ON THE GEOMETRY OF INTUITIONISTIC S4 PROOFS

JEAN GOUBAULT-LARRECQ AND ÉRIC GOUBAULT

(communicated by Gunnar Carlsson)

Abstract
The Curry-Howard correspondence between formulas and types, proofs and programs, proof simplification and program execution, also holds for intuitionistic modal logic S4. It turns out that the S 4 modalities translate as a monoidal comonad on the space of proofs, giving rise to a canonical augmented simplicial structure. We study the geometry of these augmented simplicial sets, showing that each type gives rise to an augmented simplicial set which is a disjoint sum of nerves of finite lattices of points, plus isolated (-1)-dimensional subcomplexes. As an application, we give semantics of modal proofs (a.k.a., programs) in categories of augmented simplicial set and of topological spaces, and prove a completeness result in the style of Friedman: if any two proofs have the same denotations in each augmented simplicial model, then they are convertible. This result rests both on the fine geometric structure of the constructed spaces of proofs and on properties of subscone categories-the categorical generalization of the notion of logical relations used in lambda-calculus.

1. Introduction

One of the most successful paradigms in modern theoretical computer science is the so-called Curry-Howard isomorphism [26], an easy but surprising connection between proofs in intuitionistic logics and functional programs, which has far-reaching consequences. One cardinal principle here is that logics help design well-crafted programming constructs, with good semantical properties. In intuitionistic logic, implications denote function spaces, conjunctions give rise to cartesian products, disjunctions are disjoint sums, false is the empty type, true is the unit type, universal quantifications are polymorphic types, existential quantifications are abstract

The first author acknowledges GIE Dyade, a common venture between Bull S.A. and INRIA, where part of this work was accomplished.
Received 15 October 2001, revised ?; published on ?.
2000 Mathematics Subject Classification: 03B45, 03B70, 18A25, 18C15, 18C50, 18D15, 18F20, 18G10, 18G30, 55U10, 68N18, 68Q55
Key words and phrases: comonads, completeness, Curry-Howard correspondence, intuitionistic logic, lambda-calculus, logical relations, modal logic, presheaves, resolution functors, S4, simplicial sets, subscones.
(C) 2001, Jean Goubault-Larrecq and Éric Goubault. Permission to copy for private use granted.
data types. Classical logic in addition introduces the rich concept of continuation $[\mathbf{2 3}, \mathbf{3 9}]$, while the modal logic S4 introduces a form of staged computation [41, 11].

Our aim in this paper is to show that S 4 proofs are also geometric objects. To be precise, S 4 formulas correspond to augmented simplicial sets, and S 4 proofs correspond to maps between these spaces. In particular, this extends the CurryHoward picture to:

Logic		Programming		Geometry
Formulae	$=$	Types	$=$	Augmented Simplical Sets
Proofs	$=$	Programs	$=$	Augmented Simplicial Maps
Equality of Proofs	$=$	Convertibility	$=$	Equality of Maps

The $=$ signs are exact, except possibly for the Programs=Augmented Simplicial Maps one (we only get definable augmented simplicial maps). In particular, it is well-known that equality of proofs, as defined by the symmetric closure of detour, or cut-elimination [44], is exactly convertibility of terms (programs). We shall in addition show that two (definable) augmented simplicial maps are equal if and only if their defining terms are convertible, i.e., equal as proofs (bottom right $=\operatorname{sign}$). This will be Theorem 69 and Corollary 70, an S4 variant of Friedman's Theorem [16], which will constitute the main goal of this paper.

While Friedman's Theorem in the ordinary, non-modal, intuitionistic case can be proved in a relatively straightforward way using logical relations [37], the S4 case is more complex, and seems to require one to establish the existence of a certain strong retraction of one augmented simplicial set $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)$ onto another $\mathcal{S}_{4}[F \supset G]$ (Corollary 47). By the way, we invite the reader to check that the existence of the corresponding strong retraction in the category of sets (as would be needed to map our techniques to the non-modal case) is trivial. The existence of the announced retraction in the category $\widehat{\Delta}$ of augmented simplicial sets is more involved, and prompts us to study the geometry of S4 proofs themselves.

The plan of the paper is as follows. After we review related work in Section 2, we deal with all logical preliminaries in Section 3. We start by recalling some basic concepts in logics in Section 3.1, and go on to the Curry-Howard correspondence between types and formulae, proofs and programs, equality of proofs and convertibility in Section 3.2. We also introduce the logic we shall use, namely minimal intuitionistic S4, giving its Kripke semantics (Section 3.4) as well as a natural deduction system and a proof term language $\lambda_{S 4}$, essentially due to [7], for it. This is in Section 4.1, where we also prove basic properties about $\lambda_{\mathrm{S} 4}$ - confluence, strong normalization of typed terms-and study the structure of normal and so-called η-long normal forms.

We come to the meat of this paper in Section 4, where we observe that each type F induces an augmented simplicial set whose q-simplices are terms of type $\square^{q+1} F$ modulo \approx. We characterize exactly the computation of faces and degeneracies on terms written in η-long normal form in Section 4.1, where they take a particularly simple form. This allows us to study the geometry of these terms in a precise way in Section 4.2. The crucial notion here is oriented contiguity, which is an oriented form of path-connectedness. It turns out that this allows us to characterize the simplicial part of these augmented simplicial sets as the nerve of its points
ordered by contiguity-this is an oriented simplicial complex. In dimension -1 , we get all connected components of these simplicial complexes, as we show in Section 4.3. We also show that each non-empty connected component is a finite lattice of points (0 -simplices). In Section 4.4 we turn to another important construction in these augmented simplicial sets, that of planes. Using the lattice structure, we are able to show that there are augmented simplicial maps projecting the whole space onto planes, under mild conditions. This is the essential ingredient in showing that $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)$ strongly retracts onto $\mathcal{S}_{4}[F \supset G]$, as announced above.

Section 5 reverses the picture and shows that we may always interpret proofs as augmented simplicial maps. In general, we may always interpret proofs in any cartesian closed category (CCC) with a (strict) monoidal comonad-so-called strict CS4 categories-, as shown in Section 5.1 and Section 5.2. We give examples of strict CS4 categories in Section 5.1. In Section 5.2, we show additionally that the typed $\lambda_{S 4}$ calculus is a way of describing the free strict CS4 category on a given set of base types. In particular, strict CS4 categories offer a sound a complete way of describing $\lambda_{S 4}$ terms and equalities between them. However, these categories are general constructions that need to be made more concrete. We would like to be able to compare proofs in S4 by looking at them not in any strict CS4 category, but in more concrete ones, in particular in the category $\widehat{\Delta}$ of augmented simplicial sets. We show that $\lambda_{\mathrm{S} 4}$ terms still get interpreted faithfully in $\widehat{\Delta}$ in Section 5.7 -this is Friedman's Theorem for S4, which we prove using a variant of Kripke logical relations indexed over the category Δ, and using in an essential way the strong retraction of $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)$ onto $\mathcal{S}_{4}[F \supset G]$ that we constructed in Section 4.4. We review logical relations in Section 5.3, explain how they work and why they should be generalized to some form of Kripke logical relation in our case. This is complex, and better viewed from an abstract, categorical viewpoint: this is why we use subscones (presented in Section 5.4), establish the Basic Lemma in Section 5.5 and the Bounding Lemma in Section 5.6, the main two ingredients in the equational completeness theorem of Section 5.7.

The proof of some minor theorems of this paper have been elided. Please refer to the full report for fuller proofs (LSV Research Report, 2001, available at http:// www.lsv.ens-cachan.fr/Publis/publis-y3-2001.html).

2. Related Work

First, let us dispel a possible misunderstanding. The part of this paper concerned with logic is about the proof theory of S4, that is, the study of proof terms as a programming language, not about validity or provability. The reader interested in categorical models of validity in the modal case is referred to [48] and the references therein. In this line, a well-known topological interpretation of the \square modality of S4, due to Kuratowski, is as follows: interpret each formula F as a subset of some topological space, and $\square F$ as the interior of F. (In general, any coclosure operator works here.) Note that this interpretation collapses $\square F$ with $\square \square F$, while our interpretations of \square will not. In fact no $\square^{p} F$ can be compared with no $\square^{q} F$ in our interpretations unless $p=q$.

It is easier to reason on proof terms than directly on proofs. In particular, it is more convenient to reason on Church's λ-calculs than on natural deduction proofs. This is why we use Bierman and de Paiva's $\lambda_{\mathrm{S} 4}$ language [7] of proof terms for S4. There would have been many other suitable proposals, e.g., [41, 11, 35]. In particular, $[\mathbf{2 1}]$ dispenses with boxes around terms to represent \square-introduction rules, by using operators with non-negative indices corresponding to dimensions. The augmented simplicial structure of the language is apparent in the syntax of this language; however $\lambda_{\mathrm{S} 4}$ turned out to be more convenient technically.

S4 proof terms have been used for partial evaluation [46], run-time program generation [11], in higher-order abstract syntax [31], etc. The idea is that whereas F is a type of values, $\square F$ is a type of delayed computations of values of type F, or of terms denoting values of type $F ; \mathbf{d}$ evaluates these computations or these terms to return their values, and \mathbf{s} lifts any delayed computation M to a doubly delayed computation whose value is M itself. This is similar to eval/quote in Lisp [32], or to processes evolving through time, say, starting at $t=0$ and homing in on their values at $t=1$, as argued in [22]. This is also similar to the viewpoint of Brookes and Geva $[\mathbf{9}]$, where comonads ($\square, \mathbf{d}, \mathbf{s}$) are enriched into so-called computational comonads, by adding a natural transformation γ from the identity functor to \square allowing to lift any value, not just any computation, to a computation; γ must be such that $\mathbf{d} \circ \gamma_{F}=i d_{F}$ and $\mathbf{s} \circ \gamma_{F}=\gamma_{\square F} \circ \gamma_{F}$. In $\widehat{\Delta}$, such a γ induces a contracting homotopy $s_{q}^{-1}: K_{q} \rightarrow K_{q+1}$ for every $q \geqslant-1$, by $s_{q}^{-1} \hat{=} \square^{q+1}\left(\gamma_{K_{-1}}\right)$; these are usually used to build resolutions of chain complexes. While our comonads need not be computational in this sense, the role of contracting homotopies should become clearer by pondering over Proposition 65 and the construction of Lemma 45.

It is tempting to compare the computational comonads to E. Moggi's computational λ-calculus, i.e. CCCs with a strong monad. [6] is a nice introduction to the latter, and to their relation with Fairtlough and Mendler's propositional lax logic. According to Brookes and Geva, there is no special connection between computational comonads and strong monads. However, in a sense they do express similar concerns in programming language theory. Moreover, as shown in [6], strong monads are best understood as the existential dual \diamond ("in some future") to \square ("in all futures"). Kobayashi [29] deals with a calculus containing both \square and \diamond. Pfenning and Davies [40] give an improved framework for combining both \square and \diamond, and show how lax logic is naturally embedded in it. While classical negation provides a natural link between both modalities, in intuitionistic logic the link is more tenuous. Following R. Goré, there is a more cogent, intuitionistically valid connection between an existential and a universal modality, provided the existential modality is defined as a monad that is left-adjoint to \square. In this sense, Moggi's strong monad should be written as the tense logic modality ("in some past"), so that $F \supset G$ is provable if and only if $F \supset \square G$ is. This duality is reflected in programminglanguage semantics, where $\square F$ is the type of computations whose values are in F, while G is the type of values produced by computations in G. Geometrically, F builds a space of cones over the space F, and this may be defined in categories of topological spaces or of augmented simplicial sets (e.g., as a join from a one-element space, joins being taken as in [14]); it turns out that the cone modality is indeed
a strong monad. However existentials, and therefore also \downarrow, are hard to deal with in establishing equational completeness results, and this is why we won't consider them in this paper.

We hope that studies of the kind presented here will help understand connections between computation, logic and geometry. The relation to other geometric ways of viewing computation, such as $[\mathbf{2 4}]$ on distributed computation, is yet to be clarified. Another interesting piece of work at the intersection of logic (here, linear logic) and simplicial geometry is $[\mathbf{3}, \mathbf{4}]$, which provides sophisticated models for the multiplicative-exponential fragment of linear logic [17] based on affine simplicial spaces with an extra homological constraint. Note that there are strong links between S4 and linear logic, see e.g., [34].

3. Logics, the Curry-Howard Correspondence, and S4

3.1. Logics

Consider any logic, specified as a set of deduction rules. So we have got a notion of formula, plus a notion of deduction, or proof. Those formulas that we can deduce are called theorems. For example, in minimal propositional logic, one of the smallest non-trivial logics, the formulas are given by the grammar:

$$
F, G::=A \mid F \supset G
$$

where A ranges over propositional variables in some fixed set Σ, and \supset is implication. (This logic is called minimal because removing the only operator, \supset, would leave us with something too skinny to be called a logic at all.) The deductions in the standard Hilbert system for intuitionistic minimal logic are given by the following axioms:

$$
\begin{align*}
F & \supset G \supset F \tag{1}\\
(F \supset G \supset H) & \supset(F \supset G) \supset F \supset H \tag{2}
\end{align*}
$$

where F, G, H range over all formulas, and \supset associates to the right, that is, e.g., $F \supset G \supset H$ abbreviates $F \supset(G \supset H)$; and the modus ponens rule:

$$
\frac{F \supset G \quad F}{G}(M P)
$$

which allows one to deduce G from two proofs, one of $F \supset G$, the other of F. Now there is a third level, apart from formulas and proofs, namely proof simplifications. Consider for example the following proof:

This may be simplified to just the proof π_{1}. The idea that proofs may be simplified until no simplification can be made any longer, obtaining equivalent normal proofs, was pioneered by Gerhard Gentzen [45] to give the first finitist proof (in the sense
of Hilbert) of the consistency of first-order Peano arithmetic. If the logical system is presented in a proper way, as with Gentzen's sequent calculus, it is easy to see that false has no normal proof (no rule can lead to a proof of false). So false has no proof, otherwise any proof π of false could be simplified to a normal proof of false, which does not exist. Hilbert systems as the one above are not really suited to the task, and we shall instead use natural deduction systems $[\mathbf{4 4}]$ in Section 3.3.

3.2. The Curry-Howard Correspondence

Note that there is another reading of the logic. Consider any formula as being a set: $F \supset G$ will denote the set of all total functions from the set F to the set G. Then proofs are inhabitants of these sets: interpret the one-step proof (1) as the function taking $x \in F$ and returning the function that takes $y \in G$ and returns x, interpret (2) as the more complex functional that takes $x \in F \supset G \supset H, y \in F \supset G$, and $z \in F$, and returns $x(z)(y(z))$; finally, if π_{1} is a proof of $F \supset G$-a function from F to G-and π_{2} is in F, then $(M P)$ builds $\pi_{1}\left(\pi_{2}\right)$, an element of G. Syntactically, we build a programming language by defining terms:

$$
M, N, P::=K|S| M N
$$

where K and S are constants and $M N$ denotes the application of M to N. (This language is called combinatory logic.) We may restrict to well-typed terms, where the typing rules are: K has any type $F \supset G \supset F, S$ has any type $(F \supset G \supset H) \supset$ $(F \supset G) \supset F \supset H$, and if M has type $F \supset G$ and N has type F, then $M N$ has type G. This may be written using typing judgments $M: F$, which assign each term M a type F, using typing rules:

$$
\begin{align*}
& K: F \supset G \supset F \tag{3}\\
& S:(F \supset G \supset H) \supset(F \supset G) \supset F \supset H \tag{4}\\
& \quad \frac{M: F \supset G \quad N: F}{M N: G}(M P)
\end{align*}
$$

Note the formal similarity with the proof rules (1), (2), and (MP). Any typing rule can be converted to a proof, by forgetting terms. Conversely, any proof can be converted to a typing derivation by labeling judgments with suitable terms. Furthermore, given a typable term M, there is a unique so-called principal typing from which all other typings can be recovered (Hindley's Theorem). This constitutes half of the so-called Curry-Howard correspondence between programs (terms) and proofs. Subscripting K and S with the types they are meant to have at each occurrence in a term even makes this an isomorphism between typable terms and proofs.

Let us introduce the second half of the Curry-Howard correspondence: the proof simplification steps give rise to program reduction rules; here, the natural choice is $K M N \rightarrow M, S M N P \rightarrow M P(N P)$. It turns out that these reduction rules give rise to a notion of computation, where a term (a program) is reduced until a normal term is reached. This reduction process is then exactly the proof simplification process described above.

3.3. Natural Deduction and the Lambda-Calculus

The language of Hilbert systems and combinatory logic is not easy to work with, although this can be done [25]. A more comfortable choice is given by Church's λ-calculus [2], the programming language associated with minimal logic in natural deduction format [44]. Its terms are given by the grammar:

$$
M, N, P::=x|\lambda x \cdot M| M N
$$

where x ranges over variables, $\lambda x \cdot M$ is λ-abstraction ("the function that maps x to $M "$, where M typically depends on x). For convenience, we write $M N_{1} N_{2} \ldots N_{k}$ instead of $\left(\ldots\left((M N) N_{1}\right) N_{2} \ldots\right) N_{k}$ (application associates to the left), and $\lambda x_{1}, x_{2}$, $\ldots, x_{k} \cdot M$ instead of $\lambda x_{1} \cdot \lambda x_{2} \cdot \ldots \lambda x_{k} \cdot M$.

Typing, i.e., proofs, are described using sequents instead of mere formulae. A sequent is an expression of the form $x_{1}: F_{1}, \ldots, x_{n}: F_{n} \vdash M: F$, meaning that M has type F under the assumptions that x_{1} has type F_{1}, \ldots, x_{n} has type F_{n}. This is needed to type λ-abstractions. In this paper, the context $x_{1}: F_{1}, \ldots, x_{n}: F_{n}$ will be a list of bindings $x_{i}: F_{i}$, where the x_{i} 's are distinct. We shall usually write Γ, Θ for contexts. The notation $\Gamma, x: F$ then denotes $x_{1}: F_{1}, \ldots, x_{n}: F_{n}, x: F$, provided x is not one of x_{1}, \ldots, x_{n}. The typing rules are:

$$
\begin{gathered}
\overline{x_{1}: F_{1}, \ldots, x_{n}: F_{n} \vdash x_{i}: F_{i}}(A x) \quad(1 \leqslant i \leqslant n) \\
\frac{\Gamma, x: F \vdash M: G}{\Gamma \vdash \lambda x \cdot M: F \supset G}(\supset I) \frac{\Gamma \vdash M: F \supset G \quad \Gamma \vdash N: F}{\Gamma \vdash M N: G}(\supset E)
\end{gathered}
$$

Finally, computation, i.e., proof simplification, is described by the β-reduction rule $(\lambda x \cdot M) N \rightarrow M[x:=N]$, where $M[x:=N]$ denotes the (capture-avoiding) substitution of N for x in M. We may also add the η-reduction rule $\lambda x \cdot M x \rightarrow M$, provided x is not free in M. Although this is not necessary for proof normalization, η-reduction allows one to get an extensional notion of function, where two functions are equal provided they return equal results on equal arguments. (This also corresponds to reducing proofs of axiom sequents to proofs consisting of just the $(A x)$ rule, proof-theoretically.)

3.4. Minimal Intuitionistic S4

The topic of this paper is the intuitionistic modal logic S4. For simplicity, we consider minimal intuitionistic S4, which captures the core of the logic: formulae, a.k.a. types, are defined by: $F::=A|F \supset F| \square F$ where A ranges over a fixed set Σ of base types. (While adding conjunctions \wedge, and truth \top do not pose any new problems, it should be noted that adding disjunctions \vee, falsehood \perp or \downarrow would not be as innocuous for some of the theorems of this paper.)

The usual semantics of (classical) S 4 is its Kripke semantics. For any Kripke frame (\mathcal{W}, \unrhd) (a preorder), and a valuation ρ mapping base types $A \in \Sigma$ to sets of worlds (those intended to make A true), define when a formula F holds at a world $w \in \mathcal{W}$ in ρ, abbreviated $w, \rho \models F: w, \rho \models A$ if and only if $w \in \rho(A) ; w, \rho \models F \supset G$ if and only if, if $w, \rho \models F$ then $w, \rho \models G$; and $w, \rho \models \square F$ if and only for every $w^{\prime} \unrhd w, w^{\prime}, \rho \models F$. Think of $\square F$ as meaning "from now on, in every future F holds".

The idea that the truth value of a formula F may depend on time is natural, e.g. in physics, where "the electron has gone through the left slit" may hold at time t but not at t^{\prime}.

In intuitionistic S4 we may refine the semantics of formulae to include another preordering \geqslant on worlds, accounting for intuitionistic forcing. Intuitively, \geqslant may be some ordering on states of mind of a mathematician, typically the \supseteq ordering on sets of basic facts that the mathematician knows (the analogy is due to Brouwer). Then if the mathematician knows $F \supset G$ when he is in some state of mind w (abbreviated $w \models F \supset G$), and if he knows F, he should also know G. Further, knowing $F \supset G$ in state of mind w also means that, once the mathematician has extended his state of mind to a larger w^{\prime}, if this w^{\prime} allows him to deduce F, then he should be able to deduce G in the w^{\prime} state of mind. The intuitionistic meaning of $F \supset G$ is therefore that $w \models F \supset G$ if and only if, for every $w^{\prime} \geqslant w$, if $w^{\prime} \models F$ then $w^{\prime} \models G$. Knowing the negation of F in state of mind w not only means knowing that F does not hold in w, but also that it cannot hold in any state of mind $w^{\prime} \geqslant w$, i.e., any w^{\prime} extending w. One distinguishing feature of intuitionistic logic is that it may be the case that there are formulae F such that neither F nor its negation hold in some state of mind w-think of F as an unsolved conjecture-, so the classical tautology $F \vee \neg F$ does not hold in general.

The Kripke semantics of intuitionistic S4 is as follows.
Definition 1 (Kripke Semantics). An intuitionistic Kripke frame is a triple (\mathcal{W}, $\unrhd, \geqslant)$, where \unrhd and \geqslant are preorderings on \mathcal{W} such that $\geqslant \subseteq \unrhd$.
A valuation ρ on \mathcal{W} is a map from base types in Σ to upper sets of worlds in \mathcal{W}; an upper set is any subset of \mathcal{W} such that whenever $w \in W$ and $w^{\prime} \geqslant w, w^{\prime} \in W$.

The semantics of S_{4} formulas is given by:

$$
\begin{aligned}
& w, \rho \models A \text { iff } w \in \rho(A) \\
& w, \rho \models F \supset G \text { iff for every } w^{\prime} \geqslant w, \text { if } w^{\prime}, \rho \models F \text { then } w^{\prime}, \rho \models G \\
& w, \rho \models \square F \text { iff for every } w^{\prime} \unrhd w, w^{\prime}, \rho \models F
\end{aligned}
$$

An S_{4} formula F is valid, written $\models F$, if and only if $w, \rho \models F$ in every frame $(\mathcal{W}, \unrhd, \geqslant)$, for every $w \in \mathcal{W}$, for every valuation ρ.

The resulting logic is called IntS4 in [47], and the condition relating \geqslant and \unrhd there is $(\geqslant 0 \unrhd 0 \geqslant)=\unrhd$. In the $S 4$ case where \unrhd is a preorder, this is equivalent to our $\geqslant \subseteq \unrhd$.

For all our analogy with states of mind of a mathematician is worth, the condition $\geqslant \subseteq \unrhd$ intuitively states that you can only learn new basic facts (increase w.r.t. \geqslant) while time passes (\unrhd), but time may pass without you learning any new facts.

We have mentioned the modality in Section 2. This would have the expected semantics: $w, \rho \models F$ if and only if for some w^{\prime} with $w \unrhd w^{\prime}, w^{\prime}, \rho \models F$. The other two modalities ("in all pasts") and \diamond ("in some future") are naturally defined in intuitionistic modal logic by introducing a new binary relation \unlhd on \mathcal{W}, which needs not be the converse of \unrhd, letting $w, \rho \models ■ F$ if and only if for every $w^{\prime} \unlhd w$, $w^{\prime}, \rho \models F$, and $w, \rho \models \diamond F$ if and only if for every w^{\prime} with $w \unlhd w^{\prime}, w^{\prime}, \rho \models F[\mathbf{4 7}]$. The only constraints on \geqslant, \unrhd and \unlhd are that, in addition to $\geqslant \subseteq \unrhd$, we should have
$\geqslant \subseteq \unlhd, \unlhd \subseteq\left(\unlhd \cap \unrhd^{o}\right) \circ \geqslant$, and $\unrhd \subseteq\left(\unrhd \cap \unlhd^{o}\right) \circ \geqslant$, where R^{o} denotes the converse of relation R.

3.5. Natural Deduction for Intuitionistic S4

In this paper, we shall not be so much interested in validity of S 4 formulas as in actual proofs of S4 formulas. So let us talk about proofs.

We use $\lambda_{\mathrm{S} 4}$ as a language of proof terms for S 4 [7]. The raw terms are:

$$
M, N, P::=x|M N| \lambda x \cdot M|d M| \boxed{M} \cdot \theta
$$

where θ is an explicit substitution, that is, a substitution that appears as an explicit component of terms. A substitution θ is any finite mapping from variables x_{i} to terms $t_{i}, 1 \leqslant i \leqslant n$, and is written $\left\{x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}\right\}$; its domain $\operatorname{dom} \theta$ is the set $\left\{x_{1}, \ldots, x_{n}\right\}$. (We omit the type subscript of variables whenever convenient.) The yield yld θ is defined as $\bigcup_{x \in \operatorname{dom} \theta} \mathrm{fv}(\theta(x))$, mutually recursively with the set of free variables $\mathrm{fv}(M)$ of the term $M: \operatorname{fv}(x) \hat{=}\{x\}, f v(M N) \hat{=} \mathrm{fv}(M) \cup \mathrm{fv}(N), \mathrm{fv}(\lambda x$. $M) \hat{=} \mathrm{fv}(M) \backslash\{x\}, \mathrm{fv}(d M) \hat{=} \mathrm{fv}(M), \mathrm{fv}(\square \cdot \theta) \hat{=} \operatorname{yld} \theta$. (We use $\hat{=}$ for equality by definition.) Moreover, we assume that, in any term $M \cdot \theta, \operatorname{fv}(M) \subseteq \operatorname{dom} \theta$; we also assume Barendregt's naming convention: no variable occurs both free and bound, or bound at two different places-bound variables are x in $\lambda x \cdot M$ and all variables in $\operatorname{dom} \theta$ in $M \cdot \theta$.

Our notations differ from [7]. There $M \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$ is written box M with N_{1}, \ldots, N_{n} for x_{1}, \ldots, x_{n}. The new notation allows one, first, to materialize the explicit substitution more naturally, and second the frame notation will be put to good use to explain what simplices look like. Also, $d M$ is written unbox M in [7]; we use $d M$ because it is more concise and hints that some face operator is at work.

Substitution application $M \theta$ is defined by: $x \theta \hat{=} \theta(x)$ if $x \in \operatorname{dom} \theta, x \theta \hat{=} x$ otherwise; $(M N) \theta \hat{=}(M \theta)(N \theta) ;(\lambda x \cdot M) \theta \hat{=} \lambda x \cdot(M \theta)$ provided $x \notin \operatorname{dom} \theta \cup y l d \theta ;(d M) \theta \hat{=} d(M \theta) ;$ $\left(M \cdot \theta^{\prime}\right) \theta \hat{=} M \cdot\left(\theta^{\prime} \cdot \theta\right)$, where substitution concatenation $\theta^{\prime} \cdot \theta$ is defined as $\left\{x_{1}:=\right.$ $\left.M_{1}, \ldots, x_{n}:=M_{n}\right\} \cdot \theta \hat{=}\left\{x_{1}:=M_{1} \theta, \ldots, x_{n}:=M_{n} \theta\right\}$.

Terms are equated modulo α-conversion, the smallest congruence \equiv such that:

$$
\begin{aligned}
& \lambda x \cdot M \equiv \lambda y \cdot(M\{x:=y\}) \\
M & \left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \equiv \\
& M\left\{x_{1}:=y_{1}, \ldots, x_{n}:=y_{n}\right\}
\end{aligned} \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\}
$$

provided y is not free in M in the first case, and y_{1}, \ldots, y_{n} are not free in M and are pairwise distinct in the second case, with identical type subscripts as x_{1}, \ldots, x_{n} respectively.

The d operator is a kind of "eval", or also of "comma" operator in the language Lisp [32]. The $M, \theta \mapsto M \cdot \theta$ operator is more complex. Let's first look at a special case: for any term M such that $\operatorname{fv}(M)=\left\{x_{1}, \ldots, x_{n}\right\}$, let M be $M \cdot\left\{x_{1}:=x_{1}, \ldots, x_{n}:=x_{n}\right\}$-or, more formally, $M\left\{x_{1}:=x_{1}^{\prime}, \ldots, x_{n}:=x_{n}^{\prime}\right\}$. $\left\{x_{1}^{\prime}:=x_{1}, \ldots, x_{n}^{\prime}:=x_{n}\right\}$. Then M behaves like "quote" M in Lisp, or more ex-
actly, "backquote" M; and provided $\operatorname{dom} \theta=\mathrm{fv}(M), M \cdot \theta$ is exactly $(M) \theta$: this is a syntactic closure in the sense of [5], namely a quoted term M together with an environment θ mapping free variables of M to their values.

$$
\begin{gathered}
\stackrel{\Gamma, x: F, \Theta \vdash x: F}{ }(A x) \\
\frac{\Gamma \vdash M: F \supset G \quad \Gamma \vdash N: F}{\Gamma \vdash M N: G}(\supset E) \quad \frac{\Gamma, x: F \vdash M: G}{\Gamma \vdash \lambda x \cdot M: F \supset G}(\supset I) \\
\frac{\Gamma \vdash M: \square F}{\Gamma \vdash d M: F}(\square E) \\
\frac{\overbrace{\Gamma \vdash N_{i}: \square F_{i}}^{1 \leqslant i \leqslant n}}{\Gamma \vdash \square M \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: \square G}(\square I)
\end{gathered}
$$

Figure 1: Typing $\lambda_{S 4}$ terms

The typing rules [7], defining a natural deduction system for minimal S4 are as in Figure 1, where Γ, Θ, \ldots, are typing contexts, i.e. lists of bindings $x: F$, where x is a variable, F is a type, and no two bindings contain the same variable in any given context. The exchange rule:

$$
\frac{\Gamma, x: F, y: G, \Theta \vdash M: H}{\Gamma, y: G, x: F, \Theta \vdash M: H}
$$

is easily seen to be admissible, so we can consider typing contexts as multisets instead of lists. In particular, there is no choice to be made as to the order of the variables x_{1}, \ldots, x_{n} in the right premise of rule $(\square I)$.

$$
(\lambda x \cdot M) N \rightarrow M\{x:=N\} \quad \text { (d) } \quad d(\boxed{M} \cdot \theta) \rightarrow M \theta
$$

(gc) $M \cdot(\theta,\{x:=N\}) \rightarrow M \cdot \theta$
provided $x \notin \mathrm{fv}(M)$
(ctr) $M \cdot(\theta,\{x:=N, y:=N\}) \rightarrow M\{y:=x\} \cdot(\theta,\{x:=N\})$
(■) \square) $\cdot\left(\theta,\left\{x:=N \cdot \theta^{\prime}\right\}\right) \rightarrow M\{x:=N\} \cdot\left(\theta, \theta^{\prime}\right)$
$(\eta) \quad \lambda x \cdot M x \rightarrow M$ provided $x \notin \mathrm{fv}(M) \quad(\eta \square) \quad d x \cdot\{x:=N\} \rightarrow N$

Figure 2: The reduction relation of $\lambda_{S 4}$

Define the reduction relation \rightarrow on $\lambda_{S 4}$-terms as the smallest relation compatible with term structure (i.e., if $M \rightarrow N$ then $C[M] \rightarrow C[N]$, where $C[P]$ denotes any term with a distinguished occurrence of P) defined in Figure $2[\mathbf{7 , 2 0}]$. Terms that match the left-hand side of rules are called redexes (for reduction expression). The convertibility relation \approx is the smallest congruence extending \rightarrow; in other words, \approx is the reflexive symmetric transitive closure of \rightarrow. In addition, we write \rightarrow^{+}the transitive closure of \rightarrow, and \rightarrow^{*} its reflexive transitive closure.

