sa € M implies s € M for all s € L* and a € L,

— M is I-closed: sabt € M and alb implies that sbat € M for all
s,t € L* and all a,b € L,

— M is coherent: sa € M and sb € M and alb implies sab € M for all
s€ L*and all a,b € L

To see that Mazurkiewitz traces are a special case of generalized Mazurkiewitz
traces as the name suggests, we only have to see that I defines a constant
function from M to 28%1 satisfying axioms of Definition 14.
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1.3 Semantics of a few process algebras

There has been an attempt to define a calculus for parallel processes which
would be as foundational as A-calculus for functional computation. In some
way, this approach has not succeeded yet, but all process algebras introduced
since at least twenty years have brought a good understanding of the basic
behaviours that concurrent programs may exhibit. Some of them have even
been used to give semantics to some real concurrent languages.

We present below a small selection of these process algebras for different pur-
poses. The first one is to have a few examples of toy languages at hand for
showing how to use some of the abstract models of concurrency we have de-
scribed to give semantics. The second one is to show different paradigms for
parallel computation that will enable us to recognize or to infer some interesting
constructions in Higher-Dimensional Automata.

1.3.1 CCS

In this section we focus on pure CCS. The original language [Mil89] actually
had values, variables and channels. Pure CCS is a simplification of it in which
communications along channels are abstracted in the following way,

o we forget about actual values traveling on channels,
o we also forget the names of variables, leaving only the name of the channel,

e now, to receive a value into the variable x on channel a, i.e. alz, is
abstracted by a,

e tosend a value n on channel a, i.e. alnis abstracted by the complementary
action a.

Therefore, communication is abstracted by synchronization of an action and
a complementary action. This synchronization is “observable” through the
occurrence of an “invisible action” .

The syntax of pure CCS is now (where a ranges over actions, complementary
actions and 7, and f is a function on actions that commutes with z — 7),

t == nil (idle process)
| t1 4+t (choice operator)
| 1|t (parallel composition)
| ot (prefixing)
| t\c restriction operator
| plf] relabelling
|

rec z.t(xz) recursive agent
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Semantics The first semantics [Mil83] was given in terms of synchronization
trees (acyclic transition systems). It is very often given using SOS rules [Plo81]
describing transition systems as follows,

at et (L.1)

(83

a 7
ty +ty — ¢!

(1.2)

L —

a !
i |ty — 17 | t2

a 7
« 1.4
ty [ty — 11|t (1.4)
« o
W — ty — th

p-
ty [ty — 1) | 1

e aZcanda#¢
t\e it t'\c (16)
a !
Ay o
rec z.l[z] Y Ly
a (1.8)

t[rec z.t[x]] — 1
Rule 1.1 indicates that a.t can fire an a action at first.
Rule 1.2 shows that t; + t5 behaves as t; or t5 once and for all.
Rules 1.3 and 1.4 define ¢ | t by their interleaving.
Rule 1.5 takes care of the synchronization between complementary actions,
which when “annihilating” each other produce a silent 7 action.
The restriction operator is defined by Equation 1.6. The restriction applies
both on an action and its corresponding complementary action.

Rule 1.7 defines in an obvious manner the relabelling operator.
Finally rec z.t[x] is similar to the “infinite term” ¢[¢[...[nil]]]. This is Equation
1.8.

A “denotational” semantics can also be given in ordinary transition systems us-
ing their categorical properties. We recall here the basic categorical constructs
we have with partial morphisms of ordinary transition systems and their inter-
pretations as can be found in [WN94],
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Figure 1.12: Coproduct of two Petri nets

O O O O

e the cartesian product is a form of synchronized product plus interleaving
(those transitions with a * transition as one of their components),

o the fibered coproduct is the non-deterministic choice of CCS,
o the CCS restriction operator is obtained through a strong cartesian lifting,

o the CCS relabelling operator corresponds to a strong cocartesian lifting
construction,

o the CCS prefixing and parallel operators do not really correspond to any
categorical combinator in the category of transition systems.

A “denotational” semantics can also be given using Petri nets even if categorical
constructions in PN are not easy to find. But it is shown in [WN94] that at
least the following constructs are available,

e the coproduct of two nets is roughly the non-deterministic sum of the
nets (see Figure 1.12 and Figure 1.13 for an example). The behaviours
are really those of a non-deterministic choice only for the so called safe

nets (see [WN94]).

e the product of two nets corresponds to a synchronization of the two nets.
An example is given in Figure 1.14.

A different approach using Petri nets has been used in [DDNMS88]. The view
taken there is that Petri nets are nothing but distributed transition systems.
Then the CCS-terms are decomposed into local processes which are given a

standard kind of operational semantics. Some other approaches with Petri nets
account for subsets of CCS only as in [GM84] and [DCDMPS83].

Trying to be as complete as possible, a semantics using event structures has
been given in [Win88] and semantics using partial orderings have been given in
[DDNMS85] and [DMS87]. In [Gup94], a semantics is also given in terms of Chu
Spaces.

We will see in Chapter 5 how to give a truly-concurrent operational semantics
of CCS both in denotational and SOS form with the model we introduce in
next chapter.
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Figure 1.14: Product of two Petri nets
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1.3.2 Communicating Sequential Processes

This calculus was introduced in [Hoa85]. Several syntaxes are commonly used
(from one near Dijkstra’s GC to one resembling CCS). CSP has about the same
primitives as CCS, but the synchronization mechanism is slightly different. The
syntax of “valued” CSP is as follows,

t == «a?’X —t input on channel o and store in variable X, then do ¢

ala — ¢t output value a on channel « and then do ¢

1] t2 (parallel composition)
[:t labelling

|
|
| 10t (choice operator)
|
|

px.t(x)  recursive agent, for ¢ a guarded expression

A semantics in terms of labeled transition systems can be found in [BHR84]
and also for instance in [Win93].

In this calculus, we have chosen to represent values and variables. Therefore,
the states of the transition system will be of the form (c, o), where ¢ is a CSP
program and o is a store (i.e. a function from variables to values).

We do not go through the whole semantics of this CSP language since it is very
similar to the CCS one. We specify only the parallel operator,

A

<007 U> - <067 U/>

(coll c1,0) = (g |] e1,07)

A

(c1,0) — <C/17‘7/>

A
<CO || Clvg> - <CO || C/170/>

CSP with no values has the following syntax,

P u= SKIP | STOP | a—P |
PQ | Pn@ | PlQ |
Pll@ | P\a | repeat P

PJ|| @ denotes the interleaving of P with (). P||Q is the lockstep synchronization
of P with (). This means that this process must synchronize each action of P
and ¢ with the same name.

A denotational (truly-concurrent) semantics of CSP with no values using event
structures has also been proposed in [Win88].
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1.3.3 n=-calculus

Here, we will restrict to the monadic 7-calculus. We refer the reader to [Mil91]
for details on how to generalize this to the polyadic case.

As Robin Milner says [Mil91],

“The work on w-calculus really began with a failure, at the time I
wrote about CCS, the Calculus of Communicating Systems [Mil80].
This was the failure, in discussion with Mogens Nielsen at Aarhus
in 1979, to see how full mobility among processes could be handled
algebraically. The wish to do this was motivated partly by Hewitt’s
actor systems, which he introduced much earlier. Several years later,
Engberg and Nielsen succeeded in giving an algebraic formulation.
The w-calculus is a simplification and strengthening of their work.”

Let X be a set of names. Typical elements are z, y, etc. We use p, ¢, etc.
to range over the set P of processes. They are constructed according to the
following syntax,

p == 0 empty process
| > mi.p; sum of finitely many processes
el
| »plg parallel composition
| p replication
| wvap restriction operator

The prefixes m; in the sum above represent atomic actions which can be of the
following form,

e 2(y) means “input some name, call it y, along the link named 2",

e Ty means “output the name y along the link named z”

Before defining an operational semantics (based on ordinary transition systems)

~

we first define a structural congruence = on terms,

e processes which only differ by a change of bound names are identified,

+ and | are commutative on the equivalence classes modulo 22,

p+0=pandp|0=p,

'p=pllp,
e vz0 = 0 and vavyp = vyvap,

e if z is not a free name in p then va(p| q) = p| vag.
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As for CCS, syntactic terms will be states of the transition system, but this

~

time, they will be taken modulo the structural congruence =.

The transitions are now expressed in SOS form as follows,

(o.+a(y)p) [ (.. +Tzq) — plz/y] [ ¢

/
—

plga—171 ¢

/
b — P
vrp — vap

I~ 7

¢ =p p— p Pgq

¢—™4q

Example 1 The following example (taken from [Mil91]) exemplifies the kind
of mobility that can be achieved using the w-calculus.

Consider the terms P = 7Ty.0, () = z(u).w.0 and R = Tz.0 and the process
X=P|Q|R.

P can send y to () and R can send z to ), but not both. Therefore the two
alternatives for the result are 0 | gv.0 | Tz.0 or Ty.0 | Zv.0 | 0. R has thus
become Yv.0 or Zv.0. The communication has determined which channel R can
next use for output, y or z.

1.4 Real-time systems

By real-time system we mean here a sequential or concurrent machine whose
states depend on one or several clocks, i.e. whose evolution is constrained by
(some measures of ) time. Examples are everywhere in real life: alarm clocks,
coffee machines (which give you back your money if you are too long to choose
your beverage), “real-time languages” and of course ordinary computers, which
always have a clock to trigger signals etc.

Restricting to real-time software and languages would give a rather partial
view. In synchronous languages such as ESTEREL [BC85], LUSTRE [CHPP8&7]
and StateCharts [Har87] the execution times of actions are considered to be
insignificant with respect to the time constants of the external signals (which
are actually the inputs to the programs). This approach has many benefits. In
particular, it is much easier to design applications and to prove them correct
with respect to timed specifications.

This simpler view has much influenced the semantic models. There are but a
very few models considering that actions take time (see [Jos89] though). Here
we follow [Jos89],

“A crucial aspect of “real-ness” of many real-time systems is
that they have a limited set of computational resources such as
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processors, memory, channels etc. whose use must be scheduled
appropriately for the real-time program to meet its deadlines. In
these cases, the real-time program must be seen as a concurrent
program which is executed on a system with limited resources and
it is necessary for the limitations to be represented in the associated
semantic models.”

Models of real-time

In [Hen91], real-time models were considered good enough if they were refin-

able,

digitizable, and operational. This means in particular that we should

be able to look at a real-time system at different levels of precision (this rules
out formalisms depending on a base of time) and that its description should be

based on systems of transitions. We focus on these kinds of models below.

Timed transition systems [HMP93] assume a global fictitious real-valued

clock. They are based on ordinary transition systems on which they add re-

quirements about the minimal and maximal delays between which actions have
to be enabled in order to be fired. In this model, transitions take no time.
Formally, a Timed Transition System (TTS)is S = (9,¢, £, Tran,l,u) where,

(5,4, E,Tran) is a transition system?,
lis a collection [, € IN of minimal delays for actions 7 € F,

u is a collection u, € IN U {oo} of maximal delays for actions 7 € £

Traces, called timed execution sequences in [HMP93] are sequences (o, T;)ie,
o; € S and T; € IR such that,

(0i)ienN is a trace of the underlying transition system,

“time never decreases” i.e.
Vie N, (Tiy1 =T5)V (Tig1 > Ti) A (0141 = 07))

“time diverges” i.e.
VteR,3i>0,T, >t

“a transition 7 has to be enabled at least [, time units in order to be
fired” i.e. for every transition 7 € £/ and ¢ > 0,7 > with T; < T; 4+ 1;, if
7 is taken at position j of ¢ then 7 is enabled on oy,

“a transition 7 cannot be enabled for more than w, time units without
being taken” i.e. for every transition 7 € F and ¢ > 0, there exists j > ¢
with T; < T; 4 u, such that either 7 is not enabled on o; or 7 is taken at
position j of o.

*In fact it has been introduced in a different way in [HMP93] where states are assignments
of values to variables. The transition system is also required to contain all idle transitions,

i.e. transitions from state s to s, for any s.
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Figure 1.15: A timed Biichi automaton

b,(x<2)?

Timed automata [AD91] generalize finite state machines over infinite strings.
They consist mainly of finite sets of locations and finite sets of real-valued
clocks. Again, transitions take no time and states are waiting periods for clock
constraints to be satisfied.

Formally, if X is a set of clocks, we define the set ®(X) of clock constraints ¢
inductively as follows,

bi=ax<cle<a|=b|b Ny

where z is a clock in X and ¢ is a constant in the time domain.
Then a timed transition table is a tuple (X, 5, 5o, C, E) where,

e Y is a finite alphabet,

e 5 is a finite set of states,

e 59 C 5 is a set of start states,
e (' is a finite set of clocks and,

e EC S x5 xYx29x®(C)gives the set of transitions.

FEdges, or transitions, are (s,s’,a,A,6) € E going from state s to state s’ on
input symbol a. A C C' gives the clocks to be reset with this transition and é
is a clock constraint over . Several kinds of accepting criteria can be given:
Biichi, Muller etc. to these automata. Then they accept timed languages
which are pairs of a language of the underlying untimed automaton and timing
constraints (see Figure 1.15) which accepts the language {((ab)¥,7)/3i,Vj >
7, (TQj < Tgi-1+ 2})

Finally, a very general and quite ad hoc model® for real-time systems advocated
by Leslie Lamport [AL91a] consists in using TLA (Temporal Logics of Actions)
as a base for specifying (and verifying) programs and in adding a new variable,
now, denoting the value of the global clock. This is more a coding than anything
else. In particular, extra-TLA formulas are necessary to describe the essential

properties of now and some problems about non-Zenoness are difficult to solve
(see the discussion in [AL91al).

As we have seen, most of the semantic models for real-time systems assume
that transitions do not take time, and states bear time changes. This view has

®Even if it is not directly based on transition systems, this model has strong connections
with operational semantics in general.
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deeply influenced the numerous process algebras that have appeared in the last
few years. Before choosing one which will exemplify the use of timed higher-
dimensional automata for giving semantics to toy languages, we review some of
them as well as discuss their differences. We will follow the very good survey
[NS92] as a basis for discussion.

All process algebras rely on a “two-phase functioning scheme”. This means that
their executions alternate from a synchronous part where all the components
agree for the time to progress to an asynchronous part during which the progress
of time is blocked. This view, which might be close to the “real” behaviour of
some hybrid systems lead to technical difficulties hiding some of the real issues
of real-time systems modeling. In particular deadlock-freeness, i.e. the fact
that no process can block the progress of time is a technical difficulty of the
semantical model and is certainly not an actual property of interest for real-time
systems.

Some of the real-time process algebras are simple extensions of well-known
untimed process algebras,

e T'C'SP [RR88a, Sch91, DS89] is a simple extension of CSP [Hoa85] with

— a delay operator ¢.P (it behaves as P after exactly ¢ time units),

— a weak timeout operator: behaves as P and then executes () after d
time units.

o TeCCS [MTI0], TiCCS [Yi90] are extension s of CCS [Mil89] with

a time-lock 0 (for TeC'CS),

a delay operator which we write (¢).P (for both): it behaves as P
after exactly d time units,

unbounded idling: § P can act as P after any amount of time (for

TeCCS),
— a prefixing operator «@uv P which executes a and then behaves as P
with the time variable v by any time (7:C'C'S).
o ACP, [BB90] based on ACP [BK84] with

— §(d) a time-lock at time d,

— time-stamped actions: absolute stamps like a(d) performing action
a at time d or relative ones like a[d] (d € IR ) performing action a d
time units after the previous action has been performed,

— an integral operator [ ., P(v) which behaves as P with the time
variable v replaced by any value of V.

e ATP [NRSV90] with

— unbounded idling: | P|“ may perform actions from P oridle as much
as it wants,
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— a start-delay operator: |P|%(Q) behaves as P for at most d time
units and then executes ().

e TPL [HRI1] with
— a delay operator (¢).P: it behaves as P after exactly ¢ time units,
e U —LOTOS [BL91] with

— a delay operator (¢).P: it behaves as P after exactly ¢ time units,

— an operator asap (as soon as possible). It enforces the urgency of a
set of actions in the whole execution of a process.

All of them are “deadlock-free” in the sense that no process can block the
progress of time, except in ACP,, TeC'CS and U — LOTOS in which “time
locks” are used to detect inconsistencies in specifications.

All of them have also the “action urgency” property. This means that some
actions must be fired without delay. In TCSP, TiCCS and T PL these are
only the invisible actions.

TCSP, TiCCS and U — LOTOS are the only ones which satisfy the counter-
intuitive “persistency” property, i.e. the fact that the progress of time cannot
suppress the ability to perform an action.

Finally, only T'C'S P has the “finite-variability” [BKP86] or “non-Zenoness” or
“well-timed—ness” property. This prevents any Zeno process to be representable
in that only finitely many actions can be performed in a finite time interval. It
is realized at the expense of a complicated theory by enforcing a system delay
between two actions of a sequential process.

We will propose a model for real-time systems based on a truly concurrent
operational model in Chapter 11 which does not need complicated assumptions
on time to describe plausible timed behaviours.

Summary We have described some of the models of concurrency that are used
for giving semantics to languages and for the description of the basic concepts
of concurrency theory. In particular, we have focused on the operational mod-
els for true concurrency, i.e. those models which have actions as basic bricks
and which distinguish non-determinism from concurrency. In order to be as
complete as possible, we have followed the classification of [WN94] around the
notions interleaving/truly-concurrent, behaviour/model and linear/branching.
We will follow in the next chapters their use of category theory for compar-
ing models and constructing process algebras from the structure of the models.
Other views on the notion of morphism can be put forward [Abr93a, Abr93b],
this should be applied to the HDA model in some future work. We have also
written some examples of the use of these models of concurrency for giving
semantics to toy languages, like the process algebras CCS and CSP. We have
ended this survey chapter by discussing some of the extensions of classical se-
mantic models to deal with real-time systems. We will also propose an extension
of the HDA model to real-time HDA in the last chapter of this thesis.
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Chapter 2

An introduction to Higher
Dimensional Automata

2.1 Introduction

Geometry has been suggested as a tool for modeling concurrency using higher-
dimensio—nal objects to describe the concurrent execution of processes. This
contrasts with earlier models based on interleaving of computation steps to
capture all possible behaviours of a concurrent system. Such models must nec-
essarily commit themselves to a specific choice of atomic action which makes
them unable to distinguish between the execution of two truly concurrent ac-
tions and of two mutually exclusive actions as these are both modeled by their
interleaving. This constrasts also with models of true concurrency for which
the asynchronous executions are not “first-class” transitions. This was the case
of asynchronous transition systems (see Chapter 1) for which we have an inde-
pendence relation but no notion of “real” asynchronous execution.

In [Pra91b] and [vG91] Pratt and van Glabbeek advocate a model of concur-
rency based on geometry and in particular on the notion of a higher—dimensional
automaton (HDA). Higher-dimensional automata are generalizations of the
usual non-deterministic finite automata as described in e.g. [HU79]. The basic
idea is to use the higher dimensions to represent the concurrent execution of
processes. Thus for two processes, a and b, we model the mutually exclusive
execution of @ and b by the automaton

S3
N
S1 59
S
S0

whereas their concurrent execution is modeled by including the two—dimensional
surface delineated by the (one-dimensional) a— and b-transitions as a transition
in the automaton. This is pictured as

71
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$3
VN
$1 ab S
N
S0

A computation is a path in this higher—dimensional automaton.

We begin by giving a first combinatorial description of HDA under the name
“semi-regular HDA”. They are very practical since their definition is very sim-
ple. However they are not powerful enough for us to speak about some impor-
tant geometric properties of the computations.

As a matter of fact, several properties of computational relevance are deter-
mined by the topology of the HDA. For example a HDA is deterministic if for
any two paths in the automaton one can be transformed into the other in a
continuous fashion, i.e. non—determinism arises from holes in the automaton
that prevent the transformation of one path into another. Furthermore certain
differences in the topologies of two HDA imply that a computation is possible
in one HDA but not the other, i.e. information about the topology of HDA can
be used to answer questions about, for instance, bisimulation (see Section 6.5)
between the HDA. To be able to speak about all these properties, we have to
introduce the notion of general HDA. We add up a few useful decorations, like
labelling at the end of this chapter.

2.2 Basic definitions

Here we present two algebraic formalizations of the “geometric” transition sys-
tems we are interested in. These are inspired by many well-known mathemat-
ical techniques from algebraic topology and homological algebra so we present
a short note first for mathematically oriented readers.

The first model, called semi-regular HDA has its direct inspiration in the sim-
plicial techniques for describing geometric shapes. The name itself comes from
the so-called “semi-simplicial complexes” [HW60] since we have only face op-
erators and no degeneracy ones. Instead of using simplicial complexes, we use
cubical ones (like in [Ser51]). Mathematicians will note that here we are really
interested in the combinatorial complex itself and not just as a tool to com-
pute invariants of some geometrical shape. This view will be postponed until
Section 2.2.4 where the cubical complex generates a double complex. Logicians
and category theoreticians will easily recognize that this combinatorial model
is an instance of what is called a topos, or an “intuitionistic set theory”.

The second one, called general HDA is the fully algebraic treatment of the
combinatorial structure of the semi-regular HDA. This means that the combi-
natorics is made hidden by looking at some induced “weak” double complex
structure, but some of the geometric characteristics of the HDA are made ap-
parent through homology functors. The aim of the remaining chapters will then
be to show why these notions are of importance in computer science.
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2.2.1 Semi-regular HDA

We begin by presenting a very simple geometric model for true concurrency,
based on ideas by Vaughan Pratt and Rob van Glabbeek [Pradlb, vG91] and
formalized in different ways in [Gou93, GJ92].

Operational models for concurrency start with (ordinary) transition systems
as we have seen in Chapter 1. This definition has already some geometry
in it since we are all used to represent them as arrows (transitions) between
states (points or small circles). But this does not provide us with a semantics
stable by refinement [vGG89] nor does it distinguish non-determinism from
truly concurrent (or asynchronous) execution.

As we have seen, a possible answer is to decorate the transition systems with
some relation prescribing the independence of some actions (or transitions).
This can be done in more than one way; just to mention a few: asynchronous
transition systems [Bed88, Shi85], concurrent automata [Sta89] and transition
systems with independence [WN94]. We comment on the former only and refer
the reader to Chapter 1 for a detailed discussion of these operational models.

The decoration (the independence relation /') added to ordinary transition sys-
tems is enough to make the distinction between non-determinism and true
concurrency. Suitable refinement operators can be defined as well on these
structures.

There is a slight problem though. The level of parallelism is not defined in a very
precise manner. This is due to the fact that the independence relation is only a
binary one. We can interpret “alb and blc and cla” once and for all as either
“a, band ¢ can be run asynchronously” (mazimal parallelism assumption) or “no
more than two among the three actions @, b and ¢ can be run asynchronously”
(minimal parallelism assumption). We insist on the “once and for all” in the
last sentence, since changing the interpretation of the independence relation for
different transition systems would amount to assume implicit (external to the
model) conventions. We come back to these interpretation issues in Chapter 3.

Of course, a straightforward generalization would be to replace the binary re-
lation I by an n-ary relation. This could be done (though we do not have any
pointers in the literature) but we have in mind to be able to add some features
to our model like real-time (Part V) and the generalization then seems too
complicated.

This problem can be tackled if we get back to our geometric intuition. Things
have been made overly unnatural by adding an object (the independence rela-
tion) which is not of the same nature as transitions and states. Just think of
alb as an abstraction of all possible asynchronous executions of a and b. As in
[Pra91b], this can be pictured as the filled-in square at the right-hand side of
Figure 2.1, distinguishing it in a striking manner with the interleaving at the
left-hand side of the same figure. Notice that geometrically, the interior of the
square consists of the union of all paths where executions of @ and b overlap
“in time” (middle picture of Figure 2.1). Time already makes its way into the
model, though not quantified yet.

As a direct generalization, asynchronous execution of n transitions give rise
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Figure 2.1: Non-determinism (i) versus overlap in time (ii) abstracted by a
transition of dimension 2 (iii).

() (i) (i)

to hypercubes of dimension n, called n-transitions (ordinary transitions are 1-
transitions, states are O-transitions). Interestingly enough, all this has a very
neat algebraic formulation.

We present the geometric shapes we are interested in as unions of points, seg-
ments, squares,..., hypercubes, i.e., as collections of n-transitions (n € IN).
We glue them together by means of boundary relations (see Figure 2.2), given
by two boundary operators: d°, the start boundary operator and d' the end
boundary operator. They generalize the source and target functions for ordi-
nary automarta.

Consider first a segment,

1

0 ——1

The object of dimension one I has as source boundary d°(I) = 0, and as target
boundary d'(I) = 1. What should we do for the square?

(0,0) = (0,1)
oA v
(1,0) = (1,1)

This corresponds to the asynchronous execution of actions a and b (a’ and ¥’
are copies of transitions of label ¢ and b respectively). The object of dimension
2 “interior of the square” A should certainly have two source boundaries, up to
the order on {a,b}, dj(A) = a and dj(A) = b since from state (0,0) we can fire
a and b. Similarly, it should have two target boundary operators dj(A) = o’
and di(A) = b since from the parallel execution of a and b (represented by
A) we can first end action a (giving “residue” ') or action b (giving “residue”
a’). We will see this again when speaking about paths. Notice that with this
ordering on vertices, we have, d°(d§(A)) = (0,0) = d°(dJ(A)) and d*(d9(A)) =
(1,0) = d%(dg(A)).

This generalizes easily to the cube,
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(0,1,1) —— (1,1,1)

The object of dimension 3, “interior of the cube” D, has three source bound-
aries, the three faces containing (0,0,0), and three target boundaries, the three
faces containing (1,1, 1).

Let A, B and C be the faces (respectively)
((0,0,0),(1,0,0),(0,0,1),(1,0,1))

((0,0,0),(0,1,0),(0,0,1),(0,1,1))
((0,0,0),(1,0,0),(0,1,0),(1,1,0))

Let A’, B’ and C’ the faces parallel to A, B and C respectively.
Set d3(D) = A, d}(D)= B, d}(D)=C and d}(D)= A’, di(D) = B, d}(D) =
C'. Then d3(A) = b, d)(A) = ¢, &J(B) = a, d)(A) = ¢, d}(C) = a, d)(C) = b.
We verify that,

d;(d5(D)) = dj_(d}(D))

for all 7 < 3.

This algebraic relation can be seen as corresponding to the cube axiom of con-
current transition systems (Section 1.1.4) describing the (strong) confluence
of actions a, b and ¢. This is a bit more general here since the cube axiom
corresponds to the view that we run every program on no more than two pro-
cessors, identifying the strong confluence of any two actions among three with
the parallel execution on three processors. Here the decomposition of the cube
shows that the boundary of an asynchronous execution of three processes is the
“interleaving” of all possible asynchronous executions on two processors.

This can be generalized to higher levels of parallelism. We can show that for
any hypercube of dimension n, we can choose an ordering on vertices, squares
etc. such that the 2n boundary operators verify the commutation rules',

dfods=d._ od}

for k=0,1,l=0,1and ¢ < j.

Now we can glue these elementary shapes in order to get HDA. This is exem-
plified in Figure 2.2. We verify on the example the commutation rule between
the source and target boundary operators d° and d' respectively.
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Figure 2.2: Glueing of elementary shapes to get a semi-regular HDA.

Mg My M, B HDA M
a

Xy —= a

X B L

X 5 _ Boundary functions €
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X g —— o 2
d =|laja|y |y |d|€g|cC
o O e S S S e e '
X7 = 4%
& =18y |e|8|T|T]c
dl 0 |- j d

[N

We can then introduce these formally under the name of unlabeled semi-regular

HDA.

Definition 16 An unlabeled semi-regular HDA is a collection of sets M,, (n €

IN) together with functions
d;
Mn :: Mn—l
1
J
foralln e N and 0 < ¢,7 < n—1, such that

dfodé = d;_lodf
(i < jandk,l =0,1) and ¥Vn,mn #m, M, N M, = 0.

Elements = of M,, (dim x = n) are called n-transitions (or states if n = 0).

In order to be able to study “natural” constructions on HDA, we define a notion
of morphism between them. As customary in recent work in concurrency
[WN94], morphisms look like simulations. We set morphisms to be structure-
preserving maps. In geometrical terms, morphisms preserve shapes, time (every
transition is mapped onto a transition), and orientation.

Definition 17 Let M and N be two semi-reqular HDA, and f a family f, :
M, — N, of functions. fis a morphism of semi-regular HDA if and only if

food! =djo fri
andzl = dzlofn-l-l

for allm € IN and 0 <7 < n.

This defines the category T, of semi-regular HDA.

We write Y7 for the full subcategory of T, consisting of semi-regular HDA
whose elements are transitions of dimension less than or equal to n.

1Very much like the ones we have for simplicial complexes.
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Figure 2.3: A path and its inclusion morphism in a semi-regular HDA.

There is a truncation functor T, : Y5 — Y7 defined by, T,(M),, = M, if
m < n and T(M),, = 0 if m > n. Its effect can be interpreted as restricting
to behaviour on n processors.

Now, traces of execution are described as sequences of states and transitions
satisfying certain properties. A path is to be understood as a sequence of
allocation (case (i¢) below) of one action at a time on a new processor or deal-
location (case (i) below) of one action at a time (i.e. its execution has ended
on a given processor). An example of a path in an automaton M is given in
Figure 2.3 together with its inclusion morphism into M (M simulates all of its
paths).

Definition 18 A path in a semi-regular HDA M is p = (po, ..., pn) such that
po and p, are states and

pr-1 = d)(pk) (7)
Vk,0 < k < n,3y, or,

Prat = dj(pr) (i)

The definition of paths explains why the morphisms are (higher-dimensional)
simulations. The commutation with the start boundary operator d” for example
can be seen as asserting: “whenever M fires a new action, N fires a similar one”.

For k = 1 we are always in case (i) and for & = n — 1 we are always in case
(i7). n is the length of p. If p does not verify any particular condition on the
states pg and p, then p is called partial. If pg is an initial state, i.e. a state such
that there is no 1-transition ¢ with dj(¢) = po, then p is a semi-partial path. If
Py is a final state as well, i.e. a state for which there is no 1-transition ¢ with
d3(t) = p,, then pis a total path.

Categorical and Combinatorial Properties

We first note that semi-regular HDA form a higher-order type theory (see
[LS86]).

Proposition 1 T, is an elementary topos. Moreover it is complete and co-
complete.
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Proor. There is actually a better way to formulate the definitions of semi-
regular HDA, in order to study their algebraic properties.

Let O be the free category? whose objects are [n], where n € IN, and whose
morphisms are generated by,

59
] = [n— 1
5
for all n € IN* and 0 < 4,5 < n — 1, such that 621“6; = 6;_1621“ (i <j) -

Now, the category OSet of functors from O to Set (morphisms are natural
transformations) is isomorphic to T,. Therefore ([LS86] and [MM92]) it is an
elementary topos. It is complete and co-complete because Set is complete and
co-complete. O

This formulation of the definition of T, enables us to describe combinatorially
the shapes we are dealing with. Let Dp,j be the semi-regular HDA Homg([n], -)
(where Homg is the Hom functor in the category O).

(*) Definition 1 A singular n-cube of a HDA M is a morphism o : Di,;) — M.

(*) Lemma 1 The set of singular n-cubes of a semi-reqular HDA M is in one-
to-one correspondence with M,. The unique singular n-cube corresponding to
a n-cube x € My, is denoted by o : Dipy — M. It is the unique singular n-cube
o such that o(Idp,)) = =.

Proor. By Yoneda’s lemma. Recall that T, is isomorphic to the category
of functors from O to Set. Then the D, are the representable functors and
Nat(Dp,y, M) = M([n]), where M is a functor from O to Set. This translates
to TST(D[H],M) =~ M, O

(*) Proposition 1 Let M be a semi-regular HDA. The following diagram is
co-cartesian (for n € IN),

I o
. TEMn41
I Dps T,(M)
TEMn41
- -
l ]\]Z[ Oz
rEMp41
T Dpsy Toy1 (M)
TEMn41

where D[n-l—l] = Tn(D[n—I—l]) and Ul’ = U$|D[n+1] :

2Such a category exists by general theorems. It is actually isomorphic to a poset category
which we will not describe here.
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Proor. It suffices to prove that the diagram below (in the category of sets) is
cocartesian for all p < n + 1,

. xE]\IZ[ (Ul’)p
I Dy, —— (Ta(M)),
xEMn_Hg c
l e,
H (D[n-l—l])p s (Tn-l—l(M))p

TEMn41

since colimits (hence pushouts) are taken pointwise in a functor category into
Set.

For all p < m» + 1, the inclusions are in fact bijections, and the diagram is then
obviously cocartesian.

For p = n + 1, the complement of [] (D[n+1])p in JI  (Dpyay)p is the
TEMnp 1 2EMp41
set of copies of cubes Id[, ], one for each cube of M;,1;. This means that the

map [[ (0.), induces a bijection from the complement of  [[  (Dp,11))p
l’EMn+1 l’eMn+1

onto the complement of (7,,(M)),. This implies that the diagram is cocartesian
forp=n+1 as well. O

This lemma states that the truncation of dimension n 4+ 1 of a semi-regular
HDA M is obtained from the truncation of dimension n of M by attaching some
standard (n + 1)-cubes Dy, ) along the boundary D[n—l—l] of n 4+ 1 dimensional
holes. This is the basic property of combinatorial cell complexes [LW69] and
this will be used when passing from discrete to continuous geometry in Part V
(real-time systems).

Computer-scientifically, the previous proposition states that the shapes de-
scribed by the class of semi-regular HDA is a sensible one since we go from
a skeleton of dimension n to a skeleton of dimension n + 1 by adding some
independence relations, or dually, by cancelling some mutual exclusions.

We proceed by decribing the main categorical combinators in two ways. We
present their definition in terms of sets of transitions and boundary operators
and in a SOS-like metalanguage we now define.

In this meta-language, we wish to enumerate the transitions of higher-dimensio—
nal transition systems in a format similar to the usual SOS one.

Semi-regular HDA can be seen as the union of its sub-HDA generated by a
single n-transition. From that point of view, enumerating the n-transitions can
be seen as enumerating these sub-HDA. We choose® to abstract these by the
pair of their initial and final states and the generating n-transition, that is, for

*There are other choices which in particular describe higher-dimensional traces in a more
accurate way. We prefer to use this abstraction here because it is simpler and relates to
Hoare-like formalisms for proving partial correctness of programs.
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t a n-transition of M,

t
(s — &) ={dg! ...z ()/k <n,e; = 0,1} C M

where s = d3dy...d°_,(t) and s’ = did}...d. () are the initial and final
states of ¢t in M respectively. Then, we define an entailment relation = to

relate M to its sub-HDA, and we write,

a

ME s
Notice that for all M and states s of M we may write,
3
MEs——s
Conversely, given a set of SOS-like rules of the form

ay Gy,
P Eu —wv ... P lEu, — v,

PEu——w

we can get back to a semi-regular HDA: this is called the interpretation of the
SOS rules. This is done by considering the set of rules as a positive inductive

definition [CC92b].

We say that a set of SOS rules is adequate with respect to a categorical com-
binator if and only if its interpretation is isomorphic to the application of the
categorical combinator.

This being settled, we can describe the categorical combinators.

All limits and colimits are computed “pointwise” (see [ML71]) in a functor
category. Translating this back from the functor category to the category of
semi-regular HDA we obtain,

o the cartesian product of two semi-regular HDA F, G is the semi-regular

HDA I’ x GG with
(Fxd),=F,xG,

and

A5[F x G] = d[F] x d[G)
In SOS form, only one rule is required,

o l /_/t/ / . TN
QEu—— v Q'Euv —v dimt=dimt

0 x @ E(u ) BT (0,0

It can be interpreted as the synchronized product of @) and ', where
their respective transitions are forced to be executed in a synchronous

manner. It is adequate.
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o the coproduct of two semi-regular HDA F, G is

(FI[G)n = FL UG,

A FT]GN(x) = {

&[F)(z) ifz € F,
d[G)(z) if 2 € G

In SOS form, we need two rules,

QF uteo
t
QIIQ Fu——v
t/
Q/ |: ul ., U/

t/
oo o — v
These show that the coproduct acts like the non-deterministic choice +

of CCS (Section 5.4).

e In the isomorphic functor category, the Hom-functor right-adjoint to the
cartesian product is given by Yoneda’s lemma. If we write Dy, for the
representable functor (where Homg is the Hom-functor in the category
Q) Dy = Homa([n],-), the right adjoint = is,

G = H([n])= Nat(Dy,) x G, H)
and for f € G = H([n]),

G = H((S;)(f) :D[n—l] X G H

(u,v) - f(u © 6127”)
(Nat denotes here the set of natural transformations). This translates to,
(G = H),={f:Dp xG— H/f morphism}

(u,v) - f(u © 6127?])
In SOS form,

t t/
GEu— v G=>HEdJ — v dimt=dimt

e (n) 2D )

Note that it looks like the elimination rule for = in intuitionistic logic.

This is due to general constructions of categorical logic. It is not fully
adequate since we would need an introduction rule (but this in turn needs
judgments including variables).

Before carrying on deeper into the categorical structure of semi-regular au-
tomata, we give a few pictures and examples.
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Figure 2.4: Coproduct of two automata (left) and amalgamated sum of the
same automata (right).

R ————————d e ——— —_—_— =

= + =
_— = _— = _— =
b
b

Example 2 o In Figure 2./, we have drawn the coproduct of two HDA

and an amalgamated sum, where the initial points have been identified.
This amalgamated sum (pushout) represents an internal choice* as in
TS (Section 1.3.1) whereas the coproduct (or direct sum) is an external
choice. It can be seen as a coproduct in the category of semi-reqular HDA
equipped with a basepoint, and morphisms preserving them. This category
s interesting since it is mimicking the one of standard automata, where
the basepoint is the initial state.

In Figure 2.5, we have pictured a cartesian product of two semi-reqular
HDA as well as a fibered product (pullback). The fibered product here
only synchronizes actions that are mapped by | onto the same transition.
This will be one of the basic remarks for defining the category of labeled
HDA. | corresponds to a labelling function and the fibered product is a
synchronization a la CSP (Section 1.3.2).

Finally, we have drawn a very simple example of a “function space” HDA
(Figure 2.6). It can be seen to represent at least synchronous function
calls. Let f : Var x Prog — Res be a morphism between semi-regular
HDA Var (for values of “variables”), Prog (for “program” traces) and
Res (for “result”). f computes the value of the result when the program
15 executed with initial values represented by Var. Now this morphism is
“equivalent” to Proc = curry(f): Var — (Prog = Res) which gives the
different “specializations” of f when applied to particular values. On the

other side of the adjunction, we have a synchronous evaluation morphism
eval : (Var, Proc) — Res.

The category T, also has features from linear logic [Gir87].

Proposition 2 T, is a monoidal closed category.

As a sketch of proof we construct a tensor product and its right-adjoint. Define
a tensor product F' ® G of two semi-regular HDA F and &' (to represent the
parallel composition with no interference as in [Gou93]) to be

(Fo &)= FxG;

+j=n

*There is a parameter “hidden” in the initial state which makes the choice between the

two branches.



2.2.

BASIC DEFINITIONS 83

Figure 2.5: A cartesian product (left) and a fibered product (right).
(b.a)

(ad)

Figure 2.6: A synchronous function space of HDA.

= = (a>b)
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and, for z € I,y € G,
di[F @ Gl(x,y) = (di[F(x),y) ifk <i-1
di[F @ Gl(z,y) = (v, dj,_[G)(y)) ik >di-1

For example,

g 6 p@é
a} o b} _ Bobs o
a ~ By a®b a®d
a® ’y\ 4; ® b
a @y
The corresponding (adequate) rule for the tensor product is
t t
Q Eu v Q' Lo

7

tXt
Q@Q’|:u®u’—»® v

Notice that the tensor product creates transitions of higher-dimensions (it is
different from the “synchronous” product) that precisely express the asynchrony
in their execution. In the example above we have

3 )

a®b
aI ® bh:a@’y—»ﬁ@é
a Y

The tensor product has a right-adjoint, because it commutes with colimits (by
proposition I1.1.3 of [GZ67]), which is given again by Yoneda’s lemma. We note
it by —o, and it is defined by,

(G—oH),={f:Dy)®G — H/fis a morphism}
H

and for f € (G —o H),, di[G —o H](f) :Dj,—1) © G
(u,v) - f(u © 6127”)
Finally, its SOS rule is

t /t/ ,
GEu— v G—oHEu—uv

t'(t)

H =u/(u) v'(v)
In G —o H we have functions which fork new actions (dynamically). In
s s é
IREEL
a a ¥

there is for instance a 1-transition “fork the b action” (using the A notation for
functions)

Arz.z®b

Az.x ®y Ar.x ® 0
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More generally, using the same kind of arguments that we had on the syn-
chronous function space, we can call G —o H the asynchronous function space.
It contains in particular analogues to Remote Procedure Calls in a quite ab-
stracted way, since its elements are functions which evaluate their arguments
in parallel with their own execution. This is a quite powerful kind of mobility
of processes even if it is difficult to see the exact relationship with the mobility
attained in w-calculus (Section 1.3.3) or CHOCS [Tho89].

We will not need the exponentials of linear logic [Gir87] in the sequel. Never-
theless, we give one possible construction here for completeness of this chapter.

For A a semi-regular HDA, let 'A be defined by (!A4), = 0 for all n # 0 and
(!A)g = Ag. It defines an endofunctor on Y,,. Let now d :! —!o! and e :! — Id
be the natural transformations defined by: d(A) is the identity morphism on
'A, e(A) is the inclusion morphism of Ay into A. (!,d,e) is a comonad. Now,
standard results (see [AL91b] for instance) give the interpretation of all non-
commutative intuitionistic linear logic in T,,. The intuitionistic logic, retract
of this linear logic in the comonad (!, d,€) is the classical logic of the powerset
of states (on which Hoare logics are based).

(1) Geometric realization

We are trying now to give an explicit geometric representation of semi-regular
HDA. This is done in the same style as the geometric realization functor between
simplicial sets and CW-complexes (see for instance [GZ67] or [May67]).

This will prove useful, not only for formalizing the way we picture HDA but
also in the future for giving hints about how to go from discrete time (IN or Z)
to continuous time (IR).

Let O, be the standard cube in IR (n > —1),
O, ={(to,...,1,)/¥i,0 < ¢t; <1}

O-, ={0}

and let 6%, 0 < i < n, be the continuous functions (n > 0),

59
Dn - Dn—l

51

Dn—l
defined by,

6f(t07"'7tn—1) = (t07'"7ti—17k7ti7"'7tn—1)
And, for n = 0,
85(0) = (0)
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Then,

Lemma 1

oFel = ol joF (1<)

Proor. Let i < j, and (tg,...,t,) € O,. Then,

88 (8L(to,s o vtn)) = 6F(toy .. tjmrs Loty .o ty)
= (to,...,ti_l,k,...,l,t]‘,...,tn)
= 64 (6(to, .. tn))

a

We notice that 6% verify the dual equations that d* verify in all semi-regular
HDA.

Consider now, for a semi-regular HDA M (on Set), the set R(M) = ]
n,z €My,

(z,0,). Each (x,0,) inherits a topology given by the standard one on R"*1,
thus R(M) is a topological space with the disjoint sum topology.
Let = be the equivalence relation induced by the identities:

Yk, i,n, Ve € M,y1,¥t € O, n >0, (d¥2),1) = (z,65(1))

Let | M |= R(M)/ =. It has a structure of topological space induced by R(M ).
| M | is called the geometric realization of M.

(*) Lemma 2 Let f: X — Y be a morphism between the two semi-regular
HDA X and Y. Then f induces a continuous map | f | from | X | to | Y |.

(*) Proor. Define R(f) : R(X) — R(Y) by: R(f)((z,t)) = (f(z),t). It is
obviously a continuous map.

Suppose (z,t) = (y, s). Then there exists (y1,51), ..., (Yu, S ) such that (y1,s1) =
(z,1), (Yu, su) = (y,s) and Vg, Ik, 7, dé?(yg) = yp and s, = 6f(sh) with h = g+1
orh+1=g.

We show by induction on u that R(f)((z,t)) = R(f)((y,s)), thus inducing
a map from | X | to | Y |. We just have to show that R(f)((z,t)) =
R(f)((yz,52)), the result will be proven using the induction hypothesis.
Suppose Jk,j, di(x) = y2 and t = 8%(sy). But d¥(f(z)) = f(d¥(z)). Thus,
dé“(f(x)) = f(y2) and t:éf(sz), which proves the result. O

(*) Proposition 2 |- | is a functor from Y. to Top, the category of topolog-
ical spaces with continuous maps.
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(*) ProoF. By Lemma 2 we see that we just need to prove that, for any two
semi-regular morphisms f and ¢, | fog |=| f | o | g |. This is straightforward. O

We can define an analogue of the singular complex functor (called here “cubica-
lation”), which is well-known to be a right-adjoint to the geometric realization
functor between simplicial sets and CW-complexes.

Definition and lemma 1 For X € Top, let S(X) be the semi-reqular HDA
defined as follows:

o S(X), is the set of singular cubes, i.e. the maps f: O, — X,

e the operators d¥ are defined by the following equations, for f € S(X),,
di(f) = foél

ProoF. The result is a direct consequence of Lemma 1. O

Proposition 3 S induces a functor from Top to T, .

Proor. We first have to define the action of & on morphisms in Top. Let f
be a morphism from X to Y in Top. Define S(f) on elements of S(X),,
0, — X, tobe S(f)(i) = foi:0, — Y. Therefore the image of an element
of S(X), by S(f) is an element of S(Y),,. We now have to verify that S(f)

commutes with d? to show that S(f) is a semi-regular morphism:

di(S(f)@) = di(foi)

= foiodk

= S(NH5(0)

Then, for any two morphisms f and g, we have for all i element of S(X),,

S(go f)(i)=go foi=38(g)oS(f)(i). Sis a covariant functor. O

We call cubicalation of an object X of Top any sub-semi-regular HDA M of
S(X) with | M |= S(X). Any such sub-HDA corresponds to a choice of a
time-flow.

(*) Theorem 1 § is right-adjoint to |.|.
(*) Proor. We prove that there exist two natural transformations
n:ld— 8(.1)

e:|S|— Id
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(respectively the unit and counit of the adjunction) such that

S S
s sqs) s

sy el

are the identity.

We can first show that:
(A): M= S(|M])

(B): [S(X)[=X

in a natural manner for all M semi-regular HDA and X object of Top. We
begin by (A). For all n, we have the identity arrows on O, which induce the
isomorphisms: for all z, Id : O, — (2,0,). These in turn induce injective
morphisms f, : O, —| M |, because M is an amalgamated sum of the (z,0,).
The (f;), form a subset N of S(| M |). It is an easy exercise to show that
N is closed under the action of the d¥. Thus N is a sub-semi-regular HDA of
S(| M |). The naturality of the inclusion arrow M — S(| M |) is most obvious.
This defines what is to be the unit of the adjunction.

Now, we come to (B). Elements of S(X), are f: 0, — X. Now, | S(X) | is
an amalgamated sum of (z,0,), z € S(X),. The z induce on [] (2,0,) and

then on | S(X) | an injective morphism in Top. It is an easy exercice to show
that these arrows are natural in X. This defines what is to be the counit of the
adjunction.

Then, we have to verify that two compositions of natural transformations are
the identity. This is easy verification. O

This implies that | - | commutes with all colimits. In particular (4 is the
amalgamated sum):

| M4+N|=|M|U|N|

2.2.2 (7) Partial HDA

Up to now, all transitions were required to terminate. Nothing in semi-regular
automata represents deadlocking behaviour. Partial HDA are defined for this
purpose: they are semi-regular HDA with “missing” boundaries, meaning that
some transitions may never terminate if evaluated (deadlocking behaviour).

Partiality is very much used in all areas of semantics, and many studies have
been published on the properties that some categories of partial maps have or do
not have. To mention but a few, Plotkin [Plo85], Moggi [Mog86], Curien (par-
tial categories), Carboni (bicategories of partial maps, [Car86]) and Robinson,
Rosolini ([RR88b], categories of partial maps and p-categories) have all studied
different versions of categories of partial maps. It is the case in all these very
general and quite constrained definitions that not all categorical properties are
preserved when going from a category A to a category PA of partial maps on
A constructed out of A. Here we use a very pragmatic approach. The formal
definitions are as follows,
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Definition 19 A partial HDA (or PHDA in short) is a collection of sets M,
(n € IN) together with partial functions

£

Mn :: Mn—l
1
J
foralln e N and 0 < ¢,7 < n—1, such that
dfdé = d;_ldf (i<j,k,1=0,1)
whenever both sides of the equality are well defined® and

Yn,m,n#m, M,0M, =

We write d¥(2) = L when d¥ is undefined in z. In this case, we say that = has
no boundary d¥.

Then we define the category of partial HDA PY by giving a notion of morphism,

Definition 20 Let M and N be two partial HDA, and f a family of partial
functions (f,)n : M,, — N,. fis a morphism of partial HDA if and only if

faod} =dYo fup
faodi = dj o futa

for all n € IN, whenever both sides of the equalities are defined®.

f(z) = L corresponds to mapping a n-transition to an idle transition.

In the following example, we label missing boundaries by L.

Example 3 .
a
a— 1

a is an action that deadlocks on one processor,
1
VN
o A 1
o~

L
A deadlocks two processors.

®M is called closed partial if moreover when one side is undefined, the other is undefined
as well. They form a full subcategory of partial HDA isomorphic to the category of functors
from O to Set, the category of sets with partial maps. [ owe Régis Cridlig the idea that
non-closed partial HDA are necessary for giving semantics to some languages (see [Cri95])
and that partial HDA in general should be studied in their own right.

SFor closed partial HDA we restrict to morphisms for which both sides of the equality
should be undefined at the same time. This gives us the subcategory C'PT.
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The study of their categorical properties is made easy by what we know on
semi-regular automata.

Definition and lemma 2 The coproduct of M, N partial HDA is the partial
HDA

P, =M,UN,

df[P] = df[M] ][ di[N]

Proor. We have two canonical morphisms in; : M — P and in, : N — P
defined in a straightforward manner. We verify that if we have two morphisms
f:M — @ and g : N — () then there exists a unique h : P — () such that
hoin; = f and hoin, = g. There is no other way than setting h(z) = f(z) if
re€M,h(z)=yg(z)if 2 € N. his a morphism. O

Definition and lemma 3 The cartesian product of two partial HDA M and
N is the partial HDA P = M x N,

P, =M, x N,

dk(w y) = { (df(w),df(y)) if both boundaries are defined

otherwise

Proor. Let p; : P — M and py : P — N be the two projections. They are
morphisms of partial HDA since for instance py(df(z,y)) = pi(d¥(z),d¥(y)) =
d¥(pi(x,y)) if both boundaries are defined and if not pi(df(z,y)) = L
df(pl(xv y))

Now if f: Q) — M and g : ) — N are two morphisms then h : @ — P defined
by h(z,y) = (f(z),¢(y)) is a morphism. O

In the subcategory of closed partial HDA cartesian products may not exist.

Definition 21 For M and N two partial HDA define P = M @ N by,

Po=J M;x N
i+k=n

and for (z,y) € M; x Ny,
(d¥(z),y) if d¥(z) defined and v < i

dy(z,y) = (2,d*_;(y)) if d_,(y) defined and v > i

L otherwise
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We define P = M = N as,
P, ={f: Dy x M — N/fis a morphism}

d;[M = N](f) :D[n—l] XM —N
(u,v) - f(uo 6127”)
Similarly, we define P = M —o N as,

P, ={f:Dp®M — N/fis a morphism}

d[M = N1(f) Dy © M

(u,v) - f(UO(S;,?J)

N

Lemma 2 = (resp. —o) is right-adjoint to x (resp. ®) in PY,,.

Proor. Let f € PY(M x N, P). Let g be the function defined on M with range
the set of partial functions from N to P by g(m)(n) = f(m,n)(m € M,n € N).
We prove that g actually takes values in N = P.

Let m € M, suppose m € M;. Let | m = {d;! df:(m)/O < k < i}. Then
there is a unique morphism a,, : Dp;) —| m with ay,,(Id) = m similarly to the
total case. It is also called the singular cube associated with the cube m. Now,
g(m)(n) = fo(ay X Id)(Id,n). By definition fo (a,, x Id) € N = P, and
n — (Id,n)is an isomorphism. Therefore g(m) takes values in N = P.

Now we have to prove that m — ¢(m) is a morphism of partial HDA, i.e.
that g(d5.(m)) = d5.(g(m)) whenever both sides are well defined. g(d%(m)) =
fo (ad;(m) x Id). Now by definition of the boundary operators in N — P,

d*(g(m))(Id,n) = g(m)(é},n)
= f o) (adz(m) X n)([d, n)
= g(di(m))

The proof for —o goes along the same lines. O

A further generalization is to consider transitions that belong to more general
categories than Set. We can also separate collections of objects of dimension n
into collections of objects indexed by two indices p, ¢ with dimension p + ¢, in
order to be able to trace the propagation on paths. This will prove useful when
speaking about homology and homotopy.

2.2.3 Regular automata

Here, we choose n-transitions to be elements of modules or vector-spaces. This
will enable us to speak about finite collections of transitions internally (see

Chapter 7).
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‘In all the rest of the text, R is a principal commutative domain‘

(we refer to Appendix A for details).

Looking again at Figure 2.2, we see that we can decompose M as follows.
Set Moo = (), M1o = (a) D (b), Mi_1 = (B) D (), Ma—1 = (d) & (¢),
My _o=(6)B(c), M3,_g = () B(d), M3,_5 = (¢) and M3 _; = (C') (where (z)
is the module generated by z and & is the direct sum of modules). The 1-path
(b,c,d") can now be conveniently identified with the formal sum b+ ¢ + d'.

Definition 22 A regular HDA is a direct decomposition of a free R-module M
as

M = @ M,,

p,g>0

together with boundary operators

d} : My — My,

d} P My — Mp g1
(0<4,j<p+q—1) such that

dfods=d._ od}
(for alli < j and k =0,1,1=0,1).

Morphisms of regular HDA are f : M — N with f = (f,,)pq, Where f,, :
M, , — N, , are module homomorphisms such that f,,0d? = d? o f,41, and
Jpq o0 d} = d} o fpqt1 for all ¢,7 with 0 < 4,7 < p+ ¢q. The category of regular
HDA is denoted by T..

We will also consider cyclic regular automata which are regular HDA in which
some elements of M, , and M, ., p' + ¢’ = p + ¢ may be identified.

They form a category T.,.

The formal relationships with the semi-regular and partial models will be post-
poned until Part II.

