
Schedulers as Abstract Interpretations ofHigher-Dimensional AutomataEric Goubault��Ecole Normale Sup�erieureAbstractWe de�ne here a uni�ed formal treatment for schedulingproblems arising in di�erent areas of computer science (im-plementation of concurrent languages, protocols for distribu{ted systems, pipeline management, concurrent databases: : :)through abstract interpretation of Higher-Dimensional Au-tomata (HDA) semantics. We give practical polynomialtime algorithms for testing/inferring schedulers at the endof the article.1 Introduction and motivationThe use of schedulers is somewhat pervasive to many bran{ches of computer science. We mention below a few applica-tion areas, the properties that schedulers are to verify andgive some references to the theoretical work done in thesedi�erent �elds.1.1 Safety and e�ciency of the implemen-tation of concurrent languagesA real parallel machine has but a limited number of re-sources. It has limited memory, limited number of pro-cessing units and many constraints on the way it can usethem. The idealistic view of true concurrency semantics,assuming an in�nite number of processors for instance, istherefore misleading when it comes to runtime behaviour ofprograms. It may happen that to badly schedule spawningoperations may deadlock (just delay in practise) a processthat would need to synchronize with another (not yet ex-ecuted) process. It may happen as well that some sharedresources of the machine have to be used in mutual ex-clusion. The safety (respectively e�ciency) properties thatschedulers must verify are mainly choosing behaviours thatwill not lead to deadlocks (respectively not delay too muchthe execution of some process) and guaranteeing mutual ex-clusion of some resources. This last property could well�LIENS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 ParisCedex 05, FRANCE, email:goubault@dmi.ens.fr

be implemented by standard techniques (Peterson's algo-rithm for shared-variables or hardware test-and-set like op-erations) independently of programs, but this would be atthe expense of e�ciency. Let us take an example from[14] and [27]. Many modern CPUs like SPARCs or MIPSpipeline instructions. Of course, their functional units, reg-isters or bus are all used in mutual exclusion. Unfortunatelythe pipelined instructions overlap in time as they use morethan one clock cycle and some of them cannot be executed(otherwise \structural hazards" occur) within a certainnumber of cycles after some others. We do not want touse the pipeline in mutual exclusion since we would haveto empty it after every instruction. The problem addressedin [27] is to verify that schedulers for a single process en-sure that structural hazards will not occur (safety). In aconcurrent framework, if there are more processes than pro-cessors, we can address the new problem of �nding a wayto interleave actions from di�erent processes executed onthe same processor, that verify the constraints while usingthe pipeline at the best of its capabilities (this is a view for-malised in [2]). Some processors (like INTEL's Pentium) areeven more complex to deal with since some resources maybe used by at most two processes in parallel but not three1.A similar example at a more macroscopic level is given byan I/O bu�er shared by two or more processes. The maincontribution of this article in this area is to provide a wayto get the best scheduler (or an approximation of it).An inverse problem (where we want to unconstrain the or-dering of actions) can be found in the very important paral-lelisation literature. Given a sequential program p, can wedecide which parts of it can be executed in parallel? Mostapproaches up to now are based on program transformation[19, 24, 29]. We propose here a framework based on the op-erational semantics of p that enables us to derive a schedulerchoosing dynamically the intructions to spawn.1.2 Protocols in distributed/concurrent sys-temsIn order to have well behaved distributed systems, one veryoften has to make local processors agree on some criterion,like elect a leading one or organise the
ow of informationto guarantee the coherence of the global state of the sys-tem (by local rules only) like the consensus, set or renamingagreement tasks [15]. This is done by de�ning protocols.1 it has two integer arithmetic units.

An example of such a situation is given by a parallel ma-chine whose di�erent units communicate by asynchronousmessages along channels which have a given topology (let ussay a ring topology for instance). Now, a protocol for guar-anteeing a global knowledge of some fact must serialize allmessage passing primitives according to the communicationtopology (in our example of the ring topology, messages areto be waited for from say the left neighbour before passingthem to the right neighbour). In [15] some of these problemsare addressed in a static manner (the topology is �xed onceand for all). We propose here to use the dynamic semanticsto deal with changing topologies as well2 .Another example can be found in concurrent database sys-tems [32]. To ensure the consistency of the database theprocesses have to lock some entries and then unlock themafter some of their transactions have been executed. Pro-tocols de�ne the way processes lock and unlock items. Agood instance of this is the two-phase protocol, see sec-tion 2.1. Our contribution in this area is to give a generalde�nition of serializability, carrying on the work presentedin [11], and give a practical test for protocols based on thesemantics of the processes and not only on static or syntacticground. Very recently, Jeremy Gunawardena [13] has givena very clear explanation about why serializability has some-thing to do with homotopy. We subscribe to this pointof view and give here a formalization of these notions usinghigher-dimensional automata.2 A geometric approachInterestingly enough, a graph-based criterion is known forserializability [32]. In more general protocols for \decisionproblems" recent results [15] use combinatorial algebraictopology on static representations of protocols. We willshow here that we can use more general tools from alge-braic topology directly on the dynamic semantics of the sys-tems studied to extract the information about serializabilityand schedulers. We will develop in particular a homotopytheory of oriented paths (next section). Let us explain theintuition about this.2.1 The two-phase protocolA concurrent database is composed of a set of shared ob-jects, or items, and a set of processes accessing these itemsT1; : : : ; Tn, or transactions. The transactions can be exe-cuted in parallel, and one can think of a good example (ofeconomic interest too !) as being a reservation system of anairline. The items are seats in the planes and the transac-tions are individual queries from customers, made in parallelsince there may be many di�erent selling points. The basicproperty we want to insure is that no seat is sold twice (atthe same time) to di�erent customers. In the shared mem-ory paradigm the well-known method for attacking this isto put locks ([10]) on shared variables. In Dijkstra's formal-ism, for an item a, Pa is the action of locking a and V a isthe action of relinquishing the lock on a. As long as we areonly interested in the policy of acquiring items and not intheir actual values, we can abstract the transactions in such2In many languages, like CM-Fortran with the CMMD library, orCML [28], channels are de�ned during the execution of the program.They are not physical but they are logical channels.

Figure 1: A process graph for two transactions accessing thesame shared item.
Forbidden

Pa Va

Pa

Va

x

x

1

2

Figure 2: An example of process graph.
Pb Pa Vb Pc Va Vc

Pa

Pb

Va

Vb

T1

T2

a way that they are written as strings of Px, V x, x rangingover the shared objects.As an example, consider T1 = PaV a, T2 = PaV a. Thereis an old way to represent these transactions due to Dijk-stra again, known as process graphs. We will see that it hasmuch to do with the HDA approach. The idea is to asso-ciate to each transaction a \local time" which geometricallyis one coordinate in an euclidean space. Supposing that allprocesses can individually terminate, we may normalise thislocal time for it to be in range [0; 1]. An purely asynchronousexecution of n transactions is now any path from (0; : : : ; 0)to (1; : : : ; 1) in the n-cube [0; 1]n where the local times, i.e.the coordinates always increase. But the executions are con-strained by the fact that shared objects are accessed in mu-tual exclusion. In Figure 1 we have pictured the centralsquare in [0; 1] which is forbidden: a valid path of execu-tion cannot enter it since it is precisely the region in whichboth transactions access the same object a. The more com-plex example borrowed from [13], T1 = PbPaV bPcV aV c,T2 = PaPbV aV b is pictured in Figure 2. Using these geo-metric representations, we have two main questions, (i) canthe system of transactions deadlock? (ii) is the system oftransactions correct in some sense?As for question (i), the answer is geometrically clear (see

