
Homology, Homotopy and Appliations, vol.?(?), 2001, pp.1{70ON THE GEOMETRY OF INTUITIONISTIC S4 PROOFSJEAN GOUBAULT-LARRECQ and �ERIC GOUBAULT(ommuniated by Gunnar Carlsson)AbstratThe Curry-Howard orrespondene between formulas andtypes, proofs and programs, proof simpli�ation and programexeution, also holds for intuitionisti modal logi S4. It turnsout that the S4 modalities translate as a monoidal omonad onthe spae of proofs, giving rise to a anonial augmented sim-pliial struture. We study the geometry of these augmentedsimpliial sets, showing that eah type gives rise to an aug-mented simpliial set whih is a disjoint sum of nerves of �-nite latties of points, plus isolated (�1)-dimensional subom-plexes. As an appliation, we give semantis of modal proofs(a.k.a., programs) in ategories of augmented simpliial set andof topologial spaes, and prove a ompleteness result in thestyle of Friedman: if any two proofs have the same denotationsin eah augmented simpliial model, then they are onvert-ible. This result rests both on the �ne geometri struture ofthe onstruted spaes of proofs and on properties of subsoneategories|the ategorial generalization of the notion of log-ial relations used in lambda-alulus.
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Homology, Homotopy and Appliations, vol. ?(?), 2001 2data types. Classial logi in addition introdues the rih onept of ontinuation[23, 39℄, while the modal logi S4 introdues a form of staged omputation [41, 11℄.Our aim in this paper is to show that S4 proofs are also geometri objets. Tobe preise, S4 formulas orrespond to augmented simpliial sets, and S4 proofsorrespond to maps between these spaes. In partiular, this extends the Curry-Howard piture to:Logi Programming GeometryFormulae = Types = Augmented Simplial SetsProofs = Programs = Augmented Simpliial MapsEquality of Proofs = Convertibility = Equality of MapsThe = signs are exat, exept possibly for the Programs=Augmented SimpliialMaps one (we only get de�nable augmented simpliial maps). In partiular, it iswell-known that equality of proofs, as de�ned by the symmetri losure of detour,or ut-elimination [44℄, is exatly onvertibility of terms (programs). We shall inaddition show that two (de�nable) augmented simpliial maps are equal if and onlyif their de�ning terms are onvertible, i.e., equal as proofs (bottom right = sign).This will be Theorem 69 and Corollary 70, an S4 variant of Friedman's Theorem[16℄, whih will onstitute the main goal of this paper.While Friedman's Theorem in the ordinary, non-modal, intuitionisti ase anbe proved in a relatively straightforward way using logial relations [37℄, the S4ase is more omplex, and seems to require one to establish the existene of aertain strong retration of one augmented simpliial set Homb�(S4 [F ℄;S4 [G℄) ontoanother S4 [F � G℄ (Corollary 47). By the way, we invite the reader to hek thatthe existene of the orresponding strong retration in the ategory of sets (as wouldbe needed to map our tehniques to the non-modal ase) is trivial. The existeneof the announed retration in the ategory b� of augmented simpliial sets is moreinvolved, and prompts us to study the geometry of S4 proofs themselves.The plan of the paper is as follows. After we review related work in Setion 2,we deal with all logial preliminaries in Setion 3. We start by realling some basionepts in logis in Setion 3.1, and go on to the Curry-Howard orrespondenebetween types and formulae, proofs and programs, equality of proofs and onvert-ibility in Setion 3.2. We also introdue the logi we shall use, namely minimalintuitionisti S4, giving its Kripke semantis (Setion 3.4) as well as a natural de-dution system and a proof term language �S4, essentially due to [7℄, for it. This isin Setion 4.1, where we also prove basi properties about �S4|onuene, strongnormalization of typed terms|and study the struture of normal and so-alled�-long normal forms.We ome to the meat of this paper in Setion 4, where we observe that eahtype F indues an augmented simpliial set whose q-simplies are terms of type�q+1F modulo �. We haraterize exatly the omputation of faes and degen-eraies on terms written in �-long normal form in Setion 4.1, where they take apartiularly simple form. This allows us to study the geometry of these terms in apreise way in Setion 4.2. The ruial notion here is oriented ontiguity, whih isan oriented form of path-onnetedness. It turns out that this allows us to hara-terize the simpliial part of these augmented simpliial sets as the nerve of its points



Homology, Homotopy and Appliations, vol. ?(?), 2001 3ordered by ontiguity|this is an oriented simpliial omplex. In dimension �1, weget all onneted omponents of these simpliial omplexes, as we show in Se-tion 4.3. We also show that eah non-empty onneted omponent is a �nite lattieof points (0-simplies). In Setion 4.4 we turn to another important onstrution inthese augmented simpliial sets, that of planes. Using the lattie struture, we areable to show that there are augmented simpliial maps projeting the whole spaeonto planes, under mild onditions. This is the essential ingredient in showing thatHomb�(S4 [F ℄;S4 [G℄) strongly retrats onto S4 [F � G℄, as announed above.Setion 5 reverses the piture and shows that we may always interpret proofsas augmented simpliial maps. In general, we may always interpret proofs in anyartesian losed ategory (CCC) with a (strit) monoidal omonad|so-alled stritCS4 ategories|, as shown in Setion 5.1 and Setion 5.2. We give examples ofstrit CS4 ategories in Setion 5.1. In Setion 5.2, we show additionally that thetyped �S4 alulus is a way of desribing the free strit CS4 ategory on a givenset of base types. In partiular, strit CS4 ategories o�er a sound a omplete wayof desribing �S4 terms and equalities between them. However, these ategories aregeneral onstrutions that need to be made more onrete. We would like to be ableto ompare proofs in S4 by looking at them not in any strit CS4 ategory, but inmore onrete ones, in partiular in the ategory b� of augmented simpliial sets. Weshow that �S4 terms still get interpreted faithfully in b� in Setion 5.7|this is Fried-man's Theorem for S4, whih we prove using a variant of Kripke logial relationsindexed over the ategory �, and using in an essential way the strong retrationof Homb�(S4 [F ℄;S4 [G℄) onto S4 [F � G℄ that we onstruted in Setion 4.4. We re-view logial relations in Setion 5.3, explain how they work and why they shouldbe generalized to some form of Kripke logial relation in our ase. This is omplex,and better viewed from an abstrat, ategorial viewpoint: this is why we use sub-sones (presented in Setion 5.4), establish the Basi Lemma in Setion 5.5 andthe Bounding Lemma in Setion 5.6, the main two ingredients in the equationalompleteness theorem of Setion 5.7.The proof of some minor theorems of this paper have been elided. Please refer tothe full report for fuller proofs (LSV Researh Report, 2001, available at http://www.lsv.ens-ahan.fr/Publis/publis-y3-2001.html).
2. Related WorkFirst, let us dispel a possible misunderstanding. The part of this paper onernedwith logi is about the proof theory of S4, that is, the study of proof terms as aprogramming language, not about validity or provability. The reader interested inategorial models of validity in the modal ase is referred to [48℄ and the referenestherein. In this line, a well-known topologial interpretation of the � modalityof S4, due to Kuratowski, is as follows: interpret eah formula F as a subset ofsome topologial spae, and �F as the interior of F . (In general, any olosureoperator works here.) Note that this interpretation ollapses �F with ��F , whileour interpretations of � will not. In fat no �pF an be ompared with no �qF inour interpretations unless p = q.



Homology, Homotopy and Appliations, vol. ?(?), 2001 4It is easier to reason on proof terms than diretly on proofs. In partiular, it ismore onvenient to reason on Churh's �-aluls than on natural dedution proofs.This is why we use Bierman and de Paiva's �S4 language [7℄ of proof terms forS4. There would have been many other suitable proposals, e.g., [41, 11, 35℄. Inpartiular, [21℄ dispenses with boxes around terms to represent�-introdution rules,by using operators with non-negative indies orresponding to dimensions. Theaugmented simpliial struture of the language is apparent in the syntax of thislanguage; however �S4 turned out to be more onvenient tehnially.S4 proof terms have been used for partial evaluation [46℄, run-time programgeneration [11℄, in higher-order abstrat syntax [31℄, et. The idea is that whereasF is a type of values, 2F is a type of delayed omputations of values of type F , orof terms denoting values of type F ; d evaluates these omputations or these termsto return their values, and s lifts any delayed omputation M to a doubly delayedomputation whose value is M itself. This is similar to eval/quote in Lisp [32℄, orto proesses evolving through time, say, starting at t = 0 and homing in on theirvalues at t = 1, as argued in [22℄. This is also similar to the viewpoint of Brookesand Geva [9℄, where omonads (2;d; s) are enrihed into so-alled omputationalomonads, by adding a natural transformation  from the identity funtor to 2allowing to lift any value, not just any omputation, to a omputation;  must besuh that d Æ F = idF and s Æ F = 2F Æ F . In b�, suh a  indues a ontratinghomotopy s�1q : Kq ! Kq+1 for every q > �1, by s�1q =̂2q+1(K�1); these areusually used to build resolutions of hain omplexes. While our omonads need notbe omputational in this sense, the role of ontrating homotopies should beomelearer by pondering over Proposition 65 and the onstrution of Lemma 45.It is tempting to ompare the omputational omonads to E. Moggi's omputa-tional �-alulus, i.e. CCCs with a strong monad. [6℄ is a nie introdution to thelatter, and to their relation with Fairtlough and Mendler's propositional lax logi.Aording to Brookes and Geva, there is no speial onnetion between omputa-tional omonads and strong monads. However, in a sense they do express similaronerns in programming language theory. Moreover, as shown in [6℄, strong mon-ads are best understood as the existential dual � (\in some future") to � (\in allfutures"). Kobayashi [29℄ deals with a alulus ontaining both � and �. Pfenningand Davies [40℄ give an improved framework for ombining both � and �, andshow how lax logi is naturally embedded in it. While lassial negation providesa natural link between both modalities, in intuitionisti logi the link is more ten-uous. Following R. Gor�e, there is a more ogent, intuitionistially valid onnetionbetween an existential and a universal modality, provided the existential modalityis de�ned as a monad that is left-adjoint to �. In this sense, Moggi's strong monadshould be written as the tense logi modality � (\in some past"), so that �F � Gis provable if and only if F � �G is. This duality is reeted in programming-language semantis, where �F is the type of omputations whose values are in F ,while �G is the type of values produed by omputations in G. Geometrially, �Fbuilds a spae of ones over the spae F , and this may be de�ned in ategories oftopologial spaes or of augmented simpliial sets (e.g., as a join from a one-elementspae, joins being taken as in [14℄); it turns out that the one modality is indeed



Homology, Homotopy and Appliations, vol. ?(?), 2001 5a strong monad. However existentials, and therefore also �, are hard to deal within establishing equational ompleteness results, and this is why we won't onsiderthem in this paper.We hope that studies of the kind presented here will help understand onne-tions between omputation, logi and geometry. The relation to other geometriways of viewing omputation, suh as [24℄ on distributed omputation, is yet to belari�ed. Another interesting piee of work at the intersetion of logi (here, linearlogi) and simpliial geometry is [3, 4℄, whih provides sophistiated models forthe multipliative-exponential fragment of linear logi [17℄ based on aÆne simpli-ial spaes with an extra homologial onstraint. Note that there are strong linksbetween S4 and linear logi, see e.g., [34℄.
3. Logis, the Curry-Howard Correspondene, and S43.1. LogisConsider any logi, spei�ed as a set of dedution rules. So we have got a notionof formula, plus a notion of dedution, or proof. Those formulas that we an dedueare alled theorems. For example, in minimal propositional logi, one of the smallestnon-trivial logis, the formulas are given by the grammar:F;G ::= AjF � Gwhere A ranges over propositional variables in some �xed set �, and � is impliation.(This logi is alled minimal beause removing the only operator, �, would leaveus with something too skinny to be alled a logi at all.) The dedutions in thestandard Hilbert system for intuitionisti minimal logi are given by the followingaxioms: F � G � F (1)(F � G � H) � (F � G) � F � H (2)where F , G, H range over all formulas, and � assoiates to the right, that is, e.g.,F � G � H abbreviates F � (G � H); and the modus ponens rule:F � G F (MP )Gwhih allows one to dedue G from two proofs, one of F � G, the other of F . Nowthere is a third level, apart from formulas and proofs, namely proof simpli�ations.Consider for example the following proof:(1)F � G � F ��� �1F (MP )G � F ��� �2G(MP )FThis may be simpli�ed to just the proof �1. The idea that proofs may be simpli�eduntil no simpli�ation an be made any longer, obtaining equivalent normal proofs,was pioneered by Gerhard Gentzen [45℄ to give the �rst �nitist proof (in the sense



Homology, Homotopy and Appliations, vol. ?(?), 2001 6of Hilbert) of the onsisteny of �rst-order Peano arithmeti. If the logial systemis presented in a proper way, as with Gentzen's sequent alulus, it is easy to seethat false has no normal proof (no rule an lead to a proof of false). So false has noproof, otherwise any proof � of false ould be simpli�ed to a normal proof of false,whih does not exist. Hilbert systems as the one above are not really suited to thetask, and we shall instead use natural dedution systems [44℄ in Setion 3.3.3.2. The Curry-Howard CorrespondeneNote that there is another reading of the logi. Consider any formula as being aset: F � G will denote the set of all total funtions from the set F to the set G. Thenproofs are inhabitants of these sets: interpret the one-step proof (1) as the funtiontaking x 2 F and returning the funtion that takes y 2 G and returns x, interpret(2) as the more omplex funtional that takes x 2 F � G � H, y 2 F � G, andz 2 F , and returns x(z)(y(z)); �nally, if �1 is a proof of F � G|a funtion fromF to G|and �2 is in F , then (MP ) builds �1(�2), an element of G. Syntatially,we build a programming language by de�ning terms:M;N;P ::= KjSjMNwhere K and S are onstants and MN denotes the appliation of M to N . (Thislanguage is alled ombinatory logi.) We may restrit to well-typed terms, wherethe typing rules are: K has any type F � G � F , S has any type (F � G � H) �(F � G) � F � H, and if M has type F � G and N has type F , then MN hastype G. This may be written using typing judgmentsM : F , whih assign eah termM a type F , using typing rules:K : F � G � F (3)S : (F � G � H) � (F � G) � F � H (4)M : F � G N : F (MP )MN : GNote the formal similarity with the proof rules (1), (2), and (MP). Any typingrule an be onverted to a proof, by forgetting terms. Conversely, any proof anbe onverted to a typing derivation by labeling judgments with suitable terms.Furthermore, given a typable term M , there is a unique so-alled prinipal typingfrom whih all other typings an be reovered (Hindley's Theorem). This onsti-tutes half of the so-alled Curry-Howard orrespondene between programs (terms)and proofs. Subsripting K and S with the types they are meant to have at eahourrene in a term even makes this an isomorphism between typable terms andproofs.Let us introdue the seond half of the Curry-Howard orrespondene: the proofsimpli�ation steps give rise to program redution rules ; here, the natural hoie isKMN !M , SMNP !MP (NP ). It turns out that these redution rules give riseto a notion of omputation, where a term (a program) is redued until a normal termis reahed. This redution proess is then exatly the proof simpli�ation proessdesribed above.



Homology, Homotopy and Appliations, vol. ?(?), 2001 73.3. Natural Dedution and the Lambda-CalulusThe language of Hilbert systems and ombinatory logi is not easy to work with,although this an be done [25℄. A more omfortable hoie is given by Churh's�-alulus [2℄, the programming language assoiated with minimal logi in naturaldedution format [44℄. Its terms are given by the grammar:M;N;P ::= xj�x �M jMNwhere x ranges over variables, �x �M is �-abstration (\the funtion that maps xto M", where M typially depends on x). For onveniene, we write MN1N2 : : : Nkinstead of (: : : ((MN)N1)N2 : : :)Nk (appliation assoiates to the left), and �x1; x2;: : : ; xk �M instead of �x1 � �x2 � : : : �xk �M .Typing, i.e., proofs, are desribed using sequents instead of mere formulae. Asequent is an expression of the form x1 : F1; : : : ; xn : Fn `M : F , meaning that Mhas type F under the assumptions that x1 has type F1, . . . , xn has type Fn. Thisis needed to type �-abstrations. In this paper, the ontext x1 : F1, . . . , xn : Fnwill be a list of bindings xi : Fi, where the xi's are distint. We shall usually write�, � for ontexts. The notation �; x : F then denotes x1 : F1; : : : ; xn : Fn; x : F ,provided x is not one of x1, . . . , xn. The typing rules are:(Ax) (1 6 i 6 n)x1 : F1; : : : ; xn : Fn ` xi : Fi�; x : F `M : G (� I)� ` �x �M : F � G � `M : F � G � ` N : F (� E)� `MN : GFinally, omputation, i.e., proof simpli�ation, is desribed by the �-redutionrule (�x �M)N ! M [x := N ℄, where M [x := N ℄ denotes the (apture-avoiding)substitution of N for x in M . We may also add the �-redution rule �x �Mx!M ,provided x is not free in M . Although this is not neessary for proof normalization,�-redution allows one to get an extensional notion of funtion, where two funtionsare equal provided they return equal results on equal arguments. (This also orre-sponds to reduing proofs of axiom sequents to proofs onsisting of just the (Ax)rule, proof-theoretially.)3.4. Minimal Intuitionisti S4The topi of this paper is the intuitionisti modal logi S4. For simpliity, weonsider minimal intuitionisti S4, whih aptures the ore of the logi: formulae,a.k.a. types, are de�ned by: F ::= A j F � F j �F where A ranges over a �xed set� of base types. (While adding onjuntions ^, and truth > do not pose any newproblems, it should be noted that adding disjuntions _, falsehood ? or � wouldnot be as innouous for some of the theorems of this paper.)The usual semantis of (lassial) S4 is its Kripke semantis. For any Kripkeframe (W ;D) (a preorder), and a valuation � mapping base types A 2 � to sets ofworlds (those intended to make A true), de�ne when a formula F holds at a worldw 2 W in �, abbreviated w; � j= F : w; � j= A if and only if w 2 �(A); w; � j= F � Gif and only if, if w; � j= F then w; � j= G; and w; � j= �F if and only for everyw0 D w, w0; � j= F . Think of �F as meaning \from now on, in every future F holds".



Homology, Homotopy and Appliations, vol. ?(?), 2001 8The idea that the truth value of a formula F may depend on time is natural, e.g.in physis, where \the eletron has gone through the left slit" may hold at time tbut not at t0.In intuitionisti S4 we may re�ne the semantis of formulae to inlude anotherpreordering > on worlds, aounting for intuitionisti foring. Intuitively, > may besome ordering on states of mind of a mathematiian, typially the � ordering onsets of basi fats that the mathematiian knows (the analogy is due to Brouwer).Then if the mathematiian knows F � G when he is in some state of mind w(abbreviated w j= F � G), and if he knows F , he should also know G. Further,knowing F � G in state of mind w also means that, one the mathematiian hasextended his state of mind to a larger w0, if this w0 allows him to dedue F , then heshould be able to dedue G in the w0 state of mind. The intuitionisti meaning ofF � G is therefore that w j= F � G if and only if, for every w0 > w, if w0 j= F thenw0 j= G. Knowing the negation of F in state of mind w not only means knowingthat F does not hold in w, but also that it annot hold in any state of mind w0 > w,i.e., any w0 extending w. One distinguishing feature of intuitionisti logi is that itmay be the ase that there are formulae F suh that neither F nor its negation holdin some state of mind w|think of F as an unsolved onjeture|, so the lassialtautology F _ :F does not hold in general.The Kripke semantis of intuitionisti S4 is as follows.De�nition 1 (Kripke Semantis). An intuitionisti Kripke frame is a triple (W ;D;>), where D and > are preorderings on W suh that > � D.A valuation � on W is a map from base types in � to upper sets of worlds in W;an upper set is any subset of W suh that whenever w 2W and w0 > w, w0 2W .The semantis of S4 formulas is given by:w; � j= A i� w 2 �(A)w; � j= F � G i� for every w0 > w, if w0; � j= F then w0; � j= Gw; � j= �F i� for every w0 D w, w0; � j= FAn S4 formula F is valid, written j= F , if and only if w; � j= F in every frame(W ;D;>), for every w 2 W, for every valuation �.The resulting logi is alled IntS4 in [47℄, and the ondition relating > and Dthere is (> Æ D Æ >) =D. In the S4 ase where D is a preorder, this is equivalent toour > � D.For all our analogy with states of mind of a mathematiian is worth, the ondition> � D intuitively states that you an only learn new basi fats (inrease w.r.t. >)while time passes (D), but time may pass without you learning any new fats.We have mentioned the � modality in Setion 2. This would have the expetedsemantis: w; � j= �F if and only if for some w0 with w D w0, w0; � j= F . The othertwo modalities � (\in all pasts") and � (\in some future") are naturally de�nedin intuitionisti modal logi by introduing a new binary relation E on W , whihneeds not be the onverse of D, letting w; � j= �F if and only if for every w0 E w,w0; � j= F , and w; � j= �F if and only if for every w0 with w E w0, w0; � j= F [47℄.The only onstraints on >, D and E are that, in addition to > � D, we should have



Homology, Homotopy and Appliations, vol. ?(?), 2001 9> � E, E � (E\Do)Æ >, and D � (D\Eo)Æ >, where Ro denotes the onverse ofrelation R.3.5. Natural Dedution for Intuitionisti S4In this paper, we shall not be so muh interested in validity of S4 formulas as inatual proofs of S4 formulas. So let us talk about proofs.We use �S4 as a language of proof terms for S4 [7℄. The raw terms are:M;N;P ::= x jMN j �x �M j dM j M � �where � is an expliit substitution, that is, a substitution that appears as an expliitomponent of terms. A substitution � is any �nite mapping from variables xi toterms ti, 1 6 i 6 n, and is written fx1 := t1; : : : ; xn := tng; its domain dom � is theset fx1; : : : ; xng. (We omit the type subsript of variables whenever onvenient.)The yield yld � is de�ned as Sx2dom � fv(�(x)), mutually reursively with the set offree variables fv(M) of the term M : fv(x)=̂fxg, fv(MN)=̂ fv(M) [ fv(N), fv(�x �M)=̂ fv(M) n fxg, fv(dM)=̂ fv(M), fv( M � �)=̂ yld �. (We use =̂ for equality byde�nition.) Moreover, we assume that, in any term M � �, fv(M) � dom �; we alsoassume Barendregt's naming onvention: no variable ours both free and bound,or bound at two di�erent plaes|bound variables are x in �x �M and all variablesin dom � in M � �.Our notations di�er from [7℄. There M � fx1 := N1; : : : ; xn := Nng is writtenbox M with N1; : : : ; Nn for x1; : : : ; xn. The new notation allows one, �rst, to ma-terialize the expliit substitution more naturally, and seond the frame notationwill be put to good use to explain what simplies look like. Also, dM is writtenunbox M in [7℄; we use dM beause it is more onise and hints that some faeoperator is at work.Substitution appliationM� is de�ned by: x�=̂�(x) if x 2 dom �, x�=̂x otherwise;(MN)�=̂(M�)(N�); (�x�M)�=̂�x�(M�) provided x 62 dom �[yld �; (dM)�=̂d(M�);( M � �0)�=̂ M � (�0 � �), where substitution onatenation �0 � � is de�ned as fx1 :=M1; : : : ; xn :=Mng � �=̂fx1 :=M1�; : : : ; xn :=Mn�g.Terms are equated modulo �-onversion, the smallest ongruene � suh that:�x �M � �y � (Mfx := yg)M � fx1 := N1; : : : ; xn := Nng �Mfx1 := y1; : : : ; xn := yng � fy1 := N1; : : : ; yn := Nngprovided y is not free in M in the �rst ase, and y1, . . . , yn are not free in M andare pairwise distint in the seond ase, with idential type subsripts as x1, . . . ,xn respetively.The d operator is a kind of \eval", or also of \omma" operator in the lan-guage Lisp [32℄. The M; � 7! M � � operator is more omplex. Let's �rst lookat a speial ase: for any term M suh that fv(M) = fx1; : : : ; xng, let M beM � fx1 := x1; : : : ; xn := xng|or, more formally, Mfx1 := x01; : : : ; xn := x0ng �fx01 := x1; : : : ; x0n := xng. Then M behaves like \quote" M in Lisp, or more ex-