2.2.4 General HDA

General HDA are a generalization of semi-regular HDA that abstract away from
the combinatorics of transitions. They will prove also to be the right place in
which we can speak of the geometry of a higher-dimensional transition system.

Definition and lemma 4 Let A be the function from Y, to diagrams in the
category of free R-modules with,

O
A(Mp) — A(My_1) ...
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such that A(M, ) is the free module generated by M, , and,

1=p+g—1

do= Y (-1)d
=0
1=p+g—1 '
=Y (-1)d
=0
then,
L] 80 o 80 =0
L] 81 o 81 =0

80081+81080:0
A lifts to morphisms f and A(f)o dy = dpo A(f), A(f)o O = 010 A(f).

Proor. Easy verification. O

We will generally write M for the free R-module generated by M and by an
abuse of notation, it will also mean the general HDA generated by a semi-
regular, or a regular automaton M.

Notice also that closed partial HDA give rise to the same algebraic struc-
ture through a slightly generalized functor A which maps “missing bound-
aries” (the undefined L) onto 0. It seems that non-closed HDA are some-
what too unstructured for deriving an interesting algebraic structure. Regu-
lar HDA obviously provide us with boundary operators dy and 0y verifying
08 = 0% = 0p0y + D100 = 0.

All this motivates the generalization,

Definition 23 A (unlabeled) higher dimensional automaton ( HDA) is a R-
module M with two gradings associated to two boundary operators 0y and Oy,
that is, consists in:

o a decomposition: M= 3~ M, ,, such that
P,q€

Y, ( > MM) n ( M) =0
ptg=n r+s£En

o two differentials Oy and 0y, compatible with the decomposition, giving M
a structure of bicomplex:

80 . Mp,q — Mp—l,q

81 :Mp7q —>Mp7q_1
80080:0, 81081:0, 80081-|—81080:0
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There are many more relations between semi-regular HDA, partial HDA and
general HDA. These will be developed in Part II. Note that here we have gener-
alized as well to negative dimensional transitions. Their interest will be shown
in Chapter 4. For our mathematically oriented readers, note that a general
HDA is only a “weak” bicomplex (or double complex or complex of complex,
see Appendix A) in the sense that we do not have a direct decomposition of M
onto the M, ,.

Sometimes we explicitly write the boundary operators with the HDA: (M,
0p,01). g is called the source boundary operator and 0 is the target bound-
ary operator. When we want to specify the domain and codomain of these
boundary operators, we write 95? for dy : M,, — M,_1, and 977 for
o My, — Mp,—1. If M is in fact a direct sum of M, ,, that is, when
M is a free bigraded bidifferential R-module, then M is said to be an acyclic
HDA, name which will be justified in Lemma 12.

If M is a finite-dimensional module, then M is called a finite state automaton.

Remark: A “standard” unlabeled automaton can be given the structure of a
(unlabeled) higher-dimensional automaton. Let (A,X,6,1,F") be an automaton;
A is a set of states, ¥ is a set of transitions, ¢ is the transition relation, é C
P(Ax ¥ x A), Iis the set of initial states, F' is the set of final (or accepting)
states. Define M by

vpva p+q= OvMp,q = R—MOd(A)

vpva p+q= 17Mp,q = R—MOd(E)

Let Dp betheset Dp = {a € A/ Ao,d', (a,0,d') € éandad F} (it is the set
of deadlocks of the automaton). Let Dy = {a’ € A/ A(a,0,d') € b and d’ ¢ I}
Then,

d(oc)=a<x (I € A, (a,o,d')€ )N (a€ A\Dy)

N(o)=d & (Fac A, (a,0,d)€d)A(d € A\Dp)

Last but not least, d; are null functions on Mj.
This construction projects all deadlocks onto 0 and all “false” initial states onto

0.

Example 4

(1)
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with dp(a) = 1 and 01(a) = «, is an acyclic finite state HDA. It comes
from the standard automaton (A,%,6,1,F) with A={1,a}, ¥ = {a},
d6=A{(1l,a,a)}, I ={1} and I = {a}.

(2)
0
M071 = (a) —0> M—l,l = (1)
o ) all
Moo= (1) =+ M_1=0
with dy(a) = 1 and 01(a) = 1, is a finite state HDA which is not acyclic.
(3)
0 0
M = (A) ——= Moy = () & (b) — My = (1)
o) , all , all
Mip=(d)® (V) = Moo = ()& (8) s M_10=0
a2 all all
80 80
M=) —— Mo-1=0——M_1_1=0
with 80(14) = a—b, 81(14) = a’—b’, 80((1) = ao(b) = 1, 81((1) = 80(()/) = «,
01(b) = Oo(d’) = B and 01(d") = 01(b') = . It is an acyclic finite state
HDA.
(4)
do
Moy = (a) ® (b) — M_y1 = (1)
) a2 ) all
Mig=(d)d (D) = Moo = ()& (8) s M_4p=
H o)1 h
A

My_1=()— My-1=0——M_1_1=0

with 0o(a) = o(b) = 1, Bu(a) = Bo(b) = a, H(8) = Aole) = § and
Oi(a") = (V') = . It is an acyclic finite state HDA.

Actually, all these HDA are the result of the application of functor A to semi-
regular HDA. We can give pictures of their geometric realization (respectively):
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(1)

(2)

(3)

(4)

5
N
S

In general we consider free R-modules (see Appendix A). But non-free ones
have an interest of their own, as the example below demonstrates.

Example 5 Let R = Z. All ideals of R are then of the form nZ, n € ZZ.
Let M be the following HDA (using the notations of Appendiz A),

o Mip=(a),
o Moo= (a)s,
o all others are null.

with boundary operators 0p(a) = a and 01(a) = a. Then a is a cyclic transition
such that 2a = 0, i.e. such that we only look at the number of times we go
through modulo 2. This is a form of built-in congruence analysis [Gra90].
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(*) Lemma 3 Let M be a HDA. Let N be the module M with the following
decomposition:
N, = Z My,
ptg=n
Then 0y — 01 gives N the structure of graded differential module. We write
N=Tot(M) (for total complex).

Proor. Obviously (0o — d1)(Npt1) € N,,. Moreover, (g — d1) o (dg — 01) =
Jpo0yg+ 01001 —(0po01+ 01 00y) =0. Finally, we have to verify that N, is
a grading of N. We compute:

NaN Ny = 3 Mp,qﬂ( > M)

ptg=n r+s=m

thus, if n # m, N, N N, = 0.0

Conversely, one can reconstruct the two gradings of a HDA M (this translation
is precisely defined in Part II, Chapter 5), given the grading of T'ot(M ), up to a
translation of the indexes of a multiple of (1,-1). We will use this to abbreviate,
when possible, the two indexes to one (the one given by T'ot). This extends to
the indexes one can give to dy, 0.

For z in M, ,, we say that z is of dimension p+ ¢, denoted by dim x = p + q.
Elements of dimension 0 are called states, elements of positive dimension n are
n-transitions, elements of negative dimension n are n-events (see Chapter 4 for
a justification of the name event).

If we have decided on a generating set, or even a basis B for M, which will be
often the case, we call elementary states, transitions, and events, the states,
transitions, events respectively which are elements of B. It is the case for
instance when a general HDA comes from the application of functor A to a
semi-regular HDA or a partial HDA.

M is said to be bounded below (resp. above) if there exists N such that all
elements of dimension lower (resp. greater) than N are null.

Example 6 Ezamples (1), (2), (3) and (4) are bounded below and above. In
example (3), dim A = 2, dima = dimb = dima’ = dimb' =1 and dim 1 =
dima=dimpB=dm~y=0.a,b,d,¥V, A «a 3,7 form a basis B.

Definition 24 A path (of length n) in @ HDA M is a sequence of elements of
B={b;}, a given generating set of M, p=(p;)o<i<n such that:

PosPn € MO
dim p; > 0
Vi, do(p;) :Z a;b;, with by=pi—1 and oap#0 or
J

o (pi) :Z a;b;,  with by =piy1 and ap #0
J
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A n-dimensional path is a path whose elements are of dimension lower than (or
equal to) n.

Notice that the basis appears directly from the application of the functor A
(from semi-regular HDA to general HDA) to paths of semi-regular HDA. It
is the same notion as the paths for regular automata when choosing a basis
stable by the application of the boundary operators (this is always possible to
construct such bases)

Example 7 In example (3), the different paths (for the basis B={1,a, 5,7,a,b,
a' b, A}) are subsequences of:

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(La,a,b',7)
(La, AV, 7)
(L,a, A, d',7)
(1,0,8.d",7)
(1,b,A,d’,v)

(17 b7 A? b/7’}/)

This means that:

we have chosen B as the set of observable actions
(1) describes the sequential execution of a then b’

(11): suppose process a is executed on processor 1, and process b is executed
on processor 2. Then this path reads:

from the idle state 1, processor 1 fires a

then processor 2 fires concurrently b (transition A)

then while processor 2 computes, processor 1 terminates a (transition b':
copy of b)

then processor 2 also goes to an idle state, making the whole system halt
to state ~.

(iii): keeping the same assumptions as in (ii) about the processors, this
path reads:

from the idle state 1, processor 1 fires a

then processor 2 fires concurrently b (transition A)

then while processor 1 computes, processor 2 terminates b (transition a':
copy of a)

then processor 1 also goes to an idle state, making the whole system halt
to state ~.



2.2. BASIC DEFINITIONS 99

o (iv) describes the sequential execution of b then o

e (v): from the idle state 1, processor 2 fires b
then processor 1 fires concurrently a (transition A)
then while processor 1 computes, processor 2 terminates b (transition a':
copy of a)
then processor 1 also goes to an idle state, making the whole system halt
to state ~.

o (vi): from the idle state 1, processor 2 fires b
then processor 1 fires concurrently a (transition A)
then while processor 2 computes, processor 1 terminates a (transition b':
copy of b)
then processor 2 also goes to an idle state, making the whole system halt
to state ~.

Notice that (i1),(iii),(v) and (vi) are mazimal parallelism paths.

Paths as they are defined are not very easy to use. A useful notion is that of
n-path, where we restrict actions to be of dimension n and where we collect all
possible ways in which n-transitions can end.

Definition 25 A n-path p is a finite sequence (p;)i=1,...x of n-transitions such
that (for all 1 < i < k) 01(p;) = Oo(pit1)-

To end the first part of this algebraic formulation of HDA, we need a notion
of morphism to specify the “allowed” observations. For bicomplexes, there is a
standard definition of morphism of bidegree (r,s) where r and s are integers.
We will restrict to » = s = 0: observations are then some kind of simulations.

Definition 26 (see [Lan93a]) Let (r,s) be a pair of integers. Let f be a func-
tion between two HDA (M, 0y, 01) and (N, 3}, d7), union of linear functions f;:
M,, — Npirgys (f is bigraded). Then f is called a morphism (of HDA) of
bidegree (r,s) if the f; verify:

Vp,q, Ve € Mypp1,4,Yy € My i1, fp,0(00(2)) = (—1) T00( fr41,4(2)),

Foa(01(y) = (1) 01 fyg41(2)).
A morphism of bidegree (0,0) is just called a morphism.

The category whose objects are HDA and whose morphisms are morphisms
of degree (0,0) is denoted by T. Its restriction to acyclic HDA is T,. The
restriction to free modules is Tr. Tx and T coincide when R is a field. The
lower index f is reserved throughout this text to HDA whose underlying module
is finitely generated.
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Example 8 o A typical monomorphism (injection) is an inclusion,
8 2
/ !
b/I b a
! — J¥

d N A
1 1
with i(a) = a, (b)) =V, i(1) =1, i(a) = a and i(y) = 7.

o A typical epimorphism (surjection) is a folding,

(84
o
1 _f L. 1%,
N

with s(a) = s(a’) = a.

These examples give a pretty much accurate picture of what morphisms are,
since as in the category Set, all morphisms can be written as the composition
of an epimorphism and of a monomorphism’. They also provide us with a hint

about the labelling of HDA.
Before coming to labels, we define the notion of subHDA

Definition and lemma 5 Let (M,0y,01) and (N, 0|, 0]) be two HDA. Then
N is a sub-HDA of M if and only if Vp,q, Np 4 is a sub-module of M, , and
8;‘|NM = 0jN,, (J = 0,1). Sub-HDA of M can be identified with monomor-
phisms into M.

Proor. Fasy. O

2.2.5 Labeled HDA
A category of labeled HDA

Let P be a (unlabeled) HDA. Labelling P consists in identifying some tran-
sitions of P to a common token. This identification of “physical” transitions
(those of P) by labels can be thought of as a folding, or as a projection mor-
phism onto a “labelling” HDA L. Thus labels are transitions of I, equivalence
classes of transitions of P.

"This will be entailed by the existence of quotient objects (see Chapter 3).
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Example 9

with l(a) = (a’) = a.

Definition 27 A labeled HDA (over L) is a pair (M,l) composed of an unla-
beled HDA M, and a morphism | : M — L. A morphism f: (M,l) — (M',l")
of labeled HDA is a morphism of HDA between M and M' such that I'o f = [.

Hence the category of labeled HDA over L is the slice category T/L. The
categories of labeled semi-regular HDA, labeled acyclic HDA, labeled regular
and labeled partial HDA are the subcategories of T/ formed by changing T
into Y4, T4, T, and PT,, respectively in the above definition.

Example 10 let L be the HDA such that Lo = (1), L1 = (a)®(b) with 0;(a) =
d;(b) = 1. Let M be the HDA of example (4). Define a module homomorphism
Lbylla)=1d")y=a,l(b)=10))=band [(1)=1l(a)=1(p)=1(y)=1. Thenl
is a morphism, and (M,1l) is a labeled HDA over L.

More generally, we can be interested in transformations between labels as well
(like restriction and relabelling of CCS-like process algebras, Section 1.3.1). For
this to be expressible in our framework, we have to consider the category T
of arrows of T. Objects are arrows

A B

and morphisms between z and y are pairs of morphisms (in Ty ) (f, g) such that
the following diagram commutes,

A—"Y B
J g
c—Y% .p

g is a relabelling function.
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Figure 2.7: A subset with two one-transitions of T4 of the labelling automaton
L (torus shaped — dashed lines materialize a 2-transition -).

Some labellings

We will often have a set A of actions and corresponding to that set there will be
a “natural” labelling HDA. Let L4 (or L when the context makes it clear what
set of actions it is based on) be the semi-regular HDA defined by (see Figure
2.7),

o Lo=1{1}, L, = A, L, = A",
o Vo e Ly, dy(z)=di(z)=1

o Vk > 2.¥(w1,...,xk) € Ly, d2a1,...,xk) = (T1,.0 0@y Tigt, -0, T),
and d} = d?

By extension, we will call L4 the, respectively, regular, general HDA generated
by the previous semi-regular HDA.

L 4 is natural in that, on the one hand, it gives the ordinary labelling to standard
automata as one can see in Example 10 and, on the other hand, it is a “natural”
generalization (see Figure 2.7). We will come back to that more formally in the
next chapter.

Finally, notice that the SOS format generalizes to labeled HDA. We define an
entailment relation |= to relate [ : M — L to its sub-HDA, and we write,

t
¢ s’ & I, l(t)=a, (s

ME s sy CM

Notice that for all M and states s of M we may write,

l(s)

MEs—>s

Summary In this chapter, we have introduced the main categories of HDA
which we will use in the following chapters. First, we introduced the semi-
regular HDA and showed that they correspond geometrically to unions of hy-
percubes of all dimensions, i.e. computer-scientifically to sequences of allo-
cations and deallocations of processes on processors, making them suitable for
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expressing dynamic properties of interest of concurrent systems. It was shown in
particular that synchronized products are cartesian products, parallel composi-
tions are tensors, forking processes are in function spaces and non-deterministic
choices correspond to sums. Together with the “denotational” or categorical
semantics approach, we developed a SOS-like notation for the description of all
semi-regular HDA. It was shown that some SOS-rules did match perfectly the
categorical constructions.

Then we introduced some refinements of this base model. Partial HDA add
a “natural” notion of deadlocking behaviours to semi-regular HDA. The main
categorical properties were shown to be preserved. Regular HDA are semi-
regular HDA “over R-modules”. This means that they add some deadlocking
behaviours (by using the zero of R-modules) and they internalize the notion
of finite collection of transitions, hence of finite path. Last but not least, the
general HDA abstract away from the combinatorics of regular HDA and gener-
alize them by adding the notion of event. The structure they give is a “weak”
double complex of R-modules structure. We ended by giving a way to label
these transition systems in a natural manner (as “labelling” morphisms).
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Chapter 3

Relationship with other
models of concurrency

In this chapter, we show that some kinds of transition systems (like ordinary
ones, asynchronous ones) can be interpreted within the HDA model in different
natural ways according to the level of parallelism and mutual exclusion prop-
erties we are willing to observe. At the end of the chapter we also use some of
the adjunctions of [WN94] to relate these interpretations with event structures
and Mazurkiewitz traces.

3.1 Transition systems and HDA

Consider the category C of labeled Higher-Dimensional Automata consisting of
morphisms [ : M — L (L fixed once and for all) such that

(H): Vi, d¥(z) = d¥(a")) A (Y, di(z) = dy(a")) A l(z) = (') & o =

i.e. of “well” labeled HDA such that there is only one representative of a
given action between two given states. This does in no way restrict the power
of expression of HDA if we keep in mind that labels and states are the only
observable objects.

The morphisms in this category are as usual f = (g,h): (I : M — L) — (I':
M — L) with g: M — M" and h : L — L such that the following diagram is
commutative,

ML
.
h
L— L
By abuse of notation, we will identify f, ¢ and & in the following.

We will also consider in the following the category Cp (respectively Cp') of
pairs (I : M — L,s) with [ € Ty(C) (respectively | € C) and s € My (the
“initial” state) and morphisms preserving initial states (“pointed” HDA). Cp’
is the category of Higher-dimensional Transition Systems (HT'S).

105
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We prove that Cp is isomorphic to T'54. As a matter of fact, the categories are
defined in quite similar terms. States of ordinary transition systems are of the
same nature as states of labeled HDA and source and target representation of
transitions is nothing but a functional interpretation of the relation T'ran.

This is done formally by constructing two functors ¢4 : T'S4 — Cpand V : Cp —
TS 4 inverse of each other,

o (M,1: M — L,i)=U(S,A,Tran, j) with

—MOIS,
— My ={asg/a€ A s> 8 €Tran},
_i:jv

- dg(as,s’) =S, d(lJ(as,s’) = 8/7
— lasy) =a,l(s)=1,
o (S, A, Tran,j)=V(M,l: M — L,i) with,
- 5= Mo,
- ] = iv
— s =% s' € Tran iff 3z € My, such that {(z) = a, d)(z) = s and
dy(z) = 5,
Action of the functors on morphisms is as follows,

o if f=1(0,)):(5,A0, Trang,jo) — (51,41, Trany,j1) is a morphism of
transition systems then

- u(f)(as,s’) = /\(a)cr(s),cr(s’)v
— U(f)(s) =0o(s) (s € M)

o if f:(lo: My — L,ig) — (lh : My — L,i1) is a morphism in Cp then
V(f)=(o,\):V(lp: My — L,ig) — V(I : My — L,iy) with

— o(s) = f(s) (s any state of V(lp : My — L, 1)),
— Ma) = f(a) (a any label in V(Iy : My — L, 1g))

Now, in order to compare the category of higher-dimensional transition systems
with ordinary transition systems we only have to look at how to retract Cp’ onto
its subcategory Cp. This boils down to looking at the different adjunctions we
have between Y1 = Ty(T,,) and T,.

We have mainly two different adjunctions between T! and T, using T} (to keep
the underlying ordinary transitions unchanged in the interpretation) among all
the possible ones. These adjunctions are nothing but comparisons of models by
abstract interpretations [CC92a].

Lemma 3 The inclusion functor T : Y1 — T, is left-adjoint to the truncation
functor Ty : Tq — TiT.
The truncation functor T, : Y, — Y7 is left-adjoint to a functor G, : Y7, —

Tsr.
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Proor. For the first part of the lemma, we associate to every morphism of

Y, f:Z(M) — N amorphism of YL  T1(f): Th(Z(M))= M — T1(N). This

ST
is actually a bijective mapping between these two kinds of morphisms since for

every morphism ¢ : M — T1(N)in T. , the composite

roo1on 29 vy L v

where j : Z(T1(N)) — N is the natural inclusion of Z(T1(N)) into N, is its
inverse mapping.

For the second part of the lemma, notice that T, is,
e small co-complete (see Chapter 2),
e well-co-powered,
e has small hom-sets,

¢ and has a small generating set (the D).

Moreover, T7 has also small hom-sets, so it is enough to verify, by Freyd’s
special adjoint functors theorem (see [MLT71]) that 7, commutes with colimits.
This is obvious. O

The functor G, has actually a nice interpretation.

Lemma 4 (m-connectedness' of G,(X) for allm > n) Let X € Y7 G,(X) is
the least (for the inclusion ordering) semi-reqular HDA such that,

o X CG.(X),

o any morphism [ : D[m] — Gn(X) (m > n) can be extended to a morphism
D[m] — gn(X) where D[m] = Tm—l(D[m])

This means that all (m — 1)-interleavings? (m > n) are interpreted under G, as
(i.e. mapped by G, onto) truly concurrent executions of m actions (see Chapter
8).
These adjunctions now induce the adjunctions

umin Vmax

TSA Cp/ TSA
Vmin umaac

Unin, represents ordinary transition systems of T'54 literally, i.e. every transi-
tion is mapped by U,,;, onto a 1-transition. The implicit parallelism that may
have been in a transition system is discarded by i,,;, and is just interpreted as
interleaving. This corresponds to the traces on a one processor machine.

!See for instance [Spa66].

20r (m — 1)-mutual exclusion, that is the execution of m actions under the constraint that
no more than m — 1 actions can be run asynchronously. Its traces are represented by D[m].
This behaviour is easily programmed using semaphores [Dij68].
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Figure 3.1: Example of minimal allocation and then maximal allocation.

7 N

On the contrary, U, detects all possible interleavings and interprets
them uniquely as purely concurrent executions. No bound on the di-
mension of transitions generated is put: this corresponds to traces on a machine
with infinitely many processors. U,,;, describes the minimal allocation (on
a multi-processor machine) strategy, given an ordinary transition system,
whereas U, describes the maximal allocation strategy?® (see Figure 3.1).

Intermediate interpretations (or allocations) of ordinary transition systems can
be found if we use the similar adjunctions (m < n)

I
sr *—— -~ sr <—n ST
m ™m

Then under the interpretation induced by (7},, G ),

all k-mutual exclusions are identified with level of parallelism equal
tok+11fk>m.

We will actually prove this in a more general context, using methods from
homological algebra in Chapter 8.

Under the interpretation induced by (I,7.,),

all levels of parallelism k£ (k > m) are interpreted as interleavings of
asynchronous executions of m actions.

3.2 Asynchronous transition systems and HDA

Let AT SE be the full subcategory of AT'S consisting of asynchronous transition
systems on a given set of events F. We show that the pair of adjoint functors
(UminVmin) (resp. (Umaz, Vimaz)) induces a pair of adjoint functors (&,F)
(resp. (G, H)) between AT S and the full subcategory dCp’ of Cp’ consisting of
deterministic higher-dimensional transition systems, i.e. HDA satisfying

1(t) = 1(t') A do(t) = do(t') = do(t) = do(')

(for t,t" 1-transitions). It corresponds to a minimal allocation strategy (resp.
maximal allocation strategy).

°1 owe Alan Mycroft (at WSA’93) the idea of developping the interpretation of such
adjunctions.
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We first define functors &£, F,
&
dCpy, — ATSE
f

(dCps is the full subcategory of dCp’ consisting of transition systems of dimen-
sion less than or equal to two) by,

o (P 7,1, L)=F(S,i, E,I,Tran) with,
-Jj=1, =29,
Pr={t;y/s Iose Tran},
d(ts.sr) = s, di(ts6) = s" and (t50) = t,
— Py ={abs g g albNag g € PyNbs gr € Py Nbg,, € PyNagn, € Pr},

= dg(abs sr5n,0) = g5y di(absgrgn ) = bsgn, do(aby,ggr) = by,
di(abs,or o) = g and l(abs o o 0) = (a,b).

o &(P,P L 1,j)=(8,i, E,I,Tran) with,
- i:jvs:P07
— 558 eTrane (3w e PLl(z)=tAdY(z)=sAndl(z) =)
— albif and only if 3C' € Py, {(C') = (a,b)

F has the same action on the underlying ordinary transition system of an
asynchronous transition system as functor . Similarly for £ which acts as V
on the underlying ordinary transition systems. F fills in all interleavings of two
independent actions by 2-transitions. £ imposes two actions to be independent
if and only if there exists a truly concurrent execution of them somewhere in

the labeled HDA.
The action on morphisms is again easy to define.

Let f = (0,A) = (9,4, E, I, Tran) — (S, ¢, E', I',/Tran’) be a morphism of
asynchronous transition systems. Then ¢ = F(f) : F(9,¢, E,I,Tran) —
F(S' ', B I, Tran') is defined by,

o g(s)=o(s) for s € F(S,i, E,1,Tran)o,
o g(ls51) = A)s(s),0(s) for L5 € F (5,4, B, 1, Tran)y,
[ ] g(ab57sl75//7u) = /\(a)/\(b)g(s)70(5/)70(5//)70(@
for abs s 514 € F(S, 0, 12,1, Tran),.
Finally, for g : (P, P 4 L,j)— (P, P L L,j") a morphism of dCpy we define
f=(@ ) 8PP L L) — &P P L L),

o 0(s) = g(s) for s state of (P, P 4 L,j),
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Figure 3.2: Example of co-retract F o &

o let s 5 & be a transition in E(P, P 4 L,j). Then by definition of £ there
exists * € Py with I(z) = ¢, d3(z) = s and d}(z) = s'. Then we can set
A(t) = log(z). This definition does not depend on s, &,

Proposition 4 (&, F) is a pair of adjoint functors.

Proor. We verify easily that £ o F = Id. We now have to show that the
identity morphism is co-universal (case (iv) of Theorem 2 page 81, [ML71]) more
precisely that for all (5,7, F,I,Tran) € ATSg, Id : EF(S,i, E,1,Tran) —
(5,4, F,1,Tran) is universal from & to (5,¢, £, I, Tran).

Let f = (o,A) : (51,41, E, [1,Trany) = E(Py, 51,0, L) — (5,4, F,1,Tran) be
a morphism of asynchronous transition systems. Remember that ¢ is a func-
tion from (Py)g = 51 to S and A : F — E. We define f' : (P, j1,l4,L) —
(P,j,1,L)=F(S,i, £, 1,Tran) as follows,

¢ fll(Pl)o -

. f|/(P1)1 is such that for all ¢; o € (P )1, f|/(P1)1 = M) o(s),0(s)

o for all ab575/75//7u € (P1)27 f|/(p1)2(abs,5/75u7u) = /\(a)/\(b)g(s)70(5/)70(5//)70(@.
It is easy to see that £f" = f, hence the universality. O

Composing (€, F) with (T3, G;) we obtain a pair of adjoint functors

EOTQ
GaoF

acy’ AT Sg

corresponding to a maximal interpretation of the independence relation
(maximal allocation strategy).

All k-mutual exclusions (k > 2) are interpreted as level of parallelism

k4 1.
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Example 11 o supposing —(alb) we have,

e b

=
N N

This shows that 1-mutual exclusions can be expressed under the mazimal
allocation interpretation of asynchronous transition systems.

e Supposing alb, alc and blc the following asynchronous transition system
is mapped onto a filled-in cube (i.e. onto Dig),

L
N
-

N N

This shows that 2-mutual exclusions are identified with asynchronous ex-

ecution of three actions.

The minimal allocation strategy can be obtained very easily through the ad-

junction

g
ATSEp = dC pll
H
where,

o (P,j,1,0)=G(5,t, E I,Tran) with,

—Jj=1 P = S?
— Py =A{ts /s L ¢ € Tran},
— d)(ts9) = s, di(tss) = & and l(t59) =1,

o H(P,P L L.j)=(S, i, E, I, Tran) with,

-1=7,5=Fo,
- 5L5’<:>(ElacEPl,l(x):t/\dg(w)zsAd(lJ(x):s’),
- 1=EXxFE.
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Figure 3.3: Co-retract Ho G

not(al b) alb

Again, G and 'H act as U and V respectively on the underlying ordinary transi-
tion systems. This time, G forgets all the information about the independence
of actions whereas H considers all actions to be independent.

The actions of morphisms are straightforward.
Proposition 5 (G, H) is a pair of adjoint functors.

Proor. It is easy to see that G o H = Id. We now have to verify that for
all (P,j,l,L) € dCpy, Id : GH(P,j,l,L) — (P,j,l, L) is universal from G to
(P,7,0,L).

Let f: (P, j1,0,0) = G(S1,41, F, I, Trany) — (P, j,l, L) be a morphism of
HDA. We define a morphism of asynchronous transition systems f' = (o, ) :
(51,11, E, 1, Trany) — (9,4, E, I, Tran) as follows,

o o(s)= f(s)for s € 51 =(P)o,
o Me)= f(e)forall e E.

This defines a morphism of asynchronous transition systems since for all e, ¢/,
elie! = f'(e)I f'(¢') because alb is always true for any a, b.

It is then easy verification to see that G/f’ = f, hence the universality of Id. O

Composing this with (Z,71), we get the minimal allocation strategy (on one
processor) of asynchronous transition systems.

Under this interpretation, all mutual exclusions and concurrent exe-
cutions are identified.

3.3 Mazurkiewitz traces and HDA

We define a pair (V, W) of adjoint functors between the subcategory GT' Ly, of
GTL (where the alphabet is fixed to L) and Cpy as follows,

If (M,1,L)is a generalized Mazurkiewitz trace we set V(M, I, L) to be the
HDA (I: P — L,j) with,

* j) = ¢,
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o Py={[s]=/s € M},

2 ~—~—
»
m
=)
m
~
—
=W
()
S
=3
IR
"
2,
IR
Sa—’
[l
=3
R
=8
i
S
=3
IR
"
2,
IR
Sa—’
[l

— dg(abpy.) = ([s]z [sa]z),
— di(abpy.) = ([s]z, [sb]x),

— dp(abpy.) = ([sb]x, [sbal=),
— di(ab,),) = ([sa]e, [sablx),
— l(abs) =a®b

If({:P—L,j)isa HTS then define W(l: P — L,j)=(M,I, L) with,

o M ={(l(z0),....0(x))/(J, %0, 51, %1, »Tp, Spt1) is @ path in P},
o Let (j,20,51,%1,...,%p, Sy41) be a path of dimension 1 in P.

s = (l(z0),...,l(x,)) € M. Then set alsb if and only if there is C' € P,
such that d3d$(C') = s,11 and I(C) = a @ b.

This means that the strings of the Generalized Mazurkiewitz trace are precisely
traces in the HDA, and the independence relation is once again read in the 2-
transitions of the HDA.

In the following, we actually restrict to CCpy the subcategory of deterministic
and connected HTS, i.e. the subcategory of HT'S (I: P — L, j) such that for
all state s of M there exists a unique path from j to s.

Proor. We first prove that W oV = Id. Let (M,I,L) € GT Ly, and define,
VM, I,L)=(l:P— L,j)
W(l:P— L,j)=(M,I1

Let s € M, s = ag...a, (a; € L). Then we can see by a straightforward
induction on n that ([€]~, zo, [aglx, ..., %, [s]~) is a path of dimension one in
P, where 2; = ([ag . ..a;—1]~,[ag .. .a;]=~). This implies, by definition of W, that
l(x0)...l(xy) which is equal to ag...a, is in M'. Therefore M C M'.
Conversely, let ag...a, € M'. Then there exists (j,xo,81,%1,52,...,Tn, Sy)
a 1-path in P such that I(z;) = a;. Then, {(zg)...l(z,) = ao...a, € M.
Therefore M = M’.

Now, allb if and only if s = l(xg)...l[(z,) and there is C' € Py such that
dyd(C) = sp,41 and [(C') = a ® b. By construction, this is equivalent to
C = ab,, and alsb.

Now, we prove that when we restrict to deterministic connected HDA, there is
a natural transformation VoW — Id. Let (M,I,L)=W({: P — L,j) and
(' P —L,jY=V(M,I,L). Then j' = e=j. Let t € Py. As P is connected,
there is a unique 1-path from j to ¢t in Fy. Let s be its trace in L. We define a

=
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graded function f = (f;); from P to P’ by first setting f(t) = [s]~. For € Py,
define fi(z) = (fo(d3(z)), fo(di(x))). For A € P, with I[(A) = a @ b, define
fa(A) = abpg 040 (4)y,- 1t is easy to see that f defines a morphism of HDA
from P to P’. Moreover, it is natural in its argument. It defines the co-unit of
the adjunction. The fact that it is universal from V to I'd is left to the reader. O

Example 12 o Let (M,I,L) be,

- L= {avb};

— M = {e,a,b,ab,ba},

— [ is the constant function from M to 2%V such that for all t € M,
al(t)yy if and only if e =a, y=borz=b,y=a

Then by the pair of adjoint functors above, we see that it corresponds to
the HDA,

/a g\

ﬁ

\/

ﬁ

II2

o Let (M,I,L) be,

- L= {avb};

— M = {e,a,b,ab,ba},

— [ is the constant function from M to 2%V such that for all t € M,
z,y € L, xl(t)y is false.

This corresponds via the pair of adjoint functors above to the HDA,

[ab]a [ba]

l l
_\ o

ﬁ

1R

The allocation strategies deriving from this pair of adjoint functors are of the
same kind as for asynchronous transition systems. Basically, we have a maxi-
mal allocation strategy which identifies all k-mutual exclusions with
level of parallelism k+1 when k£ > 2, and a minimal allocation strategy
which does not express any level of parallelism strictly more than 2.
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3.4 Event structures and HDA

We use the equivalence with deterministic labeled event structure (in [SNW94])
to have interpretations of HDA in terms of a truly concurrent, linear time,
behavioural model of concurrency.

It is proven in [SNW94] that one particular full subcategory of labeled event
structures, the category DFE S of so-called deterministic labeled event structures
and the category of generalized trace languages are equivalent.

This is proven with the partial morphisms only, and we review this construction
in order to show that it works also for total morphisms.

We derive a generalized Mazurkiewitz trace language (M, I, L) from a labeled
event structure (F,<,#,[, L) if we suppose it is deterministic, i.e., for any
configuration ¢ and any pair of events e,e’ € F, whenever ¢ - e, ¢ F ¢ and
l(e) = 1(e') then e = ¢’ as follows,

o M ={l"(e1...e,)/{e1,...,e,} is a securing}. Notice that as (F,<,#,!, L)
is deterministic, M is in bijection with the set of strings of events. Call
this bijection Sec,

o [, ={(a,b)/sabe M, Sec(sab) = xzegeq, and egcoe }

Conversely, we can define a deterministic labeled event structure (£, <,#,[, L)
from a generalized Mazurkiewitz trace language (M, I, L).

Events in (M, I, L) are just traces identified in a suitable way, using the inde-
pendence relation. Formally, let ~ be the least equivalence such that,

e al,b implies sa ~ sba,

o s~ s implies sa ~ s'a
then the set of events occuring in s € M is defined to be

Ev(s) = {[u]~/u is a non empty prefix of s}

Event [s]~ is now before event [s']« ([s]~ < [s']~) if and only if for all w € M,
[s']~ € Ev(u) implies [s]. € Fv(u).
Events [s]~ and [¢']~ are in conflict if and only if for all u € M, [s]. € Fv(u)
implies [s']~ & Fv(u).
Finally, I([s]~) = @ if and only if s = s'a for some 5.
These two transformations between Generalised Mazurkiewitz Traces and De-

terministic Labelled Event Structures extend to functors which actually define
an equivalence of categories [SNW94].

Example 13 o We recall that the following Generalized Mazurkiewitz Trace
Language (M, 1, L) defines a mutual exclusion between letters a and b,

— L ={a,b},



116 CHAPTER 3. RELATIONSHIP WITH OTHER MODELS

— M = {e,a,b,ab,ba},
— I is the constant function from M to 2% such that for all t € M,
z,y € L, xl(t)y is false.

and corresponds (by the equivalence above) to the Deterministic Labelled
Fvent Structure (F,<,#,l, L),

— F={e¢a,b,ab,ba},
< is the prefix ordering on strings of as and bs,
a#b, ab#ba, a#tba, b#ab,

— | and L are the obvious labellings.

o The following Generalized Mazurkiewitz Trace Language (M, I, L) defines
the concurrent execution of actions a and b,
- L= {av b};
— M = {e,a,b,ab,ba},
— [ is the constant function from M to 2%V such that for all t € M,
al(t)y if and only if e =a, y=borz =5,y =a.

and corresponds (by the equivalence above) to the Deterministic Labelled
Fvent Structure (F,<,#,l, L),

= k= {[d,[d], o]},
= [ < [d], [ < [0],

there is no conflict,

— L =Aa,b} and l([a]) = a, I([b]) = b.

o Using the maximal allocation strategy for Mazurkiewitz traces and the
equivalence with event structures, we see that the semi-reqular HDA (rep-
resented here via the adjunction with Top),

4w
N
ab

>

s represented by the labeled event structure,
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3.5 Other models

In [SNWO4], it is proved that we have the following adjunctions (the arrows
go from the more concrete to the more abstract models), together with the

adjunctions we have proven?,

Top «— T «—— T8

N

drs
LES «— ST

N

HL

where LES is the category of labeled event systems (equivalent to generalized
Mazurkiewitz traces and pomsets without autoconcurrency), S7"is the category
of synchronization trees, H I the category of Hoare languages and d7T5 the
category of deterministic labeled transition systems.

Summary We have constructed formal correspondences (pairs of adjoint func-
tors) in the style of [WNO94] between some of the operational models of Chapter
1 and the semi-regular HDA of Chapter 2. The difference with [WN94] is that
we are looking at a variety of adjunctions between models and at their meaning
in terms of properties of dynamic behaviours that are forgotten.

There is in particular an isomorphism of categories between the category of
labeled transition systems and a category of labeled semi-regular HDA of di-
mension 1. This in turn induced different ways to understand diamond shapes in
transition systems. One way was to interpret them as purely non-deterministic
interleavings, i.e. as an execution on one processor and another was to inter-
pret them as purely asynchronous executions (on some number of processors).
These interpretations were shown to be pairs of adjoint functors (or abstract in-
terpretations) and to correspond to different allocation strategies (the minimal
one for the former, the maximal one for the latter).

Then we showed that these adjunctions could be generalized to “decorated”
transition systems like asynchronous transition systems and generalized Mazur—
kiewitz traces. The independence relation of AT S corresponds to a 2-transition
(in fact many of them) and we have shown that different allocation strategies
could be formalized. The independence relation of G'T'L was also shown to cor-
respond to 2-transitions, but this time depending on a local state. We ended the
chapter by using some of the results of [WN94] which gave us correspondences
with event structures, Hoare languages and synchronization trees.

This gives a hint why HDA seem to be well suited for studying allocation
strategies (and scheduling properties) of concurrent systems, since we have a
notion of level of parallelism and its dual, a level of mutual exclusion. This will
be used in Chapter 7.

*This is actnally a commutative diagram.
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Semantic Definitions
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Chapter 4

Categorical properties of

HDA

In this chapter, we consider constructions on the category T of HDA with
morphisms of degree (0,0), and on the full subcategory T, of acyclic HDA. Some
of these will bear a striking resemblance to operators of process algebra (this
is much in accordance with the results by Glynn Winskel on deriving process
algebras from the categorical constructions on several models of concurrency).
Some others will have no known equivalent and will be discussed as new notions,
except of course if we had already seen them in the previously studied categories
of semi-regular, regular and partial HDA.

4.1 Limits and colimits

4.1.1 Zero object

Lemma 5 0 is the zero object in categories Y and YT,, that is, is both their
initial and terminal object.

Proor. Obvious: there is only one morphism from 0 to any HDA M (initial
object property) and only one morphism from an HDA M to 0 (final object
property). O

4.1.2 Finite limits and colimits

Lemma 6 Cuategories T, T, are finitely complete.

Proor. We just need to prove that kernels and cartesian products exist in
these categories.
Let P and ¢) be two HDA. Let M = P x () as sets, and define on M:

e a structure of R-module by Va € R, V(z,y) € M, a(x,y) = (az,ay), and
V(z,y),(zt) € M, (z,y)+ (2,t) = (x + y, 2+ 1)

121
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¢ two boundary operators by V(z,y) € M, 0;((z,y)) = (0;(x),0;(y))
e two compatible gradings by M; ; = P;; X ;;

It is a simple verification to see that M is a HDA and is the cartesian product
of M and N in the above mentioned categories.

Now for kernels (or equalizers), let P, @ and f,g : P — () be respectively
HDA and morphisms of HDA. Let M = {a/f(z) = g(z)} = Ker (f — ¢). It
is obviously a subHDA of P, and together with its inclusion morphism into P
forms the equalizer of P, (), f and ¢. O

Remarks

e T has in general only cartesian products and not equalizers.

e T has cartesian products and initial and final objects which coincide,
thus it cannot be cartesian closed otherwise it would be a completely
degenerated category (all objects would be isomorphic).

We have the notion of kernel of a morphism (equalizer of this morphism and
the map 0). This enables us to study the existence of quotients. Let P, @ and
R be three HDA, Q@ C P, and f: P — R a morphism of HDA such that Ker
f is a sub-HDA of ). Then the quotient P/Q of P by @, together with its
“canonical projection” p : P — P/Q, if they exist, are the unique HDA and
epimorphism such that,

P/Q

Lemma 7 Cuategories T, and T have quotient objects.

Proor. We begin to prove it for acyclic automata. Quotient objects exist in
the category of R-modules, so we can define, as modules, for ¢) sub-HDA of P,

(P/Q)ij = Pij/Qi;
They come together with projections p; ; : P;; — P ;/Q; ;.
We can define also boundary operators 9 and 9f from P; ;/Q; ; to Pi_q ;/Qi-1
and from P;;/Q;; to P; ;_1/Q; ;-1 respectively, by,
([7]a:;) = [0o(2)]Q._y

Fo([la:;) = [0o(®)]0:,
where [y]4 denotes the class of y modulo A. It is a valid definition since if we
have two representants z and 2’ of the same class modulo Q; ;, do(z) — do(2) €
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do(Qi;) € Qi—1;. Same for 9. It is an easy verification to show that the 9},
d1 are boundary operators and then that this definition verifies the property of
quotient objects with the canonical projection p being the union of the p; ;.

For T, we have in particular to verify that the same construction verifies the

property that no two elements of different dimension are equal. We follow the

construction of [Lan93b].

Let M be the R-module P/Q) = @ Pr;/Qr; and H the smallest R-module
kled

of M generated by elements of the form 3~ ; pg(2y,) such that,

e only a finite number of z;; are non null,

o x5 € My,
o > x3;=0.
kil

It is easy to see that M/ H, which is by definition the R-module underlying the
HDA P/Q,is an amalgamated sum of the R-modules Py ;/Q ;.

Now, we construct the canonical projection p: P — > Py ;/Qx, as follows.

kled
Let =)~ a3 € P with 2y € Py . We define p(z) =3 [pri(2k,)] where [y]
Kkl kil

denotes the equivalence class modulo H.
Then, >~ xr; =Y yi,; implies > pri(251) =2 pri(Yk1), hence pis well defined.
kl kl k,l kil

It is obviously a surjective module homomorphism. If 2 =3 23 ; then p(z) =0
l

)

implies 3h =& pgi(hg;) € H such that & pgi(zp; — hry) = 0. Hence, VE, I,
k,l kil
tr — hgy € Nig. But by definition of H, > hy; = 0, therefore 2 =3~ (25 —
Kl

)

hii) € N. This proves Ker p= N.
Then p induces an isomorphism p: P/Q — M/H =3 Py ;/Qk;. O
Kl

Ty does not have quotient objects in general. For instance, for R = Z, My =
(a), No = (2a), then (M/N )y = ()2 which is not free.

Lemma 8 The categories Y, T, are finitely cocomplete.

Proor. We prove first that coproducts & exist in these categories. If P and ¢
are HDA, then define P & () to be,

o as modules, (P& Q);; = Pi; ®Q;; (see [Lan93a] for the definition of the
direct sum & on modules),

e together with boundary operators ;[P & Q] = 0;[P] & 9;[Q] (i = 0,1).

Finally, cokernels exist in the category T: let P, ¢) and f,g: P — () be re-
spectively HDA and morphisms of HDA. Let M = Q/Im (f—g)andp: Q — M
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the canonical surjection. They are HDA and morphism of HDA respectively,
by Lemma 7. It is indeed the coequalizer. O

Therefore amalgamated sums exist in the categories T and T,. The amalga-
mated sum of X and Y over Z is denoted by X [[,VY.

We have only finite sums in T in general.

Definition and lemma 6 Let A be a submodule of an HDA M. Then there
exists a smallest sub-automaton of M containing A, denoted by Clos(A). We
define an operation + on submodules of M, by:

A4 B = Clos(A) H Clos(B)
Clos(A)NClos(B)

Remark: Closis clearly the topological operation of closure. We will see that
+ corresponds to the geometric operation of connected sum.

We call iny and iny respectively, the canonical morphisms from A to A + B,

and B to A+ B.

Example 14 Let M be automaton (1) of Example 4, and let N be the automa-
ton M, where a is replaced by o' and «, by o’. Then M + M’ can be pictured
as:

Q o
N
1

Notice that cartesian product and coproduct are isomorphic constructions, so
we have biproducts.

4.1.3 (7) Enriched structures

Actually, the most interesting part of the categorical structure of HDA for use
of homological (or K-theory) methods is something which will not be used for
giving semantics of concurrent programs.

(*) Lemma 4 T is an abelian category
Proor. (see [MLT71])

All equalizers are monics. T has a zero object and biproducts. Therefore, it is
an additive category.
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This means that T(A, B) for all A and B can be given a structure of commu-
tative monoid® by setting, for f, f': A — B, f+ f'=Vo(f® f')o A, where
A and V are the diagonal and co-diagonal morphisms respectively.

Moreover, every morphism has a kernel and a cokernel and every monic arrow

is a kernel, every epi is a cokernel. This proves that T is an abelian category.
O

4.1.4 Direct and inverse limits

We first recall some notions of algebra, that can be found for example in
[Lan93a] or [Mas78]:

(*) Definition 2 Let (I,<) be a directed set, and C be a category. A direct
system of C' consists of a function which assigns to each i belonging to I, an
object C; of C, and to each pair i,j € I such that i < j, a morphism M;; : C; —
C';, such that the following holds:

o lorany i € I, My; is the identity map of C;,
o Ifi1 < j <k, then My, = M]‘kMZ']‘.
For those who are familiar with the language of category theory, a direct system

of C'is a covariant functor from the category I (viewed as the graph of < on [I)
to the category C.

(*) Definition 3 Let C' be a category, and M a direct system of C. A direct
limit of M? consists of an object L of C' and a collection of morphism p; : C; —
L verifying the two conditions:

(i1) For any object A of C and collection of morphisms ¢; : C; — A satisfying
the previous property, there exists a unique morphism h : L — A such
that for every j € I, ¢; = hp; (universal property).

We write:
IimC; =1L

Now, we show that the notion of direct limit is functorial, that is, we can
compute a notion of direct limit for maps (to be defined) between direct systems.

'In modern terminology we would say that T is a CMon-enriched category, where CMon
is the category of commutative monoids.
2Direct limits are a particular case of colimits, sometimes called filtered colimits [ML71].
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(*) Definition 4 [Mas78] A map of a direct system C' into a direct system C’
consists of an order preserving map f: I — I', and for each i € I, a homo-
morphism F; : C; — C}(i) subject to the following condition: if © < j, then
M}(i),f(j) ol; =F;oM,;.

The reader will certainly have recognized that F’ is a natural transformation
(see [FS90]) of the functor M into the functor M’f.

Let us denote by (L, (p;)i>0) and (L', (pi)i>0) the direct limits of the direct
systems C' and C’ respectivzely. Now, consider for each 7 € I the homomorphism
p}(i) o F; : C; — L'. Then this collection of homomorphisms verifies condition
(i) of definition 3. Hence, by condition (ii) of the same definition, there exists
a unique homomorphism F., : L — L' such that Vi,p’f(i) o F; = F, op;. This
homomorphism F,, is called the direct limit of the homomorphisms F;.

l@z is a covariant functor from the category of direct systems of €' and maps

of direct systems to C.
(*) Lemma 5 Direct limits exist in the category of modules and linear maps.

(*) PrOOF. See [Lan93al. O

Corollary 1 Direct limits exist in Y, T, and DG, the category of graded dif-
ferential modules.

PrOOF. Let (C%,0%,0}) be the objets of a direct system of Y. Let M% be the
morphisms from C* to C7 of this direct system. They respect the gradings, so
they induce morphisms M, : C}; — CJ . Let (Ly,py ;) be the direct limit
of the direct system Dy, = (CL,, M); ; of R-modules.

Consider now the map (f, F*); from Dy to Dy
f:I— 1, f=1d
F':Chy— Ciyy F'=0o
We have Mliil,l oF" = Fio M;’j because M%/ is a morphism of bicomplex.

Therefore, it is a map of direct systems. Let d5° =lim 3. We can make the

same construction for F”" = d; which leads to an operator 05 : Ly ; — Ly 1,
0t° =lim 9f. We have Vi, 0} 0 9y = 0. Thus, lim (9} 0 9§) = 95° 0 95° = 0 by
functogality of lim. Similarly, 07° 00 =0 and_éo o0y + 01 00y = 0. Moreover,
we know that: -

Pi-u © 86 =0y o Pi,l

P2,1—1 © 3i =0/ o Pi,l

Thus, p' is a morphism of HDA between (C, 94, 9%) and (L, d3°, 95°). We have
constructed a cone (L,p') in T. We have to prove it is universal.
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Suppose we have morphisms p'': ¢* — L. Then there exists a unique linear
map h: L — L', such that Vi, h o p; = p,. We already know, by construction,
that i respects the two gradings of the HDA I and L’. For x € C*, we have

hpi(0;(2))) = h0;(pi(x))) = pi(9(x)) = 9j(h(pi(2))). Thus, for all i, his a
morphism from Im p; to L’. L is an amalgamated sum of the Im p;, hence h
is a morphism from L to L. Therefore, (L,05°,0°) is the direct limit in T, of

(C", 05, 04).
T, is a full subcategory of T. This entails that direct limits exist in T, as well.

The proof that direct limits exist in DG is similar. O

Proposition 6 Categories T, T, are cocomplete.

Proor. This is entailed by the previous result and Lemma 8. O

Inverse limits are direct limits in the opposite category. We just state:
Lemma 9 Inverse limits exist in the categories T, T,.

Proor. They exist in the category of R-modules. We conclude by using the
same arguments as for the direct limits. O

Then,
Proposition 7 Categories T, T, are complete.

Proor. Follows from the finite completeness and the existence of inverse lim-
its. O

4.2 Tensor and Hom

(*) Definition and lemma 1 Let M and N be two HDA. Define a R-module
T by:

Tpq = Z Mp—kq—1 ® N
k.l

and two operators (j=0,1)
0j(x @ y) = 0j(x) © y + (=11 © 9 (y)
that 1is,

o= S (M@ Id+ (—1)PHId @ 9} [N))

ptr=n,q+s=m

Then T is a HDA, called the tensor product of M and N.
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The meaning of the amalgamated sum >> M,_; ,—; ® Ny is intuitively clear.
il

Nevertheless, we prefer to give a more formal definition here.

If M and N are two acyclic HDA, then the definition of the tensor product

becomes the classical one (at least for complexes, see [ML63]),

Tpq = @Mp—hq—l @ Nii
El

Suppose now that M and N are not acyclic. Let L be the bigraded module
with,
Lp,q = @Mp—hq—l ® Nk,l

k.l
and H the sub-module of @ L, , such that H, , is generated by elements of the
pia
form,
Mpg © Ny s — Myt o & Nyt gt
with,

o My g € Mpg, My g € My g, iy s € Ny g and npr o0 € Ny o,
i mp7q = mp/7q/ and nTVS = nT/75/'

Now,

Tp,q = Z Mp—’aq—l ® Nk,l
k1l

denotes the equivalence classes modulo H of elements of L,,® Notice that
the sign in the boundary formula is the only one compatible with this quotient
operation.

Proor. First, we have to verify: dgo 01 + 04 0 9 = 0.

We compute:

oottt = S (R MIe oM @ 1d 4 (~1) 05 UM @ 9N+

p+r=m,q+s=n

(~1pretetiid @ op M) o 0 N] + (—1)P 0P M] © 95 °[N])
and

ooyt =Y (AP MIe BT M) 1 + (—Lap (M) @ 9 [N+

p+r=m,q+s=n

(~1pretetiid @ 9P ] o O TS[N] + (—1)P 0 M] © 9} °[N])

®For more details, one can look at [Lan93b].
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Their sum is equal to zero because of the relations of commutation (or anti-
commutation) between 9p[M] and 91[M] , and between dy[N] and 01[N].

Secondly,

I odk(x@y)

o (AMI(x) @y + (—1) ™ *x @ &[N(y))
(—1)@m A g M (x) @ K[NI(y) + (—1) 4™ *a [M](x) © [N](y)
0

a

This construction is the tensor product of the two complexes associated with
M,y and M; (see [Mas78]). The reader can verify that it is actually a tensor
product in the category (see for instance [I'S90]) of complexes with morphisms
given by Definition 26.

Example 15 The tensor product of two copies of automaton (1) of Frample
can be pictured as:

a®0/
a®/ \@a
« a®a o

P

This corresponds to the picture we had for the tensor product of semi-regular
HDA. The correspondence between the categorical structures of the different
kinds of HDA will be made formal in Section 4.3.1.

Lemma 10 Let M be an HDA. Then (-@ M ), (M ® -) are endofunctors on T,
T,.

Proor. Let F(X) = X @ N. We define the action of F' on morphisms f :
X — Y by:
F(f): F(X) — F(Y),  F(f)(x©m) = f(z)@m
F(f) is a morphism, because,
O f(@)om) = 0(f@) & m+(=1)" ") fa) © oi(m)
= F(N@(@)@m+(=1)"" 2 @ di(m))
= F(NH0i(x @ m))

For acyclic automata, we verify that F(Q),,,, is a bigrading when @), , and
M, s are. O
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(*) Definition and lemma 2 Let P and Q be two acyclic HDA. We define
Hom(P,Q) as the acyclic HDA whose objects of index p,q are:

Hom(P,Q)y,4 = H Hom(P s, Qptrq+s)
T,SEZ

(where Hom(P, s, Qptrqts) s the R-module of R-linear maps from P,; to
Qp+r.g+s) and whose boundary operators are:

80(f7°,5) = 80[@] o fT,s - (_1)p+qfr—1,s o 80[13]
81(f7°,5) = 81[@] o fT,s - (_1)p+qf7°,s—1 o 81[13]

for i=0,1, and f, s being the (r,s) component of some fin Hom(P,Q), 4.