Figure 3: Left and right paths in a mutual exclusion.
left

right[6]). The only way a path coming from (0; : : : ; 0) may bestopped before reaching (1; : : : ; 1) is by \meeting" a cornerlike the dashed one (PaPb, PbPa) in Figure 2. As soon asa path goes into the small dashed rectangle, it cannot reach(1; : : : ; 1). Formally, this question relates to a connectednessresult. We will not discuss this in the following but ratherconcentrate on question (ii). Question (ii) is not immediatesince we �rst have to de�ne what the correctness conditionis. In the airline reservation system example we have onlydemanded that no seat be sold twice. This means that someparts of the transactions may be done in parallel, but thatthe execution must be su�ciently constrained so that theresulting reservations are the same as some sequential treat-ment of the queries of the customers. In database theorythis correctness criterion is known as \serializability". Ithas a basic \geometric" formalisation in [32] in the form ofa topological condition on the \graph of transactions". Weshow now, following J. Gunawardena ([13]) that it is evenmore directly of a geometric nature, and that the serializa-tion property can be read on the process graph.This may seem strange since the correctness criterion seemsessentially given as a condition on states of the system. Donot forget though that we assumed the representation oftransactions does not depend on the actual values of items.Surely, some arithmetical operation involved in the bookingprocess may commute with other operations for some valuesof the items, but we have to think it would be very strangethat they commute for all values. The condition now is thenonly on paths of executions. If you look at the forbiddensquare, or mutual exclusion in Figure 1 reproduced in Figure3, the values of the items at its top right depend on theway we have reached this point. Going on the left of thehole may give di�erent results than going on the right ofthe hole: just think at the following example. The initialvalue of a is 0. The arithmetic operations involved for theprocesses when the lock on a has been acquired is a :=a + 1 for T1 and a := 2 � a for T2. Going on the left meansdoing a := 2 � a before a := a + 1, result is a = 1. Goingon the right means doing a := a + 1 before a := 2 � a,result is a = 2. Instead of looking at the holes, look at the�lled parts of the drawing 1. It becomes obvious now thatall paths below (or at the right hand side of) the hole areserializable to the right boundary of the square, and thatall paths above (or at the left hand side of) the hole areserializable to the left boundary of the square. Holes appearto be the elements to discover. They are the obstructions tothe \continuous" deformation of paths (homotopy), whichis the \in�nitesimal" serialization equivalence. Here, thesystem is serializable since any path can be deformed ontoone of the interleavings T1;T2 or T2;T1, i.e. any path givesthe same result as a serial execution of the transactions.Let us examine another process graph we may have (see

Figure 4: A process graph with two mutual exclusions.
T1

T2

Figure 4). Here, the paths \in between" the two holes cannotbe deformed onto one of the interleavings, hence they are notserializable.The aim of protocols for concurrent databases is to pro-vide us with a uniform3 way of insuring the consistency ofa database. A good example is the two-phase protocol. Ev-ery transaction must acquire all locks of all items they willcompute on (�rst phase), compute, and at the end theymust release all their locks (second phase). For instanceT1 = PaPbPcV aV bV c veri�es the two-phase protocol (is\two-phase locked") whereas T2 = PaV aPbV b does not.It can be proven by combinatorial means that it makes allsystems of transactions serializable (or in short, it is serializ-able). However it does not prevent a system from deadlock-ing. Geometrically, the proof that it is serializable has beengiven in [13], and is much more illuminating than the com-binatorial one of, say, [32]. Basically, it is proven that then-cubes forbidden by the two-phase protocol form a uniquehole in the \center" of [0; 1]n. It is then easy, using a \ra-dial" homotopy to deform all paths of execution onto one ofthe interleavings, and then prove the serializability.There are a fewmatters of insatisfaction in this proof though.First, it uses continuous methods. They are elegant but in-duce a few complications, like knowing that the paths cor-respond to real ones. Second, it uses a standard theory ofhomotopy which authorises reversal of time. Here, we re-ally need a homotopy theory for \oriented" paths as alreadyshown in [26]. In the following we sketch such a theory, ina discrete framework using Higher-Dimensional Automata.The theory will generalise also for higher-dimensional mu-tual exclusion problems.2.2 Protocols for distributed systemsHere, we want to deal with general problems that one mayencounter while programming distributed systems. The caseof concurrent databases can be considered as a particularcase. More generally, we are concerned with the followingtype of problems.Given a number of hypotheses on the distributed system,3 i.e. independently of what process we want to program.

like a topology of the communication network, a speci�-cation of the way messages are sent and received (asyn-chronously, synchronously, with bounded bu�ers, with noloss: : :), or in case of a shared-memory system, a number ofassumptions like sequential/concurrent read/write: : :;Given a speci�cation of what we want to program (as a setof distributed processes) on that system in the form of con-ditions on the input values accepted by this set of processesand conditions on the output values that this set of processesshould compute;Given a number of requirements on the execution of thisprogram, like being as most e�cient as it can be, or (itmay be seen as a limit case of the previous requirement)being robust enough to compute a good part of the outputspeci�cation even if some processors fail;The questions are: \Does such an algorithm exist on suchmachines ?" and if the answer is positive, \Can we derive itfrom the speci�cation of the problem ?".All this is formalised under the name of decision tasks. Letus �rst give a few examples, following the presentation of [16]and [15]. The consensus task (abstraction of the commit-ment problem in concurrent database theory where trans-actions have to agree on a common value or abort) is adecision task in which N asynchronous processes begin witharbitrary input values in some set S and must agree at theend on some common value taken from S. The k-set agree-ment task asks for arbitrary input values (in some set S)but no more than k output values (in S as well). This canbe seen as a partial consensus among the processes.Now, an algorithm may be constrained in the following way.Call an execution of a program on a distributed system t-faulty if at most t processes in the program fail. Then analgorithm is t-resilient if it solves a decision task in everyt-faulty execution. An algorithm is wait-free if it is (n �1)-resilient (n is the number of processes we have). It isproven for instance in [16] that in a shared-memory modelwith single reader/single writer registers providing atomicread and write operations, k-set agreement requires at leastbf=kc+1 rounds where f is the number of processes that canfail. This is done in a very nice geometric framework, andgeneral tests are given for solving t-resilient problems. Notonly impossibility results can be given but also constructivemeans for �nding algorithms derive from this work (see forinstance [17]).The geometric framework is di�erent from ours, but hintsabout their relationships will be given in appendix C. Her-lihy's framework is based on a representation of the inputand output speci�cations in the form of input and outputsimplicial complexes, [20].A simplex is associated to the states of processes in the fol-lowing manner. Vertices v are pairs (val(v); id(v)) of localvalues of the process having identi�er id(v), We can draw anedge between v and v0 if and only if v and v0 are compatiblewith the speci�cation we have of the state of the system.It means in all cases that v and v0 must have distinct pro-cess identi�ers. Higher-dimensional simplexes include statesv1; : : : ; vn if and only if these states are compatible with thespeci�cation (input or output one). Again, all the id(vi)are distinct. As an example, we give the speci�cation com-plexes for the consensus task with S = f0; 1g, called thebinary consensus task. The input complex has simplexesof the form ((P0; b0), : : :,(Pn; bn)) with 0 � n � N andbi 2 f0; 1g since all processes can take whatever boolean