Homology, Homotopy and Appliations, vol. ?(?), 2001 10atly, \bakquote" M ; and provided dom � = fv(M), M � � is exatly ( M )�: thisis a syntati losure in the sense of [5℄, namely a quoted term M together with anenvironment � mapping free variables of M to their values.(Ax)�; x : F;� ` x : F� `M : F � G � ` N : F (� E)� `MN : G �; x : F `M : G (� I)� ` �x �M : F � G� `M : �F (�E)� ` dM : F 16i6nz }| {� ` Ni : �Fi x1 : �F1; : : : ; xn : �Fn `M : G (�I)� ` M � fx1 := N1; : : : ; xn := Nng : �GFigure 1: Typing �S4 terms
The typing rules [7℄, de�ning a natural dedution system for minimal S4 are asin Figure 1, where �, �, . . . , are typing ontexts, i.e. lists of bindings x : F , wherex is a variable, F is a type, and no two bindings ontain the same variable in anygiven ontext. The exhange rule:�; x : F; y : G;� `M : H�; y : G; x : F;� `M : His easily seen to be admissible, so we an onsider typing ontexts as multisetsinstead of lists. In partiular, there is no hoie to be made as to the order of thevariables x1, . . . , xn in the right premise of rule (�I).
(�) (�x �M)N !Mfx := Ng (d) d( M � �)!M�(g) M � (�; fx := Ng)! M � � provided x 62 fv(M)(tr) M � (�; fx := N; y := Ng)! Mfy := xg � (�; fx := Ng)( � ) M � (�; fx := N � �0g)! Mfx := N g � (�; �0)(�) �x �Mx!M provided x 62 fv(M) (��) dx � fx := Ng ! NFigure 2: The redution relation of �S4
De�ne the redution relation! on �S4-terms as the smallest relation ompatiblewith term struture (i.e., if M ! N then C[M ℄ ! C[N ℄, where C[P ℄ denotes anyterm with a distinguished ourrene of P ) de�ned in Figure 2 [7, 20℄. Terms thatmath the left-hand side of rules are alled redexes (for redution expression). Theonvertibility relation � is the smallest ongruene extending !; in other words,� is the reexive symmetri transitive losure of !. In addition, we write !+ thetransitive losure of !, and !� its reexive transitive losure.



Homology, Homotopy and Appliations, vol. ?(?), 2001 11Rule (d) is like Lisp's rule for evaluating quoted expressions: evaluating M , byd M , redues to M . Rule ( � ) an be seen either as an inlining rule, allowing oneto inline the de�nition of x as N inside the body M of the box M , or logiallyas a box-under-box ommutation rule. (g) is a garbage olletion rule, while (tr)is a ontration rule. We use a new notation in these rules: if � and �0 are twosubstitutions with disjoint domains, then �; �0 denotes the obvious union.The last two rules are so-alled extensional equalities. Together with (g), (��)allows us to dedue dx � � � x�, but not dM � � � M� for any term M : M hasto be a variable. For a disussion of this, see [21℄.
3.6. Standard Properties: Subjet Redution, Conuene, Strong Nor-malizationWe now prove standard properties of proof simpli�ation aluli.The following lemma is by a series of easy but tedious omputations; it says thatredution preserves typings, alternatively that it rewrites proofs to proofs of thesame sequents.
Lemma 2 (Subjet Redution). If the typing judgment � ` M : F is derivableand M ! N then � ` N : F is derivable.
Proposition 3 (Conuene). If M !� N1 and M !� N2, then there is P suhthat N1 !� P and N2 !� P .
Proof. We losely follow [2℄. The plan of the proof is as follows. We �rst replae!�by another notion of redution 1�!, whih will be strongly onuent (if M 1�!M1and M 1�!M2, then there is P suh that M1 1�!P and M2 1�!P ), hene onuent.This will be proved by showing that a related alulus �S4� is terminating (all rewritesequenes are �nite) and loally onuent (if M ! N1 and M ! N2, then thereis P suh that N1 !� P and N2 !� P , where ! stands for the rewrite relationof �S4�), hene onuent by Newman's Lemma. (This is the �nite developmentstheorem [2℄.) We shall onlude by observing that !� 1�! �!�, where ! is therewrite relation of �S4, so that onuene of 1�! implies that of !.De�ne a new alulus �S4� as follows. Compared to �S4, �S4� has an additionalterm onstrution (��x �M)N , and rule � is removed, and replaed by:(��) (��x �M)N !Mfx := NgIn partiular, (�x �M)N is not reduible in �S4�. A long and uninteresting series ofomputations shows that all ritial pairs are joinable [13℄, hene �S4� is loally on-uent. To show that �S4� terminates, de�ne a notion of parameterized size of terms



Homology, Homotopy and Appliations, vol. ?(?), 2001 12jM j(�)|parameterized by partial funtions � from variables to positive integers:jxj(�) =̂ �(x) jMN j(�) =̂ jM j(�) + jN j(�)j�x �M j(�) =̂ 1 + jM j(�[x 7! 1℄) j(��x �M)N j(�) =̂ 1 + jM j(�[x 7! jN j(�)℄)jdM j(�) =̂ 1 + jM j(�)��� M � fx1 := N1; : : : ; xn := Nng��� (�) =̂ 1 + jM j([x1 7! jN1j(�); : : : ;xn 7! jNnj(�)℄)+jN1j(�) + : : :+ jNnj(�)where the notation [x1 7! k1; : : : ; xn 7! kn℄ denotes the map sending xi to ki,1 6 i 6 n, and ��0 denotes the map that sends x to �0(x) if this is de�ned, and to�(x) otherwise.The following properties are easily proved by strutural indution on M :1. If fv(M) � dom �, then jM j(�) is de�ned.2. jM j(�) is a positive integer.3. jMfx1 := N1; : : : ; xn := Nngj(�) = jM j(�[x1 7! jN1j(�); : : : ; xn 7! jNnj(�)℄).4. If �(x) > �0(x) for every x, then jM j(�) > jM j(�0). If moreover �(x) > �0(x)for some x 2 fv(M), then jM j(�) > jM j(�0).5. If � and �0 agree on fv(M), then jM j(�) = jM j(�0).Then we show that for every rule l! r of �S4�, for every � with domain ontainingfv(l), jlj(�) > jrj(�). This is by straightforward alulations.Now, using 4, this entailsthat jM j(�) > jN j(�) whenever M ! N in �S4�. So �S4� terminates, and byNewman's Lemma is onuent.Let's say that the �S4�-term M 0 is obtained from M by adding stars if and onlyif M is obtained from M 0 by erasing all star signs, i.e., replaing eah subterm(��x � N)N 0 by (�x � N)N 0, reursively. (Note that we annot add stars on any �-abstration, only on those that are immediately applied to some argument.) De�nethe 1�! rewrite relation on �S4 by M 1�!N if and only if we may add stars to M ,getting M 0, and M 0 !� N in �S4�. (Note that N is a �S4-term, so every star mustbe erased by the redution.)We laim that 1�! is onuent. Let indeed M 1�!M1, M 1�!M2. So we may addstars to M , getting M 01 and M 02 respetively, so that M 01 !� M1 and M 02 !� M2in �S4�. By adding stars in M at every position where a star was added in M 01 orin M 02, and orrespondingly adding orresponding stars in every term appearing onthe given rewrites fromM 01 toM1 and fromM 02 toM2, we get rewrites in �S4� fromM 0 to some �S4� terms N1 and N2 that are obtained from M1 and M2 respetivelyby adding stars. Sine the redution relation of �S4� is terminating and onuent,N1 and N2 have the same normal form P . Beause rule (��) does not apply to P ,P does not have any star, and is therefore a �S4-term. So M1 1�!P and M2 1�!P .This means that 1�! is strongly onuent (M1 and M2 rewrite to P in exatly onestep [13℄), hene onuent.It is now lear that !� 1�!: e.g., if M ! N by (�), add a star on the (�)-redexthat gets ontrated. Also, 1�! �!�, sine erasing all stars turns (��) into (�).



Homology, Homotopy and Appliations, vol. ?(?), 2001 13So if M !� N1 and M !� N2, then M 1�!�N1 and M 1�!�N2 sine !� 1�!.Therefore for some P , N1 1�!�P and N2 1�!�P by onuene of 1�!. So N1 !� Pand N2 !� P , sine 1�! �!�.Conuene implies the important property that, if a term an be redued to anormal term, then the latter is unique (onsider the ase where both N1 and N2are normal, i.e., do not redue to any term).Another important property is that every typable term (proof) redues to a (ne-essarily unique) normal term (proof). We atually show a bit more:Proposition 4 (Strong Normalization). If M is typable, then it is stronglynormalizing, i.e., every redution sequene starting from M is �nite.Proof. By the reduibility method [18℄. Let SN be the set of strongly normalizingterms, and de�ne an interpretation of types as sets of terms as follows: for everybase type A, jjAjj=̂SN ;jjF � Gjj=̂fM 2 SN jwhenever M !� �x �M1 then for every N 2 jjF jj;M1fx :=Ng 2 jjGjjg;jj�F jj=̂fM 2 SN jwhenever M !� M1 � � then M1� 2 jjF jjg. Observe that:(CR1) jjF jj � SN for every type F ;(CR2) For every M 2 jjF jj, if M ! M 0 then M 0 2 jjF jj. This is by struturalindution on F . This is lear when F is a base type. For impliations, assumeM 2 jjF � Gjj and M ! M 0; then M 0 2 SN , and if M 0 !� �x �M1, thensine M 2 jjF � Gjj, M !� �x �M1, so by de�nition M1fx := Ng 2 jjGjj forevery N 2 jjF jj; therefore M 0 2 jjF � Gjj. The ase of box types is provedsimilarly.(CR3) For every neutral term M , if M 0 2 jjF jj for every M 0 with M ! M 0,then M 2 jjF jj. (Call a term neutral if and only if it is not of the form�x �M or M � �.) This is again by strutural indution on F . This is learwhen F is a base type. For impliations, assume that every M 0 suh thatM ! M 0 is in jjF � Gjj, and show that M 2 jjF � Gjj. Clearly M 2 SN ,sine every redution starting from M must be empty or go through someM 0 2 jjF � Gjj � SN by (CR1). So assume that M !� �x � M1. SineM is neutral, the given redution is non-empty, so there is an M 0 suh thatM !M 0 !� �x �M1. By assumption M 0 2 jjF � Gjj, so for every N 2 jjF jj,M1fx := Ng 2 jjGjj. It follows that M 2 jjF � Gjj. The ase of box types issimilar.Next we show that:1. If M 2 jjF � Gjj and N 2 jjF jj, then MN 2 jjGjj. By (CR1), M and Nare in SN , so we prove this by indution on the pair (M;N) ordered by !,lexiographially. Note that MN is neutral, and may only rewrite in one stepto M 0N where M ! M 0, or to MN 0 where N ! N 0, or to M1fx := Ng by(�) (if M = �x �M1). In the �rst two ases, M 0 2 jjF � Gjj, resp. N 0 2 jjF jjby (CR2), so we may apply the indution hypothesis. In the third ase, this



Homology, Homotopy and Appliations, vol. ?(?), 2001 14is by de�nition of jjF � Gjj. In eah ase we get a term in jjGjj, so by (CR3)MN 2 jjGjj.2. If Mfx := Ng 2 jjGjj for every N 2 jjF jj, then �x � M 2 jjF � Gjj. Toshow this, we show the onverse of 1: if for every N 2 jjF jj, MN 2 jjGjj,then M 2 jjF � Gjj. Indeed, �rst M 2 SN : take any variable x; x is injjF jj by (CR3), so Mx 2 jjGjj by assumption, so Mx 2 SN by (CR1), heneM 2 SN . Seond, assume that M !� �x � M1, then for every N 2 jjF jj,MN !� M1fx := Ng 2 jjGjj by (CR2). So M 2 jjF � Gjj.Using this, assume that Mfx := Ng 2 jjGjj for every N 2 jjF jj, and showthat �x �M 2 jjF � Gjj. It is enough to show that (�x �M)N 2 jjGjj forevery N 2 jjF jj. We do this by indution on (M;N) ordered by !, whih iswell-founded: indeed, N 2 jjF jj � SN by (CR1), and M = Mfx := xg 2jjGjj � SN by (CR1), sine x 2 jjF jj by (CR3). Sine (�x �M)N is neutral,apply (CR3): (�x �M)N may rewrite to (�x �M 0)N with M !M 0 (this is injjGjj by (CR2) and the indution hypothesis), or to (�x �M)N 0 with N ! N 0(similar), or to Mfx := Ng by (�) (in jjGjj by assumption), or to M 0N by(�) where M =M 0x, x not free in M 0 (then M 0N =Mfx := Ng, whih is injjGjj by assumption).3. If M 2 jj�F jj, then dM 2 jjF jj. This is by indution on M ordered by !,whih is well-founded sine by (CR1) M 2 SN . Now dM may rewrite eitherto dM 0 with M ! M 0 (then apply the indution hypothesis, noting thatM 0 2 jj�F jj by (CR2), so dM 0 2 jjF jj), or to M1�, provided M = M1 � �(then M1� 2 jjF jj by de�nition). Sine dM is neutral, by (CR3) dM 2 jjF jj.4. IfM� 2 jjF jj and � maps eah variable x 2 dom � to some strongly normalizingterm, then M � � 2 jj�F jj. First we show the onverse of 3: if dM 2 jjF jjthen M 2 jj�F jj. First sine dM 2 jjF jj � SN by (CR1), M 2 SN . Itremains to show that whenever M !� M1 � � then M1� 2 jjF jj. Howeverthen dM !� M1� must be in jjF jj by (CR2).Knowing this, let M� be in jjF jj and � map eah variable x 2 dom � to somestrongly normalizing term. Let us show that M � � 2 jj�F jj. It is enough toshow that d M � � 2 jjF jj, using (CR3) sine this term is neutral. Letting �be fx1 := N1; : : : ; xn := Nng, we show this by indution on, �rst, N1; : : : ; Nnordered by the multiset extension [12℄ of ! [., where . is the immediatesuperterm relation (it is well-known that as soon as Ni is in the well-foundedpart of !, it is also in the well-founded part of ! [.; the multiset extensionallows one to replae any element Ni of the multiset by any �nite numberof smaller elements, and is well-founded on all multisets of elements takenfrom the well-founded part of the underlying ordering); and seond on M�,lexiographially. Now d M � � may rewrite in one step to:� M� by (d); this is in jjF jj by assumption.� dN1 by (��), where M = dx1 and n = 1. Then dN1 = M� is in jjF jj byassumption.� d M 0 � � where M ! M 0. By (CR2) M 0� 2 jjF jj, so we may apply the



Homology, Homotopy and Appliations, vol. ?(?), 2001 15indution hypothesis.� d M ��0 where �0 = fx1 := N1; : : : ; xi := N 0i ; : : : ; xn := Nng and Ni ! N 0i .Sine N 0i 2 SN , we may apply the indution hypothesis.� d M � �0 where � = �0; fx := Ng and x is not free in M by (g). This isby the indution hypothesis. The same argument applies for (tr).� d Mfx := N g �(�1; �0) where � = �1; fx := N ��0g by ( � ). We wish toapply the indution hypothesis. For this, we have to hek that Mfx :=N g(�1; �0) is in jjF jj. ButM� is in jjF jj and equalsM(�1; fx := N ��0g.The latter is equal or rewrites by (g) toM(�1; fx := ( N )�0g) =Mfx :=N g(�1; �0), so the latter is in jjF jj by (CR2).We now hek that, given any typing derivation � of x1 : F1; : : : ; xn : Fn `M : F ,for every N1 2 jjF1jj, . . . , Nn 2 jjFnjj, Mfx1 := N1; : : : ; xn := Nng 2 jjF jj. Thisis by strutural indution on �. The (Ax) as is obvious, while the other ases aredealt with by using items 1{4 above. Sine xi 2 jjFijj by (CR3), it follows thatM 2 jjF jj. By (CR1), M 2 SN .So eah proof (typed term) has a unique normal form.3.7. The Shape of Normal Forms, �-Long Normal FormsOne way of desribing normal forms for typed terms is by the typing system BNof Figure 3.
(AxE)�; x : F;� `E x : F � `E M : F � G � `I N : F (� EE)� `E MN : G� `E M : F (Flip)� `I M : F � `E M : �F (�EE)� `E dM : F

�; x : F `I M : G (� II)� `I �x �M : F � G 16i6nz }| {� `E Ni : �Fi x1 : �F1; : : : ; xn : �Fn`I M : G (�II)� `I M � fx1 := N1; : : : ; xn := Nng : �G(fv(M) = fx1; : : : ; xng)Figure 3: Typing beta-normal forms: System BN
Lemma 5. Call a term beta-normal if and only if it ontains no (�), (d), (g),( � ) redex (i.e., no redex exept possibly (tr), (�) or (��) redexes).If � `M : F and M is beta-normal, then � `I M : F . Moreover, if M is neutral,i.e., not starting with a � or a box, then � `E M .Conversely, if � `I M : F or � `E M : F , then � `M : F andM is beta-normal.



Homology, Homotopy and Appliations, vol. ?(?), 2001 16Proof. By strutural indution on the given derivation of � ` M : F . The asesM a variable, and M of the form �x � M1 are trivial. If M = M1M2, with � `M1 : G � H and � ` M2 : G, then M1 must be neutral, otherwise by typing M1would start with a �, and thenM would be a (�)-redex. So by indution hypothesis� `E M1 : G � H. Sine by indution hypothesis � `I M2 : G, it follows by rule(� EE) that � `E M : H. The ase where M = dM1 is similar. Finally, when M isof the form M1 � �, with � = fx1 : N1; : : : ; xn : Nng, � ` Ni : �Fi (1 6 i 6 n), andx1 : �F1; : : : ; xn : �Fn ` M1 : F , then by indution hypothesis x1 : �F1; : : : ; xn :�Fn `I M1 : F . Moreover, sineM is not a (g) redex, fv(M) = fx1; : : : ; xng. Also,every Ni must be neutral, otherwise by typing they would start with a box, whih isforbidden beauseM is not a ( � ) redex, so by indution hypothesis � `E Ni : �Fi.It follows that rule (�II) applies, therefore � `I M : �F .Conversely: if � `I M : F or � `E M : F , then it is obvious that � ` M : F :erase all E and I subsripts, and remove all instanes of (Flip). It remains to showthat M is beta-normal. Consider any subterm of M . If it is of the form M1M2,then its type must have been derived using the (� EE) rule, whih implies thatM1 is typed as in � `E M1 : F � G; but no rule in BN (Figure 3) would allowone to derive suh a judgment if M1 began with �; so M1M2 is not a (�)-redex.Similarly, no subterm of M an be a (d) redex. The side-onditions on rule (�II)entail that no subterm of M is a (g) redex, while the fat that Ni : �Fi must havebeen derived using a `E judgment entails that no Ni starts with a box, hene thatno subterm of M is a ( � ) redex. So M is beta-normal.A more onvenient form than normal forms is the �-long normal form, imitatingthat of [27℄ in the non-modal ase. In the S4 ase, �-long normal forms are slightlymore omplex, but an be desribed as follows, inluding an additional linearityonstraint on boxes.De�nition 6 (�-long normal form). Call a term M linear if and only if everyfree variable of M ours exatly one in M . Formally, de�ne the notion of beinglinear in W , where W is a �nite set of variables, as follows. Every variable is linearin W , �x �M is linear in W provided M is linear in W n fxg, MN is linear in Wprovided M and N are and fv(M) \ fv(N) \W = ;, �M is linear in W providedM is, M � fx1 := N1; : : : ; xn := Nng is linear in W provided eah Ni, 1 6 i 6 n,is linear in W , and fv(Ni)\ fv(Nj)\W = ; for every 1 6 i 6= j 6 n. A term M islinear provided it is linear in fv(M).Call (Flip0) the rule (Flip) restrited to the ase where F is in the set � of basetypes, and (�I0) the rule (�II) restrited to the ase where M is linear. Call BN0the typing system BN where all instanes of (Flip) are instanes of (Flip0), andall instanes of (�II) are instanes of (�I0).A term M is said to be �-long normal of type F in � if and only if we an derive� `I M : F in system BN0.Lemma 7 (Weakening). For every BN derivation of � `� M : F (� 2 fI; Eg),for every ontext �, there is a BN derivation of �;� `� M : F .