Proor. Fasy verification. We have for instance:

8081f = 80 (9] 81 (9] f — (_1)p+q81 0] f (9] 80 — (_1)p+q80 0] f 0] 81
—(= 1) f o 9y 0 8

and,

8180f = 81 anof— (—1)p+q_1800f081 - (_1)p+q81 Of080—|-f080081

Thus, 8081f + 8180f =0.0

Again, when P and () are not acyclic, we would have to make more precise the
meaning of [] Hom(P, s, Qpirgts). It is intuitively clear that we want to

T,8€
identify maps in it which are “equal” on “equal” elements, equality meaning

here the one we may have between elements having different indexes. The
formula above for Hom(P,Q), s unfortunately does not work (see [Lan93b] for
a counter-example).

In fact, if P and @) are general HDA, we need to define Hom(P,Q), s to be the
module of morphisms from P to @ of degree (r,s). Note that this definition
coincides with the one we have given in the case of acyclic HDA. The boundary
operators are defined in a similar way. Notice that the signs in these formulae
are the only ones we could choose, compatible with the identification of elements
of the same dimension.

Proposition 8 Let M be an HDA. Functors (- M ), (M ®-), Hom(M,-) and
(M + ) are w-continuous, that is, preserve direct limits.

Proor. Let C' = (C;, M;;);; be a direct system in T and (D, p;); =lim C.
For F' a functor, F(C) = (F(C;),F(M;;))i; is a direct system in T and
(F(D), F(p:))i is a cone for F'(C'). We just need to prove it is universal, and
then we will conclude F(D) =lim F(C'). Let (£, ¢;); be a cone for F(C') and
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B={b4,....b;,...} be a generating set for M.

We begin by considering the functor F' = (M ® -). For all j, (¥, ¢ ;)i, where
¢ ;j(z) =b; @z, is a cone for C'. Thus there exists h; : D — F such that Vi,
¢.; = hj op;. Now, let h be defined on F(D) by h(b; ® ) = hj(z). h verifies
the identities ¢; = ho F(p;), Vi. Thus, using the same arguments as in Lemma
1 h is a morphism on Im F(p;), hence h is a morphism from F(D) to F.

We have to prove the uniqueness of such an h. Suppose we have h and h' veri-
fying ¢; = ho F(p;) = h' o F(p;). Then, h(b; @ -) = h; and h'(b; @ -) = h'; verify
¢ij = hjop; = Rk} op;. Therefore h; = k%, Vj, and h = h' (because they are
generated by the h; and h’).

For F'=-® M, we reason in a similar way.

The cases F'= (M + -) and F' = Hom(M,-) are left to the reader.

O

4.2.1 Autonomous structure
Lemma 11 T s symmetric monoidal.

Proor. The map,

A® B B@ A

a®b (_1)dzm adim bb@a

is a natural (in A and B) isomorphism. Thus T is symmetric monoidal. O

roposition 3
(*) Propositi

Hom(P® Q,R)= Hom(P, Hom(Q, R))
(*) Proor. We verify this first when all automata are acyclic.

Let T, ;=Hom(P @ Q,R), , and S, ;.= Hom(P, Hom(Q,R)), ,
Notice that, as R-modules (and for any R-modules A, B, C'):

Hom(A @ B,C)= Hom(A,C)x Hom(B, ()
Hom(A® B,C) = Hom(A, Hom(B,(C))
Hom(A,B x C)= Hom(A,B)x Hom(A,C)

Then we have as R-modules:

Tpy = ][] Hom(EP Pey @ Qr—ts—ts Rptrgts)
T,SEZ k.l
jad H H HO?TL(PkJ ) Qr—k,s—lv Rp+7°7q+5)
T,SEZ kil

R

H H HOm(Pk,lv HOm(QT—k,s—lv Rp—l—r,q-l—s))
T,SEZ kil
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Now, still as R-modules:

Spa = H Hom(P, s, Hom(Q, R)pirg+s)
T,SEZ

HHOm(PT,Sv H Hom(Qijy Rptrtigts+i))
ijel

[T II Hom(Prs, Hom(Qij. Ryrrtisgtsts)

T,sEZi,jEZ

Tpvq

R

(1

(1

Now, we have to see if this isomorphism of R-modules is an isomorphism of
R-bicomplexes.

TV fijt) = 0j[R) 0 fijna — (=1)PFfi i1 0(9;[P) @ Id[Q))

—(—1)pFatktly o (Td[P) @ 04(Q))

where f; ;1 acts on P @ Qi j—i, and,
;151 fij ) = O5[RTo fijaes — (= 1)PF fijag 0 05[Q] = (= 1)PHIHFH 510 0 P]

where f; ;1 is the (¢, 7)th component of the (k,[)th component of f.

In the latter term, f; ;5 is in Hom(P, Hom((Q), R)),4, and in the former, it
is in Hom(P @ @, R), 4, by isomorphism u given by u(f)(z @ y) = (f(z))(y).
Applying this to the former relation, we have:

w(O[T(fija)) = O5[R] o ul fijr) — (=1)PTu( fiji) 0 (9;[P] © 1d[Q])
—(= )Py f; k) o (1[P] © 051Q))

Thus,
G[T)( fije)(@)(y) = O [RI fejr)(@)(y) = (=1 fi 5 k0 (95[PN(2)) ()

— (=P a(2)(0;1Q1(y))
This equates 0;[1] with 9;[95].

The case of T is no more complex but too tedious to be detailed here. O

For f an object of dimension n of Hom(P,Q), we say that:
if n > 0 then f increases the degree of parallelism (by n) and
if n < 0 then f decreases the degree of parallelism (by n).

Now, Hom is a contravariant functor in its first argument, and covariant in its
second argument. Let f: P — P’ be a morphism of HDA. Then Hom(f,Q):
Hom(P',Q) — Hom(P,Q) is the morphism such that Hom(f,Q)(h) = ho f.
If g: Q@ — Q" is a morphism, then Hom(P,g) : Hom(P,Q) — Hom(P,Q")
is the morphism defined by Hom(P,g)(h)= go h.
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Example 16 Let a be an elementary object of dimension n in a HDA M.
Suppose that f,(z) = a ® z is well defined on M. Then dim f =n and 0;(f) =

Joy(0)-

(*) Lemma 6 The map eval : Hom(P,Q)® P — @Q defined by
eval({fij}ij. ) = fpq(@)

if © € P, ,, is a morphism (of degree 0), called the evaluation map.

Proor. Suppose dim f =n and v € P, ,. Then,

di(eval({fij}ij @ 2) = 05(Q)(fp,qe(2))

and

eval(0;({fi;}i; @ x)

eval({9;(fij)}i; @« + (=1)"{fij}i; ® 0;(2))
Oi[Hom (P, Q)(fp)(@)) + (=1)" f,4(9;[P](2))
GJ[Q](fp,q(x))

4.2.2 x-autonomous structures
Finite HDA

Let (1) be the HDA generated by a state 1, and with null boundary operators.

Definition 28 Let M be a free HDA (M € Yp). Then the HDA M* =
Hom(M, (1)) is called the dual of M. Elements of M* are called functionals.

We now choose for M a basis B. The definitions involving B will be non-
canonical, but in most applications, the basis comes before the module M (for
instance when M = N, N semi-regular HDA). For z in B, we write 2* for the
functional such that 2*(z) =1 and Vy € B, y # =, 2*(y) = 0.

This extends to any element z =" A\;z;, with z; € B by letting 2* =) A;z}.
7 7

Let now <p or simply < be the reflexive and transitive relation on M generated
by the relations:

forz,y € B 2*(0o(y)) #0 = 2 <y

forz,ye B y*(01(2)) #0 = 2 <y

We say that transition ¢ comes before transition b if ¢ < b. All paths p verify
t < j = p;i < p;. The next lemma shows that acyclic corresponds to our
intuition: the flow of paths on an acyclic automaton is partially ordered.

10r eval({fij}i; ® x).
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Lemma 12 If M is acyclic then < is a partial order.

Proor. We have to verify that < is antisymmetric. Take a, b such that a <b
and b < a. Then we have five cases,

o b*(0o(a)) # 0 and a*(dy(b)) # 0. Suppose a € M, ,, then dy(a) € M,_4 ,.
Ifbe M5, b" € M_, _5. Then b*(Jo(a)) # 0 implies that b € M_(,_y) _,
sor =p—1and s = p. Similarly we can prove that dy(a) € M,_q .
Therefore, p = r — 1 and ¢ = s which is impossible since r = p — 1 and
s=p.

b*(0o(a)) # 0 and b*(01(a)) # 0. Similar kind of contradiction.

a*(01(b)) # 0 and a*(dy(b)) # 0. Contradiction again.

a*(01(b)) # 0 and b*(01(a)) # 0. Contradiction.

e o = b. This is the only possibility.

a

More generally, we can define a bilinear product < -,- > on M by < z,y >=
y*(2). We come now to the description of the dual of an HDA.

Lemma 13 Let M be a finite state automaton with basis B. Then M™* has
basis B*, dim b* = —dim b. Moreover, if the boundary operators of M* are
denoted by 05 and 0F, then:

Va,y € B,< 0i(z),y >=< 2", (y") >

Proor. The first part of the lemma is a well-known fact from module theory.

Then, b* is a function which only sends an element of dimension dim b, b, to an
element of dimension 0, namely 1. Thus b* is of dimension —dim b.

Now, 8F = Hom(d;, (1)), that is, 87(f*) = (= 1){#mS=1) f*09;, because 9;[(1)] =
0. Thus, < 2%, 0%(y*) >= (9:(y*))*(2*) = (=@M y=1)(y= 5 §,)*(2*). But,
)i, y* 0 0; = apa™ + arbl + ... + a,bl. So < 0;(x),y >= y* o0 Ji(x) = ap.
We have also (y*00;)* = age™ + a1 b7 +...+a,,b%*. Thus, (y*0d;)*(2*) = ap. O

The operators d5 and 0J7 are respectively called the end boundary operator
and the start boundary operator. By analogy with [Pra92], the dual of tran-
sitions, which bear information and change time, are events, which bear time
and change information. Thus, the (standard) boundary operators describe the
temporal beginning and ending of events, whereas the dual boundary operators
describe the information we have at the source point, and the information we
have at the target point. Notice that eval acts on events like sync acts on
events in CML [Rep92]: it synchronizes the event with its argument.
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Example 17 The dual of example (1) is:

o .
Moy =0 — M_11 = (17)

all , all
Mo,o = (Oé*) —0> M—l,o = (a*)

In this HDA, we have one 1-event namely a*, “waiting for transition a to be
fired”. The “information” beginning of 1* is a*, the “information” end of a* is

a”.

Lemma 14 For M a finite state automaton, M and M™ are isomorphic.

Proor. M, M* are isomorphic as R-modules, then M and M™** are also iso-
morphic as R-modules. Now, Vaz,y € B, < di(z),y >=< 2%,0;(y*) >=<
0i(x**),y™ >, and as B™* is a basis of M™*, these relations imply that 9;(x)
and 0;(2**) decompose the same way, with the same coefficients on B (resp.
B**). Therefore (-)** is an isomorphism of HDA. O

Let T be the full sub-category of T composed of finite free HDA (in the sense
HDA which are modules of finite dimension). We have,

Proposition 9 T, is linear x-autonomous. Moreover, it is compact-closed.

Proor. Let L be any HDA isomorphic to the base ring R. For instance, 1 =
(1) with 9p(1) = 01(1) = 0. Let (-)* be the contravariant functor Hom(-, L).
We show that it is a dualizing functor. We already know that there exists a
natural isomorphism w : I'd = (-)**. Now, we have to verify that the following
diagram commutes,

Hom(A, B) Q» Hom(A™, B*)

L [O%

wUuo-ou-
Hom(A™, B™)

This is easy verification. It is also linear since T, hence T is cartesian.

Now, we want to show that 8 = @ (compact-closedness), i.e. for all A and B
in Ty, At ® Bt =~ (A® B)L.

We begin by showing that AL @ B+ = (B ® A)J- as HDA. The result will
be entailed by the fact that A ® B and B ® A are isomorphic. If we look at

(At @ Bt), 4 and (B ® A),, we see that they are isomorphic as modules.

The isomorphism as modules is u(z* @ y1) = (y @ x)L. We have now to verify
that it is a morphism in T .

duat @yt)) = —(=nHm Iy 6 )to
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and,

@(xJ_ ® yJ_) — _(_1)dz'm xxJ_ o 82 ® yJ_ _ (_1)dz'm z+dim ny_ ® yJ_ o 82

In order to compare these equations, we need to write 21 0d; as some functional.

First, it is easy to show that for all HDA M bounded above and below, there
exists a basis B of M stable under the application of 9;, i.e., (b € B) = (9;(b) €
B or 0;(b) = 0). This can be proved by choosing first a basis By for the sub-
module of objects of maximal degree of M, and then construct inductively the
bases B, of the sub-modules of objects of M of lesser degree by completing
Jo(Bp—1)U 01(By—1).

Then, as finite HDA are bounded above and below, we can choose bases A and
B for HDA A and B verifying the previous property. Suppose that z € A and
y € B.

Now, the equation 2% o d;(a) = 1 has as solution an affine space whose origins
are the a such that d;(a) = z. Therefore, 2+ o §; can be decomposed on the

basis AL of AL as,

Similarly,

b/os(b)=y

Suppose now that a € A, b € B, then the equation (y® )t 0 d;(b® a) = 1 is
equivalent to @(b)@a—l—(—l)dim ’b®0i(a) = y@z. All summands are members
of the basis B ® A of B ® A. Therefore, its solutions are generated by ¢ and b
with 0;(b) = y and @ = 2 or b = y and 9J;(a) = (_1)dzm Y2 Thus,

ai<u<xL®yL>>=—<—1>‘“mx+d"my((—mdimy > veat+ Y (b®x)L)

a/ai(a):X b/ai(b):y
and,
u(ai(XJ_ ®yJ_):_(_1)dlmx Z (y®a)J__(_1)dlm x+dim y Z (b®X)J‘
a/di(a)=x b/8i(b)=y

are equal. This proves the proposition. O

Infinite HDA

We will not develop the case of infinite HDA here. The problem is to extend the
duality from finite HDA to at least some infinite HDA. This can be done along
the lines of [Bar85] by adding topologies to HDA or using Chu’s construction
(which has recently gained some importance in the computer scientific commu-
nity, [Pra94a, Pra94b]). Then we get a *-autonomous category of finite and
infinite HDA in which % # ®. This is left for future work.
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4.3 A formal comparison of the HDA-based models

4.3.1 Semi-regular and general HDA

In this chapter and in Chapter 2 we have studied the categorical structure
of T, and of T quite extensively. It is clear that many of the categorical
constructors correspond in one category and in the other. We conclude that
T is an abstraction of Tg,.. Intuitively, we lose in T the combinatorics in the
construction of HDA that we had in T, through, for instance, the ordering of
boundaries.

First, we have to make precise the relation between the mono-index notation
for transitions, and the bi-index one. Let Y? be the category whose objects M
are sequences (Mp7q)(p DX with boundary operators

0.

d; M, , — My_1,
1.

d; - My, — My, 41

(0<4,j<p+q—1)with dfd; = d;_ldf (for i < j) and whose morphisms are
f=Upalpg With (0<i<p+g—1)

0 0
Jo—1q0d; =d;o fp,

1 1
Jpg—10d; =d;o fp,

(the category of “bi-indexed semi-regular HDA”)

Then we define a functor

B:T, — Y?

as follows, where M and N are semi-regular HDA and f: M — N is a morphism
of semi-regular HDA.

i B(M)pﬂz = Mp4q,
i B(df) = df?

® B(f)pg = fotq

Functor B makes all automata acyclic.
Now we have to abstract away from the combinatorics of boundaries.
In Section 2.2.4, we had defined a functor A : Y? — Y as follows,

O
A(My ) —> A(My_1y). .-
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such that A(M, ;) is the free module generated by M, , and,

ptq—1

o = Z (—1)'d?

=0
ptq—1

0 = Z (—1)'d?

=0
Then,

Lemma 15 Ao B:T,, — T commutes with all colimits.

Proor. We verify the commutation with finite colimits first, i.e. with coprod-
ucts and coequalizers,

Ao B(MHN)ZMJ = R—Mod(MyqU Npyy)
= AoB(M)yq & Ao B(N)py
Then for coequalizers, let
f h
M —= N — coequ(f,g)=P
g
be the coequalizer diagram in T, for f, g. Then we can check that P, =

No/{f(2) = g(x)/x € M,}. Then,
Ao B(P)py = R—Mod(Ppy,)
= R Mod(Nysg)/Im (Ao B(f) — Ao B(g)

which is seen to be equal to the coequalizer of Ao B(f) and Ao B(g)in T. The
induced boundary operators are the boundary operators of the coproduct and
coequalizers in T respectively.

Finally, we check that A o B commutes with direct limits. We do not check
this directly but rather use the fact that the free R-module functor from Set

to R — Mod commutes with direct limits since it has the forgetful functor as
right-adjoint. This entails that A o B(lim M;) =lim Ao B(M;). O

Notice that A o B does not commute with the cartesian product since in T we
have biproducts whereas x # @ in Tg,.

By Proposition 11.2.4 of [GZ67] and Lemma 15 we have the existence of D :
T — T, right-adjoint to A o B.

Note that the tensor product is also preserved via this adjunction.

4.3.2 Regular and general HDA

A very similar adjunction exists from regular to general HDA. The proofs go
along the same lines as in previous section. An other way to construct the
adjunction could actually use the category of combinatorial HDA of Chapter
8 mimicking the classical equivalence between complexes of modules and sim-
plicial modules [May67], but this goes beyond the scope of this thesis (look at
Chapter 10 though).
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4.3.3 Semi-regular and regular HDA

Regular HDA are shown to be a straightforward abstraction of semi-regular
HDA where we have the ability to speak about finite sets of transitions (and
even finite linear combinations of transitions). The pair of adjoint functors
relating the two models is based on the classical pair (R — Mod, Forget) (see
[MLT71]) between Set and R — Mod.

Lemma 16 (R — Mod o B,C o Forget) is a pair of adjoint functors between
Y, and Y, (where C is the right-adjoint of B).

Proor. This is due to the fact that (R — Mod, Forget) is a pair of adjoint
functors [MLT71] and (B, C')is a pair of adjoint functors as well (Section 4.3.1). O

We can verify that the pair of adjoint functors in Section 4.3.2 composed with
the pair of adjoint functors of Section 4.3.3 is the same as the pair of adjoint
functors in Section 4.3.1.

We can also generalize the (R — Moleorget) pair of adjoint functor for having
a pair of adjoint functors between Set and R — Mod as follows (X and Y are
sets and f: X — Y is a partial function),

¢ R—Mod(X)=R—- Mod(X),

0 if f(x) is undefined
. R—Mod(f)(x):{ f@) .

f(z) € R—Mod(Y) otherwise

Then, it is straightforward to see that (R — Mod o B,C o Forget) is a pair of
adjoint functors between C'PY and T,.

The case of non-closed partial HDA is unclear at this point.

4.3.4 The lattice of HDA

We sum up the results of this chapter on formal relationships between all HDA-
based models. We write A — B for categories A and B when there is a pair of
adjoint functors

AT B
7
where « is left-adjoint to 7.

Then we have the following diagram,

T

J
I~

T CPY
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Summary In this chapter, we have studied the categorical structure of gen-
eral HDA. T and T, were shown to be complete, co-complete autonomous
categories, leading to an interpretation of intuitionistic linear logic. We proved
that the category of HDA with a finite number of transitions and states formed a
x-autonomous category, the dual of a transition being an event “waiting for the
action to be over”. Finally, it was formally shown that general HDA are more
abstract than regular and semi-regular HDA (again in the style of [WN94]).



Chapter 5

Introduction to semantic

domains of HDA

5.1 Basic principles

In this section, we wish to give a compositional (or denotational) semantics
for some parallel languages, with denotations being HDA. That is, we want
to describe the “higher-dimensional” traces of programs, generalizing the de-
notational semantics using 75, PN etc. (see Chapter 1). In some way, we
would like to benefit from the advantages of both worlds of denotational and
operational semantics: inductive definition and proofs of programs, and power
of expression of behaviour of programs.

We first have to define what we mean by “domain” of HDA. A domain of HDA
is used for giving a denotational semantics of some language £. It should then
“contain” all the execution traces of programs of £. But to be interesting for
studying the dynamics of traces, it should certainly not just be the collection of
all these traces. It should be a HDA D such that all execution traces (partial or
not) are subHDA of D. For instance, if D is the filled in square with edges a, b
and a’, b, then the possible traces of the programs written in the corresponding
language are the paths described in Example 7 of Chapter 2.

Of course this is not a very interesting example. In most cases the opera-
tional semantics of £ can be given if we have a representation as HDA of some
“ground” commands (like assignments for instance), or just some atomic ac-
tions as it will be the case in the last section with a CCS-like process algebra.
Then we just need to specify that if we have two traces, then we certainly have
the parallel execution of these two traces. This is conveniently described as a
recursive domain equation which abstract away from the actual construction of
all needed transitions like,

D = (atomic actions) + D @ D

We study in Section 5.3 the mathematical meaning of such an equation, before
giving an example of the definition of the semantics of a toy language. But first

141
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of all, we relate our domains of HDA to domains used in denotational semantics
[Plo&4].

5.2 Domains of HDA in order-theoretic form

Let D be a HDA.

The category Sub of subobjects of D is a subcategory of the slice category T/D
composed of monomorphims z : X — D modulo isomorphism, i.e.  : X — D
and y : Y — D are identified if there exists an isomorphism f : X — Y such
that the following diagram is commutative,

X—f>Y
N
D

As T is complete and co-complete, Sub is actually a complete lattice with the
following operations,

o Intersection X AY of subobjects X and Y of D is the pullback of the
corresponding morphisms,

XAY X
7 z
y—Y .p

e Union X VY is the pushout ofX/\Yi’>XandX/\Yi>Y

e The order to which these lattice operations correspond is (X = D) <
(Y N D) iff there is a monomorphism f: X — Y such that yo f = x.

Proor. The pullback of a monomorphism by any morphism is a monomor-
phism. The composite of two monomorphisms is a monomorphism, hence
x ot =yojis a monomorphism and defines X AY as a subobject of D.

Moreover, if z : Z — D is such that » <z and 2 < y then there exist f, and f,
such that the following diagram is commutative,

z L x

Ty
vy 2. p

]
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By the universal property of pullbacks, there exists f: Z — X AY such that
the following diagram commutes,

%/\Af\x

\/

This proves that = < (2 A y), hence that @ A y is indeed the greatest lower
bound.

For the second part, notice the following. If z : Z — D is such that z < z and
y < z then there exist f, : X — Z and f, : ¥ — Z such that the following

diagram commutes,
XAY

SN

N7
ijffy

Moreover, by the universal property of the pushout, there exists a unique
f:XVY — Z such that foin, = f, and foin; = f,. There exists also
a unique v : X VY — D such that wown, = y and woin; = z. u actually
defines the union of 2 and y since as (see the diagram above) z o f, = z and
zo fy =y, we have zo foin, = zo f, =y and zo f oin; = , hence by unicity,
w = zo f (this holds for all z and derived f). Therefore u < z, 2 < w and y < u,
thusu =2 vy. O

This is valid for T, T,, PY, and T,, since all these categories have pullbacks
and pushouts. In the case of T, we can be slightly more precise since we have
seen that T, is an elementary topos. This implies that Subis a Heyting algebra
(Brouwerian lattice), i.e. a residuated lattice with bottom and top elements.

5.3 Recursive domain equations

(*) Lemma 7 (see [AL91b]) Let F be a w-continuous functor from T to Y.
Then,
IDeY, D=FD)
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(*) Proor. Consider the following sequence of objects and morphisms in T,
indexed by ¢ € IN:

L] DO = F(O)

o Diyy = F(D;)

® jo:Do— D1, jo=0

o jit1: Diy1 — Diva,  Jiyr = F(ji)
Then, for ¢« < k, define M; : D; — Dy by M; = jg—10...05. D =
(D, M; ;)i>o0,i<; is a direct system in Y. Let (D, p;)i>o =lim D. Consider the
direct system D’ = (D, M; ;)is0,i<j- (D, pi)i>o is a cone for D’. Let (£, pl)i>o
be another cone for D', then let pj = pj o Mo 15 (E, pi)i>o is a cone for D, thus

there exists h : D — F such that p! = hop;, 1 > 0. Thus (D, p;)i>0 is also
universal, and lim D' = D.

—

But F is a map of direct systems between D and D’. F is w-continuous, so
F(lim D) =lim D', that is, F(D)=D. O

All this also gives us a means to label HDA, just knowing the labels of the
“atomic actions”. Let (M,[) be a labeled HDA over L. Consider now the
equation D = M + G(D), where GG is w-continuous in each argument. Since
(M + ) is w-continuous, Lemma 7 guarantees the existence of a solution to this
equation. Let now Dy, be the HDA verifying the equation Dy = L + G(Dyp).
Consider the direct systems D and £ induced respectively by the first and
second recursive equations. We define a map w of direct systems from D to £
by U= (Z—I-Idg(o),l—l—G(l—I—IdG(O)),l—l—G(l—I—G(l—I—Idg(o))), .. ) Tet!’: D — Dy,
be the direct limit of u and iny : M — D, in}| : L — Dy be respectively the
canonical monomorphism from M to D and from L to Dy. By definition of the
direct limit, the diagram,

commutes. Therefore, I’ is a labelling of D which extends /.

Example 18 Let D be an HDA verifying D = M + D @ D' where M is the
HDA:

Mo = (1) @ (@) @ (o) & (B) D (6"
My = (a) & () & () & (V)
with dy(a) = Op(a’') = 0o(b) = 0p(b') = 1 and 01(a) = o, O1(d') = o, 01(b) = 3,
Nh(V') = p'. Let L be the one defined in the previous example. M can be labeled
over L byl(a)=1(a")=a, l(b)=1(t')=Db, (1) =l(a) =) =1(F)=1() =
1. Then it extends to a labelling of D over Dy. For instance, [(a @ ) = a, or
o/ ®a®b)=a®b.

!The case of bifunctors covariant and w-continuous in each argument is no more difficult
than what we have just seen.
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5.4 Example: A CCS-like Language

As an example, we give the semantics of a CCS-like process algebra,

Terms are built on actions which are elements of a set ¥ = {a//j € K} and
nil, with operators . (sequential composition), + (choice operator), | (parallel
composition), « — @ (complementary action), rec (recursion operator) and \
(restriction operator). For a better explanation, we have divided the parallel
operator in two operators: ||, which is parallel composition without communi-
cation, and the general one |.

Terms are then formed according to the following grammar:

t = a (single action)
| @ (complementary action)
| mil (idle process)
| t1 4+t (choice operator)
| 1]tz (parallel composition-no communication)
| 1|t (parallel composition-communication )
| t1.to (sequential composition)
| t\c restriction operator
|

rec z.t(xz) recursive agent

5.4.1 Semantics using semi-regular HDA
Denotational semantics

We first construct the domain we need. Here we give a denotational semantics

where denotations are operational behaviours?. Let (a?), (@), (Tfj) (i, € IN,

k€ K), (a?), (@) and (1) be the following HDA (informally or geometrically),

a/]
(a]) 1 a? a]" (a]) : 1@
1 1 6]
6]
(@): 1 ———(a7) ,
. (@): 1
(Tﬁj) 1 W, af @ at T

(1): 1@

We suppose 1 to be a neutral element for the tensor product (this is formally
realized by some suitable quotient construction).

2We could have given one in a more classical form like input-ouput relations or history of
communications.
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Let P and L be the domains given by the recursive equations,
P (al)ij+ @i+ (Fije + PO P
L2 () + @)+ () +LoL
Let [ : P — L be the morphism of HDA defined by,
V(i,j)e N X K, l(al) = a
V(i,j)e NX K, (@) =a
o V(i.jk)e NxINx K, I(F,) =7
V(z,y) € Px P l(x@y)=1(z)@I(y)

We introduce a new operator @. for dealing with synchronization. We define,

for P and ) HDA, P ®. @ by,

T 6 Pm7y 6 QTL—T)’L?
u=z®y, [(#) and {(y) contain

no complementary actions

U € (P®CQ)TL o4 x® ® az € Pm
(70)eTy

U=xX (0% Tl.k, ® , i
((k,i)eTl,(k,j)eTQ ’]) Y Q af) @Y € Quetcard(Ty)—m
(7,0)€T>

card(Ty) = card(Ts)

Notice that this view and the introduction of the Tfj in the domain D is much
alike the synchronization algebras used in [Win88].

The domain of HDA in which we give the semantics of the language is D =1[:
P — L. We can actually give it in D = P, and recover the full definition by
applying the labelling [.

We use the notation (2) to denote the subHDA of D “generated” by € D.
This means it is the smallest HDA contained in D and containing . Then,

e [nil] = (1)
. [[aj]] = (af) for some fresh ¢
o [@*] = (6?) for some fresh j

Ir + ¢] = [p] 1l¢] (11 is the coproduct in Y. /D, it corresponds to an
amalgamated sum in Yy, )

[p-q] = [p] L1 f @ [¢] where f is the subHDA of final states of [p] defined
as [ = {s € [plo/¥1 € [pl1, (1) # s}

[plle] = [Pl © [q]
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o [pldl=1Ir] ®[d]

¢ el =DI\z @ o} & y,00@ 0 y)

e [rec z.p[z]] =lim [p'[nil]] where the direct limit is taken on the full
subcategory of T, /D whose objects are the [p‘[nil]]

Operational semantics

Its operational semantics is then (by results of Section 2.2.1),

] I
nil=1—1
, al , a .
o 1 —af @ =1 — al
a
Qs i

a
Q+Q Es—1t

Q/|IS/ i
/_/a/ /
Q+Q Es —1

Q= s —a>t
QQ' st
QESY “ fe{seQo/-te Q1.dg(t) = s}
QQ' | fos ‘ fat
Qs 1 O Ly

a®a
QIR'Eses ——tat

/

Qs >t QES ot atd
Q1Q Fsos 2% ior
Q|:54>$®a®yt Q’|:5’ Z®E®ut’
Q@ Esoy THEOTOVON oy

U

Qlrec 2.Q[a]] E s

rec z.Q[z] = s Ay

The last two rules have not been shown in Section 2.2.1. They are easy to
derive. The last one expresses that [rec x.Q[z]] forms a co-cone for the diagram

([Q[nil]]):.

Last but no least, we have a correctness result,
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Proposition 10 The truncation at dimension one T1([p]) is bisimulation equiv-
alent to the interleaving semantics of the CCS term p (as defined in [Mil89]).

SKETCH OF PROOF. The rules when restricted to 1-transitions become,

(1) - —
. a . . a .
@ =1 — aof @ =1 — al

(2)

QF s t
Q+Q st

a/

Q/ |: 8/ t/
7
Q+Q s et

QEs—— i
QQ st
(5)
QEs “ t' fe{se Qo/jﬂt € Q1.dg(t) = s}
QQ' = fos ¢ fot
(6) ,
Qlzs -1 QEs

a® s
QR'Eses —10s

Qo Esas 2% sar
t/
Q\;@/|:5®t/&t®t'

/

t
Qo' Etos 2% o

a/

Q|:s—a>t Qs —+t a#d
7
QIO Esos e iay
!

Ol Eses 2% s
t/
I Fsot oy

/

X a
QI'Etes ——tat

Q|28—a>t Q/|:5/—a>t/
o 1 7 ’
QI EFEs0s —1t0t
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(9)

Q[rec z.Q[z]] | s vy

u
rec z.Q[z] | s — 1

Rules (3) and (9) are just the same as the ones for + and rec in CCS. Rules
(6) and (7) are similar since | and || have the same effect if applied to actions
which cannot synchronize (they are not complementary). Therefore, we can
restrict to terms of CCS with no rec nor +.

The idea for constructing a bisimulation R between the transition system 7°
defining CCS and the one above U is that the states of 7 are the subterms yet
to be executed and in U they are the concatenations of final states of actions
already executed.

Let t be a CCS term. We define R; as follows,
[ ] 1Rtt,

o if t 2 ¢ and uRyt then (u® af)Rtt’ (af is the next o that has not been
used up to this point).

We prove that R; is the required bisimulation by induction on t. We verify just
a few cases,

o { =’ and t = @ are immediate.

e t = a’.q. By hypothesis we have a bisimulation R, between the HDA
representing ¢ and the transition system defining ¢. Now 1R, athq
and (af @u)Ryv if and only if wR,v by definition of the family of relations
R.. This obviously defines a bisimulation for .

et = p | q. Easy: rules (6) and (7) precisely define the interleaving of
actions.

5.4.2 Semantics using general HDA

By the general categorical results of Chapter 4 we know that we can write in
the domain of general HDA (applying functor A of Chapter 2),

D= (al)i;+ @)y + (rF)ije + D@ D

o [nil] = (1)
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o [p+dl=1[pl+1d
[p-¢] = [p] + Ho([p], d0) @ [4]
[plle] = [Pl © [q]

Ir | ¢] = [p] ®- [¢] (where @, is an abuse of notation for the image of @,
of Ty, under functor A)

[P\a/] = [pl/{z @ ! @y, z 0@ © 1}

3

[reca.plz]] =lim [p"[nil]] where the diagram is composed of all morphisms

of labeled HDA from [p"] to [p"*1] (for all n).

Example 19 (1) We use the inductive construction above to translate the

CCS-term (a|b) (which is equal to (al|b)). We have:
a b

] ——— «a 1

8

to represent [a] and [b] respectively. We now form the tensor product:

a® b

a®b/' ‘Y@ﬁ
a a®b 08
N
1

(2) We now compute [(a + b)||c].
a X c

a a @y
1V a%074®7
E\ bR c \b‘®7
ﬂﬁ®c By

(38) Let g=(a|@). Then [q] is:

«
.
YN\

a®a
D Jeoa
a

*This could actually be refined by taking the canonical morphisms for the categorical
constructions, and some well-chosen ones for the tensor product and ®..

1
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(4) We study the translation of the term t = recx.(a.x+b.x). The development
of t is (o = nil,t; = a.nil 4+ b.nil,t; = a.(e.nil 4+ b.nil) 4+ b.(a.nil +
b.nil),...). Thus we have:

‘to: 1 ‘

20,1

tl . 1
o
p
i1,2
a® o

a®a
aéb

a——a®g

e

tg:l
A
’ ﬂ@ﬁ(@a
A
b
POl sas

The semantic value of t is then the direct limit of the diagram above.

We will see in Part IIT that if the operational semantics is more intuitive, the
denotational-like gives the characterization of the geometry of the transition
system.

5.5 Semantics of concurrent languages

5.5.1 Introduction

We extend here our framework in order to give semantics to concurrent lan-
guages which handle values. This is done by mimicking the ordinary denota-
tional semantics approach [Ten91], using environments to hold values of vari-
ables. We also give the corresponding SOS approach.

First, we have to define domains for values, and define real states.
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Let V be a set (of values). We write V for the HDA whose states are generated
by V', and whose boundary operators are null. We have already seen an example
of this construction, for V. = {1}; V was written (1). This construction will
be applied for sets of values like IN, or Bool={tt, ff}. Notice that it is again
a functorial construction: if f is a function between two sets ¥V and V', then
f (sometimes abbreviated by f), the linear extension of f, is a morphism of
degree 0 between V and V.

The same construction can be carried out for any relation on sets of values.
Consider for instance a relation R(z,y) on V x V. Construct a “relation” R
on V @V, with value in Bool by R(Z,§) =4y R(z ®y) = tt & R(z,y) and
R(fv ?) —def R($ ® y) = (ﬁ) A —|R($, y)

Now, suppose we have elementary functions on these sets of values. We want
to represent the application of such a function f to a value by a 1-transition
between the input value to the output value. The way to do this, is to construct
(when it exists in the considered domains) the (0y — 0p)-chain homotopy (see
[ML63]) linking the input to the output state, that is the transition between Id
and f, denoted by [Id, f] or f (“name of f”).

Suppose we have a domain D of HDA (elements of which are its sub-automata)
containing 1-transitions s and ¢ with do(s) = 1, di(s) = 0, and 9p(t) = 0,
01(t) = 1. Let f and g be two linear maps, and define:

[f,gl=s@ f+tyg

Then,

doolf,gl=Ff—[0vo f,000g] Oro[f,gl=g—[010f, 0104]

and when f and g are morphisms (of any degree),

800[fvg]+[fvg]080:f 810[f,g]-|-[f,g]031:g

Thus,
(81 _80)O[fvg]+[fvg]o(al _80) :g_f

and [f,g] is an (01 — 0p)-chain homotopy between f and g (we will see the
meaning of these homotopies in Chapter 7). To come back to our function
f, f = [Id,f], then: Oo(f) = Id and dy(f) = f. We have also, V2 € V,
do(f(x)) =z and 9;(f(z)) = f(x). Hence we call f “name of f7, because it is
the label of all applications of f.

In general, we have to use fresh copies of these ¢t and » to build homotopies.
These copies will be denoted by #; and v;, where 7 is an index (generally in IN).
For f a linear function on a HDA V. we define an extension of f on tensor
products of ¢;, v; and elements of V' by:
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If fis a morphism (of degree 0) on V', then this extension defines a morphism
as well. With these conventions, we have the following laws of calculus:

flg, k1= 1fg, Rl lg,h1f =gf, N f]

fo=1ffq] af=1f9f]
[f, 9llk, 1] = [[fk, f1], [gk, gl]]

The last equation shows that homotopies compose to give homotopies of higher
dimension. We define also for a linear function f (not necessarily a morphism),
another linear function, f, called the sequentialization of f, by:

flg) =g+ foHog,d)

We will see its use later on.

5.5.2 An imperative language with shared memory

Let £ be the language (first-order imperative language - shared memory) whose
syntax is defined as follows.

Let Var be a set of variable names (z, y, z...). We consider a set of values
v € Val, containing integers n, booleans tt and ff. We write X, Y, Z for
objects which are values or variables. f is any function on Val.

The language is formed out of values v, tests ¢, and expressions e:

vou= oz e == nil
| n | a:=
|t | z:=h(z,v)
| | ee
t == R(X,)Y) | e]€
| (t—e)a(t —¢)
| rec z.q(x)
where 2 := h(z,v) is a function like (2 := v), (zx = v), or (z+ = v) etc.

That is, proceeds to an “atomic” operation on a variable. ¢ is any syntactic
expression of £ with one hole (a context).

This language may be seen as a some subset of Concurrent Pascal, with no
procedures or compound data types.

We give the semantics, considering the following domains:

e (' is the HDA with Cy generated by Var and dy = 9; = 0,

e V is the HDA with Vg generated by Val and dy = ¢4 = 0.
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We would like to have environments (i.e. assignments of values to variables)
as states of our automata: the domain D to be defined should include Env =
Hom(CaV,Ca V)L

Let f be an element of Env. The elements ¢ € C such that f(¢) = ¢ are
non-assigned variables. If f and ¢ are two elements of Enwv, then g o f is
the assignment by f then by ¢ (it might assign some values to some variables
untouched by f, but does not change any of the assignments made by f).

We want also to have all homotopies (all transitions of any dimension) between
states. This requires for D to have all tensor products between the t;, »; and
elements of D. This leads to defining D by the equation:

D= (tc,i)c,i S3] (Uc,i)c,i S3] Hom(C S3] V,C S5] V) GCHV + (D ) D)

where ¢ is an index lying in the set {a := n,z := h(z,v)/z € Var, v € Val}.
The domain for the labelling is defined by:

DLE(tc)c@(UC)C@HOm(C@V,C@V)@C@V+(DL®DL)

The labelling [ is induced by {(t.;) = t., {(ve;) = v.. Define now the function
[u < v] (an elementary substitution) on C' &V by:

[u<vj(u)=v, [u<v)(w)=w

for all w # u. Therefore, [u < v] = v @ u*+ >, w® w* It can be extended to
wH#EU

a morphism on D as described in the previous section.

The functions A considered in £ induce morphisms of the form h, from p € Fnv

to Env:

ha(p,v)(x) = hp(z),v) ha(p,v)(y) = p(y)

for all y # z. Their action is to apply the arithmetic function which h describes
to the only x part of the substitution p. For instance, (z := .) induces the
morphism [z < .]. In the case of z+ = v, that is h(z,v) = 2 + v, we have for
example, h.([z < u]ly < w],v) = [z < v+ v][ly < z].

Then we have a semantic function [-]: £ — Env — Sub(D) (where Sub(D) is
the set of all subHDA of D) given by:

for values,
[z]p = p(2) (5.1)
[n]p = (n) (5.2)
[¢t]p = (1t) (5.3)
LFlp = (ff) (5.4)
for tests,

[R(X.Y)]p = R([X]p.[Y]p) (5.5)

* Env may also be called domain of substitutions, or store. Valid substitutions are always
identity on values.
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for processes,

[nil]p = p (5.6)

[z :=v]p = [p,po [z < [v]p]]l = po e < [v]p] (5.7)

[« := h(x,v)]p = [p, hulp, [0]p)] = b (-, [0]p)p (5.8)

[e:lp = [1([elp + ple]) + pleTle] (5.9)

[e | €'lp = [el(Ie'lp + ple’]) + [€'](Telp + plel) + p([ell€T + [e']le])  (5.10)
[(t — e)B(t" — elp = t*([t]p).[e]p + tt*([t']p).[€Tp (5.11)

[rec z.q(z)]p = lim[¢" (nil)]p (5.12)

In all these equations, the labelling is implicit: when an homotopy is used for
the semantics of z := v or @ := h(z,v), it is formed of some fresh #;.—,; and
Vgpi=v,i OT Lpimp(w),i AN Vpmp(e ), Tespectively.

Equations 5.1, 5.2, 5.3, 5.4 and 5.5 are obvious. In environment p, the seman-
tics of variable z is p(z). The constants are interpreted independently of the
environment. This is much alike the usual equations in ordinary denotational
semantics for imperative languages [GS90].

Equation 5.6 reads “nil does not act on the environment”.

Equations 5.7 and 5.8, written in two forms, build an homotopy between the
environment and the transformed one (notice that substitutions compose the
other way round). When p is a state, this is just a transition from the input of
h to the output of h.

Equation 5.9 applies the sequentialization of [¢’] to [e], that is, applies €’ to
the final states of e, and takes the union with the translation of e.

Equation 5.10 looks like interleaving, but is not. [e']([e]p) is isomorphic to
(Ie'D) @ ([e]p), thus is a good candidate as a parallel composition (see Chapter
4). But [e] and [€¢’] may not commute if some of their actions are not inde-
pendent, therefore we need the term [e]([€']p). We may need as well all other
permutations between p, [e¢] and [e’]. There can be non-independence if there
is simultaneous use of some shared item.

Equation 5.11 takes the (disjoint or not) union of the two alternatives of the
guarded statement.

Finally, Equation 5.12 takes the unfolding of a recursive agent as its semantics.
The unfolding is represented by the direct limit of the diagram whose objects
are the successive steps of unfolding [¢™(nil)]p, and whose morphisms are the
obvious ones (all morphisms between [¢"~!(nil)]p and [¢"(nil)]p).

Example 20 o We consider the term x+=1 in the context p = [x < 1]:
[2+ = p = [p; ha(p, 1)]

=[xz < 1],[z < 2]]
Therefore,

z+ =1
[t+ =1]p =xe1] —— x <2




156 CHAPTER 5. INTRODUCTION TO SEMANTIC DOMAINS OF HDA

o Now, consider the term (z:=1)|(x+=1) in the context p = [z < 0]o [y <
42]:
[(2:= 1) | (s = Do = [(& == DI([(e+ = Dp)+I(e+ = DII(e = Do)+

the dots being terms which are seen to be equal to the previous two ones.
But,

[(2:=1D]p=pole<1]
= [p, [z = 1] o [y = 42]]
Then,

[(z+ = DI(I( := Dlp) = [([(z := D]p), hal ([(2 := D]p, 1)]
= [[[z <= 0lly <= 42], [z <= 1][y < 42]], [z <= 1][y < 42], [¢ <= 2][y < 42]]]

which is geometrically realized by a square whose four vertices (only three
of them are disjoint) are [z < 0][y < 42], [z < 1][ly < 42]], [z < 1][y <
42]], and [z < 2][y < 42].

o Let us compute the semantics of (x:=1);(x+=3) in the context p = [z < 0]
[(w = 1)i (a4 = 3)]p = L2+ =3[ := 1]p)
= [+ = 3](([[z < 0], [z < 1]])

= [(a+ =3)|([z = 1]) + [[+ = 0], [z = 1]
=z < 1],[z < 4]] + [[x < 0], [z < 1]]

-1 -3
[(@:= 1) (0 = 3)]p = ot s oy

[x < 4]

o Finally, let e=((x=17—y:=2)0(z=y?—2:=0)). Then in context p = [z <
1][y < 1] we have:

[e] = t*([e = 121p)Iy := 2o + ([ = y7]p).[ == 0]

But,
[t =17p=tt
[t =y?]p=tt
thus,
[e] = [y :=2lp + [« := 0]p
=[[z = 1lly = 1], [z = 1y < 2] + [+ = 1]y < 1], [z <= 0]y < 1]]
Thus,
[x < 1y < 2]
yi=2x
[[6]],0 =[x« 1]y « 1]
X = 0\‘
[x < 0lly <= 1]

This is a one-dimensional branching at state [v < 1][y < 1]. It describes
an internal non-deterministic choice.
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An alternative semantics a la SOS

States p describe the store as a substitution between values and variables. Then
we have by eliminating the context p in the denotational semantics,

. nil
nil |Ep — p

= ok p 220 ol po)]

= e p(0))

z:=h(z,v)E=p polz < hiz,p(v))]

(t— )0t — ¢) | pf = o'

a a
€|:p—>0' €/|:p/—>0'/
, a
e =Ep——o
a ! / a/ !
el=Ep—o elE=p — o fe€ Hyle,dy)
! / alo !
e pof L ooy
a a’
€|:p—>0' €/|:pl—>0'/
, ,aod ,
el Epop) ——o0o00
a ! / a/ !
ebps ‘=i Lo
, , adoa
eleEpop——odoo
a
drec zqlallEp—2 o
a

rec z.q[z]l=p—> 0
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5.5.3 A variant with a Fork operator

We can replace the parallel composition operator by a fork operator (as in
[Hav94] or in [Rep92]).

Let £; be the language whose syntax is as follows.

Let Var be a set of variable names (z,y,z2...). We consider a set of values
v € Val, containing integers n, booleans ¢t and ff. We write X,Y, Z for ob-
jects which are values or variables. f is any function on Val.

The language is formed out of values v, tests ¢, and expressions e:

t— et — €

|
|
| fork(e)
|
|

rec z.q(z)

where ¢ is any syntactic expression of £y with one hole (a context).
Now, we give the semantics using the same domain D as before.

The semantic function is now slightly more complex:
[.1: Ly — Hom(Env, Hom(Hom(D, D), D))

The new argument is a context x € Hom(D, D) (similar to continuations used
in denotational semantics [Sch86]). Env is the domain of environments, Env =
ZHom(CaV,CaV)=Hom(Ca&V,Co V). We propose to give a semantics

using the “parallel” continuation as follows,

for values,
[z]pr = k(p(z))
[n]pr = K(p(n))
[tt]pr = r(p(t1))
f flpk = k(p(£ 1))
for tests,

[R(X.V)lpx = w(R(IXTp 14, [Y]p Id)

for processes,
[nil]pr = k(p)
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[ := vlpr = w(po e < ([olp 1d)])
[es elpr = [elp # o [e']
[fork(e)lpr = [el(kp) Id + r([e]p)
[t — eat! — €')pr = tt*([t]p Id) @ [e]pr + tt*([t']p Id) @ [€']pr
[rec z.q(x)]pr = k(lim[¢"]p Id)

Summary We have shown that using the categorical properties of Chapter 4
we could give denotational semantics to some concurrent languages, like CCS
or some toy imperative languages. We have shown that HDA could be thought
of as domains (as in domain theory) of possible executions and that there were
interesting constructions from denotational semantics which apply to the HDA
framework, like recursive domain equations or continuations (in order to model
forking processes). Considerations about the construction of domains for con-
current imperative languages lead to a very geometric construction involving
“homotopies” that deform some part of a domain to another one in a construc-
tive way.

Some work remains to be done on recursive domain equations involving con-
travariant functors (in particular “reflexive” domains). Languages like CML
could then be given semantics using HDA in a categorical way. A possibility
seems to be to add some topology that constrains the morphisms between HDA
(by considering continuous morphisms only). This has not been formalized yet
in a suitable way.
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Chapter 6

Basic geometric properties

Given the algebraic formulation of HDA, we are now ready to study the very
basic geometric properties of the transition system it represents in purely alge-
braic terms, in the style of ordinary homological algebra. This gives definitions
as well as means of computations (some of them are given at the end of this
chapter). Here we focus on initial and final states, branchings and mergings,
deadlocks and refinement. At the end of this chapter we will see applications
of the classification of these local geometric shapes.

6.1 Homology

(*) Definition 5 For (Q,00,01) a general HDA, we define two sequences of
homology (see for instance [ML63]) modules:

Ker o
 Hi(Q,0) = I;Lraéo

Ker o
« 1i(Q,01) = I;Lrail

where 8} = X af’q. An element of Ker 8} (i.e. the kernel of the function 8},
ptg=:

the module formed of the x such that 8;($) = 0) is an i-cycle, and an element of

Im 8;"'1 (i.e. the image of 8{+1, i.e. 8;"'1(@24_1)) is an i-boundary. An element

of Hi(Q,dy) is called a branching of dimension i. An element of H;(Q),01) is

called a merging of dimension i. We write H.(T,0;) for & Hi(T,0;).
k>0

Example 21 o For HDA (1), Fxample 4, Chapter 2, we have:
Ho(M,0y) = (a), Ho(M,01) = (1), and the other homology groups are
null.

o For HDA (2), all the homology groups are null.

o For DA (3), we have:
Ho(M,00) = (), Ho(M,01) = (1), and the other homology groups are
null.

163
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o For HDA (4), we have:
Ho(M,ao) = (Oé), Ho(M,al) = (1), Hl(M,ao) = (b - a), Hl(M,al) =
(b'—da'), and the other homology groups are null. The branching (b—a) of
dimension one expresses the fact that in (4) there is a non-deterministic
choice between actions a and b. The confluence (b' — a’) shows that after
the actions b’ and a', the system goes to a same (idle) state.

(*) Lemma 8 Let f: (K,0) — (K',0") be a morphism of complex. Then f
induces a module homomorphism f.: H.(K,0)— H.(K',J).

(*) Proor. We just have to verify that (for all k):
f(Ker 0¥) C Ker '

and

f(Im 9%) C Im 9™

Let @ € Ker 0%, then d(z) = 0, so is f(d(z)) = d(f(x)), thus f(z) belongs to
Ker 0. But f is graded, so f(z) € Ker 0F.

Now, take z in Im §*. Then, z = d(y), with y € K. f(z) = f(9(y)) = I(f(y)).
[ is graded, so f(y) € K}, and then f(z) € Im 9*.0

The previous lemma states that local geometric invariants like the homology
groups are invariants of simulations.

6.1.1 Initial and final states

In semi-regular, regular HDA and partial HDA, a final state is a state from
which no path can begin. Similarly, an initial state is a state to which no path
can lead to. Applying the A functor we see that,

e the module of states of an HDA A(M ) is A(M)o = Ker doja(r),>

e a path can begin from a state s if and only if there exists a 1-transition a
with s = dp(a) (so s € Im ),

e a path can lead to a state s if and only if there exists a 1-transition a with
dh(a)=s (sos € Imd).

Therefore, it is easy to see that the module generated by the initial states
(respectively final states) of some semi-regular, regular or partial HDA M is
Ho(A(M),01) (respectively Ho(A(M),dp)). This is then the most consistent
definition for general HDA,

Definition 29 We call final (or accepting) state of an HDA M any state of
HO(M7 80)
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Example 22 Consider the (standard) automaton (A, %,8,1, F) with A = {u,v,
w}, ¥ = {a,b}, I = {u}, F = {v} and § = {(u,a,v),(u,b,w)}. Then the
associated HDA is M, with:

Mo = (u) & (v) & (w)
My = (a) & (b)
and, dyp(a) = u = 9y(b), O1(a) = v, 01(b) = 0 Obviously, Ho(M,dy) = (v) =
R — Mod(F), Hi(M,0) = (a)® (b), Ho(M,0,) = (u) and Hi(M,01) = (b).
Definition 30 We call initial state of an HDA M any state of Ho(M, dy).

Example 23 o Consider the automaton of the previous example. We have
seen that Ho(M,01) = (u): u is an initial state of M.

o Let M and N be the following HDA (M and N are composed of one
1-transition a, respectively b),

Nig=(b) — Noo = (7)

|

N1 -1 = ((5)

)

Then M ® N* is,

(@®@77) (@@7")

| |

(a©6") — (@)D (a@ ) B (BOTT) — (a@b7)

| |

(B®6%) (B®b7)
Its states are a @ b*, a @ v*, a® 6, 8 @ 6* and 8 @ v*. But,

— 1(a®@7*) = a®@b*, hence according to the interpretation of boundary
operators we have in dual HDA, the information beginning of o @ v*
is a®b*, i.e. the event “waiting for transition b to be fired in context

Oé,
— (e ® &) =0,
- h(Bey)=80b,
- (B®&) =0,
(
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Therefore, according to Definition 30 the module of initial states for M ®
N* is equal to (o ® 6*) P (8 @ 6*). Intuitively, the definition is coherent
with the interpretation we have of events. a ® 6 and § ® 6* are valid
initial states since these are not blocked any longer by waiting for action
b, whereas nothing can be fired from a @ v* nor from 3 @ v* since the
external b action has not yet been fired.

Now we come to deadlocks and their dual, the “initial” deadlocks.

6.1.2 Deadlocks and initial deadlocks

We have seen that we needed the partial HDA to handle deadlocks. In partial
HDA, the obvious definition of a deadlock, is a n-transition (n > 1) from which
no action can be fired. As n > 1, this means that all boundaries, i.e. all ways to
complete normally the n-transition are missing. Therefore a deadlock of dimen-
sion n in A(M) where M is a closed partial HDA is a n-transition ¢ such that
01(t) = 0. All n-deadlocks boundaries of a (n + 1)-transition should be con-
sidered equivalent as they essentially describe which actions will not terminate
if asynchronously executed. Since we want to distinguish n-deadlocks (which
involve only one elementary n-transition) from confluences (which involve more
than one elementary n-transition), this leads to the following definition for gen-

eral HDA,

Definition 31 A n-transition leading to (or is) a deadlock in a« HDA M is
any elementary n-transition of H,(M,01). The word deadlock is given to the
1-transitions which deadlock M (for n greater than one, we say n-deadlock).

