
A Simple Constructive Computability Theoremfor Wait-free ComputationMaurice HerlihyDigital Equipment CorporationCambridge Research Laboratoryherlihy@crl.dec.com Nir ShavitComputer Science DepartmentTel-Aviv Universityshanir@math.tau.ac.ilAbstractIn modern shared-memory multiprocessors, processescan be halted or delayed without warning by inter-rupts, pre-emption, or cache misses. In such environ-ments, it is desirable to design synchronization proto-cols that are wait-free: any processes that continuesto run will �nish the protocol in a �xed number ofsteps, regardless of delays or failures by other pro-cesses.Not all synchronization problems have wait-free so-lutions. In this paper, we give a new, remarkablysimple necessary and su�cient combinatorial condi-tion characterizing the problems that have wait-freesolutions using shared read/write memory.We associate the range of possible input and out-put values for any synchronization problem with ahigh-dimensional geometric structure called a simpli-cial complex. We show that a synchronization prob-lem has a wait-free solution if and only if its inputcomplex can be continuously \stretched and folded"to cover its output complex. The key to the new theo-rem is a novel \simplex agreement" protocol, allowingprocesses to converge asynchronously to a commonsimplex of a simplicial complex. The proof exploits anumber of classical results from algebraic and combi-natorial topology.
0

1 IntroductionA decision task is an input/output problem where Nasynchronous processes start with input values, com-municate either by shared memory or by message-passing, and halt with output values. Much researchin this area has focused on identifying combinatorialconditions characterizing when such tasks are solv-able. In the late 80's, Biran, Moran and Zaks [4]provided a pioneering graph theoretic characteriza-tion for decision tasks in an asynchronous message-passing system in which only a single processor couldfail. This result was not substantially improved untilearly 1993, when three independent research teams,Borowsky and Gafni [5], Saks and Zaharoglou [13],and the present authors [11], succeeded in applyingnew combinatorial techniques to models that allowmore than one failure. Saks and Zaharoglou usedpoint-set topology and a form of Brouwer's �xed pointtheorem for the k-dimensional ball to prove that thelongstanding open problem of wait-free k-set agree-ment [7] is unsolvable for k � N � 1. Borowsky andGafni used a novel simulation method and a variantof Sperner's Lemma to prove k-set agreement impos-sible with any number of faults t � k. The presentauthors presented a general topological characteriza-tion of t-faulty computation, and used it to derive im-possibility results for both k-set agreement and thewell-known renaming problem of Attiya et al. [3].Our earlier characterization, however, has two lim-itations. First, the condition is not stated directlyin terms of the task's input/output speci�cation. In-stead, it characterizes solvability in terms of the topo-logical properties of an associated \full informationcomplex," a geometric realization of a family of con-current executions. Second, the su�cient conditionis existential rather than constructive | one cannoteasily derive an algorithm for a particular solvabletask.In this paper, we show that if we restrict our at-Page 1

