
Optimal Implementation of Wait-Free Binary RelationsEric GoubaultCNRS & LIENS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris Cedex 05, FRANCE,email:goubault@dmi.ens.frAbstract. In this article we derive an algorithm for computing the \optimal" wait-freeprogram on two processors that implements a given relation from the semantics of a smallatomic read/write shared-memory parallel language. This algorithm is compared with themore general algorithm given in [8, 12] based on the participated set algorithm of [1]. Anextension to this is given, where we add a test&set primitive to the previous language. Thiswork is a natural follow up of [6].1 Introduction and Related WorkThe work reported here is concerned with the robust or fault-tolerant implementation of distributedprograms. More precisely, we are interested in wait-free implementations on a distributed machinecomposed of two units communicating through a shared memory via atomic read/write registers(described in Section 2). This means that the processes executed on the two processors (say P andP 0) must be as loosely coupled as possible so that even if one fails to terminate, the other will carryon computation and �nd a correct partial result. This excludes all mutual exclusion constructs suchas semaphores, monitors etc. Wait-freeness is also intended to help solve an e�ciency problem: ifone of the processors is much slower than the other, can we still implement a given function in sucha way that the fast process will not have to wait too much for the slow one?This �eld of distributed computing has received up to now considerable attention. Typically, oneis interested in implementing a distributed database in which remote transactions do not haveto wait for each others. The kind of functions we have to consider then is more like coherencerelations between the possible local inputs on each processor and the �nal global output of themachine. For instance, when two transactions wish to change the same shared item in the databasein an asynchronous manner, one has to choose which transaction will get the leading rôle, to keepthe database coherent. This is the well known consensus problem. Formally, if we represent thevalues of the shared items by integers then the consensus problem is the input/output relation� � (ZZ � ZZ) � (ZZ � ZZ) de�ned as follows, given that a pair of integers represents a pair of localvalues on P , P 0.For all integers i, (i; i)�(i; i) (a). This means that if P and P 0 start with the same local input valuei, then they must end with the same output value i as well. This corresponds to the fact that theycan only agree on the value i in that case.For all i, j, (i; j)�(i; i) (b) : if P and P 0 start with di�erent local input values, say i, j, then P andP 0 can agree on value i.For all i, j, (i; j)�(j; j) (c) : P and P 0 can also agree on value j.What if now one of the two processors fails to terminate? If we represent failure by the symbol ?,then the coherence relation � has to be extended so that it expresses the behaviour of the systemin nasty cases.For all i, (i;?)�(i;?) (d) : if P 0 fails then P must terminate and stick to its local value i.We should also assume for all j, (?; j)�(?; j) (e) : if P fails then P 0 must terminate and stick toits local value j.

In fact, it is well known that this relation cannot be implemented in a wait-free manner on a sharedmemorymachine with atomic read/write registers [4], whereas the following approximate consensus,called pseudo-consensus in [8], has a solution:(a') For all i, j booleans, (i; j)�(i; i), (i; j)�(j; j). This is the same as (a), (b) and (c) (for booleanvalues 0 and 1).(b') (0; 1)�(1; 0).(c') Same as (d) and (e).We have just slightly relaxed the agreement problem by adding rule (b0) specifying that we couldagree except for input (0; 1) where a minor error is tolerated. We can implement this one in await-free manner, as will be shown in Section 6.5.We follow here the geometric view on distributed computation used in recent litterature in dis-tributed protocols [2, 3, 8, 9, 10, 11, 12, 14] and in some ways in recent litterature in semantics ofconcurrency [5, 6, 7, 13, 16]. The idea is that wait-free relations exhibit some geometrical proper-ties (Section 5). We give another way of proving this (with respect to the way of M. Herlihy, N.Shavit and S. Rajsbaum), starting with a semantics of a shared memory language, bringing theseconsiderations close to the semantics and language people.Not only do these relations exhibit certain properties, but conversely any relation which exhibitsthese properties can be constructed algorithmically at least in the case of two processors. We derivea di�erent algorithm than the one of [8, 12] based on the participating set algorithm of [1] directlyfrom the semantics of our language (Section 6). Its short proof stems directly from its construction.Then, after giving a few examples, we compare both algorithms (Section 7) and show that ours givesthe programs with the minimum number of comparisons and accesses to the shared memory for allpossible executions, hence produces the most e�cient code for computing any wait-free relation.This in turn is generalized to deal with a new computability result concerning atomic read/writeshared memory plus a test&set primitive. It can be shown now that any \�nite" binary relationcan be computed, and a general algorithm for doing so is sketched in Section 8.2 The machine and languageWe consider a shared memory machine with two processors such as the one pictured in Figure 1.The shared memory is formalized by a collection of registers V = fx; x0g. Processor P (resp. P 0) has
Shared Memory

