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Abstract. We show in this article that “labelled” cubical sets (or Higher-
Dimensional Automata) are a natural generalization of transition sys-
tems and asynchronous transition systems. This generalizes an older
result of [14] which was only holding with precubical sets and subcat-
egories of the classical (see [29]) categories of transition systems and
asynchronous transition systems. This opens up new promises on the
actual use of geometric methods (such as [8]) and on comparisons with
other methods for verification of concurrent programs.

keywords Models for concurrency, semantics, category theory.

1 Introduction

There is a great variety of models for concurrency, as witnessed in [29] for in-
stance. Most of the relationships between these models are known, but the newer
“geometric” models for concurrency, such as cubical sets (HDA in [23] or in [16])
or local po-spaces [9] have not been so well formally linked with older models,
such as transition systems or transition systems with independence. In fact, cu-
bical sets have a notion of generalized transition in their very definition. The
idea of relating these in the style of G. Winskel et al. [29] with operational mod-
els for concurrency dates back to [14], but this was done only between fairly
restricted categories. In this paper we extend this previous work to the full cat-
egories of transition systems (operational model of “interleaving” concurrency)
and of transition systems with independence (operational model of “true” con-
currency). The main idea is that by relating these models, we can compare the
semantics of concurrent languages given in different formalisms. Moreover, it is
hoped that specific methods for statically analysing concurrent programs (such
as the deadlock detection algorithm of [8] in the case of cubical sets) in one
model can be re-used in the other, giving some nice cross-fertilisations, some of
these being hinted in Section 6.

2 Transition systems

Transition systems are one of the oldest semantic models, both for sequential and
concurrent systems. There i1s a convenient categorical treatment of this model,
that we use in the sequel, taken from [29].



Definition 1. A transition system is a structure (S,i,L,Tran) where,

— S s a set of states with initial state ¢
— L is a set of labels, and
— Tran C S x L x S 1is the transition relation

Transition systems are made into a category by defining morphisms to be
some kind of simulation (for then being able to discuss about properties modulo
[weak/strong] bisimulation, see [18]). The idea is that a transition system 7T}
simulates a transition system 7Ty if as soon as Ty can fire some action a in
some context, then 77 can fire a as well in some related context. A morphism
f Ty — T} defines the way states and transitions of T are related to states
and transitions of 77 making transition systems into a category T'S.

Definition 2. Let Ty = (S, to, Lo, Trang) and Ty = (S1,41, L1, Trany) be two
transition systems. A partial morphism (or morphism in [29]) f Ty = Th is a
pair | = (o, A) where,

—0:5) — Sl,
— A Lg = Ly is a partial function. (o, A) are such that
* U(io) = il,
o (s,a,s") € Trang and \(a) is defined implies (o(s), Ma),o(s")) € Trany.
Otherwise, if A(a) is undefined then o(s) = o(s').

As in [29], we can restrict to “total morphisms” i.e. the ones for which A is
a total function by suitably completing transition systems. Just add “idle” tran-
sitions to transition systems, very similar in spirit to the lifting of domains in
denotational semantics [17,22], where partial functions from D to D are consid-
ered total (and strict) from D to Dy (L is a new element such that Vo, L < z).
An idle (or “L-7) transition is a transition * such that % goes from a state s to
the same state s. Consider the following completion Ty = (Sk, %x, L«, Tran,) of
a transition system 7' = (S, ¢, L, Tran), by setting S, = S5, i« =4, L. = LU {*}
and Tran. = Tran U {(s, *,s)/s € S}. Now, a morphism f = (o, A) (with A a
total function) from (7Tp). to (71). such that A(x) = « is the same as a partial
morphism f’ from 7y to 77 by identifying * with “undefined”. Conversely, a
partial morphism f = (o, A) from Ty to 71 can be identified with f. = (o, A.),
As(2) = * if and only if A(x) is undefined.

3 Asynchronous Automata

Asynchronous Automata are a nice generalization of Mazurkiewicz traces, and
have influenced a lot other models for concurrency (like transition systems with
independence etc.). They have been independently introduced in [27] and [2].
The idea is to decorate transition systems with an “independence” relation (be-
tween actions) that will allow us to distinguish between true-concurrency and
mutual exclusion (or non-determinism) of two actions. We actually use a slight
modification for our purposes, due to [6], and called “automata with concurrency
relations”:



Definition 3. An automaton with concurrency relations is a quintuple
(S,4, E, Tran,I) where,

(1) S and E are disjoint sets; i € S is a distinguished element (the start state);
Tran s a subset of S x E x S,

(2) Tran is such that whenever (s,e,s'), (s,e,s") € Tran, then s = s"; we
require that for each e € E, there are s,s' € S with (s,e,s') € Tran;
= (Is)ses s a family of wrreflexive, symmelric binary relations I; on
9T = (I,)se l tric b lations I

E; it is required that whenever e1lseq (e1,ea € E), there exist transitions
(s,e1,51), (s,ea,82), (51,€e2,7) and (sa2,ea,7) in Tran.