Rule (d) is like Lisp's rule for evaluating quoted expressions: evaluating M, by $d \mid M$, reduces to M. Rule (\square) can be seen either as an inlining rule, allowing one to inline the definition of x as N inside the body M of the box M, or logically as a box-under-box commutation rule. (gc) is a garbage collection rule, while (ctr) is a contraction rule. We use a new notation in these rules: if θ and θ^{\prime} are two substitutions with disjoint domains, then θ, θ^{\prime} denotes the obvious union.

The last two rules are so-called extensional equalities. Together with (gc), ($\eta \square$) allows us to deduce $\sqrt{d x} \cdot \theta \approx x \theta$, but not $d M \cdot \theta \approx M \theta$ for any term $M: M$ has to be a variable. For a discussion of this, see $[\mathbf{2 1}]$.

3.6. Standard Properties: Subject Reduction, Confluence, Strong Normalization

We now prove standard properties of proof simplification calculi.
The following lemma is by a series of easy but tedious computations; it says that reduction preserves typings, alternatively that it rewrites proofs to proofs of the same sequents.

Lemma 2 (Subject Reduction). If the typing judgment $\Gamma \vdash M: F$ is derivable and $M \rightarrow N$ then $\Gamma \vdash N: F$ is derivable.

Proposition 3 (Confluence). If $M \rightarrow^{*} N_{1}$ and $M \rightarrow^{*} N_{2}$, then there is P such that $N_{1} \rightarrow^{*} P$ and $N_{2} \rightarrow^{*} P$.

Proof. We closely follow [2]. The plan of the proof is as follows. We first replace \rightarrow^{*} by another notion of reduction $\xrightarrow{1}$, which will be strongly confluent (if $M \xrightarrow{1} M_{1}$ and $M \xrightarrow{1} M_{2}$, then there is P such that $M_{1} \xrightarrow{1} P$ and $M_{2} \xrightarrow{1} P$), hence confluent. This will be proved by showing that a related calculus $\lambda_{\mathrm{S4}}{ }^{*}$ is terminating (all rewrite sequences are finite) and locally confluent (if $M \rightarrow N_{1}$ and $M \rightarrow N_{2}$, then there is P such that $N_{1} \rightarrow^{*} P$ and $N_{2} \rightarrow^{*} P$, where \rightarrow stands for the rewrite relation of $\lambda_{\mathrm{S} 4}{ }^{*}$), hence confluent by Newman's Lemma. (This is the finite developments theorem [2].) We shall conclude by observing that $\rightarrow \subseteq \xrightarrow{1} \subseteq \rightarrow^{*}$, where \rightarrow is the rewrite relation of $\lambda_{\mathrm{S} 4}$, so that confluence of $\xrightarrow{1}$ implies that of \rightarrow.

Define a new calculus $\lambda_{\mathrm{S} 4}{ }^{*}$ as follows. Compared to $\lambda_{\mathrm{S} 4}, \lambda_{\mathrm{S} 4}{ }^{*}$ has an additional term construction $\left(\lambda^{*} x \cdot M\right) N$, and rule β is removed, and replaced by:

$$
\left(\beta^{*}\right) \quad\left(\lambda^{*} x \cdot M\right) N \rightarrow M\{x:=N\}
$$

In particular, $(\lambda x \cdot M) N$ is not reducible in $\lambda_{\text {S4 }}{ }^{*}$. A long and uninteresting series of computations shows that all critical pairs are joinable [13], hence $\lambda_{\text {S4 }}{ }^{*}$ is locally confluent. To show that $\lambda_{\mathrm{S} 4}{ }^{*}$ terminates, define a notion of parameterized size of terms
$|M|(\rho)$ —parameterized by partial functions ρ from variables to positive integers:

$$
\begin{aligned}
&|x|(\rho) \hat{=} \rho(x)|M N|(\rho) \hat{=}|M|(\rho)+|N|(\rho) \\
&|\lambda x \cdot M|(\rho) \hat{=} 1+|M|(\rho[x \mapsto 1])\left|\left(\lambda^{*} x \cdot M\right) N\right|(\rho) \hat{=} 1+|M|(\rho[x \mapsto|N|(\rho)]) \\
&|d M|(\rho) \hat{=} 1+|M|(\rho) \\
&|M| \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}\left|(\rho) \hat{=} 1+|M|\left(\left[x_{1} \mapsto\left|N_{1}\right|(\rho), \ldots,\right.\right.\right. \\
&\left.\left.x_{n} \mapsto\left|N_{n}\right|(\rho)\right]\right) \\
&+\left|N_{1}\right|(\rho)+\ldots+\left|N_{n}\right|(\rho)
\end{aligned}
$$

where the notation $\left[x_{1} \mapsto k_{1}, \ldots, x_{n} \mapsto k_{n}\right.$] denotes the map sending x_{i} to k_{i}, $1 \leqslant i \leqslant n$, and $\rho \rho^{\prime}$ denotes the map that sends x to $\rho^{\prime}(x)$ if this is defined, and to $\rho(x)$ otherwise.

The following properties are easily proved by structural induction on M :

1. If $\operatorname{fv}(M) \subseteq \operatorname{dom} \rho$, then $|M|(\rho)$ is defined.
2. $|M|(\rho)$ is a positive integer.
3. $\left|M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}\right|(\rho)=|M|\left(\rho\left[x_{1} \mapsto\left|N_{1}\right|(\rho), \ldots, x_{n} \mapsto\left|N_{n}\right|(\rho)\right]\right)$.
4. If $\rho(x) \geqslant \rho^{\prime}(x)$ for every x, then $|M|(\rho) \geqslant|M|\left(\rho^{\prime}\right)$. If moreover $\rho(x)>\rho^{\prime}(x)$ for some $x \in \operatorname{fv}(M)$, then $|M|(\rho)>|M|\left(\rho^{\prime}\right)$.
5. If ρ and ρ^{\prime} agree on $\mathrm{fv}(M)$, then $|M|(\rho)=|M|\left(\rho^{\prime}\right)$.

Then we show that for every rule $l \rightarrow r$ of $\lambda_{\mathrm{S}}{ }^{*}$, for every ρ with domain containing $\mathrm{fv}(l),|l|(\rho)>|r|(\rho)$. This is by straightforward calculations.Now, using 4 , this entails that $|M|(\rho)>|N|(\rho)$ whenever $M \rightarrow N$ in $\lambda_{\mathrm{S} 4}{ }^{*}$. So $\lambda_{\mathrm{S} 4}{ }^{*}$ terminates, and by Newman's Lemma is confluent.

Let's say that the $\lambda_{\mathrm{S4}}{ }^{*}$-term M^{\prime} is obtained from M by adding stars if and only if M is obtained from M^{\prime} by erasing all star signs, i.e., replacing each subterm $\left(\lambda^{*} x \cdot N\right) N^{\prime}$ by $(\lambda x \cdot N) N^{\prime}$, recursively. (Note that we cannot add stars on any λ abstraction, only on those that are immediately applied to some argument.) Define the $\xrightarrow{1}$ rewrite relation on $\lambda_{S 4}$ by $M \xrightarrow{1} N$ if and only if we may add stars to M, getting M^{\prime}, and $M^{\prime} \rightarrow^{*} N$ in $\lambda_{\mathrm{S} 4}{ }^{*}$. (Note that N is a $\lambda_{\mathrm{S} 4}$-term, so every star must be erased by the reduction.)

We claim that $\xrightarrow{1}$ is confluent. Let indeed $M \xrightarrow{1} M_{1}, M \xrightarrow{1} M_{2}$. So we may add stars to M, getting M_{1}^{\prime} and M_{2}^{\prime} respectively, so that $M_{1}^{\prime} \rightarrow^{*} M_{1}$ and $M_{2}^{\prime} \rightarrow^{*} M_{2}$ in $\lambda_{\text {S4 }}{ }^{*}$. By adding stars in M at every position where a star was added in M_{1}^{\prime} or in M_{2}^{\prime}, and correspondingly adding corresponding stars in every term appearing on the given rewrites from M_{1}^{\prime} to M_{1} and from M_{2}^{\prime} to M_{2}, we get rewrites in $\lambda_{\mathrm{S} 4}{ }^{*}$ from M^{\prime} to some $\lambda_{\mathrm{S} 4}{ }^{*}$ terms N_{1} and N_{2} that are obtained from M_{1} and M_{2} respectively by adding stars. Since the reduction relation of $\lambda_{\mathrm{S}}{ }^{*}$ is terminating and confluent, N_{1} and N_{2} have the same normal form P. Because rule $\left(\beta^{*}\right)$ does not apply to P, P does not have any star, and is therefore a $\lambda_{\text {S4 }}$-term. So $M_{1} \xrightarrow{1} P$ and $M_{2} \xrightarrow{1} P$. This means that $\xrightarrow{1}$ is strongly confluent (M_{1} and M_{2} rewrite to P in exactly one step [13]), hence confluent.

It is now clear that $\rightarrow \subseteq \xrightarrow{1}$: e.g., if $M \rightarrow N$ by (β), add a star on the (β)-redex that gets contracted. Also, $\xrightarrow{1} \subseteq \rightarrow^{*}$, since erasing all stars turns $\left(\beta^{*}\right)$ into (β).

So if $M \rightarrow^{*} N_{1}$ and $M \rightarrow^{*} N_{2}$, then $M \xrightarrow{1^{*}} N_{1}$ and $M \xrightarrow{1^{*}} N_{2}$ since $\rightarrow \subseteq \xrightarrow{1}$. Therefore for some $P, N_{1} \xrightarrow{1}{ }^{*} P$ and $N_{2} \xrightarrow{1^{*}} P$ by confluence of $\xrightarrow{1}$. So $N_{1} \rightarrow^{*} P$ and $N_{2} \rightarrow^{*} P$, since $\xrightarrow{1} \subseteq \rightarrow^{*}$.

Confluence implies the important property that, if a term can be reduced to a normal term, then the latter is unique (consider the case where both N_{1} and N_{2} are normal, i.e., do not reduce to any term).

Another important property is that every typable term (proof) reduces to a (necessarily unique) normal term (proof). We actually show a bit more:

Proposition 4 (Strong Normalization). If M is typable, then it is strongly normalizing, i.e., every reduction sequence starting from M is finite.

Proof. By the reducibility method [18]. Let $S N$ be the set of strongly normalizing terms, and define an interpretation of types as sets of terms as follows: for every base type $A,\|A\| \hat{=} S N$;
$\|F \supset G\| \hat{=}\left\{M \in S N \mid\right.$ whenever $M \rightarrow^{*} \lambda x \cdot M_{1}$ then for every $N \in\|F\|, M_{1}\{x:=$ $N\} \in\|G\|\} ;$
$\|\square F\| \hat{=}\left\{M \in S N \mid\right.$ whenever $M \rightarrow^{*} M_{1} \cdot \theta$ then $\left.M_{1} \theta \in\|F\|\right\}$. Observe that:
(CR1) $\|F\| \subseteq S N$ for every type F;
(CR2) For every $M \in\|F\|$, if $M \rightarrow M^{\prime}$ then $M^{\prime} \in\|F\|$. This is by structural induction on F. This is clear when F is a base type. For implications, assume $M \in\|F \supset G\|$ and $M \rightarrow M^{\prime}$; then $M^{\prime} \in S N$, and if $M^{\prime} \rightarrow^{*} \lambda x \cdot M_{1}$, then since $M \in\|F \supset G\|, M \rightarrow^{*} \lambda x \cdot M_{1}$, so by definition $M_{1}\{x:=N\} \in\|G\|$ for every $N \in\|F\|$; therefore $M^{\prime} \in\|F \supset G\|$. The case of box types is proved similarly.
(CR3) For every neutral term M, if $M^{\prime} \in\|F\|$ for every M^{\prime} with $M \rightarrow M^{\prime}$, then $M \in\|F\|$. (Call a term neutral if and only if it is not of the form $\lambda x \cdot M$ or $M \cdot \theta$.) This is again by structural induction on F. This is clear when F is a base type. For implications, assume that every M^{\prime} such that $M \rightarrow M^{\prime}$ is in $\|F \supset G\|$, and show that $M \in\|F \supset G\|$. Clearly $M \in S N$, since every reduction starting from M must be empty or go through some $M^{\prime} \in\|F \supset G\| \subseteq S N$ by (CR1). So assume that $M \rightarrow^{*} \lambda x \cdot M_{1}$. Since M is neutral, the given reduction is non-empty, so there is an M^{\prime} such that $M \rightarrow M^{\prime} \rightarrow^{*} \lambda x \cdot M_{1}$. By assumption $M^{\prime} \in\|F \supset G\|$, so for every $N \in\|F\|$, $M_{1}\{x:=N\} \in\|G\|$. It follows that $M \in\|F \supset G\|$. The case of box types is similar.

Next we show that:

1. If $M \in\|F \supset G\|$ and $N \in\|F\|$, then $M N \in\|G\|$. By (CR1), M and N are in $S N$, so we prove this by induction on the pair (M, N) ordered by \rightarrow, lexicographically. Note that $M N$ is neutral, and may only rewrite in one step to $M^{\prime} N$ where $M \rightarrow M^{\prime}$, or to $M N^{\prime}$ where $N \rightarrow N^{\prime}$, or to $M_{1}\{x:=N\}$ by (β) (if $M=\lambda x \cdot M_{1}$). In the first two cases, $M^{\prime} \in\|F \supset G\|$, resp. $N^{\prime} \in\|F\|$ by (CR2), so we may apply the induction hypothesis. In the third case, this
is by definition of $\|F \supset G\|$. In each case we get a term in $\|G\|$, so by (CR3) $M N \in\|G\|$.
2. If $M\{x:=N\} \in\|G\|$ for every $N \in\|F\|$, then $\lambda x \cdot M \in\|F \supset G\|$. To show this, we show the converse of 1: if for every $N \in\|F\|, M N \in\|G\|$, then $M \in\|F \supset G\|$. Indeed, first $M \in S N$: take any variable $x ; x$ is in $\|F\|$ by (CR3), so $M x \in\|G\|$ by assumption, so $M x \in S N$ by (CR1), hence $M \in S N$. Second, assume that $M \rightarrow^{*} \lambda x \cdot M_{1}$, then for every $N \in\|F\|$, $M N \rightarrow^{*} M_{1}\{x:=N\} \in\|G\|$ by (CR2). So $M \in\|F \supset G\|$.
Using this, assume that $M\{x:=N\} \in\|G\|$ for every $N \in\|F\|$, and show that $\lambda x \cdot M \in\|F \supset G\|$. It is enough to show that $(\lambda x \cdot M) N \in\|G\|$ for every $N \in\|F\|$. We do this by induction on (M, N) ordered by \rightarrow, which is well-founded: indeed, $N \in\|F\| \subseteq S N$ by (CR1), and $M=M\{x:=x\} \in$ $\|G\| \subseteq S N$ by (CR1), since $x \in\|F\|$ by (CR3). Since $(\lambda x \cdot M) N$ is neutral, apply (CR3): $(\lambda x \cdot M) N$ may rewrite to $\left(\lambda x \cdot M^{\prime}\right) N$ with $M \rightarrow M^{\prime}$ (this is in $\|G\|$ by (CR2) and the induction hypothesis), or to $(\lambda x \cdot M) N^{\prime}$ with $N \rightarrow N^{\prime}$ (similar), or to $M\{x:=N\}$ by (β) (in $\|G\|$ by assumption), or to $M^{\prime} N$ by (η) where $M=M^{\prime} x, x$ not free in M^{\prime} (then $M^{\prime} N=M\{x:=N\}$, which is in $\|G\|$ by assumption).
3. If $M \in\|\square F\|$, then $d M \in\|F\|$. This is by induction on M ordered by \rightarrow, which is well-founded since by (CR1) $M \in S N$. Now $d M$ may rewrite either to $d M^{\prime}$ with $M \rightarrow M^{\prime}$ (then apply the induction hypothesis, noting that $M^{\prime} \in\|\square F\|$ by (CR2), so $d M^{\prime} \in\|F\|$), or to $M_{1} \theta$, provided $M=M_{1} \cdot \theta$ (then $M_{1} \theta \in\|F\|$ by definition). Since $d M$ is neutral, by (CR3) $d M \in\|F\|$.
4. If $M \theta \in\|F\|$ and θ maps each variable $x \in \operatorname{dom} \theta$ to some strongly normalizing term, then $M \cdot \theta \in\|\square F\|$. First we show the converse of 3: if $d M \in\|F\|$ then $M \in\|\square F\|$. First since $d M \in\|F\| \subseteq S N$ by (CR1), $M \in S N$. It remains to show that whenever $M \rightarrow^{*} M_{1} \cdot \theta$ then $M_{1} \theta \in\|F\|$. However then $d M \rightarrow^{*} M_{1} \theta$ must be in $\|F\|$ by (CR2).
Knowing this, let $M \theta$ be in $\|F\|$ and θ map each variable $x \in \operatorname{dom} \theta$ to some strongly normalizing term. Let us show that $M \cdot \theta \in\|\square F\|$. It is enough to show that $d M \cdot \theta \in\|F\|$, using (CR3) since this term is neutral. Letting θ be $\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$, we show this by induction on, first, N_{1}, \ldots, N_{n} ordered by the multiset extension $[\mathbf{1 2}]$ of $\rightarrow \cup \triangleright$, where \triangleright is the immediate superterm relation (it is well-known that as soon as N_{i} is in the well-founded part of \rightarrow, it is also in the well-founded part of $\rightarrow \cup \triangleright$; the multiset extension allows one to replace any element N_{i} of the multiset by any finite number of smaller elements, and is well-founded on all multisets of elements taken from the well-founded part of the underlying ordering); and second on $M \theta$, lexicographically. Now $d M \cdot \theta$ may rewrite in one step to:

- $M \theta$ by (d); this is in $\|F\|$ by assumption.
- $d N_{1}$ by $(\eta \square)$, where $M=d x_{1}$ and $n=1$. Then $d N_{1}=M \theta$ is in $\|F\|$ by assumption.
- $d M^{\prime} \cdot \theta$ where $M \rightarrow M^{\prime}$. By (CR2) $M^{\prime} \theta \in\|F\|$, so we may apply the
induction hypothesis.
- $d M \cdot \theta^{\prime}$ where $\theta^{\prime}=\left\{x_{1}:=N_{1}, \ldots, x_{i}:=N_{i}^{\prime}, \ldots, x_{n}:=N_{n}\right\}$ and $N_{i} \rightarrow N_{i}^{\prime}$. Since $N_{i}^{\prime} \in S N$, we may apply the induction hypothesis.
- $d \widehat{M} \cdot \theta^{\prime}$ where $\theta=\theta^{\prime},\{x:=N\}$ and x is not free in M by (gc). This is by the induction hypothesis. The same argument applies for (ctr).
- d $M\{x:=\boxed{N}\} \cdot\left(\theta_{1}, \theta^{\prime}\right)$ where $\theta=\theta_{1},\left\{x:=\square \cdot \theta^{\prime}\right\}$ by (\square). We wish to apply the induction hypothesis. For this, we have to check that $M\{x:=$ $N\}\left(\theta_{1}, \theta^{\prime}\right)$ is in $\|F\|$. But $M \theta$ is in $\|F\|$ and equals $M\left(\theta_{1},\left\{x:=N \cdot \theta^{\prime}\right\}\right.$. The latter is equal or rewrites by (gc) to $M\left(\theta_{1},\left\{x:=(N) \theta^{\prime}\right\}\right)=M\{x:=$ $N\}\left(\theta_{1}, \theta^{\prime}\right)$, so the latter is in $\|F\|$ by (CR2).
We now check that, given any typing derivation π of $x_{1}: F_{1}, \ldots, x_{n}: F_{n} \vdash M: F$, for every $N_{1} \in\left\|F_{1}\right\|, \ldots, N_{n} \in\left\|F_{n}\right\|, M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \in\|F\|$. This is by structural induction on π. The $(A x)$ cas is obvious, while the other cases are dealt with by using items $1-4$ above. Since $x_{i} \in\left\|F_{i}\right\|$ by (CR3), it follows that $M \in\|F\|$. By (CR1), $M \in S N$.

So each proof (typed term) has a unique normal form.

3.7. The Shape of Normal Forms, η-Long Normal Forms

One way of describing normal forms for typed terms is by the typing system $B N$ of Figure 3.

$$
\begin{aligned}
& \overline{\Gamma, x: F, \Theta \vdash_{E} x: F}\left(A x_{E}\right) \quad \frac{\Gamma \vdash_{E} M: F \supset G \quad \Gamma \vdash_{I} N: F}{\Gamma \vdash_{E} M N: G}\left(\supset E_{E}\right) \\
& \frac{\Gamma \vdash_{E} M: F}{\Gamma \vdash_{I} M: F}(\text { Flip }) \quad \frac{\Gamma \vdash_{E} M: \square F}{\Gamma \vdash_{E} d M: F}\left(\square E_{E}\right) \\
& \frac{\Gamma, x: F \vdash_{I} M: G}{\Gamma \vdash_{I} \lambda x \cdot M: F \supset G}\left(\supset I_{I}\right) \frac{\overbrace{\Gamma \vdash_{E} N_{i}: \square F_{i}}^{1 \leqslant i \leqslant n}}{\left.\frac{x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n}}{\Gamma \vdash_{I} M \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: \square G}\left(\square I_{I}\right)\right) . G} \\
& \left(\mathrm{fv}(M)=\left\{x_{1}, \ldots, x_{n}\right\}\right)
\end{aligned}
$$

Figure 3: Typing beta-normal forms: System $B N$

Lemma 5. Call a term beta-normal if and only if it contains no $(\beta),(d),(g c)$, (\square) redex (i.e., no redex except possibly (ctr), (η) or $(\eta \square)$ redexes).

If $\Gamma \vdash M: F$ and M is beta-normal, then $\Gamma \vdash_{I} M: F$. Moreover, if M is neutral, i.e., not starting with $a \lambda$ or a box, then $\Gamma \vdash_{E} M$.

Conversely, if $\Gamma \vdash_{I} M: F$ or $\Gamma \vdash_{E} M: F$, then $\Gamma \vdash M: F$ and M is beta-normal.

Proof. By structural induction on the given derivation of $\Gamma \vdash M: F$. The cases M a variable, and M of the form $\lambda x \cdot M_{1}$ are trivial. If $M=M_{1} M_{2}$, with $\Gamma \vdash$ $M_{1}: G \supset H$ and $\Gamma \vdash M_{2}: G$, then M_{1} must be neutral, otherwise by typing M_{1} would start with a λ, and then M would be a (β)-redex. So by induction hypothesis $\Gamma \vdash_{E} M_{1}: G \supset H$. Since by induction hypothesis $\Gamma \vdash_{I} M_{2}: G$, it follows by rule ($\supset E_{E}$) that $\Gamma \vdash_{E} M: H$. The case where $M=d M_{1}$ is similar. Finally, when M is of the form $M_{1} \cdot \theta$, with $\theta=\left\{x_{1}: N_{1}, \ldots, x_{n}: N_{n}\right\}, \Gamma \vdash N_{i}: \square F_{i}(1 \leqslant i \leqslant n)$, and $x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n} \vdash M_{1}: F$, then by induction hypothesis $x_{1}: \square F_{1}, \ldots, x_{n}$: $\square F_{n} \vdash_{I} M_{1}: F$. Moreover, since M is not a (gc) redex, $\operatorname{fv}(M)=\left\{x_{1}, \ldots, x_{n}\right\}$. Also, every N_{i} must be neutral, otherwise by typing they would start with a box, which is forbidden because M is not a (\square) redex, so by induction hypothesis $\Gamma \vdash_{E} N_{i}: \square F_{i}$. It follows that rule $\left(\square I_{I}\right)$ applies, therefore $\Gamma \vdash_{I} M: \square F$.

Conversely: if $\Gamma \vdash_{I} M: F$ or $\Gamma \vdash_{E} M: F$, then it is obvious that $\Gamma \vdash M: F$: erase all E and I subscripts, and remove all instances of (Flip). It remains to show that M is beta-normal. Consider any subterm of M. If it is of the form $M_{1} M_{2}$, then its type must have been derived using the ($\supset E_{E}$) rule, which implies that M_{1} is typed as in $\Gamma \vdash_{E} M_{1}: F \supset G$; but no rule in $B N$ (Figure 3) would allow one to derive such a judgment if M_{1} began with λ; so $M_{1} M_{2}$ is not a (β)-redex. Similarly, no subterm of M can be a (d) redex. The side-conditions on rule ($\square I_{I}$) entail that no subterm of M is a (gc) redex, while the fact that N_{i} : $\square F_{i}$ must have been derived using a \vdash_{E} judgment entails that no N_{i} starts with a box, hence that no subterm of M is a (\square) redex. So M is beta-normal.

A more convenient form than normal forms is the η-long normal form, imitating that of $[\mathbf{2 7}]$ in the non-modal case. In the S 4 case, η-long normal forms are slightly more complex, but can be described as follows, including an additional linearity constraint on boxes.

Definition 6 (η-long normal form). Call a term M linear if and only if every free variable of M occurs exactly once in M. Formally, define the notion of being linear in W, where W is a finite set of variables, as follows. Every variable is linear in $W, \lambda x \cdot M$ is linear in W provided M is linear in $W \backslash\{x\}, M N$ is linear in W provided M and N are and $\operatorname{fv}(M) \cap \mathrm{fv}(N) \cap W=\emptyset$, ∂M is linear in W provided M is, $M \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$ is linear in W provided each $N_{i}, 1 \leqslant i \leqslant n$, is linear in W, and $\operatorname{fv}\left(N_{i}\right) \cap \operatorname{fv}\left(N_{j}\right) \cap W=\emptyset$ for every $1 \leqslant i \neq j \leqslant n$. A term M is linear provided it is linear in $\mathrm{fv}(M)$.

Call $\left(\right.$ Flip $\left._{0}\right)$ the rule (Flip) restricted to the case where F is in the set Σ of base types, and $\left(\square I_{0}\right)$ the rule $\left(\square I_{I}\right)$ restricted to the case where M is linear. Call $B N_{0}$ the typing system BN where all instances of (Flip) are instances of (Flipo), and all instances of $\left(\square I_{I}\right)$ are instances of $\left(\square I_{0}\right)$.

A term M is said to be η-long normal of type F in Γ if and only if we can derive $\Gamma \vdash_{I} M: F$ in system $B N_{0}$.

Lemma 7 (Weakening). For every $B N$ derivation of $\Gamma \vdash_{*} M: F(* \in\{I, E\})$, for every context Θ, there is a $B N$ derivation of $\Gamma, \Theta \vdash_{*} M: F$.

Proof. By structural induction on the given derivation. This is mostly obvious, provided we assume all bound variables have been renamed so as to be distinct from the ones in Θ.

Lemma 8. For every M such that $\Gamma \vdash M: F, M$ has an η-long normal form $\eta[M]$. That is, there is a term $\eta[M]$ such that $M \approx \eta[M]$ and $\Gamma \vdash \eta[M]: F$.

Proof. First by Proposition 4 and Lemma 5, we may assume that $\Gamma \vdash_{I} M: F$. The idea is then, first, to rewrite every instance of (Flip) on non-base types F using only instances of (Flip) on smaller types F, until all we get is instances of $\left(F l i p_{0}\right)$. This is done using the following two rules:

$$
\begin{aligned}
& \overline{\Gamma, x: F \vdash_{E} x: F}\left(A x_{E}\right) \\
& \frac{\Gamma \vdash_{E} M: F \supset G}{\Gamma \vdash_{I} M: F \supset G}(\text { Flip }) \longrightarrow \frac{\Gamma, x: F \vdash_{E} M: F \supset G \frac{\frac{1}{\Gamma, x: F \vdash_{I} x: F}}{(F l i p)}\left(\supset E_{E}\right)_{(5)}}{\frac{\Gamma, x: F \vdash_{E} M x: G}{\Gamma}(\text { Flip })}
\end{aligned}
$$

where in the right-hand side of the first rule, the derivation of $\Gamma, x: F \vdash_{E} M$: $F \supset G$ is obtained from the one of $\Gamma \vdash_{E} M: F \supset G$ by weakening (Lemma 7). This terminates, because the sum of the sizes of formulae on the right-hand sides of judgments in (Flip) decreases (define the size $|F|$ of a formula F by $|A| \hat{=} 1$, $|F \supset G| \hat{=}|F|+|G|+1,|\square F| \hat{=}|F|+1)$.

On the other hand, we make every instance of $\left(\square I_{I}\right)$ one of ($\left.\square I_{0}\right)$ by linearizing the term M. That is, for each free variable x_{i} in $M, 1 \leqslant i \leqslant n$, with $k_{i} \geqslant 1$ distinct occurrences in M, create k_{i} fresh variables $x_{i 1}, \ldots, x_{i k_{i}}$, let M^{\prime} be M where the j th occurrence of x_{i} is replaced by $x_{i j}$, for every $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k_{i}$, and rewrite the derivation:

$$
\begin{equation*}
\frac{\overbrace{\Gamma \vdash_{E} N_{i}: \square F_{i}}^{1 \leqslant i \leqslant n} \quad x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n} \vdash M: F}{\Gamma \vdash M \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}: N_{n}\right\}: \square F}\left(\square I_{I}\right) \tag{7}
\end{equation*}
$$

into:

$$
\begin{equation*}
\frac{\overbrace{\Gamma \vdash{ }_{E} N_{i}: \square F_{i}}^{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k_{i}}}{\Gamma \vdash M^{\prime} \cdot\left\{\left(x_{i j}:=N_{i}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k_{i}}\right\}: \square F}\left(\square F_{i j}\right)_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k_{i}} \vdash M^{\prime}: F) \tag{8}
\end{equation*}
$$

Lemma 9. Let $\Gamma \vdash M: F$. Then M has at most one η-long normal form of type F in Γ.

Proof. Let M^{\prime} be an η-long normal form of $M . M^{\prime}$ is beta-normal by construction. Let R_{η} be the rewrite system consisting of rules (η) and $(\eta \square)$. It is clear that R_{η} terminates and rewrites beta-normal terms to beta-normal terms. Similarly the rewrite system $R_{\text {ctr }}$ consisting of the sole rule (ctr) terminates and rewrites $R_{\eta^{-}}$ normal beta-normal terms to R_{η}-normal beta-normal terms. Let $M^{\prime \prime}$ be any $R_{\eta^{-}}$ normal form of M^{\prime}, and $M^{\prime \prime \prime}$ be any $R_{\text {ctr- }}$-normal form of $M^{\prime \prime}$. Then $M^{\prime \prime \prime}$ is $R_{\mathrm{ctr}^{-}}$ normal, R_{η}-normal and beta-normal, hence normal.

Since M^{\prime} is an η-long normal form of $M, M \approx M^{\prime}$, so $M \approx M^{\prime \prime \prime}$. By Proposition 3 and since $M^{\prime \prime \prime}$ is normal, $M \rightarrow^{*} M^{\prime \prime \prime}$. Summing up, $M \rightarrow^{*} M_{R_{\mathrm{ctr}}}^{\prime \prime \prime} \leftarrow M_{R_{\eta}}^{\prime *} \leftarrow M^{\prime}$, where \rightarrow_{R} denotes rewriting by R.

