Schedulers as Abstract Interpretations of
Higher-Dimensional Automata

Eric Goubault*

Ecole Normale Supérieure

Abstract

We define here a unified formal treatment for scheduling
problems arising in different areas of computer science (im-
plementation of concurrent languages, protocols for distribu—
ted systems, pipeline management, concurrent databases. . .)
through abstract interpretation of Higher-Dimensional Au-
tomata (HDA) semantics. We give practical polynomial
time algorithms for testing/inferring schedulers at the end
of the article.

1 Introduction and motivation

The use of schedulers is somewhat pervasive to many bran—
ches of computer science. We mention below a few applica-
tion areas, the properties that schedulers are to verify and
give some references to the theoretical work done in these

different fields.

1.1 Safety and efficiency of the implemen-
tation of concurrent languages

A real parallel machine has but a limited number of re-
sources. It has limited memory, limited number of pro-
cessing units and many constraints on the way it can use
them. The idealistic view of true concurrency semantics,
assuming an infinite number of processors for instance, is
therefore misleading when it comes to runtime behaviour of
programs. It may happen that to badly schedule spawning
operations may deadlock (just delay in practise) a process
that would need to synchronize with another (not yet ex-
ecuted) process. It may happen as well that some shared
resources of the machine have to be used in mutual ex-
clusion. The safety (respectively efficiency) properties that
schedulers must verify are mainly choosing behaviours that
will not lead to deadlocks (respectively not delay too much
the execution of some process) and guaranteeing mutual ex-
clusion of some resources. This last property could well

*LIENS, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris
Cedex 05, FRANCE, email:goubault@dmi.ens.fr

be implemented by standard techniques (Peterson’s algo-
rithm for shared-variables or hardware test-and-set like op-
erations) independently of programs, but this would be at
the expense of efficiency. Let us take an example from
[14] and [27]. Many modern CPUs like SPARCs or MIPS
pipeline instructions. Of course, their functional units, reg-
isters or bus are all used in mutual exclusion. Unfortunately
the pipelined instructions overlap in time as they use more
than one clock cycle and some of them cannot be executed
(otherwise “structural hazards” occur) within a certain
number of cycles after some others. We do not want to
use the pipeline in mutual exclusion since we would have
to empty it after every instruction. The problem addressed
in [27] is to verify that schedulers for a single process en-
sure that structural hazards will not occur (safety). In a
concurrent framework, if there are more processes than pro-
cessors, we can address the new problem of finding a way
to interleave actions from different processes executed on
the same processor, that verify the constraints while using
the pipeline at the best of its capabilities (this is a view for-
malised in [2]). Some processors (like INTEL’s Pentium) are
even more complex to deal with since some resources may
be used by at most two processes in parallel but not three!.
A similar example at a more macroscopic level is given by
an 1/O buffer shared by two or more processes. The main
contribution of this article in this area is to provide a way
to get the best scheduler (or an approximation of it).

An inverse problem (where we want to unconstrain the or-
dering of actions) can be found in the very important paral-
lelisation literature. Given a sequential program p, can we
decide which parts of it can be executed in parallel? Most
approaches up to now are based on program transformation
[19, 24, 29]. We propose here a framework based on the op-
erational semantics of p that enables us to derive a scheduler
choosing dynamically the intructions to spawn.

1.2 Protocols in distributed/concurrent sys-
tems

In order to have well behaved distributed systems, one very
often has to make local processors agree on some criterion,
like elect a leading one or organise the flow of information
to guarantee the coherence of the global state of the sys-
tem (by local rules only) like the consensus, set or renaming
agreement tasks [15]. This is done by defining protocols.

Lit has two integer arithmetic units.

An example of such a situation is given by a parallel ma-
chine whose different units communicate by asynchronous
messages along channels which have a given topology (let us
say a ring topology for instance). Now, a protocol for guar-
anteeing a global knowledge of some fact must serialize all
message passing primitives according to the communication
topology (in our example of the ring topology, messages are
to be waited for from say the left neighbour before passing
them to the right neighbour). In [15] some of these problems
are addressed in a static manner (the topology is fixed once
and for all). We propose here to use the dynamic semantics
to deal with changing topologies as well?.

Another example can be found in concurrent database sys-
tems [32]. To ensure the consistency of the database the
processes have to lock some entries and then unlock them
after some of their transactions have been executed. Pro-
tocols define the way processes lock and unlock items. A
good instance of this is the two-phase protocol, see sec-
tion 2.1. Our contribution in this area is to give a general
definition of serializability, carrying on the work presented
in [11], and give a practical test for protocols based on the
semantics of the processes and not only on static or syntactic
ground. Very recently, Jeremy Gunawardena [13] has given
a very clear explanation about why serializability has some-
thing to do with homotopy. We subscribe to this point
of view and give here a formalization of these notions using
higher-dimensional automata.

2 A geometric approach

Interestingly enough, a graph-based criterion is known for
serializability [32]. In more general protocols for “decision
problems” recent results [15] use combinatorial algebraic
topology on static representations of protocols. We will
show here that we can use more general tools from alge-
braic topology directly on the dynamic semantics of the sys-
tems studied to extract the information about serializability
and schedulers. We will develop in particular a homotopy
theory of oriented paths (next section). Let us explain the
intuition about this.

2.1 The two-phase protocol

A concurrent database is composed of a set of shared ob-
jects, or items, and a set of processes accessing these items
T1,...,T,, or transactions. The transactions can be exe-
cuted in parallel, and one can think of a good example (of
economic interest too !) as being a reservation system of an
airline. The items are seats in the planes and the transac-
tions are individual queries from customers, made in parallel
since there may be many different selling points. The basic
property we want to insure is that no seat is sold twice (at
the same time) to different customers. In the shared mem-
ory paradigm the well-known method for attacking this is
to put locks ([10]) on shared variables. In Dijkstra’s formal-
ism, for an item a, Pa is the action of locking ¢ and Va is
the action of relinquishing the lock on a. As long as we are
only interested in the policy of acquiring items and not in
their actual values, we can abstract the transactions in such

’In many languages, like CM-Fortran with the CMMD library, or
CML [28], channels are defined during the execution of the program.
They are not physical but they are logical channels.

Figure 1: A process graph for two transactions accessing the
same shared item.

X
2

Forbidden

Pa [---------

Figure 2: An example of process graph.
2

Vb
Vat

T
L
Pb Pa Vb Pc Va Ve T1

a way that they are written as strings of Pz, Vz, z ranging
over the shared objects.

As an example, consider 71 = PaVa, Ty = PaVa. There
is an old way to represent these transactions due to Dijk-
stra again, known as process graphs. We will see that it has
much to do with the HDA approach. The idea is to asso-
clate to each transaction a “local time” which geometrically
is one coordinate in an euclidean space. Supposing that all
processes can individually terminate, we may normalise this
local time for it to be in range [0,1]. An purely asynchronous
execution of n transactions is now any path from (0,...,0)
to (1,...,1) in the n-cube [0,1]" where the local times, i.e.
the coordinates always increase. But the executions are con-
strained by the fact that shared objects are accessed in mu-
tual exclusion. In Figure 1 we have pictured the central
square in [0,1] which is forbidden: a valid path of execu-
tion cannot enter it since it is precisely the region in which
both transactions access the same object ¢. The more com-
plex example borrowed from [13], 1 = PbPaVbPcVaVe,
Ty = PaPbVaVb is pictured in Figure 2. Using these geo-
metric representations, we have two main questions, (i) can
the system of transactions deadlock? (ii) is the system of
transactions correct in some sense?