In the sequel, we relax condition (2). A morphism is now a morphism f =
(c, A) of the underlying transition systems such that al;b implies /\(a)fé(s)/\(b).
This makes automata with concurrency relations into a category, written ACR.
The category of automata with concurrency relations over an alphabet E is
named ACRg.

Similarly to Section 2, we can equivalently consider ACR (and AT'S) to be
built using * transitions and total morphisms. The condition on the independence

relation is then alb = /\(a)fc’r(s)/\(b) when A(a) # * and A(b) # *.

4 Cubical sets

Cubical sets, which are classical objects in combinatorial algebraic topology, see
for instance [26], have been used as an alternative “truly-concurrent” model for
concurrency, in particular since the seminal paper [23]. More recently they have
been used (in particular the “precubical” ones) in [8] and [9] for deriving new and
interesting deadlock detection algorithms. More algorithms have been designed
since then, see for instance [24], [7] and [10].

4.1 “Precubical” sets

Definition 4. A precubical set K is a family of sets { K, /n > 0} with face maps
9¢ Ky = Kpo1 (0<i<n—1, a=0,1) satisfying the following commutation
rules:

070 = 0] 05 (i < j)

FElements of K, are called n-transitions. Let K and L be two precubical sets.
Then f = (fa)new is a morphism of precubical sets from K to L if for all
n € IN, f, is a function from Ky to L, such that fy, 0 0% = 9% o fr41 (for all i,
0<i<n)

This forms a category called Y. It is a presheaf category as follows. Let [0°

be the free category whose objects are [n], where n € IN, and whose morphisms
5

are generated by [n] —Z [n—1] for all n € IN" and 0 < 7,5 < n — 1, such
5!
J

that 5?5} = 5;_155 (i < j). Now, the category 0°Set of functors from O0° to



Set (morphisms are natural transformations) is isomorphic to the category of
precubical sets. This implies, by general theorems ([19] and [21]), that 7° is an
elementary topos. Moreover it is complete and co-complete because Set is com-
plete and co-complete. Also, we will use the general fact in the sequel that in all
categories of presheaves DPSet like this one, all elements (which are contravari-
ant functors) are direct limits of so-called representable functors h” which to
every d € D associates (x — Homp(z,d)) € D Set!.

4.2 Cubical sets

Precubical sets are a bit like the category of transition systems with no idle
transitions: paths are transformed by morphisms into paths of the same length.
This is far too strict to be really useful. For instance, simulations (hence bisimu-
lations) cannot be morphisms (respectively spans of open morphisms as in [18])
in general. Also, it is impossible to describe the restriction to some subset of
transitions (projection, restriction in CCS for instance) as a morphism. This
needs a generalization of idle transitions to higher-dimensions. There 1s in fact
a close notion in cubical sets:

Definition 5. A cubical set K is a precubical set together with degeneracy maps
€ Kno1 = Ky (0<i<n—1) satisfying the extra cubical relations:

€Z'€j = €j+1€i (Z S _])
€107 (i < j)

Ofej =4 €07, (i>7)
d (i=j)

Let K and L be two cubical sets. Then f is a morphism of cubical sets from
K to L if it is a morphism of precubical sets from the underlying precubical sets,
and foy10€5 = €50 fn (foralln e IN, 0 <i<n).

The corresponding category of cubical sets, 7", is isomorphic to the category of
presheaves (0 Set over a small category O. This latter can be described in a nice
way, see [b]. Therefore, similarly to the case of the category of precubical sets,
the category of cubical sets is an elementary topos, which is complete and co-
complete. We do not talk about cubical sets with connections and compositions
here [3], but they have a great interest for our purposes, see for instance [12].

4.3 Some useful functors

There again, we need two interesting (and quite classical in spirit) functors. Let
T, be the category of T, whose objects are the n-dimensional cubical sets, i.e.
the “cubical sets M with My = () for all k > n”. This category can be seen as
the presheaf category (OS")°Set where 0" is the full subcategory of O where
objects are [p] with p < n. Similarly, we define 7°7, the category of n-dimensional

op
precubical sets, seen as the presheaf category ((DS)SH) Set.

! This is for instance classical in the categorical presentation of simplicial sets, see for
instance [11].



Lemma 1. Let T,, (respectively T? ) be the function from T (respectively T°)
to T, (respectively Ty ), which to every M € T (respectively M € T° ) associates
N €7, (respectively N € Y7 ) with, N([k]) = M([k]) if k <n, N(e; : [k+1] —
[k]) = M (e;) for k < n and N(68 : [k — 1] = [k]) = M (%) for k < n. It defines

a functor, called the n-truncation functor.

The second functor is one which permits to build a natural cubical set from
a precubical set:

Lemma 2. There is a functor “free cubical set from a precubical set” ' : 175 —
T which is left-adjoint to the (obvious) forgetful functor K from T to T°. Simi-
larly, there is a functor “free cubical set of dimension less or equal than n from
a precubical set of dimension less or equal than n”, F, : Y5 — 1, which is
left-adjoint to the (obvious) forgetful functor K, from T, to 1.

The proof uses a special form of Freyd’s special adjoint functor theorem
(which is also some form of Kan extension in presheaf categories), which is
Proposition 1.3. of [11] (see Appendix A).