Observe now that the rewrite system $R_{\text {ctr }}^{-1}$ on derivations defined by the transformation $M_{1}\{y:=x\} \cdot(\theta,\{x:=N\}) \rightarrow M_{1} \cdot(\theta,\{x:=N, y:=N\})$ (where both x and y are free in M_{1}) is locally confluent. Moreover, whenever M_{1} is well-typed and beta-normal, and rewrites to M_{2} by $R_{\text {ctr }}$, then M_{2} rewrites to M_{1} by $R_{\text {ctr }}^{-1}$. Finally, $R_{\text {ctr }}^{-1}$ terminates: for any term M_{1}, let $\mu\left(M_{1}\right)$ be $\sum_{x \in \mathrm{fv}\left(M_{1}\right)}\left(n\left(x, M_{1}\right)-1\right)$ where $n\left(x, M_{1}\right)$ is the number of occurrences of x in M_{1}; by induction on $\mu\left(M_{1}\right)$ followed lexicographically by the multiset of the terms $x \theta, x \in \operatorname{dom} \theta$ ordered by $\rightarrow_{R_{\mathrm{ctr}}^{-1}}, M_{1} \cdot \theta$ is R_{ctr}^{-1}-terminating as soon as each $x \theta$ is, $x \in \operatorname{dom} \theta$; it follows by structural induction on terms that every term is $R_{\text {ctr }}^{-1}$-terminating.

Similarly, the rewrite system R_{η}^{-1} on derivations defined by (5) and (6) is terminating (as already noticed in Lemma 8), locally confluent, and whenever M_{1} is well-typed and beta-normal, and rewrites to M_{2} by R_{η}, then M_{2} rewrites to M_{1} by R_{η}^{-1}

So if M^{\prime} is any η-long normal form of M, then $M \rightarrow^{*} M^{\prime \prime \prime} \rightarrow_{R_{\mathrm{ctr}}^{-1}}^{*} M^{\prime \prime} \rightarrow_{R_{\eta}^{-1}}^{*} M^{\prime}$.
In general, if M_{1}^{\prime} and M_{2}^{\prime} are two η-long normal forms of M, we get $M \rightarrow^{*}$ $M^{\prime \prime \prime} \rightarrow_{R_{\mathrm{ctr}}^{-1}}^{*} M_{1}^{\prime \prime} \rightarrow_{R_{\eta}^{-1}}^{*} M_{1}^{\prime}$ and $M \rightarrow^{*} M^{\prime \prime \prime} \rightarrow_{R_{\mathrm{ctr}}^{-1}}^{*} M_{2}^{\prime \prime} \rightarrow_{R_{\eta}^{-1}}^{*} M_{2}^{\prime}$. Since R_{ctr}^{-1} is confluent and $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ are $R_{\text {ctr }}^{-1}$-normal, $M_{1}^{\prime \prime}=M_{2}^{\prime \prime}$. Since R_{η}^{-1} is confluent and M_{1}^{\prime} and M_{2}^{\prime} are η-long normal, hence R_{η}^{-1}-normal, $M_{1}^{\prime}=M_{2}^{\prime}$.

Lemmas 8 and 9 entail:
Proposition 10 (η-long normalization). For every term M such that $\Gamma \vdash M: F$ is derivable, M has a unique η-long normal form of type F in Γ, which we write $\eta[M]$. In particular, whenever $\Gamma \vdash M: F$ and $\Gamma \vdash M^{\prime}: F, M \approx M^{\prime}$ if and only if $\eta[M]=\eta\left[M^{\prime}\right]$.

The value of η-long normal forms is that substituting terms N_{i} of a certain form for variables in any η-long normal form yields an η-long normal form again:

Lemma 11. If $x_{1}: F_{1}, \ldots, x_{n}: F_{n}, \Theta \vdash_{*} M: F(* \in\{I, E\})$ and $\Gamma \vdash_{E} N_{i}: F_{i}$ in system $B N_{0}$ for every $i, 1 \leqslant i \leqslant n$, then $\Gamma, \Theta \vdash_{*} M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: F$ in system $B N_{0}$.

Proof. By structural induction on the given derivation of $x_{1}: F_{1}, \ldots, x_{n}: F_{n}, \Theta \vdash_{*}$ $M: F$ in $B N_{0}$. If this was derived by $\left(A x_{E}\right)$, then $*=E$; if $M=x_{i}$ for some i, then $F=F_{i}, M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}=N_{i}$ and we may indeed deduce $\Gamma, \Theta \vdash_{E} N_{i}: F$, by weakening from $\Gamma \vdash_{E} N_{i}: F$ (Lemma 7); otherwise let M be variable x, then $M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}=x$, and we get $\Gamma, \Theta \vdash_{E} x: F$ by $\left(A x_{E}\right)$. If the last rule is $\left(\supset E_{E}\right)$, $\left(\square E_{E}\right)$ or $\left(F l i p_{0}\right)$, this is by the induction hypothesis, straightforwardly. If the last rule is $\left(\supset I_{I}\right)$, then $*=I, M$ is of the form $\lambda x \cdot M_{1}, F$ is of the form $G \supset H$, and by induction hypothesis we have been able to derive $\Gamma, \Theta, x: G \vdash_{I} M_{1}\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: H$, from which we get $\Gamma, \Theta \vdash_{I}$ $M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: G \supset H$ by $\left(\supset I_{I}\right)$. Finally, if the last rule is $\left(\square I_{0}\right)$, then $*=I, F$ is of the form $\square G, M$ is of the form $M_{1} \cdot\left\{y_{1}:=P_{1}, \ldots, y_{k}:=P_{k}\right\}$, $\mathrm{fv}\left(M_{1}\right)=\left\{y_{1}, \ldots, y_{k}\right\}, M_{1}$ is linear, and the typing derivation ends in:

$$
\frac{\overbrace{x_{1}: F_{1}, \ldots, x_{n}: F_{n}, \Theta \vdash_{E} P_{j}: \square G_{j}}^{1 \leqslant j \leqslant k}}{x_{1}: F_{1}, \ldots, x_{n}: F_{n}, \Theta \vdash_{I}: M_{1} \cdot\left\{y_{1}:=P_{1}, \ldots, y_{k}:=P_{k}\right\}: \square G} \quad y_{1}: \square G_{1}, \ldots, y_{k}: \square G_{k} \vdash_{I} M_{1}: G\left(\square I_{0}\right)
$$

By induction hypothesis, we have got a derivation in $B N_{0}$ of $\Gamma, \Theta \vdash_{E} P_{j}\left\{x_{1}:=\right.$ $\left.N_{1}, \ldots, x_{n}:=N_{n}\right\}: \square G_{j}$. Together with the derivation above of $y_{1}: \square G_{1}, \ldots, y_{k}:$ $\square G_{k} \vdash_{I} M_{1}: G$, and since $\operatorname{fv}\left(M_{1}\right)=\left\{y_{1}, \ldots, y_{k}\right\}, M_{1}$ is linear, we may apply ($\square I_{0}$) and derive

$$
\begin{aligned}
\Gamma, \Theta \vdash_{I} \boxed{M_{1}} \cdot\{ & y_{1}:=P_{1}\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \\
& \ldots, \\
& \left.y_{n}:=P_{n}\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}\right\}: \square G
\end{aligned}
$$

But this is precisely $\Gamma, \Theta \vdash_{I} M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: \square G$.
Lemma 12. If M is η-long normal of type $\square F$ in Γ, then M is of the form $M_{1} \cdot \theta$. Moreover, $\eta[d M]=M_{1} \theta$.

Proof. The first part is obvious: $\Gamma \vdash_{I} M: \square F$ in system $B N_{0}$, but only rule ($\square I_{0}$) can lead to this. Also, letting θ be $\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$, we have $x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n} \vdash_{I} M_{1}: F$ in $B N_{0}$, and $\Gamma \vdash_{E} N_{i}: \square F_{i}$ in $B N_{0}$ for each i, $1 \leqslant i \leqslant n$. By Lemma 11, $\Gamma \vdash_{I} M_{1} \theta: F$ in $B N_{0}$. Since $d M \approx M_{1} \theta$, by Proposition 10 $\eta[d M]=M_{1} \theta$.

The crucial thing in Lemma 12 is not so much that $d M \approx M_{1} \theta$, which is obvious. Rather, it is the fact that once we have reduced $d\left(\boxed{M_{1}} \cdot \theta\right)$ to $M_{1} \theta$ by (d), we have already reached its η-long normal form.

Similarly, we obtain:
Lemma 13. Let $s M \hat{=} x \cdot\{x:=M\}$. If $M \hat{=} M_{1} \cdot \theta$ is η-long normal of type $\square F$ in Γ, then $\eta[s M]=\boxed{M_{1}} \cdot \theta$.

Proof. First $s M=x \cdot\left\{x:=M_{1} \cdot \theta\right\} \approx M_{1} \cdot \theta$. Then since M is η-long normal, letting θ be $\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$, we have $x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n} \vdash_{I} M_{1}: F$
in $B N_{0}$, and $\Gamma \vdash_{E} N_{i}: \square F_{i}$ in $B N_{0}$ for each $i, 1 \leqslant i \leqslant n$. So we can produce the following $B N_{0}$ derivation:

so $M_{1} \cdot \theta$ is η-long normal of type $\square \square F$ in Γ. The claim then follows by Proposition 10 .

4. The Augmented Simplicial Structure of $\lambda_{\mathrm{S} 4}$

We define an augmented simplicial set consisting of typed $\lambda_{\text {S4 }}$-terms. Recall that:
Definition 14 (A.s. set, a.s. map). An augmented simplicial set K is a family of sets $K_{q}, q \geqslant-1$, of q-simplices, a.k.a. simplices of dimension q, with face maps $\partial_{q}^{i}: K_{q} \rightarrow K_{q-1}$ and degeneracy maps $s_{q}^{i}: K_{q} \rightarrow K_{q+1}, 0 \leqslant i \leqslant q$, such that:
(i) $\partial_{q-1}^{i} \circ \partial_{q}^{j}=\partial_{q-1}^{j-1} \circ \partial_{q}^{i}$
(ii) $s_{q+1}^{i} \circ s_{q}^{j-1}=s_{q+1}^{j} \circ s_{q}^{i}$
(iii) $\partial_{q+1}^{i} \circ s_{q}^{j}=s_{q-1}^{j-1} \circ \partial_{q}^{i}$
(iv) $\partial_{q+1}^{i} \circ s_{q}^{i}=\mathrm{id}$
(v) $\partial_{q+1}^{i+1} \circ s_{q}^{i}=\mathrm{id}$
(vi) $s_{q-1}^{i} \circ \partial_{q}^{j}=\partial_{q+1}^{j+1} \circ s_{q}^{i}$
where $0 \leqslant i \leqslant q$ in $(i v),(v)$, and $0 \leqslant i<j \leqslant q$ in the others.
An augmented simplicial map $f: K \rightarrow L$ is a family of maps $f_{q}: K_{q} \rightarrow L_{q}$, $q \geqslant-1$, such that $\partial_{q}^{i} \circ f_{q}=f_{q-1} \circ \partial_{q}^{i}$ and $s_{q}^{i} \circ f_{q}=f_{q+1} \circ s_{q}^{i}, 0 \leqslant i \leqslant q$.

Subscripts start at -1 , which is standard and allows one to have q match the geometric dimension. We sometimes abbreviate "augmented simplicial" as "a.s." in the sequel. Also, when we run a risk of confusion, we write $\partial_{K_{q}}^{i}$ for ∂_{q}^{i}, and $s_{K_{q}}^{i}$ for s_{q}^{i}.

The category $\widehat{\Delta}$ of augmented simplicial sets as objects, and augmented simplicial maps as morphisms (see [33], VII.5), can also be presented as follows. Let Δ be the category whose objects are finite ordinals $[q] \hat{=}\{0,1, \ldots, q\}, q \geqslant-1$, and whose morphisms are monotonic (i.e., non-decreasing) maps. This category is generated by morphisms $[q-1] \xrightarrow{\delta_{q}^{i}}[q]$ (mapping $j<i$ to j and $j \geqslant i$ to $j+1$) and $[q+1] \xrightarrow{\sigma_{q}^{i}}[q]$ (mapping $j \leqslant i$ to j and $j>i$ to $j-1$), and relations that are most succinctly described as $(i)-(v i)$ where ∂ is replaced by δ, s by σ, and composition order is reversed. Then $\widehat{\Delta}$ is the category of functors from the opposite category Δ^{o} to the category Set of sets.

In general, $\widehat{\mathcal{C}}$ denotes the category of functors from \mathcal{C}^{o} to Set, a.k.a. presheaves over $\mathcal{C} . \widehat{\mathcal{C}}$ is always an elementary topos [30], hence is a cartesian-closed category $(C C C)$. The terminal object $\mathbf{1}$ of $\widehat{\Delta}$ is such that $\mathbf{1}_{q}$ is a singleton $\{*\}$ for every $q \geqslant$ -1 . The product $K \times L$ is such that $(K \times L)_{q} \hat{=} K_{q} \times L_{q}, \partial_{(K \times L)_{q}}^{i}(u, v) \hat{=}\left(\partial_{K_{q}}^{i} u, \partial_{L_{q}}^{i} v\right)$ and $s_{(K \times L)_{q}}^{i}(u, v) \hat{=}\left(s_{K_{q}}^{i} u, s_{L_{q}}^{i} v\right)$: i.e., product is component-wise.

The structure of exponentials, i.e., internal homs $\operatorname{Hom}_{\hat{\Delta}}(K, L)$ is given by general constructions [30], which will be largely irrelevant here. For now, let us just say that we have got a.s. application maps $A p p: \operatorname{Hom}_{\widehat{\Delta}}(K, L) \times K \rightarrow L$, and an abstraction operator Λ on a.s. maps $f: K \times L \rightarrow M$, so that Λf is an a.s. map from K to $\operatorname{Hom}_{\widehat{\Delta}}(L, M)$, satisfying certain equations to be specified below. Furthermore, (-1)-simplices of $\operatorname{Hom}_{\widehat{\Delta}}(K, L)$ are just simplicial maps from K to L, while 0 -simplices are homotopies between maps, and q-simplices for $q \geqslant 0$ are higher-dimensional homotopies.

In general, in any $\operatorname{CCC} \mathcal{C}$ - not just $\widehat{\Delta}$ - , let ! denote the unique morphism $X \xrightarrow{!} \mathbf{1}$. For cartesian products, we have a pair $X \xrightarrow{\langle f, g\rangle} Y \times Z$ for every $X \xrightarrow{f} Y$ and $X \xrightarrow{g} Z$, and projections $X_{1} \times X_{2} \xrightarrow{\pi_{i}} X_{i}, i \in\{1,2\}$. We also have internal hom objects (exponentials) $\operatorname{Hom}_{\mathcal{C}}(X, Y)$, application $\operatorname{Hom}_{\mathcal{C}}(X, Y) \times X \xrightarrow{A p p} Y$, and abstraction $X \xrightarrow{\Lambda f} \operatorname{Hom}_{\mathcal{C}}(Y, Z)$ for every $X \times Y \xrightarrow{f} Z$. These obey the following categorical combinator equations $[\mathbf{1 0}]$, where we omit types (objects) for the sake of conciseness:
(a) id $\circ f=f$
(b) $f \circ \mathrm{id}=f$
(c) $f \circ(g \circ h)=(f \circ g) \circ h$
(d) $\forall f: X \rightarrow \mathbf{1} \cdot f=$!
(e) $\pi_{1} \circ\langle f, g\rangle=f \quad(f) \pi_{2} \circ\langle f, g\rangle=f$
(g) $\left\langle\pi_{1}, \pi_{2}\right\rangle=\mathrm{id}$
(h) $\langle f, g\rangle \circ h=\langle f \circ h, g \circ h\rangle$
(k) $\Lambda f \circ h=\Lambda\left(f \circ\left\langle h \circ \pi_{1}, \pi_{2}\right\rangle\right)$
(l) $A p p \circ\langle\Lambda f, g\rangle \quad(m) \Lambda\left(A p p \circ\left\langle f \circ \pi_{1}, \pi_{2}\right\rangle\right)=f$
$=f \circ\langle i d, g\rangle$
$=f \circ\langle\mathrm{id}, g\rangle$

For reasons of convenience, we shall abbreviate $\left\langle f \circ \pi_{1}, g \circ \pi_{2}\right\rangle$ as $f \times g$. Then, the following are derived equations:
$\left(g^{\prime}\right) \mathrm{id} \times \mathrm{id}=\mathrm{id}$
$\left(h^{\prime}\right)(f \times g) \circ\left(f^{\prime} \times g^{\prime}\right)=\left(f \circ f^{\prime}\right) \times\left(g \circ g^{\prime}\right)$
$\left(k^{\prime}\right) \Lambda f \circ h=\Lambda(f \circ(h \times \mathrm{id}))$
$\left(l^{\prime}\right) A p p \circ\langle\Lambda f \circ h, g\rangle=f \circ\langle h, g\rangle\left(l^{\prime \prime}\right) A p p \circ(\Lambda f \times \mathrm{id})=f\left(m^{\prime}\right) \Lambda(A p p \circ(f \times \mathrm{id}))=f$

4.1. The Augmented Simplicial Sets $\mathcal{S}_{4}[\Gamma \vdash F]$

We observe that the S 4 modality allows us to exhibit an augmented simplicial structure. We shall see later on (Section 5.2) that this arises from a comonad through the use of certain resolution functors. However, for now we prefer to remain syntactic and therefore relatively concrete.

Definition $15\left(\mathcal{S}_{4}[\Gamma \vdash F]\right)$. For every context Γ, for every type F, let $[\Gamma \vdash F]$ be the set of all equivalence classes of $\lambda_{\mathrm{S} 4}$-terms M such that $\Gamma \vdash M: F$ is derivable, modulo \approx.

For every $q \geqslant-1$, let $\mathcal{S}_{4}[\Gamma \vdash F]_{q}$ be $\left[\Gamma \vdash \square^{q+1} F\right]$, and let $\mathcal{S}_{4}[\Gamma \vdash F]$ be the family $\left(\mathcal{S}_{4}[\Gamma \vdash F]_{q}\right)_{q \geqslant-1}$.

For every function f from $\left[\Gamma \vdash F_{1}\right] \times \ldots \times\left[\Gamma \vdash F_{n}\right]$ to $[\Gamma \vdash G]$, define $\square f$ as the function from $\left[\Gamma \vdash \square F_{1}\right] \times \ldots \times\left[\Gamma \vdash \square F_{n}\right]$ to $[\Gamma \vdash \square G]$ that maps the tuple $\left(M_{1}, \ldots, M_{k}\right)$ to $f\left(d x_{1}, \ldots, d x_{k}\right) \cdot\left\{x_{1}:=M_{1}, \ldots, x_{k}:=M_{k}\right\}$.

Say that f is substitutive whenever $f\left(M_{1}, \ldots, M_{k}\right) \theta \approx f\left(M_{1} \theta, \ldots, M_{k} \theta\right)$.
Finally, let ∂_{q}^{i} be the function from $\mathcal{S}_{4}[\Gamma \vdash F]_{q}$ to $\mathcal{S}_{4}[\Gamma \vdash F]_{q-1}, 0 \leqslant i \leqslant q$, defined by $\partial_{q}^{i} M \hat{=}\left(\square^{i} d\right) M$; and let s_{q}^{i} be the function from $\mathcal{S}_{4}[\Gamma \vdash F]_{q}$ to $\mathcal{S}_{4}[\Gamma \vdash F]_{q+1}, 0 \leqslant$ $i \leqslant q$, defined by $s_{q}^{i} M \hat{=}\left(\square^{i} s\right) M$, where $s M \hat{=} \underset{x}{ } \cdot\{x:=M\}$.

Lemma 16. The following hold: 1. $\square \mathrm{id}=\mathrm{id}$. 2. if f is substitutive, then $\square f \circ \square g=$ $\square(f \circ g)$. 3. for every $f, \square f$ is substitutive. 4. ∂_{q}^{i} and s_{q}^{i} are substitutive.

Proof. 1. $\square \mathrm{id}(M)=d x \cdot\{x:=M\} \approx M($ by $(\eta \square))$, so $\square \mathrm{id}=\mathrm{id}$.
2. For every functions f and g, provided f is substitutive, then

$$
\begin{aligned}
\square f(\square g(M)) & =f(d x) \cdot\{x:=g(d y) \cdot\{y:=M\}\} \\
& \approx f(d x)\{x:=g(d y)\} \cdot\{y:=M\} \quad(\text { by } \quad(\square)) \\
& \approx f(d g(d y)) \cdot\{y:=M\} \quad \text { (since } f \text { is substitutive) } \\
& \approx f(g(d y)) \cdot\{y:=M\} \quad(\text { by }(d))
\end{aligned}
$$

So $\square f \circ \square g=\square(f \circ g)$. 3. is obvious, and 4. follows from 3 .
Proposition 17. For every Γ and F, the triple $\left(\mathcal{S}_{4}[\Gamma \vdash F],\left(\partial_{q}^{i}\right)_{0 \leqslant i \leqslant q},\left(s_{q}^{i}\right)_{0 \leqslant i \leqslant q}\right)$ is an augmented simplicial set.

Proof. Because of Lemma 16, it is enough to check $(i)-(v i)$ in the case $i=0$, as the general case then follows immediately by induction on i :
(i) $\partial_{q-1}^{0}\left(\partial_{q}^{j} M\right)=d\left(\square \partial_{q-1}^{j-1} M\right)=d \partial_{q-1}^{j-1}(d x) \cdot\{x:=M\} \approx \partial_{q-1}^{j-1}(d M) \quad($ by $(d))$ $=\partial_{q-1}^{j-1}\left(\partial_{q}^{0} M\right)$.
(ii) $s_{q+1}^{0}\left(s_{q}^{j-1} M\right)=y \cdot\left\{y:=s_{q}^{j-1} M\right\}$, while $s_{q+1}^{j}\left(s_{q}^{0} M\right)=\square s_{q}^{j-1}\left(s_{q}^{0} M\right)$
$=s_{q}^{j-1}(d y) \cdot\left\{y:=s_{q}^{0} M\right\}=s_{q}^{j-1}(d y) \cdot\{y:=x \cdot\{x:=M\}\}$
$\approx s_{q}^{j-1}(d \boxed{x}) \cdot\{x:=M\}($ by $(\square)) \approx s_{q}^{j-1} x \cdot\{x:=M\}($ by $(d))$.
If $j=1$, then $s_{q+1}^{0}\left(s_{q}^{j-1} M\right)=y \cdot\{y:=x \cdot\{x:=M\}\} \approx \boxed{x} \cdot\{x:=M\}$ (by $(\square))=s_{q}^{0} x \cdot\{x:=M\}$, and this is precisely $s_{q+1}^{j}\left(s_{q}^{0} M\right)$.
If $j>1$, then it obtains $s_{q+1}^{0}\left(s_{q}^{j-1} M\right)=y \cdot\left\{y:=s_{q}^{j-1} M\right\}$
$=y \cdot\left\{y:=\square s_{q-1}^{j-2} M\right\}=y \cdot\left\{y:=s_{q-1}^{j-2}(d x) \cdot\{x:=M\}\right\}$
$\approx \boxed{s_{q-1}^{j-2}(d x)} \cdot\{x:=M\}($ by $(\square))=\square s_{q-1}^{j-2} x .\{x:=M\}$
$=s_{q}^{j-1} x \cdot\{x:=M\}$, which is exactly $s_{q+1}^{j}\left(s_{q}^{0} M\right)$.
(iii) $\partial_{q+1}^{0}\left(s_{q}^{j} M\right)=d\left(\square s_{q-1}^{j-1} M\right)=d \overline{s_{q-1}^{j-1}(d x)} \cdot\{x:=M\} \approx s_{q-1}^{j-1}(d M) \quad($ by $(d))$ $=s_{q-1}^{j-1}\left(\partial_{q}^{0} M\right)$.
(iv) $\partial_{q+1}^{0}\left(s_{q}^{0} M\right)=d(\boxed{x} \cdot\{x:=M\}) \approx M$ by (d).
(v) $\partial_{q+1}^{1}\left(s_{q}^{0} M\right)=\square \partial_{q}^{0}\left(s_{q}^{0} M\right)=d(d x) \cdot\{x:=y \cdot\{y:=M\}\} \approx d(d y) \cdot\{y:=M\}$
$(\operatorname{by}(\square)) \approx d y \cdot\{y:=M\}(\operatorname{by}(d)) \approx M(\operatorname{by}(\eta \square))$.
(vi) $s_{q-1}^{0}\left(\partial_{q}^{j} M\right)=s_{q-1}^{0}\left(\square \partial_{q-1}^{j-1} M\right)=\boxed{x} \cdot\left\{x:=\partial_{q-1}^{j-1}(d y) \cdot\{y:=M\}\right\}$
$\approx \partial_{q-1}^{j-1}(d y) \cdot\{y:=M\}($ by $(\square))=\partial_{q}^{j} y \cdot\{y:=M\}$, while on the other
hand $\partial_{q+1}^{j+1}\left(s_{q}^{0} M\right)=\square \partial_{q}^{j}(y \cdot\{y:=M\})=\partial_{q}^{j}(d x) \cdot\{x:=y \cdot\{y:=M\}\}$
$\approx \partial_{q}^{j}(d \boxed{y}) \cdot\{y:=M\}($ by $(\square)) \approx \partial_{q}^{j} y \cdot\{y:=M\} \quad($ by $(d))$.

By Lemma 12, the η-long normal form of any term of type $\square^{q+1} F$ in Γ can be written in a unique way $\ldots \boxed{M_{0} \cdot \theta_{q}} \cdot \theta_{q-1} \ldots \cdot \theta_{0}$. Fix a variable x_{0}, and let θ_{q+1} be $\left\{x_{0} \mapsto M_{0}\right\}$. Then this is also $\ldots x_{0} \theta_{q+1} \cdot \theta_{q} \cdot \theta_{q-1} \ldots \cdot \theta_{0}$. Therefore $q-$ simplices in $\mathcal{S}_{4}[\Gamma \vdash F]$ are basically sequences of $q+2$ substitutions, with additional typing and linearity conditions and conditions on the domains of substitutions. Let us compute faces and degeneracies as they act on η-long normal forms. For short, call the η-long normal form of a q-simplex M in $\mathcal{S} 4[\Gamma \vdash F]$ the unique η-long normal form of type $\square^{q+1} F$ in Γ of M.

First the following lemma will help us compute η-long normal forms of $\square f$ applied to arguments in η-long normal form themselves.

Lemma 18. Let f be any function from $\left[\Gamma \vdash F_{1}\right] \times \ldots \times\left[\Gamma \vdash F_{n}\right]$ to $[\Gamma \vdash G]$. We say that f is linearity-preserving if and only if for every η-long normal form M_{1} of type F_{1} in Γ, \ldots, for every η-long normal form M_{n} of type F_{n} in Γ, if M_{1}, \ldots, M_{n} are linear, then the η-long normal form of $f\left(M_{1}, \ldots, M_{n}\right)$ of type G in Γ is linear, too. By abuse, write $f\left(M_{1}, \ldots, M_{n}\right)$ this η-long normal form again.

Say that f is non-collapsing if and only if, for every η-long normal forms M_{1} of type F_{1} in Γ, \ldots, M_{n} of type F_{n} in Γ, then $\mathrm{fv}\left(f\left(M_{1}, \ldots, M_{n}\right)\right)=\mathrm{fv}\left(M_{1}\right) \cup \ldots \cup$ $\mathrm{fv}\left(M_{n}\right)$.

Let $M_{1} \cdot \theta_{1}, \ldots, \overline{M_{n}} \cdot \theta_{n}$ be η-long normal forms of respective types $\square F_{1}$, $\ldots, \square F_{n}$ in Γ. Assume without loss of generality that $\theta_{1}, \ldots, \theta_{n}$ have pairwise disjoint domains. If f is substitutive, linearity-preserving and non-collapsing, then the η-long normal form of type G in Γ of $\square f\left(\boxed{M_{1}} \cdot \theta_{1}, \ldots, M_{n} \cdot \theta_{n}\right)$ is exactly $f\left(M_{1}, \ldots, M_{n}\right) \cdot\left(\theta_{1}, \ldots, \theta_{n}\right)$.

Proof. $\square f\left(\boxed{M_{1}} \cdot \theta_{1}, \ldots, M_{n} \cdot \theta_{n}\right)$
$=f\left(d x_{1}, \ldots, d x_{n}\right) \cdot\left\{x_{1}:=M_{1} \cdot \theta_{1}, \ldots, x_{n}:=M_{n} \cdot \theta_{n}\right\}$
$\approx f\left(d x_{1}, \ldots, d x_{n}\right)\left\{x_{1}:=M_{1}, \ldots, x_{n}:=\boxed{M_{n}}\right\} \cdot\left(\theta_{1}, \ldots, \theta_{n}\right)($ by $(\square))$
$\approx f\left(d \sqrt{M_{1}}, \ldots, d \sqrt{M_{n}}\right) \cdot\left(\theta_{1}, \ldots, \theta_{n}\right)$ (since f is substitutive) $\approx f\left(M_{1}, \ldots, M_{n}\right)$.
$\left(\theta_{1}, \ldots, \theta_{n}\right)$ (by (d)). It remains to show that the latter is η-long normal of type $\square G$ in Γ, which will allow us to use Proposition 10. We only have to check that
$\operatorname{fv}\left(f\left(M_{1}, \ldots, M_{n}\right)\right)=\operatorname{dom} \theta_{1} \cup \ldots \cup \operatorname{dom} \theta_{n}$ and that $f\left(M_{1}, \ldots, M_{n}\right)$ is linear. The former is because f is non-collapsing, and $\operatorname{fv}\left(M_{i}\right)=\operatorname{dom} \theta_{i}, 1 \leqslant i \leqslant n$. The latter is because f is linearity-preserving, and each M_{i} is linear. Indeed, $\operatorname{fv}\left(M_{i}\right)=\operatorname{dom} \theta_{i}$ and M_{i} is linear because $M_{i} \cdot \theta_{i}$ is η-long normal.

Proposition 19. Let $M \in \mathcal{S} 4[\Gamma \vdash F]_{q}$, of η-long form $\ldots x_{0} \theta_{q+1} \cdot \theta_{q} \cdot \theta_{q-1} \ldots$.
θ_{0}. Then the η-long form of $\partial_{q}^{i} M$ is:

and the η-long form of $s_{q}^{i} M$ is:

where id is the identity substitution on $\operatorname{dom} \theta_{i}$.
Proof. By induction on i, simultaneously with the fact that ∂_{q}^{i} and s_{q}^{i} are substitutive, linearity-preserving and non-collapsing. The inductive case is by Lemma 18. In the base case, if $i=0$, then (9) is by Lemma 12 , and (10) is by Lemma 13.

The geometry of $\mathcal{S}_{4}[\Gamma \vdash F]$ is therefore very close to that of the nerve of a category whose objects are contexts Γ, and whose morphisms $\Gamma \xrightarrow{\theta} \Theta$ are substitutions θ such that, letting Θ be $y_{1}: G_{1}, \ldots, y_{m}: G_{m}, \theta$ is of the form $\left\{y_{1}:=M_{1}, \ldots, y_{m}:=M_{m}\right\}$ where $\Gamma \vdash M_{i}: G_{i}$ is derivable for each $i, 1 \leqslant i \leqslant m$. Identities are the identity substitutions, composition is substitution concatenation. (It is not quite a nerve, because of the added conditions on substitutions.) The connection with nerves will be made precise in Theorem 29 below.