value they want. It is homeomorphic to a n-sphere, The out-put complex has simplexes of the form ((P0; 0), : : :,(Pn; 0))or ((P0; 1); : : : ; (Pn; 1)) since all processes should agree onsome common boolean value. This complex has exactly Nconnected components. Then, an algorithm for solving suchdecision tasks can be given in geometric terms, relating thegeometry of the input and output complexes.2.3 Our geometric approachHere we are more interested with the analysis of programsand of architectures of machines. This elaborates on thecase of concurrent databases in the sense that we need areal classi�cation of all possible orderings of actions (i.e. ofall schedulers) and not only a proof that all schedulers are\equivalent" to one of the interleavings of the transactions.We �rst have to describe the semantic model we use fromwhich all that information can be extracted. It is a verysimple geometric model for true concurrency, based on theideas by Vaughan Pratt and Rob van Glabbeek [26, 33] andformalised in di�erent ways in [11], [12]. To explain this,we can start o� with ordinary transition systems. A tran-sition system is a structure (S,i,L,Tran) where S is a setof states, i is the initial state, L is the set of labels andTran � S�L�S is the transition relation. We need to dis-tinguish between true concurrency and non-determinism be-fore being able to discuss about scheduling properties sincethe latter may come from a necessary mutual exclusion andthe former would then describe an unsound behaviour. Apossible answer is to decorate the transition systems withsome relation prescribing the independence of some actions(or transitions). This can be done in more than one man-ner; just to mention a few: asynchronous transition systems[4, 30], concurrent automata [31] and transition systems withindependence [34]. We comment on the former only, sinceexhaustivity would be too space consuming.Asynchronous transition systems are equipped with an ir-re
exive symmetric binary independence relation I on ac-tions verifying a few conditions. The most important is thatindependence of actions means con
uence of the transitionrelation for the actions involved. This decoration on or-dinary transition systems (the independence relation I) isenough to make the distinction between non-determinismand true concurrency. There is a slight problem though.The level of parallelism is not de�ned in a very precise man-ner since the independence relation is only a binary one. Itis necessary in particular in the example of the Pentium pro-cessor since we need to distinguish between two concurrentcalls to the arithmetic units (truly parallel) and three (inwhich case one of these has to be interleaved with some otherone). Of course, a straightforward generalization would beto replace the binary relation I by an n-ary relation. Thiscould be done (though we do not have any pointers in the lit-erature) but this is then awkward to use when one wants toe�ectively manipulate things (since the independence rela-tion is of a somewhat di�erent nature than transitions every-thing becomes heavy work) and when one wants to constrainthings to an arbitrarily chosen number of processors.This can be tackled if we get back to our geometric intu-ition. Things have been made overly unnatural by addingan object (the independence relation) which is not of thesame nature as transitions and states. Just think of aIb asan abstraction of all possible asynchronous executions of a

Figure 5: Non-determinism (i) versus overlap in time (ii)abstracted by a transition of dimension 2 (iii).
a b

(i) (ii) (iii)Figure 6: A HDA (i) and its set of paths seen as schedulers(ii).
ab

a

(i) (ii)

a

b a

a

b

b

band b. As in [26], this can be pictured as the �lled-in squareof the right-hand side of Figure 5, distinguishing it with theinterleaving at the left-hand side of the same Figure. No-tice that geometrically, the interior of the square consists ofthe union of all paths where executions of a and b overlap\in time" (middle picture of Figure 5). As a direct gener-alization, asynchronous execution of n transitions give riseto hypercubes of dimension n, called n-transitions (ordinarytransitions are 1-transitions, states are 0-transitions). Thisis very close to Dijkstra's process graphs, but in a discreteframework. Interestingly enough, all this has a very neatalgebraic formulation (see next section).Let us look now at the geometric counterpart of schedulersor protocols in this setting. Suppose we have a real machinewith only a �nite number n of processors on which we wantto implement a semantics given by HDA. What should weconsider as a valid implementation ?We �rst look at an instructive example for n = 1. Supposethe semantics of a program P is given by the truly concur-rent execution of a and b pictured as the 2-transition in (i)of Figure 6. Then the valid execution paths are given by(ii) of the same �gure. A scheduler can choose statically todo a then b or b then a. a then b is one scheduler and b thena is another. They are essentially the same (this will be de-�ned formally as an equivalence relation between schedulers)since a and b are non-interfering. In a geometrical manner,Figure 7: A HDA (i) and its set of paths seen as a scheduler(ii)
(i) (ii)

a b a

aab b

b

they are equivalent since one can continuously deform onepath onto the other through the 2-transition ab (homotopy).In more well-known terms (Mazurkiewitz trace theory) onecan understand ab as a commutation relation between a andb that is, ab is serializable to a then b and serializable to bthen a [32].If P were the mutual exclusion between a and b ((i) of Fig-ure 7) then do we have also two equivalent schedulers on aone-processor machine ? The answer is no: choosing a pri-ori to �re a before b is radically di�erent from choosing apriori to �re b before a. Suppose for instance that a is theaction on a process 1 of accessing a shared resource R andb is the action on a process 2 of accessing R as well. Thenwe should think of the two processes to be in competitionfor R and the scheduler does not have to make one wait forthe other to access it �rst if the other was ready to: it isa matter of ine�ciency and it transforms the properties ofthe program (livelocks, deadlocks). Moreover, if we are atan abstract level of the semantics, (where we have foldedtogether some of the states for instance) we cannot be surethat the results of the two paths will be the same. We knewthat when we had the 2-transition in Figure 6 because it in-dicated a non-interfering behaviour, but here we just do notknow. This is the abstract point of view implicitly used forstudying protocols and concurrent databases (because theyshould not depend on the particular values of the items).There must then be one and only scheduler whose trace isrepresented as (ii) in Figure 7. The initial state of (i) is aninternal choice the parameters of which the scheduler cannotin
uence. There, the \hole" between a; b and b; a preventsus from deforming one onto the other. We now formalizethis in more abstract geometrical terms.3 Schedulers and homotopy of regular HDA3.1 Semi-regular and Regular HDAWe present the geometric shapes we are interested in asunions of points, segments, squares, : : :, hypercubes, i.e., ascollections of n-transitions (n 2 IN). We glue them togetherby means of boundary relations (see Figure 8), given by twoboundary operators: d0, the start boundary operator and d1the end boundary operator. They generalize the source andtarget functions for ordinary automata: the boundary of asegment (respectively square: : :) is composed of two points(respectively of four segments: : :).Consider the square, (0; 0) a- (0; 1)A(1; 0)b? a0- (1; 1)b0?. This corresponds tothe asynchronous execution of actions a and b (a0 and b0are copies of transitions of label a and b respectively). Theobject of dimension 2 \interior of the square" A should cer-tainly have two source boundaries, up to the order on fa; bg,d00(A) = a and d01(A) = b since from state (0; 0) we can �rea and b. Similarly, it should have two target boundary oper-ators d10(A) = a0 and d11(A) = b0 since from the parallel exe-cution of a and b (represented by A) we can end �rst actiona (giving \residue" b0) or action b (giving \residue" a0). Wewill see that again when speaking about paths. Notice thatwith this ordering on vertices, we have, d0(d01(A)) = (0; 0) =d0(d00(A)) and d1(d01(A)) = (1; 0) = d0(d10(A)). We can show