Processes

WRITEWRITE
READ

P u,v,r... u’,v’,r’... P’

x x’Fig. 1. Sketch of a shared memory machine with atomic read/write registers.a local memory composed of locations u; v; r � � � (resp. u0; v0; r0 � � �). All reads and writes are donein an asynchronous manner on the shared memory. There is no conict in reads, nor in writes sincewe ensure that the writes of distinct processors are made on distinct parts of the shared memory(P is only allowed to write on x, P 0 is only allowed to write on x0: SWAS or Single Write AtomicSnapshot model).

We use the following syntax for the shared memory language handling this machine. We �rst havea grammar for instructions I, and then another one for processes P ,I := updatej scanj r = f(r1; � � � ; rn)where c is a local register or a value (in ZZ), r; r1; � � � ; rn are local registers and f is any partialrecursive function. P := Ij case (u1; u2; : : : ; uk) of(a11; a12; : : : ; a1k) : P� � �(an1 ; an2 ; : : : ; ank) : Pdefault : Pj P ;Pwhere r is any local register. Programs are Prog := (P j P) (we are considering programs on twoprocessors only).update is the instruction that writes the local value u (resp. v0) of processor P (resp. P 0) in theshared variable x (resp. x0).scan reads the shared array in one round and stores it into a local register of the process in whichit is executed. scan executed in P (resp. P 0) stores x0 (resp. x) in v (resp. u0).r = f(r1; � � � ; rn) computes the partial recursive function f with arguments r1; � � � ; rn and storesthe result in r.case is the ordinary case statement on any tuple of local registers, with any �nite number of branchesallowed.; is the sequential composition of processes.j is the parallel composition of processes.3 Concrete SemanticsWe denote both the shared and local stores by � which is a function from V [([iVi) to ZZ, thedomain of values. The semantics is given in terms of a transition system generated by the rulesbelow. The states of the transition system are pairs (fP; P 0g; �) where P (respectively P 0) is thetext of the program yet to be executed on the �rst processor (respectively second processor) and �is the value of the global and local memories at this point of the computation.(update) (fupdate;R;P 0g; �) update- (fR;P 0g; �[x u])(scan) (fscan;R;P 0g; �) scan- (fR;P 0g; �[v x0])(calc) (f(r = f(r1 � � �rn));R;P 0g; �) calc- (fR;P 0g; �[r f(r1 : : : rn)])(case)