Homology, Homotopy and Appliations, vol. ?(?), 2001 17Proof. By strutural indution on the given derivation. This is mostly obvious,provided we assume all bound variables have been renamed so as to be distintfrom the ones in �.Lemma 8. For every M suh that � `M : F , M has an �-long normal form �[M ℄.That is, there is a term �[M ℄ suh that M � �[M ℄ and � ` �[M ℄ : F .Proof. First by Proposition 4 and Lemma 5, we may assume that � `I M : F . Theidea is then, �rst, to rewrite every instane of (Flip) on non-base types F usingonly instanes of (Flip) on smaller types F , until all we get is instanes of (Flip0).This is done using the following two rules:
� `E M : F � G (Flip)� `I M : F � G �! �; x : F `E M : F � G (AxE)�; x : F `E x : F (Flip)�; x : F `I x : F (� EE)�; x : F `E Mx : G (Flip)�; x : F `I Mx : G (� II)� `I �x �Mx : F � G

(5)

� `E M : �F (Flip)� `I M : �F �! � `E M : �F
(AxE)x : �F `E x : �F (�EE)x : �F `E dx : F (Flip)x : �F `I dx : F (�II)� `I dx � fx :=Mg : �F

(6)
where in the right-hand side of the �rst rule, the derivation of �; x : F `E M :F � G is obtained from the one of � `E M : F � G by weakening (Lemma 7).This terminates, beause the sum of the sizes of formulae on the right-hand sidesof judgments in (Flip) dereases (de�ne the size jF j of a formula F by jAj=̂1,jF � Gj=̂jF j+ jGj+ 1, j�F j=̂jF j+ 1).On the other hand, we make every instane of (�II) one of (�I0) by linearizingthe term M . That is, for eah free variable xi in M , 1 6 i 6 n, with ki > 1 distintourrenes in M , reate ki fresh variables xi1; : : : ; xiki , letM 0 be M where the jthourrene of xi is replaed by xij , for every 1 6 i 6 n, 1 6 j 6 ki, and rewrite thederivation: 16i6nz }| {� `E Ni : �Fi x1 : �F1; : : : ; xn : �Fn `M : F (�II)� ` M � fx1 := N1; : : : ; xn : Nng : �F (7)
into: 16i6n;16j6kiz }| {� `E Ni : �Fi (xij : �Fi)16i6n;16j6ki `M 0 : F (�I0)� ` M 0 � f(xij := Ni)16i6n;16j6kig : �F (8)



Homology, Homotopy and Appliations, vol. ?(?), 2001 18Lemma 9. Let � ` M : F . Then M has at most one �-long normal form of typeF in �.Proof. Let M 0 be an �-long normal form of M . M 0 is beta-normal by onstrution.Let R� be the rewrite system onsisting of rules (�) and (��). It is lear thatR� terminates and rewrites beta-normal terms to beta-normal terms. Similarly therewrite system Rtr onsisting of the sole rule (tr) terminates and rewrites R�-normal beta-normal terms to R�-normal beta-normal terms. Let M 00 be any R�-normal form of M 0, and M 000 be any Rtr-normal form of M 00. Then M 000 is Rtr-normal, R�-normal and beta-normal, hene normal.SineM 0 is an �-long normal form ofM ,M �M 0, soM �M 000. By Proposition 3and sineM 000 is normal,M !� M 000. Summing up,M !� M 000�Rtr  M 00�R�  M 0,where !R denotes rewriting by R.Observe now that the rewrite system R�1tr on derivations de�ned by the trans-formation M1fy := xg � (�; fx := Ng)! M1 � (�; fx := N; y := Ng) (where bothx and y are free in M1) is loally onuent. Moreover, whenever M1 is well-typedand beta-normal, and rewrites to M2 by Rtr, then M2 rewrites to M1 by R�1tr .Finally, R�1tr terminates: for any term M1, let �(M1) be Px2fv(M1)(n(x;M1) � 1)where n(x;M1) is the number of ourrenes of x in M1; by indution on �(M1)followed lexiographially by the multiset of the terms x�, x 2 dom � ordered by!R�1tr , M1 � � is R�1tr -terminating as soon as eah x� is, x 2 dom �; it follows bystrutural indution on terms that every term is R�1tr -terminating.Similarly, the rewrite system R�1� on derivations de�ned by (5) and (6) is ter-minating (as already notied in Lemma 8), loally onuent, and whenever M1 iswell-typed and beta-normal, and rewrites to M2 by R�, then M2 rewrites to M1 byR�1�So if M 0 is any �-long normal form of M , then M !� M 000 !�R�1tr M 00 !�R�1� M 0.In general, if M 01 and M 02 are two �-long normal forms of M , we get M !�M 000 !�R�1tr M 001 !�R�1� M 01 and M !� M 000 !�R�1tr M 002 !�R�1� M 02. Sine R�1tr isonuent and M 001 and M 002 are R�1tr-normal, M 001 =M 002 . Sine R�1� is onuent andM 01 and M 02 are �-long normal, hene R�1� -normal, M 01 =M 02.Lemmas 8 and 9 entail:Proposition 10 (�-long normalization). For every term M suh that � `M : Fis derivable, M has a unique �-long normal form of type F in �, whih we write�[M ℄. In partiular, whenever � ` M : F and � ` M 0 : F , M � M 0 if and only if�[M ℄ = �[M 0℄.The value of �-long normal forms is that substituting terms Ni of a ertain formfor variables in any �-long normal form yields an �-long normal form again:Lemma 11. If x1 : F1; : : : ; xn : Fn;� `� M : F (� 2 fI; Eg) and � `E Ni : Fi insystem BN0 for every i, 1 6 i 6 n, then �;� `� Mfx1 := N1; : : : ; xn := Nng : Fin system BN0.



Homology, Homotopy and Appliations, vol. ?(?), 2001 19Proof. By strutural indution on the given derivation of x1 : F1; : : : ; xn : Fn;� `�M : F in BN0. If this was derived by (AxE), then � = E; if M = xi for somei, then F = Fi, Mfx1 := N1; : : : ; xn := Nng = Ni and we may indeed dedue�;� `E Ni : F , by weakening from � `E Ni : F (Lemma 7); otherwise let Mbe variable x, then Mfx1 := N1; : : : ; xn := Nng = x, and we get �;� `E x : Fby (AxE). If the last rule is (� EE), (�EE) or (Flip0), this is by the indutionhypothesis, straightforwardly. If the last rule is (� II), then � = I, M is of the form�x �M1, F is of the form G � H, and by indution hypothesis we have been able toderive �;�; x : G `I M1fx1 := N1; : : : ; xn := Nng : H, from whih we get �;� `IMfx1 := N1; : : : ; xn := Nng : G � H by (� II). Finally, if the last rule is (�I0),then � = I, F is of the form �G, M is of the form M1 � fy1 := P1; : : : ; yk := Pkg,fv(M1) = fy1; : : : ; ykg, M1 is linear, and the typing derivation ends in:16j6kz }| {x1 : F1; : : : ; xn : Fn;� `E Pj : �Gj y1 : �G1; : : : ; yk : �Gk `I M1 : G (�I0)x1 : F1; : : : ; xn : Fn;� `I M1 � fy1 := P1; : : : ; yk := Pkg : �GBy indution hypothesis, we have got a derivation in BN0 of �;� `E Pjfx1 :=N1; : : : ; xn := Nng : �Gj . Together with the derivation above of y1 : �G1; : : : ; yk :�Gk `I M1 : G, and sine fv(M1) = fy1; : : : ; ykg, M1 is linear, we may apply (�I0)and derive �;� `I M1 � f y1 := P1fx1 := N1; : : : ; xn := Nng;: : : ;yn := Pnfx1 := N1; : : : ; xn := Nngg : �GBut this is preisely �;� `I Mfx1 := N1; : : : ; xn := Nng : �G.Lemma 12. If M is �-long normal of type �F in �, then M is of the form M1 ��.Moreover, �[dM ℄ =M1�.Proof. The �rst part is obvious: � `I M : �F in system BN0, but only rule(�I0) an lead to this. Also, letting � be fx1 := N1; : : : ; xn := Nng, we havex1 : �F1; : : : ; xn : �Fn `I M1 : F in BN0, and � `E Ni : �Fi in BN0 for eah i,1 6 i 6 n. By Lemma 11, � `I M1� : F inBN0. Sine dM �M1�, by Proposition 10�[dM ℄ =M1�.The ruial thing in Lemma 12 is not so muh that dM �M1�, whih is obvious.Rather, it is the fat that one we have redued d( M1 � �) to M1� by (d), we havealready reahed its �-long normal form.Similarly, we obtain:Lemma 13. Let sM=̂ x � fx :=Mg. If M=̂ M1 � � is �-long normal of type �Fin �, then �[sM ℄ = M1 � �.Proof. First sM = x � fx := M1 � �g � M1 ��. Then sine M is �-long normal,letting � be fx1 := N1; : : : ; xn := Nng, we have x1 : �F1; : : : ; xn : �Fn `I M1 : F



Homology, Homotopy and Appliations, vol. ?(?), 2001 20in BN0, and � `E Ni : �Fi in BN0 for eah i, 1 6 i 6 n. So we an produe thefollowing BN0 derivation:
16i6nz }| {���� `E Ni : �Fi

16i6nz }| {(AxE)x1 : �F1; : : : ; xn : �Fn`E xi : �Fi
���x1 : �F1; : : : ; xn : �Fn`I M1 : F (�I0)x1 : �F1; : : : ; xn : �Fn `I M1 : �F (�I0)� `I M1 � � : ��Fso M1 � � is �-long normal of type ��F in �. The laim then follows by Propo-sition 10.

4. The Augmented Simpliial Struture of �S4We de�ne an augmented simpliial set onsisting of typed �S4-terms. Reall that:De�nition 14 (A.s. set, a.s. map). An augmented simpliial set K is a familyof sets Kq, q > �1, of q-simplies, a.k.a. simplies of dimension q, with fae maps�iq : Kq ! Kq�1 and degeneray maps siq : Kq ! Kq+1, 0 6 i 6 q, suh that:(i) �iq�1 Æ �jq = �j�1q�1 Æ �iq (ii) siq+1 Æ sj�1q = sjq+1 Æ siq (iii) �iq+1 Æ sjq = sj�1q�1 Æ �iq(iv) �iq+1 Æ siq = id (v) �i+1q+1 Æ siq = id (vi) siq�1 Æ �jq = �j+1q+1 Æ siqwhere 0 6 i 6 q in (iv), (v), and 0 6 i < j 6 q in the others.An augmented simpliial map f : K ! L is a family of maps fq : Kq ! Lq,q > �1, suh that �iq Æ fq = fq�1 Æ �iq and siq Æ fq = fq+1 Æ siq, 0 6 i 6 q.Subsripts start at �1, whih is standard and allows one to have q math thegeometri dimension. We sometimes abbreviate \augmented simpliial" as \a.s." inthe sequel. Also, when we run a risk of onfusion, we write �iKq for �iq, and siKq forsiq.The ategory b� of augmented simpliial sets as objets, and augmented simpliialmaps as morphisms (see [33℄, VII.5), an also be presented as follows. Let � bethe ategory whose objets are �nite ordinals [q℄=̂f0; 1; : : : ; qg, q > �1, and whosemorphisms are monotoni (i.e., non-dereasing) maps. This ategory is generatedby morphisms [q�1℄ Æiq�![q℄ (mapping j < i to j and j > i to j+1) and [q+1℄ �iq�![q℄(mapping j 6 i to j and j > i to j � 1), and relations that are most suintlydesribed as (i){(vi) where � is replaed by Æ, s by �, and omposition order isreversed. Then b� is the ategory of funtors from the opposite ategory �o to theategory Set of sets.In general, bC denotes the ategory of funtors from Co to Set, a.k.a. presheavesover C. bC is always an elementary topos [30℄, hene is a artesian-losed ategory(CCC ). The terminal objet 1 of b� is suh that 1q is a singleton f�g for every q >�1. The produtK�L is suh that (K � L)q=̂Kq�Lq, �i(K�L)q(u; v)=̂(�iKqu; �iLqv)and si(K�L)q(u; v)=̂(siKqu; siLqv): i.e., produt is omponent-wise.



Homology, Homotopy and Appliations, vol. ?(?), 2001 21The struture of exponentials, i.e., internal homs Hom�̂(K;L) is given by gen-eral onstrutions [30℄, whih will be largely irrelevant here. For now, let us justsay that we have got a.s. appliation maps App : Homb�(K;L) � K ! L, andan abstration operator � on a.s. maps f : K � L ! M , so that �f is an a.s.map from K to Homb�(L;M), satisfying ertain equations to be spei�ed below.Furthermore, (�1)-simplies of Homb�(K;L) are just simpliial maps from K toL, while 0-simplies are homotopies between maps, and q-simplies for q > 0 arehigher-dimensional homotopies.In general, in any CCC C|not just b�|, let ! denote the unique morphismX !�!1. For artesian produts, we have a pair Xhf;gi�!Y � Z for every X f�!Yand X g�!Z, and projetions X1 � X2 �i�!Xi, i 2 f1; 2g. We also have internalhom objets (exponentials) HomC(X;Y ), appliation HomC(X;Y )�XApp�!Y , andabstration X �f�!HomC(Y; Z) for every X � Y f�!Z. These obey the followingategorial ombinator equations [10℄, where we omit types (objets) for the sakeof oniseness:(a) id Æ f = f (b) f Æ id = f () f Æ (g Æ h) = (f Æ g) Æ h(d) 8f : X ! 1 � f =! (e) �1 Æ hf; gi = f (f) �2 Æ hf; gi = f(g) h�1; �2i = id (h) hf; gi Æ h = hf Æ h; g Æ hi(k) �f Æ h = �(f Æ hh Æ �1; �2i) (l) App Æ h�f; gi (m) �(App Æ hf Æ �1; �2i) = f= f Æ hid; giFor reasons of onveniene, we shall abbreviate hf Æ �1; g Æ �2i as f � g. Then, thefollowing are derived equations:(g0) id� id = id (h0) (f � g) Æ (f 0 � g0) = (f Æ f 0)� (g Æ g0)(k0) �f Æ h = �(f Æ (h� id))(l0) App Æ h�f Æ h; gi = f Æ hh; gi (l00) App Æ (�f � id) = f (m0) �(App Æ (f � id)) = f
4.1. The Augmented Simpliial Sets S4 [� ` F ℄We observe that the S4 modality allows us to exhibit an augmented simpliialstruture. We shall see later on (Setion 5.2) that this arises from a omonad throughthe use of ertain resolution funtors. However, for now we prefer to remain syntatiand therefore relatively onrete.De�nition 15 (S4 [� ` F ℄). For every ontext �, for every type F , let [� ` F ℄ bethe set of all equivalene lasses of �S4-terms M suh that � ` M : F is derivable,modulo �.For every q > �1, let S4 [� ` F ℄q be [� ` �q+1F ℄, and let S4 [� ` F ℄ be the family(S4 [� ` F ℄q)q>�1.For every funtion f from [� ` F1℄ � : : : � [� ` Fn℄ to [� ` G℄, de�ne �f asthe funtion from [� ` �F1℄ � : : : � [� ` �Fn℄ to [� ` �G℄ that maps the tuple(M1; : : : ;Mk) to f(dx1; : : : ; dxk) � fx1 :=M1; : : : ; xk :=Mkg.Say that f is substitutive whenever f(M1; : : : ;Mk)� � f(M1�; : : : ;Mk�).Finally, let �iq be the funtion from S4 [� ` F ℄q to S4 [� ` F ℄q�1, 0 6 i 6 q, de�nedby �iqM=̂(�id)M ; and let siq be the funtion from S4 [� ` F ℄q to S4 [� ` F ℄q+1, 0 6i 6 q, de�ned by siqM=̂(�is)M , where sM=̂ x � fx :=Mg.



Homology, Homotopy and Appliations, vol. ?(?), 2001 22Lemma 16. The following hold: 1. �id = id. 2. if f is substitutive, then �f Æ�g =�(f Æ g). 3. for every f , �f is substitutive. 4. �iq and siq are substitutive.Proof. 1. �id(M) = dx � fx :=Mg �M (by (��)), so �id = id.2. For every funtions f and g, provided f is substitutive, then�f(�g(M)) = f(dx) � fx := g(dy) � fy :=Mgg� f(dx)fx := g(dy) g � fy :=Mg (by ( � ))� f(d g(dy) ) � fy :=Mg (sine f is substitutive)� f(g(dy)) � fy :=Mg (by (d))So �f Æ�g = �(f Æ g). 3. is obvious, and 4. follows from 3.Proposition 17. For every � and F , the triple (S4 [� ` F ℄; (�iq)06i6q; (siq)06i6q) isan augmented simpliial set.Proof. Beause of Lemma 16, it is enough to hek (i){(vi) in the ase i = 0, as thegeneral ase then follows immediately by indution on i:(i) �0q�1(�jqM) = d(��j�1q�1M) = d �j�1q�1(dx) � fx :=Mg � �j�1q�1(dM) (by (d))= �j�1q�1(�0qM).(ii) s0q+1(sj�1q M) = y � fy := sj�1q Mg, while sjq+1(s0qM) = �sj�1q (s0qM)= sj�1q (dy) � fy := s0qMg = sj�1q (dy) � fy := x � fx :=Mgg� sj�1q (d x ) � fx :=Mg (by ( � )) � sj�1q x � fx :=Mg (by (d)).If j = 1, then s0q+1(sj�1q M) = y � fy := x � fx :=Mgg � x � fx :=Mg(by ( � )) = s0qx � fx :=Mg, and this is preisely sjq+1(s0qM).If j > 1, then it obtains s0q+1(sj�1q M) = y � fy := sj�1q Mg= y � fy := �sj�2q�1Mg = y � fy := sj�2q�1(dx) � fx :=Mgg� sj�2q�1(dx) � fx :=Mg (by ( � )) = �sj�2q�1x � fx :=Mg= sj�1q x � fx :=Mg, whih is exatly sjq+1(s0qM).(iii) �0q+1(sjqM) = d(�sj�1q�1M) = d sj�1q�1(dx) � fx :=Mg � sj�1q�1(dM) (by (d))= sj�1q�1(�0qM).(iv) �0q+1(s0qM) = d( x � fx :=Mg) �M by (d).(v) �1q+1(s0qM) = ��0q (s0qM) = d(dx) �fx := y � fy :=Mgg � d(d y ) �fy :=Mg(by ( � )) � dy � fy :=Mg (by (d)) �M (by (��)).



Homology, Homotopy and Appliations, vol. ?(?), 2001 23(vi) s0q�1(�jqM) = s0q�1(��j�1q�1M) = x � fx := �j�1q�1(dy) � fy :=Mgg� �j�1q�1(dy) � fy :=Mg (by ( � )) = �jqy � fy :=Mg, while on the otherhand �j+1q+1(s0qM) = ��jq( y � fy :=Mg) = �jq(dx) � fx := y � fy :=Mgg� �jq(d y ) � fy :=Mg (by ( � )) � �jqy � fy :=Mg (by (d)).
By Lemma 12, the �-long normal form of any term of type �q+1F in � anbe written in a unique way : : : M0 � �q � �q�1 : : : � �0. Fix a variable x0, and let�q+1 be fx0 7!M0g. Then this is also : : : x0�q+1 � �q � �q�1 : : : � �0. Therefore q-simplies in S4 [� ` F ℄ are basially sequenes of q+2 substitutions, with additionaltyping and linearity onditions and onditions on the domains of substitutions. Letus ompute faes and degeneraies as they at on �-long normal forms. For short,all the �-long normal form of a q-simplexM in S4 [� ` F ℄ the unique �-long normalform of type �q+1F in � of M .First the following lemma will help us ompute �-long normal forms of �f appliedto arguments in �-long normal form themselves.Lemma 18. Let f be any funtion from [� ` F1℄ � : : : � [� ` Fn℄ to [� ` G℄. Wesay that f is linearity-preserving if and only if for every �-long normal form M1 oftype F1 in �, . . . , for every �-long normal form Mn of type Fn in �, if M1, . . . , Mnare linear, then the �-long normal form of f(M1; : : : ;Mn) of type G in � is linear,too. By abuse, write f(M1; : : : ;Mn) this �-long normal form again.Say that f is non-ollapsing if and only if, for every �-long normal forms M1 oftype F1 in �, . . . , Mn of type Fn in �, then fv(f(M1; : : : ;Mn)) = fv(M1) [ : : : [fv(Mn).Let M1 � �1, . . . , Mn � �n be �-long normal forms of respetive types �F1,. . . , �Fn in �. Assume without loss of generality that �1, . . . , �n have pairwisedisjoint domains. If f is substitutive, linearity-preserving and non-ollapsing, thenthe �-long normal form of type G in � of �f( M1 � �1; : : : ; Mn � �n) is exatlyf(M1; : : : ;Mn) � (�1; : : : ; �n).Proof. �f( M1 � �1; : : : ; Mn � �n)= f(dx1; : : : ; dxn) � fx1 := M1 � �1; : : : ; xn := Mn � �ng� f(dx1; : : : ; dxn)fx1 := M1 ; : : : ; xn := Mn g � (�1; : : : ; �n) (by ( � ))� f(d M1 ; : : : ; d Mn ) � (�1; : : : ; �n) (sine f is substitutive) � f(M1; : : : ;Mn) �(�1; : : : ; �n) (by (d)). It remains to show that the latter is �-long normal of type�G in �, whih will allow us to use Proposition 10. We only have to hek that



Homology, Homotopy and Appliations, vol. ?(?), 2001 24fv(f(M1; : : : ;Mn)) = dom �1 [ : : : [ dom �n and that f(M1; : : : ;Mn) is linear. Theformer is beause f is non-ollapsing, and fv(Mi) = dom �i, 1 6 i 6 n. The latteris beause f is linearity-preserving, and eah Mi is linear. Indeed, fv(Mi) = dom �iand Mi is linear beause Mi � �i is �-long normal.
Proposition 19. Let M 2 S4 [� ` F ℄q, of �-long form : : : x0�q+1 � �q � �q�1 : : : ��0. Then the �-long form of �iqM is:

: : : : : : x0�q+1 � �q � �q�1 : : : � �i+2 � (�i+1 � �i) � �i�1 : : : � �0 (9)
and the �-long form of siqM is:

: : : : : : x0�q+1 � �q � �q�1 : : : � �i+1 � id � �i : : : � �0 (10)
where id is the identity substitution on dom �i.Proof. By indution on i, simultaneously with the fat that �iq and siq are substi-tutive, linearity-preserving and non-ollapsing. The indutive ase is by Lemma 18.In the base ase, if i = 0, then (9) is by Lemma 12, and (10) is by Lemma 13.The geometry of S4 [� ` F ℄ is therefore very lose to that of the nerve of a ategorywhose objets are ontexts �, and whose morphisms � ��!� are substitutions � suhthat, letting � be y1 : G1; : : : ; ym : Gm, � is of the form fy1 :=M1; : : : ; ym :=Mmgwhere � ` Mi : Gi is derivable for eah i, 1 6 i 6 m. Identities are the identitysubstitutions, omposition is substitution onatenation. (It is not quite a nerve,beause of the added onditions on substitutions.) The onnetion with nerves willbe made preise in Theorem 29 below.4.2. The Geometry of S4 [� ` F ℄In Proposition 19, note that substitutions are taken as is, in partiular not modulo�. This hints at the fat that S4 [� ` F ℄ will in general not be a Kan omplex: reallthat a nerve of a small ategory C is Kan if and only if C is a groupoid, i.e., if andonly if all morphisms in C are isomorphisms. In the ategory of substitutions above,the only isomorphisms are renamings fx1 := y1; : : : ; xn := yng, where y1; : : : ; yn arepairwise distint variables.Proposition 20. S4 [� ` F ℄ is not Kan in general.Proof. Being Kan would imply in partiular that given any two 1-simpliesM0 andM1 with �01M0 = �01M1, there should be a 2-simplex M suh that �02M = M0



Homology, Homotopy and Appliations, vol. ?(?), 2001 25and �12M = M1. Write the �-long normal forms of M0 as x0�2 � �1 � �0, of M1as x0�02 � �01 � �00. The ondition �01M0 = �01M1 means that x0�2 � (�1 � �0) =x0�02 � (�01 � �00). In partiular, up to a renaming of the variables free in x0�02:�2 = �02; �1 � �0 = �01 � �00 (11)If M exists, then M is of the form x0#3 � #2 � #1 � #0, and up to renamingsof bound variables, �02M =M0 entails:#3 = �2; #2 = �1; #1 � #0 = �0 (12)and �12M =M1 entails: #3 = �02; #2 � #1 = �01; #0 = �00 (13)It follows that �01 must be an instane of �1, in partiular. (An instane of a substi-tution � is a substitution of the form � � �0.) But (11) does not guarantee this. Forexample, take �2=̂�02=̂fx0 := dx0g, �01=̂fx0 := x1g, �1=̂fx0 := dx1g, �0=̂fx1 := x1g,�00=̂fx1 := dx1g. It is easily heked that M0 and M1 are in S4 [� ` F ℄1, i.e., theyare of type �2F in �, for any formula F , where �=̂x1 : �2F .This settles the ase, at least when � ontains at least one formula of the form�2F . When � is empty, it is easy to see that S4 [� ` F ℄ is empty exept possibly indimension �1, so this is trivially Kan|but the geometry of suh simpliial sets isuninteresting.The following notion will be useful in studying the geometry of S4 [� ` F ℄:De�nition 21 (Contiguity). Let K be an augmented simpliial set. The q-simp-lex x is one-step ontiguous to the q-simplex y, in short x_ y, if and only if thereis a (q + 1)-simplex z in K, and two indies i; j with 0 6 i < j 6 q + 1 suh that�jq+1z = x and �iq+1z = y, and x 6= y.The q-simplex x is ontiguous to y if and only if x_� y, and stritly ontiguousif and only if x _+ y. We say that x and y are ontiguous if and only if x℄ y,where ℄ is the reexive symmetri transitive losure of _.Contiguity is usually presented a bit di�erently. In partiular, it is usually notrequired that j > i in one-step ontiguity. Then _� is an equivalene relation.However we shall need the �ner notion of _ in the sequel.The following lemma, for example, is unusual:Lemma 22. The relation _ is well-founded.Proof. De�ne the following measure �(M) for q-simplies M in S4 [� ` F ℄q. When-everM has �-long normal form : : : x0�q+1 � �q : : : ��0, let �(M) be the (q+2)-tuple(j�0j; : : : ; j�qj; j�q+1j), ordered lexiographially from right to left, where j�j is thesize of �, de�ned in any obvious way.