Figure 8: Glueing of elementary shapes to get a semi-regularHDA.
M0 HDA M

β

γ

δ

ε

ζ

a

b

c

d

c’

d’

C

M1 M2

α

a
β

b

γ

δ

c’d

c

C

ε
d’

ζ

a b c d c’ d’ C

α α γ γ δ ε c

- - - - - - d

β γ ε δ ζ ζ c’

- - - - - - d’

Boundary functions

α

=

=

=

=

d

d

0

0

1

0

d

d

0

1

1

1that for any hypercube of dimension n, we can choose an or-dering on vertices, squares : : : such that the 2 � n boundaryoperators verify the commutation rules4 , dki � dlj = dlj�1 �dkifor k = 0; 1, l = 0; 1 and i < j (� is the ordinary compositionof functions). Now we can glue these elementary shapes inorder to get HDA. This is exempli�ed in Figure 8. We ver-ify on the example the commutation rule between the sourceand target boundary operators d0 and d1 respectively.We can then introduce these formally under the name ofunlabelled semi-regular HDA. We will not develop the fulltheory of labelled semi-regular HDA (or higher-dimensionaltransition systems) in this article due to lack of space.De�nition 1 An unlabelled semi-regular HDA is a collec-tion of sets Mn (n 2 IN) together with functionsMn d0i-d1j- Mn�1for all n 2 IN and 0 � i; j � n�1, such that dki �dlj = dlj�1�dki(i < j; k; l = 0; 1) and 8n;m n 6= m; Mn \Mm = ;.Elements x of Mn (dim x = n) are called n-transitions (orstates if n = 0).In order to be able to study \natural" constructions onHDA, we de�ne a notion of morphism between them. Ascustomary in recent work in concurrency [34], morphismslook like simulations. In geometrical terms, morphismspreserve shapes (every n-transition is mapped onto a n-transition) and orientation.De�nition 2 Let M and N be two semi-regular HDA, andf a family fn : Mn ! Nn of functions. f is a morphismof semi-regular HDA if and only if fn � d0i = d0i � fn+1 andfn � d1i = d1i � fn+1 for all n 2 IN.This de�nes the category �sr of semi-regular HDA. Now,traces of execution are described as sequences of states andtransitions satisfying certain properties. A path is to beunderstood as a sequence of allocation of one action at a4very much alike the ones we have for simplicial complexes. Ideasof many constructions of the article actually come from combinatorialalgebraic topology.

Figure 9: A path and its inclusion morphism in a semi-regular HDA.
A

a b’
a

b

b’

a’time on a new processor or deallocation of one action at atime (i.e. its execution has ended on a given processor). Anexample of a path in an automaton M is given in Figure 9together with its inclusion morphism into M (M simulatesall of his paths).We can elaborate a bit on the previous de�nitions to allowformal sums of transitions (to speak about multisets oftransitions and hence about paths): we choose n-transitionsto be elements of modules or vector-spaces. We choose tomake the representation of transitions a bit more explicitand do as in [11], add a new index to M : we will havea decomposition of each Mn into �p+q=n Mp;q . This willenable us to have a direct representation of paths (see theappendices). For instance, the HDA M of Figure 8 can bedescribed by M0;0 = (�), M1;0 = (a) � (b), M1;�1 = (�)�(
),M2;�1 = (d)�(c),M2;�2 = (�)�(�),M3;�2 = (c0)�(d0),M3;�3 = (�) and M3;�1 = (C) (where (x) is the modulegenerated by x and � is the direct sum of modules). The1-path (b; c; d0) can now be conveniently identi�ed with theformal sum b + c + d0. In the following, R is a principalcommutative domain [18].De�nition 3 A regular HDA is a direct decomposition of afree R-module M as M = �p;q�0Mp;q together with bound-ary operators d0i : Mp;q ! Mp�1;q (0 � i � p + q � 1)and d1j : Mp;q ! Mp;q�1 (0 � j � p + q � 1) such thatdki � dlj = dlj�1 � dki (for all i < j and k = 0; 1, l = 0; 1).Morphisms of regular HDA are f : M ! N with f =(fp;q)p;q , where fp;q : Mp;q ! Np;q are module homomor-phisms such that fp;q � d0i = d0i � fp+1;q and fp;q � d1j =d1j � fp;q+1 for all i; j with 0 � i; j � p+ q. The category ofregular HDA is denoted by �r. We will also consider cyclicregular automata which are regular HDA in which some el-ements of Mp;q and Mp0;q0 , p0+q0 = p+q may be identi�ed.They form a category �cr.There is a relationship with the HDA de�ned in [11]. Let@0(x)= �i=0;:::;n�1 (�1)id0i (x) for x 2Mn (where M is a regu-lar or semi-regular automaton) and similarly,@1(x) = �i=0;::: ;n�1 (�1)id1i (x). Then @0@0 = @1@1 = @0@1 +@1@0 = 0 and (M;@0; @1) is a HDA in the sense of [11]. Tomake things clear, we write M for the general HDA derivedin this manner from a regular or semi-regular HDA M . Forexample, HDA M of Figure 8 generates M with @0(C) =c�d and @1(C) = c0�d0. We see that @0 �@0(C) =
�
 = 0and @0 � @1(C) = � � � = �@1 � @0(C).Paths as sequences of allocation and deallocation are notvery easy to use. We prefer to use n-paths where we restrictactions to be of constant dimension n and where we collect

Figure 10: Step by step deformation (curved arrows) of onepath onto an otherall possible ways n-transitions can end. There is a sense inwhich only considering n-paths is equivalent to consideringall paths. In particular, 1-paths and paths whose elementsare all of dimension one coincide.De�nition 4 A n-path p is a �nite sequence (pi)i=1;::: ;k ofn-transitions such that @1(pi) = @0(pi+1).From now on, we choose to have only initial states for 1-paths in I �M0;0.3.2 Towards formal de�nitionsLet M be a regular automaton. Let p = (pi)i=1;:::;k be a 1-path. Let � and � be respectively its initial and �nal states.We wish to de�ne geometrically how two paths of dimen-sion one are to be considered equivalent in a scheduler. Wehave already noticed that they should be considered equiv-alent if one can deform any of them into the other one. Inorder to give a de�nition, let us look at the HDA from a dif-ferent point of view. We slice paths into actions that occurat a given time: supposing that all paths we are interestedin begin in M0;0, we say that we are at time i when we lookat actions in Mi;�i+1 .Let p and q be two paths. We say that p and q are ele-mentary equivalent at time i if and only if pi and qi aretwo ends of a 2-transition A and pj = qj for j < i� 1 andj > i and if pi�1 and qi�1 are two beginnings of the same2-transition A. This corresponds to the idea of continuouslydeforming one path onto the other (or to use a commutationrule between two transitions) like one can see in Figure 10.We de�ne equivalence to be the re
exive transitive closureof elementary equivalence.Looking again at Figure 8, we see that path b + c + d0 iselementary equivalent to path b+d+c0 since we can deformc into d and d0 into c0 through C. Paths a and b are notelementary equivalent.The algebraic de�nition of this equivalence is given inappendices A and B. It takes the form of homotopy groups(or modules) �n(X) for an HDA X and a dimension n thatcollect all equivalence classes of n-paths of X.3.3 SchedulersA n-scheduler should basically be able to execute all possiblen-paths up to equivalence. This means that a n-schedulerof an automaton D is a choice of a subHDA M of D suchthat all n-paths of D are equivalent (homotopic) toa n-path of M . Let us call scheduler a n-scheduler for alln. At the light of the previous sections, this is formalized asfollows,

Figure 11: Con
ict in the case of a shared memory parallelmachine/concurrent database.
(0,?,?)