tention to the wait-free case, where up to N � 1processes can fail (or delay arbitrarily), then thereis a remarkably concise necessary and su�cient con-dition for solvability. This new condition improvesour earlier characterization in two ways: �rst, it pro-vides a clean and intuitive mathematical conditionfor computability, stated solely in terms of a task'sinput/output speci�cation, and second, the theoremis constructive: the combinatorial property character-izing solvability can be used directly to construct analgorithm.2 ModelA collection of N sequential processes communicateby reading and writing variables in shared memory.1In modern shared-memory multiprocessors, processescan be halted or delayed without warning by inter-rupts, pre-emption, or cache misses. In such environ-ments, it is desirable to design synchronization proto-cols that are wait-free: any processes that continuesto run will �nish the protocol in a �xed number ofsteps, regardless of delays or failures by other pro-cesses. To capture the formal properties of such en-vironments, we make no fairness assumptions aboutprocesses. Up to N � 1 out of N processes can halt,or display arbitrary variations in speed. In particular,one process cannot tell whether another has halted oris just running very slowly.Elsewhere [11], we introduced a model in whichtask speci�cations are given using standard geometricformalisms from undergraduate-level algebraic topol-ogy. (Most of our technical de�nitions are taken fromSpanier [14].) An initial or �nal state of a processis modeled as a vertex, ~v, a point in some high-dimensional Euclidian space. Each vertex is labeledwith a process id id(~v) and a value value(~v) (eitherinput or output). A set of mutually compatible initialor �nal states is modeled as a simplex, the convex hullof a set of a�nely-independent vertexes labeled withdistinct process identi�ers. Geometrically, a simplexis just the higher-dimensional analogue of a solid tri-angle or tetrahedron. The complete set of possibleinitial and �nal states are represented by sets of sim-plexes called simplicial complexes (or complexes).Complexes have a dual nature: they are combina-torial objects (sets of sets of vertexes) as well as geo-metric or topological objects (point sets in Euclidianspace). We use An to denote a (combinatorial) com-plex, and jAnj to denote its (geometric) point-set inEuclidian space. Similarly, we use Sn to denote an1Our results also apply to message-passing systems in whichfewer than half the processes can fail [1].

(n+1)-process simplex, and jSnj its underlying pointset. The number n is called the dimension of thesimplex or complex. A simplex's set of identi�ers isdenoted by ids(Sn).A simplicial map � : An ! Bn carries vertexes tovertexes such that every simplex in An maps to asimplex in Bn. Any simplicial map de�nes a piece-wise linear map j�j : jAnj ! jBnj. A simplicialmap is color preserving if id(�(~v)) = id(~v). Hence-forth, unless explicitly stated otherwise, all simpli-cial maps are assumed to be color preserving. Thestar of simplex Sm in complex Cn, written st(Sm),is the union of all jTnj such that Sm � Tn. Theopen star, written �st (Sm), is the interior of thestar. If Sm = (~s0; : : : ; ~sm) and T ` = (~t0; : : : ;~t`)are simplexes whose vertexes are a�nely indepen-dent, their join, Sm � T `, is the (m + ` + 1)-simplex(~s0; : : : ; ~sm;~t0; : : : ;~t`).A subdivision of a complex An is a complex Bn witha map � carrying vertexes of Bn to points of jAnj suchthat (1) if Sn is a simplex of Bn there is some sim-plex Tn 2 An such that �(Sn) � jTnj, and (2) thepiece-wise linear map j�j : jBnj ! jAnj is a homeo-morphism. If Sm is a simplex of Bn, carrier(Sn) isthe unique smallest T ` such that Sm � jT `j. A subdi-vision Bn is chromatic if for all Sm in Bn, ids(Sm) �ids(carrier(Sm)). A simplicial map � : Bn ! Cn be-tween subdivisions of An is carrier preserving if forall Sm 2 Bn, carrier(Sm) = carrier(�(Sm)).A task speci�cation is given by an input complexIn, an output complex On, and a map � carryingeach input simplex of In to a set of simplexes of On.This map associates with each initial state of the sys-tem (an input simplex) the set of legal �nal states(output simplexes). When m < n, �(Sm) indicatesthe legal �nal states in executions where only m + 1out of n+ 1 processes take steps (the rest fail beforetaking any steps). A solution to a task is a protocolin which the processes communicate by reading andwriting a shared memory, and eventually halt withmutually compatible decision values. A wait-free so-lution is one which tolerates the failure of up to n outof n+ 1 processes.For example, in the renaming task [3], n + 1 pro-cesses with unique names from a large name spacemust choose unique names from a smaller name space.Figure 1 shows all the possible �nal states of therenaming task where three processors must chooseunique names from an output space of four names.As shown, this particular complex is topologicallyequivalent to a torus. A task speci�cation is shownschematically in Figure 2, in the form of a relationbetween simplexes of an input complex (shown hereas a triangulated 2-sphere), and an output complexPage 2