4.4 Labelled Cubical Sets

One remaining problem now, is that we do not have labels on transitions. This is
easily taken care of by the following trick. Consider the category Y7 of labelled
cubical sets consisting of morphisms{: M — F.

The morphisms in this category are as usual f = (g, h): ({ : M = E) = (I’ :
M’ — E') with g : M — M’ and h : F — E’ such that the diagram

ML w

T
h !
EF—F

1s commutative. By abuse of notation, we will sometimes identify f, ¢ and A in
the following. Of course, T* is the comma category (see [20]) (Idy | Idy). We
will also consider in the following the category T.X of “pointed” labelled cubical
sets, i.e. pairs ([ : M — L,s) with [ € Tt and s € M, (the “initial” state)
and morphisms preserving initial states. We call this category, the category of
Higher-Dimensional Transition Systems.

Given an alphabet (“of actions”) X, we can construct a “labelling” cubical
set 12 as follows. First, construct for each ¢ € X the cubical set N,, which
is the free cubical set generated by the following precubical set (denoted also
by N, by an abuse of notation) : (Ny)o = {ls}, (No)1 = {0}, (No)n = 0
(for n > 2), and 9Y(c) = 9}(0) = 1,. We now identify X with the cubical set
Haez Ny /{1, = 1;}. We therefore identify in X all 1, and we write it as 1. We
now set 2% to be the cubical set X x - x X (n times) suitably symmetrised
(i.e. two elements are equal iff they have the same number of each of the let-
ters). There are a certain number of natural inclusion morphisms between all



: . x™ “J1,h)n—m x ™ . ) _
these iterated products : ¥ ——"=5% ¥* where, i;, .. ;. (01, -, 0m) =

Ui—caTd{jk|jk§i} if ¢ ;é ]k for all 1 S k S n—m Then

(71,000, 7) with, 73 = { 1 otherwise
construct 13 as the direct limit of the diagram whose objects are all %" and
whose morphisms are all ¢;, ...; _ .

Geometrically, 13 is in dimension one the wedge of a set of loops, one for
each o € X (giving the labels for 1-transitions). In dimension two, it is a wedge
of a set of tori, one for each pair (¢, 7) € ¥ x X, now seen as a set (giving the
labels for 2-transitions) etc. Notice that !X is freely generated by a precubical
set.

5 Some adjunctions

5.1 With transition systems

We prove that some suitable full subcategory of (V:[); is isomorphic to T'S.
Consider HT'S to be the category whose objects are the pointed labelled cubical
sets (M, 1 : M — FE, i) such that,

— they are freely generated by precubical sets, i.e. M = F(N), [ = F(l') with
!" : N — F morphism of precubical sets,
— they are “deterministic”, i.e. Vo, o' € My, (k > 1),

(dY(x) = d} (2'),d} (z) = d} (&) (VO <i<k), l(z)=1(2) = x=2a

and whose morphisms are all morphisms of pointed labelled cubical sets. HT'S]
is the full sub-category of HT'S consisting of pointed labelled cubical sets of
dimension at most one.

As a matter of fact, the categories are defined in quite similar terms. States
of ordinary transition systems are of the same nature as states of labelled cubical
sets and source and target representation of transitions is nothing but a func-
tional interpretation of the relation Tran. This is done formally by constructing
two functors U : T'S — HT'S1 and V : HT'S; — TS inverse of each other, with,

- (F(M),F(l): F(M) = F(E), i) =U(S, A, Tran, j) with,
o My=25,

M, ={as /a€ A s s' € Tran},

s 5 s € Tran if 3x € My, such that [(z) = a, d(x) = s and d}(z) = &’
(then this # is unique because (F (M), F'(1),4) is deterministic).



Action of the functors on morphisms is as follows,

—if f = (o,A) : (So, Ao, Trang, jo) — (51, A1, Trany,j1) is a morphism of
transition systems then we define U(f) = (U(f),U(f)?) where U(f)* :
F(My) — F(My) and U(f)? : F(Eo) — F(FE;) are the two components
of the morphism, where U(Sy, Ag, Trang, jo) = (F(Mo), F(ly) : F(My) —
F(Eo),jo), U(Sl,Al,Tranl,jl) = (F(Ml), F(ll) : F(Ml) — F(El),_]l)

o U (a0,0) = {A(fzﬁés();iﬁs” ctbormen
e UM (s) =o(s) (s € Mo),

o U(f)*(as,e) = {?0((?) litAhg)wie* ’

o U([)?(s) =1 (s € My).

o Ma) = {fzi“) S (@) 1M€o (p il g abel in V(lo : Mo — Eo, io)

otherwise

In the sequel we will restrict functors and categories of models so that they
have “fixed labellings”. We call HTS the category of higher-dimensional transi-
tion systems labelled over a fixed cubical set |F for a given (fixed once and for
all in all the following arguments) set of labels . We will no longer mention
these labelling sets. Given this restriction,

Theorem 1. U and V are inverse functors.