Example 24 o The typical 1-deadlock is,
t

1——0
We can interpret its unique maximal path as,

(1) the processor is in an idle state,
(t) the processor is firing transition t,

(0) the processor never terminates the execution of t (no final state can

be observed).

o In Example 22, b is an action leading to a deadlock.

o The typical 2-deadlock is,
0

YN
N4

0

o~
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It is easy to see (examining the differents paths) that it describes a program
which deadlocks two processors.

Dually, we can define “initial” deadlocks as actions that can never be fired, but
would terminate if fired. We have already seen them in the construction of
homotopies (Section 5.5).

Definition 32 A n-transition leading to (or is) an initial deadlock in an HDA
M is an elementary n-transition of H, (M, dy). Again, the word initial deadlock
1s given to 1-transitions.

Example 25 The typical initial 1-deadlock is the dual of the 1-deadlock (t)
(under the reversing of time),

6.1.3 Divergence

Definition 33 A HDA M diverges if and only if it does not have any final
state, i.e. if and only if Ho(M,d0) =0

Example 26 o Let M be the HDA with My = (1), My = (a) and dy(a) =

01(a) = 1, represented by, .

I

Then H.(M,0d) =0, and M diverges.
o The following HDA diverges as well,

a1 ay
S0 S1 52

Dually, an HDA M co-diverges, if it has no beginning.

6.1.4 Branchings and mergings

We have already defined branchings and mergings in all dimensions. Branchings
provide a measure of non-determinism in all dimensions. Mergings reduce the
non-determinism of an automaton. For instance,

Example 27 o A typical branching of dimension one is,
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o A typical branching of dimension two is,

where the three faces are filled in.

Be careful though and notice that branchings should be called “necessary branch-

ings” since for instance,
. — .

N
a—s o
has only one 1-branching, namely (a’ — b). (a — b) is certainly not one, and

this can be interpreted (in a modal way) as saying that in state o’ a choice is
necessary between a’ and o’ whereas in a, no choice is necessary.

Definition 34 A HDA M is finitely branching in dimension n if and only if
H,(M,0) is a free module of finite dimension. Similarly, we say that M is
finitely merging in dimension n if and only if H,(M, 1) is a free module of finite
dimension. By M 1is finitely branching (resp. merging), with no precision of
dimension, we mean M is finitely branching (resp. merging) in all dimensions.

Notice that if M is finitely branching then it has finitely many final states, and
if M is finitely merging, then it has finitely many initial states.

Example 28 In all examples we had up to now, automata were finitely branch-
ing and merging.

An application of the classification of branchings will be given at the end of
this chapter for determining necessary conditions for some (branching-time)
semantic equivalences. The mathematically inclined reader will have guessed
that typical non-existence (and obstruction) theorems from algebraic topology
will be given computer-scientific meaning.
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6.2 Refinement of actions

The notion of subdivision of cubicalation is directly related to refinement of
actions by completely deterministic processes (like division of action: ¢ —

ar;az).

Define an operator GG, the “subdivision” operator by

G(I) = ({0} x 1) TT{1} = 1))/{(0.1) = (1,0)}

6le) = { (0, ) 0<2<1/2
(Lr—1/2) 1/2<z<1

and for all », G(O,) = G(I)".
G splits I into two equal parts, then I x I = Oy into four equal parts etc. O,
into 2" equal parts.

G(-

More precisely,

Lemma 17 G : O, — G(0,) is an isomorphism in Top and G(O,) is an
amalgamated sum of 2" copies of O,,.

Proor. Straightforward. O

A morphism f : O, — X in Top therefore induces 2" morphisms f!,..., f*"
each one from a copy of 0,, in G(O,,).

Consider now for a semi-regular automaton M the sub-HDA n(M)(M) of S(|

M |). Its elementary objects are morphisms f, ; : O, —| M |. Then,

Definition 35 A (one-step) refinement of a unlabeled regular HDA M is the
automaton N = Re(M) generated by the objects f%,kv s fg; for all m and k.

Example 29 A one-step refinement of automaton (3) of Frample 1 is:

7N

N
NN
o
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It is quite easy to prove that H.(Re(M),0;) = H.(M,0;). Therefore, refine-
ment does not change the essential topological properties of HDA, and thus is
a valid technique for abstracting from unnecessary details when analysing pro-
grams (see Section 6.5 where invariants of bisimulation equivalence are given in
terms of the H,). This is nevertheless not the most general kind of refinement
techniques one can consider (see [Ren93]).

For labeled regular automata p : ' — B, the (one-step) refinement process
must be applied at the same time to £ and B:

Definition 36 A (one-step) refinement of a labeled regular automaton p : F —
B is the labeled regular automaton q : N(E) — N(B) with q induced by S(| p|)
on G(O,).

6.3 Homology functors

Now that we have defined some interesting properties in terms of homology, we

need to be able to compute these groups in an effective way. Most results here
come from [ML63].

6.3.1 Homology of limits and colimits

(*) Lemma 9 the homology of T, coproduct of @ and Q' is:

Proor. Straightforward. O

(*) Theorem 2 The homology functor commutes with the direct limit functor:

H.(lim C;,lim 9;) = lim H.(C};, 0;)

ProoF. See for example [Mas78]. O

6.3.2 Homology of tensor products and Hom

Now the homology groups of the tensor product are given by the Kiinneth
formulal.

!Simplified here to the case where R does not contain any proper torsion subgroup (like
Z or Z,). for a more general formulation, see for instance [ML63].
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(*) Lemma 10 For Q and Q' HDA such that for all i, H;(Q,d) and Q; are

projective modules, we have:

H(T,0) = @ (Hr-i(Q,0) @ Hi(Q',0))

i=0...k

ProoF. See for example [Mas78] or [ML63]. O

For a HDA M, we write Z; M for the module of cycles (for ;) of M, and B; M
for the module of boundaries (for ;) of M.

Lemma 18 ZoHom(P,Q),NZ1Hom(P,Q),, for P and () HDA, is the module
generated by the morphisms (of HDA) of degree n between P and Q.

Proor. The relation f € Z;Hom(P,Q), reads:
diof—=(=1)"fod;=0
Therefore f is a morphism of degree n. O
Define H™(K; L) = H_,(Hom(K,L)). When L = (1), H"(K; L) is called the
nth cohomology group of K.
For the next result, we define the notion of exact sequence.

(*) Definition 6 (see [Lan93a]) A sequence of homomorphisms having more
than one term like:

Gl fl G2 f2 G3 o fn—l

G,
is called exact if and only if
Vi=1,...,n—=2, Im f; = Ker fi1q
A short exact sequence is an exact sequence with n=»5, G1 = G5 = 0.

(*) Lemma 11 (Homotopy classification theorem)
For K and L complexes of abelian groups with each K, free as an abelian group,
there is for each n, a short exact sequence

|

) [I Eat(H(K), Hypnir(L)) 5 H,(Hom(K,L))

[I  Hom(H,(K). Hppu(L)

P=—09,...,00
'

0

This sequence splits (though unnaturally in K).
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ProoOF. see [ML63]. O

In particular, if all H,(K') are projective (or the Hpy,11(L), injective) then
Fat(Hy(K), Hypopr (1)) = 0
and as the previous sequence splits,

H,(Hom(K,L))= . [l Hom(H,(K), Hypn(L))

When K is a HDA with all H,(K) projective, then H,(K*) = H (L) =
(H,(K))*.

6.3.3 Exact sequences

The aim of this subsection is to show the use of the Mayer-Vietoris exact se-
quence to compute the homology of a complex (@, d), given the homology of
two subcomplexes (@, d) and (@2, d) whose union is (¢, d), and the homology
of their intersection (@1 N Q?, ). This will be extensively used in next section.

(*) Definition and lemma 3 Consider the following short exact sequence of
chain complexes:

0 e "

L 0

then there is a morphism [0] of degree -1, called a connecting homomorphism,
such that if (z") is a sub-R-module of H.(L",d), then ([0](z")) = (a™t0do
B~1(2")) is a sub-R-module of H.(L',d). Then, the following sequence is also

exact:
Oy

(L) H(L)

H(L//)

ProoF. See [Lan93a). O

(*) Proposition 4 The following sequence, called the Mayer-Vietoris sequence,
s exact:

i [9]

o Ha(Q') & Hn(Q) Hna(Q' 0 Q%)
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where, i, (2! @ 2?) = il(al) +2(2?), if ' 1 Q1 — Q and ? : Q* — Q are
the inclusion morphisms from @' to @ and from Q? to @ respectively, j.(z) =
JHa) @ j2(2),if 1 : Q' N Q?* — Q' and 5% : Q' N Q? — Q? are the inclusion
morphisms from Q' N Q? to @' and from Q' N Q? to Q? respectively, and [9] is
the connecting homomorphism of Definition and Lemma 3.

Proor. This result is due to the application of Definition and Lemma 3 to the
following exact sequence of R-modules (see for instance [Lan93al):

0——Q'NQ* — Q' &Q* — Q'+ @Q* 0

Remark We find again Lemma 9 using Proposition 4. Q' NQ? is now empty,
thus its homology is 0. Therefore we have short exact sequences (for all n):

0

0 —— H,(Q") @ Ho(Q*) — Hau(Q)

We conclude that H,(Q) is isomorphic to H,(Q") & H,(Q?).

6.4 Branchings and mergings of CCS

In this section, we use the general HDA semantics of Chapter 5 and results of
this chapter to compute the branchings and mergings of our CCS-like process
algebra. This computation will be used in next section to (semi-) decide some
semantic equivalences and to prove global results about computability of some
functions modulo some semantic equivalences.

Lemma 19 (Branchings and mergings for CCS) From now on we suppose that
for all HDA we consider, their underlying modules are projective and their
homology modules are projective. This is trivially verified when the base ring R
is a division ring (R=2Z3 or Q)

(i)

Hi[a],0;) = (ax) (i,5)=(0,0)

(ii)

Hi([[a]]vaj) = (ak) (27]) = (070)
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(iii)
(1) (i,5)=1(0,0)A(i,5)=(0,1)
0 1> 0
(iv) e Ho([p+4l,00) =

do(X) = do(X")

o Ho([p+4ql, do)
[4]. Oo(X) = Oo( X'

o Hi([p+4q],do) = Hy
[p] x [g]. Oo(X) = Oo(X") = 1},

o Hi([p+4q],00) = Hi
. Ho([[p+ q],01) = (1),
Hi(lp+4q],01) = Hi([p], 01) & Hi([q], 01) for all i > 1.
(v)
Ho([p],01) = (1) (¢,7)=(0,1)
Hi([p-ql,0;) = 4 Ho([p], do) @ Ho([4], o) (¢,7)=(0,0)
Hi([pl, 9;) ® Ho([p], do) @ H;([4],0;) i>1
(vi)
Hi([pllq], 9;) = Hi([p], 0;) © Hi([4],0;)
(vii)
Hi([p\a], 0;) = Fa, o...0 Fu,(H([p], 05)):
where,
e 1 <j=> dimA; < dimA]‘
e {ucp]/Fr,yeDu=2Ra;,QyVu=2a Yy} =
R~ Mod(A,,...A,)
i £ dimAy, Fa,(HJ(Q,0));=H/(Q,0)
i=dimAp Fa,(HJ(Q,0)); = otherwise,
Hi(Q,0)/{v/ve H(Q,D),v €u;§4 (u)}
(viii)

H,([rec x.¢[2]],0)) =lim H;([¢"[nil]], 9;)

where the diagram on which we take the limit is the image of the diagram
defining rec x.q[z] by the functor H;.
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PROOF.
1),(11),(111) Direct computation.
( )7( )7( ) p

(iv) Consider first a HDA @ and two subHDA Q! and Q? such that,

e QIUQ*=0Q
e Q'NQ*=(a) = Ho(Q,0) = Ho(Q",01) = Ho(Q?, D)
Then,
o Ho(Q,d0) = Ho(Q",00)® Ho(Q?, 8p) if I(X, X') € Q' x Q2% 8o(X) =
do(X") =«

o Ho(Q,00) = (Ho(Q',0) & Ho(Q?,d0))/() if /AX,X') € Q" x
Q2,00(X) = 0o(X') = «

o Hi(Q,00) = Hi(Q',00) D H1(Q* ) DR — Mod{X —X'/(X,X') €
Q' x Q%,00(X) = 0o(X') = a}

o Vk > 2,Hk(Q,80) = Hk(Ql,ao) o, Hk(Qz,ao)

To prove this, we write the Mayer-Vietoris sequence for the complexes
with boundary operator dy :

Tx

[9] Hoos(Q' 107

A

Hoot (QYY @ Ho1 (Q7) 2

But, @} N Q% is null for k& > 1, so we have short exact sequences:

o Ha(QY) & Ha(Q)

Hn(Q)

Ym>2, 0— H,(Q")® H,(Q?) LN Hp(Q) — 0

Therefore, H,,(Q,d) is isomorphic to H,,(Q1) ® H,,(Q?*), with isomor-
phism z,. Now, we have a long exact sequence,

. H1 (@ 00) [Do]

0 — H1(Q",80) ® Hi(Q*, 00) Ho(Q' N Q% o)

A

Ho(Q",80) & Ho(Q%,00) —— Ho(Q, )
Ho(Q' N Q2,00) = Q' N Q? = (a), so Ker j. = (a) or Ker j. = 0.
Im [0g] = Ker j. implies that the first case is only possible if (X, X') €
Q' x Q% 0(X) = 0o(X') = .
(a) Suppose (X, X') € Q! x Q%,00(X) = 9p(X') = «, then j. = 0.

Then we have the short exact sequence

Hi(Q",80) @ Hi(Q%, d)

A

Hi(Q, 80) (%]

0

() 0
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From this we deduce, H1(Q, do) is [0o] " (a)DH1(Q1, 0o) D H1(Q?, o).
We conclude by noticing that [0p] ™} (a) = R—Mod{X-X"/(X,X') €
Q' x Q% 00(X) = 0o(X') = a}. We have also a short exact sequence

0 — Ho(Ql,ao) S5, HO(Q2780) e HO(Qvao) —0

Therefore Ho(Q,d0) = Ho(Q, ) & Ho(Q?, o).

(b) Assume the contrary. Then, Kerj. = 0 = Im [0]gn, (0.5, and
H1(Q,90) = H1(Q',00) & H1(Q* o). This is what we wanted to
prove under the hypothesis A(X, X') € Q' x Q%,0p(X) = do(X') =

a. We have also a short exact sequence,

0 (a) Ho(Q',00) @ Ho(Q*, 0o) — Ho(Q, ) — 0

Therefore, Ho(Q,d9) = (Ho(Q, 80) ® Ho(Q?,d0))/(c)

Then, notice that for all CCS-terms p, ¢, by induction, Ho([p], 1) = (1)
and A(X, X') € [p] x [q], 01(X) = 01(X’) # 0. Applying the previous

result to the complexes for dy and for dy gives the result.

(v) We have [p.q] = [p] + Ho([p]. %) ® [q]. As we always use fresh copies
of atomic actions, [p] N [¢] = (1). Therefore, [p] N Ho([p], %) @ [¢] =
Ho([p], 0o), and the Mayer-Vietoris exact sequence gives,

Hn([p], 0:) @ Hn(Ho([p], 00) © [, 9:)

Hn([p'q]]’ai) 0

(2): 0 — Hi([p],9:) ® Hi(Ho([p], ) ® [4, ;) Hi([p-q], 2:)
[0i]

(1): Yn >2 0

HO(H—J’]]’@O)

Ho([p],9:) © Ho(Ho([r], d) @ [a], 9:)

Ho([p.q]],ai)
By the Kiinneth formula, H,,(Ho([p], d0)®[q], 0:) = Ho([pl, d0)@ H,.([q], 0:)
(for all n > 0). Therefore, by (1),

Vn > 2, Hn([[p(Z]]vaz) = Hn([[p]]vaz) @ Ho([[l’]]aao) ® Hn([[Q]]vaz)

Then, examining (2), we have two cases,

e 0; = 0ot j. is the identity on Ho([p],do). Therefore Ker j. =0 =
Im [0o] so Hy([p-q], 0o) =H1([p], 90)® Ho([p], do)©H1([4], o). Then
quotienting the second part of the exact sequence (2) by Ho([p], do)
leads to Ho([p-q], do)= Ho([p], do) @ Ho([4], do)-

e 0; = 01 j. is an isomorphism between Hg([p], do) and Ho([p], do) ®
Ho([¢],01). Therefore, we have the same result as previously for

Hi([p-¢],01). Then we quotient the second half of the exact sequence

(2 ; by Ho([pl, o) ® Ho([q],01) to get Ho([p-ql,01) = Ho([p],01) =

A
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(vi) We have [p||¢] = [p] ® [¢]- Therefore, (vi) is a direct consequence of the
Kiinneth formula.

(vii) We first compute the homology of (Q?, @) given the ones of (Q*, 8), (Q, ),
and (Q1 N Q2% ). The first case which is of interest for us is the one when
we deal with bicomplexes, 0 = Jy, and we have a projection? p whose
kernel is a sub-R-module of the set of 1-transitions Q;, Q' = Ker p @
O(Im p) ® &1 (Im p), Q* = Q/Ker p. The following result corresponds to
the simpler case Ker p = (a), a is not in the boundary of any 2-transition.
We prove,

o Vi > 27Hk(Q278) = Hk(Qva)
o for k£ = 0,1, we have two cases:

(1) AX #a,0(X)= 0(a), then

- H,(Q*%0)= Hi(Q,0)
- HO(sza) = HO(Qva) D (a(a))
(2) 3X #a,0(X) = 0(a), then
- H1(Q*,9)= H1(Q,0)/R—Mod{a—X/I(X)= d(a),X # a}

- HO(sza) = HO(Qva)
We have the Mayer-Vietoris sequence,

2u Ha(Q) (0]

Huoi(Q' N Q%)

A

S (QY) @ Hama(Q%) =

But, Q' N Q? = d(Ker p) d d1(Ker p) = {8( ) d1(a)} is composed only
of two states. Therefore Vn > 2, H, 1(Q' N Q%) = 0. This implies
d)

& Hi(Q*,0) = Hi(Q*.0)
Now, noticing that Ho(Q*,d) = (91(a)), Ho(Q*NQ?,0) = (d(a))®(d1(a))

and H{(Q',d) = 0, we have a long exact sequence,

o Ha(QY) & Ha(Q)

Vk > 2, Hi(Q,0) = Hy(Q",

2

0 Hi(Q?,9)

H1(Q,9)

(9]
(9(a) & (31(a) L+ (31(a) & Ho(Q7,0) > Ho(Q,0) —= 0
We have j.(0(a)) = j:((a)) & j2(9(a)) = 0 & jX(I(a)).
But Ker j. = Im[0], so if 3X # a,0(X) = 0(a) (case (2)), then X —

a € Hi(Q,0) because « is not in the boundary of any 2-transition, and
[0](X — a) = d(a) € Ker j., thus j2(d(a)) = 0 and j.(d(a)) = 0.

2We recall that a projection is an idempotent endomorphism on a R-module V, uniquely
characterized by its kernel (or its image because V = Im p & Ker p).
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Otherwise (case (1)), AX # a,d(X) = d(a), and j2(9(a)) = I(a) =
j-(8(a)).

We have also j.(d1(a)) = jL(01(a)) & j2(01(a)) = d1(a) B z, x verifying
i(01(a) ) =01(a)+ 2 =0,50 2 = —0(a).

Therefore, in case (1), Ker j. = 0, and in case (2), Ker j. = (J(a)).
Factoring®, we get a short exact sequence for each case:

(1)
0 ——— (3(a)) & (31 (a))
e
(31 (a) ® Ho(Q?,9) ~—v Ho(Q,d) 0
(2)

0

(91(a))

A

Tx

(91(a)) @ Ho(Q",0) — Ho(Q,9) —— 0
We deduce that in case (1), Ho(Q?%, 8) = Ho(Q,9) @ (d(a)), and in case

(2)7 HO(sza) = HO(Qva)
Considering the left-hand side of the long exact sequence of the beginning,
we have short exact sequences for each case:

(1) )
00— Hi(Q%9) = H.(Q,d) o,
(2)

0 1(Q%0) = m(Q.9) P (o(a)) 0

Thus, in case (2), H1(Q% ) = H1(Q,d)/[0]74d(a)) = H1(Q,d)/R —
Mod{a—X/)(X)=0(a),X # a}, and in case (1), H1(Q*, ) = H1(Q, D).
More generally, let ¢) be a bicomplex. Let @ be one of its boundary
operators. We consider the projection p from @ to @), with Ker p = (A),
A being a n-transition (n > 2) of ¢ which is not is the boundary of any
(n + 1)-state. Let Q' be the smallest subHDA of @ containing Ker p,
Q? = Q/Ker p. Then
HO(lea) = (6)
Vi>1, H; QY0
HO(Ql N sza) =
Hn—l(Ql N sza) = ($)
Vi>1l,i#n—1, H(Q'NnQ@*d)=0

%i.e. considering the quotient map induced by j. j* from (d(a) @ S (a))/(Ker j+) to
(01(a)) & Ho(Q,0).
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And then,

Ve, k>n+1 Vv 0<k<n-2 HQ? = Hy(Q)
Ker ji=t =0 = (H,—1(Q*) = Homa(Q) @ () A Ho(Q?) = Hu(Q))

otherwise,

Ker 170 = (2) = (Ho1 Q1) = Hat(Q) A Ho(QF) = HA(Q)/10)(a)

(the condition Ker j2~! = (z) means that there exists a branching of

dimension n in ¢ at ). This is due to the fact that the Hy(Q, ) are the
solutions of the following equations (Mayer-Vietoris):

(£5):0 — 1@ > m@) D (5) 2 ()8 102 = 1o(@) — 0

ik

(ESk):0 — HL(Q*) > H(Q) —0 Vk, k>n+1 VvV 2<k<n—2

i [8]71 n—1 in—l
—_—

* ]* %
(ESn):0 — Hn(Q%) = Hu(Q) — (v) == Hyn1(Q%) =—— Hp1(Q) — 0
By (£5})) we immediately conclude
Ve, k>n+1 Vv 2<k<n—-2 H(Q% = HLQ)

If we examine (ES7), we have to notice that jO(é) cannot be equal to

zero, thus (£.57) splits into two short exact sequences, giving the result
for k =0and k& = 1.
sn—1

Then, for (£5,,), we have a discussion on 77~'. We have two cases, in
which the sequence splits into two short exact sequences. In the first case:
Ker j771 = 0, and we have:

n—1 in—l

0 (2) = Hoa(QF) “s Hoea (@) — 0
0 — H,(Q%) —— H.(Q) 0

And in the second case, Ker j2~1 = (z), and we have:

,L'n—l

0— Hn—l(Qz) *—’ Hn—l(@) E’ 0

1y n
0 —— Hn(Q%) —— Hn(Q) — () — 0
Combining all these results proves (vii).

(viii) This is a direct consequence of Lemma 2.

a
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6.5 Application: Semantic Equivalences

In this section, we make the first move from local geometric properties like
branchings and mergings to geometric properties of paths of HDA. We will
show that the local properties provide valuable information about these global
geometric properties like branching-time semantic equivalences. The methodol-
ogy we are adopting is to define properties combinatorially (using semi-regular,
partial or regular HDA), because they are closer to the computer scientific in-
tuition and then use general HDA and local invariants to characterize them.

To get usual definitions of semantic equivalences to work (as those in [vG90])
which are made using ordinary transition systems we give a notation for “tran-
sitions” read in paths,

Definition 37 Let ¥(Q), for | : Q — L a labeled HDA, be the set of paths
(partial or total) of ). Let — be the following subset of ¥(Q) x L x ¥(Q):
p = p if and only if p = (p1yecsPn), P = (P1yeens Puo @) with I(q) = 0. As
usual, we define 7% {0 be the transitive closure of the relation % on ¥(Q), and

Z to be the transitive closure of the relation L defined by p —— p' & o,
o

p——mm7p.

Using these two definitions of paths, we can generalize the notions of trace
equivalence, failure equivalence, ready set equivalence etc. Except for the first
one, all these semantic equivalences are “branching-time” equivalences. We re-
fer to [v(G90] for details about the standard definitions of semantic equivalences
for parallel programs.

6.5.1 Linear-time semantic equivalences

Definition 38 (Trace semantics)

For M a labeled HDA over L, with labelling l, let P (M) be the set of all semi-
partial paths of M. Then, two labeled HDA (over L) (P,1), (Q,k) are trace
equivalent if and only if (P (P))=k(P(Q)).

As we are to do in the following, this definition can specialize to one in which
we only consider “homogeneous” paths, ie. | : M — L and k : P — L are
H-trace equivalent if and only if [(P,(M)) = k(P,(P)) for all n > 1. Both
definitions quite obviously generalize ordinary trace equivalence. For instance,
the two following automata are trace and H-trace equivalent,

a b a b
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Trace equivalence does not respect the branchings nor the mergings. It is a
linear-time semantic equivalence.

6.5.2 Branching-time equivalences

Failure equivalence

Definition 39 Let o be a semi-partial path of a labeled HDA (M,l) over L,
and X be a set of states and transitions of L. Then (I(¢), X ) is a failure pair
for M if and only if o cannot be extended by firing transitions whose labels are
not in X. Two labeled automata P and ) are failure equivalent if and only if
their sets of failure pairs are equal.

Consider the failure pairs ({(o), X) with X, set of 1-transitions of L. Take the
smallest such set X. If it is void, then this means that o, is a final state of
M. Reciprocally, if we have a failure pair of the form (I(¢),0) then o,, is a final
state. This proves that [.(Ho(M, dy)) is preserved by failure equivalence.

Now, suppose it is not void, and contains two distinct 1-transitions a and b.
Then by hypothesis, there exists # and y with

do(x) = doly) = n

ple)=a ply)="b

Thus, x — y is a 1-cycle for dy.

We take for granted now that (M,!) is a labeled automaton such that all states
are reachable.

Suppose that M is a standard automaton, i.e. has only states and 1-transitions.
It follows that 2 — y is a generator of Hy(M,dp) and a — b is a generator of
[.(H1(M,0y)). Reciprocally, if we have a generator u of [,(H1(M,dp)), then u
can be taken as {(z) — (y), with 2 and y elements of the chosen basis of M,
and do(z) = Jo(y). Call this state o, and let ¢ be a semi-partial path of length
n such that o, = a. It is easy to see that there exists a failure pair (o, X)
with {z,y} C X. This implies that [.(H1(M,dy)) is preserved under failure

equivalence®.

Readiness equivalence

Definition 40 (Readiness equivalence)

(I(0), X)) is a ready pair for an HDA M if and only if, o is a semi-partial path
of length n, X is a set of states and transitions of L such that o can only be
extended by elements of X. P and () are ready equivalent if they have the same
sets of ready pairs.

As for failure equivalence, we see that [.(Ho(M,0p)) is preserved, and for stan-
dard automata, {,(H(M, dp)) is also preserved.

*n is the length of o.
®This is the basic requirement for being called branching-time semantic equivalence
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Bisimulation equivalence
First Approach - inhomogeneous paths Here we follow the lines of [GJ92].

Definition 41 S is a bisimulation between (Q),1) and (Q',l') if:

o S is a relation between the states, events and transitions of ) and Q'

o initial states are related to initial states

o (s,8) €85 = (VY q apath for Q such that i, ¢; = s, I¢' a path for Q'
such that 33, ¢; = s" and (¢iy1, ¢ 1) € 5, Ugiv1) = U4 1))

o (5,8) € § = (V¢ a path for Q' such that 3j, q; = &', 3¢ a path for Q

such that 3i, g; = s and (Gis1,q'11) € S, Ugis1) = Ugsr)

(Q,1) and (Q',l") are bisimulation equivalent if and only if there exists a bisim-
ulation between them.

This notion of bisimulation equivalence “naturally” generalizes the usual notion
(as found in [Mil89]) of observational equivalence, or bisimulation equivalence
on one dimensional automata. Two HDA are bisimulation equivalent if and
only if each time one can fire a transition (of any dimension) then the other
can fire the same. This bisimulation implies that not only are we looking at the
time choices are made for firing ordinary transitions, but also we are looking at
the allocation of the different actions through time. This is what we are going
to prove in the rest of this section.

One can verify that bisimulation equivalence implies readiness equivalence,
which in turn implies failure equivalence and then trace equivalence. Notice
also that for standard automata, these notions coincide with the usual ones.
We have just added the opportunity to observe simultaneous actions we could
not before, because we could not express them in the semantics. This means
that we can observe schedules on any number of processes.

In our setting, the description of bisimulation equivalence is more complex than
in the sequential case. Nevertheless, we can show that it is still a branching (in
our sense) time equivalence, that is, it locally preserves some geometric shapes.

Example 30 o The labeled HDA represented as,

1 1
N )
(i): « J&) (1) : o
bl ] b\
4l 8 s o

are not bisimulation equivalent since in (i) the choice of a copy of a implies
that we have already chosen if we will do b or ¢ whereas in (i1) this choice
is made after firing a. Notice that (i) (see the semantics of CCS, Chapter
5) corresponds to the CCS term a.b + a.c whereas (it) is a.(b+ ¢). This
is the classical example in CCS a.(b+ ¢) # a.b+ a.c.
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o The labeled HDA (i) represented as,

and the one (i1) represented as,

NN

Y 1 Y
N YN S
B Iy
b c
a// ﬁ//
7//

where all the squares are filled in are not bisimulation equivalent since in
(i1), choosing a transition a imposes which transition we can fire concur-
rently in the future whereas in (i), this choice is not yet done. Looking
at the semantics of CCS of Chapter 5, the reader should be able to con-
vince himself that (i1) corresponds to the term allb + b||c 4 ¢||a and that
(i) corresponds to no term (this will be proved later on).

We begin by looking at bisimulation equivalence for semi-regular HDA.

Definition 42 Let M be a semi-regular HDA and x a state of M. The local
skeleton of dimension n at x is V,(z) subHDA of M generated by,

Wo(z)={y € M/dimy =k <nAd)d...d}_(y) ==z}

Let V, be the amalgamated sum of all the V,(z), n € IN. The first n (if it
exists) such that V,,(2) = V,,41(2) is called the local dimension of M at z. By
convention, if no such n exists, we say that the local dimension is infinite.
Now we state the result which proves that bisimulation equivalence preserves
local branchings:



184 CHAPTER 6. BASIC GEOMETRIC PROPERTIES

Lemma 20 (Local test)

Let (P,1) and (Q,k) be two labeled semi-regular path-connected HDA over
L. If they are bisimilar then Yz, Jy, and Yy, 3z, with semi-partial paths p,
(resp. py) ending at x (resp. y) such that l(p;) = k(py) in both cases and

H.(I(Va(P)), 00)) = Hu(k(Vy(Q)), Do))-

Proor. Let S be a bisimulation between P and (). Let z be an element of P.
P is path-connected, so there exists a path ¢ connecting an initial state 7 of
P to z. By induction on the length of o, we show that there exists 7, a path
connecting an initial state j of ¢} to a state y, with ¢.57. Now, we show that
V. and V), considered as labeled HDA are bisimulation equivalent.

Now, we prove that {(V,(P)) = [(V,(Q)). It suffices to show that for all n,
[(Wo(z)) = I(W,(y)), the result being entailed by considering the smallest HDA
generated by both terms of the equality. Let t € W, (z) be a transition of dimen-
sion k < n. By definition of W,,(z), there exists a path (by “maximal allocation”
of processors) from z tot, e.g. p= (x = dY_, ... dJ(t),d?_o...d3(¢),...,d3(t),1).
p can be decomposed, using the transition relation — as,

P = (o) W OO e ) e = (e )

k
p=p

As 0S7,and as 0, 7 end at 2 and y respectively, we can associate (by induction
on j) to the p’ paths ¢’ beginning at y with,

ijqj
= () 2 OO B e = )
1@)\
j

Therefore, I(t) € I(Q). Moreover, the construction of the path ¢* above (by
“maximal allocation”) proves that there exists a transition of dimension k of

W, (y) which has label [(?). Exchanging the roles of P and @) gives [(W,(z)) =
R(Wa(y))-

Now, Vn, Vk < n, Hip(l(Vi(2)),00) = Hp(l(Vy),00) = Hi(k(Va(y)),00) =
Hyp(k(Vy),0o). O

This test shows that under the observation of labels, bisimulation equivalent
automata are locally isomorphic. As we deal with local shapes, we try to
classify them using homology. The way we extract these local shapes implies
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that only the homology with respect to dy (branchings) is relevant: for all &
and @, Hp(l(Vy) = Vill(Vz)], 0o) C Hi(I(P), o). Thus, Hg(I(.), o) (for all k)
is invariant under bisimulation equivalence. This is then a test for bisimulation
for general HDA.

Now, notice that this test is still not powerful enough for our purpose. For
instance, the test of the previous proposition distinguishes the first two HDA
of Example 30 but not the last two ones. We need to generalize what we have
done.

First, we extend the concept of local skeleton. Let X be a semi-regular HDA
and a a m-transition of X (and not only a state as we had before). Then the
local skeleton of dimension n at a is V,,(a) subHDA of X generated by,

Wola)={y € X/dimy <nAd)_,...d° (y)=a}

V, is then the amalgamated sum of all the V,,(a).
Then,

Lemma 21 (Generalized local test)

Let (P,1) and (Q,k) be two labeled semi-reqular path-connected HDA over L.
If they are bisimilar then Yz transition, Jy transition, and Yy, Jz, with semi-
partial paths p, (resp. py,) ending at « (resp. y) such that l(p;) = k(py) in both
cases and H.(I(Vy(P)), o)) = H(k(Vy(Q)), 0o))-

ProoF. Similar proof as for the local test. O

Now, this is enough for proving that in the second example of Example 30, the
two HDA are not bisimulation equivalent. How can we decide this generalized
local test, knowing the physical branchings, the labelling and the shape of the
domain?

Unfortunately, the more powerful test (as well as easier to decide) which would
be (H (M, 0)) = k(H(M,0p)) is not true in general when P and @ are
bisimilar. Consider for instance P = (a®@a’)+(a'@a”)+(a"®a) and ) = (a®@d’)
where a, @’ and " are three 1-transitions. Suppose k = [, l(a) = I(d') =
[(a”). P and ) are bisimulation equivalent, but {(Hy(P,0y)) = (¢ ® a) and
k(HQ(Q,ao)) = 0.

We have to make a few assumptions on the labelling to relate these two “lo-
cal” tests. An important class of labellings is the one seen in Chapter 2. Let
(a;),(b;),... (1 € N) be 1-transitions and D be the domain given by the recur-
sive domain equation,

D%Z((ai)—l—(bi)—l—...){—D@D

Then define a morphism from D to D by l(a;) = ag, {(b;)) = bg, ..., and
le®y)=Uz)2l(y). Weset L =1(D)/{s—1/s € D,_,,p € Z}. Let [ be

induced morphism from D to L. Then for such a labelling,
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Claim 1 Letk € IN, X, Y subHDA of D and z, y states of X, Y respectively.
Then,
V(u,v) € Vu(X) x Vy(Y),

P (HL(Vi(X), 00))/{ag" 05", .. )
Hi(I(Vy(X)), 80) = Hy(l(Vo(Y)), 00) = { =
I=(Hy(Vy(Y), d0))/{a§" 05", .. }

Therefore l(Hk(.,ao))/{a?k,bg@k,...} is invariant under bisimulation equiva-
lence.

Notice that, as we have higher-order automata (the Hom(P, () in Chapter 4),
this property allows also for an immediate generalization, which was far from
obvious for bisimulation and higher-order bisimulation.

As an application of Lemma 20, we show that some behaviours modulo bisim-
ulation equivalence are not implementable using CCS.

Lemma 22 There exists an element in the semantic domain D we have used
previously for giving semantics to C'CS terms, which is not bisimulation equiv-
alent to any term of CCS.

Proor. (R = Z,)

Consider the HDA ¢ generated by the three 2-transitions ¢ ® b, ¢ ® ¢ and ¢ ® b.
The reader can verify that t = (1)@ (01(a))&(01(0)) B (01(c)) B (01(a)@01(b)) B
(01(a) @ 01(c)) B (01(c) ® 01(b)) B (a) B (a® 01(D)) & (a @ i(c)) B (b) B (d1(a) ®
b) & (01(c) ©0) B () & (c @ O1(a) & (c® 01 (b)) B(a@b) B (a®c)B(c@Db).
We see that a @ b+ a @ ¢+ ¢ @ b is in Hy(t,0p), because dp(a ® b) = a + b,
dola @c) = a+ ¢, and do(c @ b) = ¢+ b, so a, b, and ¢ are counted twice
in do(a @b+ a®c+ c®b), and also there is no 3-transitions from which
a®b+a®c+c®bcould be the boundary of.

Now, let z be any CCS-term. We show that no element of [.(H3([#], o)) can
be of the form ¢ ® b+ a ® ¢ + b ® ¢, then t is not bisimulation equivalent to z
by Lemma 20. Assume we have a CCS-term z bisimulation equivalent to ¢.

First of all, we can restrict ourselves to considering terms z only built with
actions a, b, and ¢, and operators 4+, ., and ||. Moreover, no two operators | can
be nested (because we would have 3-transitions, and ¢ does not contain any).
Let a;, b;, and ¢; for a certain number of ¢’s, be physical copies of actions a, b,
and ¢ respectively, appearing in [z] (coded during the translation of the term
z by forming the tensor product of a, b, and ¢ with states)

Let z be an element of [,(Hy([2], 0)). = corresponds to [, of some sub-vector-
space of Hy([z],00). But by the remarks we have made and the Kiinneth
formula (appearing during the computation of the homology of |-terms), z is

of the form Y l.(u ® v), where u € H1(Q,0p) and v € H1(Q',d), for some

automata (), and @’ built with a, b, ¢, +, etc.
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A straightforward application of Section 5.4.2 shows that necessarily, v and »
are of the form a; + a;, a; + b;, a; + ¢;, b; + b;, b; + ¢; or ¢; + ¢;. Therefore, z
isoftheforma®a, a®at+a®b,a®a+a®c,a®b, a®®b+a®c, a®ec,
a®a+a®@b+b®b, aRat+aRc+a®Rb+bRc, aQb+bRb, aRb+aRc+bRb+bR ¢,
a® c+b®ec, and all other terms obtained by a suitable permutation on the
symbols a, b, and ¢. We see that we cannot obtain ¢ ® b+ a ® ¢ + b ® ¢ from
these terms. This is a contradiction. O

The term we have exhibited has an interest of its own. It is the dynamic alloca-

tion on two processors of three processes (or the typical branching of dimension
2 of Section 6.1.4).

Second Approach - homogeneous paths Now the observable paths for
bisimulation are restricted to homogeneous paths in some P, (M ), the R-module
of n-paths of M. We authorize observation of finite sets of paths at the same
time (use of the formal sum of paths, i.e. the addition in the modules of n-
paths).

Definition 43 Let!{: M — L and k: N — L be two labeled HDA. Then a H,, -
bisimulation (n > 0) R between M and N is a relation between n-transitions of
M and n-transitions of N such that,

(1) aRa’ and bRV implies (a + b)R(a’ + '),
(77) aRa’ and X € R implies A\aRAd/,
(iii) 0 R 0,
(iv) initial states of M are related to initial states of N,

(v) aRa’ and 3p € P,(M) with dy(p;) = a (for some i), then there exists
q € P,(N) with 0o(q;) = a (for some j), k(q;) = l(p;) and 01(p;)RO1(q;),

(vi) aRa’ and 3q € P,(N) with 0o(q;) = o' (for some j), then there exists
p € Py (M) with 0o(p;) = a (for some t), l(p;) = k(q;) and 01(p;)RO1(g;).

Let S, be the following “shift operator”. For M a HDA, S,,(M),, = Mytn,4
and dg[S,(M)] = 0o, N[5 (M)] = 01. Sy is easily seen to define an endofunctor
in T. A similar definition could be given for semi-regular, partial and regular

HDA.

The nice thing about H,-bisimulation is,

Lemma 23 The set of H,-bisimulation between M and N 1is in one-to-one
correspondance with the set of Hy-bisimulation between S,_1(M) and S,_1(N ).
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Proovr. Easy verification since P,(M) = P (S"'(M)). O

As usual we say that M and N are H,-bisimulation equivalent if and only if
there exists a H,-bisimulation between them. The previous lemma shows that
M and N are H,-bisimulation equivalent if and only if S,,—1(M) and S,,_1(N)
are Hi-bisimulation equivalent. We are now concentrating on Hy-bisimulation
equivalence.

Lemma 24 If M and N are Hq-bisimulation equivalent then

I(Ker 935[M]) = k(Ker 05[N1)

SKETCH OF PROOF. Let ¢ € Ker 9}[M]. Then ¢ € P;(M). 0 is related by the
bisimulation R to 0 by (iii) of Definition 43. Therefore there exists ¢/ € Ny such
that I(¢) = k(). O

This implies that if looking at H-bisimulation equivalence (i.e. the smallest
equivalence subsuming all the H,,, n > 1) between schedulers of M (see Chapter
7) and schedulers of N then it implies that [.(H.(M,dy)) = k«(H.(N,0p)), that
is the preservation of the labels of the branchings.

Another way (closer to the ordinary testing methodology, [DNHS83]) to obtain
the result is to remark that conditions (i), (ii) and (iii) make the bisimulation
a submodule B of M x N. Now, conditions (v) and (vi) show that as soon
(0o(t),00(t")) € B, where t € My, t' € Ny and I(t) = k(t'), then (01(t),1(t')) €
B. If we notice that B is a submodule of the pushout (synchronized product),

Mx; N2y

|

N L

and that in M x 7, N this precisely means that dy(¢,t") and 04(¢, ') are (0p— 01 )-
connected, we get the following result (generalized easily to any dimension).

Lemma 25 Suppose M and N are two connected HDA. Then M and N are
H,,-bisimulation equivalent if and only if p1(Cy) = My and pa(C) = Ny where
C' is the connected component C' of (I,1') in M xj, N.

C represents the maximal bisimulation. The lemma can be interpreted (computer-
scientifically) as saying that when synchronizing M and N (over their labels)
all states of M and N should be reached from the initial state (1, 1’).

Finally, we can notice that M and IV are H-bisimulation equivalent implies M
and N are bisimulation equivalent. Since H-bisimulation is easier to prove or
to negate, the previous proposition lets us think that H-bisimulation should
better be used in practical semantic definitions.
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Summary We showed that many dynamic properties of interest in HDA were
in fact local geometric properties, that could be computed or characterized using
homology theory. Among them were initial and final states, deadlocks and
initial deadlocks, divergence, branchings and mergings. We have used classical
results from homology theory to compute these geometric properties inductively
on the syntax of CCS. We ended up by showing that some “branching-time”
semantic equivalences were preserving branchings indeed. We introduced two
kinds of “higher-dimensional” bisimulations for HDA and showed that they were
preserving some local geometric shapes as well, hence giving a semi-decision
procedure for proving that two HDA are not bisimulation equivalent. As an
application, we proved that no CCS term could be bisimulation equivalent to
the dynamic allocation on two processors of three processes.
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Chapter 7

Serialization and schedulers

7.1 Introduction and motivation

7.1.1 Scheduling problems in computer science

The use of schedulers is somewhat pervasive to many branches of computer sci-
ence. We mention below a few application areas, the properties that schedulers
are to verify and give some references to the theoretical work done in these

different fields.

Safety and efficiency of the implementation of concurrent languages

A real parallel machine has but a limited number of resources. It has limited
memory, limited number of processing units and many constraints on the way
it can use them. The idealistic view of true concurrency semantics, assuming
an infinite number of processors for instance, is therefore misleading when it
comes to runtime behaviour of programs. It may happen that to badly schedule
spawning operations may deadlock (just delay in practice) a process that would
need to synchronize with another (not yet executed) process. It may happen
as well that some shared resources of the machine have to be used in mutual
exclusion.

The safety (respectively efficiency) properties that schedulers must verify are
mainly choosing behaviours that will not lead to deadlocks (respectively not de-
lay too much the execution of some process) and implementing mutual exclusion
of some resources. This last property could well be implemented by standard
techniques (Peterson’s algorithm for shared-variables or hardware test-and-set
like operations) independently of programs but this would be at the expense of
efficiency.

Let us take an example extracted from [HMC94] and [PF94]. Many modern
CPUs like SPARCs or MIPS pipeline instructions. Of course, their functional
units, registers or bus are all used in mutual exclusion. Unfortunately the
pipelined instructions overlap in time as they use more than one clock cycle and
some of them cannot be executed (unless “structural hazards” occur) within

191
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Figure 7.1: MIPS R4000 floating point unit.

instructions/cycle | 0 1 2 3 4 15
add.s U|S+A | A+R (R4S | 0 |0
add.s U | S+A | A+R | R4S | 0

where U is unpack, S is shift, A is adder and R is round.

a certain number of cycles after some others (see Figure 7.1). We do not want
to use the pipeline in mutual exclusion since we would have to empty it after
every instruction. The problem addressed in [PF94] is to verify that schedulers
for a single process ensure that structural hazards will not occur (safety). In
a concurrent framework, if there are more processes than processors, we can
address the new problem of finding a way to interleave actions from different
processes executed on the same processor, that verify the constraints while using
the pipeline at the best of its capabilities (see Example 31).

A similar example at a more macroscopic level is given by an I/O buffer shared
by two or more processes. Some processors (like INTEL’s Pentium) are even
more complex to deal with since some resources may be used by at most two
processes in parallel but not three!.

This chapter is about the first mathematical definitions of schedulers within the
HDA framework. We will see in Part IV how to get the best scheduler (or an
approximation of it) using abstract interpretation.

Example 31 Suppose that we want to execute two instructions add.s one after
the other on the MIPS R4000 floating point unit®>. Then at cycle 2 the adder A
has to be used by both instructions (coming from the same thread). The same
holds at cycle 3 for the round unit R. We say in that case that there is an
hazard on A at cycle 2 and an hazard on R at cycle 3. A good scheduler should
have prevented us from this situation by interleaving the two threads after the
first add.s and continue with non-conflicting instructions of the second thread
for the pipeline to be emptied a bit before executing the second add.s.

Another example of scheduling properties can be found in the parallelization
litterature. Given a sequential program p, can we decide which parts of it can
be executed in parallel? This is dual to the problems we have described above.
Parallelization is about relaxing the constraints on scheduling that a sequential
program put arbitrarily. Most approaches up to now are based on program
transformation [L.Z93, PP92, SMC91]. We propose here a theoretical framework
that enables us to derive a scheduler choosing dynamically the intructions to

spawn. The actual algorithms derived from this framework will be developed
in Part IV.

'It has two integer arithmetic units.

2Taken from [PF94].
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Protocols in distributed/concurrent systems

In order to have well behaved distributed systems, one very often has to make
local processors agree on some criterion, like elect a leading one or organize the
flow of information to guarantee the coherence of the global state of the system
(by local rules only) like the consensus, set or renaming agreement tasks
[Her94]. This is done by defining protocols. An example of such a situation is
given by a parallel machine whose different units communicate by asynchronous
messages along channels which have a given topology (let us say a ring topology
for instance). Now, a protocol for guaranteeing a global knowledge of some fact
must serialize all message passing primitives according to the communication
topology (in our example of the ring topology, messages are to be waited for
from say the left neighbour before passing them to the right neighbour). In
[Her94] some of these problems are addressed in a static manner (the topology
is fixed once and for all). We propose here to use the dynamic semantics to
deal with changing topologies as well®.

Another example can be found in concurrent database systems [UlI82]. A trans-
action in a database system is defined to be any query to the database, like
reading or writing entries. The database itself is shared by many processes
which are sequences of transactions. To ensure the consistency of the database
the processes have to lock some entries and then unlock them after some of
their transactions have been executed. Protocols define the way processes lock
and unlock items. A good instance of this is the two-phase protocol. Given
processes P; accessing items in sets Ap, the two-phase protocol consists in lock-
ing (giving exclusive access to the locking process) all items in P;, before all
transactions in P; and then unlocking (releasing the unique access grants) all
items in Ap,. There again, the protocol is a constraint on scheduling. The
notion of consistency of the database or soundness of the protocol is known
as serializability. This means that all schedulers constrained by the protocol
must be equivalent in some sense (at least give the same result). We give a
general definition of serializability, carrying on the work presented in [Gou93],
and give a practical test for protocols based on the semantics of the processes
and not only on static or syntactic ground. Very recently, Jeremy Gunawardena
[Gun94] has given a very clear explanation about why serializability has some-
thing to do with homotopy. We first recall what the problem is in concurrent
databases and give a formalization of these notions using higher-dimensional
automata.

7.1.2 A geometric approach

Interestingly enough, a graph-based criterion is known for serializability [UlI82].
In more general protocols for “decision problems” recent results [Her94] use
combinatorial algebraic topology on static representations of protocols. We will
show here that we can use more general tools from algebraic topology directly on

°In many languages, like CM-Fortran with the CMMD library, or CML [Rep92], channels
are defined during the execution of the program. They are not physical but they are logical
channels.
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Figure 7.2: A process graph for two transactions accessing the same shared
item.

Va -~~~ T " "~""~""“""~"~"~—-71

Forbidden

= T e ity

the dynamic semantics of the systems studied to extract the information about
serializability and about schedulers. We will develop in particular a homotopy
theory of oriented paths (next section). Let us explain the intuition about it.

The two-phase protocol

A concurrent database is composed of a set of shared objects, or items, and a set
of processes accessing these items Ty, ...,T,, or transactions. The transactions
can be executed in parallel, and one can think of a good example (of economic
interest too!) as being a reservation system of an airline. The items are seats
in the planes and the transactions are individual queries from customers, made
in parallel since there may be many different selling points. The basic property
we want to insure is that no seat is sold twice (at the same time) to different
customers. This is rather basic since we do not even ask for a priority rule like
“first arrived, first served”. In the shared memory paradigm the well-known
method for attacking this is to put locks [Dij68] on shared variables. In
Dijkstra’s formalism, for an item a, Pa is the action of locking ¢ and Va is the
action of relinquishing the lock on a. As long as we are only interested in the
policy of acquiring items and not in their actual values, we can abstract the
transactions in such a way that they are written as strings of Pz, Vz, 2 ranging
over the shared objects. This is a more important abstraction than one may
notice at first. We will come back to that when formalizing these notions.

As an example, consider
T, = PaVa

Ty = PaVa
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Figure 7.3: An example of process graph.
T2

Vb

Pb-|

| |
| |
Pb Pa Vb Pc Va Vc

There is an old way to represent these transactions due to Dijkstra again (see
[Dij68], look also at [Hoa85]), known as process graphs. We will see that it has
much to do with the HDA approach. The idea is to associate to each transaction
a “local time” which geometrically is one coordinate in an euclidean space.
Supposing that all processes can individually terminate, we may normalize this
local time for it to range over [0,1]. A purely asynchronous execution of n
transactions is now any path from (0,...,0) to (1,...,1) in the n-cube [0, 1]"
where the local times, i.e. the coordinates always increase. But the executions
are constrained by the fact that shared objetcs are accessed in mutual exclusion.
In Figure 7.2 we have pictured the central square in [0, 1] which is forbidden:
a valid path of execution cannot enter it since it is precisely the region in
which both transactions access the same object a. The more complex example
borrowed from [Gun94]:

Ty = PbPaVbPcVaVe

Ty = PaPbVaVb

is pictured in Figure 7.3. Using these geometric representations, we have two
main questions,

(i) Can the system of transactions deadlock?

(ii) Is the system of transactions correct in some sense?

T1
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Figure 7.4: Left and right paths in a mutual exclusion.

left

right

As for question (i), the answer is geometrically clear (see [CRJ87]). The only
way a path coming from (0,...,0) may be stopped before reaching (1,...,1)
is by “meeting” a corner like the dashed one (PaPb, PbPa) in Figure 7.3. As
soon that a path goes into the small dashed rectangle, it cannot reach (1,...,1).
Formally, this question relates to a connectedness result. We will look at that
in Section 7.2.

Question (ii) is less immediate since we first have to define what the correctness
condition is. In the airline reservation system example we have only demanded
that no seat be sold twice. This means that some parts of the transactions may
be done in parallel, but that the execution must be sufficiently constrained so
that the resulting reservations are the same as some sequential treatment of the
queries of the customers. In database theory this correctness criterion is known
as “serializability”. It has a basic “geometric” formalization in [UlI82] in the
form of a topological condition on the “graph of transactions”. We show now,
following J. Gunawardena [Gun94], that it is even more directly of a geometric
nature, and that the serialization property can be read on the process graph.

This may seem strange since the correctness criterion seems essentially given
as a condition on states of the system. Do not forget though this assumption
on the representation of transactions as not depending on the actual values of
items. Surely, some arithmetical operation involved in the booking process may
commute with other operations for some values of the items, but we have to
think that to be true for all values is odd (strange programming at least). The
condition now is then only on paths of executions. If you look at the forbidden
square, or mutual exclusion in 7.2 reproduced in 7.4, the values of the items at
its top right depend on the way we have reached this point. Going on the left of
the hole may give different results from going on the right of the hole: just think
at the following example. The initial value of « is 0. The arithmetic operations
involved for the processes when the lock on @ has been acquired is a := a+1 for
Ty and a := 2xa for Ty. Going on the left means doing a := 2*a before a := a+1,
result is @ = 1. Going on the right means doing @ := a + 1 before a := 2 * a,
result is @ = 2. Instead of looking at the holes, look at the filled parts of the
drawing 7.2. It becomes obvious now that all paths below (or at the right hand
side of ) the hole are serializable to the right boundary of the square, and that
all paths above (or at the left hand side of ) the hole are serializable to the left
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Figure 7.5: A process graph with two mutual exclusions.

T2

T1

boundary of the square. Holes appear to be the elements to discover. They are
the obstructions to the “continuous” deformation of paths (homotopy), which
is the “infinitesimal” serialization equivalence. Here, the system is serializable
since any path can be deformed onto one of the interleavings T7; 7T, or T5; 17,
i.e. any path gives the same result as a serial execution of the transactions.

Let us examine another process graph we may have (see Figure 7.5). Here,
the paths “in between” the two holes cannot be deformed onto one of the
interleavings, hence they are not serializable.