01

2

3

01010

2

323

2

3

010101

2

0
P

P

P

P

P

P

P

P

P

P

P

P

P

P

Q

Q

Q

Q

Q

Q

Q

QQ

Q

Q

Q

R

R

R

R

R

R

R

R

R

R

R

RFigure 1: Output Complex for 3-Process Renaming with 4 Names(shown here as a triangulated torus).We are now ready to state our main theorem in itsentirety.Theorem 2.1 A decision task hIn;On;�i has await-free solution using read-write memory if andonly if there exists a chromatic subdivision �(In) witha color-preserving simplicial map � : �(In) ! Onsuch that for each simplex Sm in �(In), �(Sm) 2�(carrier(Sm)).This theorem is illustrated schematically in Figure 3Informally, this theorem states that wait-free compu-tation in read/write memory preserves topology. Thesimplicial map � induces a continuous (piece-wise lin-ear) map j�j on the underlying point sets such that foreach input simplex Sm, j�j(jSmj) � j�(Sm)j. A taskis therefore solvable if and only if the input complexcan be continuously \stretched" and \folded" so thateach input simplex is carried into its correspondingset of output simplexes. This theorem has intrigu-ing parallels to the classical simplicial approximationtheorem [14][5.4.8], which states that any continuousmap jAnj ! jBnj can be approximated by a simplicialmap from some subdivision of An to Bn.For example, Figures 4 and 5 show two simpletasks, one solvable and the other not. The �rst

task, 2-process consensus2 , is not solvable, becausetwo simplexes in the connected input complex mustbe mapped to distinct connected components of theoutput complex. The second task, called 2-processalmost-consensus, is solvable. Although there is nosimplicial map directly from the input to the outputcomplex, subdividing the 1-simplex marked (P0; Q1)does admit a map. A corresponding protocol appearsin Figure 6.3 StrategyThe necessity of Theorem 2.1 follows from earlierwork. If a protocol exists, the subdivision is inducedby the \coherent family of spans" constructed in ourearlier paper [11], or by closely related constructionsin [5, 13].In this paper, we focus on su�ciency, construct-ing an explicit algorithm given the subdivision andthe simplicial map. The basic intuition is that solv-ing a decision task is really a form of approximateagreement [2, 8, 9, 10, 12], in which processes maystart out preferring vertexes \far apart" on the output2The 2-process consensus task requires processes with in-puts in the range f0;1g to agree on one of their input valuesas a common output. Page 3

task spec

∆

Figure 2: A Task Speci�cation
simplicial
 map

µ

Figure 3: The Main Theorem
Page 4

P0 Q0

P1Q1

Input Complex Output Complex

Q0

P1Q1

definition

(P0Q0) = {P0Q0}

(P0Q1) = {P0Q0,P1Q1}

(P1Q1) = {P1Q1}

(P0Q1) = {P0Q0,P1Q1}

P0

Figure 4: Two Process Consensus
P0 Q0

P1Q1

Input Complex

Subdivided
Input Complex

Q0

P1Q1

P0*

Q1*

P0

definition

(P0) = P0

(P1) = P1

(Q0) = Q0

(Q1) = Q1

(P0*) = P1

(Q1*) = Q0

Output Complex

Q0

P1Q1

definition

P0

(P0Q0) = {P0Q0}

(P0Q1) = {P0Q0,P1Q1,P1Q0}

(P1Q1) = {P1Q1}

(P0Q1) = {P0Q0,P1Q1,P1Q0}

∆

∆

∆

∆

∆

µ

µ

µ

µ

µ

µ

µFigure 5: Two Process Almost-ConsensusProcedure almost-consensus for P Procedure almost-consensus for Qinitially input[P] = nil initially input[P] = nilinput[P] := P's input input[Q] := Q's inputif my input is 1 then return 1 if my input is 0 then return 0if input[Q] != 1 then return 0 if input[P] != 0 then return 1return 1 /* vertex P0* */ return 0 /* vertex Q1* */Figure 6: Protocols for Two Process Almost-Consensus Page 5

