
Cubical Sets are Generalized Transition SystemsEric GoubaultLIST/DTSI/SLA, CEA Saclay, F-91191 Gif-sur-Yvette, FranceEmail: Eric.Goubault@cea.frAbstract. We show in this article that \labelled" cubical sets (or Higher-Dimensional Automata) are a natural generalization of transition sys-tems and asynchronous transition systems. This generalizes an olderresult of [14] which was only holding with precubical sets and subcat-egories of the classical (see [29]) categories of transition systems andasynchronous transition systems. This opens up new promises on theactual use of geometric methods (such as [8]) and on comparisons withother methods for veri�cation of concurrent programs.keywords Models for concurrency, semantics, category theory.1 IntroductionThere is a great variety of models for concurrency, as witnessed in [29] for in-stance. Most of the relationships between these models are known, but the newer\geometric" models for concurrency, such as cubical sets (HDA in [23] or in [16])or local po-spaces [9] have not been so well formally linked with older models,such as transition systems or transition systems with independence. In fact, cu-bical sets have a notion of generalized transition in their very de�nition. Theidea of relating these in the style of G. Winskel et al. [29] with operational mod-els for concurrency dates back to [14], but this was done only between fairlyrestricted categories. In this paper we extend this previous work to the full cat-egories of transition systems (operational model of \interleaving" concurrency)and of transition systems with independence (operational model of \true" con-currency). The main idea is that by relating these models, we can compare thesemantics of concurrent languages given in di�erent formalisms. Moreover, it ishoped that speci�c methods for statically analysing concurrent programs (suchas the deadlock detection algorithm of [8] in the case of cubical sets) in onemodel can be re-used in the other, giving some nice cross-fertilisations, some ofthese being hinted in Section 6.2 Transition systemsTransition systems are one of the oldest semantic models, both for sequential andconcurrent systems. There is a convenient categorical treatment of this model,that we use in the sequel, taken from [29].



De�nition 1. A transition system is a structure (S,i,L,Tran) where,{ S is a set of states with initial state i{ L is a set of labels, and{ Tran � S � L� S is the transition relationTransition systems are made into a category by de�ning morphisms to besome kind of simulation (for then being able to discuss about properties modulo[weak/strong] bisimulation, see [18]). The idea is that a transition system T1simulates a transition system T0 if as soon as T0 can �re some action a insome context, then T1 can �re a as well in some related context. A morphismf : T0 ! T1 de�nes the way states and transitions of T0 are related to statesand transitions of T1 making transition systems into a category TS.De�nition 2. Let T0 = (S0; i0; L0; T ran0) and T1 = (S1; i1; L1; T ran1) be twotransition systems. A partial morphism (or morphism in [29]) f : T0 ! T1 is apair f = (�; �) where,{ � : S0 ! S1,{ � : L0 ! L1 is a partial function. (�; �) are such that� �(i0) = i1,� (s; a; s0) 2 Tran0 and �(a) is de�ned implies (�(s); �(a); �(s0)) 2 Tran1.Otherwise, if �(a) is unde�ned then �(s) = �(s0).As in [29], we can restrict to \total morphisms" i.e. the ones for which � isa total function by suitably completing transition systems. Just add\idle" tran-sitions to transition systems, very similar in spirit to the lifting of domains indenotational semantics [17, 22], where partial functions from D to D are consid-ered total (and strict) fromD? to D? (? is a new element such that 8x, ? � x).An idle (or \?-") transition is a transition � such that � goes from a state s tothe same state s. Consider the following completion T� = (S�; i�; L�; T ran�) ofa transition system T = (S; i; L; T ran), by setting S� = S, i� = i, L� = L [ f�gand Tran� = Tran [ f(s; �; s)=s 2 Sg. Now, a morphism f = (�; �) (with � atotal function) from (T0)� to (T1)� such that �(�) = � is the same as a partialmorphism f 0 from T0 to T1 by identifying � with \unde�ned". Conversely, apartial morphism f = (�; �) from T0 to T1 can be identi�ed with f� = (�; ��),��(x) = � if and only if �(x) is unde�ned.3 Asynchronous AutomataAsynchronous Automata are a nice generalization of Mazurkiewicz traces, andhave inuenced a lot other models for concurrency (like transition systems withindependence etc.). They have been independently introduced in [27] and [2].The idea is to decorate transition systems with an \independence" relation (be-tween actions) that will allow us to distinguish between true-concurrency andmutual exclusion (or non-determinism) of two actions. We actually use a slightmodi�cation for our purposes, due to [6], and called \automata with concurrencyrelations":