Now, in order to compare the category of higher-dimensional transition sys-
tems with ordinary transition systems we only have to look at how to retract
HTS onto its sub-category HT'S;. This boils down to looking at the different
adjunctions we have between 7" and 7} because of the few next lemmas. The
first one tells us that we can lift adjunctions from unlabelled to labelled cases,
and the second one tells us that we can restrict adjunctions (this is useful for
dealing with the “determinism condition” of labelled cubical sets).

Lemma 3. Let C and D be two categories and S¢ p be the set of for all pairs of
funetors (F,G) with F' : C — D left adjoint to G : D — C. Then all elements of
Sc.p induce elements of Sirac1de),(Idpildp)-

F

Lemma 4. Let C D be a pair of adjoint functors, C' (respectively

D') a full sub-category of C (respectively of D). Suppose that F(C') C D' and
FlCI

G(D') C ', then ('

D' is a pair of adjoint functors.

G|D/



We have mainly two different adjunctions between 1" and 7 using 71 (to keep
the underlying ordinary transitions unchanged in the interpretation) among all
the possible ones.

Proposition 1. There are pairs of adjoint functors as follows (for n > 1):

— There 1s a functor Z,, : T, = T left-adjoint to the truncation functor T, :
T — Y. Similarly, there is a functor I7 : T — T° left-adjoint to the
truncation functor T, : T° — TnS. Moreover, T, and T,, commute with the
free functor.

— The truncation functor T, : T — T, (respectively Ty : T° — 1.5 ) is left-
adjoint to a functor G, : ¥, = T (respectively G5 : 17 — 1% ).

Proof. These are direct applications of Proposition 1.3. of [11] (see Appendix
A).

The intuition about these functors is as follows. Z,, is just some kind of
inclusion functor; it takes a n-dimensional cubical set and forms a cubical set
with exactly the same non-degenerated elements (i.e. those elements which are
not in some Im ¢;); in fact, exactly the same elements in dimension less or equal
than n, but only degenerated elements in dimension strictly bigger than n. Seen
as some kind of abstraction (in the sense of abstract interpretation [4]), it is
a “minimal allocation strategy” abstraction. A n-dimensional cubical set only
prescribes what can happen for degrees of concurrency less or equal than n. 7,
interprets this as being exactly with no (interesting) actions with more than
n processes busy at the same time. On the contrary G, tries to interpret a n-
dimensional cubical set with “maximal allocation strategy” i.e. tries to fill in all
(n + 1)-dimensional holes in a n-dimensional cubical set as imposing that this
should be filled in by a (n+1)-transition, and up and up in all dimensions. There
are “dihomotopy” properties that should be proven about this “resolution” like
functor. This is left for future work.

We notice now that the adjunction (T*L)n TL can be restricted using

n
Lemma 4 to the full sub-categories of free objects generated by precubical sets,
in, respectively, (T[), and TL. This is due to the fact that (see Proposition
1) Z,, and T,, commute with the “free functors”. We can restrict this adjunc-
tion furthermore, still using Lemma 4, to see that the adjunction still holds with

n > 1 when we restrict to deterministic automata. Hence we have the adjunction:

7
HTS; —— HTS. Given that HT'S; and T'S are isomorphic (see Theorem 1),
Ty
th
we deduce that we have a pair of adjoint functors: TS HTS. Unfortu-
ht

nately, we did not manage yet to “lift” the other adjunction of Proposition 1 to
higher-dimensional transition systems.



5.2 With automata with concurrency relations
We first define functors W, Y, which will appear to be inverse functors:

4%
ACR = HTS,
y

(HTSs is the full subcategory of T:X consisting of higher-dimensional transition
systems of dimension less than or equal to two) by,

— (F(P),F(l: P—= L), F(j))=Y(S,i, E,I,Tran) with,

. j=i
e Py=25,

o Pr={t; /s L€ Tran},

o [ = I{Q(Tz('E)),

i dg(tsysl) =5, dé(ts,s’) == 5/ and l(ts,s’) = t’

o P = {absys’,s”yu/alsb/\as,s’ € P Abs n € PLAbyw € PL NGy € P},
o di(abs s 51 u) = ass (or df(abs s v u) = as,¢, depending on the way

thisis coded in 1E), dY(abs s/ 57 u) = bs s (or dg(-+) = - +), di(abs s/ 5 o)
= by y, (vespectively, or di(---) = --), dj(abs o o) = asn . (respec-
tively --+) and {(ab, s s ) = (a,b) (respectively - --).

— WP, P L,j)=(S,i, E, I, Tran) with,

o (5,4, E, Tran) = V(TL(P), T1(1), j),

o alsb if there exist z,2',y,y € P, C € Py with {(x) = g
(y) =b,1(y') = band dj(x) = dy(y) = s, di(x) = dy(¥/'), (1) d
i) = dl(@), 1C) = (), di(C) = », () = v, d}(C) =
di(C) = 2’ (or, respectively, d%(C) = z, d}(C) = y, dl( =y
dy(C) = 2').