As for question (i), the answer is geometrically clear (see

Figure 3: Left and right paths in a mutual exclusion.

left

right

[6]). The only way a path coming from (0,...,0) may be
stopped before reaching (1,...,1) is by “meeting” a corner
like the dashed one (PaPb, PbPa) in Figure 2. As soon as
a path goes into the small dashed rectangle, it cannot reach
(1,...,1). Formally, this question relates to a connectedness
result. We will not discuss this in the following but rather
concentrate on question (ii). Question (ii) is not immediate
since we first have to define what the correctness condition
is. In the airline reservation system example we have only
demanded that no seat be sold twice. This means that some
parts of the transactions may be done in parallel, but that
the execution must be sufficiently constrained so that the
resulting reservations are the same as some sequential treat-
ment of the queries of the customers. In database theory
this correctness criterion is known as “serializability”. It
has a basic “geometric” formalisation in [32] in the form of
a topological condition on the “graph of transactions”. We
show now, following J. Gunawardena ([13]) that it is even
more directly of a geometric nature, and that the serializa-
tion property can be read on the process graph.

This may seem strange since the correctness criterion seems
essentially given as a condition on states of the system. Do
not forget though that we assumed the representation of
transactions does not depend on the actual values of items.
Surely, some arithmetical operation involved in the booking
process may commute with other operations for some values
of the items; but we have to think it would be very strange
that they commute for all values. The condition now is then
only on paths of executions. If you look at the forbidden
square, or mutual exclusion in Figure 1 reproduced in Figure
3, the values of the items at its top right depend on the
way we have reached this point. Going on the left of the
hole may give different results than going on the right of
the hole: just think at the following example. The initial
value of @ is 0. The arithmetic operations involved for the
processes when the lock on a has been acquired i1s a :=
a~+ 1 for 77 and a := 2 % a for T5. Going on the left means
doing a := 2 x a before @ := a + 1, result is ¢ = 1. Going
on the right means doing a¢ := a + 1 before a := 2 x q,
result is @ = 2. Instead of looking at the holes, look at the
filled parts of the drawing 1. It becomes obvious now that
all paths below (or at the right hand side of) the hole are
serializable to the right boundary of the square, and that
all paths above (or at the left hand side of) the hole are
serializable to the left boundary of the square. Holes appear
to be the elements to discover. They are the obstructions to
the “continuous” deformation of paths (homotopy), which
is the “infinitesimal” serialization equivalence. Here, the
system 1is serializable since any path can be deformed onto
one of the interleavings 71;7> or T5;77, i.e. any path gives
the same result as a serial execution of the transactions.

Let us examine another process graph we may have (see

Figure 4: A process graph with two mutual exclusions.

T2

T1

Figure 4). Here, the paths “in between” the two holes cannot
be deformed onto one of the interleavings, hence they are not
serializable.

The aim of protocols for concurrent databases is to pro-
vide us with a uniform® way of insuring the consistency of
a database. A good example is the two-phase protocol. Ev-
ery transaction must acquire all locks of all items they will
compute on (first phase), compute, and at the end they
must release all their locks (second phase). For instance
Ty = PaPbPcVaVbVe verifies the two-phase protocol (is
“two-phase locked”) whereas 75 = PaVaPbVb does not.
It can be proven by combinatorial means that it makes all
systems of transactions serializable (or in short, it is serializ-
able). However it does not prevent a system from deadlock-
ing. Geometrically, the proof that it is serializable has been
given in [13], and is much more illuminating than the com-
binatorial one of, say, [32]. Basically, it is proven that the
n-cubes forbidden by the two-phase protocol form a unique
hole in the “center” of [0,1]". It is then easy, using a “ra-
dial” homotopy to deform all paths of execution onto one of
the interleavings, and then prove the serializability.

There are a few matters of insatisfaction in this proof though.
First, it uses continuous methods. They are elegant but in-
duce a few complications, like knowing that the paths cor-
respond to real ones. Second, it uses a standard theory of
homotopy which authorises reversal of time. Here, we re-
ally need a homotopy theory for “oriented” paths as already
shown in [26]. In the following we sketch such a theory, in
a discrete framework using Higher-Dimensional Automata.
The theory will generalise also for higher-dimensional mu-
tual exclusion problems.

2.2 Protocols for distributed systems

Here, we want to deal with general problems that one may
encounter while programming distributed systems. The case
of concurrent databases can be considered as a particular
case. More generally, we are concerned with the following
type of problems.

Given a number of hypotheses on the distributed system,

3e. independently of what process we want to program.

like a topology of the communication network, a specifi-
cation of the way messages are sent and received (asyn-
chronously, synchronously, with bounded buffers, with no
loss. . .), or in case of a shared-memory system, a number of
assumptions like sequential/concurrent read/write. . .;

Given a specification of what we want to program (as a set
of distributed processes) on that system in the form of con-
ditions on the input values accepted by this set of processes
and conditions on the output values that this set of processes
should compute;

Given a number of requirements on the execution of this
program, like being as most efficient as it can be, or (it
may be seen as a limit case of the previous requirement)
being robust enough to compute a good part of the output
specification even if some processors fail;

The questions are: “Does such an algorithm exist on such
machines 7” and if the answer is positive, “Can we derive it
from the specification of the problem 7”.

All this is formalised under the name of decision tasks. Let
us first give a few examples, following the presentation of [16]
and [15]. The consensus task (abstraction of the commit-
ment problem in concurrent database theory where trans-
actions have to agree on a common value or abort) is a
decision task in which N asynchronous processes begin with
arbitrary input values in some set S and must agree at the
end on some common value taken from .S. The k-set agree-
ment task asks for arbitrary input values (in some set S)
but no more than k output values (in S as well). This can
be seen as a partial consensus among the processes.

Now, an algorithm may be constrained in the following way.
Call an execution of a program on a distributed system t-
faulty if at most ¢ processes in the program fail. Then an
algorithm is t-resilient if it solves a decision task in every
t-faulty execution. An algorithm is wait-free if it is (n —
1)-resilient (n is the number of processes we have). It is
proven for instance in [16] that in a shared-memory model
with single reader/single writer registers providing atomic
read and write operations, k-set agreement requires at least
| f/k]+1 rounds where f is the number of processes that can
fail. This is done in a very nice geometric framework, and
general tests are given for solving ¢-resilient problems. Not
only impossibility results can be given but also constructive
means for finding algorithms derive from this work (see for
instance [17]).

The geometric framework is different from ours, but hints
about their relationships will be given in appendix C. Her-
lihy’s framework is based on a representation of the input
and output specifications in the form of input and output
simplicial complexes, [20].