4.2. The Geometry of $\mathcal{S}_{4}[\Gamma \vdash F]$

In Proposition 19, note that substitutions are taken as is, in particular not modulo \approx. This hints at the fact that $\mathcal{S}_{4}[\Gamma \vdash F]$ will in general not be a Kan complex: recall that a nerve of a small category \mathcal{C} is Kan if and only if \mathcal{C} is a groupoid, i.e., if and only if all morphisms in \mathcal{C} are isomorphisms. In the category of substitutions above, the only isomorphisms are renamings $\left\{x_{1}:=y_{1}, \ldots, x_{n}:=y_{n}\right\}$, where y_{1}, \ldots, y_{n} are pairwise distinct variables.

Proposition 20. $\mathcal{S}_{4}[\Gamma \vdash F]$ is not Kan in general.
Proof. Being Kan would imply in particular that given any two 1-simplices M_{0} and M_{1} with $\partial_{1}^{0} M_{0}=\partial_{1}^{0} M_{1}$, there should be a 2 -simplex M such that $\partial_{2}^{0} M=M_{0}$
and $\partial_{2}^{1} M=M_{1}$. Write the η-long normal forms of M_{0} as $x_{0} \theta_{2} \cdot \theta_{1} \cdot \theta_{0}$, of M_{1} as $x_{0} \theta_{2}^{\prime} \cdot \theta_{1}^{\prime} \cdot \theta_{0}^{\prime}$. The condition $\partial_{1}^{0} M_{0}=\partial_{1}^{0} M_{1}$ means that $x_{0} \theta_{2} \cdot\left(\theta_{1} \cdot \theta_{0}\right)=$ $x_{0} \theta_{2}^{\prime} \cdot\left(\theta_{1}^{\prime} \cdot \theta_{0}^{\prime}\right)$. In particular, up to a renaming of the variables free in $x_{0} \theta_{2}^{\prime}$:

$$
\begin{equation*}
\theta_{2}=\theta_{2}^{\prime}, \quad \theta_{1} \cdot \theta_{0}=\theta_{1}^{\prime} \cdot \theta_{0}^{\prime} \tag{11}
\end{equation*}
$$

If M exists, then M is of the form | $x_{0} \vartheta_{3}$ |
| ---: |
| $\cdot \vartheta_{2}$ |
| $\cdot \vartheta_{1}$ |
| $\cdot \vartheta_{0}$, and up to renamings | of bound variables, $\partial_{2}^{0} M=M_{0}$ entails:

$$
\begin{equation*}
\vartheta_{3}=\theta_{2}, \quad \vartheta_{2}=\theta_{1}, \quad \vartheta_{1} \cdot \vartheta_{0}=\theta_{0} \tag{12}
\end{equation*}
$$

and $\partial_{2}^{1} M=M_{1}$ entails:

$$
\begin{equation*}
\vartheta_{3}=\theta_{2}^{\prime}, \quad \vartheta_{2} \cdot \vartheta_{1}=\theta_{1}^{\prime}, \quad \vartheta_{0}=\theta_{0}^{\prime} \tag{13}
\end{equation*}
$$

It follows that θ_{1}^{\prime} must be an instance of θ_{1}, in particular. (An instance of a substitution θ is a substitution of the form $\theta \cdot \theta^{\prime}$.) But (11) does not guarantee this. For example, take $\theta_{2} \hat{=} \theta_{2}^{\prime} \hat{=}\left\{x_{0}:=d x_{0}\right\}, \theta_{1}^{\prime} \hat{=}\left\{x_{0}:=x_{1}\right\}, \theta_{1} \hat{=}\left\{x_{0}:=d x_{1}\right\}, \theta_{0} \hat{=}\left\{x_{1}:=x_{1}\right\}$, $\theta_{0}^{\prime} \hat{=}\left\{x_{1}:=d x_{1}\right\}$. It is easily checked that M_{0} and M_{1} are in $\mathcal{S}_{4}[\Gamma \vdash F]_{1}$, i.e., they are of type $\square^{2} F$ in Γ, for any formula F, where $\Gamma \hat{=} x_{1}: \square^{2} F$.

This settles the case, at least when Γ contains at least one formula of the form $\square^{2} F$. When Γ is empty, it is easy to see that $\mathcal{S} 4[\Gamma \vdash F]$ is empty except possibly in dimension -1 , so this is trivially Kan-but the geometry of such simplicial sets is uninteresting.

The following notion will be useful in studying the geometry of $\mathcal{S}_{4}[\Gamma \vdash F]$:
Definition 21 (Contiguity). Let K be an augmented simplicial set. The q-simplex x is one-step contiguous to the q-simplex y, in short $x \rightarrow y$, if and only if there is a $(q+1)$-simplex z in K, and two indices i, j with $0 \leqslant i<j \leqslant q+1$ such that $\partial_{q+1}^{j} z=x$ and $\partial_{q+1}^{i} z=y$, and $x \neq y$.

The q-simplex x is contiguous to y if and only if $x \rightarrow * y$, and strictly contiguous if and only if $x \rightarrow^{+} y$. We say that x and y are contiguous if and only if $x \leftrightarrow y$, where \leftrightarrow is the reflexive symmetric transitive closure of \rightarrow.

Contiguity is usually presented a bit differently. In particular, it is usually not required that $j>i$ in one-step contiguity. Then \rightarrow^{*} is an equivalence relation. However we shall need the finer notion of \rightarrow in the sequel.

The following lemma, for example, is unusual:
Lemma 22. The relation \rightarrow is well-founded.
Proof. Define the following measure $\mu(M)$ for q-simplices M in $\mathcal{S}_{4}[\Gamma \vdash F]_{q}$. Whenever M has η-long normal form $\ldots \sqrt{x_{0} \theta_{q+1}} \cdot \theta_{q} \ldots \cdot \theta_{0}$, let $\mu(M)$ be the $(q+2)$-tuple $\left(\left|\theta_{0}\right|, \ldots,\left|\theta_{q}\right|,\left|\theta_{q+1}\right|\right)$, ordered lexicographically from right to left, where $|\theta|$ is the size of θ, defined in any obvious way.

Let M and M^{\prime} be two q-simplices in $\mathcal{S}_{4}[\Gamma \vdash F]$, and assume that $M \rightarrow M^{\prime}$. Then there is a $(q+1)$-simplex N, say:

$$
\ldots \sqrt{x_{0} \theta_{q+2}} \cdot \theta_{q+1} \ldots \cdot \theta_{1} \cdot \theta_{0}
$$

and $i<j$ such that $\partial_{q+1}^{j} N=M, \partial_{q+1}^{i} N=M^{\prime}$. That is:

Clearly $\mu(M) \geqslant \mu\left(M^{\prime}\right)$. We claim that $\mu(M)>\mu\left(M^{\prime}\right)$. Since the lexicographic ordering on sizes is well-founded, this will establish the result.

Assume on the contrary that $\mu(M)=\mu\left(M^{\prime}\right)$. Then, $\left|\theta_{j+1} \cdot \theta_{j}\right|=\left|\theta_{j+1}\right|$, so up to a renaming of bound variables, $\theta_{j+1} \cdot \theta_{j}=\theta_{j+1}$, so $\theta_{j}=$ id. Then $\left|\theta_{j}\right|=\left|\theta_{j-1}\right|, \ldots$, $\left|\theta_{i+2}\right|=\left|\theta_{i+1}\right|$, which imply that $\theta_{j-1}, \ldots, \theta_{i+1}$ must map variables to variables. By the linearity constraints on η-long normal forms, they must be one-to-one. So up to renaming of bound variables, $\theta_{j-1}=\ldots=\theta_{i+1}=\mathrm{id}$. But then $M=M^{\prime}$, contradicting $M \rightarrow M^{\prime}$.

Corollary 23. The relation \rightarrow^{+}is a strict ordering.
Proof. If it were reflexive, then we would have $M \rightarrow{ }^{+} M$ for some M, hence an infinite decreasing chain $M \rightarrow{ }^{+} M \rightarrow+M \rightarrow^{+} \ldots$

Definition 24 (Vertices, Component). Let K be any augmented simplicial set. Given any q-simplex x of $K, q \geqslant 0$, the vertices of x are those 0 -simplices that are iterated faces of x. The i th vertex of $x, 0 \leqslant i \leqslant q$, is $\partial_{q}^{i} x \hat{=} \partial_{1}^{0} \ldots \partial_{i}^{i-1} \partial_{i+1}^{i+1} \ldots \partial_{q}^{q} x$.

The component $\pi_{0} x$ is $\partial_{0}^{0} \ldots \partial_{i}^{i} \ldots \partial_{q}^{q} x$.
It is well-known that each q-simplex has exactly $q+1$ vertices, and these are ${\underset{\mathrm{d}}{q}}_{0} x$, $\ldots, \check{\partial}_{q}^{q} x$. Moreover, these vertices are contiguous:

Lemma 25. Let K be any augmented simplicial set. Given any q-simplex x of K, $q \geqslant 0$,

$$
\check{\mathrm{\partial}}_{q}^{0} x \rightarrow \rightarrow^{*} \mathrm{\partial}_{q}^{1} x \rightarrow \rightarrow^{*} \ldots \rightarrow^{*} \check{\mathrm{\delta}}_{q}^{q} x
$$

Proof. To show that $\partial_{q}^{i} x \rightarrow{ }^{*} \partial_{q}^{i+1} x$, let y be the 1 -simplex $\partial_{2}^{0} \ldots \partial_{i+1}^{i-1} \partial_{i+2}^{i+2} \ldots \partial_{q}^{q} x$. Then $\partial_{1}^{0} y=ذ_{q}^{i+1} x$ and $\partial_{1}^{1} y=\check{\partial}_{q}^{i} x$, so $\check{\partial}_{q}^{i} x \rightarrow=\check{\partial}_{q}^{i+1} x$, where $\rightarrow=$ is $\rightarrow \cup=$.

Observe that there is no need to take \rightarrow^{+}instead of \rightarrow in the case of 0 -simplices in $\lambda_{\mathrm{S} 4}$:

Lemma 26. The relation \rightarrow is transitive on 0 -simplices of $\mathcal{S}_{4}[\Gamma \vdash F]$.
Proof. Note that, if M and M^{\prime} are two 0 -simplices, then $M \rightarrow M^{\prime}$ means that for some 1-simplex $M_{1}, \partial_{1}^{1} M_{1}=M$ and $\partial_{1}^{0} M_{1}=M^{\prime}$.

So assume that $M \rightarrow M^{\prime} \rightarrow M^{\prime \prime}$. There is a 1 -simplex $\boxed{N} \cdot \theta_{1} \cdot \theta_{2}$ such that $M=N \theta_{1} \cdot \theta_{2}$ and $M^{\prime}=N \cdot\left(\theta_{1} \cdot \theta_{2}\right)$. There is also a 1-simplex $N^{\prime} \cdot \theta_{1}^{\prime} \cdot \theta_{2}^{\prime}$ such that $M^{\prime}=N^{\prime} \theta_{1}^{\prime} \cdot \theta_{2}^{\prime}$ and $M^{\prime \prime}=N^{\prime} \cdot\left(\theta_{1}^{\prime} \cdot \theta_{2}^{\prime}\right)$. Comparing both forms for M^{\prime}, we must have, up to renaming of bound variables, $N=N^{\prime} \theta_{1}^{\prime}$ and $\theta_{2}^{\prime}=\theta_{1} \cdot \theta_{2}$. So $M_{2} \hat{=} N^{\prime} \cdot \theta_{1}^{\prime} \cdot \theta_{1} \cdot \theta_{2}$ is a valid 2-simplex. Take $M_{1} \hat{=} \partial_{2}^{1} M_{2}=N^{\prime} \cdot\left(\theta^{\prime} \cdot \theta_{1}\right) \cdot \theta_{2}$. Then $\partial_{1}^{1} M_{1}=M$ and $\partial_{1}^{0} M_{1}=M^{\prime \prime}$, so $M \rightarrow=M^{\prime \prime}$. By Corollary $23, M \rightarrow M^{\prime \prime}$.

The following lemma shows that, basically, if two simplices are contiguous, then they are so in a unique way:

Lemma 27 (Two-face Lemma). Let M, M^{\prime} be two q-simplices of $\mathcal{S}_{4}[\Gamma \vdash F]$, $q \geqslant 0$. Then for any $0 \leqslant i<j \leqslant q+1$, there is at most one $(q+1)$-simplex N of $\mathcal{S}_{4}[\Gamma \vdash F]$ such that $\partial_{q}^{j} N=M$ and $\partial_{q}^{i} N=M^{\prime}$.
Proof. Assume N exists, and write it as:

Also, write:

$$
\begin{aligned}
& M=\ldots \sqrt{x_{0} \theta_{q+1} \cdot \theta_{q} \ldots} \cdot \theta_{1} \\
& \cdot \theta_{0} \\
& M^{\prime}=\ldots \sqrt[x_{0} \theta_{q+1}^{\prime} \cdot \theta_{q}^{\prime} \ldots]{ } \cdot \theta_{1}^{\prime} \cdot \theta_{0}^{\prime}
\end{aligned}
$$

Since $\partial_{q}^{j} N=M$, up to renaming of bound variables, $\theta_{0}=\vartheta_{0}, \ldots, \theta_{j-1}=\vartheta_{j-1}$, $\theta_{j}=\vartheta_{j+1} \cdot \vartheta_{j}, \theta_{j+1}=\vartheta_{j+2}, \ldots, \theta_{q+1}=\vartheta_{q+2}$. And since $\partial_{q}^{i} N=M^{\prime}$, up to renaming of bound variables, $\theta_{0}^{\prime}=\vartheta_{0}, \ldots, \theta_{i-1}^{\prime}=\vartheta_{i-1}, \theta_{i}^{\prime}=\vartheta_{i+1} \cdot \vartheta_{i}, \theta_{i+1}^{\prime}=\vartheta_{i+2}$, $\ldots, \theta_{q+1}^{\prime}=\vartheta_{q+2}$.

In particular, $\vartheta_{0}=\theta_{0}, \ldots, \vartheta_{j-1}=\theta_{j-1}, \vartheta_{i+2}=\theta_{i+1}^{\prime}, \ldots, \vartheta_{q+2}=\theta_{q+1}^{\prime}$. So ϑ is determined uniquely as soon as $j>i+1$. If $j=i+1$, this determines ϑ uniquely, except possibly for ϑ_{j}. Now we use the additional equations $\theta_{j}=\vartheta_{j+1} \cdot \vartheta_{j}$ and $\theta_{i+1}^{\prime}=\vartheta_{i+2}$. The latter means that $\theta_{j}^{\prime}=\vartheta_{j+1}$. Since every variable of dom ϑ_{j} is free in some term in the range of ϑ_{j+1}, this determines ϑ_{j} uniquely.

In the case of $\mathcal{S} 4[\Gamma \vdash F]$, Lemma 25 is the only condition on vertices that needs to be satisfied for them to be vertices of a q-simplex:

Proposition 28. Let $M_{0}, M_{1}, \ldots, M_{q}$ be $q+10$-simplices of $\mathcal{S}_{4}[\Gamma \vdash F]$. If $M_{0} \rightarrow *$ $M_{1} \rightarrow * \ldots \rightarrow * M_{q}$, then there is a unique q-simplex M such that $ð_{q}^{i} M=M_{i}$, $0 \leqslant i \leqslant q$.

Proof. By Lemma 26, $M_{0} \rightarrow=M_{1} \rightarrow=\ldots \rightarrow=M_{q}$.
We now show uniqueness by induction on $q \geqslant 0$. If $q=0$, this is obvious. Otherwise, by induction there is at most one $(q-1)$-simplex M^{0} with vertices $M_{1} \rightarrow=\ldots \rightarrow=M_{q}$, and at most one $(q-1)$-simplex M^{q} with vertices $M_{0} \rightarrow=$ $\ldots \rightarrow=M_{q-1}$. If there is any q-simplex M with vertices $M_{0}, M_{1}, \ldots, M_{q}$, then $\partial_{q}^{0} M=M^{0}$ and $\partial_{q}^{q} M=M^{q}$, so there is at most one such M by Lemma 27.

Existence: write M_{i} as $\overline{N_{i}} \cdot \theta_{i}$ for each $i, 0 \leqslant i \leqslant q$. Since for each $i<q$, $M_{i} \rightarrow=M_{i+1}$, there are (unique) 1-simplices $N_{i}^{\prime} \cdot \vartheta_{1}^{i} \cdot \vartheta_{0}^{i}$ such that, up to renaming of bound variables, $N_{i}=N_{i}^{\prime} \vartheta_{1}^{i}, \theta_{i}=\vartheta_{0}^{i}, N_{i+1}=N_{i}^{\prime}, \theta_{i+1}=\vartheta_{1}^{i} \cdot \vartheta_{0}^{i}$. Note that $N_{i}=N_{i+1} \vartheta_{1}^{i}$, and $\vartheta_{0}^{i+1}=\vartheta_{1}^{i} \cdot \vartheta_{0}^{i}$. So define:

$$
M \hat{=} \ldots \ldots N_{q} \cdot \vartheta_{1}^{q-1} \ldots \cdot \vartheta_{1}^{i-1} \ldots \cdot \vartheta_{1}^{0} \cdot \vartheta_{0}^{0}
$$

In particular, $\check{\partial}_{q}^{0} M=N_{q} \vartheta_{1}^{q-1} \ldots \vartheta_{1}^{i-1} \ldots \vartheta_{1}^{0} \cdot \vartheta_{0}^{0}=N_{q-1} \vartheta_{1}^{q-2} \ldots \vartheta_{1}^{0} \cdot \vartheta_{0}^{0}=\ldots=$
$N_{0} \cdot \vartheta_{0}^{0}=M_{0}$. And for every $i>0, \check{\partial}_{q}^{i} M=N_{q} \vartheta_{1}^{q-1} \ldots \vartheta_{1}^{i} \cdot\left(\vartheta_{1}^{i-1} \cdot \ldots \cdot \vartheta_{1}^{0} \cdot \vartheta_{0}^{0}\right)$
$=N_{i} \cdot\left(\vartheta_{1}^{i-1} \cdot \ldots \cdot \vartheta_{1}^{1} \cdot \vartheta_{1}^{0} \cdot \vartheta_{0}^{0}\right)=N_{i} \cdot\left(\vartheta_{1}^{i-1} \cdot \ldots \cdot \vartheta_{1}^{1} \cdot \vartheta_{0}^{1}\right)=\ldots=N_{i} \cdot \vartheta_{0}^{i}=$
M_{i}.

To sum up, the non-augmented part of $\mathcal{S}_{4}[\Gamma \vdash F]$ can be characterized as a particularly simple nerve:
Theorem 29 (Nerve Theorem). Let $C[\Gamma \vdash F]$ be the partial order consisting of the 0 -simplices of $\mathcal{S}_{4}[\Gamma \vdash F]$, ordered by contiguity $\rightarrow *$. Then the (non-augmented) simplicial set $\left(\mathcal{S}_{4}[\Gamma \vdash F]_{q}\right)_{q \in \mathbb{N}}$ is (isomorphic to) the nerve $N(C[\Gamma \vdash F])$.
Proof. Recall that the nerve of a category \mathcal{C} has diagrams:

$$
A_{0} \xrightarrow{f_{1}} A_{1} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{q-1}} A_{q-1} \xrightarrow{f_{q}} A_{q}
$$

as q-simplices, where $f_{1}, f_{2}, \ldots, f_{q}$ are morphisms in \mathcal{C}, and $q \geqslant 0$. The i th face is obtained by removing A_{i} from the sequence, composing the neighboring arrows if $0<i<q$, and dropping them if $i=0$ or $i=q$. The i th degeneracy is obtained by duplicating A_{i}, adding an identity morphism.

By Lemma 25 and Proposition 28, q-simplices M are in bijection with ordered sequences of 0 -simplices $M_{0} \rightarrow^{*} M_{1} \rightarrow \rightarrow^{*} \ldots \rightarrow{ }^{*} M_{q}$. Moreover, for every $j, 0 \leqslant j \leqslant$ $q-1$, the j th vertex of $\partial_{q}^{i} M$ is:

$$
\partial_{q}^{j} \partial_{q}^{i} M=\partial_{1}^{0} \ldots \partial_{j}^{j-1} \partial_{j+1}^{j+1} \ldots \partial_{q-1}^{q-1} \partial_{q}^{i} M= \begin{cases}\partial_{q}^{j} M & \text { if } j<i \\ \partial_{q}^{j+1} M & \text { if } j \geqslant i\end{cases}
$$

That is, the vertices of $\partial_{q}^{i} M$ are those of M except $\partial_{q}^{i} M$. Similarly, for every j, $0 \leqslant j \leqslant q+1$, the j th vertex of $s_{q}^{i} M$ is:

$$
\partial_{q}^{j} s_{q}^{i} M=\partial_{1}^{0} \ldots \partial_{j}^{j-1} \partial_{j+1}^{j+1} \ldots \partial_{q+1}^{q+1} s_{q}^{i} M= \begin{cases}\partial_{q}^{j} M & \text { if } j \leqslant i \\ \partial_{q}^{i} M & \text { if } j=i+1 \\ \partial_{q}^{j-1} M & \text { if } j>i+1\end{cases}
$$

That is, the vertices of $s_{q}^{i} M$ are those of M in sequence, with $\check{\partial}_{q}^{i} M$ occurring twice.

In other words, $\left(\mathcal{S}_{4}[\Gamma \vdash F]_{q}\right)_{q \in \mathbb{N}}$ is an oriented simplicial complex. Recall that an oriented simplicial complex is a family of linearly ordered sequences of so-called points, containing all one-element sequences, and such that any subsequence of an element of the family is still in the family. In fact, it is the full oriented simplicial complex, containing all linearly ordered sequences of points.

It is futile to study the classical notions of loop homotopy in such an oriented simplicial complex. Indeed, all loops are trivial: if the 1 -simplex M is a loop, i.e., $\partial_{1}^{0} M=\partial_{1}^{1} M$ is some point N, then its sequence of vertices is $N \rightarrow{ }^{*} N$, so M is a degenerate 1 -simplex. Homotopies of loops, and in fact the natural extension of homotopies between 1 -simplices, is trivial, too: let M, M^{\prime} be two 1 -simplices with $\partial_{1}^{0} M=\partial_{1}^{0} M^{\prime}=M_{0}$ and $\partial_{1}^{1} M=\partial_{1}^{1} M^{\prime}=M_{1}$; if there is a homotopy 2-simplex P connecting them, then its faces are M, M^{\prime} plus some degenerate 1 -simplex, so the sequence of vertices of P must be $M_{1} \rightarrow^{*} M_{0} \rightarrow^{*} M_{0}$ or $M_{1} \rightarrow{ }^{*} M_{1} \rightarrow{ }^{*} M_{0}$, from which it follows that the homotopy is one of the two degeneracies of $M=M^{\prime}$. In short, two 1 -simplices are homotopic in the classical sense if and only if they are equal, and all homotopies are degenerate. However, studying homotopies of paths (not just loops) certainly remains interesting. In particular, the geometry of preorders and lattices through their order complexes is a rich domain [8].

4.3. Components

This closes the case for non-negative dimensions. In dimension -1 , recall that there are two extremal ways to build an augmentation of a simplicial set (see e.g., [14]). One, exemplified by the nerve construction for augmented simplicial sets, builds the augmentation of the simplicial set K, K_{-1}, as a one-element set (an empty set if K is empty), and ∂_{0}^{0} is the unique function $K_{0} \rightarrow K_{-1}$. The other builds K_{-1} as the set of connected components of K_{0}, that is, as the set of $\leftrightarrow-$ equivalence classes of points. It turns out that the latter is how the augmentation is built in $\mathcal{S}_{4}[\Gamma \vdash F]$. (Except that there might also be (-1)-simplices that are the component of no q-simplex for any $q \geqslant 0$.) In other words, components are exactly path connected components (plus isolated (-1)-dimensional simplices). This is shown in Proposition 31 below. First, we observe:

Proposition 30 (Lattice of points). Let M_{0} be a (-1)-simplex of $\mathcal{S} 4[\Gamma \vdash F]$.
The set $C\left(M_{0}\right)$ of 0 -simplices M such that $\partial_{0}^{0} M=M_{0}$, equipped with the ordering $\rightarrow{ }^{*}$, is empty or is a finite lattice.

Proof. Every such M can be written in a unique way $N \cdot \theta$, with $N \theta=M_{0}$. But, up to the names of free variables in N, there are only finitely many such N 's and θ 's. So $C\left(M_{0}\right)$ is finite.

In the rest of the proof, fix a typing of M_{0}. This way, each subterm of M_{0} gets a unique type. This will allow us to reason by induction on M_{0}-in general, on terms-instead on a $B N_{0}$ derivation of $\Gamma \vdash_{I} M_{0}: F$.

Note that $N \cdot \theta \rightarrow \rightarrow^{*} N^{\prime} \cdot \theta^{\prime}$ if and only if $N \cdot \theta \rightarrow N^{\prime} \cdot \theta^{\prime}$ (by Lemma 26) if and only if for some $N_{0} \cdot \vartheta_{1} \cdot \vartheta_{0}, N=N_{0} \vartheta_{1}, \theta=\vartheta_{0}, N^{\prime}=N_{0}, \theta^{\prime}=\vartheta_{1} \cdot \vartheta_{0}$ (up to renaming of bound variables), if and only if $N=N^{\prime} \vartheta_{1}$ for some substitution ϑ_{1}. In other words, if and only if N is an instance of N^{\prime}.

Then every pair of points M_{1}, M_{2} of $C\left(M_{0}\right)$ has a supremum M. That is, $M \rightarrow \rightarrow^{*}$ $M_{1}, M \rightarrow \rightarrow^{*} M_{2}$ and for every M^{\prime} such that $M^{\prime} \rightarrow^{*} M_{1}$ and $M^{\prime} \rightarrow{ }^{*} M_{2}, M \rightarrow M^{\prime}$. Write M_{1} as $N_{1} \cdot \theta_{1}, M_{2}$ as $N_{2} \cdot \theta_{2}$, with $N_{1} \theta_{1}=N_{2} \theta_{2}$. Then, if M exists, M is a common instance of N_{1} and N_{2}. It is easy to see that there is a least common instance $N_{1} \wedge N_{2}$ of N_{1} and N_{2}, i.e., one such that every other instance of N_{1} and N_{2} is an instance of $N_{1} \wedge N_{2}$. More generally, given any finite set W of variables (used to collect λ-bound variables), call an instance of N away from W any term $N \theta$ such that $\operatorname{dom} \theta \cap W=\emptyset$. Then if there is a common instance of N_{1} and N_{2} away from W, then there is a least one $N_{1} \wedge_{W} N_{2}$, where N_{1} and N_{2} are linear, and it is computed as in Figure 4. Then define $N_{1} \wedge N_{2}$ as $N_{1} \wedge_{\emptyset} N_{2}$. Since $N_{1} \theta=N_{2} \theta_{2}=M_{0}$, there is

$$
\begin{aligned}
& x_{1} \wedge_{W} N_{2} \hat{=} N_{2} \quad\left(x_{1} \notin W\right) \\
& N_{1} \wedge_{W} x_{2} \hat{=} N_{1} \quad\left(x_{2} \notin W\right) \\
&\left(N_{1} N_{1}^{\prime}\right) \wedge_{W}\left(N_{2} N_{2}^{\prime}\right) \hat{=}\left(N_{1} \wedge_{W} N_{2}\right)\left(N_{1}^{\prime} \wedge_{W} N_{2}^{\prime}\right) \\
&\left(\lambda x \cdot N_{1}\right) \wedge_{W}\left(\lambda x \cdot N_{2}\right) \hat{=} \lambda x \cdot\left(N_{1} \wedge_{W \cup\{x\}} N_{2}\right) \\
& d N_{1} \wedge_{W} d N_{2} \hat{=} d\left(N_{1} \wedge_{W} N_{2}\right) \\
& \hline N \cdot\left\{x_{1}:=N_{11}, \ldots, x_{n}:=N_{n 1}\right\} \wedge_{W} N \cdot\left\{x_{1}:=N_{12}, \ldots, x_{n}:=N_{n 2}\right\} \\
& \hat{=} N \cdot\left\{x_{1}:=N_{11} \wedge_{W} N_{12}, \ldots,\right. \\
&\left.x_{n}:=N_{n 1} \wedge_{W} N_{n 2}\right\}
\end{aligned}
$$

Figure 4: Least common instances
a unique substitution θ with $\operatorname{dom} \theta=\mathrm{fv}\left(N_{1} \wedge N_{2}\right)$, and the free variables of $N_{1} \wedge N_{2}$ being free variables of N_{1} or N_{2}, have boxed types. Therefore $M \hat{=} N_{1} \wedge N_{2} \cdot \theta$ is a well-typed term, and $M \rightarrow \rightarrow^{*} M_{1}$ and $M \rightarrow{ }^{*} M_{2}$, since $N_{1} \wedge N_{2}$ is both an instance of N_{1} and an instance of N_{2}. Moreover, by construction this is the least one, so M is the supremum of M_{1} and M_{2}. (This is unification [28]. The key here is that we basically only need unification modulo an empty theory, instead of the theory of the relation \approx.) We write M as $M_{1} \sqcup M_{2}$.

Symmetrically, every pair of points M_{1}, M_{2} of $C\left(M_{0}\right)$ has an infimum M. That is, $M_{1} \rightarrow^{*} M, M_{2} \rightarrow^{*} M$ and for every M^{\prime} such that $M_{1} \rightarrow^{*} M^{\prime}$ and $M_{2} \rightarrow^{*} M^{\prime}$, $M^{\prime} \rightarrow^{*} M$. Write again M_{1} as $N_{1} \cdot \theta_{1}, M_{2}$ as $N_{2} \cdot \theta_{2}$, with $N_{1} \theta_{1}=N_{2} \theta_{2}$. Calling a generalization of a term N (away from W) any term having N as instance (away from W), we may compute a greatest common generalization $N_{1} \vee_{W} N_{2}$ away from W of N_{1} and N_{2} as in Figure 5, where $N_{1} \theta_{1}=N_{2} \theta_{2}$. As above, letting $N_{1} \vee N_{2} \hat{=} N_{1} \vee_{\emptyset} N_{2}$, there is a unique substitution θ such that $\operatorname{fv}\left(N_{1} \vee N_{2}\right)=\operatorname{dom} \theta$ and $\left(N_{1} \vee N_{2}\right) \theta=M_{0}$, and $M \hat{=} N_{1} \vee N_{2} \cdot \theta$ is a well-typed term, from which we

$$
\begin{aligned}
& x_{1} \vee_{W} N_{2} \hat{=} x_{1} \quad\left(x_{1} \notin W\right) \\
& N_{1} \vee_{W} x_{2} \hat{=} x_{2} \quad\left(x_{2} \notin W\right) \\
&\left(N_{1} N_{1}^{\prime}\right) \vee_{W}\left(N_{2} N_{2}^{\prime}\right) \hat{=}\left(N_{1} \vee_{W} N_{2}\right)\left(N_{1}^{\prime} \vee_{W} N_{2}^{\prime}\right) \\
&\left(\lambda x \cdot N_{1}\right) \vee_{W}\left(\lambda x \cdot N_{2}\right) \hat{=} \lambda x \cdot\left(N_{1} \vee_{W \cup\{x\}} N_{2}\right) \\
& d N_{1} \vee_{W} d N_{2} \hat{=} d\left(N_{1} \vee_{W} N_{2}\right) \\
& \hline N \cdot\left\{x_{1}:=N_{11}, \ldots, x_{n}:=N_{n 1}\right\} \vee_{W} N \cdot\left\{x_{1}:=N_{12}, \ldots, x_{n}:=N_{n 2}\right\} \\
& \hat{=} N \cdot\left\{x_{1}:=N_{11} \vee_{W} N_{12}, \ldots,\right. \\
&\left.x_{n}:=N_{n 1} \vee_{W} N_{n 2}\right\}
\end{aligned}
$$

Figure 5: Greatest common generalizations
conclude that M is indeed the infimum of M_{1} and M_{2}. Write M as $M_{1} \sqcap M_{2}$.
It remains to show that, if $C\left(M_{0}\right)$ is not empty, then it has a least element \perp and a greatest element T. This is obvious, as \perp can be defined as the (finite) infimum of all elements of $C\left(M_{0}\right)$, and T as the (finite) supremum of all elements of $C\left(M_{0}\right)$.