Y has the same action on the underlying ordinary transition system of an asyn-
chronous transition system as functor U; we will identify U (S, 7, E, Tran) with
the underlying 1-dimensional skeleton of the higher-dimensional transition sys-
tem Y(S,4, £, I, Tran). Similarly for W which acts as V on the underlying ordi-
nary transition systems, thus we will identify V(P,{: P — L, j) as the underly-
ing transition system of the asynchronous transition system W(P,l: P — L, j).
Y fills in all interleavings of two independent actions by 2-transitions W im-
poses two actions to be independent if and only if there exists a truly concur-
rent execution of them in the higher-dimensional transition system. The action
on morphisms is again easy to define. Let f = (o,A) : (5,4, E,I,Tran) —
(S',¢, B, I' Tran') be a morphism of asynchronous transition systems. Then

g=Y(f) : Y(S,i, E,I,Tran) — Y(S',i, E',I', Tran') is defined by,
— T1(g) = U(f) (by the identification made above),

/\(a)/\(b)g(s)yg(s/)yg(su o(u) if /\(a) 75 * and /\(b) 75 *

 go(aby yr o) = €0 (/\(a)g(s)yg( )) if A(a) # * and A(b) = *
B8hsTu €1 (/\(b)g(s)yg(su)) if A(b) # * and A(a) = *
coeo(o(s)) if A(a) = * and A(b) = *

for ab, 51 5n o € F(S,1, E, I, Tran)s.



Finally, for ¢ : (P, P AN L,j) = (P, r 4 L’,j) a morphism of (V:1), we

define f = (o, A) : W(P, P 4 L,j) = W(P' P —> L,j") simply by (using the
previous identification) f = V(Ti(g) : T1(P), T1(),§) = (Tu(P"), Ta (), j).

In the sequel we will again fix once and for all the labelling cubical set used
in our higher dimensional transition systems, to be |E (where E is a set of labels
fixed once and for all). Then again,

Theorem 2. W and Y are well-defined functors. Moreover, Y and W are in-
verse of each other.

Proof. The only difficulty, is to show that the action of these functions on
morphisms are well-defined. For Y| the only thing to check is that the def-
inition in dimension 2 of the underlying precubical set is coherent. We only
check one of the necessary equalities: (taking the same notations as above), for
abs o151 € Y(S', ¢, E' I, Tran’) with A(a) # % and A(b) = * (notice that we
have then o(s”) = o(s) and o(s') = o(u)),

df (gZ(abs,s’,s”,u)) = df(EO(A(a)O'(S),O'(S’)))

(a)g(s)yg(s/) ifk=0,1=0
_ Eo(dg(A(b)g(s)yg(su )) = 60(0’(8)) if k= 0, =1
- (a)g(s)yg(s/) fk=1,1=0
GO(dé(/\(b)g(s/)yg(u))) =¢(o(u)) ifk=1,1=1
Ala o(s),0(s") ifk=0,{=0
eo(o ifk=01=1
N (df(abs,s',s”,u)) = /\(a)g(su),g(Zf :( /)\)(a)a(s),a(s') ifk=1,1=0
eo(o(u)) fk=1,1=1

which are equal. The rest of the proof goes along the same lines (see the rest in
Appendix A).

For W we have to check that, for f = (o,A) = V(g : (Pl : P = L,i) —
(P P = L')4), alsb and A(a) # x, A(b) # x implies /\(a)fé(s)/\(b). Sup-
pose alsb in Y(P,l : P — L,i). Then there exist z,z’,y, v € P1 with {(z) = a,
(z') = a,l(y) = b, 1(y') = band dy(z) = di(y) = s, dy(z) = dy(y), di(y) =
di(z"), di(y') = di(z ), and we have a C' € P, with I(C) = (a,b), dj(C) = =,
d{(C) = y, d}(C) = ¢ and d}(C) = 2’. We know that ¢(C) € P} and that
I"og(C) = (f(a), f(b)) since f(a) # « and f(b) # . Similarly, I'(¢(x)) = f(a),
U(g(z") = fla), U'(g(y)) = f(b) "(9(y)) = f(b). Furthermore, because g is
a morphism of cubical sets, d5(g(z)) = d3(g(y)) = ( ), di(g(z )) = d3(9(v')),
d5(g(y)) = do(g(x'), difg(y)) = di(g(x’)), so Aa) I} A (D).

The adjunctions of Proposition 1, in the particular case n = 2, together
with the result of Theorem 2 imply that we have a pair of adjoint functors:
ah
ACR % HTS.

ha



6 Conclusion and further work

6.1 Other adjunctions

In [29] some adjunctions are described between a variety of models for con-
currency. We hope be able to lift some of these functors to the case of labelled
cubical sets. In particular, we believe that the equivalence between traces defined
in the category T'L of Mazurkiewicz traces should be mapped onto homotopy
classes of traces in HT'S, therefore the partially commutative monoid defined in
Mazurkiewicz trace theory should be some analog of the fundamental category
in cubical sets (defined for instance in [15]). This is left for future work. The
domain of configurations of an event structure is a dI-domain (stable domain,
a la Berry, see for instance [29]) and we believe that through adjunctions with
HTS (and through the adjunctions between cubical sets and local po-spaces [9],
using the geometrical realization functor), this is linked to the fact that partially
ordered topological spaces are related to some particular forms of Scott domains
(see again [15]). Finally, we believe that there is an equivalence of categories
between some form of higher-dimensional transition systems and general Petri
nets. One of the difficulties is in finding the right notion of independence be-
tween any number of transitions in Petri nets. One possible start is to use the
adjunction between AC'R and Petri nets in [6].