De�nition 3. An automaton with concurrency relations is a quintuple(S; i; E; T ran; I) where,(1) S and E are disjoint sets; i 2 S is a distinguished element (the start state);Tran is a subset of S � E � S,(2) Tran is such that whenever (s; e; s0), (s; e; s00) 2 Tran, then s = s00; werequire that for each e 2 E, there are s; s0 2 S with (s; e; s0) 2 Tran;(3) I = (Is)s2S is a family of irreexive, symmetric binary relations Is onE; it is required that whenever e1Ise2 (e1; e2 2 E), there exist transitions(s; e1; s1), (s; e2; s2), (s1; e2; r) and (s2; e2; r) in Tran.In the sequel, we relax condition (2). A morphism is now a morphism f =(�; �) of the underlying transition systems such that aIsb implies �(a)I 0�(s)�(b).This makes automata with concurrency relations into a category, written ACR.The category of automata with concurrency relations over an alphabet E isnamed ACRE .Similarly to Section 2, we can equivalently consider ACR (and ATS) to bebuilt using � transitions and total morphisms.The condition on the independencerelation is then aIsb) �(a)I 0�(s)�(b) when �(a) 6= � and �(b) 6= �.4 Cubical setsCubical sets, which are classical objects in combinatorial algebraic topology, seefor instance [26], have been used as an alternative \truly-concurrent" model forconcurrency, in particular since the seminal paper [23]. More recently they havebeen used (in particular the \precubical" ones) in [8] and [9] for deriving new andinteresting deadlock detection algorithms. More algorithms have been designedsince then, see for instance [24], [7] and [10].4.1 \Precubical" setsDe�nition 4. A precubical set K is a family of sets fKn=n � 0g with face maps@�i : Kn ! Kn�1 (0 � i � n� 1, � = 0; 1) satisfying the following commutationrules: @�i @�j = @�j�1@�i (i < j)Elements of Kn are called n-transitions. Let K and L be two precubical sets.Then f = (fn)n2IN is a morphism of precubical sets from K to L if for alln 2 IN, fn is a function from Kn to Ln such that fn � @�i = @�i � fn+1 (for all i,0 � i � n).This forms a category called � S . It is a presheaf category as follows. Let �Sbe the free category whose objects are [n], where n 2 IN, and whose morphismsare generated by [n] �0i-�1j- [n� 1] for all n 2 IN� and 0 � i; j � n � 1, suchthat �ki �lj = �lj�1�ki (i < j) . Now, the category �SSet of functors from �S to



Set (morphisms are natural transformations) is isomorphic to the category ofprecubical sets. This implies, by general theorems ([19] and [21]), that � S is anelementary topos. Moreover it is complete and co-complete because Set is com-plete and co-complete. Also, we will use the general fact in the sequel that in allcategories of presheaves DopSet like this one, all elements (which are contravari-ant functors) are direct limits of so-called representable functors hD which toevery d 2 D associates (x! HomD(x; d)) 2 DopSet1.4.2 Cubical setsPrecubical sets are a bit like the category of transition systems with no idletransitions: paths are transformed by morphisms into paths of the same length.This is far too strict to be really useful. For instance, simulations (hence bisimu-lations) cannot be morphisms (respectively spans of open morphisms as in [18])in general. Also, it is impossible to describe the restriction to some subset oftransitions (projection, restriction in CCS for instance) as a morphism. Thisneeds a generalization of idle transitions to higher-dimensions. There is in facta close notion in cubical sets:De�nition 5. A cubical set K is a precubical set together with degeneracy maps�i : Kn�1 ! Kn (0 � i � n� 1) satisfying the extra cubical relations:�i�j = �j+1�i (i � j)@�i �j = 8<:�j�1@�i (i < j)�j@�i�1 (i > j)Id (i = j)Let K and L be two cubical sets. Then f is a morphism of cubical sets fromK to L if it is a morphism of precubical sets from the underlying precubical sets,and fn+1 � �j = �j � fn (for all n 2 IN, 0 � i � n).The corresponding category of cubical sets, � , is isomorphic to the category ofpresheaves �opSet over a small category �. This latter can be described in a niceway, see [5]. Therefore, similarly to the case of the category of precubical sets,the category of cubical sets is an elementary topos, which is complete and co-complete. We do not talk about cubical sets with connections and compositionshere [3], but they have a great interest for our purposes, see for instance [12].4.3 Some useful functorsThere again, we need two interesting (and quite classical in spirit) functors. Let�n be the category of � , whose objects are the n-dimensional cubical sets, i.e.the \cubical sets M with Mk = ; for all k > n". This category can be seen asthe presheaf category (��n)opSet where ��n is the full subcategory of � whereobjects are [p] with p � n. Similarly, we de�ne �Sn , the category of n-dimensionalprecubical sets, seen as the presheaf category �(�S )�n�op Set.1 This is for instance classical in the categorical presentation of simplicial sets, see forinstance [11].



Lemma 1. Let Tn (respectively TSn ) be the function from � (respectively �S)to �n (respectively �Sn ), which to every M 2 � (respectively M 2 �S) associatesN 2 �n (respectively N 2 � Sn ) with, N ([k]) = M ([k]) if k � n, N (ei : [k + 1]![k]) = M (ei) for k < n and N (��i : [k � 1]! [k]) = M (��i ) for k < n. It de�nesa functor, called the n-truncation functor.The second functor is one which permits to build a natural cubical set froma precubical set:Lemma 2. There is a functor \free cubical set from a precubical set" F : �S !� which is left-adjoint to the (obvious) forgetful functor K from � to �S . Simi-larly, there is a functor \free cubical set of dimension less or equal than n froma precubical set of dimension less or equal than n", Fn : �Sn ! �n which isleft-adjoint to the (obvious) forgetful functor Kn from �n to �Sn .The proof uses a special form of Freyd's special adjoint functor theorem(which is also some form of Kan extension in presheaf categories), which isProposition 1.3. of [11] (see Appendix A).4.4 Labelled Cubical SetsOne remaining problem now, is that we do not have labels on transitions. This iseasily taken care of by the following trick. Consider the category �L of labelledcubical sets consisting of morphisms l :M ! E.The morphisms in this category are as usual f = (g; h) : (l :M ! E)! (l0 :M 0 ! E0) with g :M !M 0 and h : E ! E0 such that the diagramM g- M 0El ? h- E0l0?is commutative. By abuse of notation, we will sometimes identify f , g and h inthe following. Of course, �L is the comma category (see [20]) (Id� # Id� ). Wewill also consider in the following the category �L� of \pointed" labelled cubicalsets, i.e. pairs (l : M ! L; s) with l 2 �L and s 2 M0 (the \initial" state)and morphisms preserving initial states. We call this category, the category ofHigher-Dimensional Transition Systems.Given an alphabet (\of actions") �, we can construct a \labelling" cubicalset !� as follows. First, construct for each � 2 � the cubical set N�, whichis the free cubical set generated by the following precubical set (denoted alsoby N� by an abuse of notation) : (N�)0 = f1�g, (N�)1 = f�g, (N�)n = ;(for n � 2), and @00(�) = @10(�) = 1� . We now identify � with the cubical set`�2� N�=f1� = 1�g. We therefore identify in � all 1� and we write it as 1. Wenow set ��n to be the cubical set � � � � � � � (n times) suitably symmetrised(i.e. two elements are equal i� they have the same number of each of the let-ters). There are a certain number of natural inclusion morphisms between all