(2,?,?)

(1,1,1)

R +1 W

R

+1

WDe�nition 5 A n-scheduler is a monomorphism (i.e. aco�bration in the homotopy theory we are considering, see[3]) s : M ! D such that �n(s) : �n(M) ! �n(D) is anisomorphism.A scheduler is now a co�bration inducing an isomorphismbetween all the �n(D) and the �n(M). This is known as aweak equivalence [3]. A basic property of the homotopytheory we use is that weak equivalence is the same as strongequivalence, i.e. a scheduler is a co�bration such that thereexists s0 : D ! M with s � s0 and s0 � s homotopic to theidentity. A scheduler is thus the choice of a retract of D.Example 1 In Figure 11 we have pictured the semanticsof the program P1 j P2 where P1 ::= READA;A := A +1;WRITEA and P2 ::= READA;A := A + 1;WRITEA.In the �gure we have abbreviated READA, A := A+ 1 andWRITEA by R, +1 and W respectively. The shapes (de-formed squares) are all �lled in, indicating concurrency. Thestates are given by the value of A. To make the picture easyto read we have chosen to unfold the central squares (but notall of them), using the value of A read by P1 (second compo-nent of the triple) and the value of A read by P2 (third com-ponent of the triple). The picture thus contains ten squares,the two at the top right corner show the interference whilewriting the computed value into the shared variable A. FromA = 0 we can have two di�erent results, A = 1 or A = 2.Now the two-phase protocol added to the two processes willconstrain the execution so that all of P1 (respectively P2) isexecuted before all of P2 (respectively P1). These are twoequivalent 1-schedulers (linked together by the nine uppersquares). The protocol is therefore sound in the sense thatit is serializable.Obviously the algorithmic characterisation of schedulers isgiven by the weak equivalence condition and not the strongone since we have practical means for computing the homo-topy modules (see section 5).4 Abstract interpretation4.1 Schedulers as an abstract interpreta-tionSuppose that the semantics of programs in some languageis given by subHDA of a HDA D (containing all traces of

Figure 12: A domain of automata D, a subposet of SD andits abstraction to Sc.
D

=D

=C

=BA=

α

γ
1

1

0

A’=B’=D’

C’

SD

0

Sc

γ ο α
1 1

(SD)

"a<b"

"a<b or b<a"

"true"

"false"

"b<a"

a b

abexecutions), called domain in [11]. Now, the set of subob-jects SD of the semantic domain D ordered by inclusion isa complete lattice5 as it can be identi�ed to the categoryconsisting of monomorphisms (or inclusion morphisms) intoD modulo isomorphisms. Let us make this precise. Leti : M ,! D and j : N ,! D be two monomorphisms intoD. Then i = j in SD if and only if there exists an iso-morphism f : M ! N such that i = f � j. Let Sc be thecategory whose objects are equivalence classes of elementsof R�Mod=�n(D) modulo isomorphisms (same equivalencerelation as above).De�ne now �n : SD ! Sc by �n(i : M ,! D) = (�n(i) :�n(M)! �n(D)). �n(x) provides us with all n-schedulersof automaton x: �n(x) returns basically the equivalenceclass of all retracts of dimension n of x (see Figure 12).An analogous result to Van Kampen's theorem holds (ap-pendix B). Therefore �n commutes with (binary) least up-per bounds. In case �n(D) is of �nite type (implied byD �nite for instance), this proves the existence of a right-adjoint
n : R�Mod=�n(D)! SD to �n by Freyd's specialadjoint functors theorem [21]. (�n;
n) is a pair of adjointfunctors or a Galois connection6. We strongly believethat this generalizes to modules �n(D) of in�nite type butwe do not have yet a proof of that.Figure 12 should then be understood as follows. When wehave only one processor, A, B and D have exactly the sameschedulers, i.e. they have essentially one and only 1-path(D retracts to any of A or B). This means that the bestapproximation of A and B (by
1 � �1) is D. As shownin the introductory part, only C 0 = �1(C) (two paths, i.e.two generators) is di�erent from (non-isomorphic to) A0 =�1(A), B0 = �1(B) and D0 = �1(D) (one path, i.e. onegenerator). The arrow in Sc going up from A0 to C 0 isthe image by �1 of the inclusion morphism from A to C.Similarly, the arrow going downwards from C 0 to D0 comesfrom the inclusion morphism of C into D and whose actionis to project the hole of C onto 0 (the hole is �lled in D).Notice that all this discussion about schedulers given fromthe semantics is very much alike the dependence order-5this comes from the fact that �sr is a complete and co-completecategory.6We do not ask to have a poset as an abstract domain, it may bea general category (or a preorder as in [8]). Notice that (as picturedin Figure 12)
n � �n is an upper closure operator on SD, [7].

Figure 13: SD (simpli�ed), the denotation p of the program,its subposet of retracts R and the constraint C.
R

a+b’b+a’

C=a+b’+c+dp=a+b+b’+a’

SD

c

d

a

b’

b

a’

A

Dings that one may �nd in e.g. Mazurkiewitz trace theory[23] or more recently in concurrent automata [5]. Here wewill write \a < b" meaning action b must be scheduled justafter action a.In Figure 13 we have pictured a constraint on scheduling Cwhich can be described as C = c < d _ a < b0 as well asa program semantics p. In Figure 12, the constraints arewritten next to the corresponding elements of SD.4.2 Veri�cation of protocolsGiven a constraint (or protocol) C 2 L and a program p(identi�ed with its semantics in D), can we �nd a best sched-uler for p under constraint C ?This problem can be expressed in our framework as follows.What is the maximal element of the intersection of the sub-poset of retracts of p with the left-closed set of elementssatisfying the constraint C: fy 2 SD=y � Cg ? or using ageometric image: \can we retract p onto C \ p ?". As anexample, a + b0 is this maximal element in Figure 13. Analgorithm is given in next section.4.3 Inference of a best parallelisationHere, we are given a sequential program p (identi�ed with aHDA of dimension one) and we want to give a sense to theproblem of �nding the \best" parallelisation of it. The waywe do this is by considering p to be embedded into a domainD specifying all possible actions. Practically, this is doneby considering all traces in which all actions of p are putin parallel. This may obviously create some interferencesor demonstrate the ability to perform some parts of p inparallel. Now, instead of retracting paths onto p, we wishto extend p as much as we can: we wish to �nd the greatestsubHDA of D that retracts onto p. This makes sense sinceSD is complete. We derive an algorithm in next section.5 Algorithmic detailsAs we do not want to specialise to a particular language orsubproblem here we choose to give generic algorithms whichmay be optimised for some speci�c areas (see the conclu-sion). The generic algorithms rely on �nding a solution to acentral problem cryptographists have (�nding dependencerelations among lines of huge sparse matrices for quadraticsieves for instance). Huge progress is made everyday on�nding good algorithms for solving this problem and theseare then of direct interest for our abstract interpretation.