Proposition 31. Given any two 0 -simplices M_{1} and M_{2} of $\mathcal{S} 4[\Gamma \vdash F], M_{1} \leftrightarrow M_{2}$ if and only if $\partial_{0}^{0} M_{1}=\partial_{0}^{0} M_{2}$.

Proof. Clearly, if $M_{1} \rightarrow=M_{2}$, i.e. if $\partial_{1}^{1} N=M_{1}$ and $\partial_{1}^{0} N=M_{2}$ for some 1-simplex N, then $\partial_{0}^{0} M_{1}=\partial_{0}^{0} \partial_{1}^{1} N=\partial_{0}^{0} \partial_{1}^{0} N=\partial_{0}^{0} M_{2}$. So if $M_{1} \leftrightarrow M_{2}$, then $\partial_{0}^{0} M_{1}=\partial_{0}^{0} M_{2}$.

Conversely, assume $\partial_{0}^{0} M_{1}=\partial_{0}^{0} M_{2}$, and name M_{0} this (-1)-simplex. By Proposition 30, there is an element $M_{1} \sqcup M_{2}$ in $C\left(M_{0}\right)$, such that $M_{1} \sqcup M_{2} \rightarrow^{*} M_{1}$ and $M_{1} \sqcup M_{2} \rightarrow{ }^{*} M_{2}$. In particular $M_{1} \leftrightarrow M_{2}$.

In other words, non-empty components $C\left(M_{0}\right)$ coincide with path-connected components.

This generalizes to higher dimensions:
Proposition 32. For any two q-simplices M_{1} and M_{2} of $\mathcal{S}_{4}[\Gamma \vdash F], M_{1} \leftrightarrow M_{2}$ if and only if $\pi_{0} M_{1}=\pi_{0} M_{2}$.

Proof. Recall that $\pi_{0} M$ denotes the component of M (Definition 24).
If $M_{1} \rightarrow=M_{2}$, then there is a $(q+1)$-simplex N and $j>i$ such that $M_{1}=\partial_{q+1}^{j} N$, $M_{2}=\partial_{q+1}^{i} N$. So $\pi_{0} M_{1}=\pi_{0} N=\pi_{0} M_{2}$.

Conversely, assume $\pi_{0} M_{1}=\pi_{0} M_{2}=M_{0}$. So every vertex of M_{1} and M_{2} is in $C\left(M_{0}\right)$. By the Nerve Theorem 29, we equate q-simplices with ordered sequences of $q+1$ vertices. Then notice that the sequence $N_{0} \rightarrow=N_{1} \rightarrow \ldots \rightarrow N_{i} \rightarrow=$ $\ldots \rightarrow=N_{q}$ is contiguous to $N_{0} \rightarrow=N_{1} \rightarrow=\ldots \rightarrow=N_{i}^{\prime} \rightarrow=\ldots \rightarrow N_{q}$ as soon as $N_{i} \rightarrow N_{i}^{\prime}$. Indeed the former is the $(i+1)$ st face, and the latter is the i th face of the sequence $N_{0} \rightarrow{ }^{=} N_{1} \rightarrow=\ldots \rightarrow N_{i} \rightarrow N_{i}^{\prime} \rightarrow=\ldots \rightarrow=N_{q}$. Iterating, we obtain that the sequence $N_{0} \rightarrow=N_{1} \rightarrow=\ldots \rightarrow=N_{q}$ is contiguous to $N_{0}^{\prime} \rightarrow=$ $N_{1}^{\prime} \rightarrow{ }^{=} \ldots \rightarrow N_{q}^{\prime}$ as soon as $N_{i} \rightarrow^{*} N_{i}^{\prime}$ for every $i, 0 \leqslant i \leqslant q$. Recall that
every vertex of M_{1} and M_{2} is in $C\left(M_{0}\right)$. Using Proposition 30, M_{1}, viewed as the sequence $\check{\delta}_{q}^{0} M_{1} \rightarrow^{*} \check{\partial}_{q}^{1} M_{1} \rightarrow^{*} \ldots \rightarrow^{*} \partial_{q}^{q} M_{1}$, is contiguous to $\left(\check{\partial}_{q}^{0} M_{1} \sqcap \partial_{q}^{0} M_{2}\right) \rightarrow \rightarrow^{*}$ $\left(\check{\mathrm{\partial}}_{q}^{1} M_{1} \sqcap \partial_{q}^{1} M_{2}\right) \rightarrow^{*} \ldots \rightarrow^{*}\left(\check{\partial}_{q}^{q} M_{1} \sqcap \check{\mathrm{\partial}}_{q}^{q} M_{2}^{q}\right)$. Similarly for M_{2}. Since M_{1} and M_{2} are contiguous to the same q-simplex, $M_{1} \leftrightarrow M_{2}$.

4.4. Planes and Retractions

Next, we show that certains subspaces of $\mathcal{S}_{4}[\Gamma \vdash F]$ are retracts of the whole space, under some mild conditions.

Definition 33 (Planes). Call a type boxed if and only if it is of the form $\square F$. Call Γ boxed if and only if it maps variables to boxed types.

Let Γ be a context, and $\Theta \hat{=} y_{1}: \square G_{1}, \ldots, y_{p}: \square G_{p}$ be a boxed subcontext of Γ. The plane Θ^{\perp} of $\mathcal{S}_{4}[\Gamma \vdash F]$ is the set of 0 -simplices of $\mathcal{S}_{4}[\Gamma \vdash F]$ having and η-long normal form of the form $N \cdot \theta$ such that

$$
\begin{equation*}
\text { for every } y \in \operatorname{dom} \theta \cdot \text { if } y_{i} \in \operatorname{fv}(y \theta) \text { then } y \theta=y_{i} \tag{14}
\end{equation*}
$$

for every $i, 1 \leqslant i \leqslant p$.
(Note that the types of variables $y_{j}, 1 \leqslant j \leqslant p$, have to start with \square for this definition to make sense. To be fully formal, we should mention Γ and F in the notation for Θ^{\perp}. However, Γ and F will be clear from context.) From the point of view of Gentzen-style sequents, a term in the given plane corresponds to a proof that ends in a \square-introduction rule followed by series of cuts on formulae occurring on the left of the \square-introduction rule, none of which being any of the $\square G_{i} \mathrm{~s}$ in Θ.

By extension, using Theorem 29 and Proposition 31, we define q-simplices of Θ^{\perp} as contiguous sequences of points $M_{0} \rightarrow^{*} M_{1} \rightarrow^{*} \ldots \rightarrow^{*} M_{q}$ of Θ^{\perp} for $q \geqslant 0$, and as components of points of Θ^{\perp} if $q=-1$.

It is not hard to see that $\Theta^{\perp}=\mathcal{S}_{4}[\Gamma \vdash F]$ if Θ is empty. On the other hand, if $\Gamma=\Theta$, then the points of Θ^{\perp} are of the form N, with component N. In this case, any component N of the plane Θ^{\perp} contains exactly one point, namely N. It follows that in this case Θ^{\perp} is a discrete collection of points.

Lemma 34. For any boxed subcontext Θ of Γ, Θ^{\perp} is a sub-a.s. set of Γ.
Proof. Clearly every q-simplex of Θ^{\perp} is a q-simplex of $\mathcal{S}_{4}[\Gamma \vdash F]$. That faces and degeneracies of q-simplices of Θ^{\perp} are still in Θ^{\perp} is by construction.

Lemma 35. Let Θ be any boxed subcontext of Γ, and $M_{0} \in \mathcal{S}_{4}[\Gamma \vdash F]_{-1}$. For any two 0-simplices M_{1} and M_{2} of $C\left(M_{0}\right)$:

1. if $M_{1} \rightarrow^{*} M_{2}$ and $M_{2} \in \Theta^{\perp}$ then $M_{1} \in \Theta^{\perp}$.
2. if M_{1} and M_{2} are in Θ^{\perp} then so are $M_{1} \sqcap M_{2}$ and $M_{1} \sqcup M_{2}$.

Proof. 1. Let $M_{1} \hat{=} N_{1} \cdot \theta_{1}$ be in $C\left(M_{0}\right)$, and $M_{2} \hat{=} N_{2} \cdot \theta_{2}$ be in $C\left(M_{0}\right)$ and in Θ^{\perp}. So for every $z \in \operatorname{dom} \theta_{2}$ such that $y_{i}, 1 \leqslant i \leqslant p$, is free in $z \theta_{2}$, $z \theta_{2}=y_{i}$. Since $M_{1} \rightarrow^{*} M_{2}$, not only is N_{1} an instance of N_{2}, but there is also a substitution ϑ such that $\theta_{2}=\vartheta \cdot \theta_{1}$, $\operatorname{dom} \vartheta=\operatorname{dom} \theta_{2}=\mathrm{fv}\left(N_{2}\right)$ and $\operatorname{fv}\left(N_{2} \vartheta\right)=$ $\operatorname{dom} \theta_{1}$. Assume that y_{i} is free in $y \theta_{1}$ for some $y \in \operatorname{dom} \theta_{1}=\operatorname{fv}\left(N_{2} \vartheta\right)$. So y
occurs free in some $z \vartheta, z \in \operatorname{fv}\left(N_{2}\right)$. In particular, y_{i} is free in $z \vartheta \theta_{1}=z \theta_{2}$. Therefore $z \theta_{2}=y_{i}$, recalling that $M_{2} \in \Theta^{\perp}$. In other words, $z \vartheta \theta_{1}=y_{i}$. It follows by standard size considerations that $z \vartheta$ is a variable. Since y occurs free in $z \vartheta$, it obtains $z \vartheta=y$. So $y \theta_{1}=y_{i}$.
2. Let $M_{1} \hat{=} N_{1} \cdot \theta_{1}$ and $M_{2} \hat{=} N_{2} \cdot \theta_{2}$ in Θ^{\perp}. For simplicity, assume that Θ contains exactly one variable y_{1}. This entails no loss of generality, as in general Θ^{\perp} is the intersection of all $\left(y_{i}: F_{i}\right)^{\perp}, y_{i} \in \operatorname{dom} \Theta$. That $M_{1} \sqcup M_{2}$ is in Θ^{\perp} follows from 1, since $M_{1} \sqcup M_{2} \rightarrow{ }^{*} M_{1}$.
On the other hand $M_{1} \sqcap M_{2}$ is of the form $N_{1} \vee N_{2} \cdot \theta$ where θ is the unique substitution with domain $\operatorname{fv}\left(N_{1} \vee N_{2}\right)$ such that $\left(N_{1} \vee N_{2}\right) \theta=M_{0}$. In general, we may compute θ as $\theta_{\emptyset, M_{0}}\left(N_{1}, N_{2}\right)$, where $\theta_{W, M_{0}}\left(N_{1}, N_{2}\right)$ is the unique substitution with domain $\mathrm{fv}\left(N_{1} \vee_{W} N_{2}\right) \backslash W$ such that $\left(N_{1} \vee_{W} N_{2}\right) \theta_{W, M_{0}}\left(N_{1}, N_{2}\right)=$ M_{0}, provided $N_{1} \vee_{W} N_{2}$ exists and N_{1} and N_{2} are linear and have M_{0} as common instance. This parallels the computation of $N_{1} \vee_{W} N_{2}$:

$$
\left.\begin{array}{rl}
\theta_{W, M_{0}}\left(x_{1}, N_{2}\right) \hat{=}\left\{x_{1}:=M_{0}\right\} \quad\left(x_{1} \notin W\right) \\
\theta_{W, M_{0}}\left(N_{1}, x_{2}\right) \hat{=}\left\{x_{2}:=M_{0}\right\} \quad\left(x_{2} \notin W\right)
\end{array}\right] \begin{aligned}
& \theta_{W, M_{0} M_{0}^{\prime}}\left(N_{1} N_{1}^{\prime}, N_{2} N_{2}^{\prime}\right) \hat{=} \theta_{W, M_{0}}\left(N_{1}, N_{2}\right) \cup \theta_{W, M_{0}^{\prime}}\left(N_{1}^{\prime}, N_{2}^{\prime}\right) \\
& \theta_{W, \lambda x \cdot M_{0}}\left(\lambda x \cdot N_{1}, \lambda x \cdot N_{2}\right) \hat{=} \theta_{W \cup\{x\}, M_{0}}\left(N_{1}, N_{2}\right) \\
& \theta_{W, d M_{0}}\left(d N_{1}, d N_{2}\right) \hat{=} \theta_{W, M_{0}}\left(N_{1}, N_{2}\right) \\
& \theta_{W, W},\left\{x_{1}:=M_{1}, \ldots, x_{n}:=M_{n}\right\} \\
& \cdots N \cdot\left\{x_{1}:=N_{11}, \ldots, x_{n}:=N_{n 1}\right\}, \\
&\left.\cdots N \cdot\left\{x_{1}:=N_{12}, \ldots, x_{n}:=N_{n 2}\right\}\right) \\
& \hat{=} \bigcup_{j=1}^{n} \theta_{W, M_{j}}\left(N_{j 1}, N_{j 2}\right)
\end{aligned}
$$

Notice that unions of substitutions are well-defined because we assume N_{1} and N_{2} are linear terms away from W (i.e., no two distinct subterms share any free variable except possibly for variables in W).
Now, generalize the claim as follows. Assume that the common instance M_{0} of N_{1} and N_{2} away from W is $M_{0}=N_{1} \theta_{1}=N_{2} \theta_{2}$ with dom $\theta_{1}=\operatorname{fv}\left(N_{1}\right)$, $\operatorname{dom} \theta_{2}=\mathrm{fv}\left(N_{2}\right)$. Assume also that for every variable $z \in \operatorname{dom} \theta_{i}$ such that y_{1} is free in $z \theta_{i}$ then $y_{1}=z \theta_{i}$, for every $i \in\{1,2\}$. Then an easy induction on terms shows that for every variable $y \in \operatorname{fv}\left(N_{1} \vee_{W} N_{2}\right) \backslash W$ such that y_{1} is free in $y \theta_{W, M_{0}}\left(N_{1}, N_{2}\right)$, then $y \theta_{W, M_{0}}\left(N_{1}, N_{2}\right)=y_{1}$. The crucial cases are the first two of the definition, which are symmetric. In particular in the first case, assume $N_{1}=x_{1} \notin W$. By assumption $x_{1} \theta_{1}=N_{2} \theta_{2}=M_{0}$; then $\theta_{W, M_{0}}\left(x_{1}, N_{2}\right)=$ $\left\{x_{1}:=M_{0}\right\}$ is θ_{1} restricted to x_{1}, therefore indeed $y \theta_{W, M_{0}}\left(N_{1}, N_{2}\right)=y_{1}$, whatever y may be.
The claim follows by taking $W=\emptyset$.

Proposition 36 (Projection). If Γ is boxed, then for any $\Theta \subseteq \Gamma$, there is an augmented simplicial map $\pi_{\Theta} \perp$, projection onto Θ^{\perp}, from $\mathcal{S}_{4}[\Gamma \vdash F]$ to its sub-a.s. set Θ^{\perp}, which coincides with the identity on Θ^{\perp}.

Proof. Let us first define $\pi_{\Theta \perp}$ on 0-simplices. Using Proposition 30, define $\pi_{\Theta} \perp(\sqrt{N}$. θ) as the infimum ΠS of the set S of elements $M \in \Theta^{\perp}$ such that $M \rightarrow \rightarrow^{*} N$. θ. Observe that, since Γ is boxed, $N \theta$ is well-typed, hence is a valid 0 -simplex. Moreover, it is clear that $N \theta \in \overline{\Theta^{\perp} \text {, and } N \theta} \rightarrow^{*} N \cdot \theta$. So S is not empty, therefore ΠS exists and is a 0 -simplex of $\mathcal{S} 4[\Gamma \vdash F]$. By Lemma 35 any finite nonempty infimum of elements of Θ^{\perp} is in Θ^{\perp}. By Proposition $30 \mathcal{S}_{4}[\Gamma \vdash F]$ is finite, so S is a finite non-empty infimum of elements of Θ^{\perp}. So $\pi_{\Theta \perp}(N \cdot \theta)=\Pi S$ is in Θ^{\perp}.

If $N \cdot \theta$ is already in Θ^{\perp}, then it is in S. Since $M \rightarrow \rightarrow^{*} N \cdot \theta$ for every M in S by construction, $N \cdot \theta$ is the minimal element of S, hence $N \cdot \theta=\Pi S=\pi_{\Theta} \perp(N \cdot \theta)$. So $\pi_{\Theta \perp}$ indeed coincides with the identity on Θ^{\perp}.

To show that $\pi_{\Theta \perp}$ extends to an a.s. map from $\mathcal{S} 4[\Gamma \vdash F]$ to Θ^{\perp}, it remains to show that $\pi_{\Theta \perp}$ preserves components (obvious) and contiguity (for dimensions $\geqslant 1$). As far as the latter is concerned, let $M_{1} \rightarrow{ }^{*} M_{2}$ be 0 -simplices in $\mathcal{S}_{4}[\Gamma \vdash F]$. Since $M_{1} \rightarrow^{*} M_{2},\left\{M \in \Theta^{\perp} \mid M \rightarrow \rightarrow^{*} M_{1}\right\} \subseteq\left\{M \in \Theta^{\perp} \mid M \rightarrow \rightarrow^{*} M_{2}\right\}$, so $\rceil\left\{M \in \Theta^{\perp} \mid M \rightarrow *\right.$ $\left.M_{1}\right\} \rightarrow \rightarrow^{*} \sqcap\left\{M \in \Theta^{\perp} \mid M \rightarrow{ }^{*} M_{2}\right\}$. That is, $\pi_{\Theta} \perp\left(M_{1}\right) \rightarrow^{*} \pi_{\Theta} \perp\left(M_{2}\right)$.

The projection construction can be used to show a connection between the syntactic function space $\mathcal{S}_{4}[\Gamma \vdash F \supset G]$ and $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[\Gamma \vdash F], \mathcal{S}_{4}[\Gamma \vdash G]\right)$. The first direction is easy:

Definition 37 (Syntactic application \star). The syntactic application map \star from $\mathcal{S}_{4}[\Gamma \vdash F \supset G] \times \mathcal{S}_{4}[\Gamma \vdash F]$ to $\mathcal{S}_{4}[\Gamma \vdash G]$ (written infix) is defined by $M \star_{-1} N \hat{=} M N$, $\star_{q} \hat{\overline{=}} M \square^{q+1} \star_{-1}$ 。

Lemma 38. For every substitutive function f from $\left[\Gamma \vdash F_{1}\right] \times \ldots \times\left[\Gamma \vdash F_{n}\right]$ to $[\Gamma \vdash F]$, the family of functions $\left(\square^{q+1} f\right)_{q \geqslant-1}$ is an a.s. map from $\mathcal{S}_{4}\left[\Gamma \vdash F_{1}\right] \times \ldots \times$ $\mathcal{S}_{4}\left[\Gamma \vdash F_{n}\right]$ to $\mathcal{S}_{4}[\Gamma \vdash F]$.

Proof. Write f_{q} for $\square^{q+1} f$. Recall (Lemma 16) that, as soon as f is substitutive, then $\square f \circ \square g=\square(f \circ g)$.

Let $M_{1} \in \mathcal{S}_{4}\left[\Gamma \vdash F_{1}\right]_{q}, \ldots, M_{n} \in \mathcal{S}_{4}\left[\Gamma \vdash F_{n}\right]_{q}$. For any i with $0 \leqslant i \leqslant q$, $\partial_{q}^{i}\left(f_{q}\left(M_{1}, \ldots, M_{n}\right)\right)=\square^{i} d\left(\square^{q+1} f\left(M_{1}, \ldots, M_{n}\right)\right)=\square^{i}\left(d \circ \square^{q+1-i} f\right)\left(M_{1}, \ldots, M_{n}\right)$. So $\partial_{q}^{i} \circ f_{q}=\square^{i}\left(d \circ \square^{q+1-i} f\right)$. But

$$
\begin{aligned}
d\left(\square^{q+1-i} f\left(N_{1}, \ldots, N_{n}\right)\right) & =d \square^{q-i} f\left(d x_{1}, \ldots, d x_{n}\right) \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \\
& \approx \square^{q-i} f\left(d x_{1}, \ldots, d x_{n}\right)\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \\
& =\square^{q-i} f\left(d N_{1}, \ldots, d N_{n}\right) \quad \text { (since } f \text { is substitutive) }
\end{aligned}
$$

so $d \circ \square^{q+1-i} f=\square^{q-i} f \circ d$. Therefore $\partial_{q}^{i} \circ f_{q}=\square^{i}\left(d \circ \square^{q+1-i} f\right)=\square^{i}\left(\square^{q-i} f \circ d\right)=$ $\square^{q} f \circ \square^{i} d=f_{q-1} \circ \partial_{q}^{i}$ (using the fact that $\square^{q-i} f$ is substitutive).

Similarly, we claim that $s_{q}^{0}\left(\square^{k+1} f\left(N_{1}, \ldots, N_{n}\right)\right) \approx \square^{k+2} f\left(s_{q}^{0} N_{1}, \ldots, s_{q}^{0} N_{n}\right)$. It will follow that $s_{q}^{i} \circ f_{q}=f_{q+1} \circ s_{q}^{i}$. The claim is proved by induction on $k \geqslant 0$. If
$k=0$, then

$$
\begin{aligned}
s_{q}^{0}\left(\square f\left(N_{1}, \ldots, N_{n}\right)\right) & =x \cdot\left\{x:=f\left(d y_{1}, \ldots, d y_{n}\right) \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\}\right\} \\
& \approx f\left(d y_{1}, \ldots, d y_{n}\right) \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\}
\end{aligned}
$$

while

$$
\begin{aligned}
& \square^{2} f\left(s_{q}^{0} N_{1}, \ldots, s_{q}^{0} N_{n}\right) \\
= & \square f\left(d x_{1}, \ldots, d x_{n}\right) \cdot\left\{x_{1}:=s_{q}^{0} N_{1}, \ldots, x_{n}:=s_{q}^{0} N_{n}\right\} \\
= & f\left(d z_{1}, \ldots, d z_{n}\right) \cdot\left\{z_{1}:=d x_{1}, \ldots, z_{n}:=d x_{n}\right\} \\
& \left\{x_{1}:=y_{1} \cdot\left\{y_{1}:=N_{1}\right\}, \ldots, x_{n}:=y_{n} \cdot\left\{y_{n}:=N_{n}\right\}\right\} \\
\approx & f\left(d z_{1}, \ldots, d z_{n}\right) \cdot\left\{z_{1}:=d y_{1}, \ldots, z_{n}:=d y_{n}\right\} \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\} \\
\approx & f\left(d z_{1}, \ldots, d z_{n}\right) \cdot\left\{z_{1}:=y_{1}, \ldots, z_{n}:=y_{n}\right\} \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\} \\
= & f\left(d y_{1}, \ldots, d y_{n}\right) \cdot\left\{y_{1}:=N_{1}, \ldots, y_{n}:=N_{n}\right\} \quad \quad \text { (by } \alpha \text {-renaming) }
\end{aligned}
$$

In the inductive case, $s_{q}^{0}\left(\square^{k+1} f\left(N_{1}, \ldots, N_{n}\right)\right)=s_{q}^{0}\left(\square\left(\square^{k} f\right)\left(N_{1}, \ldots, N_{n}\right)\right)$
$\approx \square^{2}\left(\square^{k} f\right)\left(s_{q}^{0} N_{1}, \ldots, s_{q}^{0} N_{n}\right)$ (by the above, replacing f by $\square^{k} f$) $=\square^{k+2} f\left(s_{q}^{0} N_{1}\right.$, $\left.\ldots, s_{q}^{0} N_{n}\right)$, as desired.

Corollary 39. The syntactic application map \star is an a.s. map.
The following shows how we may compute \star :
Lemma 40. Let $M \in \mathcal{S}_{4}[\Gamma \vdash F \supset G]_{q}, N \in \mathcal{S}_{4}[\Gamma \vdash F]_{q}$ be η-long normal:

$$
\begin{aligned}
& M \hat{=} \ldots \sqrt{M_{1}} \cdot \theta_{q} \ldots \cdot \theta_{1} \cdot \theta_{0} \\
& N \hat{=} \ldots \sqrt{N_{1} \cdot \theta_{q}^{\prime} \ldots} \cdot \theta_{1}^{\prime} \cdot \theta_{0}^{\prime}
\end{aligned}
$$

Then, provided $\operatorname{dom} \theta_{i} \cap \operatorname{dom} \theta_{i}^{\prime}=\emptyset$ for every $i, 0 \leqslant i \leqslant q$,

$$
M \star_{q} N \approx \ldots M_{1} N_{1} \cdot\left(\theta_{q}, \theta_{q}^{\prime}\right) \ldots \cdot\left(\theta_{1}, \theta_{1}^{\prime}\right) \cdot\left(\theta_{0}, \theta_{0}^{\prime}\right)
$$

Proof. This is clear if $q=-1$. If $q=0, M \star_{0} N=M_{1} N_{1} \cdot\left(\theta_{0}, \theta_{0}^{\prime}\right)$ by Lemma 18. Otherwise, this follows by the $q=0$ case, using Theorem 29.

From Corollary 39, it follows that application is uniquely determined by its values on components (simplices of dimension -1) and points (dimension 0). It also follows that $\Lambda(\star)$ is an a.s. map from $\mathcal{S}_{4}[\Gamma \vdash F \supset G]$ to $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[\Gamma \vdash F], \mathcal{S}_{4}[\Gamma \vdash G]\right)$.

There is a kind of converse to syntactic application. Intuitively, in the λ-calculus (the non-modal case), not only can you apply a term M to a term N, you can also build $\lambda x \cdot M$ from M : this term $\lambda x \cdot M$ is such that, once applied to N, you get $M\{x:=N\}$. We can do almost the same thing here, except M has to be in some plane for this to work.

Proposition 41. For any 0 -simplex P in any a.s. set, define $(P)_{q}$ by

$$
(P)_{-1} \hat{=} \partial_{0}^{0} P \quad(P)_{0} \hat{=} P \quad(P)_{q+1} \hat{=} s(P)_{q} \quad(q \geqslant 0)
$$

Say that a q-simplex M of $\mathcal{S} 4[\Gamma, x: \square F \vdash G]$ is abstractable on x if and only if $\pi_{0} M$ can be written as $M_{0}\{y:=d x\}$ for some term M_{0} such that $\Gamma, y: F \vdash M_{0}: G$ is typable (in particular, x is not free in M_{0}), and M is in the plane $(x: \square F)^{\perp}$ of $\mathcal{S}_{4}[\Gamma, x: \square F \vdash G]$.

Then there is an a.s. map from the sub-a.s. set of terms M in $\mathcal{S}_{4}[\Gamma, x: \square F \vdash G]$ that are abstractable on x to terms $\lambda x^{q} \cdot M$, such that $\left(\lambda x^{q} \cdot M\right) \star^{q}(x)_{q} \approx M$.

Proof. Note that in syntactic a.s. sets as studied here, we may define $(P)_{q}$ more synthetically as $\ldots d P \ldots$, where $d P$ is enclosed in $q+1$ boxes.

Case $q=0$. Let us define $\lambda x^{q} \cdot M$ when $q=0$. Write the η-long normal form of M as $M_{1} \cdot \theta$. Since M is in $(x: \square F)^{\perp}$, for every free variable z of M_{1} such that x is free in $z \theta, z \theta=x$. Let x_{1}, \ldots, x_{k} be those free variables of M_{1} such that $x_{1} \theta=\ldots=x_{k} \theta=x$. The restriction θ^{*} of θ to the remaining variables maps variables to terms where x is not free.

Moreover, by assumption $M_{1} \theta=M_{0}\{y:=d x\}$, so x only occurs as direct argument of d in $M_{1} \theta$. By the definition of x_{1}, \ldots, x_{k}, there is a term M_{2}, obtained from M_{1} by replacing each $d x_{i}$ by y, such that $M_{2} \theta^{*}=M_{0}$. Moreover, by construction M_{2} is η-long normal of type G under $\Gamma, y: F$, so:

$$
\begin{equation*}
\lambda x^{0} \cdot M \hat{=} \lambda y \cdot M_{2} \cdot \theta^{*} \tag{15}
\end{equation*}
$$

is a 0 -simplex of the desired type. This is also η-long normal since $\operatorname{fv}\left(\lambda y \cdot M_{2}\right)=$ $\mathrm{fv}\left(M_{2}\right) \backslash\{y\}=\left(\mathrm{fv}\left(M_{1}\right) \backslash\left\{x_{1}, \ldots, x_{k}\right\} \cup\{y\}\right) \backslash\{y\}=\mathrm{fv}\left(M_{1}\right) \backslash\left\{x_{1}, \ldots, x_{k}\right\}=$ $\operatorname{dom} \theta \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\operatorname{dom} \theta^{*}$, and $\lambda y \cdot M_{2}$ is linear since every free variable in M_{2} except possibly y occurs exactly once.

We check that $\left(\lambda x^{0} \cdot M\right) \star^{0}(x)^{0} \approx M$:

$$
\begin{aligned}
\left(\lambda x^{0} \cdot M\right) \star^{0}(x)_{0} & =d z\left(d z^{\prime}\right) \cdot\left\{z:=\lambda x^{0} \cdot M, z^{\prime}:=(x)_{0}\right\} \\
& \approx d \lambda \cdot M_{2}(d \sqrt{d x}) \cdot\left(\theta^{*},\{x:=x\}\right) \quad(\text { by }(\square)) \\
& \approx\left(\lambda y \cdot M_{2}\right)(d x) \cdot\left(\theta^{*},\{x:=x\}\right) \quad(\text { by }(d)) \\
& \approx M_{2}\{y:=d x\} \cdot\left(\theta^{*},\{x:=x\}\right) \quad(\text { by }(\beta)) \\
& \approx M_{1} \cdot\left(\theta^{*},\left\{x_{1}:=x, \ldots, x_{k}:=x\right\}\right) \quad(\text { by }(\mathrm{ctr})) \\
& =M_{1} \cdot \theta=M
\end{aligned}
$$

General Case. To extend $\lambda x^{q} \cdot M$ to $q=-1$, use Proposition 31. To extend this to $q \geqslant 1$, check that $M \mapsto \lambda x^{0} \cdot M$ is \rightarrow^{*}-monotonic and use Theorem 29. Assume indeed $M \rightarrow=M^{\prime}$ are 0 -simplices, where $M \hat{=} M_{1} \cdot \theta$ and $M^{\prime} \hat{=} M_{1}^{\prime} \cdot \theta^{\prime}$. Then there is a 1-simplex N. $\vartheta_{1} \cdot \vartheta_{0}$ such that $N \vartheta_{1}=M_{1}, \vartheta_{0}=\theta$, and $N=M_{1}^{\prime}$, $\vartheta_{1} \cdot \vartheta_{0}=\theta^{\prime}$. In other words, there is a 1-simplex $M_{1}^{\prime} \cdot \vartheta_{1} \cdot \theta$ such that $M_{1}^{\prime} \vartheta_{1}=M_{1}$ and $\vartheta_{1} \cdot \theta=\theta^{\prime}$.