We have seen that cubical sets are complete and co-complete. This means
that the category of labelled cubical sets (with a fixed alphabet of the form 1 E) is
complete and co-complete. Because it is related through left and right adjoints
to transition systems (and asynchronous transition systems), there are some
correspondances between limits and co-limits in these categories. For instance,
products in higher-dimensional transition systems correspond to the parallel
combination (with no interference) of the two higher-dimensional transition sys-
tems (as does the cartesian product of two partially ordered topological spaces);
co-products correspond to non-deterministic choice. Fibred products, i.e. syn-
chronized products as in the category of ordinary transition systems [1], allow
for nice semantical definitions. This allows also for nice comparison of semantics
through adjunctions.

Stubborn sets [28], sleep sets and persistent sets [13] are methods used for
diminishing the complexity of model-checking using transition systems. They are
based on semantic observations using Petri nets in the first case and Mazurkiewicz
trace theory in the other one. We believe that these are special forms of “homo-
topy retracts” when cast (using the adjunctions we have hinted) in the category
of higher-dimensional transition systems. We hope to make this statement more
formal, through these adjunctions, and use this to design new state-space reduc-
tion methods.

Last but not least, in [18] is defined an abstract notion of bisimulation. Given
amodel for concurrency, i.e. a category of models M and a “path category”, i.e. a
subcategory of M which somehow represents what should be thought of as being
paths in the models, then we can define two elements of M to be bisimilar if there
exists a span of special morphisms linking them. These special morphisms have



a path-lifting property that we believe would be in higher-dimensional transition
systems a (geometric) fibration property. We thus hope that homotopy invariants
could be useful for the study of a variety of bisimulation equivalences. Some work
has been done in that direction in [25] (and in some sense also in [16]).
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A  Proofs

Most proofs are based on a particular case of the existence of Kan extensions,
taken here from [11] (Proposition 1. 3. Page 22):

Proposition 2. Let C be a category with direct limits and G : D?Set — C a
functor. Then the following statements are equivalent :

(i) G commutes with direct limits.

(ii) G is left adjoint to a functor D : C — DPSet. Moreover, the functor G —
G o h? is an equivalence of the full subcategory of Hom(D Set,C) formed
by the functors G which commute with direct limits on Hom(D,C).

In fact, D is the functor which associates h®(c) o G o P with ¢ € C.

Lemma 1 1s obvious.
Lemma 2:

Proof. 1t suffices to use Proposition 2 with D = 0%, ¢ = O%Set and functor
w € Hom(D,C) with w([p]) = AP ([p]). This defines F and its right-adjoint K.
It is easy to see that the unit n of the adjunction is in fact the identity natural
transformation n : Id — K o F'. This means that K induces an equivalence of
categories between F(7°) and 7.

The case of cubical sets of dimension less or equal than n is treated in exactly
the same manner.

Theorem 1:

Proof. We now forget about the given labelling set E, even in the definition
of transition systems and labelled cubical sets. Thus, given a transition system
T = (S,i,Tran) € TS we have, U(T) = N where N = F(M,l, j) with,

- MO == S,

— My ={asy/a€ E,s 5 s € Tran},

- dg(asys’) =5 dé(ab’,s’) =5,

—lass) =a,l(s) = 1.

Therefore, V(U(T)) = (S',4#, Tran’) with,

- S/INQIMQIS,

—i=j=i,

— 53§ € Tran' if Iz € Ny, such that I(z) = a, d5(z) = s and dj(z) = 5.
The only possible # € Ny such that [(z) = a € F is actually # € My, and
the only possible z satisfying all the conditions above is a, ;. Therefore,

s 5§ € Tran' if and only if s = s’ € Tran, hence Tran’ = Tran.
Now, take (M,{,j) € HTSy, then (S,i,Tran) = V(M,L,j) with,
- S= MOa

7.7.:1.’



- A= El\Im €0,
— 55§ € Tran if Iz € My, such that {(z) = a, d5(z) = s and d}(z) = 5.

And then, F(M', ', j'Yy = U(S, i, Tran) with,

M =5 = My,

— M{ ={ass/a€ A s s €Tran} = M;\Im ¢y (because [ is free),
S j=i=],

- dg(asys') =5 dé(ab’,s') =5,

—lass) =a,l(s) = 1.

Therefore, F(M', ', j') = (M,l,j) because M and [ are free.

This proof extends readily on morphisms: Let first f: (lp : My — Eop, i) —
({1 : My — FEy,i1) be a morphism of HTS, f = (f1, f2). Then let (o, A) = V(f) :
(So, 10, Trang) — (S1,41, Trany). We have:

) =
— o(s) = f(s) (for all s state of V(Iy : Mg — Eq,i0)),
f?