The aim of protocols for concurrent databases is to provide us with a uniform*
way of insuring the consistency of the database. A good example is the two-
phase protocol. Every transactions must acquire all locks of all items they will
compute on (first phase), compute, and at the end they must release all their
locks. For instance Ty = PaPbPcVaVbV e verifies the two-phase protocol (is
“two-phase locked”) whereas T3 = PaVaPbVb does not. It can be proven by
combinatorial means that it makes all systems of transactions serializable (or in
short, it is serializable). However it does not prevent deadlocks. Geometrically,
the proof that it is serializable has been given in [Gun94], and is much more
illuminating than the combinatorial one of, say, [UlI82]. Basically, it is proven
that the n-cubes forbidden by the two-phase protocol form a unique hole in the
“centre” of [0, 1]™. It is then easy, using a “radial” homotopy to deform all paths

*I.e. independently of what process we want to program.
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of execution onto one of the interleavings, and then prove the serializability.

This proof is not completely satisfactory though. First, we use continuous meth-
ods. They are elegant but induce a few complications, like knowing that the
paths correspond to real ones. Secondly, we use a standard theory of homotopy
which authorizes reversal of time. Here, we really need a homotopy theory for
“oriented” paths in which the allowed deformations are only transverse to the
flow of time.

In the following we develop such a theory, in a discrete framework using Higher-
Dimensional Automata. In Part V, we will look at the continuous couterpart.
The theory will generalize also to higher-dimensional mutual exclusion prob-
lems.

The simple theory we are going to develop applies for semi-regular HDA only.
Then, we will introduce a more complex theory, generalization of this to “com-
binatorial” HDA (Chapter 10) and to general HDA.

Protocols for distributed systems

Here, we want to deal with general problems that one can have in programming
distributed systems. The case of concurrent databases can be considered as a
first example. More generally, we are concerned with the following type of
problems,

e given a number of hypotheses on the distributed system, like a topology
of the communication network, a specification of the way messages are
sent and received (asynchronously, synchronously, with bounded buffers,
with no loss etc.), or in case of a shared-memory system, a number of
assumptions like sequential/concurrent read/write etc.

e given a specification of what we want to program (as a set of distributed
processes) on that system in the form of conditions on the input values
accepted by this set of processes and conditions on the output values that
this set of processes should compute,

e given a number of requirements on the execution of this program, like
being as most efficient as it can be, or (it may be seen as a limit case of
the previous requirement) being robust enough to compute a good part
of the output specification even if some processors fail,

o the questions are: “Does such an algorithm exist on such machines?” and
if the answer is positive, “Can we derive it from the specification of the
problem ?77.

All this is formalized under the name of decision tasks. Let us first give a few
examples, following the presentation of [HS93] and [Her94].

The consensus task (abstraction of the commitment problem in concurrent
database theory where transactions have to agree on a common value or abort)
is a decision task in which N asynchronous processes begin with arbitrary input
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values in some set S and must agree at the end on some common value taken
from 5.

The renaming task is another decision task in which N asynchronous processes
begin with disjoint values in a set of “names” S and must end with new names
(i.e. disjoint values) taken from a much smaller subset S of 5.

Finally the k-set agreement task asks for arbitrary input values (in some set )
but no more than k output values (in S as well). This can be seen as a partial
consensus among the processes.

Now, an algorithm may be constrained in the following way. Call an execution of
a program on a distributed system ¢-faulty if at most ¢ processes in the program
fail. Then an algorithm is t-resilient if it solves a decision task in every t-faulty
execution. An algorithm is wait-free if it is (n — 1)-resilient, where n is the
number of processes.

It is proved for instance in [HS93] that in a shared-memory model with single
reader/sin—gle writer registers providing atomic read and write operations, k-set
agreement requires at least | f/k] 41 rounds where f is the number of processes
that can fail. This is done in a very nice geometric framework, and general tests
are given for solving t¢-resilient problems. Not only impossibility results can be
given but also constructive means for finding algorithms derive from this work
(see for instance [HS94]).

We will see how it relates to the HDA approach in Section 8.2.3 and in Section
10.5.

Scheduling problems on modern architectures

Modern machine and processor architecture combine many elements that, if
well used, greatly enhance the performance of the system, but if not, slow down
the computation a lot. Vectorial units or pipelines (see Example 7.1) are an
example. The reason is that some of these elements have good performance (like
pipelines) if and only if we can assume a very precise ordering on instructions
executed at run-time, whereas others can run almost arbitrary sequences of
operations. Knowing this, we may reorder the actions to be executed on the
latter elements so that we can use the former elements at the best of their
capabilities.

This is the view taken for instance in [AF92] where some elements have strong
consistency requirements (serializability) whereas some others have weak consis-
tency requirements only. As we can see, this elaborates on the case of concurrent
databases in the sense that we need a real classification of all possible orderings
of actions (i.e. of all schedulers) and not only a proof that all schedulers are
“equivalent” to one of the interleavings of the transactions.

Our approach

Let us discuss now what we should consider to be a scheduler of a program or
a set of processes in the HDA framework.
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Figure 7.6: A HDA (i) and its set of paths (ii).
83 S3
/N /N
$1 ab S $1 52
A A
30 S0
(1) (i)
Figure 7.7: Another HDA (i) and its set of paths (ii)
83 S3
N N
51 52 S1 52
AN A
30 S0

(2) (i)

Suppose we have a real machine with only a finite number n of processors
on which we want to implement a semantics given by HDA. What should we
consider as a valid implementation?

We first look at an instructive example for n = 1. Suppose the semantics of a
program P is given by the truly concurrent execution of @ and b pictured as the
2-transition in (i) of Figure 7.6. Then the valid execution paths are given by (ii)
of the same figure. A scheduler can choose statically to do @ then b or b then a.
a then b is one scheduler and b then a is another. They are essentially the same
(this will be defined formally as an equivalence relation between schedules) since
a and b are non-interfering. In a geometrical manner, they are equivalent since
one can continuously deform one path onto the other through the 2-transition
ab (homotopy). In more well-known terms (Mazurkiewitz trace theory) one
can understand ab as a commutation relation between a and b that is, ab is
serializable to a then b and serializable to b then a [UlI82].

If P were the mutual exclusion between a and b ((i) of Figure 7.7) then do we
have also two equivalent schedulers on a one-processor machine? The answer
is no: choosing a-priori to fire a before b is radically different from choosing
a-priori to fire b before a. Suppose for instance that a is the action on a process
1 of accessing a shared resource R and b is the action on a process 2 of accessing
R as well. Then we should think of the two processes to be in competition for
R and the scheduler does not have to make one wait for the other to access it
first if the other was ready to: it is a matter of inefficiency and it transforms the
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properties of the program (livelocks etc.). Moreover, if we are at an abstract
level of the semantics, (where we have folded together some of the states for
instance) we cannot be sure that the results of the two paths will be the same
(look again at example (a:=a+1) | (a :=2%*a)). We knew that when we had
the 2-transition in Figure 7.6 because it indicated a non-interfering behaviour,
but here we just do not know. This is the abstract point of view implicitly
used for studying protocols and concurrent databases (because they should not
depend on the particular values of the items). There must then be one and
only one scheduler whose trace is represented as (ii) in Figure 7.7. sy is an
internal choice the parameters of which the scheduler cannot influence. There,
the “hole” between ab and ba prevents us from deforming one onto the other.
We now formalize this in more abstract geometrical terms.

7.2 The group of connected components

First of all, what is the amount of external non-determinism in a regular HDA
? This is the very first question we have to solve because we can only speak
about serializability of computations once a branch of (external) choice has
been chosen.

The geometric representations of non-determism are of two kinds.

The first one is an external choice between a and b:

a

S

b

S

The second one is an internal choice between the same actions:
a/’
N

We see that the degree of external non-determinism is related to the number of
connected components of the HDA. We therefore come to defining this notion
in a formal way.

Let s and s’ be two states of M, i.e. s,s’ € My. We say that s and s’ are
connected and that s comes before s’ (s < ') if and only if there exists a
1-path p of finite length such that do(p1) = s and 04 (px) = 5'.

Recall that a path p of dimension one (or 1-path), of length k and from p,q in
an automaton M is a sequence p = (Pi)lgigk of elements of M such that

o p € My 1 q-it1,

o do(pi) = do(pis1)-
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Lemma 26 If two states s and s’ are such that s < s’ then
[s] = [$'] in Ho(Tot(M))

The reciprocal is false in general.

Proor. Notice that Ho(Tot(M)) = Tot(M )o/Im(d1 — 0p) so we only need to
prove: s and s’ are in the same connected component implies 3z € Tot(M ),
with s — s’ = (01 — do)(2),

We have p = (p;)i=1,...k such that do(p1) = s and 01(px) = s’. Therefore if we
set z =p1 +p2 + ...+ pr then,

(01— o)(z) = —s+do(p1) — do(p2) + do(p2) — - ..+ do(pr—1) — do(pr) + &

= —s—l—sl

A counterexample for the reciprocal is given by the branching,
s s
W b/’
o
[s] = [s'] in Ho(Tot(M)) but there is certainly no path from s to s'. O

The equivalence relation induced by the preorder < on states is exactly the
relation “being in the same connected component”. It is entirely classified by
Ho(Tot(M)). We call llo(M) = Ho(Tot(M)) the reduced group (or module) of

connected components of M.

In fact, this is not quite enough for our purpose. What we really need to
formalize is the fact that a point can be reached from another point by an
increasing path, that is by a path in the automaton. In Figure 7.8, no path
from the points in region C' can reach the final state (the upper right corner of
the square), so to some extent, this shape should not be considered connected in
the “oriented” setting. We can see that the new notion of connectivity is going
to classify the deadlocks of the system. Nevertheless, this new connectivity
is obviously not an equivalence relation, so there is no way to define a set of
“oriented” connected components that would partition an automaton.

Instead of that we will say that a HDA X is connected in the oriented sense with
respect to the pair of states («, ) if and only if all states of X are reachable
from a by a path of X and [ is reachable from any state of X by a path of X.

7.3 Towards formal definitions

Let M be a regular automaton. All automata will be acyclic HDA unless
stated otherwise.
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Figure 7.8: A “non-connected” automaton in the oriented theory

|
Forbidden
|

Let p = (ps)i=1,..k be a l-path. It can be pictured as, for paths of dimension
one,

dg
p1 € Ml,O —acl
d})l
dg
preE My —— =
dg
Pr € My _py1 — =

d})l
€

where a and € are respectively its initial and final states.

We wish to define geometrically how two paths of dimension one are to be
considered equivalent in a scheduler. Let us look at the HDA from a different
point of view. We slice paths into actions that occur at a given time: supposing
that all paths we are interested in begin in Mg, we say that we are at time 2
when we look at actions in M; _; ;.

Let p and ¢ be two paths. We say that p and ¢ are elementary equivalent
at time ¢ if and only if p; and ¢; are two ends of a 2-transition A and p; = ¢;
for j < i —1 and j > ¢ and if p;_y and ¢;_1 are two beginnings of the same
2-transition A. This corresponds to the idea of continuously deforming one
path onto the other (or to use a commutation rule between two transitions) like
one can see in Figure 7.9. We define equivalence to be the reflexive transitive
closure of elementary equivalence.
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Figure 7.9: Step by step deformation (curved arrows) of one path onto an other

b//
b —— ¢
a
M=aq——v
!
N
b ¢

and suppose that a is in Mpg. Thus, M can be algebraically defined as,

Mo = (A) & (B)

Mo =(a)d ()& (c) — Moo = ()

For instance, the 1-path (a,b"”) is elementary equivalent to the 1-path (b,a’) .
Similarly (b, ¢’) and (e, b’) are elementary equivalent but not equivalent to any
of the two former 1-paths.

Now, we are looking for an algebraic definition of this equivalence.

7.4 The fundamental group

The fundamental group of length &

Let Pf(M) be the set of all 1-paths of length &k from I C My ¢ in the semi-regular
HDA M (called the “elementary” 1-paths). It generates a sub-R-module of the
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product module My o X My _y X ... X My _;.q: the addition and external mul-
tiplication are defined on each component of the paths. By abuse of notation,
we write PF(M) for this R-module.

Let p = (pi)i<i<k and ¢ = (¢;)i<i<k be two elements of PF(M). Then we say
that p and ¢ are equivalent or homotopic (p ~ ¢) if and only if p — ¢ is in
Im (0y — 01) (see [ML63]) in M. The first thing to prove is that it corresponds
to our geometric definition of the last section.

Suppose that we have p and ¢ elementary equivalent. Then we have p — ¢ =
Pim1 = Gi—1 +pi — ¢ With p; = dg(A), ¢ = dy(A), pimy = di(A) and p;—y = dg(A)
(for instance) and A is a 2-transition. Therefore, p — ¢ = 01(A) — do(A).

Now, suppose that M is acyclic and that we have two paths p = (p;)i=1,.. % and
q¢ = (¢;)i=1,..k such that p — ¢ = (9o — 01)(X), X € M. M is acyclic, so we

can decompose X = > X; with 9o(X;) — 1(Xs—1) = pi — ¢;. Fach X
i=1,...,k—1
can be decomposed onto the basis M of M, i.e. X; :Z X, Xi; € M. We
J

suppose that p; and ¢; are elements of M (i.e. p and ¢ are “natural” generators
of Pf(M)). We can suppose that the X; ; (up to reordering and discarding of
redundant ones) are such that (the aj belong to My),

30(X1,1) =P — a}

do(X1.2) = a} — aj

(X)) =a),_1—a

We have also,

81()(1711) = b111 - Cll1

where we have ordered the b’s and ¢'s so that do(c}) = d1(aj_,) (where by
convention we set ay = py) and do(b}) = d1(a}) (Where by convention, a} = ¢1).
This implies that the (a},b}) and (a}_,,c}) are paths of length 2 in M.

Then as do(X2) — 01(X1) = p2 — g2, we can order the X, ; so that do( X3 ;) =
uj —vj, with u; = b}(j) or u; = c} y and v; = b;(j) or v; = c;(j), f, g increasing
maps. This enables to complete the paths of length 2 previously defined and
have paths of length 3.

These paths are defined in such a way that they are elementary equivalent from
one to the next through one of the X; ;. This generalizes to £ > 3 by carefully
decomposing X at time slices greater or equal than 3. This tedious proof is left
to the reader.

We define the fundamental group of M for paths of length & to be II§(M) =
Py(M)/ ~.
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Proposition 11 Suppose M = >~ M, , is connected in the oriented sense
p0<g<k
with respect to all pairs (o, ) € I X My _j. Let O be the image of I x My _j,

by u such that u(z,y) = (v —y) € L® My ;. Then,
(M) = Hy ((M,0),0 — 1)

where Hy (M, 0), 0y — 01) is the first relative homology group of the pair [ML63]
N =(M,0)= M/O and boundary operator dy — 01, i.e. is the quotient module
](67‘(80 — 81)|N1/(80 — 81)(N2)

ProOF. Ker(do— 01)|n, is the R-module generated by the set of 1-paths of M
starting from I and of length k since,

o if p=(p1,...,px)is such a path, (do— 1 )(p1+...+px) = do(p1) — d1(pr)
which is null in IV,

e reciprocally, if p € Ker(do—01)|n, then, as M is acyclic, p = pi+...+pn
with p; € My 5, m >4 2> 1.

Suppose that p # 0 i.e. that p; # 0 and p,, # 0. We know that (dg —

d1)(p) € 0.
This implies first that do(p) "Moo = A1t +...+Aviy, (A; € R, i; € T and
hp) N My _p = —=Aymy —...— A;m, (m, € Mg _p). This entails that

[=0,m=Fk-1.

Finally it implies that do(pit1) = Oo(p;) for all 7 with 1 <7 < k — 2.
Decomposing the p; onto the basis M;1 ; of M, _;, we find elements
pl of Miy1,—; and u! of R such that

pi= Y !
;

o(piss) = On(p)
These form the decomposition of p onto the set of paths of M from I to
Mk,—k-

Quotienting by (dy — 01 )(Ng) amounts to taking them modulo homotopy as we
have seen already. O

The functor 1%

Let f be a morphism from the semi-regular automaton M to the semi-regular
automaton N. Then f induces a morphism f* from the pair (M,0) to the
pair (N,0’) for all k. Then f* induces Hy(f*) : H{(M,0) — H(N,0").
This defines 11¥(f) = Hy(f*) and makes II¥ into a covariant functor from the
category of semi-regular automata to the category R — Mod of R-modules.

All these definitions can be made starting from anywhere, not only M. For
instance, if we consider initial states in M, ,, we define in a similar manner the

R-modules PP**(M) and 1I**(M), and the corresponding functors.
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Figure 7.10: Example of a fund&lL)mental gI’O(ljlp of oriented paths.
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We can also define submodules of these like H?’B(M) of paths from a state
a € M,, toastate 3 € My4r_19—k+1. Proposition 11 has then the following
counterpart,

Proposition 12 Suppose M = > M, , is an acyclic HDA with o € My
p0<g<k
and B € My, _j, connected in the oriented sense with respect to (o, 3). Then,
(M) = Hy (M. (o= 3)). 00— D)

ProoF. Same as for the proof of Proposition 11 where we replace My_j by (3)
and [ = (). O

If M was not connected in the oriented sense with respect to (a, ) then the
isomorphism would not hold as one can see on Figure 7.8. The boundary of the
forbidden region is a cycle for dg — dy but it is not generated by the set of paths
from « to §. This is a condition that one would normally expect in ordinary
homotopy theory (in Hurewicz theorem [May67]).

Example 32 Let M be the acyclic semi-reqular HDA whose geometric realiza-
tion is shown in Figure 7.10. Then one can check that

Ker (0o — 01)|(M(a—p)) = (a+c+ 0" +d") D (c+ b+ " +b")

@(a—l—b—l—a’—l—b’)@(a’—l—d—l—a"—l—d’)@(e’—l—d’—l—c”—l—d”)
Of these generators, only a+c+b"+d" and ¢/ +d' +c"+d" are not in Im (Jy—04).
Therefore,
Ha,ﬁ(M): (a—l—c—l—b”—l—d”)@(c’—l—d’—l—c”—l—d”)

There are two classes of equivalence of 1-paths modulo homotopy as expected
(one can check that there are representants of them which are elementary paths,

likea+c+b"+d" andb+d+a" +").
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Remark: There is no such technicality in the usual definitions of homotopy
groups since we generally consider loops. Loops are composed in the obvious
way, the same for loops of loops etc. This complexifies the definitions of “ori-
ented” homotopy modules, and higher-order ones as well as we will see in the
following.

7.4.1 Functors 117, II° and 114
(1) Functors 117" and TI{°

In this section, we would like to identify paths of length k as the beginnings of
some paths of greater length. This will enable us to define a fundamental group
of infinite paths.

Let ty : PPP* (M) — PP2F(M) be the module homomorphism defined by
tk(xlv ) xk-l—l) = (xlv ) $k)

Then o ~ y in PPY*" (M) implies tx(2) ~ tx(y) in PPP*(M). Therefore
induces (by an abuse of notation) # : IZ*** (M) — TP%*(M). Consider the
diagram

A= HZIMLO b Hz;,q,l h Hzlxq,k-l—l -

in the category of R-modules. Inverse limits exist in this category and we define

I =lim A,
Let
s PR ) PP )
be the module homomorphism defined by s7%(z1,...,2541) = (22,..., Zp41).

Then 527 induces (by an abuse of notation again) 27 : IZ~HITLFHL 4y
Hzf’q’k(M). The diagram,

L 5P
H219 1,9 l,k-l—l(M) k Hf’q’k(M)
Ttkﬁ—l Ttk
Pyq

HY{‘I’”I”““(M) Sk+1 Hziuq,kﬂ(M)

commutes for all p, ¢ and k. Therefore s;’? induces

sP0clim TRy —Lim TP (M)

l.e.
sP9 Hll)_l’q-l'l(M) — IIP(M)
Let »
A= I T A L

We define II§°(M) =lim A.

There is no obvious characterisation of II{® in terms of homology. It is a
well-known fact that homology does not preserve inverse limits in general (see
[Mas78] for instance).
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Figure 7.11: Composition (l)Jf equivalence classes of paths modulo homotopy.
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The functor II;

The real interesting homotopical object is the module of all finite paths modulo
homotopy. The formal definition is as follows,

Definition 44 The full fundamental group is

W(X)= & OO NSlos+ ol = £+ oy f. g clementary paths)

The quotient condition means that a sum of two classes of paths that may
compose is equated to the class of the sum of the two paths. In this homotopy
group, we cannot reverse time, but we can consider collections of “oriented”
paths.

The definition is valid since it is easy to see that if f and f’ are two homotopic
paths from a to § (respectively g and ¢’ are two homotopic paths from 3 to ¥)
then f+ ¢ and f' + ¢’ are two homotopic paths from « to 4.

Example 33 Let M be the following semi-regular HDA whose geometric re-
alization is shown in Figure 7.11. In this figure, we have pictured also four
paths. One can verify that f and f' are homotopic elementary 1-paths, and

that [f1+[g] = [f + 9]l = [f' + g] = [u].

Cycles

A l-cycle of length k is a path ¢ € Pff such that do(c1) = 81(c) = 0. They
form a submodule of Pf called Cf. The homotopy relation induces a submodule
ME(M) = CF(M)/ ~C TI§(M). Then similarly to the construction of II;(M)
we have a reduced homotopy module II; (M) C II;(M).

Lemma 27 ﬁl(M) = Hi(M,0 — 01).
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7.5 (1) Homotopy of maps

Homotopy for topological spaces is an equivalence relation on loops (paths with
the same beginning and ending) used to classify them up to “continuous defor-
mation”.

Let X be a topological space. If f and g are two continuous functions from
the segment [0, 1] to X with f(0) = f(1) = ¢(0) = ¢(1), i.e. if f and g are
two (parametrizations of ) loops, an homotopy between f and ¢ is a continuous
function G,

G:0,1]x[0,1] — X

such that
Va,G(0,2) = f

Vy,G(Ly)=g
G describes the process of continuous deformation between loops f and g¢.
As one would expect, it has an algebraic (discrete) counterpart, known as chain
homotopy.

Let (I, 0) be the complex such that Iy is generated by s and ¢ and [; is generated
by w with 0(u) =t —s, d(t) = 0(s) = 0. I is the analogue of a unit segment.
X is now a complex, and f and ¢ are morphisms from the complex I to the
complex X. We could define a chain homotopy to be, mimicking what we had
in the continuous case,

G:IIT—=X
with,
Ve, Gls 0 o) = f(a)

Yy, G(t® y) = g(z)

but this is not the standard definition. We can show that the existence of such
a (G is equivalent to the existence of a, a map of degree 1 between I and X
such that,

Jdoat+aod=f—yg
To give a hint of the proof, just think of G and «a as being related by G(u® ) =

a(z).

This gives us the definition,

Definition 45 (see [ML63]) Let X and Y be two complexes and f,g: X — Y
be two morphisms of complexes. A chain homotopy between f and g is a map
of degree one o : X — 'Y such that,

Jdoat+aod=f—yg

In the case of bicomplexes, there is a notion of chain homotopy .
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Definition 46 (see [CE56]) Let i : P — @ and j : P — () be two mor-
phisms. Then i and j are homotopic, written 1 = j, if and only if: o, @y maps

of degree (1,0) and (0,1), such that

apdo + @101 + doag + D1y =1 — §

04180 + 800[1 =0

04081 + 810(0 =0
Then, we have,

Lemma 28 Let f: P — () and g : P — @Q be two morphisms of HDA. If f
and g are bicomplex-homotopic, then Tot(f) and Tot(g) are chain homotopic
with a homotopy o such that o(P, ;) C Qpt1,4 + Qpg+1- The reciprocal is true
for acyclic automata.

Proor. We have maps of degree (1,0) and (0,1), ap and a; respectively.
Consider the map of degree 1 & = a3 — ag between Tot(P) and Tot(Q)). Then,

(01 —Op)oa+ao(dy—dy) = (oo + agdo+ 1o + a101) — (d1ap + apds)
—(0pa1 + a10p)
= f-g

Therefore « is a chain map between f and ¢, and f and g are (d; — 0p)-chain
homotopic.

We prove the reciprocal now. Suppose P and ) are bi-graded R-modules (that is
they are the direct sum of P, ,,, 0o : P,y — Pricipand 01t Py — Prypn—1)
and suppose a is a map of degree 1 such that for all m,n, a : P, , — Qppnt1 @
() m+1,n- We can then decompose a into ay —ag where ag : Py, , — @y nt1 and
ay Py — Qg1 We have (01 —0p)(a1 —ag)+ (g —ag)(0h — o) = f—g.
Thus

(01 —Op)oa+ao(dy—dy) = (oo + agdo+ 1o + a101) — (d1ap + apds)
—(0pa1 + a10p)
= f-g

Notice now that for z € P, ,, d1ag(z) € Qmi1n-1, Ooa1(z) € Qm—_1n+1,
but f — ¢ € Q. Therefore, diay + apdy = 0, dopay + a0y = 0, and
dog + apdy + 1y + a0y = f—g. O

The fundamental group has a characterization through homotopy of regular
maps. This will be shown in Section 7.6.2.
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Figure 7.12: A path X of dimension 2 between two paths py, p2 of dimension

1.
B

[ Y A

P, a-

0] (i)
X=three faces above and behind
Y =three faces in front and below

7.6 Higher-order homotopy groups

We have at least two different ways to define higher-order homotopy groups.

The first one is a direct generalization of the definition for the fundamental
group. We had two “limiting” (n — 1)-cubes in between which we could deform
any sequence of m-cubes. That was defined with n = 1. For n = 2 we have
a homotopy group of dimension 2 parameterized with two 1-paths p; and ps,
having the same initial and final states (see Figure 7.12). Then in order to define
a “full” homotopy group, we have to glue together all parameterized homotopy
groups, and the combinatorics of this glueing operation is much more complex
than in dimension one.

The second one is via a “suspension” like construction. This gives numerous
properties, similar to those we have in “standard” homotopy theory of, say,
singular simplexes.

7.6.1 First definition

The definition we give now is “iterative” in the sense that we know what a 1-
path between a and f is, or what is a 1-path of length k£ and that the definition
of n-paths between (n — 1)-paths depend on that definition.

Definition 47 Letn > 2 and M be an acyclic HDA. Let py and ps be two (n—
1)-paths between two (n — 2)-paths a and 3. We suppose that p; = (p}, ..., pF)

and that p} € My_145,—s. The R-module of n-paths between p; and py is the

R-module of sequences x = (x',...,2% 1) such that there exists A € R with,

o 1° € Mn-l—s,—s;
o do(x'th) = On(at) + AP - pith),

e module operations are pointwise addition and pointwise external multipli-
cation.

This R-module is named P2*P2(M).
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Figure 7.13: Two homotopic 2-paths.
B

X= three faces above and behind

Y =three faces in front and below

Let Q%pl’p%a’ﬁ)(M) be the set of normalized n-paths from py to pg in M (p; and
p2 are normalized (n — 1)-paths beginning at a and ending at 3).

Supposing p; = (p},...,pF)and p! € M,,_145 s, its elements x € Q%pl’p%a’ﬁ)(M)

are z = (z',..., 2% 1) such that

o 1° € Mn-l—s,—sv
° ao(xi+1) _ al(xi) — Pi—l—l B Pé—l—l,

They form a basis of the R-module P?*P2(M).

We say that two n-paths p,q € PPP2(M) are homotopic, and we write p ~ ¢
if and only if p— ¢ € Im (9 — 01)°. For instance, paths X and Y between p;
and po in the filled-in cube Figure 7.13 are homotopic.

We define I12VP2 (M) = PPVP2(M)/ ~.

As in Section 7.4.1 we can define n-cycles which are n-paths ¢ = (¢;)i=1,.%
such that do(cr) = di(ck) = 0. They form a submodule of PZ1*2(M) called
CPrP2(M). The homotopy relation defines a reduced homotopy module 11, (M ).
Then,

Claim 2 Suppose M is connected with respect to the initial and final states of
p1 and py, and that all Pip(M), k <n —1 are of dimension one. Then,

P2 (M) = H, (M,T), 0 — 1)

where T is the image of p1 & pa under the map u with u(z,y) =z — y.

®This actually means that Vi, p; and ¢; are in the transitive closure of the union of the
homotopy relation in the complex of modules ((M; —i41);,do) with the homotopy relation in
((Mn—it2,5)j,01). This remark will enable us to generalize the homotopy of oriented paths
we are defining on free general HDA generated by semi-regular HDA to the general case of
combinatorial HDA, hence to all general HDA (see Chapter 10). The transitive closure of
these homotopy relations seem somewhat related to the spectral sequence of the bicomplex,
but this has not been formalized well enough yet.
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Figure 7.14: % and - operations on n-paths

. \
X g P
NN T T izl P
o EooY oo REREE SRERE
SRR | il
Py P,

This is an analogue of the general Hurewicz theorem.

Similarly to Section 7.4 we want to define 1L, (M ). This is much more difficult
than it was in dimension one.

Let p; = (p},...,pH) (i =1,2,3)and P = (p}l, .. .,p}k/) (j = 1,2) be normalized
(n — 1)-paths.

We define two “composition” operations on normalized n-paths (Figure 7.14),

, Q%phpz;aﬁ) % Q%pzmz;aﬁ) _ Q%phpz;aﬁ)

- Qprp2inB) Q%pﬂvpé%ﬁﬁ) . Q(Pl'pﬂvpfz@é;aﬁ)
* i3

n

(xlv' . '7$k—1) * (3/17- . -vyk—l) = ($1 + Y1, Tp—1 + yk—l)
($1,. . .,$k_1) . (yl,. . '7yk’—1) = ($1,. e Th—15Y1,y . '7yk’—1)

given that for normalized 1-paths ¢ = (21,...,25-1) and ¥ = (y1,--.,Yr'—1)
between a and [ (respectively, 3 and 7v),

$'@/I($1,...,$k_1,y1,...,yk/_1)

These are well defined operations.

Proor. We have dp(@;41 + ¥it1) — (i + yi) = pi"’l - pé"’l. This proves that
x is well defined.

Finally, do(@i41)—0h(2;) = P —p (=1, k—2)and do(yjq1)—01(y;) =
p{“ - p‘%ﬂ (j = 1,.4..,]6’ — 2) implies that 0p((z - y)j+1) — (2 - y);) =
(pr- Pyt — (pa - phy)? ™ (k= 1,...,k + k" — 3). This proves that - is well-
defined. O

Let 2 be the least congruence relation (with respect to the R-module structure)

on P H%pl’pr‘))(X) such that for all normalized (n — 2)-paths «, 3, and 7, for
P1,p2

all normalized (n — 1)-paths py, p2 and p3 between « and 3, and p), p}, between
3 and v, and all normalized n-paths X between p; and py, ¥ between p; and
p3, Z between p| and p),

X]4 V)2 [X + Y]

=X.Y
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Figure 7.15: A picture of P} and P} @ P} = P}.

= Ux

[X]+ 2] % [X.Z]

The full homotopy group of dimension n is now,

IL,(X) = € ne»I(x)/ =

P1,P2

7.6.2 (i) Second definition

Let Pl be the regular HDA defined by (see Figure 7.15),
(Pf)o = {ag, ..., a1},

(PP = {uy, ..., up},

(P{)n =0 (n2>2),

d8(ui) = ;_1, d(l)(ui) = a;.

Definition 48 We define the n-fpaths of length (ki,...,k,) in M to be

Homo(P* @ Pf* ... @ Pk M)
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When we restrict this definition to paths of dimension one, it is easy to see the
link between Pla’ﬁ(M) (o € Moo, p € My _) and 1-fpaths of length & in M.

There is in fact a bijection between the 2 € P?°(M) and the & € Homo( P}, M)
with Z(ag) = a and Z(ay) = . This bijection is given as follows,
o Given z, #(u;) = 2 N M; _i11,

o Given , . = Z( > u;).
i=1,....k

There is also a strong link between 2-fpaths of length (1,5 — 1) and 2-paths
between two 1-paths of length k, p; and py (each of which beginning at o and
finishing at 3).

Definition and lemma 7 Let A be a 2-path of length k — 1 between py and
p2, two I-paths of length k from a to 3. Therefore, we have (where A € R),
Oo(Air1) = O (A)+FAP T =pstY), Then there exists a unique 2-fpath f = fp(A)
of length (1,k — 1) such that (1 <i<k),

flao@u) = Api (1<i<k—1),
o flax@w)=Apstt (1<i<k—1),
o flug @ ag) = Apitt — Op(Aipr) 0<i<k—2),
o f(
I

U ® o) = P1;
Uy uZ) = A,

ProOF. We have to verify that f defines a morphism of HDA from P} ® Plk_1
to M (see Figure 7.16).

We have,
Go(f(ur @ ui)) = o(As)
= Mpy—p3)
and,
FOo(ur @ u;)) = flaog @ ui) — flur @ ajy)
= AMpi—p1) + Oo(As)
so the two terms are equal. Similarly,

N(flur@u)) = h(A)
J(O1(ur @ u;))

Then,

do(flao®@ui)) = Ado(pi)
= f(ao ® Oéi_l)
= Ai(p")
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Figure 7.16: 2—fp%ths and 2-paths compared.

P
4
3

o) A 3 P,
2 3
o] A ) R,
1 2
o) A 1 R,

1

R,

and similarly for f(a; @ u;) and p.

The last verification we have to make is,

do(flag@uq)) = flag® ag)
= lda

= Oo(flu1 ® ap)

and similarly for d1(f(u; ® ag)) and 01 (f(a1 @ ug)). O

This definition generalizes easily to a function from (n+ 1)-paths of length & —1
between two n-paths of length & to (n + 1)-fpaths of length (1,...,1,k—1).

Let ~’ be the homotopy of maps defined in Section 7.5. We write H;f(X) =
Homo(PF @ P} ...P!,X)/ ~'. Notice that (by the adjunction ©@, Hom)

W5(X) = W (Hom(PE, Hom(. .., Hom(Pl, X))))

We have even better: the higher-order homotopy groups can be computed
through the suspension and first order homotopy functors.

Definition and lemma 8 Let S(X) = Hom(P}, X) be the “suspension” of
X. Then T*(X) = IF(S*1(X)).

Proor. We just have to prove that,
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(i) if we have two maps f,g : P®() — X such that f ~' g, then their curried
version f,§: P — Hom(Q,X) are such that f ~' § as well,

(ii) if we have f.g: P — Hom((), X)homotopic maps, then f,¢g: PRQ — X
their uncurried versions are homotopic maps as well.

We will only prove (i) since (ii) is very much similar. We are given a map
a: (PQ)py — Xp-1,4BX, 4—1 such that, (01 —0dp)a+a(01—0y) = f—g. Define
a(z) =(y — a(z ®y)). &is a well-defined map from P, , to (Hom(Q, X )p—1,4
& Hom(Q,X)pq-1). Now,

(0 = do)a)(x)(y) + (a(h = do))(x)(y)

= (0 = B0}z @ y) + (=)W 72 & (91 = o)(y)) + a((dh - Bo)(x) @ y)

(01— do)(a(z @ y)) + a((h — do)(z @ y))

We can now carry on the comparison between this definition of homotopy groups
and the one of Section 7.6.

Lemma 29 Let A, B be two (n+1)-paths in M of length k — 1 between p; and
pa. Then, A~ B & fp(A)~' fp(B).

Proor. Suppose first that A ~ B. Then there is a (n 4 2)-transition C' such
that A— B = (01— 0p)(C'). This means that C' defines a (n+2)-path between A
and B. fp(C) can be identified with a map of degree one from (P})?" @ Pf to
M which can actually be shown to be a homotopy between fp(A) and fp(B).

Reciprocally, if we have a map «a of degree one from (P)®" @ P to M which
defines a homotopy from fp(A) to fp(B) then 3~ C(uf" @ u;) is a (n+ 2)-

1=1,...,

transition defining a homotopy between A and B. O

Proposition 13 If py and py are (n — 1)-paths in X of length k + 1 then
1PvP2( X ) C IH(X) as R-modules.

Proor. The transformation fp from P?1P2(X) to the R-module of n-fpaths
between p; and p, preserves homotopy by Lemma 29. Moreover, fp is a R-
module homomorphism. This entails the result. O

We do not know yet if the full homotopy groups in both definitions are isomor-
phic.
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7.7 Some properties of the homotopy modules

7.7.1 Combinatorics of Il

There is first a pathological phenomenon to be described in HDA.

Definition 49 Let M be a semi-reqular HDA. A knot of dimension 1 in M is
any 2-cube x such that did)(z) = didd(x).

Proposition 14 Let M be a semi-reqular HDA and let M’ be the semi-reqular
HDA defined as

M = T(M)/ {d(x) = d3(e), dif) = di(x)/z € My)

Then if M is acyclic and has no knots, II1(M) = Py(M’), i.e., M" is a “canon-
ical” representant of the retracts of M.

Proor. Let s : M — M’ be the canonical morphism associated with the
quotient construction. We first prove that if p,gq € Pla’ﬁ(M) with p ~ ¢ then
s(p) = s(q). p~ qimplies that 3JA € My, p—q = (0o — 01)(A). M, is generated
by 2-cubes in M therefore there exists (z;);er, v; € My, I a finite index set,

and a; € R such that A =3 a;z;. Then, p—q =3 a;(d) — df — (df — d}))(=;).
el i€l
As M is acyclic, we can choose the z; in order to have x; € Myqy, —y,. Then,

pi—¢i=dy—d)( X ajz)+(di—di)( Y ajz;)if we suppose that

wj=ti4s—1 wj=i45—2
a € My _5. Asin M', d = dY and d} = d} on 2-transitions, s(p;) = s(q;),
hence (by an abuse of notation), s(p) = s(¢). Notice that we have not used the
hypothesis on knots.

Reciprocally, we must show that for all paths of M’, p’ and ¢', from, say o’ to
(', necessarily corresponding via s to paths p and ¢ in M from a to 8, p' = ¢
implies p ~ q. We know that there exists py,...,px 1-paths of M, from a to 3
such that py = p, pr = ¢ and there exists z,...,25_1 € M5 such that for all u,
some (py)i, = df(vy) and (pus1)i, = dfiqp0q2(@u). If M is acyclic and has no
knots then we show that necessarily, (restricting to the case where k = 0, the
other case is symmetric) (p, )i+t = iy 100z(2) and (pust ivsr = d () (E).
As a matter of fact, knowing that M has no knots implies that di((p.)i,) =
dY((pu)iys1) is distinet from d((pus1)in) = d3((Pust)ins1)- This means that
we have to use one of the equations defining M’ as a quotient of M for going
from (py)i,+1 t0 (Put1)i,+1- By hypothesis, we only use one 2-transition and
the equations associated with it per “move”. Therefore, we can only have the
equations (F). This entails that p, ~ py41 hence p ~ ¢.

Notice that whenever there is a knot in M, there is no representant of retracts
of M as a subHDA of M, see Figure 7.17. O

In Figure 7.18, on the left hand side we have drawn “dependent” holes. Notice
that there are four homotopy classes of paths from the bottom left corner to
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Figure 7.17: A knot M (i) an “upper approximation” of the paths modulo
homotopy and the corresponding M’ (ii) that cannot be a retract of M.

Figure 7.18: Two different configurations of holes: left is “dependent” holes,
right is “independent” ones.
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the top right one. On the right hand side, there is an example of “indepen-
dent” paths. There are only three distinct homotopy classes of paths (still from
bottom left to top right).

This shows that IIy is not characterized only by the number of holes as in
ordinary homotopy theory but also by the way holes are dependent from each
other. Apart from pathological phenomena (knots), Proposition 14 shows that
semi-regular HDA M are homotopic to “posets of holes”.

The exact relationship between number of cycles and number of homotopy
classes of paths between two states a and  can be studied through the relative
homology exact sequence [ML63].

It reads (where S = (a — §)) and the homology groups in the sequence are
taken with respect to the differential d = 0y — 0yp),

o Hyp1(8,0) o Hyoy (Tot(M),0) Lo Hyoy (Tot(M), S) = H,(5,0)...

Here, H1(5,0) =0, Ho(5,0) = 5, therefore,

0 — Hy(Tot(M),0) 2> H,(Tot(M),S) <= § —» Hy(Tot(M),0) L= Ho(Tot(M),S) — 0
that is,
0— Mi(M) — T (M) — § — Tlo(M) — Io(M) — 0

where Ilo(M) = Ho(Tot(M),S). We suppose that o and § are connected, so
[a] = [8] € Ho(Tot(M)) and i, = 0, Im d* = 5. Therefore,

I (M) =Ty (M) & d* (9)

Io(M) = o(M)

Looking at the dimensions, we see that the number of generating paths mod-
ulo homotopy is always greater or equal than the number of generating cycles
modulo homotopy.

7.7.2 Seifert/Van Kampen theorem

We prove the Seifert/Van Kampen theorem for semi-regular HDA, making this
homotopy theory closer to the “standard” one.

Theorem 1 Consider the following co-cartesian square defining X1 U Xy and
X1N Xy where X1 and X5 are two semi-regular HDA,

X, nx, L. x

o

12
Xo—= XjU Xy
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Then the following square is also co-cartesian,

m(x, 0 X)) ox
I (72)] (i)
H1 19
Hl(XQ) Hl(Xl U X?)

i.e. VG, Vfy, fo : II1(X;) — G homomorphisms of R-modules, there exists a
unique homomorphism of R-modules ¢ : 1I1(X1UX3) — G such that goll1(i1) =
f1 and go Hl(’tg) = f2.

Proor. Let p € Pla’ﬁ(X) be a one dimensional path in X, such that «, 8 €
X1iNXy As X = X5 UXy, X C X; @ X, and p decomposes into p; + pa,
pr € P7(Xy) and py € P{7(X5). Then [px = #i([p]x,) + i5([pa]x,). This
entails that we have to set f([p]) = fi([p1]) + f2([p2])-

We have to show now that this definition does not depend on the “subdivision”
chosen, i.e. the way we decompose p onto p; € P7(Xy) and py € PPP(X5).

Ifp=(p1—p)+(p2+p) withp' € Pla’ﬁ(Xl N Xz) then

[ ]X1) + i;([pQ + p/]X2)

[Pl])— A(P]x0) + i3([p2D) + i5([0]x,)

= if([pa]) + 5([p2]) + (65 0 53 ([P 1xinxe) — 17 0 57 ([P]x0 x5 )
= 4([p]) + 45([p2])

lx =

i
i
i

The definition of f does not depend on the representant of [p]x either.

If [plx = [p]x then p—p" = (0o — 1)(A) where A € X,. We can write
A= A+ Ay with Ay € X and Ay € X, and similarly p = py +p2, p' = p) +ph.
Then

[plx = (P + (9o — 01)(A)]x,) + i5([ph + (o — 91)(A2)]x,)
A ([p1lx ) + 5 ((palx, )

Therefore,

Now, we prove that Seifert/Van Kampen’s theorem is true also for the full
fundamental group

L(X)= @ 097 (X)/{flas+9)s0 = 1f + dlan)

Ol,ﬁEXO
Let [f]X € TI;(X). We can decompose it as

1= > [faslos

(a,B)ES
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where § C Mox My such that (o, 3) € S and (o, 5’) € S implies @ = o’ and § =
G ora# o' and § # . We have also [fa,g]ffﬁ € H?’B(X) and they decompose
as [faﬁ]gfﬁ = ﬁ([f;ﬂ]ilﬁ) + 23([f27ﬁ]§%) We have already defined the ¢, 5 :
H?’B(X) — (. This leads us to define g : II1(X) — G as g([f]*) :( %): .
o,0)e

gaﬁ([faﬁ]é{ﬁ). If well defined, this is the necessary morphism for completing
the pushout diagram. To show that it is well defined, we have to show that the
formula above does not depend on the “subdivision” or representant chosen of
L%

Suppose that [f]¥ = [faﬁ]gfﬁ with an other S C My x My verifying the

(a,8)€S!
same condition as 5. Then,

g( > [fa,ﬁ]ff,ﬁ) —9( > [faﬂ]f,ﬁ)
( (

a,B)eS a,B)eS!

= > glf + By — [flays — [Als)

(o,By)ET
= Z (91([f1 + hl]aw - [fl]a,ﬁ - [hl]ﬁw)
(o,By)ET
‘|‘92([f2 + hz]aw - [fz]a,ﬁ - [hz]ﬁw))
=0

where we have used a decomposition of f and & in the last equation. O

Let My, M3 be two sub-HDA of M such that My + My = M. Then as S(M; +
Mjy) = S(My) + S(Mz) and Van Kampen’s theorem holds for 1I; hence 11} by
transformation M — M, it holds for II’, as well. We take for granted that Van
Kampen’s theorem holds also for II,,, n > 2 (see [BH81b, BH81a] for a similar

result).

7.8 Some applications

7.8.1 Schedulers

A mn-scheduler should basically execute all possible n-paths up to equivalence.
This means that a n-scheduler of an automaton D is a choice of a subHDA M
of D such that all n-paths of D are equivalent (homotopic) to a n-path of M.
We call a scheduler a subautomaton of D which is an n-scheduler for all n. At
the light of the previous sections, this is formalized as follows,

Definition 50 A n-scheduler is a monomorphism (i.e. a cofibration in the
homotopy theory we are considering, see [Bau89]) s : M — D such that 11,,(s) :
(M) — 1L,(D) is an isomorphism.
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Figure 7.19: Conflict in a shared memory parallel machine/concurrent database.
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A scheduler is now a cofibration inducing an isomorphism between all the IL,,( D)
and the II,,(M). This is known as a weak equivalence [Bau89]. A basic
property of the homotopy theory we use is that weak equivalence is the same
as strong equivalence, i.e. a scheduler is a cofibration such that there exists
s': D — M with sos and s’ o s homotopic to the identity. A scheduler is thus
the choice of a weak deformation retract [Spa66] of D.

Example 34 o The serializability condition may be rephrased into “all 1-
schedulers form a subset of the set of classes of the interleavings of the
transactions”.

e In Figure 7.19 we have pictured the semantics of the program Py | Py where
Py = READA; A= A4+ I;WRITEA and P, := READA; A := A+
LWRITEA. In the figure we have abbreviated READA, A := A+ 1 and
WRITEA by respectively R, +1 and W. The shapes (deformed squares)
are all filled in, indicating concurrency. The states are given by the value
of A. To make the picture easy to read we have chosen to unfold things
a bit for the central squares, using the value of A read by Py (second
component of the triple) and the value of A read by Py (third component
of the triple). The picture thus contains ten squares, the two at the top
right corner show the interference while writing the computed value into
the shared variable A. From A = 0 we can have two different results,
A=1o0or A=2. Now the two-phase protocol added to the two processes
will constrain the execution so that all of Py (respectively Py) is executed
before all of Py (respectively Py). These are two equivalent 1-schedulers
(linked together by the nine upper squares). The protocol is therefore sound
in the sense that it is serializable.

Obviously the algorithmic characterization of schedulers is given by the weak
equivalence condition and not the strong one since we have practical means for
computing the homotopy modules (see Part IV for this).
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7.8.2 Mutual exclusion

Two actions ¢ and b are in mutual exclusion in a regular automaton M means
that all 1-schedulers contain the interleaving abd’ + ba’. This is equivalent by
what we have just seen to (a — b+ b’ — a’) generator of Hy(M,dy — d1). More
generally,

Definition 51 A k-mutual exclusion or mutual exclusion of dimension k is an

element of Ty(M) = Hy(M, 95 — 01).

Example 35 o The element X of T, realized geometrically as,
6
N
s gl
4
o

has a mutual exclusion of dimension one described by b—a+a'—b" € 111(X)

since do(a' —b') = — 5 = d1(b— a).

o Suppose X is the boundary of a 3-dimensional cube. X has a mutual
exclusion of dimension 2: any two actions can be fired concurrently but
no three actions can (a real example is INTEL’s Pentium processor, see
the introduction).

7.9 Approximation of schedulers, branchings and
mergings

Let M be a complex of modules with differential 9. Suppose that we have a
filtration® F on M, i.e.

OCFMCcF'Mc...CF'McCF'U'"M=M

Then we may define the graded object GrM = @,>oGr’M where GrPM =
FPM/FP=YM. Tt is a differential module with the map d : Gr? M — GrPM
induced by 0.

A spectral sequence is a sequence {F,,d,} (r > 0) of bigraded objects F, = &
p,q>0

EP together with homomorphisms d, : EPY — EP~74F7=1 gatisfying d? =
(i.e. they are differentials). Moreover, for all r, F,1; is the homology of F,
with boundary operator F, 1, i.e. H.(F,) = FE, 41.

The main result is,

®It is finite here just for the sake of simplicity. For more technical details, see [Lan93a] or

[MC85].
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(*) Lemma 12 There exists a spectral sequence { £} with,
kgt = FpMp-I—q/Fp_lMp-I-q

EP? = Hpyg(GrP M)
ELT = GrP(Hpiq(M))

(*) Proor. Here we have to define the limit term EZ24. We are going to
construct EP? as the quotient module ZP7/BP? with,

Byt C B C...CBRIC R C Lzt Czyt

and BP? =U BP?. Under some nice conditions [CE56], we can assume that
T

Zb1 = N, 727 making precise the notion of convergence. Here we restrict to
an easier case when M is regular, i.e. when for all n, there exists an integer
u(n) such that H,(FP(A)) = 0 for p < u(n). This implies that ZI? = ZB1
for all 7 > u(p+ ¢+ 1) — p. Therefore we have the convergence of the spectral
sequence’ .

The construction promised is then as follows. Let FP9M = FPM,,, then,
7P = {x € FPIM/0(x) € FPmat =t pry

P,d — p+r—1,g—7+1 p—1,9+1
BT - a(Z ) —I_ Zr—l

a

In all cases, Effl is a quotient of a submodule of F?¢. In particular it is of
a type at most the type of EP?. The spectral sequence process consists in
computing the homology of M by upper approzimations.

The main application for us is the spectral sequence associated with a bi-

complex M = E'éo M, , with boundary operators 0y : M,, — M,_1, and
P>

o M,, — M,, 1. We write ((M,,),,0) for the total complex associated with
this bicomplex (also named T'ot(M)). Then we may consider in particular two
filtrations on M,

o the first filtration, 'F*M, = @ My,
p'+q=n,p’'<p
o the second filtration,"F* M, = M, .
pta'=n,q'<q

Then there are two spectral sequences {' .} and {"E, } both abutting to H (T ot(
Notice that this result still holds if M was only a weak bicomplex (e.g. coming
from a cyclic automaton) because we only need to consider T'ot( M) which is a
complex of modules anyway.

"Which can actually be shown to be a direct limit of its terms in this case [CE56].
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Example 36 We show here the computation of the spectral sequence {'E,} for
a simple HDA (weak bicomplex) M,

)
NG
B ¥
N 4

All steps of computation are represented geometrically,

B gl 6

¥ /
A AN S
a 0 b

N

0 0

r_
EPr = EPT = (a,0,0 a-°% 0)

The spectral sequence associated with the first filtration show how cycles are
extracted from the set of mergings (upper approximation of the cycles) whereas
the spectral sequence associated with the second filtration show how cycles are
extracted from the set of branchings.

Summary We have shown that quite a few notions in computer-science rely
on the concept of scheduler, or on some “protocol” for scheduling actions or
events in order to have a well-behaved systems. This is the case for protocols
for concurrent databases, robust (wait-free, ¢-resilient) protocols for distributed
systems and even for the implementation of parallel languages on constrained
architectures (i.e. with finite number of processes and resources).

We have sketched a homotopy theory for semi-regular HDA in which two ex-
ecutions are homotopic means they are serially equivalent, i.e. the essential
scheduling properties are preserved between the two executions. We have shown
that the homotopy theory for semi-regular HDA was actually a homology theory
in general HDA. We will see an extension of this in Chapter 10.

The main difference with “ordinary” homotopy theory is that we do not allow
the paths to go in the reverse direction of time. Hence the homotopy groups
we defined is some completion of a homotopy monoid in which the monoid
operation is concatenation of paths. We defined also in two different ways the
higher-order homotopy groups. One is through the definition of higher-order
paths. The other uses a “suspension”-like construction. The two are shown to
relate in a nice way. We do not know yet if they are fully equivalent.

We also proved Van-Kampen’s theorem for the fundamental group (to be used
in Chapter 9) and sketched a few combinatorial properties of the fundamental
group. It was shown in particular that the difference between the fundamental
group we define and the ordinary one is that the relative positions of holes do
matter in the former whereas they do not in the latter.
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We ended the chapter by the formal definition of schedulers, mutual exclu-
sions and a relationship between the local geometric properties of Chapter 6
(branchings and mergings) and mutual exclusion properties through a spectral
sequence.



Chapter 8

Applications of scheduling
properties

8.1 Word problems in monoids

The first application we give here deals with the computability of equality using
(parallel) term rewriting systems. This application is interesting for two main
reasons. First, it deals with the language side of HDA, which we have not
developed up to now. Secondly, the computability problem we are interesting
in is about confluence of term rewriting systems, which is a geometric property.
We relate this problem to the serializability issues of the last chapter.

We first need to recall a few elements about the presentation of monoids and
about the homology of monoids.
8.1.1 Presentation of monoids

A presentation of a monoid M is a pair (59, R) with,

e 5 is a set of generators,

e R is a set of relations v ~ w between words v, w over 5.

such that M is the quotient of the free monoid 5* by the congruence associated

with R.
When both § and R are finite we say that M is finitely presented.

A rewriting system is nothing but a presentation (.9, R) (of a monoid of words)
where we orient each relation of R. We write r : v — w for such an oriented
rule, or reduction rule r in R.

8.1.2 Homology of monoids

Let (M, 1,-) be a monoid. The ring ZM of M is the free Z-module generated
by M. The internal multiplication is a simple extension of the multiplication - in

229
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M. To be more precise, an element of ZM is a finite formal sum > n;m; where

1
n; € Z and m; € M. Then, given two elements =3 n;m; and 2’ =3 nim!,
7 7

their product is 2 = @ -y =3 (n;n’)m; - m’.
'7‘74

A (left) ZM-module K is therefore a Z-module together with a (left) linear
action of M on K, i.e. a function x : M X K — K such that 1 x k£ = k and
(m.m’)xk = mx*(m' k). Then we can understand the external multiplication
z -k of an element k of K by an element z =) n;m; as meaning > n;(m; * k).

Z itself can be endowed with a ZM—moduleZstructure by specifyZng a trivial
action of M onto Z. This will be the structure of ZM-module for Z throughout
this chapter.

Now, a free resolution of Z by (left) Z M-modules is an exact sequence,

? ? 9
B 2o B, S0 (R

Such resolutions always exist (for instance the Bar resolution, [ML63]). We will
specifically construct one for monoids presented by rewrite rules.

We will actually present these resolutions in a geometric manner, where the
C; will present different steps of the construction of a geometric shape. This
geometric shape is nothing but a contractible space X on which M acts freely
on the left.