Homology, Homotopy and Appliations, vol. ?(?), 2001 26LetM and M 0 be two q-simplies in S4 [� ` F ℄, and assume thatM _M 0. Thenthere is a (q + 1)-simplex N , say:: : : x0�q+2 � �q+1 : : : � �1 � �0and i < j suh that �jq+1N =M , �iq+1N =M 0. That is:
M = : : : : : : : : : x0�q+2 � �q+1 : : : � (�j+1 � �j) � �j�1 : : : � �i+1 � �i : : : � �0
M 0 = : : : : : : : : : x0�q+2 � �q+1 : : : � �j+1 � �j : : : � �i+2 � (�i+1 � �i) : : : � �0

Clearly �(M) > �(M 0). We laim that �(M) > �(M 0). Sine the lexiographiordering on sizes is well-founded, this will establish the result.Assume on the ontrary that �(M) = �(M 0). Then, j�j+1 � �j j = j�j+1j, so up toa renaming of bound variables, �j+1 � �j = �j+1, so �j = id. Then j�j j = j�j�1j, . . . ,j�i+2j = j�i+1j, whih imply that �j�1, . . . , �i+1 must map variables to variables.By the linearity onstraints on �-long normal forms, they must be one-to-one. Soup to renaming of bound variables, �j�1 = : : : = �i+1 = id. But then M = M 0,ontraditing M _M 0.Corollary 23. The relation _+ is a strit ordering.Proof. If it were reexive, then we would have M _+ M for some M , hene anin�nite dereasing hain M _+ M _+ M _+ : : :De�nition 24 (Verties, Component). Let K be any augmented simpliial set.Given any q-simplex x of K, q > 0, the verties of x are those 0-simplies that areiterated faes of x. The ith vertex of x, 0 6 i 6 q, is giqx=̂�01 : : : �i�1i �i+1i+1 : : : �qqx.The omponent �0x is �00 : : : �ii : : : �qqx.It is well-known that eah q-simplex has exatly q+1 verties, and these are g0qx,. . . , gqqx. Moreover, these verties are ontiguous:Lemma 25. Let K be any augmented simpliial set. Given any q-simplex x of K,q > 0, g0qx_� g1qx_� : : :_� gqqxProof. To show that giqx _� gi+1q x, let y be the 1-simplex �02 : : : �i�1i+1�i+2i+2 : : : �qqx.Then �01y = gi+1q x and �11y = giqx, so giqx_= gi+1q x, where _= is _ [ =.Observe that there is no need to take_+ instead of _ in the ase of 0-simpliesin �S4:



Homology, Homotopy and Appliations, vol. ?(?), 2001 27Lemma 26. The relation _ is transitive on 0-simplies of S4 [� ` F ℄.Proof. Note that, if M and M 0 are two 0-simplies, then M _ M 0 means that forsome 1-simplex M1, �11M1 =M and �01M1 =M 0.So assume that M _ M 0 _ M 00. There is a 1-simplex N � �1 � �2 suh thatM = N�1 � �2 and M 0 = N � (�1 � �2). There is also a 1-simplex N 0 � �01 � �02suh that M 0 = N 0�01 � �02 and M 00 = N 0 � (�01 � �02). Comparing both forms for M 0,we must have, up to renaming of bound variables, N = N 0�01 and �02 = �1 � �2. SoM2=̂ N 0 � �01 � �1 � �2 is a valid 2-simplex. Take M1=̂�12M2 = N 0 � (�0 � �1) � �2.Then �11M1 =M and �01M1 =M 00, so M _= M 00. By Corollary 23, M _M 00.The following lemma shows that, basially, if two simplies are ontiguous, thenthey are so in a unique way:Lemma 27 (Two-fae Lemma). Let M , M 0 be two q-simplies of S4 [� ` F ℄,q > 0. Then for any 0 6 i < j 6 q + 1, there is at most one (q + 1)-simplex N ofS4 [� ` F ℄ suh that �jqN =M and �iqN =M 0.Proof. Assume N exists, and write it as:: : : x0#q+2 � #q+1 : : : � #1 � #0Also, write: M = : : : x0�q+1 � �q : : : � �1 � �0
M 0 = : : : x0�0q+1 � �0q : : : � �01 � �00Sine �jqN = M , up to renaming of bound variables, �0 = #0, . . . , �j�1 = #j�1,�j = #j+1 � #j , �j+1 = #j+2, . . . , �q+1 = #q+2. And sine �iqN = M 0, up torenaming of bound variables, �00 = #0, . . . , �0i�1 = #i�1, �0i = #i+1 � #i, �0i+1 = #i+2,. . . , �0q+1 = #q+2.In partiular, #0 = �0, . . . , #j�1 = �j�1, #i+2 = �0i+1, . . . , #q+2 = �0q+1. So # isdetermined uniquely as soon as j > i + 1. If j = i + 1, this determines # uniquely,exept possibly for #j . Now we use the additional equations �j = #j+1 � #j and�0i+1 = #i+2. The latter means that �0j = #j+1. Sine every variable of dom#j is freein some term in the range of #j+1, this determines #j uniquely.In the ase of S4 [� ` F ℄, Lemma 25 is the only ondition on verties that needsto be satis�ed for them to be verties of a q-simplex:Proposition 28. Let M0, M1, . . . , Mq be q+1 0-simplies of S4 [� ` F ℄. If M0 _�M1 _� : : : _� Mq, then there is a unique q-simplex M suh that giqM = Mi,0 6 i 6 q.



Homology, Homotopy and Appliations, vol. ?(?), 2001 28Proof. By Lemma 26, M0 _= M1 _= : : :_= Mq.We now show uniqueness by indution on q > 0. If q = 0, this is obvious.Otherwise, by indution there is at most one (q � 1)-simplex M0 with vertiesM1 _= : : : _= Mq, and at most one (q � 1)-simplex Mq with verties M0 _=: : : _= Mq�1. If there is any q-simplex M with verties M0, M1, . . . , Mq, then�0qM =M0 and �qqM =Mq, so there is at most one suh M by Lemma 27.Existene: write Mi as Ni � �i for eah i, 0 6 i 6 q. Sine for eah i < q,Mi _= Mi+1, there are (unique) 1-simplies N 0i � #i1 �#i0 suh that, up to renamingof bound variables, Ni = N 0i#i1, �i = #i0, Ni+1 = N 0i , �i+1 = #i1 � #i0. Note thatNi = Ni+1#i1, and #i+10 = #i1 � #i0. So de�ne:M=̂ : : : : : : Nq � #q�11 : : : � #i�11 : : : � #01 � #00
In partiular, g0qM = Nq#q�11 : : : #i�11 : : : #01 � #00 = Nq�1#q�21 : : : #01 � #00 = : : : =N0 � #00 =M0. And for every i > 0, giqM = Nq#q�11 : : : #i1 � (#i�11 � : : : � #01 � #00)= Ni � (#i�11 � : : : � #11 � #01 � #00) = Ni � (#i�11 � : : : � #11 � #10) = : : : = Ni � #i0 =Mi.To sum up, the non-augmented part of S4 [� ` F ℄ an be haraterized as apartiularly simple nerve:Theorem 29 (Nerve Theorem). Let C[� ` F ℄ be the partial order onsisting ofthe 0-simplies of S4 [� ` F ℄, ordered by ontiguity _�. Then the (non-augmented)simpliial set (S4 [� ` F ℄q)q2N is (isomorphi to) the nerve N(C[� ` F ℄).Proof. Reall that the nerve of a ategory C has diagrams:A0 f1 � A1 f2 � : : : fq�1� Aq�1 fq � Aqas q-simplies, where f1, f2, . . . , fq are morphisms in C, and q > 0. The ith fae isobtained by removing Ai from the sequene, omposing the neighboring arrows if0 < i < q, and dropping them if i = 0 or i = q. The ith degeneray is obtained bydupliating Ai, adding an identity morphism.By Lemma 25 and Proposition 28, q-simplies M are in bijetion with orderedsequenes of 0-simplies M0 _� M1 _� : : :_� Mq. Moreover, for every j, 0 6 j 6q � 1, the jth vertex of �iqM is:gjq�iqM = �01 : : : �j�1j �j+1j+1 : : : �q�1q�1�iqM = � gjqM if j < igj+1q M if j > iThat is, the verties of �iqM are those of M exept giqM . Similarly, for every j,0 6 j 6 q + 1, the jth vertex of siqM is:

gjqsiqM = �01 : : : �j�1j �j+1j+1 : : : �q+1q+1siqM = 8<: gjqM if j 6 igiqM if j = i+ 1gj�1q M if j > i+ 1



Homology, Homotopy and Appliations, vol. ?(?), 2001 29That is, the verties of siqM are those of M in sequene, with giqM ourring twie.
In other words, (S4 [� ` F ℄q)q2N is an oriented simpliial omplex. Reall thatan oriented simpliial omplex is a family of linearly ordered sequenes of so-alledpoints, ontaining all one-element sequenes, and suh that any subsequene of anelement of the family is still in the family. In fat, it is the full oriented simpliialomplex, ontaining all linearly ordered sequenes of points.It is futile to study the lassial notions of loop homotopy in suh an orientedsimpliial omplex. Indeed, all loops are trivial: if the 1-simplex M is a loop, i.e.,�01M = �11M is some point N , then its sequene of verties is N _� N , so M isa degenerate 1-simplex. Homotopies of loops, and in fat the natural extension ofhomotopies between 1-simplies, is trivial, too: let M;M 0 be two 1-simplies with�01M = �01M 0 = M0 and �11M = �11M 0 = M1; if there is a homotopy 2-simplexP onneting them, then its faes are M , M 0 plus some degenerate 1-simplex, sothe sequene of verties of P must be M1 _� M0 _� M0 or M1 _� M1 _� M0,from whih it follows that the homotopy is one of the two degeneraies of M =M 0.In short, two 1-simplies are homotopi in the lassial sense if and only if theyare equal, and all homotopies are degenerate. However, studying homotopies ofpaths (not just loops) ertainly remains interesting. In partiular, the geometry ofpreorders and latties through their order omplexes is a rih domain [8℄.4.3. ComponentsThis loses the ase for non-negative dimensions. In dimension �1, reall thatthere are two extremal ways to build an augmentation of a simpliial set (see e.g.,[14℄). One, exempli�ed by the nerve onstrution for augmented simpliial sets,builds the augmentation of the simpliial set K, K�1, as a one-element set (anempty set if K is empty), and �00 is the unique funtion K0 ! K�1. The otherbuilds K�1 as the set of onneted omponents of K0, that is, as the set of ℄-equivalene lasses of points. It turns out that the latter is how the augmentationis built in S4 [� ` F ℄. (Exept that there might also be (�1)-simplies that arethe omponent of no q-simplex for any q > 0.) In other words, omponents areexatly path onneted omponents (plus isolated (�1)-dimensional simplies). Thisis shown in Proposition 31 below. First, we observe:Proposition 30 (Lattie of points). Let M0 be a (�1)-simplex of S4 [� ` F ℄.The set C(M0) of 0-simpliesM suh that �00M =M0, equipped with the ordering_�, is empty or is a �nite lattie.Proof. Every suh M an be written in a unique way N � �, with N� =M0. But,up to the names of free variables in N , there are only �nitely many suh N 's and�'s. So C(M0) is �nite.In the rest of the proof, �x a typing of M0. This way, eah subterm of M0 getsa unique type. This will allow us to reason by indution on M0|in general, onterms|instead on a BN0 derivation of � `I M0 : F .



Homology, Homotopy and Appliations, vol. ?(?), 2001 30Note that N � � _� N 0 � �0 if and only if N � � _= N 0 � �0 (by Lemma 26) ifand only if for some N0 � #1 � #0, N = N0#1, � = #0, N 0 = N0, �0 = #1 � #0 (upto renaming of bound variables), if and only if N = N 0#1 for some substitution #1.In other words, if and only if N is an instane of N 0.Then every pair of points M1, M2 of C(M0) has a supremum M . That is, M _�M1, M _� M2 and for every M 0 suh that M 0 _� M1 and M 0 _� M2, M _� M 0.Write M1 as N1 � �1, M2 as N2 � �2, with N1�1 = N2�2. Then, if M exists, Mis a ommon instane of N1 and N2. It is easy to see that there is a least ommoninstane N1^N2 of N1 and N2, i.e., one suh that every other instane of N1 and N2is an instane of N1 ^N2. More generally, given any �nite set W of variables (usedto ollet �-bound variables), all an instane of N away from W any term N� suhthat dom �\W = ;. Then if there is a ommon instane of N1 and N2 away fromW ,then there is a least one N1^W N2, where N1 and N2 are linear, and it is omputedas in Figure 4. Then de�ne N1 ^N2 as N1 ^; N2. Sine N1� = N2�2 =M0, there isx1 ^W N2 =̂ N2 (x1 62W )N1 ^W x2 =̂ N1 (x2 62W )(N1N 01) ^W (N2N 02) =̂ (N1 ^W N2)(N 01 ^W N 02)(�x �N1) ^W (�x �N2) =̂ �x � (N1 ^W[fxg N2)dN1 ^W dN2 =̂ d(N1 ^W N2)N � fx1 := N11; : : : ; xn := Nn1g ^W N � fx1 := N12; : : : ; xn := Nn2g=̂ N � fx1 := N11 ^W N12; : : : ;xn := Nn1 ^W Nn2gFigure 4: Least ommon instanesa unique substitution � with dom � = fv(N1^N2), and the free variables of N1^N2being free variables of N1 or N2, have boxed types. Therefore M=̂ N1 ^N2 � � is awell-typed term, and M _� M1 and M _� M2, sine N1 ^N2 is both an instaneof N1 and an instane of N2. Moreover, by onstrution this is the least one, so Mis the supremum of M1 and M2. (This is uni�ation [28℄. The key here is that webasially only need uni�ation modulo an empty theory, instead of the theory ofthe relation �.) We write M as M1 tM2.Symmetrially, every pair of points M1, M2 of C(M0) has an in�mum M . Thatis, M1 _� M , M2 _� M and for every M 0 suh that M1 _� M 0 and M2 _� M 0,M 0 _� M . Write again M1 as N1 � �1, M2 as N2 � �2, with N1�1 = N2�2.Calling a generalization of a term N (away fromW ) any term having N as instane(away from W ), we may ompute a greatest ommon generalization N1 _W N2away from W of N1 and N2 as in Figure 5, where N1�1 = N2�2. As above, lettingN1 _N2=̂N1 _;N2, there is a unique substitution � suh that fv(N1 _N2) = dom �and (N1 _ N2)� = M0, and M=̂ N1 _N2 � � is a well-typed term, from whih we



Homology, Homotopy and Appliations, vol. ?(?), 2001 31x1 _W N2 =̂ x1 (x1 62W )N1 _W x2 =̂ x2 (x2 62W )(N1N 01) _W (N2N 02) =̂ (N1 _W N2)(N 01 _W N 02)(�x �N1) _W (�x �N2) =̂ �x � (N1 _W[fxg N2)dN1 _W dN2 =̂ d(N1 _W N2)N � fx1 := N11; : : : ; xn := Nn1g _W N � fx1 := N12; : : : ; xn := Nn2g=̂ N � fx1 := N11 _W N12; : : : ;xn := Nn1 _W Nn2gFigure 5: Greatest ommon generalizations
onlude that M is indeed the in�mum of M1 and M2. Write M as M1 uM2.It remains to show that, if C(M0) is not empty, then it has a least element ? anda greatest element >. This is obvious, as ? an be de�ned as the (�nite) in�mum ofall elements of C(M0), and > as the (�nite) supremum of all elements of C(M0).Proposition 31. Given any two 0-simplies M1 and M2 of S4 [� ` F ℄, M1 ℄M2if and only if �00M1 = �00M2.Proof. Clearly, if M1 _= M2, i.e. if �11N =M1 and �01N =M2 for some 1-simplexN , then �00M1 = �00�11N = �00�01N = �00M2. So if M1 ℄M2, then �00M1 = �00M2.Conversely, assume �00M1 = �00M2, and name M0 this (�1)-simplex. By Propo-sition 30, there is an element M1 tM2 in C(M0), suh that M1 tM2 _� M1 andM1 tM2 _� M2. In partiular M1 ℄M2.In other words, non-empty omponents C(M0) oinide with path-onnetedomponents.This generalizes to higher dimensions:Proposition 32. For any two q-simplies M1 and M2 of S4 [� ` F ℄, M1 ℄M2 ifand only if �0M1 = �0M2.Proof. Reall that �0M denotes the omponent of M (De�nition 24).IfM1 _= M2, then there is a (q+1)-simplexN and j > i suh thatM1 = �jq+1N ,M2 = �iq+1N . So �0M1 = �0N = �0M2.Conversely, assume �0M1 = �0M2 = M0. So every vertex of M1 and M2 is inC(M0). By the Nerve Theorem 29, we equate q-simplies with ordered sequenesof q + 1 verties. Then notie that the sequene N0 _= N1 _= : : : _= Ni _=: : : _= Nq is ontiguous to N0 _= N1 _= : : : _= N 0i _= : : : _= Nq as soon asNi _= N 0i . Indeed the former is the (i + 1)st fae, and the latter is the ith faeof the sequene N0 _= N1 _= : : : _= Ni _= N 0i _= : : : _= Nq. Iterating,we obtain that the sequene N0 _= N1 _= : : : _= Nq is ontiguous to N 00 _=N 01 _= : : : _= N 0q as soon as Ni _� N 0i for every i, 0 6 i 6 q. Reall that



Homology, Homotopy and Appliations, vol. ?(?), 2001 32every vertex of M1 and M2 is in C(M0). Using Proposition 30, M1, viewed as thesequene g0qM1 _� g1qM1 _� : : : _� gqqM1, is ontiguous to (g0qM1 u g0qM2) _�(g1qM1 u g1qM2)_� : : :_� (gqqM1 u gqqM2). Similarly for M2. Sine M1 and M2 areontiguous to the same q-simplex, M1 ℄M2.4.4. Planes and RetrationsNext, we show that ertains subspaes of S4 [� ` F ℄ are retrats of the wholespae, under some mild onditions.De�nition 33 (Planes). Call a type boxed if and only if it is of the form �F .Call � boxed if and only if it maps variables to boxed types.Let � be a ontext, and �=̂y1 : �G1; : : : ; yp : �Gp be a boxed subontext of �.The plane �? of S4 [� ` F ℄ is the set of 0-simplies of S4 [� ` F ℄ having and �-longnormal form of the form N � � suh thatfor every y 2 dom � � if yi 2 fv(y�) then y� = yi (14)for every i, 1 6 i 6 p.(Note that the types of variables yj , 1 6 j 6 p, have to start with � for thisde�nition to make sense. To be fully formal, we should mention � and F in thenotation for �?. However, � and F will be lear from ontext.) From the point ofview of Gentzen-style sequents, a term in the given plane orresponds to a proofthat ends in a �-introdution rule followed by series of uts on formulae ourringon the left of the �-introdution rule, none of whih being any of the �Gis in �.By extension, using Theorem 29 and Proposition 31, we de�ne q-simplies of �?as ontiguous sequenes of points M0 _� M1 _� : : : _� Mq of �? for q > 0, andas omponents of points of �? if q = �1.It is not hard to see that �? = S4 [� ` F ℄ if � is empty. On the other hand,if � = �, then the points of �? are of the form N , with omponent N . In thisase, any omponent N of the plane �? ontains exatly one point, namely N . Itfollows that in this ase �? is a disrete olletion of points.Lemma 34. For any boxed subontext � of �, �? is a sub-a.s. set of �.Proof. Clearly every q-simplex of �? is a q-simplex of S4 [� ` F ℄. That faes anddegeneraies of q-simplies of �? are still in �? is by onstrution.Lemma 35. Let � be any boxed subontext of �, and M0 2 S4 [� ` F ℄�1. For anytwo 0-simplies M1 and M2 of C(M0):1. if M1 _� M2 and M2 2 �? then M1 2 �?.2. if M1 and M2 are in �? then so are M1 uM2 and M1 tM2.Proof. 1. Let M1=̂ N1 � �1 be in C(M0), and M2=̂ N2 � �2 be in C(M0) andin �?. So for every z 2 dom �2 suh that yi, 1 6 i 6 p, is free in z�2,z�2 = yi. Sine M1 _� M2, not only is N1 an instane of N2, but there is alsoa substitution # suh that �2 = #��1, dom# = dom �2 = fv(N2) and fv(N2#) =dom �1. Assume that yi is free in y�1 for some y 2 dom �1 = fv(N2#). So y



Homology, Homotopy and Appliations, vol. ?(?), 2001 33ours free in some z#, z 2 fv(N2). In partiular, yi is free in z#�1 = z�2.Therefore z�2 = yi, realling that M2 2 �?. In other words, z#�1 = yi. Itfollows by standard size onsiderations that z# is a variable. Sine y oursfree in z#, it obtains z# = y. So y�1 = yi.2. Let M1=̂ N1 � �1 and M2=̂ N2 � �2 in �?. For simpliity, assume that �ontains exatly one variable y1. This entails no loss of generality, as in general�? is the intersetion of all (yi : Fi)?, yi 2 dom�.That M1 tM2 is in �? follows from 1, sine M1 tM2 _� M1.On the other hand M1 uM2 is of the form N1 _N2 � � where � is the uniquesubstitution with domain fv(N1 _N2) suh that (N1 _N2)� =M0. In general,we may ompute � as �;;M0(N1; N2), where �W;M0(N1; N2) is the unique substi-tution with domain fv(N1_W N2)nW suh that (N1_W N2)�W;M0(N1; N2) =M0, provided N1 _W N2 exists and N1 and N2 are linear and have M0 asommon instane. This parallels the omputation of N1 _W N2:�W;M0(x1; N2)=̂fx1 :=M0g (x1 62W )�W;M0(N1; x2)=̂fx2 :=M0g (x2 62W )�W;M0M 00(N1N 01; N2N 02)=̂�W;M0(N1; N2) [ �W;M 00(N 01; N 02)�W;�x�M0(�x �N1; �x �N2)=̂�W[fxg;M0(N1; N2)�W;dM0(dN1; dN2)=̂�W;M0(N1; N2)�W; N �fx1:=M1;:::;xn:=Mng � N � fx1 := N11; : : : ; xn := Nn1g;: : :N � fx1 := N12; : : : ; xn := Nn2g�=̂Snj=1 �W;Mj (Nj1; Nj2)Notie that unions of substitutions are well-de�ned beause we assume N1 andN2 are linear terms away from W (i.e., no two distint subterms share anyfree variable exept possibly for variables in W ).Now, generalize the laim as follows. Assume that the ommon instane M0of N1 and N2 away from W is M0 = N1�1 = N2�2 with dom �1 = fv(N1),dom �2 = fv(N2). Assume also that for every variable z 2 dom �i suh that y1is free in z�i then y1 = z�i, for every i 2 f1; 2g. Then an easy indution onterms shows that for every variable y 2 fv(N1_WN2)nW suh that y1 is free iny�W;M0(N1; N2), then y�W;M0(N1; N2) = y1. The ruial ases are the �rst twoof the de�nition, whih are symmetri. In partiular in the �rst ase, assumeN1 = x1 62 W . By assumption x1�1 = N2�2 = M0; then �W;M0(x1; N2) =fx1 := M0g is �1 restrited to x1, therefore indeed y�W;M0(N1; N2) = y1,whatever y may be.The laim follows by taking W = ;.Proposition 36 (Projetion). If � is boxed, then for any � � �, there is anaugmented simpliial map ��?, projetion onto �?, from S4 [� ` F ℄ to its sub-a.s.set �?, whih oinides with the identity on �?.