For keeping things understandable we use only a fairly wellknown algorithm.5.1 Representation of HDAThe �rst simpli�cation is to work with R = ZZ=2ZZ. Thismakes coe�cients into simple booleans. Now boundary op-erators can be represented as boolean matrices, and evensparse ones: this means that lines (or line vectors) of thematrices are represented as ordered lists of integers indicat-ing the occurrences of ones. Finite HDA are represented bythe matrices of their boundary operators in every dimension.Whenever we have to work on two HDA one included intothe other, we mark some of the line vectors of the greaterone to indicate that they generate the other HDA as well.5.2 Representation of program semanticsand constraintsWe generate the program semantics by compositionalme{thods like in [11, 12] and then compute the abstract op-erators using standard methods from homology theory orpreferably here by SOS-like rules that generate all pos-sible transitions. The constraints �lter the application ofthe SOS rules: the ones that verify the constraints are thentransformed into marked lines. For the inference problem,the domain is generated by applying all valid rules for all in-structions (this should be done lazily in a near future) andp is marked.5.3 Veri�cationThe algorithm can then be described as follows. Are givenn, the representation of the HDA C\p and p, initial (n�1)-transitions I (a line vector) and �nal (n � 1)-transitions F(a line vector). The algorithm says if we can n-schedule punder the constraint C.We suppose that we have already implemented the followingfunctions:shift(M : HDA;k : integer) which shifts the dimensionindex of M by k, i.e. shift(M;k) = N : HDA with Nn =Mn+k .quotient(M : HDA;I; F : vector) which returns the HDAM 0 where all states in I and F are replaced by 0.tot(M : HDA) which returns the matricesM1 for the bound-ary operator @0� @1 in dimension one and M2 in dimensiontwo.We �rst program triangular(U :matrix) = (U 0 : matrix; P :matrix) where U 0 is a triangular form of both the subma-trix of marked lines of U and a triangular form of U , andP is the matrix of change of coordinates. In this way, nulllines of U 0 corresponds to generators (whose expression canbe read in P) of Ker U and the non null lines of U 0 givea basis of Im U . If implemented by (a version of) Gaussmethod then the worst case complexity of triangular(U)is in O(ij2) where j is the number of lines in U and i isthe maximum number of non-null elements per line in U .If tot(quotient(M; i; F)) = (M1;M2) where M is replacedby shift(M;n � 1) then the null lines of triangular(M1)represent the generators of Ker(@0 � @1) in dimension one,i.e. the generators of the set of 1-paths of M (see appendix

Figure 14: The algorithm n � scheduler1) p = s(p; n � 1)2) (M1;M2) = tot(quotient(p; I; F))3) (U1; P1) = triangular(M1)4) (U2; P2) = triangular(M2)5) N = Nu=lines qj of P1 with lj = 0 in U1Nl=non-null unmarked lines of U2 !6) (N1;Q1) = triangular(N)7) res = (cardfj=nj = 0g = cardfunmarked � lines(Nu)g)A). They can be computed in O(nk2n) where kn is the num-ber of n-transitions in M . Similarly, the non-null lines oftriangular(M2) represent the generators of Im(@0 � @1) indimension two. This can be computed in O(nk2n+1). Thealgorithm n � scheduler(p;C \ p : HDA;I; F : vector) :boolean for verifying if we can n-schedule p under constraintC is described in Figure 14 and runs in O(n(k2n + k2n+1))where kn and kn+1 are the number of n transitions (resp.(n + 1)-transitions) in p.The algorithm works as follows. At lines 1) and 2) are com-puted the matrices of the boundary operator @0�@1 for thetransitions of dimension n and n + 1 of the pair (p; I � F).The triangulations of lines 3) and 4) are used at line 5)for generating a matrix N whose �rst part (Nu whose lineswhich correspond to paths in C\p are marked) is composedof generators of n-paths of p and whose second part (Nv)is composed of generators of (@0 � @1)(pn+1). The triangu-lation makes explicit all dependency relations between Nuand Nv, that is show how many n-paths are homotopic inp (see appendix A and B). The last line veri�es that alln-paths of p are equivalent to some path of C \p by an easyargument on dimensions.Example 2 Take as domain and constraint those of theexample pictured in Figure 13. For p, take the �lled insquare A. Then, the matrix representation of p is (where themarked lines are underlined), in dimension 1,0BBB@ 1 1 0 01 0 1 00 0 1 10 1 0 1 1CCCAand in dimension 2, D2 = � 1 1 1 1 � If we run the al-gorithm 1-scheduler on these data, we �rst make disappearcolumns 1 and 4 in the matrix representing the objects ofdimension 1 (since they correspond to the initial and �nalstates respectively). Then we �nd,U1 = 0BBB@ 1 00 10 00 0 1CCCA P1 = 0BBB@ 1 0 0 00 1 0 00 1 1 01 0 0 1 1CCCA and U2 = D2.

Then, N = 0BB@ 0 1 1 01 0 0 1 !� 1 1 1 1 � 1CCA andN1 =0B@ 0 1 1 00 0 0 01 1 1 1 1CAThis entails res = (1 = 1) is true, hence p can be imple-mented on a machine with constraint C.5.4 InferenceAre given, m (the maximum number of processors avail-able), HDA D and p (of dimension one). p consists of thesubmatrix of marked lines of the matrix representation ofD. The algorithm is an iteration on the following algorithmparameterized by the dimension n (we call Addn), for n = 1to m�1, Addn. It is basically the same as the one in Figure14 except the res assignment is replaced by a marking ofM2which describes the (n + 1)-transitions to be added to p toget its parallelisation. The lines marked in M2 are qj withline vector rj 2 Q1 such that nk 2 N1 is null. This markingis then translated into a marking of pn+1 using the matrixof change of coordinates P2. The complexity is bounded bya function of order O(n2max1�i�n�1k2i).6 Conclusion and future workIn this article, we have discussed the use of schedulers in dif-ferent areas in computer science, and shown that a formaltreatment involving HDA and abstract interpretation leadsto elegant de�nitions and to algorithms for �nding or veri-fying schedulers. The algorithms we have presented (whichare being implemented in C) can most probably be usedfor quite big programs (about ten thousand transitions).Cryptographists and number theoreticians currently com-pute only a few dependency relations between the lines ofhuge sparse matrices - of width and height of about sev-eral hundred thousand elements -. This corresponds to test-ing/infering schedulers only on a subset of paths of a givenprogram and could certainly give widening or dual widen-ing operators. Other means of approximating the computa-tion of homotopy groups are under study at the moment, likeeliminating columns of the boundary matrices which have agreat number of ones (much alike Odlyzko's method, [1]).Wiedemann's method [25] and iterative methods like con-jugate gradient algorithms show also good promise for ourproblem. Another possibility is to work in a speci�c domainof HDA (like a labelling domain, [11]) for which the trian-gulation of the de�ning matrices has been solved. This hasnot been tested yet. Last but not least, an important pointis that, as we have de�ned an abstract interpretation, wecan always compose with other well-known ones, like fold-ing some states together (see [9]), for getting things moretractable.Acknowledgements Many thanks to Patrick Cousot,R�egis Cridlig, Jeremy Gunawardena, Maurice Herlihy. Dia-gram macros from Paul Taylor.References[1] LaMacchia B. A. Solving large sparse linear systems over �-nite �elds. In Advances in Cryptology. Springer-Verlag, 1990.