As there are many different such resolutions, or geometric constructions for the
same object, we are in a need for an algebraic structure characterizing these in
the sense that they will not differ on different resolutions. This can be called
an invariant as for, say, Betti numbers for topological spaces modulo homotopy.
The invariant we consider here is the homology groups defined as follows.

First, we need to define the tensor product of a Z M-module C' by Z over ZM
Z@C. Z®Cis the Z-module whose elements are those of ¢' modulo the
identification of 2 € C' with m.z for m € M. This tensorization is not a (left)
exact functor, i.e. it transforms (R) into a sequence which may not be exact.
The defect of exactness is measured by the homology groups (or homology

Z-modules),
H,(M)= Ker (Z® 0,)/Im (Z ® 0y41)

It can be shown that this sequence does not depend on a particular choice of a
free resolution, but only on M.

Geometrically, this tensorized sequence represents the space of orbits on X
under the action of M. Its homology is the “algebraic” homology we have just
been defining.

8.1.3 An introduction: Squier’s method

Here, we construct a particular resolution for a monoid M which is finitely
presented by rewrite rules (9, R) in the style of [LP90]. The basic idea is
that the monoid M represents a set of traces (on the alphabet §) modulo
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some equivalence relation (generated by R). A natural space on which M acts
can be based on the automaton which accepts the “language” M, at least in
dimension less or equal than one. Higher-dimensional transitions will describe
the relations R in such a way that “equivalent” traces modulo R will correspond
to “equivalent” traces modulo serializability.

For & € 5™ we write T for the equivalence class of z induced by R. We construct
explicitely the first few terms C; of a free resolution of M.

Cy is the Z-module of points. We associate one point to every element of M.
This means that Co = ZM and as M is presented by (5, R), the generators
of Cy are the Z, € 5*. We can set ¢(m) = 1 for all m € M, therefore

(1 is the Z-module of edges between points. We ask for all traces of 5* to
be accepted so Cy should be generated (as a Z-module) by all elements of $*,
i.e. words on 5. But these traces may start from any point of Cy. A trace
s starting at 7 is identified with the formal element Z[s] (compare with the
sequential composition in the HDA semantics of CCS, Section 5.4). So, as a Z-
module, C'y is generated by T[s], #,s € S* and as a ZM-module, it is generated
by S*. The start boundary of Z[s] is obviously 0)(Z[s]) = T whereas its end
boundary should be 9{(zZ[s]) = T3 = Ts. It is easy to verify that the total
boundary operator d; = 9 — 99 is such that e o & = 0.

Let us stop for a moment and give a few examples of what we have constructed
up to now. It is nothing but the skeleton of dimension one of an HDA.

Example 37 Let M be the monoid presented by (9, R) with,

e 5 ={a,b},
o R={ab— ba}.

Then M can be identified with IN x IN with pointwise addition since canonical
words are bial and (b'al).(b"al") = bt7aiti', It is easy to check that the
construction above gives rise to the grid shaped HDA of Figure 8.1.

It is perfectly clear that the skeleton of dimension one we have just built is
connected and that the monoid acts freely on the left on it. What remains to
be done is to interpret the process of normalization of words, i.e. the equivalence
generated by R. In the example above, all interleavings of @ and b are equivalent
if they have the same count of @ and b. This can be seen by deforming locally
all ab in some trace onto ba. In the HDA context, the deformation should occur
through a two transition whose boundary will be the interleaving ab 4+ ba. We
do the same in the construction of the resolution.

Let (5 be the ZM-module generated by the reduction rules r : v — w. As a
Z-module, it is generated by all the Z[r] where r € R and @ € S*: these are the
“translated” reduction rules i.e. the reduction rules applied only at the part of
traces beginning at Z.
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a' axis
etc.
bbaaa
aaa
bhaa
aa etc.
alb] ba
a
[al
[b] | bib]

"b" axis
1 b bb bbb

Figure 8.1: A resolution up to dimension one .

Now, the only clear thing is the definition of the “total” boundary 9 from Cs
to C1. We set 02(Z[r]) = T[v] — T[w]. We can verify that d; o 0 = 0.

In the case where M does correspond to some partially commutative monoid
(i.e. to a Mazurkiewitz trace model, see Chapter 1), as in Example 37, it is
easy to find a decomposition of the total boundary operator into a start and
end operator, making the geometric shape we are building into a skeleton of
dimension 2 of an HDA. It is exemplified below,

Example 38 We are carrying on with Fxample 37, now picturing the skeleton
of dimension 2,

a' axis

NN
N\ A \
\ N N N \
al\)>ba N N \ N N N N
NEEERN

"b" axis
1 b bb bbb

The reduction rule v : ab — ba has start boundary 93(r) = [a] — [b] and end
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boundary 93(r) = b[a] —@[b]. Notice that the sense in which we decide to orient
the reduction rule decides of the signs (i.e. for semi-regular automata, decides
of the order in which we take all start and end boundaries) in the start and end
boundary operators.

What should we do in higher dimensions? Remember that we want a con-
tractible space X and the space we have been constructing might well not be.
It is the case when two reduction rules apply to the same word and do not
lead to the same result. Let v = wyrw, and v = wisws be two elementary
reductions of the same word for which w; and wy are maximal subwords and r
and s are two different reduction rules. Then the pair (r,s) is called a critical
pair. Critical pairs measure the conflicts in the reduction system. The idea
now is to have the elements of X3 being the critical pairs. This enables us to
fill the holes in X in order to construct a contractible space. Then we have to
fill in the holes in X between the 3-cells (the critical pairs). This is done by
setting X4 to the set of “critical triples” and so on. In this way, the resolution
procedure amounts to a simple Knuth-Bendix completion procedure.

If there is a finite canonical term rewriting system presenting M, then the
completion procedure terminates. This means that the set of critical pairs,
critical triples etc. are finite. This in turn implies that all the X; are finitely
generated, hence the homology groups (which are quotient of some submodules
of the X;) are finitely generated. This is known as property “F P.,”. It can be
shown that some monoids which have a decidable word problem are not F'P,,,
hence cannot be decided by any finite canonical rewriting system. This result is
thus a geometric characterization of what sort of monoid can compute a finite
canonical rewriting system.

Unfortunately, Squier’s construction is uneasy to understand in terms of re-
duction machines or to formalize within the HDA framework. In order to be
more precise about what geometry there is in finite canonical systems, we use
another construction of resolutions proposed by Groves.

8.1.4 Groves’ construction

Groves in [Gro91] constructs a resolution of the RM-module R using cubical
complexes. We recast his construction into the HDA framework, hence the “ho-
motopy relations” of [SOK94] will be real homotopies in the homotopy theory
of oriented paths we have defined in Section 7.4.

The principle of Groves’ resolution is to have the contractible space X on which
the monoid M acts built as follows,

o the vertices (generating C in the resolution) are the words of ¥*. Ele-
ments of M are identified with R-irreducible words,

o the edges (generating Cy) are the instances of a single application of a
rewriting rule in R,

e then a suitable covering of this 1-skeleton is constructed using squares
(generating C'y), cubes (C3) etc.
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We briefly review this construction below. Notice that X is the HDA describing
the reduction of words of X*.

First, we need a few graph-theoretic notions.

Let n = {0,...,n — 1}. 2% is a directed graph with vertices V(22) = 2% and
edges E(2%) = {(5,2)/5 € 2%,2 € n\S}. An edge (5,z) of I has beginning
d°(S,z) = S and end d'(5,z) = S U {z}.

If Ais a directed graph, a n-cube p in A consists of a pair of maps,
py s V(22) — V(A)
pe : E(2%) — P(A)

where P(A) is the set of paths in A, such that uy takes the initial and terminal
points of e € F to the initial and final points of ug(e) € P(A).

These graph-theoretic notions give rise to an HDA structure. Let §; :n —1 —n

(i=0,...,n— 1) be defined by,

) 7 ifj <
5i(])={

J+1 ifj>q
It is well known (from the simplicial world, see [May67] and Appendix B) that
(52'(5]‘ = (5]‘(52'+1 (0 <ir<j<n-— 1).

We now have boundary maps,
6f 20l on
fore=0,1and i = 0,...,n — 1 defined by, for {zy,..., 7} € 22=L
60w, ar)) = {6i(21),. .., 6:(x)}
6H{x, . ar)) = 80({xy, .., 2x}) Ui}

which verify,
k¢l [ ok
for all 7,5,k lwith k =0,1,/=0,1land 0 < j << n— 1.

Proo¥. For {xy,...,23} € 2% and i < 7,

5601, m}) = & (@), 8(z)})

= {&b;(x1),...,6;0;(xr)}

= {é;0-1(21),...,0;0;_1(xk)}
= 6?6?_1({x1,...,xk})

Now,

= 6?6?_1({901, oz U{s}
= 5]16?_1({$1,...,xk})



8.1. WORD PROBLEMS IN MONOIDS 235

The other commutation relations are proved in a similar way. This is left to
the reader. O

This implies that a n-cube of a graph A creates a HDA generated by one
n-transition, the n-cube itself, and whose objects of lower dimensions are its
iterated boundaries,

di(f) = fobs 2821 L A

where f: 25 — A. This construction will be used in Chapter 10 where it will
be generalized.

The fact that some boundaries of a 2-cube may not be just instances of reduction
rules, i.e. edges in the graph I', but rather paths in I' is a problem for casting
Groves’ construction into the HDA framework. We choose to construct the
1-transitions to be the paths in I'. Let X be the HDA corresponding to Groves
construction, we set,

[ ] Xo = E*,
¢ X, = P(I).

with the obvious boundary maps. n-cubes in X now correspond to morphisms
of HDA
poT(2%) — X

where 22 is considered as the n-dimensional HDA described above and Ty is
the truncation functor of Section 2.2.1.

Some shapes in the reduction system are of interest here. We know (see previous
section) that we are interested in some critical pairs, i.e. in conflicts, or non-
determinism in the reduction relation. These are introduced here under the
name “n-stars”. n-stars are “morally” branchings of dimension n in X, that
should be filled in the resolution. These are [w;eq, ..., e,] where w € Xy and the
e; are 1-transitions in X7 which begin at w. These 1-transitions can be empty
paths, in that case the n-star is called degenerate, and can also be repeated in
the sequence €1,...,¢,. There is a natural product on n-stars induced by the
concatenation in X*.

Let [wy;eq,...,ex] be a k-star and [we; €541, ..., ex17] be a [-star. Then their
product yields a (k 4 [)-star as follows,

[Wiser,. .., ep]. W ehqpts. .., eppt] = [Wiwe; e1.Wa, . ., €5 Wo, W1 €1,y -« ., W1.Chpl]

As X* is a free monoid, every n-star admits a unique decomposition as a product
of indecomposable stars. Indecomposable n-stars which have neither empty
edges nor repeated edges are called critical. In particular,

e a critical 0-star is an element of X,
e critical 1-stars are in 1 — 1 correspondence with rules in R,

e critical 2-stars can be identified with critical pairs.
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Figure 8.2: Product of two 1-cubes

abed
ab od (&Mw

(ad->bg) —x (co>9) = bacd abe
\ d ba(Wba)
a
bae

We can also define a product for n-cubes. Let
peTy(2%) — X

v:Ty(2h) — X

be a k-cube and a [-cube respectively. Their product p X v is a (k + [)-cube,
pxv:Ti(2ko2hy — X

with
p X v(x,y)=px)r(y)

The interpretation of the product of n-cubes is easy (look at Figure 8.2). A
k-cube p (respectively a [-cube v) in X represents the parallel execution of k
(respectively ) reduction rules. Their product represents the parallel reduction
of the k reduction rules acting on the left part of the word pu(0).(0) (i.e. w(0))
and of the [ reduction rules acting on the right part of the same word (i.e. v(0)).
The product of cubes is therefore the parallel product without interference of
disjoint reduction rules.

To every non-degenerate n-cube p we can associate a n-star [p(0); p({0}),...,
pu({n—1})]. Conversely, to any n-star (which we suppose first indecomposable)
[w;eq, ..., e,] we can associate a n-cube as follows (see Example 39). Let S Cn
be a vertex in 2. We decompose the word w on which the reduction rules e;
act as the concatenation

w=aiu1a ... Uj—1Qa;

where the u; are the largest blocks on which some rules e;, i € 5 overlap. We
set

w(S) = muray .. . u—1a
and p(5,17) is any (reduction) path from p(5) to p(S U {i}).
Example 39 Let ¥ = {ay,a3,a3} and R = {R;;/1 < i < j < 4} where the

R;; are the rules,

a;a; — a;a;
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(X, R) presents the free commutative monoid on three generators. One critical
2-star 1s,

a3a2aq
}%Bﬁ/// \\g?fng
Ga2a30y 43102

and its associated (canonical) 2-cube p is,

,u(@) = 30201

RS’,V V‘:aRm

n({0}) = azazay p({1}) = azayay
lﬂlzR&l lRS,I
a2a1a3 414302

Rgl\‘ '/al Rs o

" u({0,1}) = ayazas

The d} boundary of this 2-cube is the sequence of reductions (a3Rs31,R21). The
d} boundary of ju is the sequence of reductions (R31,a1R32).

Now the main result of [Gro91] is,

Theorem 2 There is a RM -resolution of R,
.—-P, —-P,_1—...5Fp—P1—R
where,
e Py =RM,

o P, (n>0)is the RM module generated by the critical n-stars.

The proof is rather difficult, and in particular, the definition of the boundary
operators depends on auxiliary operators on n-cubes. We will only describe
this construction in a particular case where it gets simpler.

To illustrate the relationship with the HDA approach, we prove now that there
exists a bigger resolution in terms of HDA when we begin with a strongly con-
fluent rewriting system (X, R) (as the standard presentation of a monoid),

Theorem 3 There is a RM resolution of R by an HDA X,
=X, - X, 1—...—-Xg— RM — R
Where,

o Xy is the RM-module generated by 3*,

o X is the RM-module generated by rules of R,
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o X, (n > 2) is the R-module generated by the n-cubes of the graph I’
defined by X (vertices), X1 (edges).

where the boundary operators 6, : X,, — X,,_1 are the total boundary operators
80 - 81 Of HDA.

Moreover, each X, is finitely generated as a RM -module. This implies that M
has property FP,,.

SKETCH OF PROOF. X,, (n > 2) can be given the structure of RM-module as
follows. Let p: T1(2%) — I' be an element of X,, and m € M. Then the action
of m on p is given by the product of the 0-cube m by the n-cube p which is
an element of X,. As an RM-module, X, is generated by the n-critical pairs
of R. Therefore it is finitely generated if (X, R) is a finite strongly confluent
rewriting system.

The total boundary operator 6, = dp — & : X,, — X,,_1 is a R-homomorphism
verifying 6,,6,_1 = 0. We first have to verify that it is a RM-homomorphism.

Let m € M and p € X,,, then,
pTy(2%) =T
m:{0} =T
m.p:T1(2%) — T
with (m.p)(S) = m.(u(5)). Therefore

Bulm($) = S (= d)m)(S)
= ”Z:: ((m,u) 06Y — (m.u)o 521) (5)

Finally, we have to verify that the sequence,

8 8 § §
Oty O x, 2% R S R

is exact, i.e. that it defines a resolution of the RM-module R. We just have
to verify it for n > 2. Let 2 € X, be a cycle for §,. We can suppose that
z is a cycle of length 2 as all cycles are generated by cycles of length 2 (by

strong confluence). z generates a sum of n-stars xg = ri[wysel, ... el] + ...+
rolwes ef, ..., ef] (with coefficients 7; € R) by considering the summands zg
in @ with dg(20) = 0. By strong confluence, all these n-stars [wy;e], ..., €]

can be completed by (n + 1)-cubes ¢;. It is an easy verification to see that
r161 + ...+ rieg is a (n 4 1)-cube with total boundary z. O
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A similar resolution by HDA in the case of confluent (and not only strong con-
fluent) rewriting systems exists with X being generated by all finite sequences
of rules in R. Tt is unfortunately too big to prove the F P, property since this
resolution is infinite dimensional in general.

In a very particular case, things are getting even closer to the standard compu-
tational means used by mathematicians to calculate the homology of monoids
(or more generally of associative algebras). This case is as follows.

The standard presentation by a rewriting system (X, R) for a monoid M is given
by,

o ¥ = M\{1},
¢ R={ab— ab/a,be X}.

The n-stars [w;eq,...,e,] are,
¢ W=1My...Myy1,
o ¢; is an application of the rule m;m;1 — M;mE11.

The boundary operators d,, : P, — P,_1 of Groves’ resolution are defined as,
writing w as [mq | ... | mpt1]s

do(w) = ma[ma|...| Mmpy]
+ (=) my | .| M)
+ 2(—1)i[m1 IR el B R

We recognize here the normalized Bar resolution [ML63]. We would have got
the unnormalized one if we had chosen a similar presentation with ¥ = M.

Notice that the boundary operators (Bar resolution) in the case of the standard

presentation of a monoid are exactly the total boundary operators of the HDA
X (look at Example 40).

Example 40
b

lalol 7 Nalble]

abe [a|b|e] abe

and the boundary ds is the total boundary operator,

da([a|b]c])=alb|c]—[a|b]—[ab]|c]+[a]bc]
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Figure 8.3: A parallel reduction machine based on a finite canonical TRS

1 rule per processor

o LT p

.......................... i ..............quW@uouh

The coincidence between the methods and results proved here on monoids and
what we have seen about serializability and homotopy for HDA can actually be
explained operationally.

Squier’s result is about what can compute the normalization function of a finite
canonical rewriting system. To be more precise and relate this computability
result to results in distributed computing we define a parallel reduction machine
M (see Figure 8.3) for a given finite canonical rewriting system (X, R).

Let R = {R;/i = 1,...,n}. Then M has n processors, each of which having
to execute the reduction only by rule R; on the shared word w. Each time any
of the processor has to manipulate part of w, it locks the letters to be reduced
and after the reduction unlock this part of the word. Thus M is nothing but a
finite transaction system as we have seen in Section 7.1.2.

Now, the geometrical property of this system (or we should say of its HDA se-
mantics) is that all paths of execution converge to the same result, i.e. that all
paths are serializable. In fact we have even more in that all serializations give
the same result, but this property is not one of the “geometric” properties we
have characterized. This implies that this machine has a finitely generated fun-
damental group of oriented paths. This corresponds to the finiteness condition
(in terms of “homotopy relations”) of [SOK94].

8.2 Results in protocols for distributed systems

8.2.1 A quick survey

The early results about protocols for distributed systems were using graph
theory.

In [BMZ88] a characterization of a class of problems solvable in asynchronous
message-passing systems in the presence of a single failure was given. No gener-
alization to more failures have since been solved using the same kinds of graph
techniques.

It was then a rather shared belief that one would have to use more powerful
techniques in that case.

The conjecture [Cha90] that the k-set agreement problem cannot be solved
in certain asynchronous systems was finally proven in three different papers
independently, [BG93], [SZ93] and [HS93].

The renaming task, first proposed in [ABND190] was finally solved in [HS93].
There is a wait-free protocol for the renaming task in certain asynchronous
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systems if the output name space is sufficiently large. It was already known
that there is a wait-free solution for the renaming task for 2n+ 1 or more output
names on a system of n+ 1 asynchronous processors and none for n+ 2 or fewer
output names. Herlihy and Shavit refined this result and showed that there
was no solution for strictly less that 2n + 1 output names.

It was known since [FLP85] that the consensus task was impossible to solve if
processes could fail. We actually explain this result in geometric terms using
HDA and Herlihy’s construction in Section 8.2.3. But it was also long known
that a FIFO queue could solve wait-free consensus on a system of two asyn-
chronous processors.

In fact, if we define the consensus number of a data type as the maximal number
of asynchronous processors (having atomic read and write) on which it can
implement wait-free consensus, then,

e atomic Read/Write registers have consensus number 1,

o test&set and fetch&add registers, queues, and stacks have consensus num-
ber 2,

o n-register assignment has consensus number 2n — 2,

¢ load-locked, store-conditional and compare and swap registers have con-
sensus number oo.

These facts motivated the introduction of the following general problem, really
about the power of the architecture of distributed machines. We say that a
datatype, or object, is a (m, j)-consensus object if it allows any m-processes
to solve j-set agreement tasks. Herlihy and Rajsbaum in [HR94] (see also
[BGI3]) proved that is is impossible to implement (n + 1, k)-consensus using
(m, j)-consensus objects if n/k > m/j.

For wait-free protocols, it has be shown [HS94] how to derive the protocol from

the decision maps in a constructive manner. We recast this in a more general
semantic framework in Chapter 10.

8.2.2 Herlihy’s framework

The geometric framework of Herlihy et al. [Her94] is based on a representation
of the input and output specifications in the form of input and output simplicial
complexes (see Appendix B).

A simplex is associated to the states of processes in the following manner,

e vertices v are pairs (val(v),id(v)) of local values of process having identi-

fier id(v),

e we have an edge between v and v’ if and only if v and v’ are compatible
with the specification we have of the state of the system. It means in all
cases that v and v must have distinct process identifiers.
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Figure 8.4: Input complex for the binary consensus.

(P,1)
(P,0) (P,0)
— (P,0) (P,1)
(FyD)
Feh) (P,0)
Figure 8.5: OQutput complex for the binary consensus.
Foe ® (P,0)
FL o o (P.1)
e higher-dimensional simplexes include states vy, ..., v, if and only if these

states are compatible with the specification (input or output one). Again,
all the id(v;) are distinct.

As an example, the consensus task with S = {0,1} and N processes, called the
binary consensus task has as specification complexes,

e the input complex has simplexes of the form ((Fo,bo), -..,(Pu,b,)) with
0 <n < N-—1andb; € {0,1} since all processes can take whatever
boolean value they want. It is homeomorphic to a N-sphere (see Figure
8.4),

e the output complex has simplexes of the form ((Fp,0),..., (P,,0)) or
((Po,1),..., (P,,1)) since all processes should agree on some common
boolean value. This complex has exactly N connected components (see
Figure 8.5).

In full generality, a (n 4 1)-process decision task (I, 0, A) is given by an input
complex I, an output complex O and a recursive (computable) map A carrying
each m-simplex of I (0 < m < n) to a subcomplex of O of dimension n such
that,

o forall s € I, dim s =m, id(s) = id(A(s)),

o if s C s are two simplexes of T then A(s) C A(s).
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Figure 8.6: The map A for the binary consensus.
A

(P.0) o (Q0) (P0) \ (Q0)
7
A‘ - ;"‘/:~ -~ ///
R P A _J_‘///:\\ N
-
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Q1) e (PY Qy -7 (P1)
. AT

The map A specifies what are the allowed outcomes of computations from given
starting values in I (look at Figure 8.6 for an example).

A t-resilient protocol solves the (n + 1)-process decision task if and only if
there is a simplicial set P, called the protocol complex, and a simplicial map

0 : P — O such that
Vsel,n—t<dims<nVuéec P(s),6(u) € A(s)

where P(s) is the subcomplex of the protocol complex generated by the exe-
cutions in which only processes in id(s) take steps, starting with input values
from val(s).

This is actually just saying that a protocol solves a decision task if and only if it
yields an output value permitted by the decision task from any given input state.
Here we have gained the fact that simplicial maps preserve some topological
properties of complexes. Hence impossibility results for finding protocols for
some decision tasks arise from the topologically incompatible nature of its input
and output complexes.

Then, an algorithm for solving such and such decision tasks can be given in
geometrical terms, relating the geometry of the input and output complexes.

8.2.3 Wait-free protocols

Here we are interested in the main result of [HS594] which can be roughly stated
as follows: “There is a wait-free protocol for solving a given decision task if and
only if its input complex can be continuously stretched and folded to cover its
output complex”.

To relate this to our framework, we first need to define input and ouput com-
plexes.

Let Py, ..., Pny_1 be N sequential processes which, when run in parallel verify
a protocol P solving a decision task D. For the sake of simplicity, we suppose
that the processes P; are reduced to one action a;. The HDA representing the
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program in the shared-memory paradigm is then (ap)®...® (ay—1). The local
input values are collected in the initial state ag ® ... ® ay_1 and the vertices
v; in the input complex (val(v;), Id(v;)) with val(v;) = «; can be identified
with the 1-transitions a;. Compatibility of the vertices means that they begin
a fully asynchronous execution of the processes Id(v;). This fully asynchronous
execution is represented in the HDA model by the V-transition ag®...® ay_1
and in Herlihy’s model by an N — 1 simplex containing all the »;. Once more,
there is a perfect geometric correspondence between the two models, except
the dimension has to be shifted by one. We should think of the HDA model
as the “extension in time” of the simplex-based model. In other terms, the
input/output complexes are a kind of very useful denotational approximation
of the operational behaviour given by HDA. Let us be a bit more precise about
that.

The final state 8y ® ... ® On_1 contains all output values of the processes. In
a similar manner, the part of the output complex with vertices v; such that
val(v;) = ; can be identified to (up to a shift of dimension one) the “vertical”
complex composed of all end boundaries of ag ® ... ® an_1.

More generally, let I and O be input and output complexes of a protocol P.
Let (s;); and (t;); be the maximal simplexes in I and O respectively with
s; = (09, 0F) (dim s; = k) and t; = (w?,...,w¥) (dim t; = k). We suppose
we have a semi-regular HDA D (called domain of HDA in Chapter 5) in which
we can fire any transition that the distributed system we are considering can
execute, from any state of this machine. By what we have seen previously,

the simplices s; are in one-to-one correspondance with (dim s; + 1)-transitions

in D with initial state v? R...R0 vidzm *, As a matter of fact suppose that
the initial states permitted by the protocol are all in Dg g then there is a sub-
semi-simplicial complex of D, isomorphic to the input complex (seen as a semi-
simplicial set). This subcomplex is the “horizontal” complex (( Dy11,0)n, (d9);).
The output complex is isomorphic to some subcomplex of D, which we identify
now with ((Dgnt1-k)n,(d});) if all final states are in Dy . In between, there
are all the paths transforming the input into the output complex (see Figure

8.7).

We need now to see what is a wait-free computation in the HDA model, and
why this implies that some topological properties are preserved from the input
to the output complexes.

Look at Figure 8.8. In (i), the initial state is an internal non-deterministic
choice. If we are not so lucky, the execution will begin by P, which fails to
terminate: P; will never proceed and the computation is certainly not wait-
free. In (ii), the execution is asynchronous between P; and P, and whatever
happens to P, P; will terminate (one of the possible 1-paths is pictured).
Hence, intuitively, to go from state o to state § in a wait free manner, we must
have H?’ﬁ reduced to one class of paths. In the schedulers’ point of view, this
is the same as asking for the possible reordering for all executions of the failing
processes after the terminating ones. We prove now that this implies that the
input complex can be stretched and folded onto the output complex,
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Figure 8.7: Input and output complex for some domain of HDA D (a 3-cube

('), drawn in Herlihy’s way at the right hand side.
b’ &

C—=ABC—=abc —= a

L

AB.C—= —

Figure 8.8: The effect of a failure of one process in (i)-a mutual exclusion, (ii)-a
truly concurrent execution.
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Figure 8.9: Binary pseudo-consensus input, output complexes and decision map.
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Lemma 30 Let D be a semi-reqgular HDA, I and O its input and output com-
plexes respectively. Suppose D has only one initial state o, one final state f and
there is exactly one class of paths modulo homotopy from « to § in D. Then

Ho(I) = Ho(O).

Proor. Let p = (p1,...,px) and p' = (pi,...,p}) be two paths in D from «a to
8. By hypothesis they are homotopic. In particular there exist A and B with
p1 — Py = 0o(A) and pp — pj, = 01(B). p1,p} € I and pg,p) € O are therefore
connected in the input and output complexes respectively.

As there is exactly one initial state and one final state in D, given u € I and
v € O, we can find a path p from « to § with p = (u,...,v). This proves that
Ho(I) = Hy(O) = (-) (i.e. is generated by a unique element). O

More generally, if

e D is deterministic in the sense that to each initial state a of D there
corresponds a uniquely connected final state [,

e D is wait-free in the sense that there is exactly one class of paths modulo
homotopy from « to 3,

then, Ho(I) = Ho(O) is isomorphic to the R-module of initial states of D.

In fact, we cannot say anything purely topological more than that on the input
and output complexes. In particular, we cannot say anything about H;([)
and Hq(O). Look at Figure 8.9) defining the binary pseudo-consensus tak.
H,(I) = () whereas H1(0) = 0. But there is actually a way to construct the
protocol from I and O. It can be shown [HS94] that there is a subdivision of
I (“protocol complex”) which is mapped on O by a simplicial map. The extra
states added to the ones of I are used by the protocol for solving some internal
choices (look at Figure 8.10). We will be more precise about that in Chapter
10.

8.3 Application: no algorithm for mutual exclusion

Now, we give an application of the HDA semantics of the CCS-like language we
defined earlier and of the characterization of mutual exclusions. We actually
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Figure 8.10: Binary pseudo-consensus protocol complex, its deformation onto
the output complex and its implementation.

(P.0) Q0 (P.0) Q0
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The pseudo-consensus between two processes P (variable z) and @ (variable y)
on a shared-memory machine with atomic read and write is realized as follows,

P = ofy=1thenz =1,
@ = 1fx=0theny:=0;

prove a very similar result as the one of the previous section in that we prove
that a wait-free portion of CCS cannot implement any mutual exclusion.

Lemma 31 (i) H,(Tot([nil])) =0 for n > 0,
W(Tot([a])) = 0 for n >0,

(Tot([p + ql)) = Ho(Tot([p])) & H(Tot([b])) for n > 1,

(iv) H(Tot([p:ql)) = H(Tot([p])) & Hol[p], 00) © H,(Tot([q])) for n > 1,
(e) Ho(Tolllp| al)) = 3> Hi(Toi([p])) © Hy(Tot(Tal) for n > 0

=n

(vi) Hy(Tot([rec z.q(x)])) =lim H,,(Tot([¢"(nil)])).

ProovF. (i) and (ii) are direct computations.

For (ii), we have Tot([p+ ¢])n = Tot([p])n ® T0t([q])n, which entails the result
by Lemma 9.

(iv) is an instance of Lemma 9 and Kiinneth formula.
(v) is Kiinneth formula.

Finally, (vi) is a consequence of Lemma 2. O

We can prove now that a synchronous subset of CCS cannot implement any
mutual exclusion at all.

As a subset of CCS, we consider terms built with the usual operators but with
no complementary action, making synchronizations impossible. Notice that in
this case, | and || coincide.
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For convenience, we choose to call labels of actions (defining the labelling au-
tomaton of the semantic domain) by (a;);enN.

We therefore only have to show that for all terms ¢, the (unlabeled) HDA [¢]
contains no mutual exclusion. This is done by induction on the syntax, using
the computation of the homology we have carried out in Section 6.4.

(nil): H,(Tot([nil])) = 0 for n > 0 thus no mutual exclusion.
(a;): Same as above.

p+ q: for i > 1, we know that H;(Tot([p+q])) = Hi(Tot([p])) & Hi(Tot([q])).
But by induction, there is no mutual exclusion in ¢ nor in p, so there
cannot be any in p + q.

P q: we know that Hi(Tot([p; q])) = Hi(Tot([p])) & Ho([p], do) @ Hi(Tot([4]))-

Same conclusion as above.

p | q: for i > 0, we know that

A(Tol(lpla])) = = Hi(Tol([p])) @ Hy(Tot([q])

K3 =n

therefore there cannot be any mutual exclusion in p | ¢ if there was not
in p and gq.

rec z.¢(z): The homology modules are the limit of the homology modules of
the unfolding of rec z.¢(x). By induction hypothesis, there is no mutual
exlusion in the unfolding. This entails that there is no mutual exclusion
in the direct limit.

8.4 Some properties of the interpretations of tran-
sition systems

We know that general HDA are an abstraction of semi-regular HDA. The same
holds between general HDA whose elements are of dimension zero or one and
semi-regular HDA of dimension zero and one. 717 and G; lift to general HDA.
In these categories, we can speak internally of some geometric properties. This
provides us with a means to describe the functor G; in geometric terms! and
gives another proof of Lemma 4 in a more general setting.

Proposition 15 Let X be a general HDA whose elements are of dimension
zero and one. Gy(X) is the smallest HDA* Y containing X such that

(1) : Yk > 1,¥(v,w) # (0,0) € Hi(Y, o) x Hi(Y, 1), 07°(v) # 95 (w)

! And answers a question raised by Alan Mycroft in WSA’93.

2Here we restrict to HDA M such that V& € M, ¢ = 0 if and only if do(z) = d1(x) = 0.
This means that we do not consider HDA with elements being at the same time initial and
final deadlocks (actually, these transitions can never be fired).
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Proor. The fact that G1(X) contains X is obvious.

Now, suppose that (i) does not hold. Then there exists u, v € H(G1(X), do),
w € Hy(G1(X),d1), (v,w) # (0,0) with u = 97°(v) = 9y*(w). Considering
particular representatives of u, v and w (still written u, v and w), we have u
such that v = 0y(v) = 0p(w). Let A be a transition of dimension k + 1 defined
by do(A) = v, 01(A) = —w. It is well-defined since

o 000o(A) = 0o(v) = 0 because v is by definition a cycle for dy,
o 0101(A) = 01(w) = 0 because w is by definition a cycle for 0y,
L] 8081(14) = —80(10) = —u= —81(?]) = —8180(14).

Consider the HDA Y = G1(X ) + (A). The counit arrow ex : T1(G1(X)) — X
corresponds in a unique manner via the adjunction to the identity arrow Id :
Gi(X) — Gi(X). AsTh(Y) = T1(Gi(X)), ex : T1(Y) — X corresponds in a
unique manner via the adjunction to h : Y — G1(X). Therefore hig, (x) = Id.
Let ¢ : G1(X) — Y be the inclusion arrow from G;(X) to Y. Then hoi = Id
and h* o0¢* = Id, h** 0 ¢*! = Id on the homology groups. But necessarily,
i*°(v) =0, 7 (w) = 0. One of v or w has to be different from zero, say v. Then
h*0(0) = v # 0. This is impossible. Therefore, it is necessary to have property
(i) for G1(X).

Suppose now that there exists an HDA Y with X C Y C G1(X) with YV #
G1(X), satisfying property (7). Let uw € Gi(X), v ¢ Y. It is necessary to
have dim v > 2 since otherwise u would be already in X and then in Y.
Let Z = Gi(X)/(u). Z is a HDA containing 0p(u) and 0y(u). But (v,w) =
(O1(u), —0o(u)) € Hi(Z,00) x Hi(Z,01), 07°(v) = 95 (w). One of v, w is differ-
ent from 0, say v. The injection 7 :Y — Z induces ¢*0 : Hi(Y,dy) — Hy(Z, )
and "' : Hp(Y,01) — Hp(Z,01). We have necessarily 7(0) = v which contra-
dicts the fact that ¢ is the identity. This proves the result. O

This property can be generalized to the pair of adjoint functors (7}, G,,) (for all
n > 1). G,(X)is the smallest HDA Y containing X such that

VE > n,¥(v,w) # (0,0) € Hi(Y, o) X Hi(Y,01),07°(v) # 05" (w)

Notice that for acyclic HDA, the R-submodule U of Hy(Y, o) X Hp(Y, 01) com-
posed of elements (v, w) such that 97°(v) = 93" (w) is isomorphic to the sub-
module V of Hy(Tot(Y')) generated by cycles of length 2 of Y.

Proor. Let y € U. We can choose representants v and w such that,
o y= ([, Tu]).
e Oy(v)=0,
o 01(w)=0,
[ 81(?]) = ao(w)
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Then (01 — do)(v + w) = 01(v) — dp(w) = 0. This defines a map ¢ : U —
Hy(Tot(y)) which is actually a homomorphim of R-modules.

As Y is acyclic, Hi(Y,0p) and Hy(Y,d1) are generated by elements of the form
[z], with 2 € Mjy_;; for some ¢. This implies that Hy(Y,do) x Hg(Y,01) is
generated by elements of the form ([z],[y]), * € My_;;, y € My_; ; for some ¢,
J. 07°([2]) = 05'([y]) imposes ¢ = j+ 1. This shows that a generating set for U
is the ([z],[y]), ¢ € Mk_;—1,4+1, y € My_; ; for some j. Its image by ¢ consists
of a generating set for V' which only contains cycles of length 2.

Inversely, let [2] € V. As z is of length 2 we can decompose = as x = 21 + 2
with #y € My_;; and 29 € Mj_;41;—1. This decomposition is unique as Y is
acyclic. Now, [z] € Hi(Tot(Y)) therefore,

[ ] 80($1) = 0,
[ ] 81($1) = 80($2),
[ ] 81($1) =0

Therefore ([z1],[22]) € U. This defines an homomorphism of R-modules j :
V — U inverse of :. O

This actually proves Lemma 4 as follows. Let f : D[n] — Y be a monomorphism

from the boundary of an n-cube (n > 1) to a semi-regular HDA Y. f(D[n])
is a cycle of length 2 (this is an abuse of notation, since we should see that in
Y). The previous result shows that it should be filled in so there is a (n 4 1)-

transition A such that (9o — 01)(A) = f(D[n)). It is easy to see that f can be
extended to a morphism of general HDA to Dy, by putting f(Id},)) = A.

Example 41 The element X of To1 realized geometrically as,
6
b
s gl
N
a b
o

has a mutual exclusion of dimension one described by (b—a,a’—b") € Hi(X, dp)x
Hi(X,01) since dg(a’ — V') = v — p = 01(b — a). Looking at the proof of the

fact that Gy verifies property (i) as an algorithm for computing Gi as the least

fized point of the operation “fill in the k-mutual-exclusions by k-transitions™,

G1(X) is easily seen to be equal to (in one iteration),
6
o
poooA
N
a b

«

*This is the classical way we can compute homology of CW-complexes by adding cells to
“kill” the homotopy.
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This exemplifies the fact that G1(X) is the automaton in which all actions are
scheduled on as many as processors as it can be.

Summary We have given the first four applications of the theory of Chapter
7. We have first recast Groves’ construction for computing the homology of a
monoid presented by a term rewriting system into the HDA framework, showing
that this construction is about the serializability of a finite number of non-
conflicting reduction rules put in parallel. This enabled us to prove (again!) a
particular case of Squier’s theorem: the class of monoids presented by a finite
strongly confluent rewriting system is strictly included in the class of monoids
with decidable word problem.

We have then recast Herlihy’s proof that there was no wait-free protocol for
consensus in a semantic framework based on the homotopy theory of HDA.
This differs from the approach taken by Herlihy et al. in that we consider also
the geometry of all allowed executions in the distributed machines we consider.

Then we proved that a synchronous subset of CCS cannot implement any mu-
tual exclusion. At first, the aim was to prove that in a concurrent machine,
there needed to be an internal mechanism (semaphore etc.) in order to make
mutual exclusion expressible. We have not yet completely fulfilled this goal.

Our last application was to prove the m-connectedness result of Chapter 3
about the right-adjoint of the truncation functor. We used a characterization
of some mutual exclusions in homological terms to show that all maps from the
boundary of the standard n-cube could be extended to maps on the standard
n-cube.
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Chapter 9

Analysis of programs

9.1 Abstract interpretation

9.1.1 Introduction

Having defined denotational semantics of languages using HDA, we would like
to formalize the abstraction process (in the style of [CC77]) enabling us to
compute the properties which are of interest for us. In particular, we would
like to be able to approximate (by folding the execution traces etc.) HDA to
make the computation of the geometric properties of Chapters 6, 7 tractable.
But it is not natural to define an order on HDA to fit in the usual abstract
interpretation framework. Surely, a natural order would be the “inclusion”
ordering, or “subobject” ordering. This can be defined in the same algebraic
style as we have used up to now, since subobjects of X are monomorphisms
into X. This calls for generalization. From now on, we consider any arrow into
X to be an “element” of X.

9.1.2 Definitions

Let D. be a domain of HDA in which we have given the semantics of some
language £. D, is called the concrete domain. Let D, be another domain of
HDA, called the abstract domain. Consider C and A to be two subcategories
of T/D. and T/D, respectively. Now, an abstract interpretation between D,
and D, is a pair of adjoint functors (a, ) between C and A,

v

C A

«

That is a and 7 are functors such that there exists natural transformations

e:aoy — Idand n: Id — v o a such that the following composite arrows are
the identities [ML71],

my Ve
v oy v

on €
o ayo o

255
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A more general formulation would be to have a category of observations (as
in [AM93]) O and a functor F : T — O to observe HDA. Then an abstract
interpretation is given by an abstract domain D, € O and a pair of adjoint
functors between C and D, subcategories of T/D. and of the comma category
of arrows F(z) — D, of O respectively,

v

A

«

For the time being, we restrict to the first case (#' = Id, O = T). We will see
that it is enough for looking at some interesting dynamic properties of HDA.

The standard semantics is given in a subcategory of the category of subobjects
of D.. The category Sub of subobjects of D, is a subcategory of the slice
category T/D., and as such is a good candidate for being used as domain (or
codomain) of an abstraction functor. We recall (see Section 5.2) that as T is
complete and co-complete, Sub is actually a complete lattice with the following
operations,

o Intersection X A'Y of subobjects X and Y of A is the pullback of the
corresponding morphisms,

XAY X
7 x
y—Y A

e Union X VY is the pushout of XAV & X and XAV LV

e The order to which these lattice operations correspond is (X = A) <
(Y N A) iff there is a monomorphism f: X — Y such that yo f = x.

Then, if ' and A are the subcategories of subobjects of some HDA then a pair
of adjoint functors between (' and A is actually a Galois connection.

But this will not be the case in general, so we will find it convenient to use
Freyd’s special adjoint functors” theorem ([MLT71] or [FFS90]) in the following,
to prove the existence of a right-adjoint to a given functor a: ¥/D. — T/D,.
First, we have to show that certain pre-conditions on Y/D. and Y/D, are
verified.

(i) T/A is small co-complete.
(i1)) T/A and T/B have small hom-sets.
(iii) T/A is well-co-powered.

(iv) T/A has a small generating set.
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Proor. T is small co-complete, thus (i).

(ii) is entailed by the fact that T has small Hom-sets: a morphism between A
and B is in particular a set-theoretic function between the sets underlying A
and B.

For (iii) we have to prove that epimorphisms in T /A from a given object P, mod-
ulo composition with isomorphisms, is a set. A sufficient condition is to have the
same property holding in T. In T, epimorphisms from P and monomorphisms
into P, modulo composition with isomorphisms, are in bijection (consider the
kernel of the epimorphism in one way, and the projection onto the image of the
monomorphism in the other way). But subobjects of P form a set since P is a
set.

We now build a small generating set 5 for T/A.

Let TP, for p,q € Z, be the free HDA generated by one transition ¢, , € T

We set 5 to be the set of all morphisms from a T?? to A. Let now p: P — A
and ¢ : Q — A be two elements of T/A and h,h' : p — ¢ be two morphisms in
T /A such that h # I'. Therefore, there exists € P such that h(z) # b/(z).

We have then p,q € Z with € P, , and by the freeness of T7?, there is a mor-
phism f from T?9 to P with f(t,,) = «. Thus, ho f # h'o f. This proves (iv). O

We know now (see [MLT71]) that o has a right-adjoint if and only if it is co-
continuous, i.e. it commutes with all colimits.

9.1.3 An abstraction: denotational semantics

Let D. be a concrete domain on which we give semantics to some language
L. Let D, = Ho(D.,01) ® Ho(D.,d) the abstract domain. We consider the
following “abstraction” functor 2:

Q:Y/D.— /D,

with
Qze:X = D)=a" @a™ : Hy(X,01) ® Ho(X, ) — D,

This functor maps an element of D, to the pair (initial states, final states).

We know that all the homology functors commute with direct limits, and that
the tensor product (as it has a right-adjoint) commutes with all colimits. To
verify that £ is co-continuous, and then that Q has a right-adjoint by the
application of the result of last section, we only need to prove that Ho(-,d;)
commutes with all finite colimits, i.e. commutes with direct sums and with
co-equalizers. The commutation with direct sums is well-known [Mas78].

Suppose now that we restrict to automata M such that
Vs € Mo, 80(8) = 81(8) =0

that is, “no state contains proper events”.
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Let r be the coequaliser of f,g:a — b,

~ b

then we know that ¢ = ) and r is the canonical projection from b to c.

(F=9)(a
The commutation of Hy(-,d;) is thus expressed as

b N\~ Ho(b,é?i)
flo ((f—g)(a)val) (= g7 )(Ho(a, 0)))

With the hypothesis that no state of @ and b contains proper events, it is

equivalent to
) by ~ 9i(b1)
0 ((f - g)(m)) ~ (f = 9)(0ilar))

This is straightforward since d;0(f—g) = (f—g)00; (f and ¢ are morphisms).

Example 42 (1) Let D, be the following domain,

a

U —mv

Then D, is,
u X v

The lattice of subobjects of D. is,

¢ Q0)=0:0— D,,

o Q(u))=0:(u®u)— Dy,

o Q(v)=0:(v®@v)— Dy,

o Q(0)) = Iugy : (4 1) & (1S v) & (00 w) & (00 0) — D,
e Q((a))=1Id:D, — D,

(2) We give here a case which is not generally captured by frameworks based
on lattices. Let D. be the domain,

a1 ay

Qp — Qg — ...
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and consider the abstraction functor “final state”, F' = Hy(-,00). The
abstract domain D, is 0.

Consider now the three subobjects X, Y and Z of D.,
X=0
a1
Y = Q] — Q3

Z =D,

Then we have inclusion morphisms,
i J
X—=Y<S 7

and in the abstract domain,

Therefore, the image of the lattice of subobjects of D. by I contains the
graph,
F(i)
00— a9
F(5)
Thus, this situation cannot be described by a Galois connection between
the lattice of subobjects of D. and another lattice.

Notice that @ and F' commute with direct limits. In particular, the end
state of an infinite trace is the direct limit of the end states of all its finite
approzimations, since the inclusion from one finite approximation to the
next one induces a null map by I (in homology).

An other example, with the same abstraction functor is, defining the ab-
stract domain D, as,

o N
g Ay
A

and considering the three subobjects,
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Then,
XLty g
and the image by F is,
0k,
F(5)

The interpretation of such a graph structure is that, we may execute (7)
more transitions but get less observable results (than'Y ), due to a dead-
locking behaviour. We may as well get more results (Y ) if we execute
more transitions (than X ).

9.1.4 A technical abstraction: the image functor

We define here a simple tool used for being able to represent objects in the slice
category T/D as subobjects of D. Let Sub be the category of sub-HDA of D.

Define an abstraction functor Zm from T /D to Sub by,
Im(z: X —=D)=Id:z(X)—= D

x
. D

Im /y( =Id:z(X)—yY)

~ e

It maps every arrow x to the subobject of D representing its image.

The concretization functor, its right-adjoint, is J given by,
Jy:Y = D)y=yop:YxD—D

where p; is the canonical projection for the cartesian product, py : Y x D — Y.

ProoF. We have

ImoJ(y:Y = D) = Im(yop1:Y xD— D)
= Id:y(Y)—D

But if y : Y — D belongs to the category Sub, then y = Id and Zm o J = Id.
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Now, consider the following (non-commutative) diagram,

X
/(X)) x D\F
A
2(X) D
f'l
D

By definition of the cartesian product z(X') x D, there exists a unique hx such
that x = py o hy, = pg o h,. Therefore h, is a morphism between z : X — D
and JoZm(xz)=10ps:2(X)— D in the slice category T/D. It is obviously
natural in X and defines what is to be the counit of the adjunction.
Finally, we have to verify that, first, for all  : X — D the composition,
Im(hrm(s Id

Im(z) M ImoJoIm(z)— Im(z)
is the identity. This is obvious since Zm(z) = Id.
Then, we have to prove that for all 4 : Y — D in Sub, the composition,

T 0 7o 1m0 700 TUY 7y

is the identity. But J(Id)o hy,) =y = Id since y € Sub. O

9.1.5 An abstraction: truncation

We consider here a way to reduce the number of transitions of a HDA by
reducing the amount of asynchrony we are allowed to observe.

Let n be an integer and D, ,, the abstract domain defined by (D, ,.)p.q = (De)p g
ifp+qg<nand (Dyy)py =0if p+ ¢ > n. It is the domain of processes of
dimension at most n.

Let now 2 : X — D. be an element of T/D.. Let X’ be the sub-HDA of X
consisting of transitions up to dimension n (“truncation” of X of order n). We
define! T}, (z) to be the induced morphism from X’ to D,. For f a morphism
between z : X — D, and y : Y — D., we define T,,(f) to be the induced
morphism between the truncations of X and Y of order n. This defines the
abstraction functor.

Take A in Y/D,,. Let Y(A) be the diagram in Y/D., whose objects are all
elements = of T/D, such that T,,(z) is isomorphic to A, and whose arrows are

!By slight abuse of notation
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all possible morphisms in T/D. between these objects. We define a functor

Gn:Y/Dy, — Y/D. tobe G, =lim Y(-). Then,
Lemma 32 (7,,G,) is a pair of adjoint functors.
This pair of adjoint functors induces a Galois connection between the lattices
of sub-HDA of D, and D, , (viewed as a sub-category of Y/D. and Y/D, ,

respectively).

Example 43 Let D, be the HDA,
S3
N
S1 A 59
N4
S0

and set n to 1. Then D, is,
S3
N
S1 S92
N
S0

If we look at the lattices of subobjects of D. and D, we have a Galois connection

between?,
T
atb+a +b’ atbta +b’
7N 7NN
////\\\\ /,//\ .

~ -
- / \ ~ - / \ ~

- / \ ~

0 0

9.1.6 An abstraction: folding

In this section, we define a way to reduce the number of states, transitions, etc.
in a HDA by folding together parts of the execution traces.

2We only picture here the lattice of connected subobjects of D, and D,.
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Suppose that we are given an epimorphism p from D, to a domain D,. p can
be interpreted (similar to the labelling morphism) as a folding morphism.

This can be lifted to the slice categories T/D. and T/D, as an abstraction
functor,

My(z: X — D.)=pozx:X — D,
My(fi(e: X =De) = (y: Y =De)) = f: (Mp(z)) = (My(y))
Let now A, be the functor from Y /D, to T /D, defined by:

o fora’: X' — Dy, N,(2') is the pullback of 2’ along p, i.e. is the “greatest”
morphism N,(z') : X' Xp, D, — D, such that po N(2') = 2’ o p; where
p1: X' xp, D. — X' is given by the pullback diagram (see [MLT71]),

\/

e and for f': (2 : X' — D) — (v : Y — Dy), N(f') : X' xp, D. —
Y' xp, D, is the unique morphism h in the following pullback diagram:

X’XDa

s

A4

Then,
Lemma 33 (M,,N,) is a pair of adjoint functors.

ProoF. See for instance [MM92]. O
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Example 44 Let D. and D, be , a

“ O
l———u 1

and p: D. — D, be the epimorphism defined by p(1) = p(u) =1 and p(a) = a
then (ImoM,,JoN,) is a Galois connection between the lattices of subobjects
of D. and D,,

(1) & (

/
N

a

u)
N Im o M, T
(1)
0
What are the abstract operators now, i.e. the abstract counterparts of +, ®
and lim? This will not be possible to compute them in general, and we may
have to use safe approximations of them.
For H any endofunctor on Y/D., we say that GG, endofunctor on Y/D,, is a
safe approzimation of H if and only if there exists a natural transformation
from afly to G. Notice that it reduces to the usual definition when (a,7)is a
Galois connection. The fact that («,v)is a pair of adjoint functors implies that

colimits in YT/D, are safe approximations of colimits in T/D.. For instance,
we can take as abstraction of + and lim, + and lim respectively. This does not

hold for @ and its abstract version ®,. But we can prove the following:

e lLor the adjunction (7),,G,), there is an “expansion law”, z @, y = 2 ®

To(y) + To(z) © y+ O<Z< Ti(2) @ Tor(y)-

e For the adjunction (M,,N,), if p is a multiplicative morphism then & ®,
y=zXYy.

9.1.7 Schedulers as an abstract interpretation

Let Sc¢ be the category whose objects are equivalence classes of elements of
R — Mod/11,(D) modulo isomorphisms.

Define now
a, : Sub— Sec
by
a,(i: M — D)= (1,00) : 11,(M) — 11.(D))

a,(z) provides us with all n-schedulers of automaton z: a,,(2) basically returns
the equivalence class of all retracts of dimension n of z (see Figure 9.1).
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An analogue to Van Kampen’s theorem holds (Section 7.7.2). Recall that, for
all X1 and X5, X7 U X5 and X1 N X, are well defined by the cocartesian square

X, nx, . x,
sz li1
9
X, —2 X, UX,

Then Van Kampen’s theorem asserts that the following diagram in R — Mod is
cocartesian as well,

I, (X1 N X5) (1) I, (X1)
G2y i, ir)
1, (Xs) — U2l vy 0 xy)

Therefore a,, commutes with (binary) least upper bounds. In case II,,(D.) is
of finite type (implied by D, finite for instance), this proves the existence of
a right-adjoint v, : R — Mod/1l,(D.) — Sub to a,, by Freyd’s special adjoint
functors theorem [ML71]. (a,,7,) is a pair of adjoint functors or a Galois
connection®. We strongly believe that this generalizes to modules Il (D.) of
infinite type but we do not have yet a proof of that.

Figure 9.1 should then be understood as follows. When we have only one pro-
cessor, A, B and D have exactly the same schedulers, i.e. they have essentially
one and only 1-path (D retracts to any of A or B). This means that the best
approximation of A and B (by 71 0aq)is D. Only C' = a1(C) (two paths, i.e.
two generators) is different from (non-isomorphic to) A’ = ay(A), B' = ay(B)
and D’ = ay(D) (one path, i.e. one generator). The arrow in Se¢ going up from
A’ to C' is the image by «y of the inclusion morphism from A to C'. Similarly,
the arrow going downwards from C’ to D’ comes from the inclusion morphism
of C'into D and whose action is to project the hole of C' onto 0 (the hole is
filled in D).