: (@) 11 7*(a) ¢ Im <o o .
Aa) = { otherwise (for all a label in V(ly : My — Ey,i0))

Let now (g1, 92) = U(c, A). We have,

(00 (an) = { N etgeien T
— U(o, \)(s) = o(s) (s € M),
(o A)*( otherwise ’
(o A)*(

T Ma) ifA() # +
’>‘{eo<1>

— M@)o (s),0(s) is the unique x (because of the determinism condition in H7'S})
going from o (s) = f1(s) to o(s') = f1(s'), with label A(a) = f?(a), hence is
equal to f*(a, ),

— when A(a) = *, i.e. when f%(a) € Im €, f1(s) is necessarily in Im €q: (f1, f?)
being a morphism between Iy and [1, we have I (f (as ) = f*(lo(as,s)) =
f?(a) € Im €g; In order to have this, it is necessary that f!(as ) € Im €.
Furthermore, df}(f*(as ) = f1(s) = o(s) and d(f*(ass/)) = o(s') = o(s)
therefore f1(a; ;) = eo(o(s)) = U(o, A) (as s7)-

Now let f = (o,A) : (So, o, Trang) — (S1,i1,Trany) be a morphism of
labelled transition system and g = U (f). We have,

) = {/\(a)o(s),g(s/ if AMa) # *
: co(o(s)) otherwise ’

bl



Then consider f’ = (', N) =V(g). We have,

=gi( for all 5 state)
{ a) if g»(a) € Im € (for all @ label)

otherwise
Therefore,
— if ga(a) & Im €g, i.e. if A(a) # #, then X (a) = ga(a) = A(a). If not, A'(a) = *
and A(a) = * at the same time.
— o'(s) = q1(s) = o (s).
Lemma 3:

Proof. Let (F,G) € Sep, ! € Home(M,N) and ' € Homp(M', N'). Let now
[ € Homrapyrap)(F(1),1'); this means that f = (fi1, fo) where fi and f, are
morphisms in P which make the following diagram commutative:

" . M

f

So the following diagram is also commutative by functoriality of G

G(/f1)

G o F(M) G(M')

Go F(l) G(l')

G o F(N) G(N')

G(f2)
But the unit 7 of the adjunction between F' and G is a natural transformation,
thus the first square of the following diagram also commutes, entailing that the
outer square itself is a commutative one:

M —"™ GoF(M) Gy G(M')
! Go F(l) G(l')
N— GoF(N)mG(N)

Hence we get naturally, a morphism in Homsa.yra.)(l, G(I')):

A (fi, f2) = (G(f1) o nm, G(f2) o nw)



Similarly in the other direction, we get a morphismin Homrgy, 114y (F(1),1'),

Bl,l’(glagZ) = (earr 0 F(g1), enr 0 F(g2))

where ¢ is the co-unit of the adjunction(F, GG).

We now prove that this is a natural bijection between Homrap 1a,)(F(1),1')
and Homrq.y140)(l, G(I')). The composite of A; ;7 with B being the identity
is a direct consequence of the (right) identity 8 page 80 of [20]:

F(nar) €F(M)

is the identity natural transformation on F'. This means that the following dia-
gram 1s commutative:

F(nar) €F(M)

F(M) FGF(M) F(M)

fi FG(f) fi

Hence,

Ty FGA) o

M) =L perony) =Y rouy 2L = gy
Similarly, the composite By ;s o A;;r = Id because of (left) identity 8 page 80 of

[20], so we have:

G F(fz) a

G
ay 2 gramy 22 aromy P o = g
Thus (F, G) induces a pair of adjoint functors between (Ide | Idc) and (Idp |

Idp).
Lemma 4:

Proof. The natural bijection between Homp(F(X),Y) and Home(X,G(Y))
naturally restricts to a bijection between Homp (F(X),Y) = Hompz( (X),Y)
(D' is full in D) and Home (X, G(Y)) = Home (X, G(Y)) (€' is full in C) for
XeD andY €.

Proposition 1:

Proof. Take as a first instance of Proposition 2 P = O<" and € = O Set. We
define functor v € Hom(D,C) as follows :

u([p]) = A7 ([p])



Then functor G of Proposition 2 is the functor which commutes with direct
limits and which is such that,

7, of the proposition is therefore this functor G. Its right adjoint D given by the
same proposition is such that (see [11]),

D(c) : a = Home(G(RP(a)), ¢)

l.e. 1n our case, for p < n,

the last equality holding because of Yoneda’s lemma [20]. We recognize D as
being the truncation functor.
Restricting the adjunction to the categories of cubical sets with morphisms

n

T

respecting the initial states is obvious. The adjunction (T*L)n - rlis a

direct consequence of Lemma 3.

We proceed in a similar manner for the adjunction Z77, 7.7 . We define again by
Proposition 2 I;‘f(h‘jssn[p]) = hP7[p]. Notice that hDSn[p] = F,(h°<"[p]) and
hB[p] = F(hB7[p]), therefore Z,(F (A2 ="[p])) = F(Z5(h2 " [p])), hence the
commuting diagram, by taking the direct limit. The proof for the commutation
of the diagram involving 7, is similar.