If 9k, 8i, ui = aki ,0BBBBBBBB@8>>>>>>>><>>>>>>>>:0BBBBBBBB@ case (u1 : : :uk) of(a11 : : :a1k) : P1� � �(an1 : : :ank) : Pndefault : P 1CCCCCCCCA ;R;P 09>>>>>>>>=>>>>>>>>; ; �1CCCCCCCCA case- (fPk;R;P 0g; �)Otherwise, 0BBBBBBBB@8>>>>>>>><>>>>>>>>:0BBBBBBBB@ case (u1 : : : uk) of(a11 : : :a1k) : P1� � �(an1 : : :ank) : Pndefault : P 1CCCCCCCCA ;R;P 09>>>>>>>>=>>>>>>>>; ; �1CCCCCCCCA case- (fP ;R;P 0g; �)We also add the obvious symmetric rules where we interchange the rôles of P and P 0.In [6], the semantics was given in terms of Higher-Dimensional Automata (HDA). This played akey rôle in giving the geometric characterization of the computable wait-free relations (to be usedin Section 5). As we restricted to binary relations (i.e. to biprocessor computations) the geometricproperties we need to consider are graph-theoretic properties (mainly about the number of connectedcomponents). This is why we simpli�ed the HDA semantics to its skeleton of dimension one, i.e.the transition system generated by the rules above.4 Abstraction of the SemanticsFrom the operational semantics of last section, we de�ne some kind of denotational abstraction. Weonly retain from the concrete semantics the relation between the input value and the output valueof each process.Formally, the input and output values are nodes of a graph that we will call the compatibility graphSZZ = (V;E) de�ned as follows (see Figure 2 for a picture of S[1;M]\ZZ).{ its set of vertices is V = fPg � ZZ [fP 0g � ZZ,{ its set of edges is E = f(v1; v2)=v1 = (P; r); v2 = (P 0; s)g with the obvious boundaries.Following [6] we de�ne two projections pI and pO onto SZZ. pI only retains the initial value of thelocal variable u of P and v of P 0. pO only retains the �nal value of x for P and of y for P 0. Formally,{ if (fP; P 0g; �) is an initial state, pI(fP; P 0g; �) = ((P; �(u)); (P 0; �(v))),{ if (f�; �g; �) is a �nal state (� denoting the empty string), pO(f�; �g; �) = ((P; �(x)); (P 0; �(y))).The image by pI of the set of initial states for a program fP; P 0g is called the input graph I. Theimage by pO of the set of �nal states is called the output graph O. They are particular cases of theinput complex and output complex (respectively) of [8]. They were seen as the initial and �nal cutsof the dynamic HDA semantics (respectively) in [6].Now the \denotational" relation � � I � O, or speci�cation graph, induced by the semantics isde�ned as, (v1; v2)�(v01; v02)if and only if

{ (v1; v2) = pI(fP; P 0g; �), (v01; v02) = pO(f�; �g; �0),{ there is a trace in the semantics of P j P 0 starting at state (fP; P 0g; �) and ending at state(f�; �g; �0).We extend the relation � to nodes of the graph as well. Nodes of the speci�cation graph representthe solo executions of P or P 0. We write them as (v1;?) or (P; v1) for the solo execution of P fromstate v1, (?; v2) or (P 0; v2) for the solo execution of P 0. Then (v1;?)�(v01;?) if and only if there isa solo execution of P starting with private (i.e. local) state v1 and ending with state v01. We havethe obvious similar de�nition for solo executions of P 0.5 Geometric Properties
(P,1) (P,2) (P,3) ... (P,M)

(Q,1) (Q,2) (Q,3) ... (Q,M)Fig. 2. The input graph for values in [1;M] \ ZZ.Speci�cation graphs represent the relation computed by programs written in our wait-free language.Conversely, given a binary relation, there is a full-abstraction problem: can we determine whetherit can be implemented in our language (that is, whether it is a wait-free binary relation or whetherit is the \denotational" semantics of some program in our language)? The answer is yes, and couldbe proved as a particular case of a general theorem by M. Herlihy and N. Shavit [11]. The criterionin our case is as follows. Suppose that P and P 0 ran alone (i.e. with the other process not being�red in parallel) are the identity functions on their inputs, and that the allowed initial states aresuch that �(x) = �(y) = ? (no prior knowledge is available), then,Lemma1. Let fe1; : : : ; ekg be the image of a segment e = ((P; u); (P 0; v)) of the input graph underthe relation �, i.e. the set of segments e0 such that e�e0. Then e1; : : : ; ek is a path from (P; u) to(P 0; v) in the output graph.Sketch of proof. Looking at the semantics one can prove that we can only change one value ata time (i.e. x or x0) making a connected path of value changes. Formally this is proved by inductionon the operational semantics. 2This geometric condition is satis�ed for the pseudo-consensus relation as one can see by looking atthe speci�cation graph of Figure 3.The situation is not quite the same with binary consensus (Figure 4). An easy inspection showsthat the image of the segment ((P; 0); (P 0; 1)) is a set of two disconnected segments, thus violatingLemma 1. Therefore, binary consensus cannot be implemented in a wait-free manner. The intuitionbehind this result is quite simple. Consensus requires that a process can tell whether it is the �rstor last to choose, because otherwise there is no way to be sure that the two processes will agreeon any value. This means it needs a synchronization, a break of the connexity of the cuts of thedynamics [6]. This is of course impossible in a wait-free language.