these iterated products : ��m ij1;���;jn�m- ��n where, ij1;���;jn�m (�1; � � � ; �m) =(�1; � � � ; �n) with, �i = ��i�cardfjkjjk�ig if i 6= jk for all 1 � k � n�m1 otherwise . Thenconstruct !� as the direct limit of the diagram whose objects are all ��n andwhose morphisms are all ij1;���;jn�m .Geometrically, !� is in dimension one the wedge of a set of loops, one foreach � 2 � (giving the labels for 1-transitions). In dimension two, it is a wedgeof a set of tori, one for each pair (�; � ) 2 � � �, now seen as a set (giving thelabels for 2-transitions) etc. Notice that !� is freely generated by a precubicalset.5 Some adjunctions5.1 With transition systemsWe prove that some suitable full subcategory of (�L� )1 is isomorphic to TS.Consider HTS to be the category whose objects are the pointed labelled cubicalsets (M; l :M ! E; i) such that,{ they are freely generated by precubical sets, i.e. M = F (N ), l = F (l0) withl0 : N ! F morphism of precubical sets,{ they are \deterministic", i.e. 8x; x0 2Mk (k � 1);�d0i (x) = d1i (x0); d1i (x) = d1i (x0) (80 � i < k) ; l(x) = l(x0)� =) x = x0and whose morphisms are all morphisms of pointed labelled cubical sets. HTS1is the full sub-category of HTS consisting of pointed labelled cubical sets ofdimension at most one.As a matter of fact, the categories are de�ned in quite similar terms. Statesof ordinary transition systems are of the same nature as states of labelled cubicalsets and source and target representation of transitions is nothing but a func-tional interpretation of the relation Tran. This is done formally by constructingtwo functors U : TS ! HTS1 and V : HTS1 ! TS inverse of each other, with,{ (F (M ); F (l) : F (M )! F (E); i) = U(S;A; Tran; j) with,� M0 = S,� M1 = fas;s0=a 2 A; s a! s0 2 Trang,� i = j,� d00(as;s0) = s, d10(as;s0) = s0,� E = K1(T1(!A)),� l(as;s0) = a, l(s) = 1.{ (S;A; Tran; j) = V(F (M ); F (l) : F (M )! F (E); i) with,� S = M0,� j = i,� A = E1,� s a! s0 2 Tran if 9x 2M1, such that l(x) = a, d00(x) = s and d10(x) = s0(then this x is unique because (F (M ); F (l); i) is deterministic).



Action of the functors on morphisms is as follows,{ if f = (�; �) : (S0; A0; T ran0; j0) ! (S1; A1; T ran1; j1) is a morphism oftransition systems then we de�ne U(f) = (U(f)1;U(f)2) where U(f)1 :F (M0) ! F (M1) and U(f)2 : F (E0) ! F (E1) are the two componentsof the morphism, where U(S0; A0; T ran0; j0) = (F (M0); F (l0) : F (M0) !F (E0); j0), U(S1; A1; T ran1; j1) = (F (M1); F (l1) : F (M1)! F (E1); j1).� U(f)1(as;s0) = ��(a)�(s);�(s0) if �(a) 6= ��0(�(s)) otherwise ,� U(f)1(s) = �(s) (s 2M0),� U(f)2(as;s0) = � �(a) if �(a) 6= ��0(1) otherwise ,� U(f)2(s) = 1 (s 2M0).{ if f = (f1; f2) : (l0 : M0 ! E0; i0) ! (l1 : M1 ! L; i1) is a morphism inHTS1, then V(f) = (�; �) : V(l0 :M0 ! E0; i0)! V(l1 :M1 ! E1; i1) with� �(s) = f1(s) (for all s state of V(l0 :M0 ! E0; i0)),� �(a) = � f2(a) if f2(a) 62 Im �0* otherwise (for all a label in V(l0 :M0 ! E0; i0))In the sequel we will restrict functors and categories of models so that theyhave \�xed labellings". We call HTS the category of higher-dimensional transi-tion systems labelled over a �xed cubical set !E for a given (�xed once and forall in all the following arguments) set of labels E. We will no longer mentionthese labelling sets. Given this restriction,Theorem 1. U and V are inverse functors.Now, in order to compare the category of higher-dimensional transition sys-tems with ordinary transition systems we only have to look at how to retractHTS onto its sub-category HTS1. This boils down to looking at the di�erentadjunctions we have between � and �1 because of the few next lemmas. The�rst one tells us that we can lift adjunctions from unlabelled to labelled cases,and the second one tells us that we can restrict adjunctions (this is useful fordealing with the \determinism condition" of labelled cubical sets).Lemma 3. Let C and D be two categories and SC;D be the set of for all pairs offunctors (F;G) with F : C ! D left adjoint to G : D ! C. Then all elements ofSC;D induce elements of S(IdC#IdC);(IdD#IdD).Lemma 4. Let C F -� G D be a pair of adjoint functors, C0 (respectivelyD0) a full sub-category of C (respectively of D). Suppose that F (C0) � D0 andG(D0) � C0, then C0 FjC0 -� GjD0 D0 is a pair of adjoint functors.