Homology, Homotopy and Appliations, vol. ?(?), 2001 34Proof. Let us �rst de�ne ��? on 0-simplies. Using Proposition 30, de�ne ��?( N ��) as the in�mum dS of the set S of elements M 2 �? suh that M _� N ��. Observe that, sine � is boxed, N� is well-typed, hene is a valid 0-simplex.Moreover, it is lear that N� 2 �?, and N� _� N � �. So S is not empty,therefore dS exists and is a 0-simplex of S4 [� ` F ℄. By Lemma 35 any �nite non-empty in�mum of elements of �? is in �?. By Proposition 30 S4 [� ` F ℄ is �nite,so S is a �nite non-empty in�mum of elements of �?. So ��?( N � �) = dS is in�?.If N �� is already in �?, then it is in S. SineM _� N �� for everyM in S byonstrution, N �� is the minimal element of S, hene N �� = dS = ��?( N ��).So ��? indeed oinides with the identity on �?.To show that ��? extends to an a.s. map from S4 [� ` F ℄ to �?, it remains toshow that ��? preserves omponents (obvious) and ontiguity (for dimensions > 1).As far as the latter is onerned, let M1 _� M2 be 0-simplies in S4 [� ` F ℄. SineM1 _� M2, fM 2 �?jM _� M1g � fM 2 �?jM _� M2g, so dfM 2 �?jM _�M1g_� dfM 2 �?jM _� M2g. That is, ��?(M1)_� ��?(M2).The projetion onstrution an be used to show a onnetion between the syn-tati funtion spae S4 [� ` F � G℄ and Homb�(S4 [� ` F ℄;S4 [� ` G℄). The �rstdiretion is easy:De�nition 37 (Syntati appliation ?). The syntati appliation map ? fromS4 [� ` F � G℄�S4 [� ` F ℄ to S4 [� ` G℄ (written in�x) is de�ned by M?�1N=̂MN ,?q=̂M�q+1?�1.Lemma 38. For every substitutive funtion f from [� ` F1℄ � : : : � [� ` Fn℄ to[� ` F ℄, the family of funtions (�q+1f)q>�1 is an a.s. map from S4 [� ` F1℄� : : :�S4 [� ` Fn℄ to S4 [� ` F ℄.Proof. Write fq for �q+1f . Reall (Lemma 16) that, as soon as f is substitutive,then �f Æ�g = �(f Æ g).Let M1 2 S4 [� ` F1℄q, . . . , Mn 2 S4 [� ` Fn℄q. For any i with 0 6 i 6 q,�iq(fq(M1; : : : ;Mn)) = �id(�q+1f(M1; : : : ;Mn)) = �i(d Æ �q+1�if)(M1; : : : ;Mn).So �iq Æ fq = �i(d Æ�q+1�if). Butd(�q+1�if(N1; : : : ; Nn)) = d �q�if(dx1; : : : ; dxn) � fx1 := N1; : : : ; xn := Nng� �q�if(dx1; : : : ; dxn)fx1 := N1; : : : ; xn := Nng= �q�if(dN1; : : : ; dNn) (sine f is substitutive)so d Æ�q+1�if = �q�if Æ d. Therefore �iq Æ fq = �i(d Æ�q+1�if) = �i(�q�if Æ d) =�qf Æ�id = fq�1 Æ �iq (using the fat that �q�if is substitutive).Similarly, we laim that s0q(�k+1f(N1; : : : ; Nn)) � �k+2f(s0qN1; : : : ; s0qNn). Itwill follow that siq Æ fq = fq+1 Æ siq. The laim is proved by indution on k > 0. If



Homology, Homotopy and Appliations, vol. ?(?), 2001 35k = 0, thens0q(�f(N1; : : : ; Nn)) = x � fx := f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nngg� f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nngwhile�2f(s0qN1; : : : ; s0qNn)= �f(dx1; : : : ; dxn) � fx1 := s0qN1; : : : ; xn := s0qNng= f(dz1; : : : ; dzn) � fz1 := dx1; : : : ; zn := dxngfx1 := y1 � fy1 := N1g; : : : ; xn := yn � fyn := Nngg� f(dz1; : : : ; dzn) � fz1 := d y1 ; : : : ; zn := d yn g � fy1 := N1; : : : ; yn := Nng� f(dz1; : : : ; dzn) � fz1 := y1; : : : ; zn := yng � fy1 := N1; : : : ; yn := Nng= f(dy1; : : : ; dyn) � fy1 := N1; : : : ; yn := Nng (by �-renaming)In the indutive ase, s0q(�k+1f(N1; : : : ; Nn)) = s0q(�(�kf)(N1; : : : ; Nn))� �2(�kf)(s0qN1; : : : ; s0qNn) (by the above, replaing f by �kf) = �k+2f(s0qN1;: : : ; s0qNn), as desired.Corollary 39. The syntati appliation map ? is an a.s. map.The following shows how we may ompute ?:Lemma 40. Let M 2 S4 [� ` F � G℄q, N 2 S4 [� ` F ℄q be �-long normal:M=̂ : : : M1 � �q : : : � �1 � �0
N=̂ : : : N1 � �0q : : : � �01 � �00Then, provided dom �i \ dom �0i = ; for every i, 0 6 i 6 q,M ?q N � : : : M1N1 � (�q; �0q) : : : � (�1; �01) � (�0; �00)Proof. This is lear if q = �1. If q = 0, M ?0 N = M1N1 � (�0; �00) by Lemma 18.Otherwise, this follows by the q = 0 ase, using Theorem 29.From Corollary 39, it follows that appliation is uniquely determined by its valueson omponents (simplies of dimension �1) and points (dimension 0). It also followsthat �(?) is an a.s. map from S4 [� ` F � G℄ to Homb�(S4 [� ` F ℄;S4 [� ` G℄).



Homology, Homotopy and Appliations, vol. ?(?), 2001 36There is a kind of onverse to syntati appliation. Intuitively, in the �-alulus(the non-modal ase), not only an you apply a term M to a term N , you an alsobuild �x �M from M : this term �x �M is suh that, one applied to N , you getMfx := Ng. We an do almost the same thing here, exept M has to be in someplane for this to work.Proposition 41. For any 0-simplex P in any a.s. set, de�ne (P )q by(P )�1=̂�00P (P )0=̂P (P )q+1=̂s(P )q (q > 0)Say that a q-simplex M of S4 [�; x : �F ` G℄ is abstratable on x if and only if�0M an be written as M0fy := dxg for some term M0 suh that �; y : F `M0 : Gis typable (in partiular, x is not free in M0), and M is in the plane (x : �F )? ofS4 [�; x : �F ` G℄.Then there is an a.s. map from the sub-a.s. set of terms M in S4 [�; x : �F ` G℄that are abstratable on x to terms �xq �M , suh that (�xq �M) ?q (x)q �M .Proof. Note that in syntati a.s. sets as studied here, we may de�ne (P )q moresynthetially as : : : dP : : : , where dP is enlosed in q + 1 boxes.Case q = 0. Let us de�ne �xq �M when q = 0. Write the �-long normal formof M as M1 � �. Sine M is in (x : �F )?, for every free variable z of M1 suhthat x is free in z�, z� = x. Let x1, . . . , xk be those free variables of M1 suhthat x1� = : : : = xk� = x. The restrition �� of � to the remaining variables mapsvariables to terms where x is not free.Moreover, by assumption M1� = M0fy := dxg, so x only ours as diret argu-ment of d inM1�. By the de�nition of x1, . . . , xk, there is a termM2, obtained fromM1 by replaing eah dxi by y, suh that M2�� = M0. Moreover, by onstrutionM2 is �-long normal of type G under �; y : F , so:�x0 �M=̂ �y �M2 � �� (15)is a 0-simplex of the desired type. This is also �-long normal sine fv(�y �M2) =fv(M2) n fyg = (fv(M1) n fx1; : : : ; xkg [ fyg) n fyg = fv(M1) n fx1; : : : ; xkg =dom � n fx1; : : : ; xkg = dom ��, and �y �M2 is linear sine every free variable in M2exept possibly y ours exatly one.We hek that (�x0 �M) ?0 (x)0 �M :(�x0 �M) ?0 (x)0 = dz(dz0) � fz := �x0 �M; z0 := (x)0g� d �y �M2 (d dx ) � (��; fx := xg) (by ( 2 ))� (�y �M2)(dx) � (��; fx := xg) (by (d))� M2fy := dxg � (��; fx := xg) (by (�))� M1 � (��; fx1 := x; : : : ; xk := xg) (by (tr))= M1 � � =M



Homology, Homotopy and Appliations, vol. ?(?), 2001 37General Case. To extend �xq �M to q = �1, use Proposition 31. To extendthis to q > 1, hek that M 7! �x0 �M is _�-monotoni and use Theorem 29.Assume indeed M _= M 0 are 0-simplies, where M=̂ M1 � � and M 0=̂ M 01 � �0.Then there is a 1-simplex N � #1 �#0 suh that N#1 =M1, #0 = �, and N =M 01,#1 �#0 = �0. In other words, there is a 1-simplex M 01 � #1 �� suh thatM 01#1 =M1and #1 � � = �0.Sine M is in (x : �F )?, let x1, . . . , xk be the free variables of M1 suh thatxi� = x, 1 6 i 6 k, as above. Similarly, let x01, . . . , x0k0 be the free variables of M 01suh that x0i0�0 = x, 1 6 i0 6 k0.Observe that for every i0 with 1 6 i0 6 k0, x0i0#1 is suh that (x0i0#1)� = x0i0#1� =x0i0�0 = x, so: (a) x0i0#1 is some xi, 1 6 i 6 k. Conversely, if xi is free in somez0#1, z0 2 dom#1, then x is free in z0#1� = z0�0, so z0 is some x0i0 . In brief: (b) ifxi 2 fv(z0#1), z0 2 dom#1, then z0 = x0i0 for some i0. So we may write #1 as thedisjoint union of the restrition #�1 of #1 to dom#1 n fx01; : : : ; x0k0g with a one-to-one(by (b)) substitution mapping eah x0i0 to some xi (by (a)). In partiular, k0 = kand without loss of generality, we may assume x0i#1 = xi for every i, 1 6 i 6 k.Moreover, by (b) no xi is free in any z0#�1, z0 2 dom#�1.Let �� be the restrition of � to fv(M1)nfx1; : : : ; xkg, �0� be that of �0 to fv(M 01)nfx01; : : : ; x0kg. Let M2 be obtained from M1 by replaing eah dxi by y, and M 02 beobtained from M 01 by replaing eah dx0i by y. Finally, letP =̂ �y �M 02 � #�1 � ��We �rst laim that P is a valid 1-simplex. Indeed, �y �M 02 is linear; fv(�y �M 02) =fv(M 02) n fyg = fv(M 01) n fx01; : : : ; x0kg = dom#1 n fx01; : : : ; x0kg = dom#�1; �y �M 02 �#�1 is linear, sine M 01 � #1 is; and fv( �y �M 02 � #�1) = Sz02fv(�y�M 02) fv(z0#�1) =Sz02fv(M 01)nfx01;:::;x0kg fv(z0#�1) = Sz02fv(M 01) fv(z0#1) n fx1; : : : ; xkg (sine #1 is #�1 ℄fx01 := x1; : : : ; x0k := xkg and no xi is free in any z0#�1) = fv( M 01 �#1)nfx1; : : : ; xkg= dom � n fx1; : : : ; xkg = dom ��.We then laim that �11P = �x0 �M and �01P = �x0 �M 0.For the �rst laim, notie thatM 02#�1 is obtained fromM 01#�1 by replaing eah dx0iby y, so M 02#1 is obtained fromM 01#1 by replaing eah dxi by y. SineM 01#1 =M1and M2 is obtained by replaing eah dxi in M1 by y, it follows that M 02#1 = M2.Therefore �11P = (�y �M 02)#�1 � �� = �y �M 02#1 � �� = �y �M2 � �� = �x0 �M .For the seond laim, sine #1 � � = �0 and #1 = #�1 ℄ fx01 := x1; : : : ; x0k := xkg,� = �� ℄ fx1 := x; : : : ; xk := xg, �0 = �0� ℄ fx01 := x; : : : ; x0k := xg, and no xi isfree in any z0#�1, z0 2 dom#�1, it follows that #�1 � �� ℄ fx1 := x; : : : ; xk := xg =�0� ℄ fx1 := x; : : : ; xk := xg, whene #�1 � �� = �0�. So �01P = �y �M 02 � (#�1 � ��) =�y �M 02 � �0� = �x0 �M 0.Therefore M _= M 0. It follows that M 7! �x0 �M is indeed _�-monotoni,hene extends to a unique a.s. map in every dimension.



Homology, Homotopy and Appliations, vol. ?(?), 2001 38It an be shown that �(?)q is injetive for every q, and we leave this to the reader.But we an say more, at the prie of onsidering slightly looser a.s. sets:De�nition 42 (S4 [F ℄). Let (S4 [F ℄)q, q > �1, be the set of all �-equivalene lassesof �S4-terms M suh that � ` M : �q+1F is derivable for some boxed ontext �.This gives rise to an a.s. set S4 [F ℄=̂(S4 [�℄F; (�iq)06i6q; (siq)06i6q)Then, the ? map extends naturally to an a.s. map, written �, from S4 [F � G℄�S4 [F ℄ to S4 [G℄.Note that we have de�ned simplies as typable �S4-terms, not typing derivations.The di�erene an be illustrated as follows: the variable x for instane is one �S4-term, while all typing derivations of �; x : F ` x : F by (Ax) when � varies are alldistint. This will be made learer, using ategorial language, in Proposition 65.The injetivity of �(�) yields an embedding of S4 [F � G℄ into Homb�(S4 [F ℄;S4 [G℄). We shall show that this an be turned into the inlusion part of a strongretration of Homb�(S4 [F ℄;S4 [G℄) onto S4 [F � G℄. First, we note some generalresults:De�nition 43 (Hull). Let K be an a.s. set, and A � K�1. The hull A is the a.s.subset of K whose q-simplies are all q-simplies x of K suh that �0x 2 A.This inherits fae and degeneray operators from K. Every a.s. set splits as asum of hulls:Proposition 44. Every a.s. set K splits as a sum `x2K�1 fxg. In partiular, forevery A � K�1, K = Aq (K�1 nA).The following lemma is the �rst one where the hange from S4 [� ` F ℄ to S4 [F ℄is required:Lemma 45. Let A be any subset of S4 [F ℄�1, and assume that there is a 0-simplexP in A.Then there is a strong retration rA of S4 [F ℄ onto A. In other words, rA is ana.s. map suh that, for every M 2 A, rA(M) =M .Proof. For any q-simplex M of S4 [F ℄, then either M is in �A�q and we let rA(M)be M , or M is in �S4 [F ℄�1 nA�q by Proposition 44, and we let rA(M) be (P )q 2S4 [F ℄q. Note that rA(M) is always in the hull of A.Clearly, for every M 2 A, rA(M) = M . It remains to show that rA is a.s.If M is in �A�q, and 0 6 i 6 q, then �iqM is in �A�q�1, so �iq(rA(M)) = �iqM =rA(�iqM). OtherwiseM is in �S4 [F ℄�1 nA�q, so �iqM is in �S4 [F ℄�1 nA�q�1, there-fore �iq(rA(M)) = �iq(P )q � (P )q�1 = rA(�iqM). Similarly for siq.Proposition 46. S4 [F � G℄ is a strong retrat of Im�(�)�1.More preisely, there is an a.s. map R1F�G from Im�(�)�1 to S4 [F � G℄ suhthat R1F�G Æ �(�) = idS4 [F�G℄.



Homology, Homotopy and Appliations, vol. ?(?), 2001 39Proof. For every boxed ontext �, �x some variable �� outside the domain of �.Let f be any q-simplex of Im�(�)�1. That is, �rst, f 2 Homb�(S4 [F ℄;S4 [G℄)q,and �0f = �(�)�1(M) for some term M and some boxed ontext � suh that� `I M : F � G is derivable in BN0. Sine M is �-long normal of type F � G, Mmust be of the form �y �M1, with �; y : F `I M1 : G derivable in BN0. To sum up:�(�)�1(�y �M1) = �0f (16)Now Appq(f; (��)q) is a q-simplex of S4 [G℄. Its omponent is �0(Appq(f; (��)q)),whih equals App�1(�0f; d��) = App�1(�(�)�1(�y � M1); d��) (by (16)) = (�y �M1) ?q�1 d�� (by the ombinator equations, in partiular (l)) = (�y �M1)(d��) �M1fy := d��g.As far as typing is onerned, sine �; y : F `I M1 : G is derivable in BN0,�; �� : �F `M1fy := d��g is, too. So �0(Appq(f; (��)q)) is in S4 [�; �� : �F ` G℄�1,from whih it follows that Appq(f; (��)q) is in S4 [�; �� : �F ` G℄q.Using Proposition 36, let M 0=̂�(��:�F )?(Appq(f; (��)q)). This is an element ofS4 [�; �� : �F ` G℄q. Sine projetion is a.s., it preserves omponents, so �0(M 0) =�0(Appq(f; (��)q)) = M1fy := d��g. By onstrution M 0 is in (�� : �F )?, soM 0 = �(��:�F )?(Appq(f; (��)q)) is abstratable on ��. We may therefore use Propo-sition 41, and let: R1F�G(f)=̂�q�� � �(��:�F )?(Appq(f; (��)q)) (17)This is learly a.s., as a omposition of a.s. maps.Chek that R1F�G is a left inverse to �(�). It is enough to hek this in dimension0, by Theorem 29 and Proposition 31, sine R1F�G is a.s. So let f be any 0-simplexin Im(�(�)0), i.e., f = �(�)0(P ) with P 2 S4 [F � G℄0. Write P in a unique way asthe �-long normal form �y � P1 � �. Then:R1F�G(f) = �0�� � �(��:�F )?(App0(f; (��)0))= �0�� � �(��:�F )?(P �0 (��)0)= �0�� � �(��:�F )?( P1fy := d��g � �)= �0�� � P1fy := d��g � � (sine P1fy := d��g � � is in (�� : �F )?)= �y � P1 � � (by (15))= Pwhere for readability we have not onverted P1fy := d��g � � to its �-long normalform (P1fy := d��g is in general not linear in ��).Combining Lemma 45 with A=̂ Im(�(�)�1) and Proposition 46, we get:Corollary 47 (Strong Funtional Retration). S4 [F � G℄ is a strong retratof the a.s. set Homb�(S4 [F ℄;S4 [G℄): there is an augmented simpliial map RF�Gfrom Homb�(S4 [F ℄;S4 [G℄) to S4 [F � G℄ suh that RF�G Æ �(�) = idS4 [F�G℄.