Since M is in $(x: \square F)^{\perp}$, let x_{1}, \ldots, x_{k} be the free variables of M_{1} such that $x_{i} \theta=x, 1 \leqslant i \leqslant k$, as above. Similarly, let $x_{1}^{\prime}, \ldots, x_{k^{\prime}}^{\prime}$ be the free variables of M_{1}^{\prime} such that $x_{i^{\prime}}^{\prime} \theta^{\prime}=x, 1 \leqslant i^{\prime} \leqslant k^{\prime}$.

Observe that for every i^{\prime} with $1 \leqslant i^{\prime} \leqslant k^{\prime}, x_{i^{\prime}}^{\prime} \vartheta_{1}$ is such that $\left(x_{i^{\prime}}^{\prime} \vartheta_{1}\right) \theta=x_{i^{\prime}}^{\prime} \vartheta_{1} \theta=$ $x_{i^{\prime}}^{\prime}, \theta^{\prime}=x$, so: (a) $x_{i^{\prime}}^{\prime} \vartheta_{1}$ is some $x_{i}, 1 \leqslant i \leqslant k$. Conversely, if x_{i} is free in some $z^{\prime} \vartheta_{1}, z^{\prime} \in \operatorname{dom} \vartheta_{1}$, then x is free in $z^{\prime} \vartheta_{1} \theta=z^{\prime} \theta^{\prime}$, so z^{\prime} is some $x_{i^{\prime}}^{\prime}$. In brief: (b) if $x_{i} \in \operatorname{fv}\left(z^{\prime} \vartheta_{1}\right), z^{\prime} \in \operatorname{dom} \vartheta_{1}$, then $z^{\prime}=x_{i^{\prime}}^{\prime}$ for some i^{\prime}. So we may write ϑ_{1} as the disjoint union of the restriction ϑ_{1}^{*} of ϑ_{1} to $\operatorname{dom} \vartheta_{1} \backslash\left\{x_{1}^{\prime}, \ldots, x_{k^{\prime}}^{\prime}\right\}$ with a one-to-one (by (b)) substitution mapping each $x_{i^{\prime}}^{\prime}$ to some x_{i} (by (a)). In particular, $k^{\prime}=k$ and without loss of generality, we may assume $x_{i}^{\prime} \vartheta_{1}=x_{i}$ for every $i, 1 \leqslant i \leqslant k$. Moreover, by (b) no x_{i} is free in any $z^{\prime} \vartheta_{1}^{*}, z^{\prime} \in \operatorname{dom} \vartheta_{1}^{*}$.

Let θ^{*} be the restriction of θ to $\operatorname{fv}\left(M_{1}\right) \backslash\left\{x_{1}, \ldots, x_{k}\right\}, \theta^{\prime *}$ be that of θ^{\prime} to $\operatorname{fv}\left(M_{1}^{\prime}\right) \backslash$ $\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}$. Let M_{2} be obtained from M_{1} by replacing each $d x_{i}$ by y, and M_{2}^{\prime} be obtained from M_{1}^{\prime} by replacing each $d x_{i}^{\prime}$ by y. Finally, let

$$
P \hat{=} \lambda y \cdot M_{2}^{\prime} \cdot \vartheta_{1}^{*} \cdot \theta^{*}
$$

We first claim that P is a valid 1-simplex. Indeed, $\lambda y \cdot M_{2}^{\prime}$ is linear; $\operatorname{fv}\left(\lambda y \cdot M_{2}^{\prime}\right)=$ $\operatorname{fv}\left(M_{2}^{\prime}\right) \backslash\{y\}=\operatorname{fv}\left(M_{1}^{\prime}\right) \backslash\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}=\operatorname{dom} \vartheta_{1} \backslash\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}=\operatorname{dom} \vartheta_{1}^{*} ; \lambda y \cdot M_{2}^{\prime}$. ϑ_{1}^{*} is linear, since $M_{1}^{\prime} \cdot \vartheta_{1}$ is; and $\operatorname{fv}\left(\lambda y \cdot M_{2}^{\prime} \cdot \vartheta_{1}^{*}\right)=\bigcup_{z^{\prime} \in \operatorname{fv}\left(\lambda y \cdot M_{2}^{\prime}\right)} \operatorname{fv}\left(z^{\prime} \vartheta_{1}^{*}\right)=$ $\bigcup_{z^{\prime} \in \operatorname{fv}\left(M_{1}^{\prime}\right) \backslash\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}} \mathrm{fv}\left(z^{\prime} \vartheta_{1}^{*}\right)=\bigcup_{z^{\prime} \in \operatorname{fv}\left(M_{1}^{\prime}\right)} \mathrm{fv}\left(z^{\prime} \vartheta_{1}\right) \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ (since ϑ_{1} is $\vartheta_{1}^{*} \uplus$ $\left\{x_{1}^{\prime}:=x_{1}, \ldots, x_{k}^{\prime}:=x_{k}\right\}$ and no x_{i} is free in any $\left.z^{\prime} \vartheta_{1}^{*}\right)=\mathrm{fv}\left(M_{1}^{\prime} \cdot \vartheta_{1}\right) \backslash\left\{x_{1}, \ldots, x_{k}\right\}$ $=\operatorname{dom} \theta \backslash\left\{x_{1}, \ldots, x_{k}\right\}=\operatorname{dom} \theta^{*}$.

We then claim that $\partial_{1}^{1} P=\lambda x^{0} \cdot M$ and $\partial_{1}^{0} P=\lambda x^{0} \cdot M^{\prime}$.
For the first claim, notice that $M_{2}^{\prime} \vartheta_{1}^{*}$ is obtained from $M_{1}^{\prime} \vartheta_{1}^{*}$ by replacing each $d x_{i}^{\prime}$ by y, so $M_{2}^{\prime} \vartheta_{1}$ is obtained from $M_{1}^{\prime} \vartheta_{1}$ by replacing each $d x_{i}$ by y. Since $M_{1}^{\prime} \vartheta_{1}=M_{1}$ and M_{2} is obtained by replacing each $d x_{i}$ in M_{1} by y, it follows that $M_{2}^{\prime} \vartheta_{1}=M_{2}$. Therefore $\partial_{1}^{1} P=\left(\lambda y \cdot M_{2}^{\prime}\right) \vartheta_{1}^{*} \cdot \theta^{*}=\lambda y \cdot M_{2}^{\prime} \vartheta_{1} \cdot \theta^{*}=\lambda y \cdot M_{2} \cdot \theta^{*}=\lambda x^{0} \cdot M$.

For the second claim, since $\vartheta_{1} \cdot \theta=\theta^{\prime}$ and $\vartheta_{1}=\vartheta_{1}^{*} \uplus\left\{x_{1}^{\prime}:=x_{1}, \ldots, x_{k}^{\prime}:=x_{k}\right\}$, $\theta=\theta^{*} \uplus\left\{x_{1}:=x, \ldots, x_{k}:=x\right\}, \theta^{\prime}=\theta^{\prime *} \uplus\left\{x_{1}^{\prime}:=x, \ldots, x_{k}^{\prime}:=x\right\}$, and no x_{i} is free in any $z^{\prime} \vartheta_{1}^{*}, z^{\prime} \in \operatorname{dom} \vartheta_{1}^{*}$, it follows that $\vartheta_{1}^{*} \cdot \theta^{*} \uplus\left\{x_{1}:=x, \ldots, x_{k}:=x\right\}=$ $\theta^{\prime *} \uplus\left\{x_{1}:=x, \ldots, x_{k}:=x\right\}$, whence $\vartheta_{1}^{*} \cdot \theta^{*}=\theta^{\prime *}$. So $\partial_{1}^{0} P=\lambda y \cdot M_{2}^{\prime} \cdot\left(\vartheta_{1}^{*} \cdot \theta^{*}\right)=$ $\lambda y \cdot M_{2}^{\prime} \cdot \theta^{\prime *}=\lambda x^{0} \cdot M^{\prime}$.

Therefore $M \rightarrow=M^{\prime}$. It follows that $M \mapsto \lambda x^{0} \cdot M$ is indeed $\rightarrow{ }^{*}$-monotonic, hence extends to a unique a.s. map in every dimension.

It can be shown that $\Lambda(\star)_{q}$ is injective for every q, and we leave this to the reader. But we can say more, at the price of considering slightly looser a.s. sets:

Definition $42(\mathcal{S} 4[F])$. Let $(\mathcal{S} 4[F])_{q}, q \geqslant-1$, be the set of all \approx-equivalence classes of $\lambda_{\mathrm{S} 4}$-terms M such that $\Gamma \vdash M: \square^{q+1} F$ is derivable for some boxed context Γ. This gives rise to an a.s. set $\mathcal{S}_{4}[F] \hat{=}\left(\mathcal{S}_{4}[\Gamma] F,\left(\partial_{q}^{i}\right)_{0 \leqslant i \leqslant q},\left(s_{q}^{i}\right)_{0 \leqslant i \leqslant q}\right)$

Then, the \star map extends naturally to an a.s. map, written *, from $\mathcal{S}_{4}[F \supset G] \times$ $\mathcal{S}_{4}[F]$ to $\mathcal{S}_{4}[G]$.

Note that we have defined simplices as typable λ_{54}-terms, not typing derivations. The difference can be illustrated as follows: the variable x for instance is one $\lambda_{\text {S4 }}{ }^{-}$ term, while all typing derivations of $\Gamma, x: F \vdash x: F$ by $(A x)$ when Γ varies are all distinct. This will be made clearer, using categorical language, in Proposition 65.

The injectivity of $\Lambda(*)$ yields an embedding of $\mathcal{S}_{4}[F \supset G]$ into $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F]\right.$, $\left.\mathcal{S}_{4}[G]\right)$. We shall show that this can be turned into the inclusion part of a strong retraction of $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)$ onto $\mathcal{S}_{4}[F \supset G]$. First, we note some general results:

Definition 43 (Hull). Let K be an a.s. set, and $A \subseteq K_{-1}$. The hull \bar{A} is the a.s. subset of K whose q-simplices are all q-simplices x of K such that $\pi_{0} x \in A$.

This inherits face and degeneracy operators from K. Every a.s. set splits as a sum of hulls:

Proposition 44. Every a.s. set K splits as a sum $\coprod_{x \in K_{-1}} \overline{\{x\}}$. In particular, for every $A \subseteq K_{-1}, K=\bar{A} \amalg \overline{\left(K_{-1} \backslash A\right)}$.

The following lemma is the first one where the change from $\mathcal{S}_{4}[\Gamma \vdash F]$ to $\mathcal{S}_{4}[F]$ is required:

Lemma 45. Let A be any subset of $\mathcal{S}_{4}[F]_{-1}$, and assume that there is a 0 -simplex P in \bar{A}.

Then there is a strong retraction r_{A} of $\mathcal{S}_{4}[F]$ onto \bar{A}. In other words, r_{A} is an a.s. map such that, for every $M \in \bar{A}, r_{A}(M)=M$.

Proof. For any q-simplex M of $\mathcal{S}_{4}[F]$, then either M is in $(\bar{A})_{q}$ and we let $r_{A}(M)$ be M, or M is in $\left(\overline{\mathcal{S}_{4}[F]_{-1} \backslash A}\right)_{q}$ by Proposition 44 , and we let $r_{A}(M)$ be $(P)_{q} \in$ $\mathcal{S}_{4}[F]_{q}$. Note that $r_{A}(M)$ is always in the hull of A.

Clearly, for every $M \in \bar{A}, r_{A}(M)=M$. It remains to show that r_{A} is a.s. If M is in $(\bar{A})_{q}$, and $0 \leqslant i \leqslant q$, then $\partial_{q}^{i} M$ is in $(\bar{A})_{q-1}$, so $\partial_{q}^{i}\left(r_{A}(M)\right)=\partial_{q}^{i} M=$ $r_{A}\left(\partial_{q}^{i} M\right)$. Otherwise M is in $\left(\overline{\mathcal{S}_{4}[F]_{-1} \backslash A}\right)_{q}$, so $\partial_{q}^{i} M$ is in $\left(\overline{\mathcal{S}_{4}[F]_{-1} \backslash A}\right)_{q-1}$, therefore $\partial_{q}^{i}\left(r_{A}(M)\right)=\partial_{q}^{i}(P)_{q} \approx(P)_{q-1}=r_{A}\left(\partial_{q}^{i} M\right)$. Similarly for s_{q}^{i}.

Proposition 46. $\mathcal{S}_{4}[F \supset G]$ is a strong retract of $\overline{\operatorname{Im} \Lambda(*)_{-1}}$.
More precisely, there is an a.s. map $\mathfrak{R}_{F \supset G}^{1}$ from $\overline{\operatorname{Im} \Lambda(*)_{-1}}$ to $\mathcal{S}_{4}[F \supset G]$ such that $\mathfrak{R}_{F \supset G}^{1} \circ \Lambda(*)=\operatorname{id}_{\mathcal{S}_{4}[F \supset G]}$.

Proof. For every boxed context Γ, fix some variable ξ_{Γ} outside the domain of Γ.
Let f be any q-simplex of $\overline{\operatorname{Im} \Lambda(*)_{-1}}$. That is, first, $f \in \operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)_{q}$, and $\pi_{0} f=\Lambda(*)_{-1}(M)$ for some term M and some boxed context Γ such that $\Gamma \vdash_{I} M: F \supset G$ is derivable in $B N_{0}$. Since M is η-long normal of type $F \supset G, M$ must be of the form $\lambda y \cdot M_{1}$, with $\Gamma, y: F \vdash_{I} M_{1}: G$ derivable in $B N_{0}$. To sum up:

$$
\begin{equation*}
\Lambda(*)_{-1}\left(\lambda y \cdot M_{1}\right)=\pi_{0} f \tag{16}
\end{equation*}
$$

Now $A p p_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)$ is a q-simplex of $\mathcal{S}_{4}[G]$. Its component is $\pi_{0}\left(A p p_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right)$, which equals $A p p_{-1}\left(\pi_{0} f, d \xi_{\Gamma}\right)=\operatorname{App}_{-1}\left(\Lambda(*)_{-1}\left(\lambda y \cdot M_{1}\right), d \xi_{\Gamma}\right)($ by $(16))=(\lambda y$. $\left.M_{1}\right) \star{ }_{-1}^{\amalg} d \xi_{\Gamma}$ (by the combinator equations, in particular $\left.(\mathrm{l})\right)=\left(\lambda y \cdot M_{1}\right)\left(d \xi_{\Gamma}\right) \approx$ $M_{1}\left\{y:=d \xi_{\Gamma}\right\}$.

As far as typing is concerned, since $\Gamma, y: F \vdash_{I} M_{1}: G$ is derivable in $B N_{0}$, $\Gamma, \xi_{\Gamma}: \square F \vdash M_{1}\left\{y:=d \xi_{\Gamma}\right\}$ is, too. So $\pi_{0}\left(A p p_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right)$ is in $\mathcal{S}_{4}\left[\Gamma, \xi_{\Gamma}: \square F \vdash G\right]_{-1}$, from which it follows that $\operatorname{App}_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)$ is in $\mathcal{S}_{4}\left[\Gamma, \xi_{\Gamma}: \square F \vdash G\right]_{q}$.

Using Proposition 36, let $M^{\prime} \hat{=} \pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}}\left(A p p_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right)$. This is an element of $\mathcal{S}_{4}\left[\Gamma, \xi_{\Gamma}: \square F \vdash G\right]_{q}$. Since projection is a.s., it preserves components, so $\pi_{0}\left(M^{\prime}\right)=$ $\pi_{0}\left(\operatorname{App}_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right)=M_{1}\left\{y:=d \xi_{\Gamma}\right\}$. By construction M^{\prime} is in $\left(\xi_{\Gamma}: \square F\right)^{\perp}$, so $M^{\prime}=\pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}}\left(A p p_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right)$ is abstractable on ξ_{Γ}. We may therefore use Proposition 41, and let:

$$
\begin{equation*}
\mathfrak{R}_{F \supset G}^{1}(f) \hat{=} \lambda^{q} \xi_{\Gamma} \cdot \pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}}\left(\operatorname{App}_{q}\left(f,\left(\xi_{\Gamma}\right)_{q}\right)\right) \tag{17}
\end{equation*}
$$

This is clearly a.s., as a composition of a.s. maps.
Check that $\mathfrak{R}_{F \supset G}^{1}$ is a left inverse to $\Lambda(*)$. It is enough to check this in dimension 0 , by Theorem 29 and Proposition 31, since $\mathfrak{R}_{F \supset G}^{1}$ is a.s. So let f be any 0 -simplex in $\operatorname{Im}\left(\Lambda(*)_{0}\right)$, i.e., $f=\Lambda(*)_{0}(P)$ with $P \in \mathcal{S}_{4}[F \supset G]_{0}$. Write P in a unique way as the η-long normal form $\lambda y \cdot P_{1} \cdot \theta$. Then:

$$
\begin{aligned}
\mathfrak{R}_{F \supset G}^{1}(f) & =\lambda^{0} \xi_{\Gamma} \cdot \pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}}\left(A p p_{0}\left(f,\left(\xi_{\Gamma}\right)_{0}\right)\right) \\
& =\lambda^{0} \xi_{\Gamma} \cdot \pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}}\left(P *_{0}\left(\xi_{\Gamma}\right)_{0}\right) \\
& \left.=\lambda^{0} \xi_{\Gamma} \cdot \pi_{\left(\xi_{\Gamma}: \square F\right)^{\perp}\left(P_{1}\left\{y:=d \xi_{\Gamma}\right\}\right.} \cdot \theta\right) \\
& =\lambda^{0} \xi_{\Gamma} \cdot P_{1}\left\{y:=d \xi_{\Gamma}\right\} \cdot \theta \quad\left(\text { since } \quad P_{1}\left\{y:=d \xi_{\Gamma}\right\} \cdot \theta \text { is in }\left(\xi_{\Gamma}: \square F\right)^{\perp}\right) \\
& =\lambda y \cdot P_{1} \cdot \theta \quad(\text { by }(15)) \\
& =P
\end{aligned}
$$

where for readability we have not converted $P_{1}\left\{y:=d \xi_{\Gamma}\right\} \cdot \theta$ to its η-long normal form $\left(P_{1}\left\{y:=d \xi_{\Gamma}\right\}\right.$ is in general not linear in $\left.\xi_{\Gamma}\right)$.

Combining Lemma 45 with $A \hat{=} \operatorname{Im}\left(\Lambda(*)_{-1}\right)$ and Proposition 46, we get:
Corollary 47 (Strong Functional Retraction). $\mathcal{S}_{4}[F \supset G]$ is a strong retract of the a.s. set $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \mathcal{S}_{4}[G]\right)$: there is an augmented simplicial map $\mathfrak{R}_{F \supset G}$ from $\operatorname{Hom}_{\widehat{\Delta}}\left(\mathcal{S}_{4}[F], \widehat{\mathcal{S}}_{4}[G]\right)$ to $\mathcal{S}_{4}[F \supset G]$ such that $\mathfrak{R}_{F \supset G} \circ \Lambda(*)=\operatorname{id}_{\mathcal{S}_{4}[F \supset G]}$.

Proof. Take $\mathfrak{R}_{F \supset G}$ as $\mathfrak{R}_{F \supset G}^{1} \circ r_{\operatorname{Im}\left(\Lambda(*)_{-1}\right)}$. Lemma 45 applies because there is indeed a 0-simplex in $\overline{\operatorname{Im}\left(\Lambda(*)_{-1}\right)}$, e.g., $\Lambda(*)_{0}(x)$, where $x: \square(F \supset G) \vdash x: \square(F \supset G)$, so $x \in \mathcal{S} 4[x: \square(F \supset G) \vdash F \supset G]_{0} \subseteq \mathcal{S}_{4}[F \supset G]_{0}$.

5. Augmented Simplicial and Other Models

There is a natural interpretation of (non-modal) types and typed λ-terms in the category Set of sets and total functions. Interpret base types as sets, interpret $F \supset G$ as the set of all total functions from F to G. Then λ-terms, or more precisely derivations of $x_{1}: F_{1}, \ldots, x_{n}: F_{n} \vdash M: F$, are interpreted as total functions from $F_{1} \times \ldots \times F_{n}$ to F. The variable x_{i} gets interpreted as the i th projection, application of M to N is interpreted as the function mapping $g \in F_{1} \times \ldots \times F_{n}$ to $M(g)(N(g))$, and abstraction $\lambda x \cdot M: F \supset G$ is interpreted as the function mapping $g \in F_{1} \times \ldots \times F_{n}$ to the function mapping $x \in F$ to $M(g, x)$ (currying). This is arguably the intended semantics of λ-terms.

In particular, if M and N are convertible λ-terms by the (β) and (η) rules (they are $\beta \eta$-equivalent), then they have the same interpretation. However, this interpretation is far from being onto: note that there are only countably many λ terms, while as soon as some base type A gets interpreted as any infinite set, $A \supset A$ will not be countable, while $(A \supset A) \supset A$ will neither be countable nor even of the cardinality of the powerset of \mathbb{N}.

Nonetheless, it can be proved that this interpretation is equationally complete:
Theorem 48 ([16]). If the two typed λ-terms M and N, of the same type F, have the same set-theoretic interpretation for every choice of the interpretation of base types, then M and N are $\beta \eta$-equivalent.

In fact, there is even a fixed set-theoretic interpretation such that, if M and N have the same value in this interpretation, then they are $\beta \eta$-equivalent. Extending this result will be the topic of Section 5.3 and subsequent ones.

5.1. The ($\square, \mathrm{d}, \mathrm{s}$) Comonad on $\widehat{\Delta}$, and Strict CS4 Categories

In the S 4 case, given the fact that $\mathcal{S} 4[\Gamma \vdash F]$ is an augmented simplicial set, it is natural to investigate the extension of the above constructions to intuitionistic S4 on the one hand and the category of augmented simplicial sets on the other hand.

In general, intuitionistic S4 proofs can be interpreted in any CCC with a monoidal comonad. While the CCC structure of $\widehat{\Delta}$, accounting for the non-modal part of S4 proofs, was recalled in Section 4, the monoidal comonad we use is:
Definition 49 (\square Comonad in $\widehat{\Delta}$). For every a.s. set K, let $\square K$ denote the a.s. set such that $(\square K)_{q} \hat{=} K_{q+1}, \partial_{(\square K)_{q}}^{i} \hat{=} \partial_{K_{q+1}}^{i+1}, s_{(\square K)_{q}}^{i} \hat{=} s_{K_{q+1}}^{i+1}$. For any a.s. map $f: K \rightarrow L$, let $\square f: \square K \rightarrow \square L$ be such that $(\square f)_{q} \hat{=} f_{q+1}$. Let $\mathbf{d}: \square K \rightarrow K$ and $\mathbf{s}: \square K \rightarrow \square^{2} K$ be the a.s. maps such that $(\mathbf{d})_{q} \hat{=} \partial_{K_{q+1}}^{0}$ and $(\mathbf{s})_{q} \hat{=} s_{K_{q+1}}^{0}$ respectively, $q \geqslant-1$.

CCCs with a monoidal comonad have already been argued to be the proper categorical models of intuitionistic S4 [7]. While Bierman and de Paiva only show
that $(\beta),(\eta)$, and (d) are sound, it is easy to check that the other equalities (gc), (ctr), (\square) and ($\eta \square$) are also sound.

It is easy to check that the monoidal comonad of Definition 49 satisfies $\square \mathbf{1}=\mathbf{1}$, $\square(K \times L)=\square K \times \square L$ (up to natural isomorphisms that we will not make explicit, for readability purposes), and the following so-called strict monoidal comonad equations hold:
(n) $\square \mathrm{id}=\mathrm{id}$
$(o) \square(f \circ g)=\square f \circ \square g$
$(p) \mathbf{d} \circ \square f=f \circ \mathbf{d}$
$(q) \mathbf{s} \circ \square f=\square^{2} f \circ \mathbf{s}$
(r) $\square \pi_{1}=\pi_{1}$
(s) $\mathbf{d} \circ \mathbf{s}=\mathrm{id}$
($t) \square \mathbf{d} \circ \mathbf{s}=\mathrm{id}$
(u) $\square \mathbf{s} \circ \mathbf{s}=\mathbf{s} \circ \mathbf{s}$
(v) $\square \pi_{2}=\pi_{2}$
(w) $\square\langle f, g\rangle=\langle\square f, \square g\rangle$
$(x) \mathbf{d} \circ\langle f, g\rangle=\langle\mathbf{d} \circ f, \mathbf{d} \circ g\rangle$
(y) $\mathbf{s} \circ\langle f, g\rangle=\langle\mathbf{s} \circ f, \mathbf{s} \circ g\rangle$

Definition 50 (Strict CS4 Category). A strict CS4 category is any cartesianclosed category \mathcal{C} together with a strict monoidal comonad ($\square, \mathbf{d}, \mathbf{s}$).

Strict CS4 categories are the categories in which we can interpret typed $\lambda_{\text {S4 }}{ }^{-}$ terms. Bierman and de Paiva considered non-strict CS4 categories [7]. We shall only need the strict variant; this will make our exposition simpler. In particular $\widehat{\Delta}$ with the comonad of Definition 49 is a strict CS4 category.

The \square functor on $\widehat{\Delta}$ is related to Duskin and Illusie's décalage functor \square [43]. Standardly, décalage is dual to \square. For every a.s. set K, the converse \breve{K} of K is obtained by letting $(\breve{K})_{q} \hat{=} K_{q}, \partial_{\breve{K_{q}}}^{i} \hat{=} \partial_{K_{q}}^{q-i}, s_{\breve{K}_{q}}^{i} \hat{=} s_{K_{q}}^{q-i}$. That is, \breve{K} is obtained from K by reversing the order of faces. Then $\square K$ is the converse of $\square \breve{K}$. If $\square K$ in a sense means "in every future, K ", then it is natural to think of $\square K$ as "in every past, $K "$. As announced in Section 2, we shall leave the task of investigating such other modalities to a future paper.

5.1.1. Topological Models

There are many other interesting strict CS4 Categories. Of interest in topology in the category CGHaus of compactly generated topological spaces, a.k.a., Kelley spaces ([33] VII.8). (It is tempting to use the category Top of topological spaces, however Top is not a CCC. It has sometimes been argued that CGHaus was the right category to do topology in.) Recall that a Kelley space is a Hausdorff topological space X whose closed subsets are exactly those subsets A whose intersection with every compact subspace of X is closed in X. CGHaus has Kelley spaces as objects and continuous functions as morphisms. Moreover, for every Hausdorff space X, there is a smallest topology containing that of X that makes it Kelley. The resulting Kelley space $K(X)$ is the kelleyfication of X, and is obtained by adding as closed sets every $A \subseteq X$ whose intersection with every compact subspace of X is closed in X. The terminal object $\mathbf{1}$ in CGHaus is the one-point topological space, while the product of X and Y is the kelleyfication of the product of X and Y as topological spaces, and the internal hom $\operatorname{Hom}_{\text {CGHaus }}(X, Y)$ is the space of all continuous functions from X to Y with the compact-open topology. We may equip CGHaus with a structure of strict CS4 category as follows:

Definition 51 (\square Comonad in CGHaus). For every topological space X, the cocone $\square X$ over X is the disjoint sum $\coprod_{x_{0} \in X} \square_{x_{0}} X$, where the $\square_{x_{0}} X$ is the space
of all continuous functions α from $[0,1]$ to X such that $\alpha(0)=x_{0}$, with the compactopen topology.

For every continuous function $f: X \rightarrow Y$, let $\square f: \square X \rightarrow \square Y$ be the function mapping each $\alpha \in \square X$ to $f \circ \alpha \in \square Y$.

The counit \mathbf{d} maps every $\alpha \in \square X$ to $\alpha(1) \in X$.
The comultiplication s maps every $\alpha \in \square X$ to the map $t \mapsto\left(t^{\prime} \mapsto \alpha\left(t t^{\prime}\right)\right)$ in $\square^{2} X$.

This comonad is in fact related to the décalage functor, through singular simplex and geometric realization functors.

In terms of processes, we may think of $\alpha \in \square X$ as some process that starts at time 0 and will produce a value at time 1 . The counit \mathbf{d} is the operator that extracts the final value of the process α as argument.

We have called this a cocone comonad because it can be shown that the \square functor admits the familiar cone functor as a left adjoint. This cone functor in addition defines a strong monad, and is the topological counterpart of the modality of tense logics, meaning "in some past" in Kripke semantics. A.s. sets also admit such a cone monad, left adjoint to \square (see e.g., $[\mathbf{1 4}]$).

Proposition 52. The construction ($\square, \mathbf{d}, \mathbf{s}$) of Definition 51 is a strict monoidal comonad on CGHaus, making it a strict CS4 category.

Proof. First show that $\square_{x_{0}} X$ is Kelley. Since $[0,1]$ is compact, it is compactly generated, therefore the space of continuous functions from $[0,1]$ to X is Kelley: this is $\operatorname{Hom}_{\text {CGHaus }}([0,1], X)$. (In general $\operatorname{Hom}_{\text {CGHaus }}(Y, X)$ is the kelleyfication of the space of continuous functions from Y to X, not the space itself.) Since $\left\{x_{0}\right\}$ is closed in X, and the projection $\alpha \mapsto \alpha(0)$ is continuous, $\square_{x_{0}} X$ is closed in $\operatorname{Hom}_{\text {CGHaus }}([0,1], X)$. As a closed subset of a Kelley space, $\square_{x_{0}} X$ is then Kelley, too. Since every coproduct of Kelley spaces is also Kelley, it follows that $\square X$ is Kelley.

Next we must show that $\square f$ is continuous whenever $f: X \rightarrow Y$ is. We first show the auxiliary:
Claim A. For every function $f: X \rightarrow \square Y, f$ is continuous if and only if, for every connected component C of X :
(i) for every $x, y \in C, f(x)(0)=f(y)(0)$, and
(ii) the restriction $f_{\mid C}$ of f to C is continuous from C to $\operatorname{Hom}_{\mathbf{C G H a u s}}([0,1], Y)$.

Only if: since C is connected, $f(C)$ is connected. But each $\square_{x_{0}} X$ is both open and closed in $\square X$ by construction, so $f(C) \subseteq \square_{x_{0}} X$ for some $x_{0} \in X$. By definition of $\square_{x_{0}} X$, this means that $f(x)(0)=x_{0}$ for every $x \in C$, whence (i. On the other hand, since f is continuous, $f_{\mid C}$ is also continuous from C to $\square_{x_{0}} X$ for the x_{0} above. Since every subset of $\square_{x_{0}} X$ that is closed in $\operatorname{Hom}_{\text {CGHaus }}([0,1], Y)$ is also closed in $\square_{x_{0}} X$ by definition, (ii) holds. (We use the fact that f is continuous if and only if the inverse image of every closed set is closed.)

If: let x_{0} be $f(x)(0)$ for some (and therefore all, by (i)) $x \in C$. Then $f(C) \subseteq$ $\square_{x_{0}} X$. By (ii), and since every closed subset of $\square_{x_{0}} X$ is closed in $\operatorname{Hom}_{\text {CGHaus }}([0,1]$, $Y), f_{\mid C}$ is continuous from C to $\square_{x_{0}} X$, hence to $\square X$. For every open O of $\square X$,
$f^{-1}(O)$ is the union of $f_{\mid C}^{-1}(O)$ when C ranges over the connected components of X, and is therefore open. So f is indeed continuous from X to $\square Y$. Claim A is proved.