We have mainly two di�erent adjunctions between � and �1 using T1 (to keepthe underlying ordinary transitions unchanged in the interpretation) among allthe possible ones.Proposition 1. There are pairs of adjoint functors as follows (for n � 1):{ There is a functor In : �n ! � left-adjoint to the truncation functor Tn :� ! �n. Similarly, there is a functor ISn : � Sn ! �S left-adjoint to thetruncation functor Tn : �S ! � Sn . Moreover, In and Tn commute with thefree functor.{ The truncation functor Tn : � ! �n (respectively TSn : �S ! �Sn ) is left-adjoint to a functor Gn : �n ! � (respectively GSn : �Sn ! �S).Proof. These are direct applications of Proposition 1.3. of [11] (see AppendixA).The intuition about these functors is as follows. In is just some kind ofinclusion functor; it takes a n-dimensional cubical set and forms a cubical setwith exactly the same non-degenerated elements (i.e. those elements which arenot in some Im �i); in fact, exactly the same elements in dimension less or equalthan n, but only degenerated elements in dimension strictly bigger than n. Seenas some kind of abstraction (in the sense of abstract interpretation [4]), it isa \minimal allocation strategy" abstraction. A n-dimensional cubical set onlyprescribes what can happen for degrees of concurrency less or equal than n. Ininterprets this as being exactly with no (interesting) actions with more thann processes busy at the same time. On the contrary Gn tries to interpret a n-dimensional cubical set with \maximal allocation strategy" i.e. tries to �ll in all(n + 1)-dimensional holes in a n-dimensional cubical set as imposing that thisshould be �lled in by a (n+1)-transition, and up and up in all dimensions. Thereare \dihomotopy" properties that should be proven about this \resolution" likefunctor. This is left for future work.We notice now that the adjunction (�L� )n In -�Tn �L� can be restricted usingLemma 4 to the full sub-categories of free objects generated by precubical sets,in, respectively, (�L� )n and �L� . This is due to the fact that (see Proposition1) In and Tn commute with the \free functors". We can restrict this adjunc-tion furthermore, still using Lemma 4, to see that the adjunction still holds withn � 1 when we restrict to deterministic automata. Hence we have the adjunction:HTS1 I1-�T1 HTS. Given that HTS1 and TS are isomorphic (see Theorem 1),we deduce that we have a pair of adjoint functors: TS th-� ht HTS. Unfortu-nately, we did not manage yet to \lift" the other adjunction of Proposition 1 tohigher-dimensional transition systems.



5.2 With automata with concurrency relationsWe �rst de�ne functors W;Y, which will appear to be inverse functors:ACR W-�Y HTS2(HTS2 is the full subcategory of �L� consisting of higher-dimensional transitionsystems of dimension less than or equal to two) by,{ (F (P ); F (l : P ! L); F (j))=Y(S; i; E; I; T ran) with,� j = i,� P0 = S,� P1 = fts;s0=s t! s0 2 Trang,� L = K2(T2(!E)),� d00(ts;s0) = s, d10(ts;s0) = s0 and l(ts;s0) = t,� P2 = fabs;s0;s00;u=aIsb^ as;s0 2 P1 ^ bs;s00 2 P1 ^ bs0;u 2 P1 ^ as00;u 2 P1g,� d00(abs;s0;s00;u) = as;s0 (or d01(abs;s0;s00;u) = as;s0, depending on the waythis is coded in !E), d01(abs;s0;s00;u) = bs;s00 (or d00(� � �) = � � �), d11(abs;s0;s00;u)= bs0;u, (respectively, or d10(� � �) = � � �), d10(abs;s0;s00;u) = as00;u (respec-tively � � �) and l(abs;s0;s00;u) = (a; b) (respectively � � �).{ W(P; P l! L; j) = (S; i; E; I; T ran) with,� (S; i; E; T ran) = V(T1(P ); T1(l); j),� aIsb if there exist x; x0; y; y0 2 P1, C 2 P2 with l(x) = a, l(x0) = a,l(y) = b, l(y0) = b and d00(x) = d00(y) = s, d10(x) = d00(y0), d10(y) = d00(x0),d11(y0) = d11(x0), l(C) = (a; b), d00(C) = x, d01(C) = y, d10(C) = y0 andd11(C) = x0 (or, respectively, d01(C) = x, d00(C) = y, d11(C) = y0 andd10(C) = x0).Y has the same action on the underlying ordinary transition system of an asyn-chronous transition system as functor U ; we will identify U(S; i; E; T ran) withthe underlying 1-dimensional skeleton of the higher-dimensional transition sys-tem Y(S; i; E; I; T ran). Similarly forW which acts as V on the underlying ordi-nary transition systems, thus we will identify V(P; l : P ! L; j) as the underly-ing transition system of the asynchronous transition system W(P; l : P ! L; j).Y �lls in all interleavings of two independent actions by 2-transitions W im-poses two actions to be independent if and only if there exists a truly concur-rent execution of them in the higher-dimensional transition system. The actionon morphisms is again easy to de�ne. Let f = (�; �) : (S; i; E; I; T ran) !(S0; i0; E0; I0; T ran0) be a morphism of asynchronous transition systems. Theng = Y(f) : Y(S; i; E; I; T ran)! Y(S0; i0; E0; I0; T ran0) is de�ned by,{ T1(g) = U(f) (by the identi�cation made above),{ g2(abs;s0;s00;u) = 8>><>>:�(a)�(b)�(s);�(s0);�(s00);�(u) if �(a) 6= � and �(b) 6= ��0 ��(a)�(s);�(s0)� if �(a) 6= � and �(b) = ��1 ��(b)�(s);�(s00)� if �(b) 6= � and �(a) = ��0�0(�(s)) if �(a) = � and �(b) = �for abs;s0;s00;u 2 F(S; i; E; I; T ran)2.