Homology, Homotopy and Appliations, vol. ?(?), 2001 40Proof. Take RF�G as R1F�GÆrIm(�(�)�1). Lemma 45 applies beause there is indeeda 0-simplex in Im(�(�)�1), e.g., �(�)0(x), where x : �(F � G) ` x : �(F � G), sox 2 S4 [x : �(F � G) ` F � G℄0 � S4 [F � G℄0.5. Augmented Simpliial and Other ModelsThere is a natural interpretation of (non-modal) types and typed �-terms inthe ategory Set of sets and total funtions. Interpret base types as sets, interpretF � G as the set of all total funtions from F to G. Then �-terms, or more preiselyderivations of x1 : F1; : : : ; xn : Fn ` M : F , are interpreted as total funtionsfrom F1 � : : : � Fn to F . The variable xi gets interpreted as the ith projetion,appliation of M to N is interpreted as the funtion mapping g 2 F1 � : : :� Fn toM(g)(N(g)), and abstration �x �M : F � G is interpreted as the funtion mappingg 2 F1 � : : : � Fn to the funtion mapping x 2 F to M(g; x) (urrying). This isarguably the intended semantis of �-terms.In partiular, if M and N are onvertible �-terms by the (�) and (�) rules(they are ��-equivalent), then they have the same interpretation. However, thisinterpretation is far from being onto: note that there are only ountably many �-terms, while as soon as some base type A gets interpreted as any in�nite set, A � Awill not be ountable, while (A � A) � A will neither be ountable nor even of theardinality of the powerset of N .Nonetheless, it an be proved that this interpretation is equationally omplete:Theorem 48 ([16℄). If the two typed �-terms M and N , of the same type F , havethe same set-theoreti interpretation for every hoie of the interpretation of basetypes, then M and N are ��-equivalent.In fat, there is even a �xed set-theoreti interpretation suh that, if M and Nhave the same value in this interpretation, then they are ��-equivalent. Extendingthis result will be the topi of Setion 5.3 and subsequent ones.5.1. The (�;d; s) Comonad on b�, and Strit CS4 CategoriesIn the S4 ase, given the fat that S4 [� ` F ℄ is an augmented simpliial set, it isnatural to investigate the extension of the above onstrutions to intuitionisti S4on the one hand and the ategory of augmented simpliial sets on the other hand.In general, intuitionisti S4 proofs an be interpreted in any CCC with a monoidalomonad. While the CCC struture of b�, aounting for the non-modal part of S4proofs, was realled in Setion 4, the monoidal omonad we use is:De�nition 49 (� Comonad in b�). For every a.s. set K, let �K denote thea.s. set suh that (�K)q=̂Kq+1, �i(�K)q=̂�i+1Kq+1, si(�K)q =̂si+1Kq+1. For any a.s. mapf : K ! L, let �f : �K ! �L be suh that (�f)q=̂fq+1. Let d : �K ! K ands : �K ! �2K be the a.s. maps suh that (d)q=̂�0Kq+1 and (s)q=̂s0Kq+1 respetively,q > �1.CCCs with a monoidal omonad have already been argued to be the properategorial models of intuitionisti S4 [7℄. While Bierman and de Paiva only show



Homology, Homotopy and Appliations, vol. ?(?), 2001 41that (�), (�), and (d) are sound, it is easy to hek that the other equalities (g),(tr), ( � ) and (��) are also sound.It is easy to hek that the monoidal omonad of De�nition 49 satis�es �1 = 1,�(K �L) = �K ��L (up to natural isomorphisms that we will not make expliit,for readability purposes), and the following so-alled strit monoidal omonad equa-tions hold:(n) �id = id (o) �(f Æ g) = �f Æ�g (p) d Æ�f = f Æ d (q) s Æ�f = �2f Æ s(r) ��1 = �1 (s) d Æ s = id (t) �d Æ s = id (u) �s Æ s = s Æ s(v) ��2 = �2 (w) �hf; gi = h�f;�gi (x) d Æ hf; gi = hd Æ f;d Æ gi(y) s Æ hf; gi = hs Æ f; s Æ giDe�nition 50 (Strit CS4 Category). A strit CS4 ategory is any artesian-losed ategory C together with a strit monoidal omonad (�;d; s).Strit CS4 ategories are the ategories in whih we an interpret typed �S4-terms. Bierman and de Paiva onsidered non-strit CS4 ategories [7℄. We shallonly need the strit variant; this will make our exposition simpler. In partiular b�with the omonad of De�nition 49 is a strit CS4 ategory.The � funtor on b� is related to Duskin and Illusie's d�ealage funtor � [43℄.Standardly, d�ealage is dual to �. For every a.s. set K, the onverse �K of K isobtained by letting ( �K)q=̂Kq, �i�Kq=̂�q�iKq , si�Kq=̂sq�iKq . That is, �K is obtained from Kby reversing the order of faes. Then �K is the onverse of � �K. If �K in a sensemeans \in every future, K", then it is natural to think of �K as \in every past,K". As announed in Setion 2, we shall leave the task of investigating suh othermodalities to a future paper.5.1.1. Topologial ModelsThere are many other interesting strit CS4 Categories. Of interest in topology in theategory CGHaus of ompatly generated topologial spaes, a.k.a., Kelley spaes([33℄ VII.8). (It is tempting to use the ategory Top of topologial spaes, howeverTop is not a CCC. It has sometimes been argued that CGHaus was the rightategory to do topology in.) Reall that a Kelley spae is a Hausdor� topologialspae X whose losed subsets are exatly those subsets A whose intersetion withevery ompat subspae of X is losed in X. CGHaus has Kelley spaes as objetsand ontinuous funtions as morphisms. Moreover, for every Hausdor� spae X,there is a smallest topology ontaining that of X that makes it Kelley. The resultingKelley spae K(X) is the kelley�ation of X, and is obtained by adding as losedsets every A � X whose intersetion with every ompat subspae of X is losed inX. The terminal objet 1 in CGHaus is the one-point topologial spae, while theprodut of X and Y is the kelley�ation of the produt of X and Y as topologialspaes, and the internal hom HomCGHaus(X;Y ) is the spae of all ontinuousfuntions from X to Y with the ompat-open topology. We may equip CGHauswith a struture of strit CS4 ategory as follows:De�nition 51 (� Comonad in CGHaus). For every topologial spae X, theoone �X over X is the disjoint sum `x02X �x0X, where the �x0X is the spae



Homology, Homotopy and Appliations, vol. ?(?), 2001 42of all ontinuous funtions � from [0; 1℄ to X suh that �(0) = x0, with the ompat-open topology.For every ontinuous funtion f : X ! Y , let �f : �X ! �Y be the funtionmapping eah � 2 �X to f Æ � 2 �Y .The ounit d maps every � 2 �X to �(1) 2 X.The omultipliation s maps every � 2 �X to the map t 7! (t0 7! �(tt0)) in�2X.This omonad is in fat related to the d�ealage funtor, through singular simplexand geometri realization funtors.In terms of proesses, we may think of � 2 �X as some proess that starts attime 0 and will produe a value at time 1. The ounit d is the operator that extratsthe �nal value of the proess � as argument.We have alled this a oone omonad beause it an be shown that the � funtoradmits the familiar one funtor as a left adjoint. This one funtor in additionde�nes a strong monad, and is the topologial ounterpart of the � modality oftense logis, meaning \in some past" in Kripke semantis. A.s. sets also admit suha one monad, left adjoint to � (see e.g., [14℄).Proposition 52. The onstrution (�;d; s) of De�nition 51 is a strit monoidalomonad on CGHaus, making it a strit CS4 ategory.Proof. First show that �x0X is Kelley. Sine [0; 1℄ is ompat, it is ompatlygenerated, therefore the spae of ontinuous funtions from [0; 1℄ to X is Kelley:this is HomCGHaus([0; 1℄; X). (In general HomCGHaus(Y;X) is the kelley�ationof the spae of ontinuous funtions from Y to X, not the spae itself.) Sine fx0gis losed in X, and the projetion � 7! �(0) is ontinuous, �x0X is losed inHomCGHaus([0; 1℄; X). As a losed subset of a Kelley spae, �x0X is then Kelley,too. Sine every oprodut of Kelley spaes is also Kelley, it follows that �X isKelley.Next we must show that �f is ontinuous whenever f : X ! Y is. We �rst showthe auxiliary:Claim A. For every funtion f : X ! �Y , f is ontinuous if and only if, for everyonneted omponent C of X:(i) for every x; y 2 C, f(x)(0) = f(y)(0), and(ii) the restrition fjC of f to C is ontinuous from C to HomCGHaus([0; 1℄; Y ).Only if: sine C is onneted, f(C) is onneted. But eah �x0X is both open andlosed in �X by onstrution, so f(C) � �x0X for some x0 2 X. By de�nitionof �x0X, this means that f(x)(0) = x0 for every x 2 C, whene (i). On the otherhand, sine f is ontinuous, fjC is also ontinuous from C to �x0X for the x0 above.Sine every subset of �x0X that is losed in HomCGHaus([0; 1℄; Y ) is also losedin �x0X by de�nition, (ii) holds. (We use the fat that f is ontinuous if and onlyif the inverse image of every losed set is losed.)If: let x0 be f(x)(0) for some (and therefore all, by (i)) x 2 C. Then f(C) ��x0X. By (ii), and sine every losed subset of�x0X is losed inHomCGHaus([0; 1℄;Y ), fjC is ontinuous from C to �x0X, hene to �X. For every open O of �X,



Homology, Homotopy and Appliations, vol. ?(?), 2001 43f�1(O) is the union of f�1jC (O) when C ranges over the onneted omponents of X,and is therefore open. So f is indeed ontinuous from X to �Y . Claim A is proved.Now let f : X ! Y be ontinuous. Let C be a onneted omponent of �X.Sine every �x0X is both open and losed in �X, C is inluded in some �x0X. Sofor every �; � 2 C, �f(�)(0) = f(�(0)) = f(x0) = f(�(0)) = �f(�)(0), therefore(i) holds. Moreover fjC is trivially ontinuous from C to HomCGHaus([0; 1℄; Y ),sine f Æ is a ontinuous operation (this is the morphism �(f ÆApp) in CGHaus,whih is a CCC). So Claim A applies, and �f is ontinuous.Let us now show that d : �X ! X is ontinuous. Let F be any losed subsetof X, then d�1(F ) = f� 2 �Xj�(1) 2 Fg = Sx02Xf� 2 �x0Xj�(1) 2 Fg =Sx02Xf� 2 HomCGHaus([0; 1℄; X)j�(0) = x0 ^ �(1) 2 Fg. Sine the funtionsfrom HomCGHaus([0; 1℄; X) to X mapping � to �(0) and �(1) respetively areontinuous, eah f� 2 HomCGHaus([0; 1℄; X)j�(0) = x0 ^ �(1) 2 Fg is losed inHomCGHaus([0; 1℄; X); hene in �x0X. Sine a set is losed in a sum spae if andonly if its intersetion with every summand is losed in the summand, d�1(F ) islosed.Let us show that s : �X ! �2X is ontinuous. Let C be any onneted ompo-nent of �X. In partiular C � �x0X for some x0. So for every � 2 C, �(0) = x0,therefore s(�)(0) is the map t0 7! �(0t0), i.e., the onstant map t0 7! x0. As thisis independent of �, (i) holds. On the other hand, let F be any losed subset ofHomCGHaus([0; 1℄;�X). Then, letting f0 be the onstant map t0 7! x0, s�1jC (F ) =s�1jC (F \�f0�X) = s�1jC (F \�f0�x0X) is losed in HomCGHaus([0; 1℄; X). Indeed�f0�x0X is losed inHomCGHaus([0; 1℄;HomCGHaus([0; 1℄; X)), and sjC is ontin-uous from HomCGHaus([0; 1℄; X) to HomCGHaus([0; 1℄;HomCGHaus([0; 1℄; X)),as a omposition of ontinuous maps. So s�1jC (F ) is also losed in C, hene (ii)holds. By Claim A s is ontinuous.We now laim that � is strit monoidal. (In passing, this is obvious if you aeptour previous laim that � has a left adjoint, the one funtor �, sine right adjointspreserve limits.) The terminal objet ! in CGHaus is any singleton f�g; �f�g isthe spae of all paths from � to � in f�g, and is therefore also a singleton set. Onthe other hand, produts are slightly harder to deal with. Let X � Y denote theprodut of X and Y as topologial spaes; then X � Y is K(X � Y ). We laim thatthe pair of funtions: F : �(X � Y )! �X ��Y 7! (�1 Æ ; �2 Æ )G : �X ��Y ! �(X � Y )(�; �) 7! (t 7! (�(t); �(t)))de�nes a natural isomorphism between �(X � Y ) and �X and �Y . That they areinverse of eah other is lear, it remains to show that they are ontinuous. For F ,sine � is a produt in CGHaus, it is enough to show that  7! �1 Æ is ontinuousfrom �(X � Y ) to �X, and similarly for  7! �2 Æ . Apply Claim A: let C be anyonneted omponent of �(X � Y ). Sine eah �(x0;y0)(X � Y ) is both open andlosed in �(X�Y ), C is inluded in some �(x0;y0)(X�Y ) for some x0 2 X, y0 2 Y .



Homology, Homotopy and Appliations, vol. ?(?), 2001 44So  7! �1 Æ maps any  2 C to some path whose value at 0 is x0, and is thereforeindependent of : (i) holds. And (ii) is obvious, so F is ontinuous. For G, this issubtler, and we require to prove the following �rst:Claim B. Every onneted omponent C of X � Y is a subset of some produtA � B, where A is a onneted omponent of X and B a onneted omponent ofY . Indeed, every onneted omponent of X, resp. Y , is both open and losed in X,resp. Y . So every produt A � B is both open and losed in X � Y , when A and Bare onneted omponents. Sine the topology of X �Y is �ner than that of X �Y ,A � B is also both open and losed in X � Y . Let S be the set of pairs (A;B) ofonneted omponents suh that C \ (A �B) 6= ;. Note that the union of all A �Bfor (A;B) 2 S overs C. Sine C \ (A � B) is both open and losed in S and C isonneted, there an be at most one pair A;B of onneted omponents suh thatC \ (A �B) 6= ;. It follows that C � A �B. Claim B is proved.To show that G is ontinuous, apply Claim A. For every onneted omponent Cof �X��Y , using Claim B, C is inluded in some produt of onneted omponentsof �X and �Y respetively. In partiular C � �x0X � �y0Y for some x0 2 X,y0 2 Y . It follows that for every (�; �) 2 C, G(�; �)(0) = (�(0); �(0)) = (x0; y0)is independent of � and �. So (i) holds. Also, (ii) holds trivially. Therefore G isontinuous.It remains to hek equations (n){(y), whih are easy and left to the reader.It is instruting to see that if X is a spae of points, �X is a spae of paths,then �2X is a spae of singular 2-simplies, and in general �qX will be a spae ofsingular q-simplies.Let's examine �2X �rst. This is a spae of paths �, suh that eah �(t), t 2 [0; 1℄is itself a path, so � is a kind of square, up to deformation. However, � is ontinuousand [0; 1℄ is onneted, so the range of � is onneted as well. But the range of � is asubset of �X, whih is the diret sum of spaes �x0X, x0 2 X. In any diret sum oftopologial spaes, every summand is both open and losed, hene every onnetedsubspae is in fat a subspae of some summand. In our ase, this means that therange of � is a subset of some �x0X. In other words, �(t)(0) = x0 for every t, sothe range of � assumes the shape of a triangle, up to deformation: see Figure 6.Note that this phenomenon is entirely due to the strange topology we take on�X, whih separates ompletely paths � that do not have the same �(0). Had wejust taken �X to be the set of paths in X with the ompat-open topology, �qXwould have been a set of ubes, not simplies.In general, de�ne XSingq(X), for q > �1, as the set of all extended singularq-simplies in X:De�nition 53 (Extended Singular Simplies, XSing). For every q > �1,the extended singular q-simplies are the ontinuous maps from �+q to F , where�+q=̂f(t0; : : : ; tq) j t0 > 0; : : : ; tq > 0; t0 + : : : + tq 6 1g is the standard extendedq-simplex.�+�1 is the singleton ontaining only the empty tuple (). Otherwise, �+q isa polyhedron whose verties are (0; : : : ; 0) �rst, and seond the points e0, . . . , eq,
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Figure 6: Extended singular simplies
where ei=̂(t0; : : : ; tq) with ti = 1 and tj = 0 for all j 6= i. This is analogous tothe more usual notion of standard q-simplies �q, for q > 0, whih are the sub-polyhedra with verties e0, . . . , eq, namely �q=̂f(t0; : : : ; tq) j t0 > 0; : : : ; tq >0; t0+ : : :+ tq = 1g. The singular q-simplies of X are the ontinuous maps from �qto X. See Figure 7 for an illustration of what the standard simplies, and standardextended simplies, look like.
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Figure 7: Standard and extended simplies
The topology on XSingq(X) is given as follows. When q = �1, XSingq(X) isisomorphi to X. Otherwise, XSingq(X) is viewed as the topologial sum of allspaes XSingq (X)=̂ff 2 HomCGHaus(�+q; X) j fj�q = g, when  ranges overall singular q-simplies of X. We let the interested reader hek that XSingq(X) isin fat homeomorphi to �qX.Note that (extended) simplies over a spae of funtions X ! Y also have anelegant geometri interpretation. While X ! Y is a set of ontinuous funtions,�(X ! Y ) is a set of ontinuous paths from funtions f to funtions g in X ! Y ,so �(X ! Y ) is a set of homotopies between ontinuous funtions from X to Y .The elements of �q(X ! Y ), q > 1, are then known as higher-order homotopies:�2(X ! Y ) is the set of homotopies between homotopies, et. This is a lassialonstrution in algebrai topology [36℄.



Homology, Homotopy and Appliations, vol. ?(?), 2001 46In terms of proof theory, there is a translation of intuitionisti proofs to S4 proofswhih replaes every base type A by �A and every impliation by a orrespondingboxed impliation. At the level of proof terms, this yields the SKInT alulus of[19℄, whih interprets (slightly more than) Plotkin's all-by-value �-alulus [42℄.The present onstrutions give rise to a model in terms of paths (elements of basetypes) and homotopies (impliations) for SKInT. This is left to the reader.5.1.2. Models in Categories of Orders, Cpos, and CategoriesMore ogent to omputer siene are models of the �-alulus based on ompletepartial orders. Here, too, we may de�ne strit monoidal omonads as follows. Firstreall thatOrd, the ategory whose objets are partial orders and whose morphismsare monotoni funtions, is a CCC. Similarly, Cat, the ategory of small ategories,is a CCC. The ategory Cpo of omplete partial orders (pos) has pos as objetsand ontinuous funtions as morphisms. Reall that a po is any partial order inwhih every in�nite inreasing hain x0 6 x1 6 : : : 6 xi 6 has a least upper bound.(We don't require our pos to be pointed, i.e., to have a least element.) A funtion isontinuous provided it preserves all least upper bounds; in partiular, a ontinuousfuntion is monotoni. Again, Cpo is a CCC. A variant is the ategory DCpo ofdireted pos, where it is instead required that all direted subsets have a least upperbound; a direted subset E is one where any two elements in E have a least upperbound in E. Continuous funtions are then required to preserve least upper boundsof all direted sets. Again, DCpo is a CCC.De�nition 54 (� Comonad in Ord, Cpo, DCpo). For every partial order(X;6), let �X be the set of all pairs (x0; x1) of elements of X suh that x0 6 x1,ordered by (x0; x1) 6 (y0; y1) if and only if x0 = y0 (not x0 6 y0) and x1 6 y1. Forevery monotoni funtion f : X ! Y (resp. ontinuous), let �f map (x0; x1) to(f(x0); f(x1)).The ounit d : �X ! X maps (x0; x1) to x1.The omultipliation s : �X ! �2X maps (x0; x1) to ((x0; x0); (x0; x1)).It is easily heked that this de�nes a strit monoidal omonad on Ord, Cpo,DCpo. As for the topologial ase, we may give a syntheti desription of �qX:this is isomorphi to the partial order (resp. po, resp. dpo) of all hains x�1 6x0 6 x1 6 : : : 6 xq of elements of X, ordered by:(x�1; x0; : : : ; xq) 6 (x0�1; x00; : : : ; x0q)if and only if x�1 = x0�1, x0 = x00, . . . , xq�1 = x0q�1, and xq 6 x0q. Just like iterating� in the topologial ase allowed us to retrieve a form of of singular simplex funtor,we retrieve a form of nerve funtor.In passing, we invite the reader to hek that there is also a one monad � inOrd, Cpo and DCpo: �X is X with a new bottom element added below everyonneted omponent of X. (Conneted omponents are the equivalene lasses ofthe symmetri losure of 6.) The unit X ! �X is the natural inlusion of orders.The multipliation �2X ! �X squashes the two additional bottoms of �2X to theone oming from �X. Again, this is a strong monad left adjoint to �.