Now let $f: X \rightarrow Y$ be continuous. Let C be a connected component of $\square X$. Since every $\square_{x_{0}} X$ is both open and closed in $\square X, C$ is included in some $\square_{x_{0}} X$. So for every $\alpha, \beta \in C, \square f(\alpha)(0)=f(\alpha(0))=f\left(x_{0}\right)=f(\beta(0))=\square f(\beta)(0)$, therefore (i) holds. Moreover $f_{\mid C}$ is trivially continuous from C to $\operatorname{Hom}_{\mathbf{C G H a u s}}([0,1], Y)$, since $f \circ _$is a continuous operation (this is the morphism $\Lambda(f \circ A p p)$ in CGHaus, which is a CCC). So Claim A applies, and $\square f$ is continuous.

Let us now show that $\mathbf{d}: \square X \rightarrow X$ is continuous. Let F be any closed subset of X, then $\mathbf{d}^{-1}(F)=\{\alpha \in \square X \mid \alpha(1) \in F\}=\bigcup_{x_{0} \in X}\left\{\alpha \in \square_{x_{0}} X \mid \alpha(1) \in F\right\}=$ $\bigcup_{x_{0} \in X}\left\{\alpha \in \operatorname{Hom}_{\text {CGHaus }}([0,1], X) \mid \alpha(0)=x_{0} \wedge \alpha(1) \in F\right\}$. Since the functions from $\operatorname{Hom}_{\text {CGHaus }}([0,1], X)$ to X mapping α to $\alpha(0)$ and $\alpha(1)$ respectively are continuous, each $\left\{\alpha \in \operatorname{Hom}_{\text {CGHaus }}([0,1], X) \mid \alpha(0)=x_{0} \wedge \alpha(1) \in F\right\}$ is closed in $\operatorname{Hom}_{\text {CGHaus }}([0,1], X)$; hence in $\square_{x_{0}} X$. Since a set is closed in a sum space if and only if its intersection with every summand is closed in the summand, $\mathbf{d}^{-1}(F)$ is closed.

Let us show that s: $\square X \rightarrow \square^{2} X$ is continuous. Let C be any connected component of $\square X$. In particular $C \subseteq \square_{x_{0}} X$ for some x_{0}. So for every $\alpha \in C, \alpha(0)=x_{0}$, therefore $\mathbf{s}(\alpha)(0)$ is the map $t^{\prime} \mapsto \alpha\left(0 t^{\prime}\right)$, i.e., the constant map $t^{\prime} \mapsto x_{0}$. As this is independent of α, (i) holds. On the other hand, let F be any closed subset of $\operatorname{Hom}_{\mathbf{C G H a u s}}([0,1], \square X)$. Then, letting f_{0} be the constant map $t^{\prime} \mapsto x_{0}, \mathbf{s}_{\mid C}^{-1}(F)=$ $\mathbf{s}_{\mid C}^{-1}\left(F \cap \square_{f_{0}} \square X\right)=\mathbf{s}_{\mid C}^{-1}\left(F \cap \square_{f_{0}} \square_{x_{0}} X\right)$ is closed in Hom CGHaus $([0,1], X)$. Indeed $\square_{f_{0}} \square_{x_{0}} X$ is closed in $\operatorname{Hom}_{\text {CGHaus }}\left([0,1], \operatorname{Hom}_{\text {CGHaus }}([0,1], X)\right)$, and $\mathbf{s}_{\mid C}$ is continuous from $\operatorname{Hom}_{\mathbf{C G H a u s}}([0,1], X)$ to $\operatorname{Hom}_{\text {CGHaus }}\left([0,1], \operatorname{Hom}_{\text {CGHaus }}([0,1], X)\right)$, as a composition of continuous maps. So $\mathrm{s}_{\mathrm{I} C}^{-1}(F)$ is also closed in C, hence (ii) holds. By Claim A s is continuous.

We now claim that \square is strict monoidal. (In passing, this is obvious if you accept our previous claim that \square has a left adjoint, the cone functor $\boldsymbol{\wedge}$, since right adjoints preserve limits.) The terminal object! in CGHaus is any singleton $\{\bullet\} ; \square\{\bullet\}$ is the space of all paths from \bullet to \bullet in $\{\bullet\}$, and is therefore also a singleton set. On the other hand, products are slightly harder to deal with. Let $X * Y$ denote the product of X and Y as topological spaces; then $X \times Y$ is $K(X * Y)$. We claim that the pair of functions:

$$
\begin{aligned}
F: & \square(X \times Y) \rightarrow \square X \times \square Y \\
& \gamma \mapsto\left(\pi_{1} \circ \gamma, \pi_{2} \circ \gamma\right) \\
G: & \square X \times \square Y \rightarrow \square(X \times Y) \\
& (\alpha, \beta) \mapsto(t \mapsto(\alpha(t), \beta(t)))
\end{aligned}
$$

defines a natural isomorphism between $\square(X \times Y)$ and $\square X$ and $\square Y$. That they are inverse of each other is clear, it remains to show that they are continuous. For F, since \times is a product in CGHaus, it is enough to show that $\gamma \mapsto \pi_{1} \circ \gamma$ is continuous from $\square(X \times Y)$ to $\square X$, and similarly for $\gamma \mapsto \pi_{2} \circ \gamma$. Apply Claim A: let C be any connected component of $\square(X \times Y)$. Since each $\square_{\left(x_{0}, y_{0}\right)}(X \times Y)$ is both open and closed in $\square(X \times Y), C$ is included in some $\square_{\left(x_{0}, y_{0}\right)}(X \times Y)$ for some $x_{0} \in X, y_{0} \in Y$.

So $\gamma \mapsto \pi_{1} \circ \gamma$ maps any $\gamma \in C$ to some path whose value at 0 is x_{0}, and is therefore independent of γ : (i) holds. And (ii) is obvious, so F is continuous. For G, this is subtler, and we require to prove the following first:

Claim B. Every connected component C of $X \times Y$ is a subset of some product $A * B$, where A is a connected component of X and B a connected component of Y.

Indeed, every connected component of X, resp. Y, is both open and closed in X, resp. Y. So every product $A * B$ is both open and closed in $X * Y$, when A and B are connected components. Since the topology of $X \times Y$ is finer than that of $X * Y$, $A * B$ is also both open and closed in $X \times Y$. Let S be the set of pairs (A, B) of connected components such that $C \cap(A * B) \neq \emptyset$. Note that the union of all $A * B$ for $(A, B) \in S$ covers C. Since $C \cap(A * B)$ is both open and closed in S and C is connected, there can be at most one pair A, B of connected components such that $C \cap(A * B) \neq \emptyset$. It follows that $C \subseteq A * B$. Claim B is proved.

To show that G is continuous, apply Claim A. For every connected component C of $\square X \times \square Y$, using Claim B, C is included in some product of connected components of $\square X$ and $\square Y$ respectively. In particular $C \subseteq \square_{x_{0}} X * \square_{y_{0}} Y$ for some $x_{0} \in X$, $y_{0} \in Y$. It follows that for every $(\alpha, \beta) \in C, G(\alpha, \beta)(0)=(\alpha(0), \beta(0))=\left(x_{0}, y_{0}\right)$ is independent of α and β. So (i) holds. Also, (ii) holds trivially. Therefore G is continuous.

It remains to check equations $(\mathrm{n})-(\mathrm{y})$, which are easy and left to the reader.
It is instructing to see that if X is a space of points, $\square X$ is a space of paths, then $\square^{2} X$ is a space of singular 2-simplices, and in general $\square^{q} X$ will be a space of singular q-simplices.

Let's examine $\square^{2} X$ first. This is a space of paths β, such that each $\beta(t), t \in[0,1]$ is itself a path, so β is a kind of square, up to deformation. However, β is continuous and $[0,1]$ is connected, so the range of β is connected as well. But the range of β is a subset of $\square X$, which is the direct sum of spaces $\square_{x_{0}} X, x_{0} \in X$. In any direct sum of topological spaces, every summand is both open and closed, hence every connected subspace is in fact a subspace of some summand. In our case, this means that the range of β is a subset of some $\square_{x_{0}} X$. In other words, $\beta(t)(0)=x_{0}$ for every t, so the range of β assumes the shape of a triangle, up to deformation: see Figure 6.

Note that this phenomenon is entirely due to the strange topology we take on $\square X$, which separates completely paths α that do not have the same $\alpha(0)$. Had we just taken $\square X$ to be the set of paths in X with the compact-open topology, $\square^{q} X$ would have been a set of cubes, not simplices.

In general, define $\mathrm{XSing}_{q}(X)$, for $q \geqslant-1$, as the set of all extended singular q-simplices in X :

Definition 53 (Extended Singular Simplices, XSing). For every $q \geqslant-1$, the extended singular q-simplices are the continuous maps from $\Delta^{+}{ }_{q}$ to \mathcal{F}, where $\Delta^{+}{ }_{q}=\left\{\left(t_{0}, \ldots, t_{q}\right) \mid t_{0} \geqslant 0, \ldots, t_{q} \geqslant 0, t_{0}+\ldots+t_{q} \leqslant 1\right\}$ is the standard extended q-simplex.
$\Delta^{+}{ }_{-1}$ is the singleton containing only the empty tuple (). Otherwise, $\Delta^{+}{ }_{q}$ is a polyhedron whose vertices are $(0, \ldots, 0)$ first, and second the points e_{0}, \ldots, e_{q},

Figure 6: Extended singular simplices
where $e_{i} \hat{=}\left(t_{0}, \ldots, t_{q}\right)$ with $t_{i}=1$ and $t_{j}=0$ for all $j \neq i$. This is analogous to the more usual notion of standard q-simplices Δ_{q}, for $q \geqslant 0$, which are the subpolyhedra with vertices e_{0}, \ldots, e_{q}, namely $\Delta_{q} \hat{=}\left\{\left(t_{0}, \ldots, t_{q}\right) \mid t_{0} \geqslant 0, \ldots, t_{q} \geqslant\right.$ $\left.0, t_{0}+\ldots+t_{q}=1\right\}$. The singular q-simplices of X are the continuous maps from Δ_{q} to X. See Figure 7 for an illustration of what the standard simplices, and standard extended simplices, look like.

Figure 7: Standard and extended simplices

The topology on $\operatorname{XSing}_{q}(X)$ is given as follows. When $q=-1, \operatorname{XSing}_{q}(X)$ is isomorphic to X. Otherwise, $\mathbf{X S i n g}_{q}(X)$ is viewed as the topological sum of all spaces $\mathbf{X S i n g}_{q}^{\gamma}(X) \hat{=}\left\{f \in \operatorname{Hom}_{\text {CGHaus }}\left(\Delta^{+}{ }_{q}, X\right) \mid f_{\mid \Delta_{q}}=\gamma\right\}$, when γ ranges over all singular q-simplices of X. We let the interested reader check that $\mathbf{X S i n g}_{q}(X)$ is in fact homeomorphic to $\square^{q} X$.

Note that (extended) simplices over a space of functions $X \rightarrow Y$ also have an elegant geometric interpretation. While $X \rightarrow Y$ is a set of continuous functions, $\square(X \rightarrow Y)$ is a set of continuous paths from functions f to functions g in $X \rightarrow Y$, so $\square(X \rightarrow Y)$ is a set of homotopies between continuous functions from X to Y. The elements of $\square^{q}(X \rightarrow Y), q \geqslant 1$, are then known as higher-order homotopies: $\square^{2}(X \rightarrow Y)$ is the set of homotopies between homotopies, etc. This is a classical construction in algebraic topology [36].

In terms of proof theory, there is a translation of intuitionistic proofs to S 4 proofs which replaces every base type A by $\square A$ and every implication by a corresponding boxed implication. At the level of proof terms, this yields the SKInT calculus of [19], which interprets (slightly more than) Plotkin's call-by-value λ-calculus [42]. The present constructions give rise to a model in terms of paths (elements of base types) and homotopies (implications) for SKInT. This is left to the reader.

5.1.2. Models in Categories of Orders, Cpos, and Categories

More cogent to computer science are models of the λ-calculus based on complete partial orders. Here, too, we may define strict monoidal comonads as follows. First recall that Ord, the category whose objects are partial orders and whose morphisms are monotonic functions, is a CCC. Similarly, Cat, the category of small categories, is a CCC. The category Cpo of complete partial orders (cpos) has cpos as objects and continuous functions as morphisms. Recall that a cpo is any partial order in which every infinite increasing chain $x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{i} \leqslant$ has a least upper bound. (We don't require our cpos to be pointed, i.e., to have a least element.) A function is continuous provided it preserves all least upper bounds; in particular, a continuous function is monotonic. Again, Cpo is a CCC. A variant is the category DCpo of directed cpos, where it is instead required that all directed subsets have a least upper bound; a directed subset E is one where any two elements in E have a least upper bound in E. Continuous functions are then required to preserve least upper bounds of all directed sets. Again, DCpo is a CCC.

Definition 54 (\square Comonad in Ord, Cpo, DCpo). For every partial order (X, \leqslant), let $\square X$ be the set of all pairs $\left(x_{0}, x_{1}\right)$ of elements of X such that $x_{0} \leqslant x_{1}$, ordered by $\left(x_{0}, x_{1}\right) \leqslant\left(y_{0}, y_{1}\right)$ if and only if $x_{0}=y_{0}\left(\right.$ not $\left.x_{0} \leqslant y_{0}\right)$ and $x_{1} \leqslant y_{1}$. For every monotonic function $f: X \rightarrow Y$ (resp. continuous), let $\square f$ map (x_{0}, x_{1}) to $\left(f\left(x_{0}\right), f\left(x_{1}\right)\right)$.

The counit $\mathbf{d}: \square X \rightarrow X$ maps $\left(x_{0}, x_{1}\right)$ to x_{1}.
The comultiplication $\mathbf{s}: \square X \rightarrow \square^{2} X$ maps $\left(x_{0}, x_{1}\right)$ to $\left(\left(x_{0}, x_{0}\right),\left(x_{0}, x_{1}\right)\right)$.
It is easily checked that this defines a strict monoidal comonad on Ord, Cpo, DCpo. As for the topological case, we may give a synthetic description of $\square^{q} X$: this is isomorphic to the partial order (resp. cpo, resp. dcpo) of all chains $x_{-1} \leqslant$ $x_{0} \leqslant x_{1} \leqslant \ldots \leqslant x_{q}$ of elements of X, ordered by:

$$
\left(x_{-1}, x_{0}, \ldots, x_{q}\right) \leqslant\left(x_{-1}^{\prime}, x_{0}^{\prime}, \ldots, x_{q}^{\prime}\right)
$$

if and only if $x_{-1}=x_{-1}^{\prime}, x_{0}=x_{0}^{\prime}, \ldots, x_{q-1}=x_{q-1}^{\prime}$, and $x_{q} \leqslant x_{q}^{\prime}$. Just like iterating \square in the topological case allowed us to retrieve a form of of singular simplex functor, we retrieve a form of nerve functor.

In passing, we invite the reader to check that there is also a cone monad \leqslant in Ord, Cpo and DCpo: X is X with a new bottom element added below every connected component of X. (Connected components are the equivalence classes of the symmetric closure of \leqslant.) The unit $X \rightarrow X$ is the natural inclusion of orders. The multiplication ${ }^{2} X \rightarrow X$ squashes the two additional bottoms of ${ }^{2} X$ to the one coming from \langle. Again, this is a strong monad left adjoint to \square.

We leave it to the reader to check that similar constructions work in Cat: for every small category \mathcal{C}, let $\square \mathcal{C}$ be the category of all morphisms of \mathcal{C}; morphisms from $X \rightarrow X_{0}$ to $X \rightarrow X_{1}$ are all commuting triangles:

In short, $\square \mathcal{C}$ is the coproduct of all coslices over \mathcal{C}. The counit is given by: \mathbf{d} is the functor mapping $X \rightarrow X_{0}$ to X_{0}, and the diagram above to the morphism $X_{0} \rightarrow X_{1}$ in \mathcal{C}. Comultiplication maps every object $X \rightarrow X_{0}$ in \mathcal{C} to the obvious commuting triangle $X \underset{\rightarrow}{\rightarrow}$, and morphisms as given by the triangle above to commuting tetrahedra:

5.2. Interpreting S 4 Proofs into CCCs with Monoidal Comonads

Fix an arbitrary strict CS4 category \mathcal{C}, calling its strict monoidal comonad ($\square, \mathbf{d}, \mathbf{s}$). Our prime example is $\widehat{\Delta}$, but we do not restrict to it here. We reuse the CCC notations of Section 4 and the strict monoidal comonad notations of Section 5.1, together with equations (a)-(m) and (n)-(y).

Extend the set-theoretic interpretation of λ-terms to an interpretation of formulas as objects in \mathcal{C}, and of terms as morphisms in \mathcal{C}; this interpretation is shown in Figure 8. This is parameterized by an environment ρ mapping each base type $A \in \Sigma$ to some object $\rho(A)$. Our notations match standard meaning functions in denotational semantics.

We let $X_{1} \times \ldots \times X_{n} \hat{=}\left(\ldots\left(\mathbf{1} \times X_{1}\right) \times \ldots \times X_{n-1}\right) \times X_{n}$, and $\left\langle f_{1}, \ldots, f_{n}\right\rangle \hat{=}\left\langle\left\langle\ldots\left\langle!, f_{1}\right\rangle\right.\right.$ $\left.\left.\ldots, f_{n-1}\right\rangle, f_{n}\right\rangle$. We actually make an abuse of language by considering that this is an interpretation of typed $\lambda_{\text {S4 }}$-terms instead of of typing derivations.

If Γ is $x_{1}: F_{1}, \ldots, x_{n}: F_{n}$, we also let $\mathcal{C} \llbracket \Gamma \rrbracket \rho$ be the product $\mathcal{C} \llbracket F_{1} \rrbracket \rho \times \ldots \times$ $\mathcal{C} \llbracket F_{n} \rrbracket \rho$.
Lemma 55 (Soundness). The interpretation of Figure 8 is sound in every strict CS4 category \mathcal{C} : if $\Gamma \vdash M: F$ is derivable, then $\mathcal{C} \llbracket M \rrbracket \rho$ is a morphism from $\mathcal{C} \llbracket \Gamma \rrbracket \rho$ to $\mathcal{C} \llbracket F \rrbracket \rho$; and if $M \approx N$ then $\mathcal{C} \llbracket M \rrbracket \rho=\mathcal{C} \llbracket N \rrbracket \rho$.
Proof. The typing part is immediate. For the equality part, standard arguments [10] show that:

$$
\begin{align*}
& \mathcal{C} \llbracket \Gamma \vdash M\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}: F \rrbracket \rho \tag{18}\\
= & \mathcal{C} \llbracket x_{1}: F_{1}, \ldots, x_{n}: F_{n} \vdash M: F \rrbracket \rho \\
& \circ\left\langle\mathcal{C} \llbracket \Gamma \vdash N_{1}: F_{1} \rrbracket \rho, \ldots, \mathcal{C} \llbracket \Gamma \vdash N_{n}: F_{n} \rrbracket \rho\right\rangle
\end{align*}
$$

$$
\begin{gathered}
\mathcal{C} \llbracket A \rrbracket \rho \hat{=} \rho(A) \quad \mathcal{C} \llbracket F \supset G \rrbracket \rho \hat{=} \operatorname{Hom}_{\mathcal{C}}(\mathcal{C} \llbracket F \rrbracket \rho, \mathcal{C} \llbracket G \rrbracket \rho) \quad \mathcal{C} \llbracket \square F \rrbracket \rho \hat{=} \square \mathcal{C} \llbracket F \rrbracket \rho \\
\mathcal{C} \llbracket \Gamma \vdash x_{i}: F_{i} \rrbracket \rho \hat{=} \pi_{2} \overbrace{1} \pi_{1} \circ \ldots \circ \pi_{1} \quad \text { where } \Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n} \\
\mathcal{C} \llbracket \Gamma \vdash M N: G \rrbracket \rho \hat{=} A p p \circ\langle\mathcal{C} \llbracket \Gamma \vdash M: F \supset G \rrbracket \rho, \mathcal{C} \llbracket \Gamma \vdash N: F \rrbracket \rho\rangle \\
\mathcal{C} \llbracket \Gamma \vdash \lambda x \cdot M: F \supset G \rrbracket \rho \hat{=} \Lambda(\mathcal{C} \llbracket \Gamma, x: F \vdash M: G \rrbracket \rho) \\
\mathcal{C} \llbracket \Gamma \vdash d M: F \rrbracket \rho \hat{=} \mathbf{d} \circ \mathcal{C} \llbracket \Gamma \vdash M: \square F \rrbracket \rho \\
\mathcal{C} \llbracket \Gamma \vdash \square M \cdot \theta: \square G \rrbracket \rho \hat{=} \square \mathcal{C} \llbracket \Theta \vdash M: G \rrbracket \rho \circ \mathrm{~s} \\
\quad \circ\left\langle\mathcal{C} \llbracket \Gamma \vdash N_{1}: \square F_{1} \rrbracket \rho, \ldots, \mathcal{C} \llbracket \Gamma \vdash N_{n}: \square F_{n} \rrbracket \rho\right\rangle \\
\text { where } \Theta \hat{=} x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n}, \\
\theta \hat{=}\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}
\end{gathered}
$$

Figure 8: Interpreting S4 proof terms
where the indicated sequents are derivable; and that:

$$
\mathcal{C} \llbracket \Gamma, x: F \vdash M: G \rrbracket \rho=\mathcal{C} \llbracket \Gamma \vdash M: G \rrbracket \rho \circ \pi_{1}
$$

if x is not free in M. By standard but tedious calculuations, we then check that if $M \rightarrow N$ then $\mathcal{C} \llbracket M \rrbracket \rho=\mathcal{C} \llbracket N \rrbracket \rho$, which entails the second claim.

If we are allowed to vary the strict CS4 category \mathcal{C}, then there are converses to Lemma 55. The idea is that we can always define a syntactic category \mathcal{C} as follows:

Definition 56 ($\mathcal{S}_{4 \Sigma}$ Category). Let $\mathcal{S}_{4 \Sigma}$ be the category whose objects are contexts mapping variables to types built on the set Σ of base types, and whose morphisms are:

$$
\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n} \xrightarrow{\theta \hat{=}\left\{y_{1}:=M_{1}, \ldots, y_{m}:=M_{m}\right\}} \Theta \hat{=} y_{1}: G_{1}, \ldots, y_{m}: G_{m}
$$

where θ is a substitution such that $\Gamma \vdash M_{j}: G_{j}$ for every $j, 1 \leqslant j \leqslant m$, modulo \approx.
The identity on Γ is the identity substitution $\operatorname{id}_{\Gamma} \hat{=}\left\{x_{1}:=x_{1}, \ldots, x_{n}:=x_{n}\right\}$, and composition $\theta \circ \theta^{\prime}$ is substitution concatenation $\theta \cdot \theta^{\prime}$.

This is a CCC with a strict monoidal comonad. The terminal object $\mathbf{1}$ is the empty context, and the unique morphism $\Gamma \xrightarrow{!} \mathbf{1}$ is the empty substitution. To define products, notice that contexts are isomorphic up to renaming of variables. In other words, $x_{1}: F_{1}, \ldots, x_{n}: F_{n}$ is isomorphic to $x_{1}^{\prime}: F_{1}, \ldots, x_{n}^{\prime}: F_{n}$. This allows us to only define $\Gamma \times \Gamma^{\prime}$ when Γ and Γ^{\prime} have disjoint domains. Then $\Gamma \times \Gamma^{\prime}$ is the concatenation Γ, Γ^{\prime} of contexts, and for any $\Theta \xrightarrow{\theta} \Gamma$ and $\Theta \xrightarrow{\theta} \Gamma^{\prime},\left\langle\theta, \theta^{\prime}\right\rangle$ is the morphism $\left(\theta, \theta^{\prime}\right)$. Projections are restrictions:

$$
\begin{aligned}
& \Gamma \times \Gamma^{\prime} \xrightarrow{\pi_{1} \hat{=}\left\{x_{1}:=x_{1}, \ldots, x_{n}:=x_{n}\right\}} \longrightarrow \Gamma \\
& \Gamma \times \Gamma^{\prime} \xrightarrow{\pi_{2} \hat{=}\left\{x_{1}^{\prime}:=x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}:=x_{n^{\prime}}^{\prime}\right\}} \longrightarrow \Gamma^{\prime}
\end{aligned}
$$

Given that $\Gamma=x_{1}: F_{1}, \ldots, x_{n}: F_{n}$ and $\Gamma^{\prime}=x_{1}^{\prime}: F_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}: F_{n^{\prime}}^{\prime}$, the internal hom object $\operatorname{Hom}_{\mathcal{S}_{4 \Sigma}}\left(\Gamma, \Gamma^{\prime}\right)$ is the context $z_{1}: F_{1} \supset \ldots \supset F_{n} \supset F_{1}^{\prime}, \ldots, z_{n^{\prime}}$:
$F_{1} \supset \ldots \supset F_{n} \supset F_{n^{\prime}}^{\prime}$. Application $\operatorname{Hom}_{\mathcal{S}_{4 \Sigma}}\left(\Gamma, \Gamma^{\prime}\right) \times \Gamma \xrightarrow{A p p} \Gamma^{\prime}$ is built from syntactic application, as $\left\{x_{1}^{\prime}:=z_{1} x_{1} \ldots x_{n}, \ldots, x_{n^{\prime}}^{\prime}:=z_{n^{\prime}} x_{1} \ldots x_{n}\right\}$, while abstraction is built from λ-abstraction as follows. For every $\Theta \times \Gamma \xrightarrow{\theta} \Gamma^{\prime}$, where Γ and Γ^{\prime} are as above, and $\Theta \hat{=} y_{1}: G_{1}, \ldots, y_{m}: G_{m}$,

$$
\begin{aligned}
& \\
& \begin{array}{l}
\left\{\begin{array}{l}
\\
z_{1}:=\lambda x_{1}, \ldots, x_{n} \cdot x_{1}^{\prime} \theta, \\
\\
\\
\left.z_{n^{\prime}}:=\lambda x_{1}, \ldots, x_{n} \cdot x_{n^{\prime}}^{\prime} \theta \quad\right\}
\end{array}\right. \\
\operatorname{Hom}_{\mathcal{S}_{4 \Sigma}}\left(\Gamma, \Gamma^{\prime}\right)
\end{array}
\end{aligned}
$$

This only uses the non-modal part of S4, and in particular only the computation rules (β) and (η).

The strict monoidal comonad $(\square, \mathbf{d}, \mathbf{s})$ on $\mathcal{S}_{4 \Sigma}$ is defined using the $\mathrm{S} 4 \square$ modality: on objects, $\square\left(x_{1}: F_{1}, \ldots, x_{n}: F_{n}\right)$ is defined as $x_{1}: \square F_{1}, \ldots, x_{n}: \square F_{n}$; on morphisms, for any θ as given in Definition 56, $\square \theta$ is:

$$
\square \Gamma \xrightarrow{\square \theta \hat{=}\left\{y_{1}:=\square M_{1}, \ldots, y_{m}:=\square M_{m}\right\}} \square \Theta
$$

where $\square M$ is $M\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\}$ for any M such that $\Gamma \vdash M: G$ is derivable. The counit \mathbf{d} is:

$$
\square \Gamma \xrightarrow{\mathbf{d} \hat{=}\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\}} \Gamma
$$

while comultiplication is:

$$
\square \Gamma \xrightarrow{\mathrm{s} \hat{=}\left\{x_{1}:=s x_{1}, \ldots, x_{n}:=s x_{n}\right\}} \square^{2} \Gamma
$$

Recall that $s M$ is $x \cdot\{x:=M\}$.
It trivially follows:

Proposition 57 (Existential Completeness). Let ρ map every base type $A \in \Sigma$ to the context z:A. If there is a morphism from $\mathcal{S}_{4 \Sigma} \llbracket \Gamma \rrbracket \rho$ to $\mathcal{S}_{4 \Sigma} \llbracket F \rrbracket \rho$ in $\mathcal{S}_{4 \Sigma}$ then F is provable from Γ, i.e., there is a $\lambda_{\mathrm{S} 4}$-term M such that $\Gamma \vdash M: F$ is derivable.

Proposition 58 (Evaluation Functor). For every strict CS4 category \mathcal{C}, and every $\rho: \Sigma \rightarrow \mathcal{C}, \mathcal{C} \llbracket \rrbracket \rho$ extends ρ to a representation of strict CS4 categories $\mathcal{S}_{4 \Sigma}$ to \mathcal{C}.

Proof. For every morphism

$$
\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n} \xrightarrow{\theta \hat{=}\left\{y_{1}:=M_{1}, \ldots, y_{m}:=M_{m}\right\}} y_{1}: G_{1}, \ldots, y_{m}: G_{m}
$$

define $\mathcal{C} \llbracket \theta \rrbracket \rho$ as $\left\langle\mathcal{C} \llbracket \Gamma \vdash M_{1}: G_{1} \rrbracket \rho, \ldots, \mathcal{C} \llbracket \Gamma \vdash M_{m}: G_{m} \rrbracket \rho\right\rangle$. This is functorial: indeed $\mathcal{C} \llbracket \mathrm{id}_{\Gamma} \rrbracket \rho=\left\langle\pi_{2} \circ \pi_{1}^{m-1}, \ldots, \pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle=\mathrm{id}$, and $\mathcal{C} \llbracket-\rrbracket \rho$ preserves composition by (18). This preserves cartesian products by construction.