Before AfterFigure 7: Simplex Agreementcomplex, but after a process of negotiation eventuallyconverge to the vertexes of a single output simplex.More formally:De�nition 3.1 The simplex agree-ment task hIn;On;�i has arbitrary input complexIn, output complex On = �(In), a chromatic subdi-vision of In, and for all input simplexes Sm, �(Sm)is the set of m-simplexes in �(Sm).Simplex agreement task is shown schematically inFigure 7. Given the necessity of Theorem 2.1, anyalgorithm that solves simplex agreement for an arbi-trary chromatic subdivision of In is a universal algo-rithm. Our construction proceeds as follows.� We introduce the standard chromatic subdivisionof a complex In, denoted �(In), and the iteratedstandard chromatic subdivision �k(In). Thissubdivision is a color-preserving analogue of theclassical barycentric subdivision.� Simplex agreement on �(In) is solved by the\participating-set" algorithm of Borowsky andGafni [6]. Simplex agreement on �k(In) is solvedby iterating that algorithm k times.� If �(In) is an arbitrary chromatic subdivision ofIn, then there exists an integer K such that ifk > K, there is a carrier-preserving simplicialmap � : �k(In)! �(In).Putting these results together, we have a universalalgorithm. If the subdivision � and simplicial map �are given, then the value of k and the simplicial map� may be computed o� line. The processes �rst solvesimplex agreement on �k(In). A process that choosesvertex ~v then chooses as its output value �(�(~v)).

4 Standard Chromatic Subdi-visionLet the simplex Sn = (~s0; : : : ; ~sn), where id(~si) =Pi, and facei(Sn) the subsimplex of Sn including allvertexes but ~si.De�nition 4.1 In the standard chromatic subdivi-sion of Sn, denoted �(Sn), each n-simplex has theform fhP0; S0i; : : : ; hPn; Snig, where Si is a subsim-plex of Sn, such that (1) Pi 2 ids(Si), (2) for all Siand Sj , one is a subsimplex of the other, and (3) ifPj 2 ids(Si), then Sj � Si.The �rst and second subdivisions of S2 are shown inFigure 8. Applying the standard chromatic subdivi-sion repeatedly yields a subdivision �k(Sn). Apply-ing it to every simplex in a complex Cn yields thecomplex �k(Cn).To show that �(Sn) is a subdivision of Sn, weconstruct an explicit homeomorphism � : j�(Sn)j !jSnj. Assume inductively that there exist homeo-morphisms �i : j�(facei(Sn))j ! jfacei(Sn)j. LetSn = (~s0; : : : ; ~sn), ~b =Pni=0(~si=(n+ 1) the barycen-ter of Sn, and � any value such that 0 < � < 1=n.De�ne�(hPi; Ski) = � �i(hPi; Ski) If Sk � facei(Sn):(1 + �)~b� �~si If Sk = Sn:Because � is a homeomorphism (proof omitted):Lemma 4.1 �(Sn) is a subdivision of Sn.The mesh of a complex is the maximum diameter ofany simplex. By analogy with the classical barycen-tric subdivision: Page 6