Homology, Homotopy and Appliations, vol. ?(?), 2001 47We leave it to the reader to hek that similar onstrutions work in Cat: forevery small ategory C, let �C be the ategory of all morphisms of C; morphismsfrom X ! X0 to X ! X1 are all ommuting triangles:X
X0g � X1�In short, �C is the oprodut of all oslies over C. The ounit is given by: d is thefuntor mapping X ! X0 to X0, and the diagram above to the morphism X0 ! X1in C. Comultipliation maps every objet X ! X0 in C to the obvious ommutingtriangle X !! X0, and morphisms as given by the triangle above to ommutingtetrahedra: X � X2
X0g �

�
X1
f

�
5.2. Interpreting S4 Proofs into CCCs with Monoidal ComonadsFix an arbitrary strit CS4 ategory C, alling its strit monoidal omonad(�;d; s). Our prime example is b�, but we do not restrit to it here. We reusethe CCC notations of Setion 4 and the strit monoidal omonad notations of Se-tion 5.1, together with equations (a){(m) and (n){(y).Extend the set-theoreti interpretation of �-terms to an interpretation of formu-las as objets in C, and of terms as morphisms in C; this interpretation is shownin Figure 8. This is parameterized by an environment � mapping eah base typeA 2 � to some objet �(A). Our notations math standard meaning funtions indenotational semantis.We letX1�: : :�Xn=̂(: : : (1�X1)�: : :�Xn�1)�Xn, and hf1; : : : ; fni=̂hh: : : h!; f1i: : : ; fn�1i; fni. We atually make an abuse of language by onsidering that this isan interpretation of typed �S4-terms instead of of typing derivations.If � is x1 : F1; : : : ; xn : Fn, we also let C J�K � be the produt C JF1K � � : : : �C JFnK �.Lemma 55 (Soundness). The interpretation of Figure 8 is sound in every stritCS4 ategory C: if � `M : F is derivable, then C JMK � is a morphism from C J�K �to C JF K �; and if M � N then C JMK � = C JNK �.Proof. The typing part is immediate. For the equality part, standard arguments[10℄ show that: C J� `Mfx1 := N1; : : : ; xn := Nng : F K � (18)= C Jx1 : F1; : : : ; xn : Fn `M : F K �ÆhC J� ` N1 : F1K �; : : : ; C J� ` Nn : FnK �i



Homology, Homotopy and Appliations, vol. ?(?), 2001 48C JAK �=̂�(A) C JF � GK �=̂HomC(C JF K �; C JGK �) C J�F K �=̂�C JF K�C J� ` xi : FiK � =̂ �2 n�iz }| {Æ�1 Æ : : : Æ �1 where �=̂x1 : F1; : : : ; xn : FnC J� `MN : GK � =̂ App Æ hC J� `M : F � GK �; C J� ` N : F K �iC J� ` �x �M : F � GK � =̂ �(C J�; x : F `M : GK �)C J� ` dM : F K � =̂ d Æ C J� `M : �F K �C r� ` M � � : �Gz � =̂ �C J� `M : GK � Æ sÆhC J� ` N1 : �F1K �; : : : ; C J� ` Nn : �FnK �iwhere �=̂x1 : �F1; : : : ; xn : �Fn;�=̂fx1 := N1; : : : ; xn := NngFigure 8: Interpreting S4 proof terms
where the indiated sequents are derivable; and that:C J�; x : F `M : GK � = C J� `M : GK � Æ �1if x is not free in M . By standard but tedious aluluations, we then hek that ifM ! N then C JMK � = C JNK �, whih entails the seond laim.If we are allowed to vary the strit CS4 ategory C, then there are onverses toLemma 55. The idea is that we an always de�ne a syntati ategory C as follows:De�nition 56 (S4� Category). Let S4� be the ategory whose objets are ontextsmapping variables to types built on the set � of base types, and whose morphismsare: �=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmwhere � is a substitution suh that � `Mj : Gj for every j, 1 6 j 6 m, modulo �.The identity on � is the identity substitution id�=̂fx1 := x1; : : : ; xn := xng, andomposition � Æ �0 is substitution onatenation � � �0.This is a CCC with a strit monoidal omonad. The terminal objet 1 is theempty ontext, and the unique morphism � !�!1 is the empty substitution. Tode�ne produts, notie that ontexts are isomorphi up to renaming of variables.In other words, x1 : F1; : : : ; xn : Fn is isomorphi to x01 : F1; : : : ; x0n : Fn. Thisallows us to only de�ne � � �0 when � and �0 have disjoint domains. Then � � �0is the onatenation �;�0 of ontexts, and for any � ��!� and � ��!�0, h�; �0i is themorphism (�; �0). Projetions are restritions:�� �0 �1=̂fx1 := x1; : : : ; xn := xng � ��� �0 �2=̂fx01 := x01; : : : ; x0n0 := x0n0g � �0Given that � = x1 : F1; : : : ; xn : Fn and �0 = x01 : F 01; : : : ; x0n0 : F 0n0 , the internalhom objet HomS4�(�;�0) is the ontext z1 : F1 � : : : � Fn � F 01; : : : ; zn0 :



Homology, Homotopy and Appliations, vol. ?(?), 2001 49F1 � : : : � Fn � F 0n0 . Appliation HomS4�(�;�0)� �App�!�0 is built from syntatiappliation, as fx01 := z1x1 : : : xn; : : : ; x0n0 := zn0x1 : : : xng, while abstration is builtfrom �-abstration as follows. For every �� � ��!�0, where � and �0 are as above,and �=̂y1 : G1; : : : ; ym : Gm,
� f z1 := �x1; : : : ; xn � x01�;: : : ;zn0 := �x1; : : : ; xn � x0n0� g � HomS4�(�;�0)This only uses the non-modal part of S4, and in partiular only the omputationrules (�) and (�).The strit monoidal omonad (�;d; s) on S4� is de�ned using the S4 � modal-ity: on objets, �(x1 : F1; : : : ; xn : Fn) is de�ned as x1 : �F1; : : : ; xn : �Fn; onmorphisms, for any � as given in De�nition 56, �� is:�� ��=̂fy1 := �M1; : : : ; ym := �Mmg � ��where �M is Mfx1 := dx1; : : : ; xn := dxng for any M suh that � ` M : G isderivable. The ounit d is:�� d=̂fx1 := dx1; : : : ; xn := dxng� �while omultipliation is:�� s=̂fx1 := sx1; : : : ; xn := sxng� �2�Reall that sM is x � fx :=Mg.It trivially follows:

Proposition 57 (Existential Completeness). Let � map every base type A 2 �to the ontext z : A. If there is a morphism from S4� J�K � to S4� JF K � in S4� thenF is provable from �, i.e., there is a �S4-term M suh that � `M : F is derivable.
Proposition 58 (Evaluation Funtor). For every strit CS4 ategory C, andevery � : � ! C, C J K � extends � to a representation of strit CS4 ategories S4�to C.
Proof. For every morphism�=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg � y1 : G1; : : : ; ym : Gmde�ne C J�K � as hC J� `M1 : G1K �; : : : ; C J� `Mm : GmK �i. This is funtorial: in-deed C Jid�K � = h�2 Æ �m�11 ; : : : ; �2 Æ �1; �2i = id, and C J K � preserves ompositionby (18). This preserves artesian produts by onstrution.



Homology, Homotopy and Appliations, vol. ?(?), 2001 50This preserves �. Indeed,C J�� ` �M : �F K �= C r�� ` Mfx1 := dx1; : : : ; xn := dxng : �Fz �= �C J� `Mfx1 := dx1; : : : ; xn := dxng : F K �Æs Æ h�2 Æ �m�11 ; : : : ; �2 Æ �1; s Æ �2i= �C J� `Mfx1 := dx1; : : : ; xn := dxng : F K � Æ s= � �C J� `M : F K � Æ hd Æ �2 Æ �m�11 ; : : : ;d Æ �2 Æ �1;d Æ �2i� Æ s= �(C J� `M : F K � Æ d) Æ s= �C J� `M : F K � Æ�d Æ s = �C J� `M : F K � (by (t))So: C J��K � = hC J�� ` �M1 : �G1K �; : : : ; C J�� ` �MmK �i= h�C J� `M1 : G1K �; : : : ;�C J� `Mm : GmK �i= �C J�K � (by (w))C J K � preserves d:C JdK � = hC J�� ` dx1 : F1K �; : : : ; C J�� ` dxn : FnK �i= hd Æ �2 Æ �n�11 ; : : : ;d Æ �2 Æ �1;d Æ �2i= d Æ h�2 Æ �n�11 ; : : : ; �2 Æ �1; �2i = dC J K � preserves s. Indeed,C q� ` sM : �2Fy � = C q� ` x � fx :=Mg : �2Fy �= �C Jx : �F ` x : �F K � Æ s Æ C J� `M : �F K �= �id Æ s Æ C J� `M : �F K �= s Æ C J� `M : �F K �So: C JsK � = hs Æ �2 Æ �n�11 ; : : : ; s Æ �2 Æ �1; s Æ �2i= s Æ h�2 Æ �n�11 ; : : : ; �2 Æ �1; �2i = sThe funtor C J K � also preserves internal homs, appliation App and abstration�. This is standard, tedious and uninstrutive, hene omitted.Proposition 59 (Free Strit CS4 Category). S4� is the free strit CS4 ategoryon �.More preisely, for every set � of base types, seen as a disrete ategory, let� denote the natural inlusion funtor of � into S4�. Then for every strit CS4ategory C, for every funtor � : �! C, there is a unique funtor � that makes the



Homology, Homotopy and Appliations, vol. ?(?), 2001 51following diagram ommute: � � � S4�
C�g � �

Furthermore, � is exatly the C J K � funtor as de�ned in Figure 8.Proof. Uniqueness: assume � exists, we shall show that it is uniquely determined.On objets, � must map every formula F to C JF K �, and in general every ontext �to C J�K �. On morphisms, sine � must preserve produts, � is uniquely determinedby the images of morphisms in S4� of the form�=̂x1 : F1; : : : ; xn : Fn fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmwith m = 1. In this ase, equate the morphism with the judgment � ` M1 : G1.Then � is uniquely determined by its values on typed �S4-terms. (For readability,we make an abuse of language by equating terms with their typing derivations.)Sine � must preserve � and s, we must have:�� Mfx1 := dx1; : : : ; xn := dxng � = ��(M)� � x � fx :=Mg� = s Æ �(M)Sine, using ( 2 ), (d), and possibly (g):M � fx1 := N1; : : : ; xn := Nng� � Mfx1 := dx1; : : : ; xn := dxng � fx1 := y1 � fy1 := N1g; : : : ;xn := yn � fyn := Nnggit follows that:�� M � fx1 := N1; : : : ; xn := Nng� = ��(M) Æ s Æ h�(N1); : : : ;�(Nn)iSimilarly, sine � must preserve d, we must have �(dM) = dÆ�(M). We reognizethe lauses for C J K � for boxes and d terms given in Figure 8. The ase of internalhoms, appliation and abstration are equally easy and standard, whene � mustbe C J K �.Existene: taking �=̂C J K �, this is by Lemma 55 and Proposition 58.Corollary 60. Let � denote the anonial inlusion � � S4�, mapping eah basetype A to A, seen as a formula. Then S4� J� `M : F K (�) �M .Proof. Apply Proposition 59 with C=̂S4�, �=̂(�).Corollary 60 immediately implies:Proposition 61 (Equational Completeness). Let M , N be two �S4-terms suhthat � `M : F and � ` N : F are derivable.If S4� J� `M : F K (�) = S4� J� ` N : F K (�), then M � N .



Homology, Homotopy and Appliations, vol. ?(?), 2001 52While S4� is haraterized as the free strit CS4 ategory, we end this setion byeluidating the onstrution of the augmented simpliial set S4 [F ℄ of De�nition 42from a ategorial point of view. First, we note:Lemma 62. There is a funtor S4 [ ℄ mapping every formula F to S4 [F ℄, and moregenerally every ontext �=̂x1 : F1; : : : ; xn : Fn to S4 [�℄=̂S4 [F1℄� : : :� S4 [Fn℄, andevery morphism�=̂x1 : F1; : : : ; xn : Fn �=̂fy1 := M1; : : : ; ym := Mmg� �=̂y1 : G1; : : : ; ym : Gmto the morphism S4 [�℄ in b� whih, as an augmented simpliial map, sends (N1; : : : ;Nn) 2 S4 [�℄q to (�q+1M1'; : : : ;�q+1Mm'), where '=̂fx1 := N1; : : : ; xn := Nng.Moreover, S4 [ ℄ is faithful, preserves all �nite produts and the given omonadsin the soure and target ategories.Proof. That it is a funtor follows from equations (n) and (o). It learly preserves all�nite produts and maps the syntati omonad (�;d; s) to the d�ealage omonad,as an easy hek shows. Finally, it is faithful: in the de�nition of S4 [�℄ above, weretrieve � uniquely from S4 [�℄ by looking at the image of the tuple (x1; : : : ; xn) byS4 [�℄�1.We an give an even more abstrat desription of S4 [ ℄ as follows, whih is essen-tially a way of generalizing the familiar hom-set funtor HomC( ; ) to the augmentedsimpliial ase. In this way, we shall see that it is related to the standard resolutionof any omonad ([33℄, VII, 6):De�nition 63 (Resolution Funtor Res). Let (C;�;d; s) be any strit CS4 at-egory. There is a resolution funtor ResC : Co�C ! b� whih maps every pair A;Bof objets in C to the augmented simpliial set ((HomC(A;�q+1B))q>�1; �iq=̂(�id Æ); siq=̂(�is Æ )), and every pair of morphisms A0 f�!A, B g�!B0 to the a.s. mapResC(f; g) given in dimension q > �1 by ResC(f; g)q(a)=̂�q+1g Æ a Æ f for everya 2 HomC(A;�q+1B).For instane, ResS4�(1; F ) is the augmented simpliial set of ground �S4-terms oftype �q+1F , q > �1. (A term is ground provided it has no free variable.) Howeverwe have seen in Lemma 45 that this would not be enough for our purposes. Theminimal augmented simpliial set that seems to work is as follows:De�nition 64 (Contrating Resolution Funtor CRes). Let (C;�;d; s) be asmall strit CS4 ategory. Then the ontrating resolution funtor CResC : C ! b�is the olimit Lim�! (�(ResC) Æ �) in the ategory HomCat(C; b�) of funtors from Cto b�.This de�nition makes sense, provided we take � as meaning abstration in Cat:while CResC is a funtor from Co � C to b�, �(CResC) is a funtor from Co toHomCat(C; b�); sine � is an endofuntor in C, it also de�nes an endofuntorin Co. Finally, the indiated olimit exists beause HomCat(C; b�) = HomCat(C;HomCat(�o;Set)) �= HomCat(C � �o;Set) is a ategory of presheaves, hene a



Homology, Homotopy and Appliations, vol. ?(?), 2001 53topos, hene is small oomplete; and C, therefore also Co is small. So the olimitindeed exists.Geometrially, the idea is that instead of taking resolutions from a one-pointspae 1 (as in ResC(1; )), we take all resolutions from enough spaes with a on-trating homotopy, properly amalgamated. Reall that a ontrating homotopy onan augmented simpliial set K=̂(Kq)q>�1 is an a.s. map from K to �K that is aright inverse to d in b�. More onretely, this is a family of maps s�1q : Kq ! Kq+1,q > �1, suh that s�1q+1 Æsjq = sj+1q+1 Æs�1q and s�1q�1 Æ�jq = �j+1q+1 Æs�1q , for all 0 6 j 6 q,and �0q+1 Æ s�1q = id. (This is exatly what is needed to build the more standard no-tion of ontrating homotopy in simpliial homology.) Then a trivial way of ensuringthat ResC(A;B) has a ontrating homotopy is to take A of the form �A0: indeed,for any f 2 ResC(�A0; B)q = HomC(�A0;�q+1B), we may then de�ne s�1q (f) as�f Æ s.Proof-theoretially, when C is S4�, s�1q (M) is the term M . This is the manifes-tation of the (�I) rule. At the level of programs, this is Lisp's quote operator.Proposition 65. For every ontext �, the a.s. set S4 [�℄ is exatly CResS4�(�).Proof. We deal with the ase where � is of the form z : F for a single formula F ,for readability purposes. The general ase is similar.Colimits in funtor ategories are taken pointwise, so CResS4�(F ) is the olimit ofthe funtor that maps every ontext � to the a.s. set ResS4�(��; F ) of all �S4-termsM suh that �� ` M : �q+1F , modulo �. On the one hand, S4 [F ℄ is the apex ofa oone onsisting of morphisms ResS4�(��; F ) �! S4 [F ℄ that map eah typingderivation of �� ` M : �q+1F to the term M itself. On the other hand, we laimthat S4 [F ℄ is universal among all suh apexes. Let indeed K be any a.s. set suhthat there are morphisms ResS4�(��; F ) f��!K, where � ranges over ontexts; andsuh that these morphisms de�ne a oone: whenever � ��!�0 is a morphism in S4�,for every q > �1, (��0 M�!F ) 2 ResS4�(��0; F )q, f�0(��0 M�!F ) = f�(��M ����! F ).Taking for � all substitutions mapping variables to variables, and notiing that forany variable x, �x = dx � x, it follows that f� depends only on M , not on��0 M�!F : this de�nes the unique morphism from S4 [F ℄ to K. Therefore S4 [F ℄ is aolimit of the desired funtor. By the uniqueness of olimits (up to isomorphism),the result obtains.5.3. A Review of Logial RelationsWhile the C J K interpretation is omplete when we are allowed to take S4� forC, we are interested in taking more geometrial ategories for C, in partiular b� orCGHaus.Let us �rst review the standard way of proving Friedman's Theorem 48 ([37℄,Chapter 8) using logial relations. We shall then disuss why this proof annot bereplayed diretly in our ase, and do appropriate modi�ations.Friedman's result is for the non-modal part of �S4, the �-alulus with ��-equality, interpreted in Set. Let us spell out the relevant part of the interpreta-tion of Figure 8 in detail. Given a map from base types A 2 � to sets �(A),



Homology, Homotopy and Appliations, vol. ?(?), 2001 54let Set JF � GK � be the set of all funtions from Set JF K � to Set JGK �. ThenSet J�K �, where �=̂x1 : F1; : : : ; xn : Fn, is a mapping from eah variable xi toSet JFiK �: this is a �-environment ". The interpretation in Set then maps everytyping derivation of a �-term M of type F in �, and every �-environment " to anelement Set J� `M : F K �" (for short, Set JMK �") of Set JF K �: Set JxK �" is "(x),Set JMNK �" is Set JMK �" applied to Set JNK �", and Set J� ` �x �M : F � GK �"is the funtion that maps eah v 2 Set JF K � to Set JMK �("[x 7! v℄).Let Set[F ℄ be de�ned as the set of all �-terms of type F , modulo ��-onversion.We get an interpretation of �-terms in the free CCC over � by mapping every termM to Set[M ℄�=̂M�, where the �-environment � is just a substitution.A logial relation is a family of binary relations RF indexed by formulae F ,between Set[F ℄ and Set JF K �, suh thatM RF�G f if and only ifMN RG f(a) foreveryM and a suh that N RF a. (In general, logial relations are relations indexedby types between Henkin models, or between CCCs. We speialize the notion to ourproblem at hand.) The fundamental lemma of logial relations (the Basi Lemmaof [37℄) states that, when " is a �-environment (�=̂x1 : F1; : : : ; xn : Fn) and � asubstitution mapping eah xi to a term of type Fi, whenever xi� RFi "(xi) for eahi, then Set[M ℄� RF Set JMK �" for any term M of type F in �. In other words, assoon as environments are related through the logial relation, then so are the valuesof any term in both models.To show that Set J K � is equationally omplete, it is enough to show that we anbuild a funtional logial relation, i.e., one suh that for every a 2 Set JF K �, thereis at most one M 2 Set[F ℄ (up to �) suh that M RF a. Note that any logialrelation is uniquely determined by the relations RA with A 2 �. The trik is tohoose RA so that not only RA but every RF is funtional. It turns out that askingthat RF be funtional only does not arry through, and we must require RF to befuntional and onto: for everyM 2 Set[F ℄, there must be at least one a 2 Set JF K �suh that M RF a. Under these assumptions, RF�G is then funtional and onto assoon as RF and RG are. First, it is funtional: hoose f 2 Set JF � GK �, a funtionfrom Set JF K � to Set JGK �, then every term M suh that M RF�G f must besuh that for every N RF a, MN RG f(a). Using the Axiom of Choie and thefat that RF is onto, we may de�ne a funtion iF : Set[F ℄ ! Set JF K � suh thatN RF iF (N). ThenM must be suh that for every N ,MN RG f(iF (N)). Sine RGis funtional, we may de�ne a projetion pG : Set JF K �! Set[F ℄ suh that P RG aimplies P = pG(a) (when there is no P suh that P RG a, pG(a) is arbitrary). SoM must be suh that for every N , MN = pG(f(iF (N))). This determines MNuniquely, hene M too, provided it exists. So RF�G is funtional. To show that itis onto, map M 2 Set[F � G℄ to the funtion f 2 Set JF � GK � mapping a toiG(M pF (a)).This is essentially the line of proof that we shall follow. However, in our aseSet is replaed by b�, where the Axiom of Choie is invalid: if p : K ! L is an epiin b�, there is no a.s. map i : L ! K in general suh that p Æ i = id. The samehappens in CGHaus (although the Axiom of Choie allows us to pik a funtioni that is left-inverse to p, there may be no suh ontinuous left-inverse). Thereforewe have to build iF and pF expliitly by indution on formulae. The important



Homology, Homotopy and Appliations, vol. ?(?), 2001 55property that needs to be preserved for eah formula F is what we shall all theBounding Lemma: if a = iF (M) then M RF a, and if M RF a then M = pF (a).Retraing the argument above, we �nd that this requires us to de�ne iF�G(M)as the funtion mapping a to iG(M pF (a)), however the obvious de�nition forpF�G: pF�G(f)=̂�x � pG(f(iF (x))) is wrong. This is beause this is inompatiblewith �-renaming in general, and therefore does not map funtions to �-lasses of �-terms. Indeed, ompatibility with �-renaming imposes that �x �pG(f(iF (x))) = �y �pG(f(iF (x)))fx := yg, but there is no reason why pG Æf Æ iF should be substitutive.The solution is to de�ne pF�G by pF�G(f)=̂RF�G(N 7! pG(f(iF (N)))), whereRF�G is a retration of the set of funtions from Set[F ℄ to Set[G℄ onto the syntatifuntion spae Set[F � G℄|retration meaning that RF�G(N 7! MN) should bethe term M exatly. This is exatly what we have taken the pain of onstruting inthe augmented simpliial ase in Corollary 47.One �nal note before we embark on atually proving the theorem. The rightnotion of logial relation here is one of Kripke logial relation, a more omplexnotion than ordinary logial relations. Moreover, ontrarily to more usual ases, theset of worlds we use for this Kripke logial relation annot just be a preorder: it hasto be a ategory, in fat the augmented simpliial ategory �. Conretely, we haveto use families of relations RFq indexed by both formulae F and dimensions q > �1,suh that:(a.s.) for every a; a0, if a RFq a0 then, for every i, 0 6 i 6 q, �iqa RFq�1 �iqa0 andsiqa RFq+1 siqa0;(� logial) for every a; a0, a R�Fq a0 if and only if a RFq+1 a0.(� logial) for every f; f 0, f RF�Gq f 0 if and only if for every monotoni funtion� : [p℄! [q℄, for every a; a0 suh that a RFp a0,�p+1App(�̂(f); a) RGp �p+1App(�̂(f 0); a0)where �̂ is de�ned in the unique way so that bÆiq = �iq, �iq = siq, bid = id, and\� Æ �0 = b�0 Æ b�.The latter ondition is partiularly unwieldy. We prefer to use a more ategorialnotion, whih will fator out all irrelevant details. It turns out that logial relationsand Kripke logial relations are speial ases of subsones [38, 1℄: these are theright notion here.5.4. SubsonesGiven any two ategories C and D having all �nite artesian produts, and suhthat D has all pullbaks, given any funtor F : C ! D that preserves all �niteartesian produts, the subsone D�\F [38℄ has as objets all triples (d; ;m) whered is an objet of D,  is an objet of C, andd � m � F()is moni in D. If we did not insist on suh morphisms being moni, we would getthe sone D # F, a speial omma ategory.