9.1.8 Dependence orderings and abstract interpretation

We wish here to give constraints on scheduling and schedulers the same pre-
sentation via dependence orderings of the form “a < b7 meaning action b
must be scheduled just before action a. The logical language £ will be con-
structed out of predicates “a < b7, variables ranging over actions, quantifiers
and connectives from classical logic. We authorize infinite formulas, so that
quantifiers are just syntactic sugar. This is the same intuition (but in a more
general context) as dependence orderings in Mazurkiewitz trace theory [Maz88]
or more recently in concurrent automata [BDK94]. Notice that it is enough to
specify the scheduling properties we had in mind up to now,

We do not ask to have a poset as an abstract domain, it may be a general category (or
a preorder as in [CC94]). Notice that (as pictured in Figure 9.1) 4, o ay, is an upper closure
operator on Sub, [CCTT].
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Figure 9.1: A domain of automata D, a subposet S D of Sub and its abstraction
to Sc

al
R —
A:< =B A'=B'=D’
vt \/ oa Vi T
D "false" 0 0
sD Sc

e in Example 31 it suffices to give a constraint on add.sp (the i-th add.s
action executed on the same processor P; we forget the ¢ index in the
sequel) of the form Jz,y # add.sp,add.sp < @ < y < add.sp which is just
syntactic sugar for V,  _aqq,((addsp <) A (@ <y) A (y <addsp)).

e the two-phase protocol on two processes P and () consists in the following.
Let Ap and Ag be respectively the items that P, respectively ), access
via actions P, and (), respectively (a € Ap, b € Ag). Then the two-phase
protocol is a scheduling constraint of the form

(Aaceap ((locka < P.) A (P. < unlocka))) A

(Andeag ((ockb < Q4) A (Q4 < unlockb)))

e mutual exclusion properties between two actions @ and b can be formalized
by the formula (a < 0) vV (b < &’).

More formally, if D is a domain of semi-regular HDA, let £ be the following
(infinitary) logic where terms are formed by the following constructions,

e for all » > 0 and for all actions or variables a,b in (D), a < bisin L,

e for all formulas p and ¢ in £, pVq, pAgq, Yae.p(x) and Jz.p(z) are formulas
in L.

The syntacticly different predicates on actions are declared non comparable
by <. Then < is logical implication. (£,<) is a complete lattice with V as
the least upper bound operation and the greatest lower bound being A. It is
straightforward now to show that (£,<) and Sub are equivalent lattices,
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Figure 9.2: Sub (simplified, called SD), the denotation p of the program, its

subposet of retracts R and the constraint C'.
SD

C=atb'+c+d

bt+a

o let v : L — Sub be defined by

— for @ and b of dimension n, y(a < b) = V{z € Sub/Vp € P,(z),p =
(Pi)i>0, Vi, p; = a = piy1 = b)},
=1 Va) =)V (a).

o and let a: Sub — L be as usual a(z) = A{y € L/z < y(y)}.

In Figure 9.2 we have pictured a constraint on scheduling ' which can be
described as C' = ¢ < dV a < V' as well as a program semantics p. In Figure
9.1, the constraints are written next to the corresponding elements of 5 D.

9.1.9 Verification of protocols

Given a constraint (or protocol) C' € £ and a program p (identified with its
semantics in D), can we find a best scheduler for p under constraint C'? This
question is two-fold: first (verification), can p be scheduled with constraint C'?
and second, as a side-effect, (inference) what is a best way, i.e. a way in which
we add the minimum number of constraints to C'?

This problem can be expressed in our framework as follows. What is the max-
imal element of the intersection of the subposet of retracts of p with the left-
closed set of elements satisfying the constraint C: {y € SD/y < C}? or using a
geometric image: “can we retract p onto C'Np?”. As an example, a + b’ is this
maximal element in Figure 9.2. An algorithm is given in next section (which
mainly computes a part of the a of last section).

9.1.10 Inference of a best parallelization

Here, we are given a sequential program p (identified with a HDA of dimension
one) and we want to give a meaning to the problem of finding the “best”
parallelization of it. The way we do this is by considering p to be embedded
into a domain D specifying all possible actions. Practically, this is done by
considering all traces in which all actions of p are put in parallel. This may
obviously create some interferences or demonstrate the ability to perform some
parts of p in parallel. Now, instead of retracting paths onto p, we wish to extend
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p as much as we can: we wish to find the greatest subHDA of D that retracts
onto p. This makes sense since Sub is complete. We derive an algorithm in
next section.

9.2 Algorithmic details

As we do not want to specialize to a particular language or subproblem here
we choose to give generic algorithms which may be optimized for some specific
areas (see the conclusion). The generic algorithm relies on finding a solution to
a central problem cryptographists have (finding dependence relations among
lines of huge sparse matrices for quadratic sieves for instance). Huge progress
is made everyday on finding good algorithms for solving this problem and these
are then of direct interest for our abstract interpretation. For keeping things
understandable we use only fairly well known algorithms in next sections.

9.2.1 Representation of HDA

The first simplification is to work with R = Z/2ZZ. This makes coefficients
into simple booleans. Now boundary operators can be represented as boolean
matrices, and even sparse ones: this means that lines (or line vectors) of the
matrices are represented as ordered lists of integers indicating the occurrences of
ones. Addition of line-vectors is a fusion of ordered lists which can be performed
in linear time in terms of the number of elements in the lists.

HDA are represented by the matrices of their boundary operators in every
dimension. Whenever we have to work on two HDA one included into the
other, we mark some of the line vectors of the greater one to indicate that they
generate the other HDA as well.

Example 45 Let M be the HDA (a square),

with dg(A) = a — b, 1(A) = a =V, dp(a) = (b) = a, dy(a’) = 01(b) = 7,
Do(b') = O1(a) = p and d1(a') = 01(b') = 6. Then the matriz representing the
total boundary operator in dimension 2 is,

( a b d V)

(4: 111 1)



9.2. ALGORITHMIC DETAILS 269

and in dimension 1,

( a oy 6)

a: 1 1 0 0
b: 1 0 1 0
ad: 0 0 1 1
b: 0 1 0 1

9.2.2 Representation of program semantics and constraints

We generate the program semantics by compositional methods like in [Gou93,
GJ92] or in Section 5.5 and then compute the abstract operators using stan-
dard methods from homology theory or preferably here by SOS-like rules
(Chapter 2) that generate all possible transitions. The constraints (given in £)
filter the application of the SOS rules: the ones that verify the constraints are
then transformed into marked lines. For the inference problem, the domain is
generated by applying all valid rules for all instructions (this should better be
done lazily) and p is marked.

Example 46 The CCS term a | b has total boundary matrices as in Example
45 using the SOS-rules (or the denotational rules) of Chapter 5.

9.2.3 Verification

The algorithm can then be described as follows. Are given n, the representation
of the HDA C' N p and p, initial (n — 1)-transitions I (a line vector) and final
(n — 1)-transitions F' (a line vector). The algorithm says if we can n-schedule
p under the constraint C'. In order to be able to characterize the homotopy
through homology, we have to suppose that p and C' N p do not contain any
deadlock. This means that I and F’ must represent in an exact manner the sets
of initial and final states of C' and C' N p.

We suppose that we have already implemented the following functions:

o shift(M : HDA,k : integer) which shifts the dimension index of M by
k,ie. shift(tM,k)= N : HDA with N,, = M4,

o quotient(M : HDA; I, F : vector) which returns the HDA M’ where all
states in I — F are replaced by 0,

o tot(M : HDA) which returns the matrices M; for the boundary operator
0o — 01 in dimension one and M, in dimension two,

We first program triangular(U : matriz) = (U’ : matriz, P : matriz) where U’
is a triangular form of both the submatrix of marked lines of U and a triangular
form of U, and P is the matrix of change of coordinates. In this way, null lines



270 CHAPTER 9. ANALYSIS OF PROGRAMS

Figure 9.3: The triangular algorithm

P=1d
o=1[1,2,..]
u=1

fori=1tom

find l;, marked(l;) and first(l;) =1
o(u) — 1
o(t) —u
u—u+1

fork=1tom, k#j

if found then

lkHl]‘—I—lk

if first(l;) =1 then
Pk = Pj t Pk

fori=u+1tom
find l;, not marked(l;) and first(o(l;)) = o(t)
if found
fork=1tomk#j

if first(o(l;)) = o(k)

then
l I +1
then{ E it

Pk — Pj + Pk

where m, [;, p; and first(l;) denote respectively the number of line vectors in
U, the jth line of the matrix U, the jth line of the matrix P and the first index
¢ for which [;(¢) is one.

of U’ correspond to generators (whose expression can be read in P) of Ker U
and the non null lines of U’ give a basis of I'm U.

If implemented by (a version of ) Gauss method as outlined in Figure 9.3 then
the worst case complexity of triangular(U) is in O(ij%) where j is the number
of lines in U and ¢ is the maximum number of non-null elements per line in U.

If tot(quotient(M,i, I')) = (My, My) where M is replaced by shift(M,n — 1)
then the null lines of ¢triangular(M;) represent the generators of Ker(dy — dy)
in dimension one, i.e. the generators of the set of 1-paths of M (see [Gou95] or

Chapter 7).

They can be computed in O(nk?2) where k, is the number of n-transitions in
M. Similarly, the non-null lines of triangular(Ms;) represent the generators of
Im(dy — 91) in dimension two. This can be computed in O(nk2 ).
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Figure 9.4: The algorithm n — scheduler

P = 8(p7n - 1)

(M, M3) = tot(quotient(p, I, I'))

(Ur, Py) = triangular(My)

(Ug, P2) = triangular(Ms)

5) N ( Ny=lines ¢; of P with [; =0in Uy )

N;=non-null unmarked lines of U,

W N

6) (Ny,Q1) = triangular(N)
7) result = (card{j/n; = 0} == card{unmarked linesof N,})

The calculus of representants of generators for II;(M ) could be done in O((n+
k1 4 k2)k? + (n + kq)k2) in the worst case. But here we are interested in a
somewhat more specific problem.

The algorithm n — scheduler(p,C Np: HDA; I, F : vector) : boolean for veri-
fying if we can n-schedule p under constraint ' is described in Figure 9.4 and
runs in O(n(k2 + k2,,)) where k,, and k,4 are the number of n transitions
(resp. (n + 1)-transitions) in p.
The algorithm works as follows.

At lines 1) and 2) are computed the matrices of the boundary operator dy — 04
for the transitions of dimension n and n + 1 of the pair (p, I — F).

The triangulations of lines 3) and 4) are used at line 5) for generating a matrix
N whose first part (N, whose lines which correspond to paths in C' N p are
marked) is composed of generators of n-paths of p and whose second part (N,)
is composed of generators of (dy — 01 )(pn+1). The triangulation makes explicit
all dependency relations between N, and N, that is, shows how many n-paths
are homotopic in p.

The last line verifies that all n-paths of p are equivalent to some path of C'Np
by an easy argument on dimensions.

Example 47 Take as domain and constraint those of the example pictured in
Figure 9.2. For p, take the filled in square A. Then, the matriz representation
of p is (where the marked lines are underlined), in dimension 1,

a: 1 1 00
b: 1 0 1 0
a: 0 0 1 1
v: 0 101

and in dimension 2,
D,

(4: 111 1)
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If we run the algorithm 1-scheduler on these data, we first add column 4 to
column 1 and discard 4 since it is all 1s (this gives the quotient by I — F). in
the matriz representing the objects of dimension 1. Then we find,

10

0 1
Uy =

0 0

00

100 0

0100
P =

01 10

100 1

and Uy = Dy. Then,

[l
N
= <
< =
< =
= <
v

TN
—_
—_
—_
—_

N——’

and

0110
Ni=10000
1111

This entails res = (1 = 1) is true, hence p can be implemented on a machine
with constraint C.

Example 48 Let us come back to the process graph for the two transactions
Ty = PaVa and Ty = PaVa. Its discretization as an HDA can be pictured as
i Figure 9.5. It is obviously 2-phase locked hence serializable. Let us check
this with our verification algorithm. We must check that it is equivalent to
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Figure 9.5: A process graph discretized as an HDA (8 2-transitions, 24 1-
transitions and 16 states).
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p="T11Ty+T15.T1. The matrix M, input of the algorithm 1-scheduler is then,

(=
= = S
< 1= =
= o o
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©
o 1o ©

[ o o
o o© =
= _ O
[ o o
< = =
—_ <o ©
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o

[[en
[[en
[[en
[[en
[[en
=
[[en
[[en
[[en
=
[[en
[[en
[[en
[[en
[[en
[[en

[ o o o o
[ o o o o
[ o o o o
= _ o o ©
o © = = <O
[ o (e (e =
— o o o o
[ = = (e (e
o © © = =
[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o

[[en
[[en
[[en
[[en
[[en
[[en
=
[[en
[[en
[[en
=
[[en
[[en
[[en
[[en
[[en

[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o
[ o o o o
o © © = =
[ = = (e (e
= (e (e o o
[ o (e (e =
o © = = ©
= _ O o O
[ o o o o
[ o o o o
[ o o o o

[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
=
[[en
=
[[en

[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
[ o o
—_ <o ©
< = =
[ o o
= _ O
o o© =
[ o o

[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
=
[[en
=

[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
[[en
=
=
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And,

Dy

Therefore, adding last column to first one and discarding the last one, then

o O o o o o o =

o O o o o o o =

o o o o = o o O

o o o o = o o =

o o o o o o ==

o o o o o o = O

o o o o o = o O

o o o o O = o= O

o o o o o o = O

o o o o = o o O

o O B o = o o O

triangulating these two matrices, we obtain,

< =

o O O O o o o = o o O o o o o = o

= 1

o O O O o o o = o o O o o o o = o

= 1

o O o O O O O O o o o = ©o o o o

< 1o

o O O o = oo O +H O O o © =2 o oo = ©

< 1o

o O O o O o = H o O o o o o = = ©

< =

o O o o o o B O O o O o o o = o o

< =

o O o o o = O O O o o o o = o o o

< 1o

o O O o O = 2O o O o o oo = o= o ©

< 1o

o O O o O o = OO o O o o o o =oo =

< 1o

o O O o = O O O o o o O =2 o o o =

< 1o

o O B O O O O o O koo o o o ©

o o = o O O o O

= 1

o O B, O O O O O O o = o o o o o o

o o = o O O o O

= 1

o O B, O O O O O O o = o o o o o o

o = 2o O o o O

< 1o

o = B O O O o o oo =2 =B o o o o o ©

o B O O O O o O

< 1o

o = O O O O o o o +H O o o o o o =

o o o B O O o O

< 1o

o O O B O O O O o o o = o o o o =

o o o B o B o O

< 1o

o O O B O B O O o o o = o = o o ©

o o o o o = o O

< =

o O o o o = O O O o o o o = o o o

o o o B O O o O

< =

o O O O O O O O o o = o ©o o o o

- o o = o o o O

< 1o

= o o = o o O o =2 o oo =2 o o o o o

- = o O o o o O

< 1o

= =, o O o o O o = = o o o o o o o
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o B O O O O o O

= 1

o OB, O O O O O o O B o o o ©o o o o

_ o O o o o o ©o

= 1

o O O O o o o =, o o o o o o o ©

_ o O o o o o ©o

< =

o O O o o o o = o o o o o o o
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and,
10000110000000000110002Q
011000000001 1000000¢0¢01
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
Ny=|10000O0OO0OO0OUOOOOOOOOOOO0UOGO0O
06 000O0O0OO0OO0OOOOOOTDOOSO0OO0OO0OO0OO0OTO0TO
1 1011000O0O0OO0OO0OO0O0COOOOO0OTO0OTO0OQO0
60001 101100O0O0O0O0O0O0O0OO0OO0OTO0OTO
6 000O0O0O11O00O0O0OO0OO0OO0OSO0ODT1TT1TO0O0OTQO0OTO
0601 1000O0OO0C1TT1TO0OO0OO0OOOOOOOO0OTOQO
06 0000O0O0OO0OOCODCODOODODOTI11T1O0T1T1TO0O0
06 0000O0O0OO0OO0OCOTLT 1T 1T 1T0O0O0O0OO0O0O0TO0
6 0000O0OO0OO0OOCOCOCOOTILT1TO0O0OO0OSOOO0OT11
06 000O0O0OO0OO0OOOOOODODOSOODODOTLTT1ToO0

We check that card{j/n;

Therefore it is serializable.

M
=
|
<
——

= 9 = card{unmarked lines of N,}.

9.2.4 Inference

Are given, m, HDA D and p (of dimension one). p consists of the submatrix of
marked lines of the matrix representation of DD. The algorithm is an iteration
on the following algorithm parameterized by the dimension n (we call Add,),
forn=1tom—1, Add,,. We suppose that p does not contain any deadlock.

It is basically the same as the one in Figure 9.4 except the result assignment
is replaced by a marking of M, which describes the (n + 1)-transitions to be
added to p to get its parallelization. The lines marked in U; are the lines
corresponding to the (n + 1)-transitions with non-null coefficient in line ¢; of
()1 such that n; € Ny is null and marked. These are the (n+1)-transitions used
for deforming some path in p to another path in the domain D. This marking is
then translated into a marking of M5 using the matrix of change of coordinates
Py. It is correct to use the homological characterization of homotopy since it
is a “resolution”-like procedure: we start off with some connected k-connected

= 1

o O O O o o o o o o o o o o o o

< =

o O O O o o o o o o o o o o o o
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Figure 9.6: The 1-step inference algorithm Add,

p:s(p,n—l)

W N

(
(Ur, Py) = triangular(My)
(Usz, Py) = triangular(M,)

6) (N1,Q1) = triangular(N)

My, My) = tot(quotient(p, I, I'))

N,=li cof P withl, =0in U
5) N:( ines ¢; of Py with [; in 1)

N;=non-null unmarked lines of U,

7) mark{2-transitions with non-null coefficient in line ¢; of @4

s.t. n; = 01in Ny and marked(n;)}

Figure 9.7: A parallelization example.

p=b+d

shape to deduce a connected (k + 1)-connected shape, so that Hurewicz holds
at each step of the computation. The complexity is bounded by a function of
order O(n*mazi<i<n—1k?) (see Figure 9.6).

Example 49 Take as domain and program those of the example pictured in
Figure 9.7. Then, the matriz representation of D is (where the marked lines

are underlined), in dimension 1,

a: 1 1
b: 1 0
c: 0 1
d: 0 0
and in dimension 2,
Dy = ( A: 1

= <o = O

1

= = e ©

1

v

If we run the algorithm Addy on these data, we first add column 4 to column 1
and discard 4 since it is all 1s (this gives the quotient by I — F) in the matriz
representing the objects of dimension 1. Then we find,
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10

01
U, =

00

00

oS = O =
- o = O
o = o O

and Uy = Dy. Then,

=
[l
—— P B —— N
< =
= <
< =
= < - o o o

1 1 1 1
and

1 0 1 0
N=]0000
0 1 0 1

1 00

Q=111 1

1 0 1

We see that line ny of Ny is marked and is null. It corresponds to line q; =
(1,1,1) in Q1. The third component of qz is one and corresponds to the 2-
transition A. This means that it was used for deforming path b + d. This
entails that A has to be marked as well as a and c¢. Therefore, p parallelizes to
D.

9.2.5 Optimizations
We can think of a number of optimizations,

e we can replace Gauss elimination technique by a faster algorithm like
structured elimination or Wiedemann’s probabilistic algorithm [Mas69].
The latter is quasi-linear in average in terms of the number N of non-
null entries of the sparse matrix from which we want to extract linear
dependencies. No experiments have been made yet as to know from which
N on this algorithm gives practical pay offs.

e we might also enter an already triangulated matrix for some well-known
domains. This would obviously greatly simplify the verification algorithm.
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Summary We have defined a particular case of abstract interpretation of
HDA in which all pre-orders we consider are suborders of the simulation pre-
order (the one given by arrows in T). This was most suitably formalized using
pairs of adjoint functors instead of the classical Galois connections. We have
shown that there were some interesting abstractions, like the denotational one
(looking only at initial and final states in the semantics) and the folding one
(which identifies some n-transitions together). We developed in particular an
abstract interpretation of the HDA semantics giving all the schedulers of a
program, using the theory of Chapter 7. This allowed us to develop a verifica-
tion algorithm (for checking if a program could be implemented using a given
protocol on a given machine) and a parallelization algorithm.

The reader should realize that, as usual, all these abstractions can be composed
together. In particular, we might use the folding abstraction to reduce the
semantics of programs to finite HDA on which we can run the verification and
parallelization algorithms. For more applications of these abstractions, the
reader can look at [CG93, Cri95].
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Chapter 10

Combinatorial HDA

The homotopy theory we developed in Chapter 7 was quite degenerate in the
sense that it was actually a homology theory. As a matter of fact it was re-
stricted to very few HDA, namely those which are generated by the free con-
struction on semi-regular HDA. We wish here to extend this to more general
HDA. It is clear from Chapter 7 that what we need is essentially to use some
kind of simplicial homotopy theory for both d° and d' boundary operators. This
requires to add some “degeneracy” operators corresponding to these boundary
operators. We construct such a model (called combinatorial HDA) in next sec-
tion. Then we develop a homotopy theory which we finally compare with the
one of Chapter 7.

There is another motivation for this construction. In [HR95] it is proven that
“there is no t-resilient k-set agreement protocol on a shared memory machine
with atomic read and write”. The proof relies on a form of the “Acyclic Carrier
Theorem” [Mun84] which holds only in the simplicial framework because we do
need some “degeneracy operators” (i.e. some idle transitions of any dimension).
In [HS94], it is also shown how to extract wait-free protocols from decision tasks
in a constructive manner. This is done by subdividing the input complex in
such a manner that the decision map becomes a simplicial map. We use the
combinatorial construction of the first section to describe this subdivision. No-
tice that the semantic model is more powerful than the “static” one used by
Herlihy et al. in that we do not ask for a fixed number of processes interact-
ing throughout the distributed computation. The result of [HS94] is therefore
generalized to distributed machines with, for instance, forking abilities.

10.1 Combinatorial HDA

Let n (n > 0) be the linear order 0 < 1 < ... < n —1. It is well known
(Appendix B and [May67, GZ67]) that the non-decreasing maps between any
k and [ are generated by the maps (0 <7 < n), (Face maps)

w;in—n+1

283
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(Degeneracy maps)

defined as,
Eoooif k<
uilk) = i ?
E+1 ifk>:
Eooifk<u
vi(k) =
E—1 if k>
They verify the following commutation rules, the “simplicial relations”,
U;u; = Ujtj—1 (l < «])
vjv; = ViV 41 i<y
UiVj—1 (l < ])
vjui = Id  (i=j,5+1)
Ui—10; (l > 9+ 1)

Now, instead of dealing with simplices, we want to deal with hypercubes.

“Oriented” hypercubes can be thought of as the Hasse diagrams of partial order
between the states, “to occur before”. This leads to considering non-strict-cover
preserving maps, i.e. maps which do not reverse time and which are in some

way simulations.
We are in particular interested in some maps between H o(k) and =
©(l). These are generated by the following functions (0 < ¢ < n)

(50 n|—| n+l

K3

n+1 | = |n

defined as follows,
Fwr, e r)) = {ug(@r), . ui(zr)}
7(S)=4{i}uUs
0,(5) = S$\{i}
o?{x1,. . 2 )) = {vi(xy), ... vi(@p)}
or({x, . er)) = UH{wi(zy), . vilan)} = {4})
where {21,...,2;}, — and U in the last equality are respectively the multiset

containing z1,..., 2} (may have multiple occurences of some z;), the difference
between multisets and the union which from a multiset returns a set where we

forget multiplicities.
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Figure 10.1: Action of generating morphisms 6!, ¢, ¢! and o°.

{01 PR (T IR
0 5 R L © 5 —={0)
--= 0 o, --= ! g0
{0 1 —= [F T O - pl —= [F
5 }\/ T
N I~ g . o
AN I o o}

0

9] 9] 9] 9]

{% Notice that only o} is not additive (i.e. does not always commute with U).

We conjecture that these morphisms generate all cover-preserving maps from
any (, Q) to any (, Q) (look at Figure 10.1 for seeing the actions of these

operators on the lattices | k |, represented geometrically).

These morphisms verify the following commutation rules,

o6 = B, (i<])
alo) = ol (i<])
U}U} = o, O'}_H (i <)
T, =TT
6,0, = 6,0
5?‘7?—1 (1< j)
o8y = Id  (i=j,j+1)

8000 (i>j+1)

5?‘7]1‘—1 (1< j)
alé) = t; (i=4,7+1)
(5?_10]1 (i>j+1)

0 — 76y (i< j)
TZ'_|_1(5§J (’L Z Z)

6%, = { bty (i< )
01167 (1> 7)

o { riod (i <)

Ti_la? (i>7)
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0%, = { bioj (1<)

U?U]l+1 (1< j)
ojof = ¢ olo} (i=jj+1)
ol o} (i>j41)
TZO'} (i<j)
o-T; = O']Q (22]7]+1)
Ti1o;  (i>j+1)

{ o (i=35)
7;0; = o
0;m; (1 #7)
0;1; = 6,

ProoF. Quite tedious. We derive some of the most interesting equations below.
We have already seen in Section 8.1.4 the commutation relations between the
boundary operators.

Let us first give a few hints about the commutation relation between o' and
6°.
036?(%}):{ ;vin(k)} if wj(k) # i and wj(k) # i+ 1,

otherwise
But u;(k) =i or u;(k) =i+ 1 can happen only under two circumstances,
(1) k<jand k=4,i+1,
(2) k>jand k=4—1,1¢.
We can now make the following assumptions,

o if j < 4, then case (1) is impossible, whereas case (2) can happen if
k=1i—1ork=1i. Then both ¢}8?({k}) and 620} ,({k}) are void. Now,
it k#¢—1and k # ¢ then by definition of the u; and v;, v;u; = u;v;_y.

This entails the result.

o if j > ¢+ 1 then case (2) is impossible whereas case (1) can happen if
k=iork=i+1. In that case, both o}8?({k}) and 690}_, ({k}) are void.
If £ # v and k # i+ 1 then the commutation relation between u; and v;

implies the result.



10.1. COMBINATORIAL HDA 287
e if j =7 orj =1+ 1 then it is easy to see that

0 if k=1,
{k} otherwise

S0 {k}) = {

This is 7; by definition.

O
These relations imply that if we set 6]1 = 7]6? then,

Lemma 34 (80,09) and (6}, 1) verify the simplicial relations and

5051:{ 62'16?—1 (l<])
n 61,69 (i >j)

Proor. Simple calculation using the commutation relations just proven previ-

ously. It is rather obvious for (69,0%). Now for (6},0}),
o if ¢ > j then,
02»16]1 = 0'2'17']‘(5?
= TjU}(S?
0.1
= 760,y
11
= bj0i,4
e if j=7orj=1+1 then,
02»16]1 = 0'2'17']‘(5?
040
a; (S]
= Id
o finally, if 7 > ¢+ 1 then,
02»16]1 = U}Tﬂ??
= Tj_lailéy
= Tj—l‘S?—lUil
11
= b6 40;

Finally, we derive the commutation relations between the two different kinds of
boundary operators,
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o if j < ¢ then,
Oc¢l __ 0_ ¢0
Tﬂ?é?

= §LgY

77%1—1
e otherwise, if 7 > ¢ then,

691 = 8076
0¢0
= T]‘_|_1(SZ' (5]

_ 1 0
= 010

a

Let D be the category whose objects are the| k |(k € IN) and whose morphisms

are generated by the morphisms 62, o9, 7;, 6; and o!.
We call any contravariant functor from the category D to some category C a

cubical object in C or a cubical complex of elements of C! (as for simplicial
complexes, see Appendix B). The category of cubical objects in C is denoted

[k'. When C = R — Mod, its elements are called combinatorial HDA.

The morphisms of combinatorial HDA are natural transformations. In partic-
ular any morphism f from F to G is such that,

G(69) o [ = foF(&8)
G(of)o [ = foF(a?)
G(ri)o [ = foF(r)
G(o})o f=foF(o})

The image of 67 by any element F of [k' will be denoted by d?. Similarly

F(o?) = 5%, F(r;) = t; and F(o}) = s!. We write d! = d%;. The commuta-
tion relations we have proven show that (F,d?, s?) and (F,d},s!) are simplicial

objects in C.

Example 50 For C = Set, the contravariant functor,

Dﬂ: D —  Set
HomD(, n )

1s called the standard n-cube.

"When € = Set this is isomorphic to a subcategory of bipointed sets (private communica-
tion by Vaughan Pratt).
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There are interesting relationships with semi-regular and general HDA.

There is an embedding functor £ from O to Dop with,

. E(Dn): n |

o E(df) = (6F)7.

Therefore, there is a forgetful functor Fg : DSet — T, such that Fg(F') =
Fol,

Conversely, we know that all elements of T, are amalgamated sums of standard
cubes (see Chapter 2). We can define a completion functor Co: T, — DSet
which, given 2 € T, constructs C'o(z) by amalgamating the standard cubes
(see Example 50) in the same way the standard cubes in T, were amalgamated
to yield z. It can be shown that Fg is right-adjoint to C'o.

Notice that the definition of acyclic combinatorial HDA is somewhat different
from the one for general HDA. Degeneracies are cycles. Let D(M) =@ (Im s?+

Im s!) be the module of degenerated elements of a combinatorial HDA M. Then
we say that that M is acyclic if and only if M/D(M) is acyclic in the usual
sense, i.e. there is no z in both M, , and My ., p #p', ¢ # ¢.

We will show in Section 10.3 that a general HDA can be represented as a
combinatorial HDA on R — Mod and conversely.

10.2 Homotopy theory

We have real simplicial sets in combinatorial HDA based on C = Set. The
ones based on (6°,0°) are going to represent the input complexes in Herlihy’s
framework (see Chapter 7). The ones based on (é6',0') are to represent the
output complexes. What we need to do now is to adapt the homotopy theory we
have developed for semi-regular HDA to the much more general combinatorial
HDA. The idea is basically to have “elementary” deformations in our homotopy
theory corresponding to an elementary deformation in the simplicial complex
(6°,¢%) and an elementary deformation in the simplicial complex (é!,0!) (see
Figure 10.2).

First we recall (Appendix B) that for a simplicial complex (K, 9;,0;) two n-
simplexes x, 2" are homotopic (2 ~ 2') if and only if

o Jix = 0ix' forall 0 <7< n,
o there exists a simplex y € K, 41, the “homotopy”, such that,

— OpYy =17,
- n+1@/:$/,

— 0y = 0p_10;x = 0,102 for all 0 <1 < n.
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Figure 10.2: Homotopy in a combinatorial HDA (the curved arrows indicate the
elementary deformations — left is the HDA, right is the corresponding simplicial

,’:\‘§

b’ a output simplicial complex

complexes)

input simplicial complex

If K is a Kan complex, for instance if each K, is a R-module and all the 0
and o; are R-module homomorphisms, then ~ is an equivalence relation on the
n-simplices of K, n > 0.

As for semi-regular HDA, we can decompose combinatorial HDA in order to
have a notion of time. This is done by distinguishing among M,,, R-modules

M, , such that M, = >~ M, , and such that,

ptg=n
[ d? : Mp,q — Mp—l,qv
o di: Myy— My41,
o sV My, — My,
o s; My, — My 4.

Let (M,d?,d},s? s}) be a combinatorial HDA in R — Mod. Then we know

R B A ]

by Lemma 34 that (M;.,d?,s¥) = H;(M) and (M. ;,d}, s}) = V;(M) are two

IR [
simplicial R-modules, hence are two Kan complexes. Fach one of them is thus

equipped with a homotopy, ~g and ~; respectively.

Definition and lemma 9 Let S be the relation defined on n-cubes of M by,

xj =% AL+

Jyo, Hz’—1(96z’) ~0 Hz’—l(ﬂC;')
with homotopy o,

Fy1, Vilwiz) ~1 Vil@ig)
with homotopy y1,

Vilyo) = Hi—1(y1)

v =(x1,. .., 05 € Mgy_g)Sa" = (2,..., 2} € Mg i) &

Then the transitive closure ~ of S is an equivalence relation.

Let now ® and ¥ be two states~ of a combinatorial HDA M. We define the set
of 1-paths from ® to ¥ to be M'ICI)’LIJ ={x € My/dy(z) = ®,d}(z) = ¥}.
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Figure 10.3: A 1-path in a combinatorial HDA.
0 0

S S S S
o1 o'z oY 01
X = ; ; ; ----------
% i% Voo % Vs 1 X
e,z =ay —sg(v1) + a9 — .. — 89(Va_1) + Ty

Note that this definition is a natural generalization of the definition of 1-paths
on semi-regular or regular HDA in that we can now use the “idle” transitions
to cancel the intermediate states between ® and V¥ in the computation of the
boundaries of a 1-path (see Figure 10.3).

Let mo(M) = {(®,¥) € My/ thereis a 1-path from @ to U}/T be the set of
“oriented” connected components, where T is the symmetric closure of T” de-
fined as follows,

(@1, ¥y)T'(P2, Uy) if and only if there is a 1-path from @ to ®3 and from U,
to \Ill.

Now we denote the set of 1-paths from ® to ¥ modulo homotopy by ﬂ;b’qj(M) =
~ 3

My~

We have an operation ; on paths defined as follows,

oo MY st —

defined by z;y = x + y — s3(¥). This operation is well behaved with respect to
homotopy in the sense that z ~ 2’ and y ~ ' implies z;y ~ z'; ¢'.

Then the full fundamental R-module of M is

m(M)= > 2P (M)/A{lp)ila] = [psal}

(®,9)eM,

Let now p = (p;)o<i<k be a 1-path. The set of n-loops around p is defined to
be,

MP = {xeM,/x="5;z; and

The nth homotopy set based at p is
(M) = ME/ ~

We say that M is n-connected if dim nj (M) = 1 for all p and k < n, oco-
connected if n-connected for all n.
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10.3 Homotopy theory of general HDA

Let M € DR — Mod. The image of 62, 02, o}, 7, and 6; by M are written

10 Yo
respectively as d%, s¥, sl ¢, and T;. We redefine in this section only d} =

d_tn_i: Myuy1 — M, (0 <i<n), where M,, is a short notation for M(| n ).
We also define D(M) to be the module of degenerated elements i.e. D(M) =)

K3

(Im s9 + Im s}).
Similarly to the standard construction for proving the equivalence of the cate-

gory of simplicial modules with the category of complexes of modules [May67,
GZ67], to every combinatorial automaton M we associate a general HDA =(M)

by,
(M), =M, NKerdyn...0NKerd®_,N KerdjN...N Kerd}_,
as an R-module. The boundary operators dy and 0y are defined as dg : Z(M ),, —
E(M)n_l, 80 = (—1)n_1d2_1 and 81 . E(M)n — E(M)n_l, 81 = d711—1‘
We have,

ooy = —dt_,d*

n—2%n—1

_ k k
- _dn—an—Z

which is 0 on Z(M),, by definition.

Moreover,

ot = (=1)"7%dy_yd)_y
—(=1)""1d}, _ydy_,
= —hdy

Therefore dg o 0y + 01 0 dp = 0. Z(M ) is a general HDA.
Conversely, if P is a general HDA, we define

G(P)p, =P, D ( Z Z Spy - .siasqul_ﬁ .. -5111;6516%/ .. -Pi,j) /E

1<ity<p+q—2 k=p—i,l=q—j

0

P
where £ is the equational theory of morphisms ofD with p+¢g—1> ug >
o> U 20, p+g—1>upy>...>0and pt+g-—1>v>...>0v3>0...

On every G(P),,, the boundary and degeneracy operators d°, s® and d!, s! are
Vi<pt+qg—1,d=d =0
Vo € Ppg, dyyga(v) = (=1)"""10(x)

Ve € Py, dl-l—q—l(gg) = Oi(x)

p
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and on degenerated elements, the boundaries are given by the equational theory

op
of morphisms of D .

Let P be a general HDA, M = G(P). Then P, C Kerdy N ...N Kerd!_,
because, by definition of M, dJ,...,d._, = 0 on P,. Moreover, z = s(y), for
y € Po_1,y # 0, is certainly not in Kerdgn...N Kerd;,_,, since dj(z) =y # 0.
Therefore, Z(M) = Z o0 G(P) = P as a R-module. Notice that dy[= o G(P)] =
(=1)" Y0 _ [G(P)] = 9o[P] and 01[Z o G(P)] = dL_{[G(P)] = &1[P]. This
proves that Zo G = Id in T>q, the category of general HDA with no events (all
elements are of positive dimension).

This shows that = reaches all general HDA of positive dimension. We define
the homotopy of a general HDA P by,

Tn(P) =aey ma(G(P))

Remark: Similarly to the construction in the simplicial case (see [May67],
Chapter V), we think that if M is a combinatorial HDA, G o Z(M) is a compo-
sition of deformations each of which preserving one of the homotopies ~q or ~q.
Therefore GoZ(M) ~ M. Then 7,(2(M)) =ges To(G o =Z(M)) = m,(M). This
would show that the definition of homotopy groups we have given for general
HDA agrees with the definition we have given on combinatorial HDA.

10.4 Relationship with semi-regular HDA homo-
topy

We show here that the homotopy theory of combinatorial HDA is an extension
of the homotopy theory of semi-regular HDA since we know by the previous
section that it covers at least all general HDA.

Theorem 4 For all ®, ¥ states of some acyclic semi-reqular HDA P, H?’Q(P
and ﬂ?’qj(CO(P)) are isomorphic R-modules. This implies that m(Co(P)) =
I (P).

Proor. To any l-path p from ® to ¥ in P, p = (p1,...,pr) we associate

P=pL+...+pp—s3dipr — ... — s§dipr_1 in Co(P). The definition is valid
since we have the cocartesian square (in T, ),
[T oy,

hence a corresponding cocartesian diagram image by Co. This proves that
s9dp; € Co(P) and di(p;) = d3(pit+1) in C'o( P). Therefore, a simple calculation
shows that pis a 1-path from ® to ¥ in C'o( P). In fact, p — pis an isomorphism
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from the R-module of 1-paths of P to the R-module of 1-paths of C'o( P), M}
as we show below.

Suppose ® € Py, ¥ € P, _j. Let p € Mlq)’qj, p=9p+ ...+ pr where p; €
Co(P);1-;. We can write (for all 1) p; = p! + o0(z;), where the p! are in some
supplementary of Im o in Co(P). Then as dip; = dip} + z;, dSp; = ddp; + 5,
the fact that pis a 1-path from ® to ¥ in C'o( P) implies that forall 2 < ¢ < k-1,
v, = —dipl = —dipi_; and &Jp| = ®, dip|, = ¥. Therefore p' = (pi,...,p}) is
a l-path in P and p = p'.

Let now p and ¢ be two 1-paths from ® to ¥ in P. Suppose p and ¢ are
elementary equivalent at time 7, i.e. there exists A € P, such that p — ¢ =
(0o — 01)(A).

In H;—1(Co(P)), we have p; = p; — sydSp; and §; = ¢; — s3ddq;. Note that
do(pi) = 0 = dg().

Let yo € Hi—1(Co(P))be yo = A—s3s3ddp;. Then dd(yo) = p;—s3dSp; = p; and
d(yo) = q; — s5dSp; = G;. Therefore, p; and ¢ in H;_1(Co(P)) with homotopy
Yo.

In Vi(Co(P)), Pit1 = pit1 and Gip1 = gip1. Note that df(piy1) = di(Gipr)-

Let y; = A € Vi(Co(P)). Then d(y1) = Git1 and d}(A) = pir1. Therefore ;41
and p;4+1 are homotopic in V;(Co(P)) with homotopy y;.

Finally, Vi(yn) = A = H;_1(yo) therefore pSG. This shows that p — p induces
a map from H?’W(P) to ﬂ?’qj(Co(P)).

We prove that it is an isomorphism by showing that pS¢ implies p and ¢ are
elementary equivalent.

By definition of 5, we have yo and g such that,

o di(yo) = pi and dY(yo) = Gis yo = A+ sp(x),
o di(y1) = Git1 and d}(y1) = Piy1, 1 = A+ sh(y).

Therefore, d(yo) = dS(A) + z = p; — s3dSp;. But d3(A) is not in Im sJ there-
fore € Im s3. Thus d}(yo) mod Im s = d(A) = p;. Similarly, d{(A) = ¢,
di(A) = gip1 and di(A) = p;y1 and p and ¢ are elementary equivalent. O

We have no result yet for higher-dimensional homotopy groups.

10.5 Construction of wait-free protocols

Let M be a combinatorial HDA, domain of possible executions of processes on
a given machine , with some given inputs constrained to terminate with some
prescribed output values. In other words, M is the domain specified by some
decision task.

We suppose that M, is the first non-null line in M and that My . is the
first non-null column of M. The input complex I of M is then the simplicial
complex (M. g,d°, s°) and the output complex O of M is the simplicial complex
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Figure 10.4: A decision map read from a combinatorial HDA

(Mg, d, s'). Notice that points in these complexes correspond to 1-transitions
in M.
We define now what is to be the decision map f from I to subcomplexes of O.

Let z € Iy be a 1-transition. We set,

fz)={y € Oo/(p1 = 2,p2,.. ., Pk—1,px = y) l-path in M }

This means that f sends all 1-transitions of I onto the set of 1-transitions of O
which belong to the same 1-path of M.

Similarly, we define for higher-dimensional transitions (z € I,,, n > 1),

fx) = {y - on/{ g epaths of AT st }

(ur = @, ug, ..., Up—pn, = y) (n+ 1)-path between p and ¢

We have pictured an example in Figure 10.4 (we have not pictured the de-
generate transitions). The decision task is clearly wait-free since the HDA is
2-connected. A protocol for solving this decision task should solve the indeter-
minacy in the value of f(a). The only way a protocol can do that is by having a
hidden variable which will make the choice of taking a to ¥ or a to ¢’ from the
very beginning of the execution. This means that the protocol is a map (which
will actually be simplicial) from a subdivision o(I) to O. The new points in
o(I) are executions of transitions of M where the value of the hidden variable
differs from one point to the other. Two protocols and their corresponding
maps are shown in Figure 10.5 together with the subdivided execution domain
from which they can be extracted as decision maps from its input to its output
complex.

Now we prove that what is exemplified in Figure 10.4 and Figure 10.5 is a
general phenomenon.
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Figure 10.5: Wait-free protocols corresponding to a subdivision of a combina-
torial HDA

or g
\ -
b g b g
.

correspond to

First of all, we have to define formally what subdivisions are.

(*) Definition 7 [Spa66] A subdivision of a complex A is a complex B such
that,

(1) the vertices of B are points of | A | (where | .| is the geometric realization
functor),

(2) if S is a simplex of B, there is a simplex T € A such that S C| T |,

(3) the piecewise linear map | B |—| A | mapping each vertex of B to the
corresponding point of | A | is a homeomorphism.

Theorem 5 Let M be a oco-connected combinatorial HDA, I, O and f, its
input complex, its output complex and its decision map respectively. Then there
exists a subdivision o(I) of I and a simplicial map g : o(I) — O such that for
allz €1, g(z) C f(z).

SKETCH OF PROOF. Let  and y be elements of I such that d9(z) = d?(y) = po
for 0 < i <k —2. M is oo-connected implies that & ~g y. Similarly, if z and y
are elements of Oy, such that d}(2) = d(y) = po for 0 < i < k-2, 2 ~1 y as
M is co-connected.

O is therefore co-connected. A classical result [Mun84] asserts that for any
subdivision o if there is a simplicial map ® : o(A[j]) — O (where A[j] is
the standard simplex of dimension j) then there exists a subdivision 7 and a
simplicial map ¥ : 7(A[j]) — O such that,
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o 7(A[j]) = o(A[j]),

* Y = Yirany

Therefore we can subdivide I by induction on the dimension. The important
case is then the base case where we add more points to 1.

Let @ € Ip. We know that f(z) = {y1,...,yk,}. We add new points to I,
22,4, 2k,, defining a subdivision o of Iy. We choose to define g by setting
g(z) = y1. This is done for all © € Iy. ¢ is defined on vertices so ¢ is a simpli-
cial map. The remark above gives us the rest of the subdivision. O

This result enables us to construct a protocol for solving our decision task since
it is shown in [HS94] that there is an algorithm, the participating set algorithm,
that solves the simplex agreement task, whose decision map is precisely the map
g defined above. This corresponds to the generalization of the main result of
[HS94] to a distributed machine with forking abilities for instance (since we are
not compelled to have a constant dimension in all time slices of the HDA M)
and refines the result of Section 8.2.3.

Summary We refined the semi-regular and regular HDA models by adding
some degeneracy operators to the boundary operators describing the way n-
transitions are part of (n 4 1)-transitions. The degenerate transitions can be
seen as the higher-dimensional analogues to the idle transitions of ordinary tran-
sition systems (see Chapter 1). They can also be seen as the only construction
that enables us to have a simplicial complex corresponding to each boundary
operator. Then a homotopy theory of oriented paths has been constructed us-
ing the homotopy theory of each of the simplicial complexes. It was then shown
that this allows us to have a homotopy theory for all general HDA, compatible
with the one we have just defined. It was shown to coincide with the homotopy
theory (at least when it comes to the fundamental groups) of Chapter 7 when
restricted to semi-regular HDA. Finally, we gave an application by recasting
Herlihy’s method for building wait-free protocols from their decision maps and
input and output complexes in an entirely semantic framework. This gives good
promise for future generalizations of problems for complex distributed systems
like systems with changing topologies and varying number of processes.
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Chapter 11

Timed Higher-Dimensional
Automata

11.1 Introduction

In this chapter, we are proposing an extension of HDA to deal with real-time
systems.

Most existing models do not give a natural view on real-time systems (we refer
the reader to Chapter 1 for a brief account of models of real-time systems).
“Deadlock-freeness” is a property induced by the non-naturality of the base se-
mantic model. Many technical details make the intuition about time disappear.
One example is “time-determinism”: all models should make the passage of time
deterministic. The main problem in process algebras is the choice operator, as
reckoned in [HR91],

“If two processes are just idling before the environment requests
one of them the choice between them will not be made by the passage
of time alone. That is to say, + is not decided by the action ¢. This
is necessary to ensure that the passage of time is deterministic.”

There is no problem as soon as time is measured on actions. Here we follow
[Jos89] and use the ability of HDA to represent scheduling properties as a
basis for a model of real-time systems where actions take time. A transition
should really take time in the sense that it corresponds to an abstraction of
some computation. As a matter of fact, we asked for refinability so we cannot
assume actions to be only “elementary” — almost instantaneous — ones.

Unfortunately models for real-time concurrent systems having transitions bear-
ing time changes can no longer be based on ordinary transition systems since
interleaving of two actions a, b will result in having an execution time equal to
the sum of the times ¢ and b take. This obviously ruins all future reasoning and
explains why this natural idea has never been formalized up to now (except in
some restricted way in [CZ91]). A solution is to follow a truly concurrent
operational approach. As more generally scheduling policies of processes onto

299
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processors have a direct impact on the measure of time'!, it appears that we
need more than that.

We need to be able to describe the level of parallelism, i.e. the number of
busy processors at a given time. The main idea is to conceive executions as
geometric shapes. Ordinary transition systems can already be thought of as
one-dimensional trajectories. Then the asynchronous execution of n actions
is a trajectory (or transition) of dimension n. We carry on by realizing these
shapes in some euclidean space IR™ (Section 11.1.2) as a basic step towards
having execution time of transitions measured by their length. This situation
is abstracted in Section 11.2 where the length depends on a norm associated with
every transition. We construct a category of models (timed HDA) by defining
morphisms to be “simulations” (as in recent work in concurrency, [WN94]).

A correctness criterion with respect to untimed semantics is obtained by forget-
ting the geometry and the norms (Section 11.2.2). Fairness (Section 11.2.1) is
also discussed. In Section 11.2.3, Zeno behaviours are shown to be of a topologi-
cal nature. Similarly to fairness properties, we propose to give a choice between
allowing or not these behaviours.

Finally in Section 11.3, the model is shown to be natural in the sense that
parallel composition, non-determistic choice, etc. with suitable timing laws are
categorical combinators in the category of timed HDA. Moreover the model
covers different paradigms since synchronized product and function spaces
are again natural constructions. The category of timed HDA is actually a model
for non-commutative intuitionistic linear logic. It has then enough categorical
properties for being used for denotational (or categorical) semantics. A
SOS-like metalanguage is defined for the operational semanticians and put to
work on a toy language.

11.1.1 From the untimed to the timed world

In the formalization of semi-regular, regular and general HDA, we have forgot-
ten the geometry. Let us have it back in the manner of the geometric realization
functor (Chapter 2).

As a matter of fact, in order to introduce time in the model we already have,
we are going to represent transitions as real continuous geometric objects. Con-
tinuous geometry is good for measuring time: the principle here is to have time
measured by the length of transitions (or paths). Traces are then real trajec-
tories as in mechanics. This is close to intuition, contrarily to most approaches
transitions take time. Being interested in program analysis, where transi-
tions are in fact abstractions of some complex process, this approach is very
natural. In particular refinement comes then for free (see Figure 11.4 for an
easy example).

We recapitulate the construction of the geometric realization functor.

'In most work on analysis of real-time languages, a “maximal parallelism” assumption is
assumed. This clearly is too rigid when it comes to real machines, and leads to complicated
discussions when one wants to change the scheduling policy in a semantics.



11.1. INTRODUCTION 301

We associate with every n-transition 2 a unit cube of dimension n in IR"™,
O, ={(to,...,1,)/¥i,0 < ¢t; <1}

Then, similarly to the glueing process for semi-regular HDA (Chapter 2), we
glue these cubes together according to the values of the boundary functions. In
order to do this, we need to define functions characterizing the boundaries of
these unit cubes in IR™. Let ¢¥, 0 < i < n, be the continuous functions (n > 0)
from O, _; to O, with

65(1507' . '7tn—1) = (t07' . '7ti—17k7ti7' . '7tn—1)

They describe how the boundaries of a cube can be included into it. Then
(i <),

Consider now, for a semi-regular HDA M, the set

R(M) = U (z,0,)

n,z €My,

Each (z,0,) inherits a topology given by the standard one on R"*!, thus R(M)
is a topological space with the disjoint sum topology. Let = be the equivalence
relation (the “glueing” relation) induced by the identities: Vk,i, @ € M, 41,
t€0,,n>0,(d¥z),t)=(x,68(1)). Let

| M |= R(M)/ =

It has a structure of topological space induced by R(M). | M | is called the
geometric realization of M. It is easy to make this construction into a
functor from T, to Top, the category of topological spaces with continuous
maps. As observed in [GZ67], we can actually work in Ke the full subcategory
of Kelley spaces (i.e. compactly generated topological spaces, [AM93]) instead
of the entire category Top. The geometric realization functor has then fairly
nice properties. When ranging over Ke it commutes (similarly to [GZ67]) with
finite inverse limits and all colimits. All this gives us a hint about how to define
timed higher-dimensional automata. A first step towards a general definition is
given in next section.

11.1.2 Timing a semi-regular HDA

Let M be a semi-regular HDA. The standard way in mathematics to measure
the length (time) of transitions in | M | is to have a norm || - ||, on the tangent
space at every x € M of the shapes we have.
2

¢ (1)
parametrization v of @ (it does not depend on the parametrization chosen).

Then the length of a transition a is the integral of the speed || for a

| M | has a well known differential structure. On every transition of dimension
n, we put the norm |luy, ... unll,, . = maz{| w1 |,...,] u, [}. The norm
chosen corresponds to giving all 1-transitions the unit duration and to have
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Figure 11.1: Some paths in a Timed HDA

that when n processes run asynchronously, the time to complete them is the
maximum of the times necessary to complete each of them. This corresponds
to our view of independent processes running asynchronously.

For instance, in Figure 11.1, the geometric realization of the path is of length 2.
The fully synchronous execution in the automaton at the right-hand side (the
diagonal of the square from the starting point to the end) is of length 1.

This view to timed HDA, if encouraging, is not yet satisfactory. We have a very
rigid notion of time in the sense that the norm has to be chosen uniformly for
all transitions. We only have to abstract away from a so concrete representation
in order to get what we need.

Look for instance at the classical billiard example (Figure 11.4): the represen-
tation of transitions has been chosen in order to fit to the trajectory of the ball;
states are then the coordinates of the point representing them. The picture will
become more general in next section.

11.2 Basic definitions

First of all, we need a geometric shape X to define a timed HDA, i.e. we
need a topological space. There are many kinds of topological spaces. We have
seen that timing semi-regular HDA only requires Kelley spaces. Actually, Kelley
spaces seem to be a good choice. They have very good algebraic properties: they
form a complete and cocomplete cartesian closed subcategory of Top [AM93].

Then we have to give a differential structure on X to be able to measure time.
It is difficult to do so in full generality. In particular, when it comes to algebraic
properties, differential manifolds are difficult to handle?. We therefore choose
to present here a very particular mathematical object, in which the differential
structure is given by the transitions.

Thus we have to look at transitions now. Intuitively they should be sort of
deformed cubes (see Figure 11.2). This leads us to define them as almost
inclusion functions, i.e. as continuous functions z : O, — X (called singular
cubes®). They are required to be continuously deformed cubes only in their
interior since we may want to identify some of their boundaries to get cyclic

2Quotients, function spaces are hard work (they need submersion theorems and infinite
dimensional differential geometry respectively).
®By analogy with singular simplices, [May67].
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Figure 11.2: Deformed cubes

shapes. This is formalized by saying that all singular cubes z : d,, — X induce
homeomorphisms from* 0, to their images®.

Moreover, we want X to be covered by all its transitions, i.e. we impose
{x(ﬁn)/n € N,z € X, } to partition X, i.e. X is the disjoint union U

nelN,zeX,
x(ﬁn) We should be able to take boundaries, i.e. the collection of singular
cubes should be stable by composition with 67 (by Section 11.1.1).

Finally, on every tangent space 1,X =gy Txu(ﬁn) (where 2 € u(ﬁn), uwe X,)
of X at € X we have a norm || - ||, such that F(z,&) = [|Z]], is a continuous
function®. The norm can be seen as an infinitesimal cost for the computation
at some point. To sum up things,

Definition and lemma 10 A (unlabeled) timed HDA is a compactly gener-
ated Hausdorff topological space X together with a presentation of X by singular
cubes, i.e. a sub-HDA of S(X) (a combinatorial cell complex in the terminol-
ogy of [LW69]). This means that we have sets X, containing singular cubes
v : 0, — X stable by composition with §5. Moreover we impose the following
conditions on X,

o {x(ﬁn)/n € N,z € X,,} partition X, i.e. X isthe disjoint union U
nE]N@’EXn
o
x(‘:‘n)}

. . . o .
o all singular cubes x : O, — X induce homeomorphisms from 4, to its

4E|n denotes the topological interior of O, i.e. E‘n ={0<t <1}, n>1and E‘o = {0}.

®Therefore the singular cubes give a (trivial!) structure of manifold to all the x(lﬁn)

°If F is at least C* then this defines a Finsler space [Run59].