Finally, for g : (P; P l! L; j) ! (P 0; P 0 l0! L0; j0) a morphism of (�L� )2 wede�ne f = (�; �) : W(P; P l! L; j) ! W(P 0; P 0 l0! L; j0) simply by (using theprevious identi�cation) f = V(T1(g) : T1(P ); T1(l); j)! (T1(P 0); T1(l0); j0).In the sequel we will again �x once and for all the labelling cubical set usedin our higher dimensional transition systems, to be !E (where E is a set of labels�xed once and for all). Then again,Theorem 2. W and Y are well-de�ned functors. Moreover, Y and W are in-verse of each other.Proof. The only di�culty, is to show that the action of these functions onmorphisms are well-de�ned. For Y, the only thing to check is that the def-inition in dimension 2 of the underlying precubical set is coherent. We onlycheck one of the necessary equalities: (taking the same notations as above), forabs;s0;s00;u 2 Y(S0; i0; E0; I0; T ran0) with �(a) 6= � and �(b) = � (notice that wehave then �(s00) = �(s) and �(s0) = �(u)),dkl (g2(abs;s0;s00;u)) = dkl (�0(�(a)�(s);�(s0)))= 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�0(d00(�(b)�(s);�(s00))) = �0(�(s)) if k = 0, l = 1�(a)�(s);�(s0) if k = 1, l = 0�0(d10(�(b)�(s0);�(u))) = �0(�(u)) if k = 1, l = 1g1(dkl (abs;s0;s00;u)) = 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�0(�(s)) if k = 0, l = 1�(a)�(s00);�(u) = �(a)�(s);�(s0) if k = 1, l = 0�0(�(u)) if k = 1, l = 1which are equal. The rest of the proof goes along the same lines (see the rest inAppendix A).For W we have to check that, for f = (�; �) = Y(g : (P; l : P ! L; i) !(P 0; l0 : P 0 ! L0; i0)), aIsb and �(a) 6= �, �(b) 6= � implies �(a)I 0�(s)�(b). Sup-pose aIsb in Y(P; l : P ! L; i). Then there exist x; x0; y; y0 2 P1 with l(x) = a,l(x0) = a, l(y) = b, l(y0) = b and d00(x) = d00(y) = s, d10(x) = d00(y0), d10(y) =d00(x0), d11(y0) = d11(x0), and we have a C 2 P2 with l(C) = (a; b), d00(C) = x,d01(C) = y, d10(C) = y0 and d11(C) = x0. We know that g(C) 2 P 02 and thatl0 � g(C) = (f(a); f(b)) since f(a) 6= � and f(b) 6= �. Similarly, l0(g(x)) = f(a),l0(g(x0)) = f(a), l0(g(y)) = f(b), l0(g(y0)) = f(b). Furthermore, because g isa morphism of cubical sets, d00(g(x)) = d00(g(y)) = �(s), d10(g(x)) = d00(g(y0)),d10(g(y)) = d00(g(x0)), d11(g(y0)) = d11(g(x0)), so �(a)I 0�(s)�(b).The adjunctions of Proposition 1, in the particular case n = 2, togetherwith the result of Theorem 2 imply that we have a pair of adjoint functors:ACR ah-�ha HTS.