∆

∆

∆

∆

(P’,0)(P,0)

(P,1) (P’,1) (P,1)

(P,0) (P’,0)

(P’,1)Fig. 3. The speci�cation of the binarypseudo-consensus. (P,0)

(P,1) (P,1)

(P,0)

∆

∆

∆

∆

(P’,0)

(P’,1)

(P’,0)

(P’,1)Fig. 4. The speci�cation of the binary consen-sus.Similarly, if the input is given locally to the processes as we supposed in Lemma 1, parallel or (orordered binary consensus) cannot be implemented in a wait-free manner. There is though a wait-freesolution for parallel or if the input is stored in the shared memory right from the beginning:Prog = P j P 0P = update; P' = update;scan; scan;case v of case u0 of1 : u = 1;update 1 : v0 = 1;updatedefault : update default : update (P,0)

(P,1) (P,1)

(P,0)

∆

∆

∆

∆

(P’,1)

(P’,0)

(P’,1)

(P’,0)The speci�cation of parallel or.6 AlgorithmicsWe will derive the algorithm from Lemma 1. First of all we will try to meet the requirements ofthe lemma. This will be the aim of Sections 6.1 and 6.2. Then we will �nd a way to describe in arecursive manner all paths e1; : : : ; ek that appear in the lemma as image of a segment e. This is theaim of Sections 6.3 and 6.3. Finally we will recap the algorithm in Section 6.4.6.1 Rotation of the speci�cation graphWe wish here to construct part of the code in charge of ensuring that we are left with solving aspeci�cation problem � such that (u;?)�(u;?) and (?; v)�(?; v).Suppose (u;?)�(f(u);?) and (?; v)�(?; g(v)). By Church's thesis, f and g are partial recursivefunctions. Then the program Prog = P (f) j P 0(g) with P (f) and P 0(g) de�ned below solvesthe speci�cation � if and only if P j P 0 solves the speci�cation �0 with (f(u);?)�0(f(u);?),(?; g(v))�0(?; g(v)) and (f(u); g(v))�0(f(u0); g(v0)) whenever (u; v)�(u0; v0).P (f) = u = f(u); P 0(g) = v0 = f(v0);P P 0Sketch of proof. The line of code before the calls to P and P 0 only acts on the local memoryof each processor, hence there is no other action than the one deduced from the purely sequentialbehaviour of P (f) and P 0(g) respectively. 2

6.2 Minimal unfolding of the output graphWe now suppose that we have to solve a speci�cation problem with a relation which is such that itis the identity relation when restricted to the vertices of the graph. We ful�ll now the hypothesesof Lemma 1.Let e = ((P; u); (P 0; v)) be any segment of the input graph, and Ge be the subgraph of the outputgraph (connected by Lemma 1), image of e by the speci�cation relation �. Let Ge be the directedgraph generated by Ge where each segment has an inverse. To exemplify the whole process describedin this section, look at Figure 5 for the speci�cation graph corresponding to a segment e = (a; b)(the graph Ge is at the right-hand side of the picture), and to the left of Figure 6 for a picture of Ge.An unfolding of Ge is any path p from (u;?) to (?; v) in Ge such that p traverses all segments ofGe. The minimal unfolding is the shortest of such paths. Its interest lies in the fact that from therewe will be able to generate a code for P and P 0 that will implement this subpart of the speci�cationgraph. We will see in next section and in Section 7.2 that the length of this code is linearly relatedto the length of this unfolding, hence the usefulness of �nding the shortest path to get the moste�cient code.
a