A simplex is associated to the states of processes in the fol-
lowing manner. Vertices v are pairs (val(v),id(v)) of local
values of the process having identifier id(v), We can draw an
edge between v and ¢’ if and only if v and v’ are compatible
with the specification we have of the state of the system.
It means in all cases that v and ' must have distinct pro-
cess identifiers. Higher-dimensional simplexes include states
v1,...,0n if and only if these states are compatible with the
specification (input or output one). Again, all the id(v;)
are distinct. As an example, we give the specification com-
plexes for the consensus task with S = {0,1}, called the
binary consensus task. The input complex has simplexes
of the form ((Ps,b0), ...,(Pn,bn)) with 0 < n < N and

b; € {0,1} since all processes can take whatever boolean

value they want. It is homeomorphic to a n-sphere, The out-
put complex has simplexes of the form ((F,0), ...,(Px,0))
or ((Po,1),...,(Pn,1)) since all processes should agree on
some common boolean value. This complex has exactly N
connected components. Then, an algorithm for solving such
decision tasks can be given in geometric terms, relating the
geometry of the input and output complexes.

2.3 Our geometric approach

Here we are more interested with the analysis of programs
and of architectures of machines. This elaborates on the
case of concurrent databases in the sense that we need a
real classification of all possible orderings of actions (i.e. of
all schedulers) and not only a proof that all schedulers are
“equivalent” to one of the interleavings of the transactions.

We first have to describe the semantic model we use from
which all that information can be extracted. It is a very
simple geometric model for true concurrency, based on the
ideas by Vaughan Pratt and Rob van Glabbeek [26, 33] and
formalised in different ways in [11], [12]. To explain this,
we can start off with ordinary transition systems. A tran-
sition system is a structure (5,i,L,Tran) where S is a set
of states, ¢ is the initial state, L is the set of labels and
Tran C S x L xS is the transition relation. We need to dis-
tinguish between true concurrency and non-determinism be-
fore being able to discuss about scheduling properties since
the latter may come from a necessary mutual exclusion and
the former would then describe an unsound behaviour. A
possible answer is to decorate the transition systems with
some relation prescribing the independence of some actions
(or transitions). This can be done in more than one man-
ner; just to mention a few: asynchronous transition systems
[4, 30], concurrent automata [31] and transition systems with
independence [34]. We comment on the former only, since
exhaustivity would be too space consuming.

Asynchronous transition systems are equipped with an ir-
reflexive symmetric binary independence relation I on ac-
tions verifying a few conditions. The most important is that
independence of actions means confluence of the transition
relation for the actions involved. This decoration on or-
dinary transition systems (the independence relation I) is
enough to make the distinction between non-determinism
and true concurrency. There is a slight problem though.
The level of parallelism is not defined in a very precise man-
ner since the independence relation is only a binary one. It
is necessary in particular in the example of the Pentium pro-
cessor since we need to distinguish between two concurrent
calls to the arithmetic units (truly parallel) and three (in
which case one of these has to be interleaved with some other
one). Of course, a straightforward generalization would be
to replace the binary relation [by an n-ary relation. This
could be done (though we do not have any pointers in the lit-
erature) but this is then awkward to use when one wants to
effectively manipulate things (since the independence rela-
tion is of a somewhat different nature than transitions every-
thing becomes heavy work) and when one wants to constrain
things to an arbitrarily chosen number of processors.

This can be tackled if we get back to our geometric intu-
ition. Things have been made overly unnatural by adding
an object (the independence relation) which is not of the
same nature as transitions and states. Just think of a/b as
an abstraction of all possible asynchronous executions of a

Figure 5: Non-determinism (i) versus overlap in time (ii)
abstracted by a transition of dimension 2 (iii).

(0] (ii) (iii)

Figure 6: A HDA (i) and its set of paths seen as schedulers

(ii).

0] (i)

and b. Asin [26], this can be pictured as the filled-in square
of the right-hand side of Figure 5, distinguishing it with the
interleaving at the left-hand side of the same Figure. No-
tice that geometrically, the interior of the square consists of
the union of all paths where executions of a and b overlap
“in time” (middle picture of Figure 5). As a direct gener-
alization, asynchronous execution of n transitions give rise
to hypercubes of dimension n, called n-transitions (ordinary
transitions are 1-transitions, states are 0O-transitions). This
is very close to Dijkstra’s process graphs, but in a discrete
framework. Interestingly enough, all this has a very neat
algebraic formulation (see next section).

Let us look now at the geometric counterpart of schedulers
or protocols in this setting. Suppose we have a real machine
with only a finite number n of processors on which we want
to implement a semantics given by HDA. What should we
consider as a valid implementation ?

We first look at an instructive example for n = 1. Suppose
the semantics of a program P is given by the truly concur-
rent execution of a and b pictured as the 2-transition in (i)
of Figure 6. Then the valid execution paths are given by
(i) of the same figure. A scheduler can choose statically to
do @ then b or b then a. a then b is one scheduler and b then
a is another. They are essentially the same (this will be de-
fined formally as an equivalence relation between schedulers)
since ¢ and b are non-interfering. In a geometrical manner,

Figure 7: A HDA (i) and its set of paths seen as a scheduler

(i)

0] (i)

they are equivalent since one can continuously deform one
path onto the other through the 2-transition ab (homotopy).
In more well-known terms (Mazurkiewitz trace theory) one
can understand ab as a commutation relation between a and
b that is, ab is serializable to a then b and serializable to b
then a [32].

If P were the mutual exclusion between a and b ((i) of Fig-
ure 7) then do we have also two equivalent schedulers on a
one-processor machine ? The answer is no: choosing a pri-
ori to fire a before b is radically different from choosing a
priore to fire b before a. Suppose for instance that a i1s the
action on a process 1 of accessing a shared resource R and
b is the action on a process 2 of accessing R as well. Then
we should think of the two processes to be in competition
for R and the scheduler does not have to make one wait for
the other to access it first if the other was ready to: it is
a matter of inefficiency and it transforms the properties of
the program (livelocks, deadlocks). Moreover, if we are at
an abstract level of the semantics, (where we have folded
together some of the states for instance) we cannot be sure
that the results of the two paths will be the same. We knew
that when we had the 2-transition in Figure 6 because it in-
dicated a non-interfering behaviour, but here we just do not
know. This is the abstract point of view implicitly used for
studying protocols and concurrent databases (because they
should not depend on the particular values of the items).
There must then be one and only scheduler whose trace is
represented as (ii) in Figure 7. The initial state of (i) is an
internal choice the parameters of which the scheduler cannot
influence. There, the “hole” between a;b and b;a prevents
us from deforming one onto the other. We now formalize
this in more abstract geometrical terms.

3 Schedulers and homotopy of regular HDA

3.1 Semi-regular and Regular HDA

We present the geometric shapes we are interested in as
unions of points, segments, squares, ..., hypercubes, i.e.; as
collections of n-transitions (n € IN). We glue them together
by means of boundary relations (see Figure 8), given by two
boundary operators: d°, the start boundary operator and d*
the end boundary operator. They generalize the source and
target functions for ordinary automata: the boundary of a
segment (respectively square. ..) is composed of two points
(respectively of four segments. . .).