first subdivision

second subdivision ...Figure 8: Standard Chromatic SubdivisionsLemma 4.2 For su�ciently small �,mesh(�(Sn)) � nn+1diam(Sn).Lemma 4.2 implies that by taking su�ciently large k,mesh(�k(In)) can be made arbitrarily small.We refer to the vertexes hPi; Sni as the central ver-texes of the subdivision.5 Simplex AgreementLemma 5.1 There exists a wait-free solution to sim-plex agreement with input complex In and outputcomplex �(In), the standard chromatic subdivision.Proof: Each process Pi must choose a subsimplexof Si of Sn such that (1) Pi 2 ids(Si), (2) for allSi and Sj, one is a subset of the other, and (3) ifPj 2 ids(Si), then Sj � Si. This is exactly the par-ticipating set problem of Borowsky and Gafni [6], andtheir simple wait-free solution appears in Figure 9.Lemma 5.2 There exists a wait-free solution to sim-plex agreement with input complex In and outputcomplex �k(In), the iterated standard chromatic sub-division for any k > 0.Proof: Figure 10 shows an iterated version of theparticipating set algorithm.

6 Arbitrary Chromatic Subdi-visionsOur main combinatorial result is to show that if�(Sn) is an arbitrary chromatic subdivision of Sn,then there exists a K such that for all k � K, thereis a color and carrier-preserving simplicial map:� : �k(Sn)! �(Sn):As a �rst step, we show that given a subdivision ofa simplex, the result of \perturbing" a vertex withinits carrier by a su�ciently small distance is still asubdivision.De�nition 6.1 Let �(Sn) be a subdivision of Sn.An �-perturbation of �(Sn) is a complex �0(Sn) witha color and carrier-preserving simplicial map � :�(Sn) ! �0(Sn), bijective on vertexes, such that forall ~v, j~v � �(~v)j < �.Theorem 6.1 If �(Sn) is a subdivision of Sn, thenthere exists � > 0, such that any �-perturbation of�(Sn) is also a subdivision of Sn.Henceforth, all perturbations are assumed tobe subdivisions. Note that mesh(�0(Sn)) �mesh(�(Sn)) + 2�. Page 7

Initially: f[i] = n+2; view_f[j] = null for j in {1..n+1}; S = empty;procedure participating-set(i: process id; f: shared array);repeatf[i] := f[i]-1;for j := 1 to n+1 do view_f[j] := f[j] od;S := {j | view_f[j] <= f[i]};until |S| >= f[i];return S;end participating-set; Figure 9: The Participating Set Algorithm.
f[1..k][0..n], S[1..k][0..n], input[0..n]: shared array;Initially for all r in {1..k} f[r][i] = n+2;S[r][i] = empty;procedure simplex-agree(i: process_id;my_vertex: vertex value;k: refinement);input[i] := my_vertex;for r := 1 to k doS[r][i] := participating-set(i,f[r]);if r = 1then vertex[j,1] := <i,{input[k] | k in S[j,1]}>else vertex[j,r] := <i,{vertex[k,r-1] | k in S[j,r]}>return(mu(phi(vertex(i,k))));Figure 10: The Iterated Participating Set Algorithm.