b

a

b

cFig. 5. Example of a speci�cation graph. c a

b

a

a

b

c 1

2

3Fig. 6. Minimal unfolding (right) of the graph(left).An algorithm for determining such a minimalunfolding is based on a breadth-�rst traversing strategy[15] of the graph, the traversing being complete when the criterion \having gone through all non-oriented segments and ending at (?; v)" is met. For instance, this algorithm constructs the minimalunfolding of Ge which is pictured at the right of Figure 6.6.3 Main codeWe can now suppose that all paths image by � of any segment of the input graph are made ofdistinct segments (one should say, oriented segments). We can also still suppose that � restrictedto vertices is the identity relation.Subdivision of a segment into three segments The program Prog = P [update] j P 0[update]with P and P 0 de�ned below (being programs with one hole [] in which we can plug any otherprogram) implements the speci�cation graph below (the segments not being pictured are mappedonto themselves).P = update; P 0 = update;scan; scan;case (u; v) of case (u0; v0) of(x; y0) : u = x0;update; [] (x; y0) : v0 = y;update; []default : update default : (P,x)

(P,x’)

(P,x)

(P’,y’)

(P’,y)

(P’,y’)Subdivision of a segment into 3 segments.

Sketch of proof. Using the semantics, we have the following three possibilities, since the onlypossible interactions are between the scan and update statements (the rest of the processes onlyact on their local memory),(i) Suppose the scan operation of P is completed before the update operation of P 0 is started: Pdoes not know x0 so it chooses to write x. Prog ends up with ((P; x); (P 0; y)).(ii) Symmetric case: Prog ends up with ((P; x0); (P 0; y0)).(iii) The scan operations of P and P 0 are simulaneous. Prog ends up with ((P; x0); (P 0; y0)).2Example 1. - The binary pseudo-consensus whose speci�cation graph is given in Figure 3 is preciselythis program with x = 0, x0 = 1, y = 0, y0 = 1.- We can carry on the example speci�ed in Figure 5, setting for instance a = (P; x), b = (P 0; y0) andc = (P 0; y) the program implementing the speci�cation (i.e. the subdivision of the segment (a; b)into the minimal unfolding ((a; c); (c; a); (a; b))) is Prog = P j P 0 with,P = update; P 0 = update;scan; scan;case (u; v) of case (u0; v0) of(x; y0) : u = x;update (x; y0) : v0 = y;updateSubdivision of a segment into a path The programProg = P (x1; y1; � � � ; xn; yn) j P 0(x1; y1; � � � ; xn; yn)with P and P 0 de�ned below, implements the speci�cation graph of the right-hand side,P (x1; y1; � � � ; xn; yn) = P (x1; y1; xn; yn)[P (xn; yn�1; � � � ; x2; y1)]P 0(x1; y1; � � � ; xn; yn) = P 0(x1; y1; xn; yn)[P 0(xn; yn�1; � � � ; x2; y1)] (P,x) (P,x)

(P,x)

(P,x)

(P,x)
1

2

n-1

n

n

3

2

(P’,y’)

(P’,y)

(P’,y)

(P’,y)

(P’,y)Subdivision of a segment into a path.where P (x1; y1; xn; yn) j P 0(x1; y1; xn; yn) is the program of last section with x = x1, y = y1, x0 = xnand y0 = yn.Sketch of proof. The idea is to subdivide the segment (x1; yn) in a recursive manner (see above).First subdivide (x1; yn) into f(x1; y1); (xn; y1); (xn; yn)g by using the program P (x1; y1; xn; yn) jP 0(x1; y1; xn; yn). Then subdivide recursively (xn; y1) into the path of length n � 1 (xn; yn�1; : : : ;x2; y1) using P ((xn; yn�1; : : : ; x2; y1) j P 0(xn; yn�1; : : : ; x2; y1). Prog works since (as all the segments(xi; yi) are distinct) there is no interference between P (x1; y1; xn; yn) and P 0(xn; yn�1; : : : ; x2; y1)nor between P 0(x1; y1; xn; yn) and P ((xn; yn�1; : : : ; x2; y1). 2Example 2. Consider the speci�cation graph pictured in Figure 7. The minimalunfolding is shown intwo di�erent ways in Figure 8. Using the result above, the code for implementing it is Prog = P j P 0with P = P (0; 0; 0; 0)[P (0; 0; 1;0)[P (1; 1; 1; 0)]] and P 0 = P 0(0; 0; 0; 0)[P 0(0; 0; 1; 0)[P 0(1; 1; 1; 0)]].