6 Conclusion and further work6.1 Other adjunctionsIn [29] some adjunctions are described between a variety of models for con-currency. We hope be able to lift some of these functors to the case of labelledcubical sets. In particular, we believe that the equivalence between traces de�nedin the category TL of Mazurkiewicz traces should be mapped onto homotopyclasses of traces in HTS, therefore the partially commutative monoid de�ned inMazurkiewicz trace theory should be some analog of the fundamental categoryin cubical sets (de�ned for instance in [15]). This is left for future work. Thedomain of con�gurations of an event structure is a dI-domain (stable domain,�a la Berry, see for instance [29]) and we believe that through adjunctions withHTS (and through the adjunctions between cubical sets and local po-spaces [9],using the geometrical realization functor), this is linked to the fact that partiallyordered topological spaces are related to some particular forms of Scott domains(see again [15]). Finally, we believe that there is an equivalence of categoriesbetween some form of higher-dimensional transition systems and general Petrinets. One of the di�culties is in �nding the right notion of independence be-tween any number of transitions in Petri nets. One possible start is to use theadjunction between ACR and Petri nets in [6].We have seen that cubical sets are complete and co-complete. This meansthat the category of labelled cubical sets (with a �xed alphabet of the form !E) iscomplete and co-complete. Because it is related through left and right adjointsto transition systems (and asynchronous transition systems), there are somecorrespondances between limits and co-limits in these categories. For instance,products in higher-dimensional transition systems correspond to the parallelcombination (with no interference) of the two higher-dimensional transition sys-tems (as does the cartesian product of two partially ordered topological spaces);co-products correspond to non-deterministic choice. Fibred products, i.e. syn-chronized products as in the category of ordinary transition systems [1], allowfor nice semantical de�nitions. This allows also for nice comparison of semanticsthrough adjunctions.Stubborn sets [28], sleep sets and persistent sets [13] are methods used fordiminishing the complexity of model-checking using transition systems. They arebased on semantic observations using Petri nets in the �rst case andMazurkiewicztrace theory in the other one. We believe that these are special forms of \homo-topy retracts" when cast (using the adjunctions we have hinted) in the categoryof higher-dimensional transition systems. We hope to make this statement moreformal, through these adjunctions, and use this to design new state-space reduc-tion methods.Last but not least, in [18] is de�ned an abstract notion of bisimulation. Givena model for concurrency, i.e. a category of modelsM and a \path category", i.e. asubcategory ofM which somehow represents what should be thought of as beingpaths in the models, then we can de�ne two elements ofM to be bisimilar if thereexists a span of special morphisms linking them. These special morphisms have
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A ProofsMost proofs are based on a particular case of the existence of Kan extensions,taken here from [11] (Proposition 1. 3. Page 22):Proposition 2. Let C be a category with direct limits and G : DopSet ! C afunctor. Then the following statements are equivalent :(i) G commutes with direct limits.(ii) G is left adjoint to a functor D : C ! DopSet. Moreover, the functor G !G � hD is an equivalence of the full subcategory of Hom(DopSet; C) formedby the functors G which commute with direct limits on Hom(D; C).In fact, D is the functor which associates hC(c) �G � hD with c 2 C.Lemma 1 is obvious.Lemma 2:Proof. It su�ces to use Proposition 2 with D = �S , C = �opSet and functorw 2 Hom(D; C) with w([p]) = h�([p]). This de�nes F and its right-adjoint K.It is easy to see that the unit � of the adjunction is in fact the identity naturaltransformation � : Id ! K � F . This means that K induces an equivalence ofcategories between F (�S) and � S .The case of cubical sets of dimension less or equal than n is treated in exactlythe same manner.Theorem 1:Proof. We now forget about the given labelling set E, even in the de�nitionof transition systems and labelled cubical sets. Thus, given a transition systemT = (S; i; T ran) 2 TS we have, U(T ) = N where N = F (M; l; j) with,{ M0 = S,{ M1 = fas;s0=a 2 E; s a! s0 2 Trang,{ d00(as;s0) = s, d10(as;s0) = s0,{ l(as;s0) = a, l(s) = 1.Therefore, V(U(T )) = (S0; i0; T ran0) with,{ S0 = N0 = M0 = S,{ i0 = j = i,{ s a! s0 2 Tran0 if 9x 2 N1, such that l(x) = a, d00(x) = s and d10(x) = s0.The only possible x 2 N1 such that l(x) = a 2 E is actually x 2 M1, andthe only possible x satisfying all the conditions above is as;s0. Therefore,s a! s0 2 Tran0 if and only if s a! s0 2 Tran, hence Tran0 = Tran.Now, take (M; l; j) 2 HTS1, then (S; i; T ran) = V(M; l; j) with,{ S = M0,{ j = i,



{ A = E1nIm �0,{ s a! s0 2 Tran if 9x 2M1, such that l(x) = a, d00(x) = s and d10(x) = s0.And then, F (M 0; l0; j0) = U(S; i; T ran) with,{ M 00 = S = M0,{ M 01 = fas;s0=a 2 A; s a! s0 2 Trang = M1nIm �0 (because l is free),{ j0 = i = j,{ d00(as;s0) = s, d10(as;s0) = s0,{ l(as;s0) = a, l(s) = 1.Therefore, F (M 0; l0; j0) = (M; l; j) because M and l are free.This proof extends readily on morphisms: Let �rst f : (l0 : M0 ! E0; i0) !(l1 :M1 ! E1; i1) be a morphism of HTS, f = (f1; f2). Then let (�; �) = V(f) :(S0; i0; T ran0)! (S1; i1; T ran1). We have:{ �(s) = f1(s) (for all s state of V(l0 :M0 ! E0; i0)),{ �(a) = � f2(a) if f2(a) 62 Im �0* otherwise (for all a label in V(l0 :M0 ! E0; i0))Let now (g1; g2) = U(�; �). We have,{ U(�; �)1(as;s0) = ��(a)�(s);�(s0) if �(a) 6= ��0(�(s)) otherwise ,{ U(�; �)1(s) = �(s) (s 2M0),{ U(�; �)2(as;s0) = � �(a) if �(a) 6= ��0(1) otherwise ,{ U(�; �)2(s) = 1 (s 2M0).But,{ �(a)�(s);�(s0) is the unique x (because of the determinism condition inHTS1)going from �(s) = f1(s) to �(s0) = f1(s0), with label �(a) = f2(a), hence isequal to f1(as;s0),{ when �(a) = �, i.e. when f2(a) 2 Im �0, f1(s) is necessarily in Im �0: (f1; f2)being a morphism between l0 and l1, we have l1(f1(as;s0)) = f2(l0(as;s0)) =f2(a) 2 Im �0; In order to have this, it is necessary that f1(as;s0) 2 Im �0.Furthermore, d00(f1(as;s0)) = f1(s) = �(s) and d10(f1(as;s0)) = �(s0) = �(s)therefore f1(as;s0) = �0(�(s)) = U(�; �)1(as;s0).Now let f = (�; �) : (S0; i0; T ran0) ! (S1; i1; T ran1) be a morphism oflabelled transition system and g = U(f). We have,{ U(�; �)1(as;s0) = ��(a)�(s);�(s0) if �(a) 6= ��0(�(s)) otherwise ,{ U(�; �)1(s) = �(s) (s 2M0),{ U(�; �)2(as;s0) = � �(a) if �(a) 6= ��0(1) otherwise ,{ U(�; �)2(s) = 1 (s 2M0).