Page 8

De�nition 6.2 Two chromatic subdivisions �(Sn)and �(Sn) are independent if, for every ~r in �(Sn),and every ~s0; : : : ; ~sk in �(Sn) such that id(~si) 6= id(~r)for 0 � i � k, ~r is a�nely independent of ~s0; : : : ; ~sk.Theorem 6.2 If �(Sn) and �(Sn) are chromaticsubdivisions of Sn, then �(Sn) has an �-perturbationindependent of �(Sn).De�nition 6.3 If � : �(Sn) ! �0(Sn) is an �-perturbation, and � : A ! �(Sn) a simplicial map,the compostion �0 = � � � is called an �-perturbationof �.Lemma 6.3 (Spanier 2.1.25) A set of vertexes~v0; : : : ; ~vm belong to a common m-simplex if and onlyif m\i=0 �st (~vi) 6= ;:De�nition 6.4 Let B be a colored complex, and Ca subcomplex of B. The partial chromatic subdivi-sion �(B; C) is de�ned as follows: each simplex in�(C;B) has the form C � B, where C 2 �(C) andcarrier(C;�(C)) � B 2 B. The iterated partial chro-matic subdivision �`(B; C) is de�ned inductively.Lemma 6.4 If � : A ! B is a color-preserving sim-plicial map, then there exists a color-preserving sim-plicial map : �(A)! �(B; C).Proof: Let carrier(~v; �(A)) = X � Y , where X isthe largest face of the carrier such that �(X) 2 C.If id(~v) 2 ids(Y), de�ne (~v) = �(~v), and otherwise,de�ne (~v) to be the unique central vertex of �(�(X))with the same id as ~v.We �rst check that is simplicial on simplexesSm = (~s0; : : : ; ~sm) where �(carrier(Sm ; �(A))) 2 C.Thesimplexes carrier(~s0; �(A)); : : :carrier(~sm ; �(A)) areordered by inclusion (in some order), and so are thesimplexes Xi = �(carrier(~si; �(A))), and any set ofcentral vertexes labeled with distinct colors spans asimplex.It remains to note that if (Sm) is a simplex, andSm � ~v 2 �(A), where (~v) 62 C, then (Sm � vv) = (Sm) � �(~v) is also a simplex.A simple inductive argument yields:Lemma 6.5 If � : A ! B is a color-preserving sim-plicial map, then there exists a color-preserving sim-plicial map : �`(A)! �`(B; C), for all ` � 0.

Theorem 6.6 If �(Sn) is an arbitrary chromaticsubdivision of Sn, then there exists a K such thatfor all k � K, there is a carrier-preserving simplicialmap: � : �k(Sn)! �(Sn):Proof: We �rst argue inductively by dimension n.When n = 0, the property is trivial, so assume in-ductively that we have such a map for all faces of�k(Sn).We next given an inductive construction for ex-tending this map into the interior of �k(Sn). Wehave a three-part induction hypothesis. For each ibetween 0 and n,1. There is a subdivision �i(Sn), independent of�(Sn), with a color and carrier-preserving simpli-cial map i : �`i(Sn)! �i(Sn) for some `i � 0.2. �i(Sn) contains a subcomplex Xi with a colorand carrier-preserving simplicial map �i : Xi !�(Sn).3. Every simplex T 2 �i(Sn) can be expressed asX �Y , X 2 Xi, dim(X) � i, and for every ~x 2 Xand ~y 2 Y , ~y 2 �st (�i(~x); �(Sn)).In the base case, when i = 0, X0 = ;, `0 = k.The �rst condition is satis�ed because Theorem 6.2ensures that �k(Sn) has an �-perturbation �0(Sn) in-dependent of �(Sn). The remaining conditions arevacuous.For the induction step, assume the hypothesis fori � 1. Let Yi�1 be the largest complex containingonly vertexes not in Xi�1. The open stars of thevertexes in �(Sn) form an open cover for jSnj. Be-cause �i�1(Sn) and �(Sn) are independent, every sim-plex in Y 2 Yi�1 has an open cover by sets of theform �st (~s ; �(Sn)) where id(~s) 2 ids(Y). BecausejY j is compact, this open cover has a Lebesgue num-ber. Let �i�1 be the minimum of the Lebesgue num-bers for for all such Y (which exists because Yi�1is �nite). Choose q large enough to ensure thatmesh(�q(Yi�1)) < �i�1=9. Let `i = `i�1 + q. ByLemma 6.4, we can extend i�1 to a simplicial map	 : �`i (Sn)! �q(�i�1(Sn);Yi�1)Pick � < �i�1=9. By Theorem 6.2, there exists�i(Sn), an �-perturbation of �q(�i�1(Sn);Yi�1) inde-pendent of �(Sn), and i : �`i(Sn) ! �i(Sn), an�-perturbation of 	. This perturbation adds at most2�i�1=9 to the diameter of any simplex in Yi�1:mesh(�i(Yk�1)) � mesh(�q(Yk�1)) + 2�i�19 � �i�13 :Page 9