(0,0) = (0,1)
Consider the square, bi A

'
(1,0) = (1,1)
the asynchronous execution of actions a and b (a’ and ¥’
are copies of transitions of label a and b respectively). The
object of dimension 2 “interior of the square” A should cer-
tainly have two source boundaries, up to the order on {a, b},
d3(A) = @ and d(A) = b since from state (0,0) we can fire
a and b. Similarly, it should have two target boundary oper-
ators d (A) = a’ and d}(A) = b’ since from the parallel exe-
cution of @ and b (represented by A) we can end first action
a (giving “residue” b') or action b (giving “residue” a'). We
will see that again when speaking about paths. Notice that
with this ordering on vertices, we have, d°(d}(A)) = (0,0) =
d°(dS(A)) and d*(dJ(A)) = (1,0) = d°(d§(A)). We can show

b'l. This corresponds to

Figure 8: Glueing of elementary shapes to get a semi-regular

HDA.

Mo My M, B HDA M
a |
Xqg —= ! a
b |
Xg — = |
c : ¢
Xy ——= |
X 5 *d> | Boundary functions €
¢ 1 blc|d|c|d]|cC
Xe | 0 [
| d = aly |y |d|e|cC
. o o0 |-
a ‘ | dl 1 — T Co e
| i [=[Bly|e|d|C|l]|c
3 d o e

i

that for any hypercube of dimension n, we can choose an or-
dering on vertices, squares ... such that the 2 * n boundary
operators verify the commutation rules*, d¥ o dé = dé_l odk
for k=10,1,1=0,1and 1 < j (ois the ordinary composition
of functions). Now we can glue these elementary shapes in
order to get HDA. This is exemplified in Figure 8. We ver-
ify on the example the commutation rule between the source
and target boundary operators d° and d' respectively.

We can then introduce these formally under the name of
unlabelled semi-regular HDA. We will not develop the full
theory of labelled semi-regular HDA (or higher-dimensional
transition systems) in this article due to lack of space.

Definition 1 An unlabelled semi-reqular HDA is a collec-
tion of sets My (n € IN) together with functions

49

M, /5 Mp_
1
d]

foralln € N and 0 < i,j < n—1, such thatdfod; = d}_,od}
(1<g,k,1=0,1) andVn,mn #m, M,NM,=0.

Elements ¢ of M, (dim ¢ = n) are called n-transitions (or
states if n = 0).

In order to be able to study “natural” constructions on
HDA, we define a notion of morphism between them. As
customary in recent work in concurrency [34], morphisms
look like simulations. In geometrical terms, morphisms
preserve shapes (every n-transition is mapped onto a n-
transition) and orientation.

Definition 2 Let M and N be two semi-reqular HDA, and
f a family f, : M, — N, of functions. f is a morphism
of semi-regular HDA if and only if fnod} = d? o fny1 and
frnodl =d} o fny1 for alln € IN.

This defines the category T.» of semi-regular HDA. Now,
traces of execution are described as sequences of states and
transitions satisfying certain properties. A path is to be
understood as a sequence of allocation of one action at a

4Ver‘y much alike the ones we have for simplicial complexes. Ideas
of many constructions of the article actually come from combinatorial
algebraic topology.

Figure 9: A path and its inclusion morphism in a semi-

regular HDA.

time on a new processor or deallocation of one action at a
time (i.e. its execution has ended on a given processor). An
example of a path in an automaton M is given in Figure 9
together with its inclusion morphism into M (M simulates

all of his paths).

We can elaborate a bit on the previous definitions to allow
formal sums of transitions (to speak about multisets of
transitions and hence about paths): we choose n-transitions
to be elements of modules or vector-spaces. We choose to
make the representation of transitions a bit more explicit
and do as in [11], add a new index to M: we will have
a decomposition of each M, into ¥ Mp,. This will
p+a=n

enable us to have a direct representation of paths (see the
appendices). For instance, the HDA M of Figure 8 can be
described by Moo = (a), Mio = (a) ® (b), M1,_1 = (8) P
(7), Maz,—1 = (d)B(c), Ma,—> = (8)B(€), Ma,—> = () B(d"),
Ms _3 = (¢) and Ms,_; = (C) (where (z) is the module
generated by z and @ is the direct sum of modules). The
1-path (b,¢,d’) can now be conveniently identified with the
formal sum b + ¢ + d’. In the following, R is a principal
commutative domain [18].

Definition 3 A regular HDA is a direct decomposition of a
free R-module M as M = @y >0 Mp ¢ together with bound-
ary operators d0 : My g — Mp_14 (0 < i < pH+qg—1)
and dj : Mpg — Mpg—1 (0 < j < p+q—1) such that
dfodi=d_y0df (foralli<jandk=0,1,1=0,1).

Morphisms of regular HDA are f : M — N with f =
(fr.a)p,q; Where fp o : Mpyé7 — Ny 4 are module homomor-
phisms such that f,,0d? = d2 o fpt1,4 and fpq 0 d} =
d} 0 fp,q+1 for all 2,57 with 0 <2, 5 < p+ ¢. The category of
regular HDA is denoted by T,. We will also consider cyclic
regular automata which are regular HDA in which some el-
ements of My, 4 and M, ,, p'+¢' = p+ ¢ may be identified.
They form a category Y.,.

There is a relationship with the HDA defined in [11]. Let
80(75):. P (—1)’d?(x) for « € M, (where M is a regu-

lar or Wsyemi—regula‘r automaton) and similarly,
81($) = E (—1)’d}(x) Then 8080 = 8181 = 8081 —|—

i=0,...,n—1

0100 = 0 and (M, 0, 01) is a HDA in the sense of [11]. To
make things clear, we write M for the general HDA derived
in this manner from a regular or semi-regular HDA M. For
example, HDA M of Figure 8 generates M with 9(C) =
c—dand 8, (C) =’ —d'. We see that 9909 (C)=y—7=0
and 80 o 81(0) =§—ec= —81 o 80(0)

Paths as sequences of allocation and deallocation are not

very easy to use. We prefer to use n-paths where we restrict
actions to be of constant dimension n and where we collect

Figure 10: Step by step deformation (curved arrows) of one
path onto an other

all possible ways n-transitions can end. There is a sense in
which only considering n-paths is equivalent to considering
all paths. In particular, 1-paths and paths whose elements
are all of dimension one coincide.

Definition 4 A n-path p is a finite sequence (pi)i=1,... .k of
n-transitions such that 91 (p;) = do(pit1)-

From now on, we choose to have only initial states for 1-
paths in I C My .

3.2 Towards formal definitions

Let M be a regular automaton. Let p = (p;i)i=1,....x be a 1-
path. Let o and € be respectively its initial and final states.

We wish to define geometrically how two paths of dimen-
sion one are to be considered equivalent in a scheduler. We
have already noticed that they should be considered equiv-
alent if one can deform any of them into the other one. In
order to give a definition, let us look at the HDA from a dif-
ferent point of view. We slice paths into actions that occur
at a given time: supposing that all paths we are interested
in begin in Moo, we say that we are at time ¢z when we look
at actions in M; _;y1.

Let p and ¢ be two paths. We say that p and ¢ are ele-
mentary equivalent at time ¢ if and only if p; and ¢; are
two ends of a 2-transition A and p; = ¢; for y <2—1 and
7 > @ and if p;—1 and ¢;—1 are two beginnings of the same
2-transition A. This corresponds to the idea of continuously
deforming one path onto the other (or to use a commutation
rule between two transitions) like one can see in Figure 10.
We define equivalence to be the reflexive transitive closure
of elementary equivalence.