(P,0)

(P,1)

(P,0)

(P’,1) (P’,1)

(P’,0)Fig. 7. A speci�cation graph. 1

6

7
3

4

5
2 =

(P,0)

(P,1)

(P,1)

(P,0)

(P’,0)

(P’,0)

(P’,0)

(P’,1)Fig. 8. The corresponding minimal unfolding andminimal path.6.4 The algorithmThe speci�cation graph is given. The algorithm terminates with an error (if the relation speci�edis not wait-free) or with the text of the two processes that implements the relation. The algorithmis as follows,{ Determine the rotation code (Section 6.1),{ For all segments e = ((P; u); (P 0; v)) of the input graph, do,� determine the connected subgraph Ge of the output graph, image of e under the speci�cationrelation �,� determine the minimal unfolding ((P; x1) : : : (P; xn); (P 0; yn)) of Ge (Section 6.2),� The program up to that point isProge = P (x1; : : : ; yn) j P 0(x1; : : : ; yn)of Section 6.3,{ Mix the code for all segments.We saw all the material needed in the previous sections except the \mixing" of the code for allsegments. As a matter of fact, we have shown how to derive a code for the speci�cation of just oneinput (a segment). Now we have to mix the codes for all inputs.The idea here is quite simple:Mix(Prog1; P rog2) (Prog1 = P1 j P 01, Prog2 = P2 j P 02) is essentiallya program whose processes are Mix(P1; P2) and Mix(P 01; P 02) such that all their case entries are theunion of the case entries of P1 and P2 (respectively of P 01 and P 02). Formally,Mix is an operationon processes that can be de�ned inductively when applied to the processes that subdivide segmentsif (x; y0) 6= (X;Y 0), Mix(P (x; y; x0; y0)[P1]; P (X;Y;X0; Y 0)[P2]) =update;scan;case (u; v) of(x; y0) : u = x0;update;P1(X;Y 0) : v0 = X0;update;P2There should also be shortcuts for representing more general programs, with loop constructs andparameterized case statements. This is beyond the scope of this paper.

6.5 Example, the binary caseAs in [6] we might be interested in the case where the values of the registers are booleans, i.e. 0or 1. There is then an easy classi�cation theorem of all binary wait-free relations, on which we canexamplify our algorithmic construction.By Lemma 1 we know that all four segments of the input graph must be mapped onto paths ofthe output complex, between the respective images of the vertices. We also know that the outputgraph must be a subgraph of the binary 2-sphere (which is the graph pictured in Figure 9).
(P,0)

(P,1)(P’,1)

(P’,0)Fig. 9. The binary 2-sphere (a) (b) (c)Fig. 10. The three possible output graphs for wait-freebinary relationsTherefore we have the three possibilities (a), (b), and (c) of Figure 10 for the output graphs (up to\rotation").There are actually many more possibilities for the allowed relations between the input and outputcomplexes.{ A typical \type (a)" program is the identity for processes P and P 0. The relation in this caseis therefore the identity relation on the binary 2-sphere. Notice that there are other kinds ofprograms of this type. For instance the relation shown in Figure 11 can be implemented asfollows,
(P,0)

(P,1) (P,1)

(P,0)

∆

∆

∆

∆

∆

(P’,1)

(P’,0)

(P’,1)

(P’,0)