For every simplex Tn in �i(Sn), Tn = X � Y , whereX 2 �i(Xi�1) (a perturbation of Xi�1), and Y 2�i(Yi�1).diam([~y2Y st(~y; Y)) � 3 �mesh(�i(Yi�1)) < �i�1:Because �i�1 is a Lebesgue number, there is some~s 2 �(Sn) such that the star of every vertex in Y liesin �st (~s; �(Sn)). In particular, for at least one ~u 2 Y ,id (~s) = id(~y). Let Xi be the largest complex con-taining only these ~u together with vertexes of Xi�1.De�ne �i : Xi ! �(Sn) to send ~x 2 Xi�1 to �i�1(~x),and each remaining ~u to its matching ~s. This map iscolor and carrier-preserving by construction. IfXm isa simplex in Xi, Xm = U � V , where U has the prop-erty given above, and V 2 Xi�1. By the inductionhypothesis, U � \~v2V �st (�i(~v); �(Sn)):By construction,U � \~u2U �st (�i(~u); �(Sn));so �i is simplicial by Lemma 6.3.The desired map � is the composition of �n and n.AcknowledgmentsThe authors would like to thank Sergio Rajsbaum forhis comments.References[1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharingmemory robustly in message-passing systems. InProceedings of the 9th Annual ACM Symposiumon Principles of Distributed Computing, pages377{408, August 1990.[2] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? In Proceedings of the 31stAnnual Symposium on the Foundations of Com-puter Science, October 1990.[3] Hagit Attiya, Amotz Bar-Noy, Danny Dolev,David Peleg, and Rudiger Reischuk. Renamingin an asynchronous environment. Journal of theACM, July 1990.

[4] O. Biran, S. Moran, and S. Zaks. A combina-torial characterization of the distributed taskswhich are solvable in the presence of one faultyprocessor. In Proceedings of the 7th Annual ACMSymposium on Principles of Distributed Com-puting, pages 263{275, August 1988.[5] E. Borowsky and E. Gafni. Generalized FLPimpossibility result for t-resilient asynchronouscomputations. In Proceedings of the 1993 ACMSymposium on Theory of Computing, May 1993.[6] E. Borowsky and E. Gafni. Immediate atomicsnapshots and fast renaming. In Proceedings ofthe 12th Annual ACM Symposium on Principlesof Distributed Computing, August 1993.[7] S. Chaudhuri. Agreement is harder than con-sensus: set consensus problems in totally asyn-chronous systems. In Proceedings of the NinthAnnual ACM Symosium on Principles of Dis-tributed Computing, pages 311{234, August1990.[8] D. Dolev, N.A. Lynch, S.S. Pinter, E.W. Stark,and W.E. Weihl. Reaching approximate agree-ment in the presence of faults. Journal of theACM, 33(3):499{516, July 1986.[9] A. Fekete. Asymptotically optimal algorithmsfor approximate agreement. In Proceedings ofthe 5th Annual ACM Symposium on Principlesof Distributed Computing, August 1986.[10] M.P. Herlihy. Impossibility results for asyn-chronous PRAM. In Proceedings of the 2nd An-nual Symposium on Parallel Algorithms and Ar-chitectures, July 1991.[11] M.P. Herlihy and N. Shavit. The asynchronouscomputability theorem for t-resilient tasks. InProceedings of the 1993 ACM Symposium onTheory of Computing, May 1993.[12] S. Mahaney and F.B. Schneider. Inexact agree-ment: Accuracy, precision, and graceful degre-dation. In Proceedings of the 4th Annual ACMSymposium on Principles of Distributed Com-puting, August 1985.[13] M. Saks and F. Zaharoglou. Wait-free k-setagreement is impossible: The topology of pub-lic knowledge. In Proceedings of the 1993 ACMSymposium on Theory of Computing, May 1993.[14] E.H. Spanier. Algebraic Topology. Springer-Verlag, New York, 1966. Page 10