Looking again at Figure 8, we see that path b + ¢ + d’ is
elementary equivalent to path b+d -+ ¢’ since we can deform
c into d and d’ into ¢’ through C. Paths a and b are not
elementary equivalent.

The algebraic definition of this equivalence is given in
appendices A and B. Tt takes the form of homotopy groups
(or modules) II,,(X) for an HDA X and a dimension n that
collect all equivalence classes of n-paths of X.

3.3 Schedulers

A n-scheduler should basically be able to execute all possible
n-paths up to equivalence. This means that a n-scheduler
of an automaton D) is a choice of a subHDA M of D such
that all n-paths of D are equivalent (homotopic) to
a n-path of M. Let us call scheduler a n-scheduler for all
n. At the light of the previous sections, this is formalized as
follows,

Figure 11: Conflict in the case of a shared memory parallel
machine/concurrent database.

(2,27
11
TTTA
w ‘
I
I
+1
R
(02?2 R +1 w

Definition 5 A n-scheduler is a monomorphism (i.e. a
cofibration in the homotopy theory we are considering, see
[3]) s : M — D such that I1,,(s) : II,(M) — II,(D) is an

tsomorphism.

A scheduler is now a cofibration inducing an isomorphism
between all the II,(D) and the II,,(M). This is known as a
weak equivalence [3]. A basic property of the homotopy
theory we use is that weak equivalence is the same as strong
equivalence, i.e. a scheduler is a cofibration such that there
exists s’ : D — M with so s’ and s’ o s homotopic to the
identity. A scheduler is thus the choice of a retract of D).

Example 1 In Figure 11 we have pictured the semantics
of the program Py | P> where P; := READA; A := A+
1, WRITFA and P, := READA; A := A+ I;WRITFEA.
In the figure we have abbreviated READA, A:= A+ 1 and
WRITEA by R, 41 and W respectively. The shapes (de-
formed squares) are all filled in, indicating concurrency. The
states are given by the value of A. To make the picture easy
to read we have chosen to unfold the central squares (but not
all of them), using the value of A read by Py (second compo-
nent of the triple) and the value of A read by P> (third com-
ponent of the triple). The picture thus contains ten squares,
the two at the top right corner show the interference while
writing the computed value into the shared variable A. From
A = 0 we can have two different results, A =1 or A = 2.
Now the two-phase protocol added to the two processes will
constrain the execution so that all of P1 (respectively P>) is
executed before all of Py (respectively P1). These are two
equivalent 1-schedulers (linked together by the nine upper
squares). The protocol is therefore sound in the sense that
it 18 serializable.

Obviously the algorithmic characterisation of schedulers is
given by the weak equivalence condition and not the strong
one since we have practical means for computing the homo-
topy modules (see section 5).

4 Abstract interpretation
4.1 Schedulers as an abstract interpreta-
tion

Suppose that the semantics of programs in some language
is given by subHDA of a HDA D (containing all traces of

of SD and

Figure 12: A domain of automata 1), a subposet
its abstraction to Sc

Y,0 9, (SD)

,
/
> |
|
|
\
\
—_—
-

R ——
A:< B - A'=B’
vach \/ eV T
D "false" 0 0
D Sc

executions), called domain in [11]. Now, the set of subob-
jects SD of the semantic domain I} ordered by inclusion is
a complete lattice® as it can be identified to the category
consisting of monomorphisms (or inclusion morphisms) into
D modulo isomorphisms. Let us make this precise. Let
t: M — Dand j: N — D be two monomorphisms into
D. Then ¢+ = 3 in SD if and only if there exists an iso-
morphism f : M — N such that : = foj. Let Sc be the
category whose objects are equivalence classes of elements
of R— Mod/1I,,(D) modulo isomorphisms (same equivalence
relation as above).

Define now ay : SD — Sc by an(i : M — D) = (II,(4) :
I,(M) — II,(D)). an(z) provides us with all n-schedulers
of automaton z: an(z) returns basically the equivalence
class of all retracts of dimension n of = (see Figure 12).

An analogous result to Van Kampen’s theorem holds (ap-
pendix B). Therefore a, commutes with (binary) least up-
per bounds. In case I, (D) is of finite type (implied by
D finite for instance), this proves the existence of a right-
adjoint v, : R—Mod/Il,(D) — SD to ay by Freyd’s special
adjoint functors theorem [21]. (ap, yn) is a pair of adjoint
functors or a Galois connection®. We strongly believe
that this generalizes to modules II,(D) of infinite type but
we do not have yet a proof of that.

Figure 12 should then be understood as follows. When we
have only one processor, A, B and) have exactly the same
schedulers, i.e. they have essentially one and only 1-path
(D retracts to any of A or B). This means that the best
approximation of A and B (by v1 0 a1) is D. As shown
in the introductory part, only C' = «1(C) (two paths, i.e.
two generators) is different from (non-isomorphic to) A’ =
a1(A), B' = a1(B) and D' = a1(D) (one path, i.e. one
generator). The arrow in Se going up from A’ to C' is
the image by a1 of the inclusion morphism from A to C.
Similarly, the arrow going downwards from C’ to D’ comes
from the inclusion morphism of C into I and whose action
is to project the hole of C onto 0 (the hole is filled in D).

Notice that all this discussion about schedulers given from
the semantics is very much alike the dependence order-

5this comes from the fact that T, is a complete and co-complete
category.

8We do not ask to have a poset as an abstract domain, it may be
a general category (or a preorder as in [8]). Notice that (as pictured
in Figure 12) 7, 0 ay is an upper closure operator on SD, [7].

Figure 13: SD (simplified), the denotation p of the program,
its subposet of retracts R and the constraint C.
sD

C=atb'+c+d

bral

ings that one may find in e.g. Mazurkiewitz trace theory
[23] or more recently in concurrent automata [5]. Here we
will write “a < b” meaning action b must be scheduled just
after action a.

In Figure 13 we have pictured a constraint on scheduling C'
which can be described as € = ¢ < d Va < b’ as well as
a program semantics p. In Figure 12, the constraints are
written next to the corresponding elements of S1.

4.2 Verification of protocols

Given a constraint (or protocol) €' € £ and a program p
(identified with its semantics in D), can we find a best sched-
uler for p under constraint C' 7

This problem can be expressed in our framework as follows.
What is the maximal element of the intersection of the sub-
poset of retracts of p with the left-closed set of elements
satisfying the constraint C: {y € SD/y < C} 7 or using a
geometric image: “can we retract p onto C Np 77. As an
example, a + b’ is this maximal element in Figure 13. An
algorithm 1is given in next section.

4.3 Inference of a best parallelisation

Here, we are given a sequential program p (identified with a
HDA of dimension one) and we want to give a sense to the
problem of finding the “best” parallelisation of it. The way
we do this is by considering p to be embedded into a domain
D specifying all possible actions. Practically, this is done
by considering all traces in which all actions of p are put
in parallel. This may obviously create some interferences
or demonstrate the ability to perform some parts of p in
parallel. Now, instead of retracting paths onto p, we wish
to extend p as much as we can: we wish to find the greatest
subHDA of D) that retracts onto p. This makes sense since
SD is complete. We derive an algorithm in next section.