Fig. 11. A non-identity wait-free relation on the binary 2-sphere

Prog = P j P 0P = update; P' = update;scan; scan;case u0 of1 : v0 = not v0;update{ Typical \type (b)" program is pseudo-consensus.{ Typical \type (c)" programs are two constant processes in parallel.In fact all these can be seen to have a normal form of the typeMix(P (0; y0; x0; 0); P (0; y00; x00; 1); P (1; y1; x1; 0); P (1; y01; x01; 1))7 Comparison with related work7.1 The participating set and Herlihy's algorithmThe participating set algorithm aims at solving the simplex agreement task of [8], that is, a gen-eralization to any number of processors of the speci�cation graph for pseudo-consensus. Whenparticularized to two processors, it can be written as follows, in pseudo Pascal (all arrays are inshared memory),procedure segment agree (i : proc id;my vertex : vertex value;k : refinement);input[i] := my vertex;for r := 1 to k doS[r][i] := particip set(i; f [r]);if r = 1then vertex[j; 1] := hi; finput[k] j k 2 S[j; 1]gielse vertex[j; r] := hi; fvertex[k; r � 1] j k 2 S[j; r]gireturn(vertex(i; k));end segment agreeprocedure particip set (i : proc id;f : shared array);repeatf [i] := f [i]� 1;scan;S := fj j rij � f [i]g;until j S j� f [i];return(S);end particip set

etc.

i=1

i=2Fig. 12. Herlihy's iterated subdivision on the binary sphere.The intuition behind this algorithm is to subdivide all segments of the input graph, in a uniformmanner, and enough so that all the subdivisions of the segments we need to implement the relationcan be deduced from it. As a matter of fact, if we have subdivided a segment into N segments, thenall subdivisions into M segments, M � N can be deduced from it by just identifying the points inthe �ner subdivision which are not needed. The e�ect of the iterated participating set algorithm is(as shown in Figure 12) to create at iteration i a subdivision of all segments into 3i segments.7.2 Complexity mattersAs one might have already noticed, we have a strong relationship between the length of the minimalunfoldings, the number of times the program has to test the values of its variables, and the numberof reads in the main memory. Let t(e) be the maximum number of tests that Prog has to make forall executions starting at segment e. Let s(e) be the maximum number of scan that Prog has toexecute for all executions starting at segment e. Then, calling p(e) the minimal unfolding of Ge,Lemma2. s(e) = t(e) = length(p(e)) � 12Sketch of proof. Looking at the algorithm of Section 6, we see that all paths are recursivelydecomposed using the programs of type P (x; y; x0; y0)[] j P 0(x; y; x0; y0)[] such that at iteration x,we have subdivided e into a path of length 1 + 2x. The cost in terms of tests and accesses to themain memory of each iteration is one. This entails the result. 2Whereas in case of Herlihy's algorithm we have up to 3maxe(s(e)) accesses to the shared memory.In the case when all segments are mapped onto a segment except for one (like the one of Figure13), the cost of computation is the same for all inputs and can be quite enormous.The algorithm proposed in this article is optimal in the sense that it minimizes s(e) and t(e) for alle whereas Herlihy's one subdivides all segments a power of three times uniformly.Notice that the maximal complexity of the computation of wait-free relations on [0;M]\ ZZ is notvery high and is attained by our implementation for the speci�cation graph shown in Figure 13

(for all input segments). It is such that for all inputs e, s(e) = t(e) is asymptotically �M2 with12 � � � 1.Sketch of proof. In all Ge there are M2 segments. Hence an unfolding of Ge has at least M2segments and at most 2M2 segments. We use Lemma 2 to conclude. 2
etc.