Then consider f 0 = (�0; �0) = V(g). We have,{ �0(s) = g1(s) (for all s state),{ �0(a) = �g2(a) if g2(a) 62 Im �0* otherwise (for all a label)Therefore,{ if g2(a) 62 Im �0, i.e. if �(a) 6= �, then �0(a) = g2(a) = �(a). If not, �0(a) = �and �(a) = � at the same time.{ �0(s) = g1(s) = �(s).Lemma 3:Proof. Let (F;G) 2 SC;D, l 2 HomC(M;N ) and l0 2 HomD(M 0; N 0). Let nowf 2 Hom(IdD#IdD)(F (l); l0); this means that f = (f1; f2) where f1 and f2 aremorphisms in D which make the following diagram commutative:F (M ) f1 - M 0F (N )F (l) ? f2 - N 0l0?So the following diagram is also commutative by functoriality of G:G � F (M ) G(f1)- G(M 0)G � F (N )G � F (l) ? G(f2)- G(N 0)G(l0)?But the unit � of the adjunction between F and G is a natural transformation,thus the �rst square of the following diagram also commutes, entailing that theouter square itself is a commutative one:M �M- G � F (M ) G(f1)- G(M 0)Nl ? �N- G � F (N )G � F (l) ? G(f2)- G(N 0)G(l0)?Hence we get naturally, a morphism in Hom(IdC#IdC)(l; G(l0)):Al;l0 (f1; f2) = (G(f1) � �M ; G(f2) � �N )



Similarly in the other direction, we get a morphism inHom(IdD#IdD)(F (l); l0),Bl;l0 (g1; g2) = (�M 0 � F (g1); �N 0 � F (g2))where � is the co-unit of the adjunction(F;G).We now prove that this is a natural bijection between Hom(IdD#IdD )(F (l); l0)and Hom(IdC#IdC)(l; G(l0)). The composite of Al;l0 with Bl;l0 being the identityis a direct consequence of the (right) identity 8 page 80 of [20]:F (M ) F (�M)- FGF (M ) �F (M)- F (M )is the identity natural transformation on F . This means that the following dia-gram is commutative:F (M ) F (�M)- FGF (M ) �F (M)- F (M )M 0f1 ? �M 0- FG(M 0)FG(f1) ? �M 0- M 0f1 ?Hence, F (M ) F�M- FGF (M ) FG(f1)- FG(M 0) �M 0- M 0 = f1Similarly, the composite Bl;l0 �Al;l0 = Id because of (left) identity 8 page 80 of[20], so we have:G(M 0) �M 0G- GFG(M 0) GF (f2)- GF (M ) �M - M = f2Thus (F;G) induces a pair of adjoint functors between (IdC # IdC) and (IdD #IdD).Lemma 4:Proof. The natural bijection between HomD(F (X); Y ) and HomC(X;G(Y ))naturally restricts to a bijection between HomD(F (X); Y ) = HomD0(F (X); Y )(D0 is full in D) and HomC(X;G(Y )) = HomC0 (X;G(Y )) (C0 is full in C) forX 2 D0 and Y 2 C0.Proposition 1:Proof. Take as a �rst instance of Proposition 2 D = ��n and C = �opSet. Wede�ne functor u 2 Hom(D; C) as follows :u([p]) = h�([p])



Then functor G of Proposition 2 is the functor which commutes with directlimits and which is such that,G(h��n ([p])) = h�([p])In of the proposition is therefore this functor G. Its right adjointD given by thesame proposition is such that (see [11]),D(c) : a! HomC(G(hD(a)); c)i.e. in our case, for p � n,D(c)([p]) = Hom� (h�([p]); c)= c([p])the last equality holding because of Yoneda's lemma [20]. We recognize D asbeing the truncation functor.Restricting the adjunction to the categories of cubical sets with morphismsrespecting the initial states is obvious. The adjunction (�L� )n In -�Tn �L� is adirect consequence of Lemma 3.We proceed in a similar manner for the adjunction ISn , TSn . We de�ne again byProposition 2 ISn (h�S�n [p]) = h�S [p]. Notice that h��n [p] = Fn(hS�n[p]) andh�[p] = F (h�S [p]), therefore In(F (h�S�n [p])) = F (ISn (h�S�n [p])), hence thecommuting diagram, by taking the direct limit. The proof for the commutationof the diagram involving Tn is similar.The last part of the proposition is by taking D = �, C = (��n)opSet andfunctor v 2 Hom(D; C) as follows,v([p])([q]) = Hom�([q]; [p])which gives as G functor Tn. Now, its right adjoint is functor D with (for N 2(��n)opSet and [p] 2 �),D(N )([p]) = Hom�n (Tn(h�([p])); N )Theorem 2:Proof. The only di�culty in the �rst part, is to show that the action of thesefunctions on morphisms are well-de�ned. For Y, the only thing to check isthat the de�nition in dimension 2 of the underlying precubical set is coher-ent. We compute �rst (taking the same notations as above), for abs;s0;s00;u 2Y(S0; i0; E0; I0; T ran0):{ if �(a) 6= � and �(b) 6= �,dkl (g2(abs;s0;s00;u)) = dkl ��(a)�(b)�(s);�(s0);�(s00);�(u)�= 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�(b)�(s);�(s00) if k = 0, l = 1�(a)�(s00);�(u) if k = 1, l = 0�(b)�(s0);�(u) if k = 1, l = 1