5 Algorithmic details

As we do not want to specialise to a particular language or
subproblem here we choose to give generic algorithms which
may be optimised for some specific areas (see the conclu-
sion). The generic algorithms rely on finding a solution to a
central problem cryptographists have (finding dependence
relations among lines of huge sparse matrices for quadratic
sieves for instance). Huge progress is made everyday on
finding good algorithms for solving this problem and these
are then of direct interest for our abstract interpretation.

For keeping things understandable we use only a fairly well
known algorithm.

5.1 Representation of HDA
The first simplification is to work with R = Z/2Z. This

makes coefficients into simple booleans. Now boundary op-
erators can be represented as boolean matrices, and even
sparse ones: this means that lines (or line vectors) of the
matrices are represented as ordered lists of integers indicat-
ing the occurrences of ones. Finite HDA are represented by
the matrices of their boundary operators in every dimension.
Whenever we have to work on two HDA one included into
the other, we mark some of the line vectors of the greater
one to indicate that they generate the other HDA as well.

5.2 Representation of program semantics
and constraints

We generate the program semantics by compositional me—
thods like in [11, 12] and then compute the abstract op-
erators using standard methods from homology theory or
preferably here by SOS-like rules that generate all pos-
sible transitions. The constraints filter the application of
the SOS rules: the ones that verify the constraints are then
transformed into marked lines. For the inference problem,
the domain is generated by applying all valid rules for all in-
structions (this should be done lazily in a near future) and
p is marked.

5.3 Verification

The algorithm can then be described as follows. Are given
n, the representation of the HDA C'Np and p, initial (n—1)-
transitions I (a line vector) and final (n — 1)-transitions F'
(a line vector). The algorithm says if we can n-schedule p
under the constraint C.

We suppose that we have already implemented the following
functions:

shift(M : HDA,k : integer) which shifts the dimension
index of M by k, i.e. shift(M,k) = N : HDA with N,, =
Mtk

quotient(M : HDA;I, F : vector) which returns the HDA
M’ where all states in 7 and F are replaced by 0.

tot(M : HDA) which returns the matrices M; for the bound-

ary operator dop — d1 in dimension one and M> in dimension
two.

We first program triangular(U : matriz) = (U’ : matriz, P :

matriz) where U’ is a triangular form of both the subma-
trix of marked lines of U and a triangular form of U, and
P is the matrix of change of coordinates. In this way, null
lines of U’ corresponds to generators (whose expression can
be read in P) of Ker U and the non null lines of U’ give
a basis of In U. If implemented by (a version of) Gauss
method then the worst case complexity of triangular(U)
is in O(iy?) where j is the number of lines in U and i is
the maximum number of non-null elements per line in U.
If tot(quotient(M,i, F)) = (M1, Mz) where M is replaced
by shift(M,n — 1) then the null lines of triangular(M;)
represent the generators of Ker(ao — 81) in dimension one,
i.e. the generators of the set of 1-paths of M (see appendix

Figure 14: The algorithm n — scheduler

1) p=s(p,n—1)

(M, Mz) = tot(quotient(p, I, F))
(U1, Pr) = triangular(My)
(

Uz, P2) = triangular(Ms)

[SCIN)

)
)
)
4)
Ny=lines ¢; of P; with l[; =01in U;
N;=non-null unmarked lines of Us
6) (N1,@Q1) = triangular(N)

7) res = (card{j/n; = 0} = card{unmarked — lines(N,)})

5) N =

A). They can be computed in O(nkZ) where k;, is the num-
ber of n-transitions in M. Similarly, the non-null lines of
triangular(M2) represent the generators of Im(dy — 91) in
dimension two. This can be computed in O(nk. ;). The
algorithm n — scheduler(p,C Np : HDA;I, F : vector) :
boolean for verifying if we can n-schedule p under constraint
C is described in Figure 14 and runs in O(n(k3 + kap1))
where k., and k.41 are the number of n transitions (resp.
(n + 1)-transitions) in p.

The algorithm works as follows. At lines 1) and 2) are com-
puted the matrices of the boundary operator do — 91 for the
transitions of dimension n and n + 1 of the pair (p, I & F).
The triangulations of lines 3) and 4) are used at line 5)
for generating a matrix N whose first part (N, whose lines
which correspond to paths in C'Np are marked) is composed
of generators of n-paths of p and whose second part (N,)
is composed of generators of (9o — d1)(pn+1). The triangu-
lation makes explicit all dependency relations between N,
and N,, that is show how many n-paths are homotopic in
p (see appendix A and B). The last line verifies that all
n-paths of p are equivalent to some path of C'Np by an easy
argument on dimensions.

Example 2 Take as domain and constraint those of the
example pictured in Figure 13. For p, take the filled in
square A. Then, the matriz representation of p is (where the

0

marked lines are underlined), in dimension 1,

o © V= |
—_ o o |~
© = =

= = o |©

and in dimension 2, Dy = (11 1 1) If we run the al-

gorithm 1-scheduler on these data, we first make disappear
columns 1 and 4 in the matrix representing the objects of
dimension 1 (since they correspond to the initial and final
states respectively). Then we find,

10 10 0 0
0 1 01 0 0

U1 = P1 = and U2 = D2.
0 0 01 1 0
00 10 0 1

01 1 0 0 1 1
Then, N = 1 001 and Nw = 0 0 0
1 1 1 1 1 1 1

This entails res = (1 = 1) is true, hence p can be imple-
mented on a machine with constraint C.

5.4 Inference

Are given, m (the maximum number of processors avail-
able), HDA D and p (of dimension one). p consists of the
submatrix of marked lines of the matrix representation of
D. The algorithm is an iteration on the following algorithm
parameterized by the dimension n (we call Add,), forn =1
to m—1, Add,,. It is basically the same as the one in Figure
14 except the res assignment is replaced by a marking of M>
which describes the (n + 1)-transitions to be added to p to
get its parallelisation. The lines marked in M> are ¢; with
line vector r; € @1 such that nx € N is null. This marking
is then translated into a marking of p,4+1 using the matrix
of change of coordinates P». The complexity is bounded by
a function of order O(n2max1in_1 k?)

6 Conclusion and future work

In this article, we have discussed the use of schedulers in dif-
ferent areas in computer science, and shown that a formal
treatment involving HDA and abstract interpretation leads
to elegant definitions and to algorithms for finding or veri-
fying schedulers. The algorithms we have presented (which
are being implemented in C) can most probably be used
for quite big programs (about ten thousand transitions).
Cryptographists and number theoreticians currently com-
pute only a few dependency relations between the lines of
huge sparse matrices - of width and height of about sev-
eral hundred thousand elements -. This corresponds to test-
ing/infering schedulers only on a subset of paths of a given
program and could certainly give widening or dual widen-
ing operators. Other means of approximating the computa-
tion of homotopy groups are under study at the moment, like
eliminating columns of the boundary matrices which have a
great number of ones (much alike Odlyzko’s method, [1]).
Wiedemann’s method [25] and iterative methods like con-
jugate gradient algorithms show also good promise for our
problem. Another possibility is to work in a specific domain
of HDA (like a labelling domain, [11]) for which the trian-
gulation of the defining matrices has been solved. This has
not been tested yet. Last but not least, an important point
is that, as we have defined an abstract interpretation, we
can always compose with other well-known ones, like fold-
ing some states together (see [9]), for getting things more
tractable.