(P,x)(P,x)

(P’,y’)

(P’,y’)Fig. 13. The worst complexity case for a speci�cation graph.8 Test&Set operationsIn this section we add to the language a test&set operation (t&s) on a ag f shared by the twoprocesses P and P 0. This is done by extending the case statement to include a test on t&s(f). Thissimple extension to the language changes quite dramatically what kind of relation it can compute.Lemma3. The speci�cation graph of Figure 8 can be implemented in our new language.Sketch of proof. The following program implements the \splitting" of one segment into twoothers,Prog = P j P 0P = update; P' = update;scan; scan;case (u; v; t&s(f)) of case (u0; v0; t&s(f)) of(x;?; 0) : u = x;update (?; x0; 0) : v0 = y;update(x; y; 1) : u = x0;update (x; y; 1) : v0 = y0;update (P,x)

(P,x’)

(P,x)

∆

(P’,y) (P’,y)

(P’,y’)Splitting of a segment.The value of t&s(f) is found equal to 0 by the �rst process which tests it, and is found equal to 1by the second process which tests it. 2In particular, the binary consensus can be solved using test&set.Now we can state,Theorem4. For the SWAS model between two machines plus test&set on a shared ag, the rela-tions � that can be computed are exactly the relations such that the image of any segment (x; y)is a �nite union of connected components, one of which contains (P; x), and one of which contains(Q; y).

Sketch of proof. Basically, a given (�nite) program can only split (a �nite number of times) asegment and apply any subdivision on these segments. The constructive algorithm follows immedi-ately. 29 ConclusionWe have shown that wait-free binary relations could be constructed algorithmically and imple-mented in a small shared-memory language, giving another proof of the results of [12]. This newproof is interesting since it comes directly, through simple transformation steps and geometricintuitions, from the semantics of the language. It is also interesting since it gives an optimal imple-mentation of these relations in terms of the number of tests and read/write operations in the main(shared) memory the processes have to execute (a similar result would hold for a message-passingparadigm).Numerous generalizations of this work should be considered. We have been trying to keep thingsas simple as possible in this article for making the main ideas clear. A straightforward generaliza-tion would be the construction of 1-resilient n-ary relations (i.e. relations on n processors whoseimplementation can tolerate up to one failure of a process) since it involves the same sort of geo-metric phenomena on graphs. A far less straightforward generalization would be the constructionof t-resilient n-ary relations with t � 2 (and in particular the wait-free n-ary relations with n � 3as done in [12]) since this involves higher-dimensional geometry.References1. E. Borowsky. Capturing the power of resiliency and set consensus in distributed systems. Technicalreport, University of California in Los Angeles, 1995.2. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computa-tions. In Proc. of the 25th STOC. ACM Press, 1993.3. S. Chaudhuri. Agreement is harder than consensus: set consensus problems in totally asynchronoussystems. In Proc. of the 9th Annual ACM Symposium on Principles of Distributed Computing, pages311{334. ACM Press, August 1990.4. M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commit with one faultyprocess. Journal of the ACM, 32(2):374{382, April 1985.5. E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, La Jolla, June1995. ACM Press, also available at http://www.ens.fr/~goubault.6. E. Goubault. A semantic view on distributed computability and complexity. In Proceedings ofthe 3rd Theory and Formal Methods Section Workshop. Imperial College Press, also available athttp://www.ens.fr/~goubault, 1996.7. E. Goubault. The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure, to be published,1995, also available at http://www.ens.fr/~goubault.8. M. Herlihy. A tutorial on algebraic topology and distributed computation. Technical report, presentedat UCLA, 1994.9. M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc. of the 13th Annual ACMSymposium on Principles of Distributed Computing. ACM Press, August 1994.10. M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, a primer. Technicalreport, Brown University, 1995.11. M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In Proc. ofthe 25th STOC. ACM Press, 1993.12. M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free computation. InProceedings of STOC'94. ACM Press, 1994.13. V. Pratt. Modeling concurrency with geometry. In Proc. of the 18th ACM Symposium on Principlesof Programming Languages. ACM Press, 1991.

14. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge.In Proc. of the 25th STOC. ACM Press, 1993.15. Bob Sedgewick. Algorithms. Addison-Wesley, 1988.16. R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report, StanfordUniversity, Manuscript available on the web as http://theory.stanford.edu/~rvg/hda, 1991.