Recall that a norm F' verifies the properties, Vk € IR, F(z, k%) =| k | F(z,2), F(z,£) >0
and F(z,2) =0 if and only if £ =0, and Vz, & and &', F(z,2 +2') < F(z,2) + F(z,3").
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Figure 11.3: Delay transitions (left) and timeout HDA (right).
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image. Therefore the singular cubes give a structure of manifold to all the
z(0,).

o X is given a family of norms ||.||, on every tangent space T, X =gc¢
T,u(8,) (where x € w(D,) ) of X at x € X such that,

— F(x,&) = ||%]|, s a continuous function,

— forallk € R, F(z, ki) =| k| F(z, ),

— F(z,2) > 0 and F(z,&) =0 if and only if & = 0,

— forallz, & and &', F(z,i 4+ 3') < F(a,%) + F(x,2').

Proor. Things are particularly easy in our case. Define the atlas (see Appendix
C) A, of 2(8,) to be composed of the unique chart (&, 271). Tt gives 2(C,)
the structure of a differentiable manifold since ﬁn is an open subset of IR™ and

7! is an homeomorphism.

The local coordinates in the atlas A, are denoted (21,...,2,). O

Example 51 (see Figure 11.3)

o Let Xy (t € IR) be the timed HDA generated by the unique I-transition
Az.tr @ Oy — 10y = {0 < 2y < t}. tOy is equipped with the norm
|||, =| & |. We will see that it is a delay transition of duration t (similar
to the 6, operator of timed CCS).

o Define T} to be the upper half circle of diameter t centered at coordinates
(L,0) in the plane R* (with its standard basis). It is given the structure
of a timed HDA with the norm induced by the euclidean one in R%, and
with the covering of 1-transitions (for 8 € [0,71/2]) xg : Oy — T}, xg(u) =
(tucos®(8), tusin(8)cos(0)). We will see that it allows us to represent a
timeout operator (t is the mazimum waiting time).

When X is a timed HDA, it is easy to see that the collection of sets X, defines
a semi-regular HDA. We define in a similar manner morphisms of timed HDA,
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Figure 11.4: A timed HDA representing a billiard ball trajectory (i), and a
refined version (ii).
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Definition 52 Let X and Y be timed HDA. A continuous function f : X — Y
is a morphism of timed HDA if and only if,

(1) for all n-transition x € X,,, there exists a n-transition y € Y,, such that

T
a, — X

y\ f
Y

commutes (which reads y = f(z)).

(i1) f defines a differentiable function from all the x(ﬁn) to y(ﬁn), where z is
a n-transition of X and y is its image by f (an n-transition of Y ),

(iil) f commutes with all the boundary operators.

Actually, since we are in a very special case, (i) implies (ii) since f is then the
identity function in the local coordinates, thus a "> diffeomorphism.

We write TY for the category of timed HDA.

Notice that no requirement has been made on the way morphims behave with
respect to time. Choices are not so easy for “computer-scientific” reasons as well
as for “technical reasons””. Nevertheless, we will consider two subcategories of
TY, TYT_ whose objects are timed HDA and whose morphisms f : X — Y
preserve time (are isometries), i.e.

ldf (u)-all oy = Il

(where df is the differential of f), and T'Y< whose objects are timed HDA and

whose morphisms f contract time®, i.e.

ldf ()il 3y < llally

TCategories of metric spaces do not have very good algebraic properties in general. One
must be careful when defining morphisms!

8Called conservative functions or non-expansive maps in categories of generalized metric
spaces.
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Remark as well that v being a n-transition of X is equivalent to v being a
morphism from O,, (whose structure as a semi-regular HDA is generated by the
only n-transition Id) to X.

Timed HDA are in particular semi-regular HDA. As such we know what is a
path in it (we may add in particular initial and final states to timed HDA).
But it is not clear however how to decide how much time a transition may take.
To answer this question we define “virtual paths” in a timed HDA X as being
particular curves on X of which paths are abstractions of, in some way.

Definition 53 A wvirtual path v in a timed HDA X is a continuous function
v :[0,00[— X such that,

(i) there exist open intervals I, =]ag, app1[, 1-transitions 2%, k= 0,...,m—1

such that ag = 0, oy, = 00 and 5, Iy — 28 (Cy) (then vy is of length k),

(ii) i, is a differentiable function (I has the standard differentiable structure
of R),

(iii) 2% o Yy, Gre increasing maps.
The set of virtual paths from a point u to a point v is denoted by Vi(u,v).

To determine the time that a path takes from its initial to its final point we use
the metric generated by the norm on X?.

Definition 54 (see [Run59]) The distance inf between two points v and v in
X is defined to be (with value in R U 0o )'?,

4 (u,0) = i fyevigun) /0 [ETOIT

We have also the distance sup between two points (with value in IR U oo ),
X < d
A¥(1,0) = supreviao) [ IOt

d¥ defines a distance function thus a metric on X (generalized in the sense that
it may take infinite values).

In TT—, automata are simulated exactly in the same time (i.e. all virtual paths
and their images have the same length).

In TT<, we allow to simulate by faster automata. This is a sensible notion of
simulation since programs can only be safely implemented on faster machines
than needed!!.

®This is very close to the intuition behind the metric spaces models for real-time of [RR87].

%Where the integral is in fact the sum of the integrals on the open intervals Iy.

" There exist important properties that are not preserved when going on a faster machine
(see [CZ91]), but this goes beyond the scope of this thesis.
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Figure 11.5: A weakly fair path whose untimed version (right) is not fair

asymptotic behaviour of p

Example 52 A simple computation shows now that X, (Fxample 51) has length
t, i.e. has evecution time t.

For Ty, the 1-transitions xg have execution time from 0 to t. The transition zq
leads to the escape sequence, all the other ones lead to the normal ending of the
program.

Finally, a hypercube of dimension n timed as in Section 11.1.2 has mazimal ex-
ecution time n (all interleavings) and minimal execution time 1 (synchronous
execution of the n 1-transitions, i.e. the diagonal of the hypercube). We post-
pone the proof to Section 11.4.1.

Similarly to the untimed case, we can define labeled timed HDA to be unla-
beled timed HDA plus a labelling morphism in TT. Timed higher-dimensio—
nal transition systems are labeled timed HDA together with an initial state.

11.2.1 Fairness

Notice that we can easily define a time local to a processor. We can take
for granted that in | M | the length of the projection of a path 4 on the ith
coordinate is the cpu time of the ith processor on . More generally, we suppose
that a’vi(cfl—z)m is the infinitesimal cost of computation on processor .

We propose two notions of fairness.

Quantitative weak fairness is expressed as a property of the norm: all pro-
cessors must be used for some time on every (fair) paths, i.e.

. od
10, ..., 2:(5),0,...,0)

should be a strictly positive function of time. This does not say anything about
completing actions on some processor. This only enforces that all processors are
used. This does not correspond to any good fairness property in the untimed
case (see Figure 11.5).

12Where #; denotes the ith coordinate in the tangent space.
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Figure 11.6: A strongly fair path and its untimed fair version (right)

l
I'p
l

Quantitative strong fairness is a stronger property on the norm: whenever
the global time diverges, the local times of every processor must diverge as well.
One can show (see Figure 11.6) that this corresponds to strong fairness in the
untimed case (when concurrency is modeled by interleaving of actions).

11.2.2 Correctness Timed/Untimed

Similarly to the work done in program analysis, we can define a way to go from
the timed to the untimed world and then back to the timed one which has
special properties. It is done in general [CC77] by means of Galois connections
which ensure that an analysis (or a non-standard semantics) is correct with
respect to a semantics.

Being in a completely categorical framework, the right mathematical tool is
then pairs of adjoint functors. We actually have here a right-adjoint to the
functor | - |, Ft : TYT — T, defined by Ft(X) = (X,,), (Ft forgets time).
Obviously, for all M € Yy, Ft(| M |1) 2 M. Let nx = Id: X — Ft(]| X |¢).

Now, | Ft(X) |¢, = {(z,0,)~/2 € X,} where ~ is the equivalence relation
generated by, Vt € O,_1, (d¥(2),t) ~ (z,65(t)). For (z,0,) € | Ft(X) |, we
have a morphism z o pry : (,0,) — X. To have them extended to a morphism
| Ft(X) |; — X we have to verify that they are well-behaved with respect to ~.
Let t € O,y and 2 € X,. Then (d¥(),t) ~ (z,685(t)). The morphism
constructed from the right side is @ o 6% o pry = d¥(z) o pry which is the
morphism constructed from the left side. This concludes the construction of
ex || Ft(X) |i— X.

¢y defines a natural transformation since e€x is natural in X. As a matter of
fact,let f: X — Y beamorphismin 7Y and (2 : O, — X,t € O,) €| Ft(X) |+
| FU(f) |t (2,1) = (f(2),1) and ey (f(2),1) = f(2)(1) = f(2(1) = flex(2,1)),
hence the naturality in X.

We prove now that,

FHX) Fi(ex)

(1) Ft(X)
(2) 1| M [

(| Ft(X) [¢)

FuX)= Id
L Fu(| ] ) 92

M |¢ t|M|t: Id
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Figure 11.7: Typical Zeno behaviour and a hybrid system implementing it.
S

ﬁ t S beeps
limit point /E

A timed HDA that could represent this behaviour is X with,

e X =10,1],
i Xo:{$2/’L€]N,$ZII—% ’
e Xy = {[#;,2;41]/i € N} and the obvious boundary operators,

e the norm is induced by the euclidean norm on [0, 1].

We only look at (1) since (2) is similar. For 2 € Ft(X) (i.e. z is in some X,,),
Ft(ex)onryx)(r) = Ft(ex)(z,0,) = . Therefore Fi(ex )onryx) = Id. This
completes the proof that Ft is right adjoint to | - |+

Notice that nx and Ft(f) (where f is a morphism of semi-regular HDA) are
isometries. This entails that this adjunction restricts to adjunctions between
TY_ and Ty, and TT < and T, respectively. Having simulations as morphisms
in these categories, this shows that simulation properties (and bisimulation
ones in particular) in the timed world are correct with respect to the corre-
sponding ones in the untimed world.

11.2.83 Zeno behaviours

Let 4 be an infinite virtual path. If v([0, cc[) is compact, then there is a limit
point @ in the sequence (v(ay))r. Therefore, even if time always increases by
strictly positive steps, there may be a (sub)path in which time “slows down”
up to some point.

This is exemplified by a Zeno kind of paradox (which can be explicitly given
a timed HDA representation, Figure 11.7) in which a door is seen to be closed
through observations of the type “it is closed half way from the end”. The time
it needs to be closed is finite, the number of allowed obervations (transitions)
is infinite. No lower bound whatsoever is imposed on the time of transitions.
This precisely creates the paradox.

There are easy ways to prevent Zeno paradoxes to occur in a timed HDA X.
As they happen when there exist some limit points, it suffices to prevent them
to crop up.

A sufficient condition is to have a lower bound on the time transitions take.
A better condition is the “finite variability” property: there should only be a
finite number of actions that can be fired in a finite time interval.
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Why not put this condition in the model from the very beginning ?

We argue that for hybrid systems (or even just ordinary real-time systems like
in [MT90]), it may be interesting to consider Zeno paradoxes as well.

Suppose we have a system S in which the temperature ¢ diverges in finite time
(grows at an exponential rate in practise). Suppose also that S is equipped
with a measuring apparatus which beeps every time the temperature grows by
one degree Celsius. We model S by a timed HDA in which the states represent
the number of times S has beeped (i.e. the temperature of S minus its initial
value) and the 1-transitions are the delay transitions from one state to the next.

Then it implements a Zeno behaviour: no strictly positive lower bound can
be given to the time of execution of any transition. As we do not know the
precision at which time can be measured, we cannot eliminate this Zeno be-
haviour when studying the system 5. Notice that Timed Transition Systems
(Chapter 1) verify the finite variability condition and thus cannot express Zeno
behaviours.

11.2.4 Complexity for constrained parallel machines

An easy computation shows that in the geometric realization of a semi-regular
HDA Dy, generated by one n-transition there are minimal and maximal length
virtual paths from (0,0,...,0) to (1,1,...,1) (see Section 11.4.1 for details).

There is one minimal length path 7o (the synchronous execution of n actions) up
to parametrization given by (for all ¢), 1(70(t)) = z2(70(t)) = ... = 2.(70(?)).

There are infinitely many maximal length paths 47 (the interleavings of parts
of n actions) given by, V¢,3¢,Vj # ¢,4;(7'(¢)) = 0. This entails that in | D, |,
there are n! maximal paths, all of dimension one e.g. the interleavings of n
actions, there is one minimal path, the path of maximal dimension.

If we measure worst case complexity by the maximum execution time, we see
that truncating the behaviour of a program by T, i.e. executing the program
on a machine with at most n processors, this worst case complexity gets bigger.
This seems to provide a useful framework in which we can assess the complexity
of algorithms on constrained parallel machines.

11.3 THDA as denotational and operational mod-
els

In this section, we show that T'T is a complete and co-complete cartesian closed,
monoidal closed category similarly to T,.. Some constructions will be exem-
plified in both categories. TT< is shown to be a complete and co-complete
monoidal category. T'Y _ has only filtered limits and colimits and a tensor prod-
uct. As customary since [WN94], categorical combinators will be recognized to
be timed-process-algebra sort of combinators (as those of [MT90]).

In order to see this, we introduce a SOS-like metalanguage generalizing the
one used for semi-regular HDA in Chapter 2 which gives an operational view of
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the constructions. It is actually very close to the Timed Transition Diagrams

formalism [HMP93] used to represent Timed Transition Systems in that it adds

to ordinary transition systems upper and lower bounds within which actions

are executed.

The idea is to write n-transitions a of some timed HDA X as arrows s [—a—>] s
i1t

where s and s are the beginning state (i.e. the beginning state of a beginning

1-transition of etc. a beginning (n — 1)-transition of a) and end state of a
respectively. t; is the minimal execution time, {5 the maximum execution time
of a (t; may be oo as we are working in IR U {oco}. More formally, we define an
entailment relation |= to relate X to its transitions, and we write,

dyd9 ... d° _jx = s,
Yes © do didt...dl o = ¢,
[t1,2] 77 (s, s) = 0,

Tf(D")(s, ) =ty

Sometimes we specify the dimension n of the n-transition a by writing dim a =
n.

11.3.1 Limits

Definition and lemma 11 Let X andY be two timed HDA. Then their carte-
stan product is the timed HDA Z given by,

x Xy

o Zn:{z:Dngmn O, — X xY/ax € X,,,y € Y,} where A is the

X
diagonal A(z) = (z,z),

7 = 0)CXxY
° nE]NL,JzeZn Z( n)_ XY,

o &9l = maz(llzl,, [191l,)-

Proor. X x Y is a topological space with the product topology. We actually
endow X X Y with the finer topology defined by,

“Fis closed in X XY (defining the new topology) if and only if for all compact
subsets C' of X X Y (under the old product topology) C' N F'is closed (again
under the old product topology)”.

We write K(X x Y) for the topological space which has the same points as
X x Y and whose topology is defined by the process above. K(X X Y)is a
Kelley space and it is called the “Kelleyfication” of X x Y [MLT71].

Now, O,, is compact. Thus z(0,), y(Od,,) are compact topological spaces since
z and y are continuous. This entails that z(0,) = (z X y) o A(Q,,) is compact.
Therefore z(O,,) is Kelley as a closed set of the Kelley space X x Y. The colimit

Z = UZ z(0,,) of Kelley spaces is Kelley.
n,2€4n
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A8, =A@, and 2 x y: O, x 8, — 2(8,) x y(8,) are homeomorphisms
therefore their composition is a homeomorphism as well. They partition Z.

The family of norms is well defined and is continuous on Z.

Let U be a timed HDA and f, ¢ be two morphisms of timed HDA such that we
have the following diagram,

p}/ \Qz
N

g

where p; and ps are the first and second projections respectively. p; and p, are
continuous and preserve the n-transitions. They induce the identity function
on the local coordinates. Therefore they are morphisms of timed HDA.

Define then h: U — X xY by h(u) = (f(u),g(u)) for all win U. We show that
hU) C Z. For all win U, there exists n and o : O, — U such that v € o(0,,).
Then f(a) and g(a) are n-transitions of X and Y respectively. Therefore,

-0, 80, xo, L oy

is a n-transition of Z. Finally h(u) € 2(0,) C Z.
This entails that i factorises f and g through p; and py respectively. The fact
it is the unique such map is obvious. O

It is described operationally by the rule,

i , , t
v X' v — v
[0417042]

t,t
X x X"E(u,u) (t,t)
[max(ay, ), maz(ag, ab)]

X Eu

and dim t = dim t' = dim (t,t')
This shows that this is really a synchronized product (see Figure 11.8) of
the two automata X and Y.

The projections here are not isometries in general, but they are contracting
maps, i.e. dX(pi(u), pi(v)) < d?(u,v).

Lemma 35 Let X and Y be two timed HDA and f,g : X — Y be morphisms
of timed HDA. Then the timed HDA Z,

o Z={veX/f(x)=g(a)},
o Z,={r € X,/f(z)=g(x)},

o the family of norms on TZ is induced by the family of norms in TX .
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Figure 11.8: Synchronized product (middle) and coproduct (right) of two tran-
sitions (left)

X Y synchronized Coproduct
product

v oS @3)  (v.5) v o

1 A e

a B @p)  (B.y) a B

together with the inclusion map Z C X is the equalizer of f and g.

Proor. z(O,) is a sub-Kelley space of X, therefore Z is a sub-Kelley space of
X.

Let y € X such that f(y) = ¢g(y). There exists x, a n-transition of X, such
[o] . o v,
that y € 2(0,,): y = 2(¢) with t € O,,. u = f(z) and v = g(z) are n transitions

[e] [e]

of Y, but u(t) = f(y) = g(y) = v(t). Therefore u(U,) N v(4,) # 0 and then
u = v. This shows that z(ﬁn), 2 € Z, partition Z.

Finally, let U/ be a timed automaton and & : U — X a morphism such that

foh=goh. Then for all z, f(h(z)) = g(h(z)) and then h(z) € Z. This shows
that (7, C) is the equalizer equ(f,g). O

Note that the inclusion function is an isometry.

Therefore TY is finitely complete. The following lemma implies it is actually
(small) complete.

Lemma 36 Infinite products exist in TT.

ProOF. Let X' be objects of TY. We define X*° to be the timed automaton
determined by the following data,

e as a topological space it is K(IT X*),

e as a semi-regular automaton it is the product of all the X?,

e the norm is defined to be the supremum of all norms on all components
(which may be infinite).

Again, the canonical projections are contracting maps.
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11.3.2 Colimits

Definition and lemma 12 We define the union of two timed HDA X and Y
to be the timed HDA Z with,

e Z/=XUY,
o Z,=X,UY,,

o for allu € Z, w € X and then ||%||, is the corresponding norm in X or
w €Y and then ||i||, is the corresponding norm in'Y .

Z 1is then the coproduct of X andY in TY.

ProoF. Z is a topological space with the disjoint sum topology. With this
topology, it is a Kelley space. Then

o o o
n,zLéZn Z( n) n,xLEJXn $( n)U n,yLéYn y( n) N
all of these being disjoint. Moreover, all singular cubes of Z induce homeo-

morphisms from ﬁn to its image and the family of norms is well defined and
continuous.

Define in; : X — Z and in, : Y — Z to be the inclusion functions. They are
continuous functions preserving the n-transitions and the boundary operators.
The local charts on Z are the union of the local charts of X and Y. Therefore
in; and n, induce the identity function on the local coordinates. Hence they
are '™ and are morphisms of T'Y.

Now, if we have T a timed HDA and f: X — T and ¢ : Y — T two morphisms
of timed HDA then h : Z — T defined by h(ini(z)) = f(2), h(in.(z)) = g(x)
is a morphism of timed HDA and is the unique morphism factorizing f and g
through n; and in, respectively. The union defines the coproduct in TT; as
well. O

Notice that
) nz S nX
dini(u). |, = llell,

ng(u
. -nZ X
[ding(u).alli, ) = llelly

iy (u

which is actually equivalent to,
dZ (ing(u), ing(v)) = d(u,v)

diZ(inT(u), ing(v)) = d}/(u, )

i.e. in; and in, are isometries for the metric d;.

The union (or coproduct) of two timed HDA X and Y is described operationally
by the two rules,
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t ! ! t/ !
XE u — v X'E u —— v
[a1, o] [@], a3]
t t’
XUX' U ——— XUuX' | u’ﬁ»v’
[a1, ay] [a], a3]

We recognize a rule for non-deterministic choice (see Figure 11.8) more
natural than the operators 4+ in most of the existing process algebras.

Lemma 37 Let X, Y be timed HDA and f, g be morphisms of timed HDA
from X toY. Then the timed HDA Z defined by,

o Z=Y/{f(2)=g(x)},
o Zn=Yo/{f(x)=g(x),z e X},
o 17 =11
together with the projection from 'Y to Z is the coequalizer of f and g.

Proor. Zis Y/ f(equ(f,g)). Z is given the Kelley Hausdorff quotient topology
and Z, is the quotient in T,,. The Z, partition X. O

Note that the projection is an isometry for d;.

Lemma 38 TY has infinite coproducts.

PrOOF. Let X be objects in TY. Define X to be the topological colimit of
the X7, Tt is a Kelley Hausdorff space. Let X2 be the colimit of the X! in
Ts,. The X°° partition X*°. The norm is taken to be equal to all local norms
on the X*. O

Note that the canonical injections into this coproduct are isometries.

Therefore, T'Y is a (small) co-complete category.

11.3.3 Function space

Proposition 16 TY is a cartesian closed category.

Proor. We define, for X and Y two timed HDA, Z = X = Y to be,

o Z,={2:0, = (X —=Y)/:0,xX =Y, 2(u,2) = 2(u)(«) morphism},
where O,, is considered as the timed HDA with the unique n-transition
Id: 0, — 0,

7= 0,) C (X —Y),
¢ 2= Yo, A (X =Y
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. . Y
e for f € Z7 Hfo = SqueX,kule"f(x)w"f($)

We give X = Y C Hom(X,Y) the topology induced by the topology of
Hom(X,Y).

Let 2/ : 0, x X — Y be a morphism. Then z = curry(z’) : 0, — (X — Y) is
continuous. Therefore z(O,,) is compact hence a Kelley subspace of Hom(X,Y).
Then Z is Kelley as a colimit of Kelley spaces.

We prove that X = Y is the exponent of ¥ by X in T'T.

Let f:U x X — Y be a morphism in TYT. We define the function ¢ : U —
(X —Y)as g(u)(z)= f(u,z). We first prove that Img C X = Y.

Let w € U, u € v(0,) for some n and some n-transition v : 0, — U of U. Then
u = v(a) for some a € O,,. Now, fo(v X [d)is a morphism as a composition of
morphisms (v is a n-transition, thus a morphism). This means that the function
z:0, = (X = Y) with z(b)(x) = fo(vxId)(b,z)is in (X = Y),. Notice
that z(a) = g(u). Therefore, g(u) € 2(0,,) C (X = Y).

We then prove that ¢g is a morphism of timed HDA. Let v be a n-transition of U,
ie.v:0,—U.gov:0, — (X —Y)defines ¢’ : O, x X — by curryfication,
g'(u,z) = g(v(u))(xz) = f(v(u),x). This entails that ¢’ = f o (v x Id) which
is a morphism of T'Y. Therefore, g o v € (X =),. g maps n-transitions onto
n-transitions. Now, ¢ is continuous is a standard result of topology [AM93],
since we have chosen the compact-open topology on X = Y.

We end up by proving that the evaluation function eval : X x (X = V) =Y
defined by eval(z, f) = f(z)is a morphism of T'Y. Standard results of topology
show that eval is continuous. We just have to prove now that eval maps n-
transitions onto n-transitions.

Let v be an n-transition of X x (X = Y). v is given by two n-transitions «

ofXandﬁof(XiY),v:DnganDnaAﬁXx(XiY). We have

to prove that eval o v is a n-transition of Y. § is a n-transition of X = Y
therefore, its uncurryfied version 3’ : 0, x X — Y is a morphism. Notice that
evalov = ' o (I'd x ) and thus is a morphism. By the characteristic property
of n-transitions this entails that eval o v is a n-transition. O

In TT< we have to restrict to HDA with “ultrametric” norms, i.e. such that

[l + ol| < maz({u], [Jv[)

11.3.4 Tensor product

Definition and lemma 13 The tensor product of two timed HDA X and Y
is the timed HDA Z = X ® Y defined by,

e /=XXY,
o Z,={z:0,20,x0,_4 okl Zlx € Xp,y € Y1}

o 12,9l = maz(lizll,. [[91l,)-
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Figure 11.9: Parallel composition (middle) of two transitions (left) and linear
function space (right).

X Y Tensor product Linear arrow
X-0 XY
e}
Y
AX.bx
a b afp AXPX ——= MX.OX
a B y o

Proor. Z is a Kelley space with the Kelleyfication of the product topology.
The homeomorphism O, = O, x O,_; induces a homeomorphism ﬁn & ﬁk X
ﬁn_k. Therefore, the singular cubes of Z,, define homeomorphisms from ﬁn to

their image.

Finally, the family of norms is well defined and continuous. O

Notice that the semi-regular HDA given by the Z,, is the tensor product of the
semi-regular HDA given by the X, and Y,,.

The parallel composition with no interference can be defined opera-
tionally by the rule (see Figure 11.9)

t v X/ |: u/ t/ !
[alv 042]

tt
XX Fugd © v v

[max(ay, o), as + o]

X Fu

[af, af]

and dmt @t = dimt+ dim ¢
Proposition 17 T'T is a monoidal closed category.

Proor. There are obvious isomorphisms between (X ®Y )@ 7 and X ®(Y @ 7)
and X ® Og and X. This shows that T'T is monoidal.

We now define, for X and Y two timed HDA, Z = X —o Y to be,

o Z,=42:0,—=(X=Y)/7:0,0X =Y,z (u,2) = z(u)(2) is a morphism},
where O,, is considered as the timed HDA with the unique n-transition
Id: 0, — 0,

o /= U 2(0,) € (X — Y) endowed with the compact-open topol-
nE]N@’EZn

ogy,

. . Y
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We prove that TT(X @ Y,Z) = TY(X,Y —o Z) in a similar manner as for
X=Y. 0O

We conjecture that operationally'?,

t , ¢
XEFyu—— v X —o X[ W ——
[o1, g 1.9

[a], a3]
" (u t/(t) (v
X () [max(ay, o), as + o] (v)

In X —o X’ we have functions which fork new actions (dynamically) as Az.b@x
in Figure 11.9. The argument of these functions may be computed in parallel
with the body of the function.

11.3.5 Labeled timed HDA and THTS

Definition 55 A labeled timed HDA is a pair (X,l: X — L) of a timed HDA
X and a morphism of timed HDA . L 1is called the labelling automaton.

Notice that all unlabeled timed HDA X can be considered as labeled timed
HDA (X,01d: X — X).

Example 53 In Figure 11.10 we have pictured the labeled timed HDA (X1 :
X — L) defined as follows,

o X = {(2,0)/0 < 2 < 1}U{(0,y)/0 < y < 1} considered as a sub-
topological space of R? with the ordinary topology,

o the norms on T'X are induced by the norm ||(z,y,%,9)|| = maz(| & |, 9 |)
on TIR? = IR*,
o Xy = {ay,ay} with ay,ay: 0y — X defined by,

- wm(z) = (2,0),
= ay(y) = (0,y).
o [ = 0y equipped with the norm ||(z, )| =| & |,
o Iy ={a} with a: 0y — L being the identity function,
¢ [(0,y)=y andl(z,0) =z for all0 <z <1 and 0 <y <1.

Notice that if we ask the morphism [ to be an isometry (as in Example 53) then
the labels of actions prescribe the exact time they should take in any context.
If we ask the morphism [ to be non-expansive then, we are only prescribing a
lower bound on the time actions with a given label may take.

Definition 56 A timed higher-dimensional transition system (THTS) is a pair
((X,l: X — L)s)where (X,l: X — L) is a labeled timed HDA and s is a state
of X, called initial state of X. Morphisms of THTS are morphisms of labeled
timed HDA which preserve the initial state.

13The untimed part is easy to verify though.
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Figure 11.10: A labeled timed HDA

(0,0) (1,0)

11.4 Examples

11.4.1 Semi-regular HDA as THDA

Proposition 18 Let M be a semi-reqular HDA. Then | M | is a timed HDA

with the family of norms (|1, ..., uall,, . = max{ur,... u,}.

Proor. Straightforward. O

The norm chosen corresponds to giving to all 1-transitions the unity duration
and to give the rule that when n processes run asynchronously the time to
complete them is the maximum of the times necessary to complete each of them.
This corresponds to our view of independent processes running asynchronously.

The study of geodesics in | M | reveals the following properties.

Proposition 19 In | Dy, | (considered as a timed HDA) there are minimal
and mazimal length virtual paths from (0,0,...,0) to (1,1,...,1).

o There is one minimal length path v (the synchronous execution of n ac-
tions) up to parametrization given by (for all t)

z1(70(1)) = 22(Y0(1)) = ... = Za(70(1))

o There are infinitely many maximal length paths v1 (the interleavings of
parts of n actions) given by,

¥, 30,¥5 # i, i5(7'(1) = 0
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ProoF. Let v be a virtual path from (0,0,...,0) to (1,1,...,1)in | Dy, |.
Then, it 1; = {t € [0, 1)/ (v/(1)) = 21(1) > 7/(0] # i},

Jo F(y'(t))dt = 2 Sy i)t
Jru(di+ ;k Jr, (i) = (1))

> 1

Moreover, a direct computation shows that the length of ¢ is equal to one.
Finally, if there exists k, t € I and j such that greater than 1.

Now, consider the case of maximal length virtual paths.
JrFG@)dt = 52 f vi(t)dt
> X Jrvi)dt

> n

vV

Notice that I(vy1) =U [;7{(t)dt = n. O

This entails that in | D, |,

e there are n! maximal paths, all of dimension one e.g. the interleavings of
n actions,

e there is one minimal path, the path of maximal dimension.

11.4.2 Semantics of a toy language

We consider the following language (a subset of RTCCS, [Kri91]),

P == aP | P|P |  nil
| P+P | PP | ()P | rec z.P[x]

The atomic actions a are supposed to take unit time. (¢)P can behave like P
after time ¢.

Semantic domains

As in Chapter 5 we want to give to terms of the language denotations which
are higher-dimensional transition systems. To this end, we want to define a
huge THDA D (called domain as in [Gou93]) which will contain all possible
operational behaviours of terms of the language. Elements of the domain, and
thus denotations, will be subT"HT A of D (i.e. inclusion morphisms into D) as
in the untimed case.

All this is most conveniently done by recursive domain definitions (see [Plo84]).
As a matter of fact, we generally want a domain to contain a few specified
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actions and to be closed under such constructs as the parallel composition
(the tensor product). ] (and then amalgamated sums — i.e. pushouts — +),
X and ® are covariant functors commuting with colimits, therefore standard
results [AL91b] guarantee the existence of solutions to recursive equations like
D2U+4+D®D (U is a given THTA) which is precisely a THT A closed
under parallel composition. More complex constructions can be done (similar
to the homotopical constructions of [Gou93]), for instance to give domains for
imperative languages where states are mappings from variables to actual values
but we will not need them here. We will not consider here domains for some
functional parallel languages (like CML [Rep92] which would involve equations
like DE2U+D@ D+ D —oD).

Denotational semantics

We first construct the domain we need. Here we give a denotational semantics

where denotations are operational behaViQurSM. We recall that for CCS we had
in Chapter 5 semi-regular HDA (al), (@), (Tﬁj) (i,j € N, k € K), (a?), (@)
and (7) be the following HDA (informally or geometrically),

a’

N
. J 7y . 1
(a): 11— g () 1T
a’
_j N
. a’
(@): 1 ———(a7) ,
. (@): 1"
(Tﬁj) s — af ® E? T
(1): 1@

Let P and K be the domains given by the recursive equations,

P

(1

([af iy + (1@ Dig + (L7 Do+ PO P
E=(a)+(ad )+(r)+KoK
They are the timed versions of the domains we had for CCS,
D= (al)ij+ @iy + (7)ijp+ D@ D
L)+ @)+ (r)+L oL
We had also [ : D — L the morphism of HDA defined by,
o Vie NN, (d)=dl

e VieN,(@)=d

MWe could have given one in a more classical form like input-ouput relations or history of
communications.
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o Vi,jeIN,I(f) =7
e Vz,yc P l(z®y)=1z)®l(y)

It lifts easily to k =|[|: P — K

We had introduced as well an operator @, for dealing with synchronization. ®.
lifts to timed HDA.

The domain of HDA in which we give the semantics of the language is k : P —
K. We can actually give it in D = P, and recover the full definition by applying
the labelling [. Then,

e [nil] = (1)
e [a?; P] =] af DI (af ® [[P]]) for some fresh ¢

[@; P] = (| E{ D1 (E{ ® [[P]]) for some fresh i

Ip + ¢] = [p]1l¢] (11 is the coproduct in TY/K, it corresponds to an
amalgamated sum in 7'Y)

[plle] = [Pl © [q]

[p | 4] = [p] @ [d]
[(t).P] = X, [1(t ® [P], where X, is defined in Example 51

[rec z.p[z]] =lim [p‘[nil]] where the direct limit is taken on the full
subcategory of TYT /K whose objects are the [p'[nil]]

Operational semantics

Its operational semantics is then (by results of Section 11.3),

) 1
nil=1——1
[0, 0]
, T , @
a];P|:1—>a al EJ;P|:1—>Q a’
[1.1] [1.1]
Pls “ s’
[0417042]
aj;P|:af®s af@g’
[0417042]
PEs “ s’
[0417042]
G PE@®s s

(a1, ]
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QEs —
[0417042]
a
Q+Q' Fs ——1t
[0417042]
7
7 7 a 7
— t
MR
7 7 a 7
— — ¢
R e
QEs “ t Q s « t
[a1, as] / [a}, a5]
7 7 a®a 7
= TRt
Q" Es®s [max(ay, o), as + o] &

a 7 7 a/ 7 -
Qs —v s —" iz
[ay, as] . [0‘17 az]

7 7 a®a 7
= TRt
QI Esas [max(ay, o), as + o] &
TRaRy , ,Z2Rat |,
Q = — — 3 t Q = s — — ¢
= Tanad =Y b
TRzRTRYRT
QlQ Es®s E ?]3/ tat
Q[rec z.Q[z]] = s S t
[0417042]

rec z.Q[z] = s vy
[alv 042]

The rule for synchronization has no timing laws since it has to be defined by
®@¢. The last rule expresses that [rec z.Q[z]] forms a co-cone with the diagram

([Q'Mmil)]):.

11.5 Homology and Homotopy

We end this presentation of timed HDA by the comparison between the “con-
tinuous geometry” available in this model and the discrete one we have been
extensively studying on (discrete) HDA.
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11.5.1 Cubical versus simplicial homology

We recall the elements of comparison in Serre’s thesis [Ser51] between the sin-
gular cube homology theory and the classical singular one based on simplexes.

Let L, be the standard simplex of dimension n in IR"T!, seen here as the set
of points (yo,...,¥s) with 0 <y; <land > g = 1. Define an application

1=0,...,n

0,:0,— L, by 0,(21,....,2,) = (Yo,...,¥n) and

Yo = l—u
n = 21(l—ay)

Yn—1 = T1Z2...2Tp—1(1—2y)
Yn = T122...Tpn-1Tn

Now we have the following lemma,

Lemma 39 Let X be a topological space. The 8, induce a morphism 8 from the
R-module of singular chains (classical ones) C(X) to the R-module of singular
cubic chains CC(X). § commutes with the total boundary operator.

Proposition 20 6* : H.(X) — H.(Tot(X)) is an isomorphism.

Therefore, cubical homology (for the total complex) and classical singular ho-
mology are equivalent. In particular, the homology of the total complex derived
from the semi-regular HDA underlying the structure of a timed HDA is isomor-
phic to the singular homology of the topological space underlying it.

11.5.2 Homotopy of oriented paths

In this section, we formalize the continuous counterpart of serializability. We
restrict our dicussion to the fundamental group.

The fundamental group of oriented paths

Let X be a timed HDA and «, § be points in X. An oriented path from a to
[ is a continuous function

fiI=00,1]—X

such that,
(1) f(0) = a,
(2) f(1) =5,

(3) z;o f, where z; is the ith local coordinate in Y, are increasing functions.
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Condition (3) means that a path should always execute more as time goes: the
local coordinates measure the amount of time spent on each processor and these
must increase as the global time goes.

The set of paths from a to 3 is denoted by Pf’ﬁ(X).
We have a natural operation on paths, that is, the concatenation of paths.
Let f € Pf’ﬁ(X) and g € Plﬁ’w(X) then we define f.g: I — X by

f'g(ac)z{ J(2e) ?foﬁggﬁl/?
g2z —1) if1/2<z<1

It is easy to see that f-g € P{"(X). (f,¢9) — f-g is not associative nor
commutative. It has a neutral element, the constant path 1, € P;"“(X) defined
by 14(z) = a for all a € I.

The homotopy relation will then be defined first for paths with end points fixed
and extended in order to behave well with respect to concatenation.

Let f, g € Pf’ﬁ(X) be two oriented pathsin X. A continous function h : I X1 —
X is a homotopy from f to ¢ if and only if,

o forall y e I, 1(0,y) = f(y),
o forally e I, h(1,y) = g(y),

o forall # € I,y — h(z,y) is an oriented path from a to 5 in X.

This defines an equivalence relation on Pla’ﬁ(X). We write f ~, 3 gif fand g
are two homotopic oriented paths in X from « to 3.

ProoF. h(z,y) = f(y) defines a homotopy between f and f.

If h is a homotopy from f to g, h'(z,y) = h(1 — z,y) defines a homotopy from
g to f.

Finally, if hy is a homotopy from e to f and hs is a homotopy from f to ¢ then,

Wz, y) hi(2z,y) if0<a<1/2
L, Y) =
ho(22 —1,y) if 1/2<1

defines a homotopy from e to g. O

Let H?’B(X) be the free R-module generated by the equivalence classes of ori-
ented paths from « to f.

The homotopy relation behaves well with respect to concatenation. In partic-
ular, if f, f' € Pla’ﬁ(X), g,9 € Plﬁ’w(X) such that f ~, 5 f and g ~g., ¢
then f.g ~o~ f'.g'. Therefore (f,¢g) — f.g defines an operation, still written
(f,9) — f.g on equivalence classes of oriented paths.

Now . : POP(X)) ~vgp xPIY (X)) ~py— PEY(X)] ~an is associative.,
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(*) PROOF. (see [Mas91]) Let f € P{P(X), g € PY7(X) and h € PPO(X).
Let F: I x I — X defined by,

7 (%) if0<t< et
Fs,t) =19 g(4t—1—s) if 52l <y < 532
h(1-20) a2 <<

then F is continuous (because f, g and h are) and,

o for each s, t — F(s,t) is an oriented path in X,
o forallt e, F(0,t)=[(f.9).h](1),
o foralltel, F(1,t)=[f.(g.h)](1).

thus F'is a homotopy between ( f.¢g).h and f.(g.h) and ([f].[¢9])-[r] = [f]-([¢]-["])-
a

(f,9) — [ - g extends naturally to - : (X)) x IIJ7(X) — II$7(X) by the
distributive law,

(Ale]+ ply])-[2] = Alz].[2] + ply].[2]
therefore (f,¢) — f.g is bilinear.

We are now ready define the homotopy group II1(X), the group of oriented
paths (from anywhere to anywhere) modulo homotopy. The monoid operation
on paths is only partially defined since two paths have to be composable in
order to have their concatenation defined. A way to extend this operation is
to think as the concatenation of two non-composable paths ([p] € II;"’(X) and

[p] € H?/’BI(X) with § # o) as their union, i.e. their sum in the free modules

5%(X) @ 097 (X). The addition of two composable paths should also be
equated to their concatenation.

This means that we want to make the identification

whenever z and y are composable.

Therefore, we set,

a,feX

1L (X) = ( D Hf’ﬁ(X))/g

Relationship with the standard fundamental group

The standard fundamental group is defined in a similar manner, but the group
structure, induced by the concatenation of closed paths (or loops) is more nat-
ural in some way. We recall the construction below.

Let 2 € X. Then the closed paths (or loops) based at z are the continuous
functions f : I — X such that f(0) = f(1) = 2. A homotopy between two
loops f and g is a continuous function H : I x I — X such that,
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o forally eI, H(0,y)= f(y),
o forallye I, H(1,y) = g(y),
o forall z € I, H(z,0)= H(z,1) = z.

Two remarks here.

First, the concatenation of paths is well defined for all loops based at x, which
is a simpler case than for non-closed paths which were not all composable.
Therefore, modulo homotopy we have a natural monoid structure.

Secondly, we impose no “orientation of time” on paths. Therefore the inverse
of a path f, defined as f' : I — X with for all z, f'(2) = f(1 — z), is also
a path. This implies that we have a natural group structure which we had to
artificially construct in the oriented path case.

The fundamental group II( X, z) is then defined to be the group of all loops mod-
ulo homotopy, with concatenation as the group law. It can be shown [Spa66]
that if 2 € X and y € X are in the same connected component, then II( X, z)
and II(X,y) are isomorphic groups. In the following, we will suppose that X
is connected, therefore we can write II(X') for any of the II( X, z). We suppose
also R = Z, then,

Proposition 21 The map u : 1157 (X ) x 17 (X) — 1(X) defined by
u(le], [y]) = [z — 9]

is a monomorphism of groups.

Relationship with the untimed case
Claim 3 Let M be a timed HDA, a,3 € Xy. Then,

12 (M) = 1P (FH(M))

Summary In this chapter we have used the natural geometric representation
of semi-regular HDA as a basis for a truly-concurrent operational model for
real-time, where time is measured as the length of paths. Basically, a timed
HDA was defined as a shape together with an observational structure given by
a semi-regular HDA realized on this shape, and a family of norms defining the
infinitesimal cost of computation in all directions.

We have shown that Zeno behaviours could be expressed without having an
incoherent model, that we could express some fairness properties and relate
(by abstract interpretation) the discrete observational structure (untimed) to
the timed HDA. This proved that timed HDA is an extension of our previous
models indeed. Finally we proved that some categorical constructs correspond
to process algebraic operators with nice timing laws. In particular, we had
a tensor product describing the parallel composition with no interference for
which the time taken by a system of two processes is the maximum of the times
taken by each of the processes.
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We ended by giving a few hints about how to extend the homotopy theory we
developed in the untimed case. We do not know yet what the “continuous”
homotopy theory for oriented paths looks like.



Future work

We have presented in this thesis a geometric theory of concurrent machines.
It raises some mathematical problems: some algebraic problems about “weak”
bicomplexes, a homotopy theory, etc. We have only presented a fomal basis for
solving these. Some work remains to be done. In particular:

e Higher-order homotopy groups are not fully described yet. In the more
general context of combinatorial HDA we do not know yet how they relate
to the ones defined for free general HDA generated by acyclic semi-regular

HDA.

¢ We do not yet have any good “continuous” counter-part to this discrete
homotopy theory, which would be useful for scheduling problems of real-
time systems. As a matter of fact, we would like to see a generalization
of timed HDA so that at least we could relax the condition on {z(Z,)}

to partition a timed HDA X. The condition: “the set F = {xz(3,)}
verifies the property Vo, y € E, 2Ny =0 orx C y or y C 2” would allow
definitions of tangent spaces, norms, etc. and would authorize better
definitions of the timeout operator (as all partial executions of a transition
of execution time ¢ would be geometrically included in it).

On the more computer-scientific side we could think of a number of problems,
for instance:

o We have not gone too deep into the study of infinite paths. This could
be tackled by using an extension of SOS similar to G*S0OS.

o We would like to carry on some work on verifying “real” protocols for
distributed systems. This might need a good implementation of a version
of the verification algorithm we gave in Chapter 9. We have recently
begun an implementation in C.

We have already carried out some work on logics for HDA (from the categor-
ical structure, Hoare-like ones, or even from an interaction categories point of
view) and on a probabilistic extension of HDA. There should be future work to
complete them.

329
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Appendix A

Mathematical background -
Rings, modules and
complexes

Let R be a commutative ring (integral and unitary).

We recall the following definitions, taken from [Lan93a].

A left-module (or simply a module) M over R is an abelian group (written
additively) together with an operation of R on M (multiplication), such that,
Va,b € R, Ve,y € M, (a+b)x = axz 4 bz and a(z + y) = ax + ay.

In many cases, when the context makes it clear, we will say module for module
over R, or R-module.

Module homomorphisms (or linear functions) are functions which preserve op-
erations plus and multiplication by an element of R, and element 0 (neutral for
+).

Let M be a module over R, and S a subset of M. Then § is a basis of M
is 5 is not empty, if all elements of M are obtained as linear combinations of
elements of S (.5 generates M), and if 0 cannot be obtained as a non-null linear
combination of elements of 5 (.9 is free).

M is a free module if and only if it has a basis. We write () for the free module
generated by a. We write Mod(5) or R — Mod(S) for the module generated by
a set §.

Note that if R is a field, a R-module is a vector space, thus is free in the sense
that all vector spaces admit a base.

If My and M, are two free modules, My and M, generated respectively by 5
and T, then we write My + My or Y. M; for the free module M generated by

SUT. When SNT =0 we write M = My & My =3 M,.

K3
We list below some properties of interest about freeness of modules which are
used implicitly in most of the proofs of, for instance Section 6.4 and Chapter
8. We refer the reader to [Lan93a] for proofs of these facts.

First of all, for any ring R,

331
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e any R-module is isomorphic to a quotient of a free R-module (this fact
leads to the notion of free resolutions, used in Chapter 8),

e if A’ is a sub-module of A such that A’/A is free, then A is isomorphic to
A @ (AJAN).

When R is a principal ideal domain, i.e. when R is an integral domain in which
every ideal is principal (like Z, all ideals are of the form n.Z, n € IN), we
can be much more precise about the structure of R-modules in general. In this
case, any submodule of a free R-module is free. The only part of a module
which needs be classified is therefore the non-free part. This is done through
the notion of torsion module. If A is a R-module, its torsion sub-module is
TorA = {a € A/ra = 0 for some r € R, r # 0}. Then a finitely generated R-
module A is free if and only if it is torsion free (i.e. TorA = 0). It is easy to see
that A/TorA is free. A cyclic module corresponding to some element r € R is a
R-module A such that r generates the ideal of all elements z annihilating every
element of A,i.e. Ya € A, za = 0 implies Iy € R such that z = yr. This leads
to the following theorem, known as the structure theorem for finitely generated
modules.

Theorem 6 Any R-module A is isomorphic to the direct sum of a free R-
module and cyclic modules Ay, . .., A, whose corresponding elementsry, ..., 74 €
R are such that v; | 741 for all1 < i < g—1. The elementsry,...,r, are unique
up to multiplication by invertible elements of R and together with rank(A) =
dim (A/TorA) characterize the module up to isomorphism.

In all this text we note (a) for the free R-module generated by «¢ and (a), for
the cyclic module generated by a with corresponding element r € R.

Other types of modules than free modules are of interest as well.

A module M is a projective module if given an epimorphism o : B — (', each
map v : M —— C can be lifted to a 5 : M — B such that ¢ = 7. Note that
every free module is projective, and that every projective Z-module is free.
Dually, a module M is an injective module if for each @ : A — M and for
any monomorphism « : A — B, there exists §: B — M such that 0k = «.
Note that if R is a field, then any R-module (i.e. vector space) is injective. A
Z-module is injective if and only if it is divisible, i.e. for each integer m # 0
and each element d, there is a solution of the equation ma = d.

A differential module (M,d) (or simply M) is a module M together with a
grading M =& M,, a function d : M — M such that for all ¢, d(M,41) C M;!

and such thatzd od=0.
A complex of modules is a sequence of modules M; together with a function
d: M — M such that for all ¢ d(M;+1) C M; and such that d o d = 0.

'It is of homology type.



Appendix B

Mathematical Background -
Some basic properties of
simplicial complexes

For full details on the definitions and properties, we refer the reader to [May67]
and [GZ67].

A simplicial complex is, geometrically, a union of points, segments, triangles,
tetrahedra etc. Formally, a simplicial complex K is a set of simplices, that are
finite subsets of a given set K of points, subject to the condition that every
non-empty subset of an element of K is itself an element of K. Look at Figure
B.1 for an example: the triangle is the simplex of dimension 2 {0,1,2}. The
condition on subsets of simplices to be simplices as well enforces all segments
{0,1}, {0,2} and {1,2} to be in the simplicial complex, as well as all points
{0}, {1} and {2}.

Ordering vertices, we get an equivalent definition of simplicial complexes as
follows. A n-simplex (or simplex of dimension n, forming the set K,) is a
sequence (ao, . . ., a,) of elements of K such that {ao,...,a,} is a m-simplex of
K for some m < n. If m is strictly less than n then we say that the n-simplex
(ag,...,a,) is degenerate.

Being a face of some n-simplex (ag, ..., a,) means forgetting one of the com-
ponents of (ag,...,a,). This defines face operators (0 < ¢ < n),

i(ag, ..., a,) = (@0y ..oy Qi1, Qig1, ooy Ay)
Figure B.1: A filled-in triangle seen as a simplicial complex
{2

{0,2} {1,2}
{0,1,2}

{G} (0,1} {1}
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The fact that we can consider {aqg, ..., a,} as degenerate m-simplexes for m > n
is described by degeneracy operators (0 <7 < n),

$i(@gy .oy ) = (Q0y vy @iy Gy Qi1 ooy Q)

These operators can be shown to verify the following commutation rules,

0;0;, = 0;210; ife<y
5i8; = Sj415 ife <y
is; = s;_10; ife<y
d;s; = Id = Jj415;

dis; = s;0i1 ife>jg+41

Now a morphism from a simplicial complex K to a simplicial complex L is a
map carrying each vertex of K to a vertex of L. This induces a map from each
simplex of K to a simplex of L (as unions of the image of each vertex in the
simplex).

With the other formulation we have, morphisms are just functions f = (f,),
of graded sets, f,, : K,, — L,, such that,

fn0i = 0ifata
fnsi = Sifn—l

In fact we could have defined the category of simplicial complexes (or simplicial
sets) as contravariant functors from A, the category whose objects are the linear
orders A, ={0 < 1< ...< n} and whose morphisms are monotonic maps to
Set. As a matter of fact, the dual commutation relations that the 9; and s;
verify precisely generate all morphisms in A. The reader can check that the
natural transformations in A°?Set coincide with what we called morphisms of
simplicial complexes.

With this formulation, the standard n-simplexes, i.e. the n-triangles (trian-
gle for n = 2, tetrahedron for n = 3 etc.) are the representable functors
Hom(-,A,).

This view of simplicial sets enables us to generalize furthermore and define
simplicial objects in any category C as the category of contravariant functors

from A to C.

An interesting case is simplicial objects in R — Mod. They are called simplicial
modules. It can be shown that there is an equivalence of categories between
the category of simplicial modules and the category of complexes of modules
[May67, GZ67]. An interesting property of simplicial modules is also that they
are Kan complexes and then a homotopy theory can be defined in easy ways.



Appendix C

Mathematical Background -
Some basic concepts of
differential geometry

Manifolds are natural generalizations of curves and surfaces in that they can de-
scribe geometric objects of higher dimension and support a differential calculus,
i.e. a calculus on tangent vectors.

A manifold! is given by the following data (taken from [Die74]).

An atlas A of some topological space X is a covering of X by opens U; (¢ € I)
such that,

e with each U; comes a homeomorphism ¢; : U; — V; where V; is an open
of the topological space R™ (with its standard topology),

o ;oo 1 (U;NU;) — ¢;(U;NU;) is a C* diffeomorphism (standard

notion in IR™)

(Ui, ¢;) is called a chart of the atlas.

Then a differentiable manifold is a topological space X together with such an
atlas.

The maps ¥ = pry o ¢; : Uy — R, where pry, : R” — IR is the kth projection,
are called the local coordinates in U; (for the chart (U;, ¢;)). The dimension of
X at o € U; is the least integer n such that ¢; : U; — IR™. It is constant in
all connected components of X. Locally (i.e. in some U;), the manifold “looks
like” an open subset of R™ (look at Figure C.1).

The local coordinates can be used as ordinary coordinates in Euclidean ge-
ometry. The usual notions (on surfaces for instance), differentiable functions,
tangent space, sub-manifold, etc. can then be defined easily.

Let X and Y be two manifolds. A continuous function f: X — Y is differen-

tiable if for all charts (U, ¢) in X and (V,4)in Y such that f(U)CV,
F=vofiro¢™ :o(U) — (V)

'Here we only consider C°° manifolds and C'*° differentiable functions.
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Figure C.1: A manifold and its atlas

local coordinates

diffeomorphism on the intersection

local coordinates

is differentiable?. The differential of f is denoted by df.

Now, let & € X and fi, fo be two differentiable functions defined in a neigh-

bourhood W of 2 and with value in Y. We say that f; and f; are tangent at «
if,

M f1(96) = f2(90)7

o for a chart (U,¢) in X with U C W and a chart (V,%)in Y such that
fi(U) SV and fo(U) CV the functions 1o fiy o ¢~! and o foyod™!

have the same derivative at point ¢(z).

It defines an equivalence relation on differentiable functions from X to Y.

Particularizing this to X = IR, differentiable functions from X to ¥ modulo
the tangency relation are called the tangent vectors of Y at point y. They
actually form a real vector space of dimension n (the same dimension as the
manifold) called 7,(Y) as follows. We define a bijection 64 : Ty(Y) — IR™ which
associates the vector d(¢ o f)(0) with an equivalence class of a differentiable
function f: W — Y, where W is an open neighbourhood of 0 in IR, such that
10) = y.

Let (e1,...,€e,) be the standard basis of R", i.e. e = (1,0,...,0),.. .6, =
(0,...,1). (&1 = 0;1(61), e By = 0;1(6n)) is the basis of the IR-vector space
T,(Y) associated with the chart (U, ¢) (with local coordinates (z1,...,2,)).
Let X and Y are two manifolds and f: X — Y is a differentiable function. If
€ X,y= f(z) €Y and (U,¢) is a chart of X at z (respectively (V,7) is a
chart of Y at y, the linear function,

To(f)=0," 0o F'(¢(x)) 00y : To( X) — T,(Y)

2This notion is the usual one in IR™.
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where
F=1ofyro¢

is the local expression of f in charts (U, ¢) and (V, ) is the differential of f at
z. In general we write df(z).2 or df (x,2) for Tp(f)(d1,...,%n).

The last notation is justified by the fact that the 7, X actually define by amal-
gamation a manifold Tx called the tangent manifold whose local coordinates
are of the form (21,...,2,,%1,...,&,) if (21,...,2,) are the local coordinates

in the chart (U, ¢) of X and (@1,...,&,) are the corresponding local coordinates
of T,X. TX is a fiber bundle over X.

Now the usual laws of differential calculus that one has on Euclidean spaces IR™
hold on general manifolds.
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