Acknowledgements Many thanks to Patrick Cousot,
Régis Cridlig, Jeremy Gunawardena, Maurice Herlihy. Dia-
gram macros from Paul Taylor.

References

[1] LaMacchia B. A. Solving large sparse linear systems over fi-
nite fields. In Advances in Cryptology. Springer-Verlag, 1990.

= o o

[2] H. Attiya and R. Friedman. A correctness condition for high-
performance multiprocessors. In Proc. of the 24th STOC.
ACM Press, 1992.

[3] H. J. Baues. Algebraic homotopy. In Cambridge Studies in
Advanced Mathematics, volume 15. Cambridge University
Press, 1989.

[4] M. A. Bednarczyk. Categories of asynchronous systems.
PhD thesis, University of Sussex, 1988.

[5] F. Bracho, M. Droste, and D. Kuske. Representation of
computations in concurrent automata by dependence orders.
Technical report, Technische Universitat Dresden, 1994.

[6] S. D. Carson and P. F. Reynolds Jr. The geometry of
semaphore programs. ACM Transactions on Programming
Languages and Systems, 9(1):25-53, January 1987.

[7] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. of the 6th POPL, pages 269—
282. ACM Press, 1979.

[8] P. Cousot and R. Cousot. Higher-order abstract interpreta-
tion (and application to comportment analysis generalizing
strictness, termination, projection and per analysis of func-
tional languages). In Proceedings of the 1994 International
Conference on Computer Languages, pages 95-112. IEEE
Computer Society Press, May 1994.

[9] R. Cridlig and E. Goubault. Semantics and analyses of linda-

based languages. In Proc. of WSA’93, number 724. Springer-

Verlag, 1993.

E.W. Dijkstra. Cooperating Sequential Processes. Academic

Press, 1968.

E. Goubault. Domains of higher-dimensional automata. In

Proc. of CONCUR’393, Hildesheim, August 1993. Springer-

Verlag.

E. Goubault and T. P. Jensen. Homology of higher-

dimensional automata. In Proc. of CONCUR’92, Stony-

brook, New York, August 1992. Springer-Verlag.

J. Gunawardena. Homotopy and concurrency. In Bulletin of

the EATCS, number 54, pages 184-193, October 1994.

E. Harcourt, J. Mauney, and T. Cook. From processor timing

specifications to static instruction scheduling. In Proc. of the

Static Analysis Symposium’94. Springer-Verlag, 1994.

10]

(11]

(12]

(13]

(14]

[15] M. Herlihy. A tutorial on algebraic topology and distributed
computation. Technical report, presented at UCLA, 1994.
[16] M. Herlihy and N. Shavit. The asynchronous computability
theorem for t-resilient tasks. In Proc. of the 25th STOC.
ACM Press, 1993.

M. Herlihy and N. Shavit. A simple constructive computabil-
ity theorem for wait-free computation. In Proceedings of
STOC’94. ACM Press, 1994.

S. Lang. Algebra. Addison-Wesley, third edition, 1993.

S.T. Leung and J. Zahorjan. Improving the performance
of run-time parallelization. In ACM Sigplan Symposium on
Principles and Practice of Parallel Programming, May 1993.
S. Mac Lane. Homology. In Die Grundlehren der Mathema-
tishen Wissenschaften in Einzeldarstellungen, volume Band
114. Springer Verlag, 1963.

S. Mac Lane. Categories for the working mathematician.
Springer-Verlag, 1971.

[21]
[22] W.S. Massey. A basic course in algebraic topology. In Grad-
wate Texts tn Mathematics, number 127. Springer-Verlag,
1991.

A. Mazurkiewicz. Basic notions of trace theory. In Lec-
ture notes for the REX summer school in temporal logic.
Springer-Verlag, 1988.

P. Peterson and D. Padura. Dynamic dependence analysis: a
novel method for data dependence evaluation. In Proceedings
of the fifth Workshop on Languages and Compilers for Par-
allel Computing, volume 757. Springer-Verlag, August 1992.

(23]

(24]

[25] C. Pomerance and J. W. Smith. Reduction of huge, sparse
matrices over finite fields via created catastrophes. Frper:-

mental Mathematics, 1(2):89-94, 1992.

[26] V. Pratt. Modeling concurrency with geometry. In Proc.
of the 18th ACM Symposium on Principles of Programming
Languages. ACM Press, 1991.

[27] T. A. Proebstingand C. W. Fraser. Detecting pipeline struc-
tural hazards quickly. In Proc. of the Symposium on Prin-
ciples of Programming Languages. ACM Press, 1994.

[28] J.H. Reppy. Higher-order concurrency. PhD thesis, Depart-
ment of Computer Science, Cornell University, 1992.

[29] J. Salz, R. Mirchandaney, and K. Crowley. Run-time par-
allelization and scheduling of loops. IEEE Transactions on
Computer, 40(5), May 1991.

[30] M.W. Shields. Concurrent machines. Computer Journal, 28,
1985.

[31] A. Stark. Concurrent transition systems. Theoretical Com-
puter Science, 64:221-269, 1989.

[32] J. D. Ullman. Principle of Database Systems. Pitman, 1982.

[33] R. van Glabbeek. Bisimulation semantics for higher di-
mensional automata. Technical report, Stanford University,
1991.

[34] G. Winskel and M. Nielsen. Models for concurrency, volume
3 of Handbook of Logic in Computer Science, pages 100—-200.
Oxford University Press, 1994.

A The fundamental group

A.1 The fundamental group of length £

Let PF(M) be the set of all 1-paths of length k from I C
My in the semi-regular HDA M. It generates a sub-R-
module of the product module MLO ><M27_1 X. .. XMk,—k+1:
the addition and external multiplication are defined on each
component of the paths.

Let p = (pi)i<i<k and ¢ = (gi)1<i<k be two elements of
PF(M). Then we say that p and ¢ are equivalent or ho-
motopic (p ~ ¢) if and only if p; and ¢; are connected
in the complex of modules (see [20]) ((M, _,,,);,00) or in
((M; 4 ;)j,01). It corresponds to our geometric definition
of section 3.2. We define the fundamental group of M for
paths of length k to be TI¥(M) = PF(M)/ ~.

Proposition 1 Let O be the image of I x My _x by u such
that u(z,y) = (z —y) € L & M, . Then, (M) =
H, ((M,0),d0 — d1) where Hy (M, 0),80 — 91) s the first
relative homology group of the pair ([20]) N = (M,0) =
M /O and boundary operator 8y — 91, i.e. is the quotient
module Ker(do — 1), /(do — 91)(Nz2).

SKETCH OF PROOF. Ker(do—0d1)|n, contains the 1-paths of
M starting from I and of length & since if p = (p1,...,px)
is such a path, (9o — d1)(p1 + ... + px) = do(p1) — A (px)
which is null in N. Quotienting by (dg — 91)(N2) amounts
to taking them modulo homotopy. O

A.2 The functor II¥

Let f be a morphism from the semi-regular automaton M to
the semi-regular automaton N. Then f induces a morphism

f* from the pair (M, O) to the pair (N,0") for all k. Then

f~k induces Hl(fk) : Hi(M,0) — H.(N,0'). This defines
k() = Hl(fk) and makes II¥ into a covariant functor
from the category of semi-regular automata to the category

R — Mod of R-modules.