Homology, Homotopy and Appliations, vol. ?(?), 2001 56Let C be any strit CS4 ategory. Given any set � of base types, and a mappingthat assigns eah base type an objet in C (this an be seen as a funtor from �, seenas the trivial ategory with elements of � as objets and only identity morphisms):� � � Cthere is a unique representation of strit CS4 ategories C J K � from the free stritCS4 ategory S4� on � to C: � � � S4�
C�g � C J K �where � denotes the anonial inlusion funtor from � to S4�.If, in the diagram above, we replae C by a subsone ategory D�\F, we get adiagram: � � � S4�

D�\F~�g � (D�\ F) J K ~� (19)
for eah given ~�, and where (D�\F) J K ~� is uniquely determined as a representationof strit CS4 ategories: this will be the right notion of Kripke logial relation.It is well-known ([38℄, Proposition 4.2) that, provided that C and D are artesian-losed, and D has equalizers (i.e., D is �nitely omplete), and provided F preserves�nite produts, then D�\F is a CCC, and the forgetful funtor U : D�\F �! C, whihmaps every objet (d; ;m) to , is a representation of CCCs. We make expliit theonstrution of terminal objets, produts and internal homs in D�\F:5.4.0.1. Terminal objet. This is (1D;1C ; id).5.4.0.2. Binary produts. The produt of (d; ;m) with (d0; 0;m0) is (d�d0; �0;m�m0).5.4.0.3. Internal homs. We build (d00; 00;m00) = HomD�\F((d; ;m); (d0; 0;m0))as follows. First, 00=̂HomC(; 0).Then, we build two morphisms. We build the �rst one from:F(HomC(; 0))� d id�m� F(HomC(; 0))� F() F(App) � F(0)by urrying, getting:F(HomC(; 0)) �(F(App) Æ (id�m)) � HomD(d;F(0)) (20)The seond one is built from:HomD(d; d0)� d App � d0 � m0 � F(0)



Homology, Homotopy and Appliations, vol. ?(?), 2001 57again by urrying:HomD(d; d0) �(m0 ÆApp) � HomD(d;F(0)) (21)We laim that this morphism is moni. Indeed, onsider two morphisms f , g suhthat �(m0 ÆApp)Æf = �(m0 ÆApp)Æg. Applying AppÆ ( � id) on the left-hand side,we get App Æ ((�(m0 ÆApp) Æ f)� id) = App Æ (�(m0 ÆApp Æ (f � id))� id) (by (k0))= m0 ÆApp Æ (f � id) (by (l00)). Applying to both sides of the equation, we thereforeget m0 ÆAppÆ (f� id) = m0 ÆAppÆ (g� id), therefore AppÆ (f� id) = AppÆ (g� id),beause m0 is moni. Applying � on both sides, the left-hand side simpli�es to fand the right-hand side to g by (m0), therefore f = g. So �(m0 Æ App) is indeedmoni.We now build (d00; 00;m00) by the following pullbak diagram:d00 � m00 � F(HomC(; 0))
HomD(d; d0)sg � �(m0 ÆApp)(21) � HomD(d;F(0))�(F(App) Æ (id�m)) (20)g

where the upper morphism m00 is moni beause pullbaks preserve monis.Appliation in the subsone is given by the pair of morphisms AppÆ (s� id) fromd00 � d to d0 and App from 00 �  to 0.Conversely, given any morphism (u; v) in the subsone from (d0; 0;m0)�(d; ;m)to (d0; 0;m0), we build its urried morphism from (d0; 0;m0) to (d00; 00;m00) asfollows. Reall that sine (u; v) is a morphism, the following square ommutes:d0 � d � m0 �m� F(0)� F()
d0ug � m0 � F(0)F(v)g

The urried version of the morphism (u; v) is then (û;�(v)), where û is given asthe unique morphism that makes the following diagram ommute:d0 m0 � F(0)
d00 m00 �

û � F(00)F(�(v))g
HomD(d; d0)sg �(m0 ÆApp)�

�(u)
� HomD(d;F(0))�(F(App) Æ (id�m))g



Homology, Homotopy and Appliations, vol. ?(?), 2001 58where the bottom pullbak diagram is given by the de�nition of internal homs in thesubsone. (The outer diagram ommutes: �(m0 ÆApp)Æ�(u) = �(m0 ÆAppÆ(�(u)�id)) [by (k0)℄ = �(m0 Æ u) [by (l00)℄ = �(F(v) Æ (m0�m)) sine (u; v) is a morphism,while �(F(App)Æ(id�m))ÆF(�(v))Æm0 = �(F(App)Æ(id�m)Æ((F(�(v))Æm0)�id))[by (k0)℄ = �(F(App)Æ(F(�(v))�id)Æ(m0�m)) = �(F(AppÆ(�(v)�id))Æ(m0�m))[beause F is a funtor that preserves produts℄ = �(F(v) Æ (m0 �m)) [by (l00)℄.)5.4.0.4. Comonad (�;d; s). Whereas there is at most one CCC struture on anygiven ategory, there are in general many hoies for a strit monoidal omonad. Astandard hoie for de�ning a omonad on D�\F based on a given omonad (�;d; s)on D works by de�ning �(d; ;m) as (d0;�;m0), where d0 and m0 are given by thepullbak diagram: d0 m0� F(�)
dg � m � F()F(d)g

This would not work for our purposes: intuitively, if (d; ;m) represents a relationRF , de�ning R�F this way as (d0;�;m0) would mean replaing the (� logial)ondition by: for every a; a0, a R�Fq a0 if and only if �0qa RFq �0qa0. However withthis de�nition R�F would be too large, and the seond impliation M RF a =)M = pF (a) of the Bounding Lemma would not hold in general.Instead, we notie that there is a simpler solution as soon as not only F preserves�, d and s (we shall say that F preserves the omonad (�;d; s)) but also � preservesmonis. Then letting �(d; ;m) be (�d;�;�m) de�nes an objet in the subsone.Indeed, �m is a morphism from �d to �F() = F(�), and is moni sine m is and� preserves monis. This is what will work here.Proposition 66. Assume that C and D are strit CS4 ategories and that F : C ! Dpreserves �nite produts and the given omonads; assume also that D is �nitelyomplete and that � preserves monis.Then the subsone D�\F is a strit CS4 ategory when equipped with the omonad(�;d; s) de�ned by: on objets, �(d; ;m)=̂(�d;�;�m); on morphisms, �(u; v)=̂(�u;�v); d=̂(d;d); s=̂(s; s).Moreover, the forgetful funtor U : D�\F �! C mapping every objet (d; ;m) inthe subsone to  and every morphism (u; v) to v is a representation of strit CS4ategories.Proof. Straightforward veri�ation.5.5. The Basi LemmaGiven any funtor � ~��!D�\F, we get a funtor from � to C by omposition withU . By the freeness of S4�, there are unique funtors C J K � (where �=̂U Æ ~�) and(D�\F) J K ~� whih make the upper left and upper right triangles in the following



Homology, Homotopy and Appliations, vol. ?(?), 2001 59diagram (whih is a diagram in the ategory Cat of ategories) ommute:� � � S4��

D�\F
~�
g U �� (D�\ F) J K ~�

C
C J K �
g�

Sine U is a representation of strit CS4 ategories, U Æ (D�\F) J K ~�, too, thereforeby the uniqueness of the C J K � arrow on the right as a representation of strit CS4ategories, we get:Lemma 67 (Basi Lemma). U Æ (D�\F) J K ~� = C J K (U Æ ~�)5.6. The Bounding LemmaNow we onsider the ase where C is of the form C1 �D, and F=̂F1 
 id, whereF1 : C1 ! D is a funtor that preserves all �nite produts and the (�;d; s) omonad.(Whenever F1 : C1 ! D, F2 : C2 ! D, we let F1
F2 be the funtor mapping C1; C2to F1(C1)� F2(C2).)Typially, C1 will be S4�, F1=̂CResS4� , D=̂b�.We shall prove:Lemma 68 (Bounding Lemma). Let C1 and D be strit CS4 ategories, F1 :C1 ! D preserve �nite produts and the given omonads. Assume also that D is�nitely omplete and that � preserves monis in D. Fix �1 : � ! C1. Assume�nally that for every formulae F and G, HomD(F1(C1 JF K �1);F1(C1 JGK �1)) re-trats strongly onto F1(C1 JF � GK �1), meaning that there is a family of morphismsRF�G in D suh that the following diagram ommutes:HomD(F1(C1 JF K �1);F1(C1 JGK �1)) ��(F1(App)) F1(C1 JF � GK �1)
HomD(F1(C1 JF K �1);F1(C1 JGK �1))idg RF�G � F1(C1 JF � GK �1)idg (22)

Let �2 : � ! D be F1 Æ �1, and ~� : � ! D�\(F1 
 id) map every A 2 � to(�2(A); (�1(A); �2(A)); hid; idi).For every formula F , write (D�\(F1 
 id)) JF K ~� as (DF ; (C1 JF K �1;D JF K �2);hm0F ;m00F i).Then there are families of morphisms iF and pF in D, and monis h1F and h2F



Homology, Homotopy and Appliations, vol. ?(?), 2001 60that make the following diagrams ommute for eah formula F :F1(C1 JF K �1)
F1(C1 JF K �1) �h1F�

id �
DFm

0Ff
� h2F� D JF K �2
� pF

D JF K �2m00Fg � idiF �
(23)

Proof. We �rst build iF and pF for eah formula F so that pF Æ iF = id. This isindeed required for the result to hold, sine Diagram 23 implies pF Æ h2F Æ h1F = idand id Æ h2F Æ h1F = iF .When F is a base type A 2 �, de�ne iA and pA in D so that the followingdiagrams ommute: �2(A) = F1(�1(A)) � iA F1(�1(A))
�2(A)idg pA � �2(A) = F1(�1(A))idg

by just taking iA and pA to be id.When F = �G, let i�G=̂�iG, p�G=̂�pG, so p�G Æ i�G = �pG Æ�iG = �(pG ÆiG) = �id = id. This makes sense beause F1, hene also F1(C1 J K �1) and D J K �2,preserve �.When F is of the form G � H, we build iF and pF in the unique type-onsistentway. I.e., we have the following diagram:D JHK �2 � iH F1(C1 JHK �1)
HomD(F1(C1 JGK �1);F1(C1 JHK �1))�D JGK �2 id� pG� HomD(F1(C1 JGK �1);F1(C1 JHK �1))�F1(C1 JGK �1)

Appf
using iH and pG from the indution hypothesis. Apply � to the resulting ompositemorphism, and ompose with �(F1(App)); this yields iG�H , de�ned as:D JG � HK �2 ��(iH ÆAppÆ(id� pG)) HomD(F1(C1 JGK �1);F1(C1 JHK �1)) ��(F1(App)) F1(C1 JG � HK �1)Similarly, we de�ne a morphism pG�H from D JG � HK �2 to F1(C1 JG � HK �1) asthe omposite:D JG � HK �2 �(pH ÆAppÆ(id� iG))� HomD(F1(C1 JGK �1);F1(C1 JHK �1)) RG�H � F1(C1 JG � HK �1)



Homology, Homotopy and Appliations, vol. ?(?), 2001 61Superposing both diagrams, together with (22), we get:D JG � HK �2 ��(iH ÆAppÆ(id� pG)) HomD(F1(C1 JF K �1);F1(C1 JGK �1)) ��(F1(App)) F1(C1 JF � GK �1)
D JG � HK �2idg �(pH ÆAppÆ(id� iG))� HomD(F1(C1 JF K �1);F1(C1 JGK �1))

idg RF�G � F1(C1 JF � GK �1)idg
where iG�H is the top line, pG�H is the bottom line, the right square ommutesby (22), and the left square ommutes, as alulation shows(left to the reader; hint:use pH Æ iH = id, pG Æ iG = id).So pG�H Æ iG�H = id.We now build h1F and h2F . Note that as soon as Diagram 23 ommutes, h1F and h2Fwill automatially be moni. Indeed, sine pF ÆiF = id, iF is moni; as iF = m00F Æh1F ,h1F will be moni, too. Similarly, sine hm0F ;m00F i is a moni (beause it is part ofthe de�nition of an objet in the subsone), and hm0F ;m00F i = hpF ; idi Æ h2F , h2F willbe a moni, too.Also, that h1F and h2F are moni will imply that ~h1F =̂(h1F ; id) and ~h2F =̂(h2F ; id)will be moni in (D�\(F1 
 id)) JF K ~�. Therefore, that Diagram 23 is ommutativeis equivalent to showing the existene of the following diagram in D�\(F1 
 id):~IF �(h1F ; id)� (D�\(F1 
 id)) JF K ~� �(h2F ; id)� ~PFwhere ~IF =̂(F1(C1 JF K �1); (C1 JF K �1;D JF K �2); hid; iF i)~PF =̂(D JF K �1; (C1 JF K �1;D JF K �2); hpF ; idi)We build h1F and h2F by strutural indution on F .If F is a base type A, notie that iA = pA = m0A = m00A = id, so take h1A=̂h2A=̂id.If F is a box formula �G. Reall �rst that p�G = �pG and i�G = �iG. Also,beause (D�\(F1 
 id)) J K ~� is a representation of strit CS4 ategories, it preserves�. In partiular hm0�G;m00�Gi = �hm0G;m00Gi. Beause � is strit monoidal, m0�G =�m0G, m00�G = �m00G. Therefore it suÆes to let h1�G be �h1G, h2�G be �h2G.If F is an arrow type G � H. We �rst build h1G�H . Construt the morphism:F1(C1 JG � HK �1)� F1(C1 JGK �1) �id�m0G F1(C1 JG � HK �1)�DG

F1(C1 JHK �1)F1(App)g h1H � DHin D. For short, let us all this morphism u temporarily.Also onstrut the morphism v=̂(App;App) from (C1 JG � HK �1;D JG � HK �2)� (C1 JGK �1;D JGK �2) to (C1 JHK �1;D JHK �2) in C1 �D.We laim that (u; v) is a morphism in D�\(F1 
 id) (if so, this is from ~IG�H �(D�\(F1 
 id)) JGK ~� to (D�\(F1 
 id)) JHK ~�). This requires us to show that the fol-lowing diagram ommutes (where we have split produts so as to inrease readabil-



Homology, Homotopy and Appliations, vol. ?(?), 2001 62ity):F1(C1 JG � HK �1)�F1(C1 JGK �1) �id�m0G F1(C1 JG � HK �1)�DG iG�H�m00G � D JG � HK �2�D JGK �2
F1(C1 JHK �1)F1(App)g � m0H DHug m00H � D JHK �2Appg (24)

The left square of (24) ommutes beause m0H Æ h1H is the identity on DH , byindution hypothesis, so
m0H Æ u = m0H Æ h1H Æ F1(App) Æ (id�m0G) = F1(App) Æ (id�m0G)For the right square of (24), note that App Æ (iG�H � id) = iH Æ F1(App) Æ (id �pG), by the de�nition of iG�H . Composing with id � m00G on the right, it followsApp Æ (iG�H �m00G) = iH Æ F1(App) Æ (id� (pG Æm00G)). However pG Æm00G = m0G byindution hypothesis. So we get:

App Æ (iG�H �m00G) = iH Æ F1(App) Æ (id�m0G)Sine m00H Æh1H = iH by indution hypothesis, the right-hand side is exatly m00H Æu,so the right square of (24) ommutes.As (24) ommutes, (u; v) is indeed a morphism in D�\(F1 
 id). We may thenurry it in D�\(F1 
 id), getting a morphism from ~IG�H to the internal hom ob-jet HomD�\(F1
id)((D�\(F1 
 id)) JGK ~�; (D�\(F1 
 id)) JHK ~�), that is, from ~IG�Hto (D�\(F1 
 id)) JG � HK ~�.Let us all this latter morphism ~h1G�H . As realled in Paragraph 5.4.0.3, thismorphism is of the form (û;�(v)), where �(v) is taken in the produt ategoryC1 � D. Sine v was appliation is this ategory, �(v) = id. So ~h1G�H is of therequired form (h1G�H ; id); i.e., we let h1G�H be û. Beause this is a morphism inD�\(F1 
 id), the following diagram ommutes:
F1(C1 JG � HK �1) hid; iG�Hi� F1(C1 JG � HK �1)�D JG � HK �2

DG�Hh1G�Hg hm0G�H ;m00G�Hi� F1(C1 JG � HK �1)�D JG � HK �2idg
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F1(C1 JG � HK �1) h1G�H�

id �
DG�Hm

0G�Hf

D JG � HK �2m00G�HgiG�H �
Let us now build h2G�H . De�ne h2G�H=̂m00G�H . Adapting the de�nition of internalhoms to the subsone ategory D�\(F1 
 id), and using a few trivial isomorphisms,(D�\(F1 
 id)) JG � HK ~� is given by the following pullbak diagram:

DG�H hm0G�H ;m00G�Hi � F1(C1 JG � HK �1)�D JG � HK �2
HomD(DG; DH)sG�Hg h�(m0H ÆApp);�(m00H ÆApp)i� HomD(DG;F1(C1 JHK �1))�HomD(DG;D JHK �2)

�(F1(App) Æ (id�m0G))� �(App Æ(id�m00G))g
Splitting produts, we may rewrite this as:

F1(C1 JG � HK �1) � m0G�H DG�H m00G�H � D JG � HK �2
HomD(DG;F1(C1 JHK �1))�(F1(App) Æ (id�m0G))g ��(m0HÆApp) HomD(DG; DH)sG�Hg �(m00HÆApp)� HomD(DG;D JHK �2)�(App Æ (id�m00G))g
Take the produt with DG:F1(C1 JG � HK �1)�DG �m0G�H � id DG�H �DG m00G�H � id� D JG � HK �2�DG

HomD(DG;F1(C1 JHK �1))�DG
�(F1(App) Æ(id�m0G))� idg � �(m0HÆApp)� id HomD(DG; DH)�DG

sG�H � idg �(m00HÆApp)� id � HomD(DG;D JHK �2)�DG
�(App Æ (id�m00G))� idg



Homology, Homotopy and Appliations, vol. ?(?), 2001 64Putting this above the following diagram:HomD(DG;F1(C1 JHK �1))�DG � �(m0HÆApp)� id HomD(DG; DH)�DG �(m00HÆApp)� id � HomD(DG;D JHK �2)�DG
F1(C1 JHK �1)Appg � m0H DHAppg m00H � D JHK �2Appg

whih is easily seen to ommute, we obtain:F1(C1 JG � HK �1)�DG �m0G�H � id DG�H �DG m00G�H � id� D JG � HK �2�DG
F1(C1 JHK �1)F1(App) Æ (id�m0G)g � m0H DHsG�Hg m00H � D JHK �2App Æ (id�m00G)g (25)

Indeed, the leftmost vertial morphism is App Æ (�(F1(App) Æ (id �m0G)) � id) =F1(App) Æ (id�m0G), while the rightmost vertial morphism is obtained similarly.By indution hypothesis m0H = pH Æm00H . So we may omplete Diagram (25) byadding a pH arrow from the lower right D JHK �2 to the lower left F1(C1 JHK �1),and get a ommutative diagram again. Looking at the leftmost and the rightmostpaths from the upper DG�H �DG to the lower left F1(C1 JHK �1), it follows:F1(App) Æ (id�m0G) Æ (m0G�H � id) = pH ÆApp Æ (id�m00G) Æ (m00G�H � id)Composing with id�h1G on the right and simplifying, we obtain F1(App)Æ(m0G�H�(m0GÆh1G)) = pH ÆAppÆ(m00G�H�(m00GÆh1G)). By indution hypothesism0GÆh1G = id,and m00G Æ h1G = iG, so:F1(App) Æ (m0G�H � id) = pH ÆApp Æ (m00G�H � iG) (26)This entails that �(pH Æ App Æ (id � iG)) Æ m00G�H = �(pH Æ App Æ (id � iG) Æ(m00G�H � id)) = �(pH Æ App Æ (m00G�H � iG)) = �(F1(App) Æ (m0G�H � id)) (using(26)) = �(F1(App))Æm0G�H . Composing with RG�H on the left, remembering thatRG�H Æ �(F1(App)) = id (Diagram (22)), it obtains:RG�H Æ �(pH ÆApp Æ (id� iG)) Æm00G�H = m0G�HThat is, pG�H Æm00G�H = m0G�H .On the other hand, reall that h2G�H = m00G�H . So we have got the right part of
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DG�Hm

0G�Hf
h2G�H� D JG � HK �2

� pG�H

D JG � HK �2m00G�Hg � id
This terminates the impliation ase.5.7. Equational CompletenessWe an now prove:Theorem 69 (Equational Completeness). Let D be a strit CS4 ategory,F1 : S4� ! D preserve �nite produts and the given omonads. Assume alsothat D is �nitely omplete, that � preserves monis in D, and that for every for-mulae F and G, HomD(F1(S4� JF K (�));F1(S4� JGK (�))) retrats strongly ontoF1(S4� JF � GK (�)), where � is the anonial inlusion of � into S4�.Assume �nally that F1 is faithful on morphisms with domain the empty ontext.Then there is a valuation �2 : � ! D suh that, for every �S4-terms M and Nof type F under �, M � N if and only if D JMK �2 = D JNK �2.Proof. The only if diretion is soundness (Lemma 55). Let us deal with the ifdiretion. Without loss of generality, assume M and N ground, and � the emptyontext: if � is not empty, say �=̂x1 : F1; : : : ; xn : Fn, we redue to the emptyase by reasoning on �x1; : : : ; xn � M and �x1; : : : ; xn � N instead of M and N .Take C1=̂S4�, �1 be �. As in Lemma 68, let �2 be F1 Æ �1, and ~� map A 2 � to(�2(A); (�1(A); �2(A)); hid; idi).By the Basi Lemma (Lemma 67),U((D�\(F1 
 id)) JF K ~�) = (S4� JF K �1;D JF K �2)where the forgetful funtor U maps eah morphism (u; v) in the subsone to v.Expanding the de�nition of U in this ase, for every type derivation of `M : F , themorphism (D�\(F1 
 id)) JMK ~� from 1 to (D�\(F1 
 id)) JF K ~� an be written (u; v),where the Basi Lemma demands that v = S4� JMK �1 �D JMK �2. Sine (u; v) is amorphism in D�\(F1 
 id), the following diagram ommutes:1 � id � 1

DFug � hm0F ;m00F i � F1(S4� JF K �1)�D JF K �2F1(S4� JMK �1) �D JMK �2g



Homology, Homotopy and Appliations, vol. ?(?), 2001 66That is, m0F Æ u = F1(S4� JMK �1) m00F Æ u = D JMK �2By the Bounding Lemma (Lemma 68, Diagram (23)), pF Æm00F = m0F , so:F1(S4� JMK �1) = pF Æ D JMK �2As this holds for every M suh that ` M : F is derivable, it follows immediatelythat if we take any two suh terms M and N , suh that D JMK �2 = D JNK �2, thenF1(S4� JMK �1) = F1(S4� JNK �1). Sine F1 is faithful on morphisms with domainthe empty ontext, S4� JMK �1 = S4� JNK �1. Sine �1 = (�), by Proposition 61,M � N .Corollary 70 (Equational Completeness in b�). There is a valuation �2 : �!b� suh that, for every �S4-terms M and N of type F under �, M � N if and onlyif b� JMK �2 = b� JNK �2.Proof. Let us hek all hypotheses. First, b� is a strit CS4 ategory using De�ni-tion 49. Take F1=̂S4 [ ℄ (alternatively, the ontrating resolution funtor CResS4�).By Lemma 62, F1 preserves all �nite produts and the (�;d; s) omonad, and isfaithful. b� is �nitely omplete (in fat a topos). And � preserves monis: reall thata moni in b� is an a.s. map (fq)q>�1 suh that every fq is one-to-one ([15℄ 1.462);it follows that �, whih maps (fq)q>�1 to (fq+1)q>�1, preserves monis in b�. Fi-nally, by Corollary 47, Homb�(F1(S4� JF K (�));F1(S4� JGK (�))) retrats stronglyonto F1(S4� JF � GK (�)) (observe that F1(S4� JF K (�)) = S4 [F ℄, and similarly forG).
The ase of topologial spaes, and of the equational ompleteness of �S4 withrespet to the strit CS4 ategory CGHaus, is still open. (Note to the referees:We hoped to inlude this result as well, however our proof for it broke at the lastminute. In ase we manage to �nd a proof, this will appear in the long versionof this paper, a researh report of the LSV [see http://www.lsv.ens-ahan.fr/Publis/publis-y3-2001.html℄. In turn, this may or may not be inluded in the�nal version of the paper.)
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