We also have,g1(dkl (abs;s0;s00;u)) = 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�(b)�(s);�(s00) if k = 0, l = 1�(a)�(s00);�(u) if k = 1, l = 0�(b)�(s0);�(u) if k = 1, l = 1which are equal.{ if �(a) 6= � and �(b) = � (notice that we have then �(s00) = �(s) and�(s0) = �(u)),dkl (g2(abs;s0;s00;u)) = dkl (�0(�(a)�(s);�(s0)))= 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�0(d00(�(b)�(s);�(s00))) = �0(�(s)) if k = 0, l = 1�(a)�(s);�(s0) if k = 1, l = 0�0(d10(�(b)�(s0);�(u))) = �0(�(u)) if k = 1, l = 1We also have,g1(dkl (abs;s0;s00;u)) = 8>><>>: �(a)�(s);�(s0) if k = 0, l = 0�0(�(s)) if k = 0, l = 1�(a)�(s00);�(u) = �(a)�(s);�(s0) if k = 1, l = 0�0(�(u)) if k = 1, l = 1which are equal.{ if �(b) 6= � and �(a) = � (notice then that we have �(s0) = �(s)),dkl (g2(abs;s0;s00;u)) = dkl (�1(�(b)�(s);�(s00)))= 8>><>>: �0(�(s)) if k = 0, l = 0�(b)�(s);�(s00) if k = 0, l = 1�0(�(s00)) if k = 1, l = 0�(b)�(s);�(s00) if k = 1, l = 1We also have,g1(dkl (abs;s0;s00;u)) = 8>><>>: g1(as;s0) = �0(�(s)) if k = 0, l = 0g1(bs;s00) = �(b)�(s);�(s00) if k = 0, l = 1g1(as00;u) = �0(�(s00)) if k = 1, l = 0g1(bs0;u) = �(b)�(s0);�(u) = �(b)�(s);�(s00) if k = 1, l = 1which are equal.{ if �(a) = � and �(b) = � (notice that then we have �(s) = �(s0) = �(s00) =�(u)),dkl (g2(abs;s0;s00;u)) = dkl (�0�0(�(s)))= 8>><>>: �0(�(s)) if k = 0, l = 0�0(d00(�0(�(s)))) = �0(�(s)) if k = 0, l = 1�0(�(s)) if k = 1, l = 0�0(d10(�0(�(s)))) = �0(�(s)) if k = 1, l = 1



We also have,g1(dkl (abs;s0;s00;u)) = 8>><>>: g1(as;s0) = �0(�(s)) if k = 0, l = 0g1(bs;s00) = �0(�(s)) if k = 0, l = 1g1(as00;u) = �0(�(s00)) = �0(�(s)) if k = 1, l = 0g1(bs0;u) = �0(�(s0)) = �0(�(s)) if k = 1, l = 1which are equal.For W we have to check that, for f = (�; �) = Y(g : (P; l : P ! L; i) ! (P 0; l0 :P 0 ! L0; i0)), aIsb and �(a) 6= �, �(b) 6= � implies �(a)I 0�(s)�(b)Suppose aIsb in Y(P; l : P ! L; i). Then there exist x; x0; y; y0 2 P1 with l(x) =a, l(x0) = a, l(y) = b, l(y0) = b and d00(x) = d00(y) = s, d10(x) = d00(y0), d10(y) =d00(x0), d11(y0) = d11(x0), and we have a C 2 P2 with l(C) = (a; b), d00(C) = x,d01(C) = y, d10(C) = y0 and d11(C) = x0. We know that g(C) 2 P 02 and thatl0 � g(C) = (f(a); f(b)) since f(a) 6= � and f(b) 6= �. Similarly, l0(g(x)) = f(a),l0(g(x0)) = f(a), l0(g(y)) = f(b), l0(g(y0)) = f(b). Furthermore, because g isa morphism of cubical sets, d00(g(x)) = d00(g(y)) = �(s), d10(g(x)) = d00(g(y0)),d10(g(y)) = d00(g(x0)), d11(g(y0)) = d11(g(x0)), so �(a)I 0�(s)�(b).It is easy to see that these functors restricted to the 1-skeleton are inverseof each other (this is the consequence of Theorem 1). Now more generally, it iseasy to check that W � Y = Id.Finally, for all free 2-dimensional cubical sets (from precubical sets) (P; l; j),Y �W(P; l; j) is naturally equal to (P; l; j).