[2] H. Attiya and R. Friedman. A correctness condition for high-performance multiprocessors. In Proc. of the 24th STOC.ACM Press, 1992.[3] H. J. Baues. Algebraic homotopy. In Cambridge Studies inAdvanced Mathematics, volume 15. Cambridge UniversityPress, 1989.[4] M. A. Bednarczyk. Categories of asynchronous systems.PhD thesis, University of Sussex, 1988.[5] F. Bracho, M. Droste, and D. Kuske. Representation ofcomputations in concurrent automata by dependence orders.Technical report, Technische Universitat Dresden, 1994.[6] S. D. Carson and P. F. Reynolds Jr. The geometry ofsemaphore programs. ACM Transactions on ProgrammingLanguages and Systems, 9(1):25{53, January 1987.[7] P. Cousot and R. Cousot. Systematic design of programanalysis frameworks. In Proc. of the 6th POPL, pages 269{282. ACM Press, 1979.[8] P. Cousot and R. Cousot. Higher-order abstract interpreta-tion (and application to comportment analysis generalizingstrictness, termination, projection and per analysis of func-tional languages). In Proceedings of the 1994 InternationalConference on Computer Languages, pages 95{112. IEEEComputer Society Press, May 1994.[9] R. Cridlig and E. Goubault. Semantics and analyses of linda-based languages. In Proc. of WSA'93, number 724. Springer-Verlag, 1993.[10] E.W. Dijkstra. Cooperating Sequential Processes. AcademicPress, 1968.[11] E. Goubault. Domains of higher-dimensional automata. InProc. of CONCUR'93, Hildesheim, August 1993. Springer-Verlag.[12] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata. In Proc. of CONCUR'92, Stony-brook, New York, August 1992. Springer-Verlag.[13] J. Gunawardena. Homotopy and concurrency. In Bulletin ofthe EATCS, number 54, pages 184{193, October 1994.[14] E. Harcourt, J. Mauney, and T. Cook. From processor timingspeci�cations to static instruction scheduling. In Proc. of theStatic Analysis Symposium'94. Springer-Verlag, 1994.[15] M. Herlihy. A tutorial on algebraic topology and distributedcomputation. Technical report, presented at UCLA, 1994.[16] M. Herlihy and N. Shavit. The asynchronous computabilitytheorem for t-resilient tasks. In Proc. of the 25th STOC.ACM Press, 1993.[17] M. Herlihy and N. Shavit. A simple constructive computabil-ity theorem for wait-free computation. In Proceedings ofSTOC'94. ACM Press, 1994.[18] S. Lang. Algebra. Addison-Wesley, third edition, 1993.[19] S.T. Leung and J. Zahorjan. Improving the performanceof run-time parallelization. In ACM Sigplan Symposium onPrinciples and Practice of Parallel Programming, May 1993.[20] S. Mac Lane. Homology. In Die Grundlehren der Mathema-tishen Wissenschaften in Einzeldarstellungen, volume Band114. Springer Verlag, 1963.[21] S. Mac Lane. Categories for the working mathematician.Springer-Verlag, 1971.[22] W. S. Massey. A basic course in algebraic topology. InGrad-uate Texts in Mathematics, number 127. Springer-Verlag,1991.[23] A. Mazurkiewicz. Basic notions of trace theory. In Lec-ture notes for the REX summer school in temporal logic.Springer-Verlag, 1988.[24] P. Peterson and D. Padura. Dynamic dependence analysis: anovelmethod for data dependence evaluation. In Proceedingsof the �fth Workshop on Languages and Compilers for Par-allel Computing, volume 757. Springer-Verlag, August 1992.[25] C. Pomerance and J. W. Smith. Reduction of huge, sparsematrices over �nite �elds via created catastrophes. Experi-mental Mathematics, 1(2):89{94, 1992.

[26] V. Pratt. Modeling concurrency with geometry. In Proc.of the 18th ACM Symposium on Principles of ProgrammingLanguages. ACM Press, 1991.[27] T. A. Proebsting and C. W. Fraser. Detecting pipeline struc-tural hazards quickly. In Proc. of the Symposium on Prin-ciples of Programming Languages. ACM Press, 1994.[28] J.H. Reppy. Higher-order concurrency. PhD thesis, Depart-ment of Computer Science, Cornell University, 1992.[29] J. Salz, R. Mirchandaney, and K. Crowley. Run-time par-allelization and scheduling of loops. IEEE Transactions onComputer, 40(5), May 1991.[30] M.W. Shields. Concurrent machines. Computer Journal, 28,1985.[31] A. Stark. Concurrent transition systems. Theoretical Com-puter Science, 64:221{269, 1989.[32] J. D. Ullman. Principle of Database Systems. Pitman, 1982.[33] R. van Glabbeek. Bisimulation semantics for higher di-mensional automata. Technical report, Stanford University,1991.[34] G. Winskel and M. Nielsen. Models for concurrency, volume3 of Handbook of Logic in Computer Science, pages 100{200.Oxford University Press, 1994.A The fundamental groupA.1 The fundamental group of length kLet P k1 (M) be the set of all 1-paths of length k from I �M0;0 in the semi-regular HDA M . It generates a sub-R-module of the product module M1;0�M2;�1�: : :�Mk;�k+1:the addition and external multiplication are de�ned on eachcomponent of the paths.Let p = (pi)1�i�k and q = (qi)1�i�k be two elements ofP k1 (M). Then we say that p and q are equivalent or ho-motopic (p � q) if and only if pi and qi are connectedin the complex of modules (see [20]) ((M j;�i+1)j; @0) or in((M i�1;j)j; @1). It corresponds to our geometric de�nitionof section 3.2. We de�ne the fundamental group ofM forpaths of length k to be �k1(M) = P k1 (M)= �.Proposition 1 Let O be the image of I �Mk;�k by u suchthat u(x; y) = (x � y) 2 I � Mk;�k. Then, �k1(M) =H1 ((M;O); @0 � @1) where H1 ((M;O); @0 � @1) is the �rstrelative homology group of the pair ([20]) N = (M;O) =M=O and boundary operator @0 � @1, i.e. is the quotientmodule Ker(@0 � @1)jN1=(@0 � @1)(N2).Sketch of proof. Ker(@0�@1)jN1 contains the 1-paths ofM starting from I and of length k since if p = (p1; : : : ; pk)is such a path, (@0 � @1)(p1 + : : : + pk) = @0(p1) � @1(pk)which is null in N . Quotienting by (@0 � @1)(N2) amountsto taking them modulo homotopy. 2A.2 The functor �k1Let f be a morphism from the semi-regular automaton M tothe semi-regular automaton N . Then f induces a morphism~fk from the pair (M;O) to the pair (N;O0) for all k. Then~fk induces H1(~fk) : H1(M;O) ! H1(N;O0). This de�nes�k1(f) = H1(~fk) and makes �k1 into a covariant functorfrom the category of semi-regular automata to the categoryR�Mod of R-modules.