All these definitions can be made starting from anywhere,
not only Mo . For instance, if we consider initial states in

M, 4, we define in a similar manner the R-modules PP*%* (M)
and Hf’q’k(M), and the corresponding functors. We can also

define submodules of these like H‘f’ﬁ(M) of paths from a
state o € My 4 to a state § € Mpyr—1,g—k+1

A.3 The functor II;

The real interesting homotopical object is the module of all
finite paths modulo homotopy. The formal definition is as
follows,

Definition 6 The full fundamental group is

M(X)= @ PO/ ([flus + [adan = [+ s}

The quotient condition means that a sum of two classes of
paths that may compose is equated to the class of the sum
of the two paths. In this homotopy group, we cannot reverse
time, but we can consider collections of “oriented” paths.

B Higher-order homotopy groups

We generalise the definition of the fundamental group. We
had two “limiting” (n —1)-cubes in between which we could
deform any sequence of n-cubes. That was defined with
n = 1. For n = 2 we have a homotopy group of dimension 2
parameterized with two 1-paths p; and p2, having the same
initial and final states. Then in order to define a “full” ho-
motopy group, we have to glue together all parameterized
homotopy groups. The combinatorics of this glueing opera-
tion is much more complex than in dimension one and will
not be described here.

The definition we give below is “iterative” in the sense that
we know what a 1-path between a and § is (or what a 1-path
of length % is) and that the definition of n-paths between
(n — 1)-paths depends on that definition.

Definition 7 Let n > 2 and M be an acyclic HDA. Let p;
and p2 be two (n—1)-paths between two (n—2)-paths o and .
We suppose that p; = (pt,...,pr) and that pt € Ma_14¢ —s.
The R-module of n-paths between p1 and p2 is the R-module
of sequences v = (z', ... 2*71) with,

ezleM

——n+s,—s’
° ao(xi+1) = 81(7511)mod(p§"'1 —pé"’l),

o module operations are pointwise addition and pointwise
external multiplication.

This R-module is named PFVF? (M).

We say that two n-paths p,q € PFVF?(M) are homotopic,
and we write p ~ ¢ if and only if Vi, p; and ¢; are ho-
motopic in the complex of modules ((M,; ,,,);,d0) or in

(M, 45,505, 01) Let TIEVF2 (M) = PRvP2(M)/ ~.

Proposition 2 VP2 (M) = H, (M, T), dg — 1) where T'
is the image of p1 B p2 under the map w with u(z,y) = r—y.

Notice that Van Kampen’s theorem [22] holds. This is one
of the links with ordinary homotopy theory of topological
spaces. We recall it for completeness of the paper. Let X7,
X2 two regular HDA (subHDA of some domain D, [11]).
Then X; U X3 and X3 N X2 are well defined by a cocarte-
sian diagram. Then Van Kampen’s theorem asserts that the
following diagram in R — Mod is cocartesian as well,

1 (s1)

I, (X; N X>) I, (X:)
[mag) i)
I, (X>) _ Maliz) I,(X; U X>)

C Relationship with Herlihy’s and Shavit’s
work

Here we are interested in the main result of [17] which can be
roughly stated as follows: “There is a wait-free protocol for
solving a given decision task if and only if its input complex
can be continuously stretched and folded to cover its output
complex”.

To relate this to our framework, we first need to define in-
put and ouput complexes. Let Py,..., Py—1 be N sequen-
tial processes which, when run in parallel verify a protocol
P solving a decision task D. For the sake of simplicity, we
suppose that the processes P; are reduced to one action a;.
The HDA representing the program in the shared-memory
paradigm is then (ao) ® ... ® (anx—1). The local input val-
ues are collected in the initial state ag ® ... ® any—_1 and
the vertices v; in the input complex (val(v;), Id(v;)) with
val(v;) = a; can be identified with the 1-transitions a;.
Compatibility of the vertices means that they begin a fully
asynchronous execution of the processes Id(v;). This fully
asynchronous execution is represented in the HDA model by
the N-transition ap ® ... ® ay—1 and in Herlihy’s model by
an N —1 simplex containing all the v;. Once more, there is a
perfect geometric correspondence between the two models,
except the dimension has to be shifted by one. We should
think of the HDA model as the “extension in time”” of
the simplex-based model. In other terms, the input/output
complexes are a kind of very useful denotational approxima-
tion of the operational behaviour given by HDA. Let us be
a bit more precise about that.

The final state fo ® ... ® Fn—1 contains all output values
of the processes. In a similar manner, the part of the out-
put complex with vertices v; such that val(vi) = f3; can be
identified to (up to a shift of dimension one) the “vertical”
complex composed of all end boundaries of ag ® ... R an—1.

More generally, let 7 and O be input and output complexes
of a protocol P. Let (s;); and (¢;); be the maximal sim-
plexes (with respect to the inclusion ordering) in 7 and
O respectively with s; = (7,...,9F) (dim s; = k) and
ti = (w,...,wF) (dim t; = k). We suppose we have a semi-
regular HDA D (called domain of HDA in [11]) in which we
can fire any transition that the distributed system we are
considering can execute, from any state of this machine. By
what we have seen previously, the simplices s; are in one-to-
one correspondence with (dz'm S5 —|—1)—transiti0ns D with ini-

tial state 0¥ @.. .®Uidzm ® . As a matter of fact suppose that

the initial states permitted by the protocol are all in Do

"This explains why we need one more dimension.

Figure 15: Input and output complex for some domain of

HDA D, drawn in Herlihy’s way at the right hand side.
S
b ¢ a

A i

I

Figure 16: The effect of a failure of one process in (i)-a
mutual exclusion, (ii)-a truly concurrent execution.

0] (if)

then there is a sub-semi-simplicial complex of D, isomorphic
to the input complex (seen as a semi-simplicial set). This
subcomplex is the “horizontal” complex ((Drnt1,0)n, (d?)l)
The output complex is isomorphic to some subcomplex of 1),
which we identify now with ((Dxnt1—k)n, (d})l) if all final
states are in Dy _x. In between, there is all the paths trans-
forming the input into the output complex (look at Figure
15).

We need now to see what is a wait-free computation in the
HDA model, and why this implies that some topological
properties are preserved from the input to the output com-
plexes.

Look at Figure 16. In (i), the initial state is an internal non-
deterministic choice. If we are not so lucky, the execution
will begin by P> which fails to terminate: P; will never pro-
ceed and the computation is certainly not wait-free. In (ii),
the execution is asynchronous between P; and P> and what-
ever happens to P,, P; will terminate (one of the possible
1-paths is pictured). Hence, intuitively, to go from state a

to state # in a wait free manner, we must have H‘f”B reduced
to one class of paths. In the schedulers’ point of view, this
is the same as asking for the possible reordering for all ex-
ecutions of the failing processes after the terminating ones.
This in turn could be shown to entail that the input and
output complexes are homotopic which is precisely what we
stated in intuitive language as “the input complex can be
continuously stretched and folded to cover its output com-
plex”.