The last part of the proposition is by taking P = O, ¢ = (O%")°?Set and
functor v € Hom(D, C) as follows,

v(p))([g]) = Homa([g], [p])

which gives as G functor T,. Now, its right adjoint is functor D with (for N €
(O5")°PSet and [p] € O),

D(N)([p)) = Homr, (T, (k2 ([p])), N)
Theorem 2:

Proof. The only difficulty in the first part, is to show that the action of these
functions on morphisms are well-defined. For Y, the only thing to check is
that the definition in dimension 2 of the underlying precubical set is coher-
ent. We compute first (taking the same notations as above), for abs o s €

Y(s', i, B I Tran'):
— if A(a) # * and A(b) # *,
df(gz(abs,sfysu,u)) = df a)/\(b)o(s),cr(s’),cr(s”),a(u))
)O’(s)yg(s’) if k= 0’ =0
) ) ifk=0,1=1
)U(S ,0(u) if k= 1, =0
A(b)U(s’),U(u) fk=1,1=1



We also have,

A(a)cf(s),a(s/) fk=0,1=0
/\bosas” lkaO,lzl
gl(d;c(absyslysuyu)) — ( ( )v ( ) lfk, _ 1’ l _ 0

osow) Th=11=1

which are equal.
if A(a) # % and A(b) =
a(s') = o(u)),

df (gZ(abs,s’,s”,u))

* (notice that we have then o(s") = o(s) and

(a)g(s)yg(s/) if k= 0, =0
_ EQ(dg(/\(b)g(s)yg(su))) = 60(0’(8)) lf k’ = 0, l = 1
N (a)a s),0(s") if k= 1, [ =0
EO(d(l)(/\(b)a(s’),a(u))) = GQ(O'(U)) if k= 1, =1
We also have,
/\(a a(s),0(s") if k= 0, =0
ifk=0,1=1
dk abg g1 g1 y)) = 60(0-( )) 1 )
gl( ! ( T )) /\(a)g(su)yg(u) = /\(a)g(s)yg(s/) }fk’ = 1, =0
eo(o(u)) fk=1,1=1

which are equal.

if A(b) # * and A(a) = # (notice then that we have o(s’') = a(s)),

df (ga(abs s s ) = dF (e1(A(D)o(s),0(s)))

eo(o(s)) ifk=0,1=0

_ A(b)g(s)yg(su) if k= 0, =1
- eo(o(s”)) ifk=1,1=0
AB)o(s),o(sry ifk=1,1=1

We also have,

g1(as,51) = €o(o(s))
S Wi
91(bsr ) = A(B) (s Ab) () (s

which are equal.
if AMa) = # and A(b) =
(u)),

df (gZ(abs,s’,s”,u))

fk=0,1=0
fk=0,1=1
lfk’Il,lIO
fk=11=1

bl

(notice that then we have o(s) = o(s') = o(s") =

eo(o(s)) ifk=0,1=0

_ co(dd(ea(a(s)))) = eo(o(s)) ifk=0,1=1
eo(o(s)) ifk=1,1=0
co(di(ea(a(s)))) = eo(o(s)) ifk=1,1=1



We also have,

gl(as,s’) = 60(0'(5)) if k= 0, (=0

ks _ g1(bs sn) = co(o(s)) ifk=01=1
gl(dl (abs,s’ys”,u)) = g1(as~,u) = eo(0(s")) = coo(s)) ifk=1,1=0
g1(bs w) = €n(o(s")) = eo(o(s)) fk=11=1

which are equal.

For W we have to check that, for f = (o, A) = Y(g : (P,{: P —> L,i) = (P,l':
P = L' i),

alsh and A(a) # *, A(b) # * implies /\(a)fclr(s)/\(b)

Suppose alb in Y(P,l: P — L,i). Then there exist z,2’,y,y € Py with {(x) =
a, l(z') = a,l(y) =b,1(y') = b and di(x) = di(y) = 5, dy(x) = d3(¥/'), di(y) =

di(z"), di(y') = di(z ), and we have a C' € P, with I(C) = (a,b), dj(C) = =,
d)(C) = y, d}(C) = ¥ and di(C) = z’. We know that g(C) € P, and that
Uog(C)=(f ( ), f(b)) since f(a) # * and f(b) # . Similarly, '(¢(z)) = f(a),

U(g(z")) = fla), U'(g(y)) = f(b), U'(9(y')) = f(b). Furthermore, because g is
a morphism of cubical sets, d3(g(z)) = d3(g(y)) = o(s), di(g(z )) = d3(9(v')),
ab{9(v)) = dY(a(x")), d}(a(y")) = dl(g(a), 50 Ma) I}, \(b).

It 1s easy to see that these functors restricted to the 1-skeleton are inverse
of each other (this is the consequence of Theorem 1). Now more generally, it is
easy to check that Wo Y = Id.

Finally, for all free 2-dimensional cubical sets (from precubical sets) (P, 1, j),
Y o W(P, 1, j) is naturally equal to (P,/,j).