All these de�nitions can be made starting from anywhere,not only M0;0. For instance, if we consider initial states inMp;q , we de�ne in a similar manner the R-modules P p;q;k1 (M)and �p;q;k1 (M), and the corresponding functors. We can alsode�ne submodules of these like ��;�1 (M) of paths from astate � 2Mp;q to a state � 2Mp+k�1;q�k+1A.3 The functor �1The real interesting homotopical object is the module of all�nite paths modulo homotopy. The formal de�nition is asfollows,De�nition 6 The full fundamental group is�1(X) = ��;�2X0 ��;�1 (X)=f[f]�;� + [g]�;
 = [f + g]�;
gThe quotient condition means that a sum of two classes ofpaths that may compose is equated to the class of the sumof the two paths. In this homotopy group, we cannot reversetime, but we can consider collections of \oriented" paths.B Higher-order homotopy groupsWe generalise the de�nition of the fundamental group. Wehad two \limiting" (n�1)-cubes in between which we coulddeform any sequence of n-cubes. That was de�ned withn = 1. For n = 2 we have a homotopy group of dimension 2parameterized with two 1-paths p1 and p2, having the sameinitial and �nal states. Then in order to de�ne a \full" ho-motopy group, we have to glue together all parameterizedhomotopy groups. The combinatorics of this glueing opera-tion is much more complex than in dimension one and willnot be described here.The de�nition we give below is \iterative" in the sense thatwe know what a 1-path between � and � is (or what a 1-pathof length k is) and that the de�nition of n-paths between(n � 1)-paths depends on that de�nition.De�nition 7 Let n � 2 and M be an acyclic HDA. Let p1and p2 be two (n�1)-paths between two (n�2)-paths � and �.We suppose that pi = (p1i ; : : : ; pki) and that p1i 2Mn�1+s;�s.The R-module of n-paths between p1 and p2 is the R-moduleof sequences x = (x1; : : : ; xk�1) with,� x1 2Mn+s;�s,� @0(xi+1) = @1(xi)mod(pi+11 � pi+12),� module operations are pointwise addition and pointwiseexternal multiplication.This R-module is named P p1;p2n (M).We say that two n-paths p; q 2 P p1;p2n (M) are homotopic,and we write p � q if and only if 8i, pi and qi are ho-motopic in the complex of modules ((M j;�i+1)j; @0) or in((Mn�i+2;j)j; @1) Let �p1;p2n (M) = P p1;p2n (M)= �.Proposition 2 �p1;p2n (M) = Hn ((M;T); @0 � @1) where Tis the image of p1�p2 under the map u with u(x; y) = x�y.

Notice that Van Kampen's theorem [22] holds. This is oneof the links with ordinary homotopy theory of topologicalspaces. We recall it for completeness of the paper. Let X1,X2 two regular HDA (subHDA of some domain D, [11]).Then X1 [X2 and X1 \ X2 are well de�ned by a cocarte-sian diagram. Then Van Kampen's theorem asserts that thefollowing diagram in R�Mod is cocartesian as well,�n(X1 \X2) �n(j1)- �n(X1)�n(X2)?�n(j2) �n(i2)- �n(X1 [X2)?�n(i1)C Relationship with Herlihy's and Shavit'sworkHere we are interested in the main result of [17] which can beroughly stated as follows: \There is a wait-free protocol forsolving a given decision task if and only if its input complexcan be continuously stretched and folded to cover its outputcomplex".To relate this to our framework, we �rst need to de�ne in-put and ouput complexes. Let P0; : : : ; PN�1 be N sequen-tial processes which, when run in parallel verify a protocolP solving a decision task D. For the sake of simplicity, wesuppose that the processes Pi are reduced to one action ai.The HDA representing the program in the shared-memoryparadigm is then (a0)
 : : :
 (aN�1). The local input val-ues are collected in the initial state �0
 : : :
 �N�1 andthe vertices vi in the input complex (val(vi); Id(vi)) withval(vi) = �i can be identi�ed with the 1-transitions ai.Compatibility of the vertices means that they begin a fullyasynchronous execution of the processes Id(vi). This fullyasynchronous execution is represented in the HDA model bythe N -transition a0
 : : :
 aN�1 and in Herlihy's model byan N�1 simplex containing all the vi. Once more, there is aperfect geometric correspondence between the two models,except the dimension has to be shifted by one. We shouldthink of the HDA model as the \extension in time"7 ofthe simplex-based model. In other terms, the input/outputcomplexes are a kind of very useful denotational approxima-tion of the operational behaviour given by HDA. Let us bea bit more precise about that.The �nal state �0
 : : :
 �N�1 contains all output valuesof the processes. In a similar manner, the part of the out-put complex with vertices vi such that val(vi) = �i can beidenti�ed to (up to a shift of dimension one) the \vertical"complex composed of all end boundaries of a0
 : : :
aN�1.More generally, let I and O be input and output complexesof a protocol P. Let (si)i and (ti)i be the maximal sim-plexes (with respect to the inclusion ordering) in I andO respectively with si = (v0i ; : : : ; vki) (dim si = k) andti = (w0i ; : : : ; wki) (dim ti = k). We suppose we have a semi-regular HDA D (called domain of HDA in [11]) in which wecan �re any transition that the distributed system we areconsidering can execute, from any state of this machine. Bywhat we have seen previously, the simplices si are in one-to-one correspondence with (dim si+1)-transitions D with ini-tial state v0i
: : :
vdim sii . As a matter of fact suppose thatthe initial states permitted by the protocol are all in D0;07This explains why we need one more dimension.

Figure 15: Input and output complex for some domain ofHDA D, drawn in Herlihy's way at the right hand side.
a

b

c

b’’

c’’
a’’

a

b

c

c’’ a’’

b’’

C A,B,C a,b,c α

δ

δ

α

A’,B’,C’

a’’,b’’,c’’

=D

Figure 16: The e�ect of a failure of one process in (i)-amutual exclusion, (ii)-a truly concurrent execution.
P1 P2 fails P2 failsP1

(i) (ii)then there is a sub-semi-simplicial complex of D, isomorphicto the input complex (seen as a semi-simplicial set). Thissubcomplex is the \horizontal" complex ((Dn+1;0)n; (d0i)i).The output complex is isomorphic to some subcomplex ofD,which we identify now with ((Dk;n+1�k)n; (d1i)i) if all �nalstates are in Dk;�k. In between, there is all the paths trans-forming the input into the output complex (look at Figure15).We need now to see what is a wait-free computation in theHDA model, and why this implies that some topologicalproperties are preserved from the input to the output com-plexes.Look at Figure 16. In (i), the initial state is an internal non-deterministic choice. If we are not so lucky, the executionwill begin by P2 which fails to terminate: P1 will never pro-ceed and the computation is certainly not wait-free. In (ii),the execution is asynchronous between P1 and P2 and what-ever happens to P2, P1 will terminate (one of the possible1-paths is pictured). Hence, intuitively, to go from state �to state � in a wait free manner, we must have ��;�1 reducedto one class of paths. In the schedulers' point of view, thisis the same as asking for the possible reordering for all ex-ecutions of the failing processes after the terminating ones.This in turn could be shown to entail that the input andoutput complexes are homotopic which is precisely what westated in intuitive language as \the input complex can becontinuously stretched and folded to cover its output com-plex".