This preserves \square. Indeed,

$$
\begin{aligned}
& \mathcal{C} \llbracket \square \Gamma \vdash \square M: \square F \rrbracket \rho \\
= & \mathcal{C} \llbracket \square \Gamma \vdash M\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\} \\
= & \square \mathcal{C} \llbracket \Gamma \vdash M\{F \rrbracket \rho \\
& \circ \mathbf{S} \circ\left\langle\pi_{2} \circ \pi_{1}^{m-1}, \ldots, \pi_{2} \circ \pi_{1}, \mathbf{s} \circ \pi_{2}\right\rangle \\
= & \square \mathcal{C} \llbracket \Gamma \vdash M\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\}: F \rrbracket \rho \circ \mathbf{s} \\
= & \square\left(\mathcal{C} \llbracket \Gamma \vdash M: F \rrbracket \rho \circ\left\langle\mathbf{d} \circ \pi_{2} \circ \pi_{1}^{m-1}, \ldots, \mathbf{d} \circ \pi_{2} \circ \pi_{1}, \mathbf{d} \circ \pi_{2}\right\rangle\right) \circ \mathbf{s} \\
= & \square(\mathcal{C} \llbracket \Gamma \vdash M: F \rrbracket \rho \circ \mathbf{d}) \circ \mathbf{s} \\
= & \square \mathcal{C} \llbracket \Gamma \vdash M: F \rrbracket \rho \circ \square \mathbf{d} \circ \mathbf{s}=\square \mathcal{C} \llbracket \Gamma \vdash M: F \rrbracket \rho \quad(\text { by }(\mathrm{t}))
\end{aligned}
$$

So:

$$
\begin{aligned}
\mathcal{C} \llbracket \square \theta \rrbracket \rho & =\left\langle\mathcal{C} \llbracket \square \Gamma \vdash \square M_{1}: \square G_{1} \rrbracket \rho, \ldots, \mathcal{C} \llbracket \square \Gamma \vdash \square M_{m} \rrbracket \rho\right\rangle \\
& =\left\langle\square \mathcal{C} \llbracket \Gamma \vdash M_{1}: G_{1} \rrbracket \rho, \ldots, \square \mathcal{C} \llbracket \Gamma \vdash M_{m}: G_{m} \rrbracket \rho\right\rangle \\
& =\square \mathcal{C} \llbracket \theta \rrbracket \rho \quad(\mathrm{by}(\mathrm{w}))
\end{aligned}
$$

$\mathcal{C} \llbracket \rrbracket \rho$ preserves \mathbf{d} :

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{d} \rrbracket \rho & =\left\langle\mathcal{C} \llbracket \square \Gamma \vdash d x_{1}: F_{1} \rrbracket \rho, \ldots, \mathcal{C} \llbracket \square \Gamma \vdash d x_{n}: F_{n} \rrbracket \rho\right\rangle \\
& =\left\langle\mathbf{d} \circ \pi_{2} \circ \pi_{1}^{n-1}, \ldots, \mathbf{d} \circ \pi_{2} \circ \pi_{1}, \mathbf{d} \circ \pi_{2}\right\rangle \\
& =\mathbf{d} \circ\left\langle\pi_{2} \circ \pi_{1}^{n-1}, \ldots, \pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle=\mathbf{d}
\end{aligned}
$$

$\mathcal{C} \llbracket-\rrbracket \rho$ preserves s. Indeed,

$$
\begin{aligned}
\mathcal{C} \llbracket \Gamma \vdash s M: \square^{2} F \rrbracket \rho & =\mathcal{C} \llbracket \Gamma \vdash \boxed{x} \cdot\{x:=M\}: \square^{2} F \rrbracket \rho \\
& =\square \mathcal{C} \llbracket x: \square F \vdash x: \square F \rrbracket \rho \circ \mathbf{s} \circ \mathcal{C} \llbracket \Gamma \vdash M: \square F \rrbracket \rho \\
& =\square \mathrm{id} \circ \mathbf{s} \circ \mathcal{C} \llbracket \Gamma \vdash M: \square F \rrbracket \rho \\
& =\mathbf{s} \circ \mathcal{C} \llbracket \Gamma \vdash M: \square F \rrbracket \rho
\end{aligned}
$$

So:

$$
\begin{aligned}
\mathcal{C} \llbracket \mathbf{s} \rrbracket \rho & =\left\langle\mathbf{s} \circ \pi_{2} \circ \pi_{1}^{n-1}, \ldots, \mathbf{s} \circ \pi_{2} \circ \pi_{1}, \mathbf{s} \circ \pi_{2}\right\rangle \\
& =\mathbf{s} \circ\left\langle\pi_{2} \circ \pi_{1}^{n-1}, \ldots, \pi_{2} \circ \pi_{1}, \pi_{2}\right\rangle=\mathbf{s}
\end{aligned}
$$

The functor $\mathcal{C} \llbracket \llbracket \rho$ also preserves internal homs, application $A p p$ and abstraction Λ. This is standard, tedious and uninstructive, hence omitted.

Proposition 59 (Free Strict CS4 Category). $\mathcal{S}_{4 \Sigma}$ is the free strict CS4 category on Σ.

More precisely, for every set Σ of base types, seen as a discrete category, let \subseteq denote the natural inclusion functor of Σ into $\mathcal{S}_{4 \Sigma}$. Then for every strict CS4 category \mathcal{C}, for every functor $\rho: \Sigma \rightarrow \mathcal{C}$, there is a unique functor Φ that makes the
following diagram commute:

Furthermore, Φ is exactly the $\mathcal{C} \llbracket \rrbracket \rho$ functor as defined in Figure 8.
Proof. Uniqueness: assume Φ exists, we shall show that it is uniquely determined. On objects, Φ must map every formula F to $\mathcal{C} \llbracket F \rrbracket \rho$, and in general every context Γ to $\mathcal{C} \llbracket \Gamma \rrbracket \rho$. On morphisms, since Φ must preserve products, Φ is uniquely determined by the images of morphisms in $\mathcal{S}_{4 \Sigma}$ of the form

$$
\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n} \xrightarrow{\left\{y_{1}:=M_{1}, \ldots, y_{m}:=M_{m}\right\}} \Theta \hat{=} y_{1}: G_{1}, \ldots, y_{m}: G_{m}
$$

with $m=1$. In this case, equate the morphism with the judgment $\Gamma \vdash M_{1}: G_{1}$. Then Φ is uniquely determined by its values on typed $\lambda_{\text {S4 }}$-terms. (For readability, we make an abuse of language by equating terms with their typing derivations.)

Since Φ must preserve \square and s, we must have:

$$
\begin{aligned}
\Phi\left(\begin{array}{|c|c|}
M\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\}
\end{array}\right) & =\square \Phi(M) \\
\Phi(\boxed{x} \cdot\{x:=M\}) & =\mathbf{s} \circ \Phi(M)
\end{aligned}
$$

Since, using (\square), (d), and possibly (gc):

$$
\begin{aligned}
& \boxed{M} \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\} \\
& \approx\left(\boxed{M\left\{x_{1}:=d x_{1}, \ldots, x_{n}:=d x_{n}\right\}}\right)\left\{x_{1}:=y_{1} \cdot\left\{y_{1}:=N_{1}\right\}, \ldots,\right. \\
&\left.x_{n}:=y_{n} \cdot\left\{y_{n}:=N_{n}\right\}\right\}
\end{aligned}
$$

it follows that:

$$
\Phi\left(\boxed{M} \cdot\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}\right)=\square \Phi(M) \circ \mathbf{s} \circ\left\langle\Phi\left(N_{1}\right), \ldots, \Phi\left(N_{n}\right)\right\rangle
$$

Similarly, since Φ must preserve d, we must have $\Phi(d M)=\mathbf{d} \circ \Phi(M)$. We recognize the clauses for $\mathcal{C} \llbracket-\rrbracket \rho$ for boxes and d terms given in Figure 8. The case of internal homs, application and abstraction are equally easy and standard, whence Φ must be $\mathcal{C} \llbracket \rrbracket \rho$.

Existence: taking $\Phi \hat{=} \mathcal{C} \llbracket-\rrbracket \rho$, this is by Lemma 55 and Proposition 58.
Corollary 60. Let \subseteq denote the canonical inclusion $\Sigma \subseteq \mathcal{S}_{4 \Sigma}$, mapping each base type A to A, seen as a formula. Then $\mathcal{S}_{4 \Sigma} \llbracket \Gamma \vdash M: F \rrbracket(\subseteq) \approx M$.
Proof. Apply Proposition 59 with $\mathcal{C} \hat{=} \mathcal{S}_{4 \Sigma}, \rho \hat{=}(\subseteq)$.
Corollary 60 immediately implies:
Proposition 61 (Equational Completeness). Let M, N be two $\lambda_{\text {S4 }}$-terms such that $\Gamma \vdash M: F$ and $\Gamma \vdash N: F$ are derivable.

If $\mathcal{S}_{4 \Sigma} \llbracket \Gamma \vdash M: F \rrbracket(\subseteq)=\mathcal{S}_{4 \Sigma} \llbracket \Gamma \vdash N: F \rrbracket(\subseteq)$, then $M \approx N$.

While $\mathcal{S}_{4 \Sigma}$ is characterized as the free strict CS4 category, we end this section by elucidating the construction of the augmented simplicial set $\mathcal{S}_{4}[F]$ of Definition 42 from a categorical point of view. First, we note:

Lemma 62. There is a functor $\mathcal{S}_{4}[-]$ mapping every formula F to $\mathcal{S}_{4}[F]$, and more generally every context $\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n}$ to $\mathcal{S}_{4}[\Gamma] \hat{=} \mathcal{S}_{4}\left[F_{1}\right] \times \ldots \times \mathcal{S}_{4}\left[F_{n}\right]$, and every morphism

$$
\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n} \xrightarrow{\theta \hat{=}\left\{y_{1}:=M_{1}, \ldots, y_{m}:=M_{m}\right\}} \Theta \hat{=} y_{1}: G_{1}, \ldots, y_{m}: G_{m}
$$

to the morphism $\mathcal{S}_{4}[\theta]$ in $\widehat{\Delta}$ which, as an augmented simplicial map, sends $\left(N_{1}, \ldots\right.$, $\left.N_{n}\right) \in \mathcal{S}_{4}[\Gamma]_{q}$ to $\left(\square^{q+1} M_{1} \varphi, \ldots, \square^{q+1} M_{m} \varphi\right)$, where $\varphi \hat{=}\left\{x_{1}:=N_{1}, \ldots, x_{n}:=N_{n}\right\}$.

Moreover, $\mathcal{S}_{4}[]$ is faithful, preserves all finite products and the given comonads in the source and target categories.

Proof. That it is a functor follows from equations (n) and (o). It clearly preserves all finite products and maps the syntactic comonad ($\square, \mathbf{d}, \mathbf{s}$) to the décalage comonad, as an easy check shows. Finally, it is faithful: in the definition of $\mathcal{S}_{4}[\theta]$ above, we retrieve θ uniquely from $\mathcal{S}_{4}[\theta]$ by looking at the image of the tuple $\left(x_{1}, \ldots, x_{n}\right)$ by $\mathcal{S}_{4}[\theta]_{-1}$.

We can give an even more abstract description of $\mathcal{S}_{4}[-]$ as follows, which is essentially a way of generalizing the familiar hom-set functor $\operatorname{Hom}_{\mathcal{C}}\left(-,{ }_{-}\right)$to the augmented simplicial case. In this way, we shall see that it is related to the standard resolution of any comonad ([33], VII, 6):

Definition 63 (Resolution Functor Res). Let $(\mathcal{C}, \square, \mathbf{d}, \mathbf{s})$ be any strict CS4 category. There is a resolution functor $\operatorname{Res}_{\mathcal{C}}: \mathcal{C}^{o} \times \mathcal{C} \rightarrow \widehat{\Delta}$ which maps every pair A, B of objects in \mathcal{C} to the augmented simplicial set $\left(\left(\operatorname{Hom}_{\mathcal{C}}\left(A, \square^{q+1} B\right)\right)_{q \geqslant-1}, \partial_{q}^{i} \hat{=}\left(\square^{i} \mathbf{d} \circ\right.\right.$ $\left.{ }_{-}\right), s_{q}^{i} \hat{=}\left(\square^{i} \mathbf{s} \circ{ }_{-}\right)$), and every pair of morphisms $A^{\prime} \xrightarrow{f} A, B \xrightarrow{g} B^{\prime}$ to the a.s. map $\operatorname{Res}_{\mathcal{C}}(f, g)$ given in dimension $q \geqslant-1$ by $\operatorname{Res}_{\mathcal{C}}(f, g)_{q}(a) \hat{=} \square^{q+1} g \circ a \circ f$ for every $a \in \operatorname{Hom}_{\mathcal{C}}\left(A, \square^{q+1} B\right)$.

For instance, $\operatorname{Res}_{\mathcal{S}_{4 \Sigma}}(\mathbf{1}, F)$ is the augmented simplicial set of ground $\lambda_{S 4}$-terms of type $\square^{q+1} F, q \geqslant-1$. (A term is ground provided it has no free variable.) However we have seen in Lemma 45 that this would not be enough for our purposes. The minimal augmented simplicial set that seems to work is as follows:

Definition 64 (Contracting Resolution Functor CRes). Let ($\mathcal{C}, \square, \mathbf{d}, \mathbf{s}$) be a small strict CS4 category. Then the contracting resolution functor CResc $: \mathcal{C} \rightarrow \widehat{\Delta}$ is the colimit $\underset{\longrightarrow}{\operatorname{Lim}}\left(\Lambda\left(\operatorname{Res}_{\mathcal{C}}\right) \circ \square\right)$ in the category $\operatorname{Hom}_{\operatorname{Cat}}(\mathcal{C}, \widehat{\Delta})$ of functors from \mathcal{C} to $\widehat{\Delta}$.

This definition makes sense, provided we take Λ as meaning abstraction in Cat: while $\operatorname{CRes}_{\mathcal{C}}$ is a functor from $\mathcal{C}^{o} \times \mathcal{C}$ to $\widehat{\Delta}, \Lambda\left(\operatorname{CRes}_{\mathcal{C}}\right)$ is a functor from \mathcal{C}^{o} to $\operatorname{Hom}_{\text {Cat }}(\mathcal{C}, \widehat{\Delta})$; since \square is an endofunctor in \mathcal{C}, it also defines an endofunctor in \mathcal{C}^{o}. Finally, the indicated colimit exists because $\operatorname{Hom}_{\text {Cat }}(\mathcal{C}, \widehat{\Delta})=\operatorname{Hom}_{\text {Cat }}(\mathcal{C}$, $\left.\operatorname{Hom}_{\text {Cat }}\left(\Delta^{o}, \operatorname{Set}\right)\right) \cong \operatorname{Hom}_{\text {Cat }}\left(\mathcal{C} \times \Delta^{o}\right.$, Set $)$ is a category of presheaves, hence a
topos, hence is small cocomplete; and \mathcal{C}, therefore also \mathcal{C}° is small. So the colimit indeed exists.

Geometrically, the idea is that instead of taking resolutions from a one-point space $\mathbf{1}$ (as in $\operatorname{Res}_{\mathcal{C}}(\mathbf{1},-)$), we take all resolutions from enough spaces with a contracting homotopy, properly amalgamated. Recall that a contracting homotopy on an augmented simplicial set $K \hat{=}\left(K_{q}\right)_{q \geqslant-1}$ is an a.s. map from K to $\square K$ that is a right inverse to \mathbf{d} in $\widehat{\Delta}$. More concretely, this is a family of maps $s_{q}^{-1}: K_{q} \rightarrow K_{q+1}$, $q \geqslant-1$, such that $s_{q+1}^{-1} \circ s_{q}^{j}=s_{q+1}^{j+1} \circ s_{q}^{-1}$ and $s_{q-1}^{-1} \circ \partial_{q}^{j}=\partial_{q+1}^{j+1} \circ s_{q}^{-1}$, for all $0 \leqslant j \leqslant q$, and $\partial_{q+1}^{0} \circ s_{q}^{-1}=\mathrm{id}$. (This is exactly what is needed to build the more standard notion of contracting homotopy in simplicial homology.) Then a trivial way of ensuring that $\operatorname{Res}_{\mathcal{C}}(A, B)$ has a contracting homotopy is to take A of the form $\square A^{\prime}$: indeed, for any $f \in \operatorname{Res} \mathcal{C}\left(\square A^{\prime}, B\right)_{q}=\operatorname{Hom}_{\mathcal{C}}\left(\square A^{\prime}, \square^{q+1} B\right)$, we may then define $s_{q}^{-1}(f)$ as $\square f \circ \mathbf{s}$.

Proof-theoretically, when \mathcal{C} is $\mathcal{S}_{4 \Sigma}, s_{q}^{-1}(M)$ is the term M. This is the manifestation of the $(\square I)$ rule. At the level of programs, this is Lisp's quote operator.

Proposition 65. For every context Θ, the a.s. set $\mathcal{S}_{4}[\Theta]$ is exactly $\operatorname{CRes}_{\mathcal{S}_{4 \Sigma}}(\Theta)$.
Proof. We deal with the case where Θ is of the form $z: F$ for a single formula F, for readability purposes. The general case is similar.

Colimits in functor categories are taken pointwise, so $\operatorname{CRes}_{\mathcal{S}_{4 \Sigma}}(F)$ is the colimit of the functor that maps every context Γ to the a.s. set $\operatorname{Res}_{\mathcal{S}_{4 \Sigma}}(\square \Gamma, F)$ of all $\lambda_{\mathrm{S}_{4}}$-terms M such that $\square \Gamma \vdash M: \square^{q+1} F$, modulo \approx. On the one hand, $\mathcal{S}_{4}[F]$ is the apex of a cocone consisting of morphisms $\operatorname{Res}_{\mathcal{S}_{4 \Sigma}}(\square \Gamma, F) \longrightarrow \mathcal{S}_{4}[F]$ that map each typing derivation of $\square \Gamma \vdash M: \square^{q+1} F$ to the term M itself. On the other hand, we claim that $\mathcal{S}_{4}[F]$ is universal among all such apexes. Let indeed K be any a.s. set such that there are morphisms $\operatorname{Res}_{\mathcal{S}_{\mathscr{~}}}(\square \Gamma, F) \xrightarrow{f_{\Gamma}} K$, where Γ ranges over contexts; and such that these morphisms define a cocone: whenever $\Gamma \xrightarrow{\theta} \Gamma^{\prime}$ is a morphism in $\mathcal{S}_{4 \Sigma}$, for every $q \geqslant-1,\left(\square \Gamma^{\prime} \xrightarrow{M} F\right) \in \operatorname{Res}_{\mathcal{S}_{4 \Sigma}}\left(\square \Gamma^{\prime}, F\right)_{q}, f_{\Gamma^{\prime}}\left(\square \Gamma^{\prime} \xrightarrow{M} F\right)=f_{\Gamma}\left(\square \Gamma^{M \cdot \square \theta} F\right)$. Taking for θ all substitutions mapping variables to variables, and noticing that for any variable $x, \square x=\boxed{d x} \approx x$, it follows that f_{Γ} depends only on M, not on $\square \Gamma^{\prime} \xrightarrow{M} F$: this defines the unique morphism from $\mathcal{S}_{4}[F]$ to K. Therefore $\mathcal{S}_{4}[F]$ is a colimit of the desired functor. By the uniqueness of colimits (up to isomorphism), the result obtains.

5.3. A Review of Logical Relations

While the $\mathcal{C} \llbracket-\rrbracket$ interpretation is complete when we are allowed to take $\mathcal{S}_{4 \Sigma}$ for \mathcal{C}, we are interested in taking more geometrical categories for \mathcal{C}, in particular $\widehat{\Delta}$ or CGHaus.

Let us first review the standard way of proving Friedman's Theorem 48 ([37], Chapter 8) using logical relations. We shall then discuss why this proof cannot be replayed directly in our case, and do appropriate modifications.

Friedman's result is for the non-modal part of $\lambda_{\mathrm{S} 4}$, the λ-calculus with $\beta \eta$ equality, interpreted in Set. Let us spell out the relevant part of the interpretation of Figure 8 in detail. Given a map from base types $A \in \Sigma$ to sets $\rho(A)$,
let Set $\llbracket F \supset G \rrbracket \rho$ be the set of all functions from Set $\llbracket F \rrbracket \rho$ to Set $\llbracket G \rrbracket \rho$. Then Set $\llbracket \Gamma \rrbracket \rho$, where $\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n}$, is a mapping from each variable x_{i} to Set $\llbracket F_{i} \rrbracket \rho$: this is a Γ-environment ε. The interpretation in Set then maps every typing derivation of a λ-term M of type F in Γ, and every Γ-environment ε to an element Set $\llbracket \Gamma \vdash M: F \rrbracket \rho \varepsilon$ (for short, $\boldsymbol{\operatorname { S e t }} \llbracket M \rrbracket \rho \varepsilon$) of $\boldsymbol{\operatorname { S e t }} \llbracket F \rrbracket \rho$: Set $\llbracket x \rrbracket \rho \varepsilon$ is $\varepsilon(x)$, Set $\llbracket M N \rrbracket \rho \varepsilon$ is Set $\llbracket M \rrbracket \rho \varepsilon$ applied to Set $\llbracket N \rrbracket \rho \varepsilon$, and $\boldsymbol{S e t} \llbracket \Gamma \vdash \lambda x \cdot M: F \supset G \rrbracket \rho \varepsilon$ is the function that maps each $v \in \boldsymbol{\operatorname { S e t }} \llbracket F \rrbracket \rho$ to $\boldsymbol{\operatorname { S e t }} \llbracket M \rrbracket \rho(\varepsilon[x \mapsto v])$.

Let $\operatorname{Set}[F]$ be defined as the set of all λ-terms of type F, modulo $\beta \eta$-conversion. We get an interpretation of λ-terms in the free CCC over Σ by mapping every term M to $\operatorname{Set}[M] \theta \hat{=} M \theta$, where the Γ-environment θ is just a substitution.

A logical relation is a family of binary relations R^{F} indexed by formulae F, between $\operatorname{Set}[F]$ and $\operatorname{Set} \llbracket F \rrbracket \rho$, such that $M R^{F \supset G} f$ if and only if $M N R^{G} f(a)$ for every M and a such that $N R^{F} a$. (In general, logical relations are relations indexed by types between Henkin models, or between CCCs. We specialize the notion to our problem at hand.) The fundamental lemma of logical relations (the Basic Lemma of $[\mathbf{3 7}])$ states that, when ε is a Γ-environment $\left(\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n}\right)$ and θ a substitution mapping each x_{i} to a term of type F_{i}, whenever $x_{i} \theta R^{F_{i}} \varepsilon\left(x_{i}\right)$ for each i, then $\boldsymbol{\operatorname { S e t }}[M] \theta R^{F} \operatorname{Set} \llbracket M \rrbracket \rho \varepsilon$ for any term M of type F in Γ. In other words, as soon as environments are related through the logical relation, then so are the values of any term in both models.

To show that Set $\llbracket \rrbracket \rrbracket \rho$ is equationally complete, it is enough to show that we can build a functional logical relation, i.e., one such that for every $a \in \operatorname{Set} \llbracket F \rrbracket \rho$, there is at most one $M \in \operatorname{Set}[F]$ (up to \approx) such that $M R^{F} a$. Note that any logical relation is uniquely determined by the relations R^{A} with $A \in \Sigma$. The trick is to choose R^{A} so that not only R^{A} but every R^{F} is functional. It turns out that asking that R^{F} be functional only does not carry through, and we must require R^{F} to be functional and onto: for every $M \in \boldsymbol{\operatorname { S e t }}[F]$, there must be at least one $a \in \boldsymbol{\operatorname { S e t }} \llbracket F \rrbracket \rho$ such that $M R^{F} a$. Under these assumptions, $R^{F \supset G}$ is then functional and onto as soon as R^{F} and R^{G} are. First, it is functional: choose $f \in \operatorname{Set} \llbracket F \supset G \rrbracket \rho$, a function from Set $\llbracket F \rrbracket \rho$ to Set $\llbracket G \rrbracket \rho$, then every term M such that $M R^{F \supset G} f$ must be such that for every $N R^{\vec{F}} a, M N R^{G} f(a)$. Using the Axiom of Choice and the fact that R^{F} is onto, we may define a function $i_{F}: \operatorname{Set}[F] \rightarrow \boldsymbol{\operatorname { S e t }} \llbracket F \rrbracket \rho$ such that $N R^{F} i_{F}(N)$. Then M must be such that for every $N, M N R^{G} f\left(i_{F}(N)\right)$. Since R^{G} is functional, we may define a projection $p_{G}: \boldsymbol{\operatorname { S e t }} \llbracket F \rrbracket \rho \rightarrow \boldsymbol{\operatorname { S e t }}[F]$ such that $P R^{G} a$ implies $P=p_{G}(a)$ (when there is no P such that $P R^{G} a, p_{G}(a)$ is arbitrary). So M must be such that for every $N, M N=p_{G}\left(f\left(i_{F}(N)\right)\right)$. This determines $M N$ uniquely, hence M too, provided it exists. So $R^{F \supset G}$ is functional. To show that it is onto, $\operatorname{map} M \in \operatorname{Set}[F \supset G]$ to the function $f \in \operatorname{Set} \llbracket F \supset G \rrbracket \rho$ mapping a to $i_{G}\left(M p_{F}(a)\right)$.

This is essentially the line of proof that we shall follow. However, in our case Set is replaced by $\widehat{\Delta}$, where the Axiom of Choice is invalid: if $p: K \rightarrow L$ is an epi in $\widehat{\Delta}$, there is no a.s. map $i: L \rightarrow K$ in general such that $p \circ i=\mathrm{id}$. The same happens in CGHaus (although the Axiom of Choice allows us to pick a function i that is left-inverse to p, there may be no such continuous left-inverse). Therefore we have to build i_{F} and p_{F} explicitly by induction on formulae. The important
property that needs to be preserved for each formula F is what we shall call the Bounding Lemma: if $a=i_{F}(M)$ then $M R^{F} a$, and if $M R^{F} a$ then $M=p_{F}(a)$. Retracing the argument above, we find that this requires us to define $i_{F \supset G}(M)$ as the function mapping a to $i_{G}\left(M p_{F}(a)\right)$, however the obvious definition for $p_{F \supset G}: p_{F \supset G}(f) \hat{=} \lambda x \cdot p_{G}\left(f\left(i_{F}(x)\right)\right)$ is wrong. This is because this is incompatible with α-renaming in general, and therefore does not map functions to \approx-classes of λ terms. Indeed, compatibility with α-renaming imposes that $\lambda x \cdot p_{G}\left(f\left(i_{F}(x)\right)\right)=\lambda y$. $p_{G}\left(f\left(i_{F}(x)\right)\right)\{x:=y\}$, but there is no reason why $p_{G} \circ f \circ i_{F}$ should be substitutive. The solution is to define $p_{F \supset G}$ by $p_{F \supset G}(f) \hat{=} \mathfrak{R}_{F \supset G}\left(N \mapsto p_{G}\left(f\left(i_{F}(N)\right)\right)\right)$, where $\mathfrak{R}_{F \supset G}$ is a retraction of the set of functions from $\operatorname{Set}[F]$ to $\operatorname{Set}[G]$ onto the syntactic function space $\operatorname{Set}[F \supset G]$-retraction meaning that $\mathfrak{R}_{F \supset G}(N \mapsto M N)$ should be the term M exactly. This is exactly what we have taken the pain of constructing in the augmented simplicial case in Corollary 47.

One final note before we embark on actually proving the theorem. The right notion of logical relation here is one of Kripke logical relation, a more complex notion than ordinary logical relations. Moreover, contrarily to more usual cases, the set of worlds we use for this Kripke logical relation cannot just be a preorder: it has to be a category, in fact the augmented simplicial category Δ. Concretely, we have to use families of relations R_{q}^{F} indexed by both formulae F and dimensions $q \geqslant-1$, such that:
(a.s.) for every a, a^{\prime}, if $a R_{q}^{F} a^{\prime}$ then, for every $i, 0 \leqslant i \leqslant q, \partial_{q}^{i} a R_{q-1}^{F} \partial_{q}^{i} a^{\prime}$ and $s_{q}^{i} a R_{q+1}^{F} s_{q}^{i} a^{\prime} ;$
logical) for every $a, a^{\prime}, a R_{q}^{\square F} a^{\prime}$ if and only if $a R_{q+1}^{F} a^{\prime}$.
(\supset logical) for every $f, f^{\prime}, f R_{q}^{F \supset G} f^{\prime}$ if and only if for every monotonic function $\mu:[p] \rightarrow[q]$, for every a, a^{\prime} such that $a R_{p}^{F} a^{\prime}$,

$$
\square^{p+1} \operatorname{App}(\hat{\mu}(f), a) R_{p}^{G} \square^{p+1} \operatorname{App}\left(\hat{\mu}\left(f^{\prime}\right), a^{\prime}\right)
$$

where $\hat{\mu}$ is defined in the unique way so that $\widehat{\delta_{q}^{i}}=\partial_{q}^{i}, \widehat{\sigma_{q}^{i}}=s_{q}^{i}, \widehat{\mathrm{id}}=\mathrm{id}$, and $\widehat{\mu \circ \mu^{\prime}}=\widehat{\mu^{\prime}} \circ \widehat{\mu}$.
The latter condition is particularly unwieldy. We prefer to use a more categorical notion, which will factor out all irrelevant details. It turns out that logical relations and Kripke logical relations are special cases of subscones $[\mathbf{3 8}, \mathbf{1}]$: these are the right notion here.

5.4. Subscones

Given any two categories \mathcal{C} and \mathcal{D} having all finite cartesian products, and such that \mathcal{D} has all pullbacks, given any functor $\mathfrak{F}: \mathcal{C} \rightarrow \mathcal{D}$ that preserves all finite cartesian products, the subscone $\mathcal{D}\lceil\mathfrak{F}[\mathbf{3 8}]$ has as objects all triples (d, c, m) where d is an object of \mathcal{D}, c is an object of \mathcal{C}, and

$$
d \subset \stackrel{m}{\longrightarrow} \mathfrak{F}(c)
$$

is monic in \mathcal{D}. If we did not insist on such morphisms being monic, we would get the scone $\mathcal{D} \downarrow \mathfrak{F}$, a special comma category.

Let \mathcal{C} be any strict CS4 category. Given any set Σ of base types, and a mapping that assigns each base type an object in \mathcal{C} (this can be seen as a functor from Σ, seen as the trivial category with elements of Σ as objects and only identity morphisms):

$$
\Sigma \xrightarrow{\rho} \mathcal{C}
$$

there is a unique representation of strict CS4 categories $\mathcal{C} \llbracket \rrbracket \rho$ from the free strict CS4 category $\mathcal{S}_{4 \Sigma}$ on Σ to \mathcal{C} :

where \subseteq denotes the canonical inclusion functor from Σ to \mathcal{S}_{4}.
If, in the diagram above, we replace \mathcal{C} by a subscone category $\mathcal{D} \curvearrowleft \mathfrak{F}$, we get a diagram:

for each given $\tilde{\rho}$, and where $(\mathcal{D} £ \mathfrak{F}) \llbracket-\rrbracket \tilde{\rho}$ is uniquely determined as a representation of strict CS4 categories: this will be the right notion of Kripke logical relation.

It is well-known ([38], Proposition 4.2) that, provided that \mathcal{C} and \mathcal{D} are cartesianclosed, and \mathcal{D} has equalizers (i.e., \mathcal{D} is finitely complete), and provided \mathfrak{F} preserves finite products, then $\mathcal{D} £ \mathfrak{F}$ is a CCC, and the forgetful functor $U: \mathcal{D} £ \mathfrak{F} \longrightarrow \mathcal{C}$, which maps every object (d, c, m) to c, is a representation of CCCs. We make explicit the construction of terminal objects, products and internal homs in $\mathcal{D} f \mathfrak{F}$:
5.4.0.1. Terminal object. This is $\left(\mathbf{1}_{\mathcal{D}}, \mathbf{1}_{\mathcal{C}}, \mathrm{id}\right)$.
5.4.0.2. Binary products. The product of (d, c, m) with $\left(d^{\prime}, c^{\prime}, m^{\prime}\right)$ is $\left(d \times d^{\prime}, c \times\right.$ $\left.c^{\prime}, m \times m^{\prime}\right)$.
5.4.0.3. Internal homs. We build $\left(d^{\prime \prime}, c^{\prime \prime}, m^{\prime \prime}\right)=\operatorname{Hom}_{\mathcal{D}\lceil\mathfrak{F}}\left((d, c, m),\left(d^{\prime}, c^{\prime}, m^{\prime}\right)\right)$ as follows. First, $c^{\prime \prime} \hat{=} \operatorname{Hom}_{\mathcal{C}}\left(c, c^{\prime}\right)$.

Then, we build two morphisms. We build the first one from:
$\mathfrak{F}\left(\operatorname{Hom}_{\mathcal{C}}\left(c, c^{\prime}\right)\right) \times d \xrightarrow{\text { id } \times m} \mathfrak{F}\left(\operatorname{Hom}_{\mathcal{C}}\left(c, c^{\prime}\right)\right) \times \mathfrak{F}(c) \xrightarrow{\mathfrak{F}(A p p)} \mathfrak{F}\left(c^{\prime}\right)$
by currying, getting:

$$
\begin{equation*}
\mathfrak{F}\left(\operatorname{Hom}_{\mathcal{C}}\left(c, c^{\prime}\right)\right) \xrightarrow{\Lambda(\mathfrak{F}(A p p) \circ(\operatorname{id} \times m))} \longrightarrow \operatorname{Hom}_{\mathcal{D}}\left(d, \mathfrak{F}\left(c^{\prime}\right)\right) \tag{20}
\end{equation*}
$$

The second one is built from:

$$
\operatorname{Hom}_{\mathcal{D}}\left(d, d^{\prime}\right) \times d \xrightarrow{A p p} d^{\prime} \stackrel{m^{\prime}}{\longrightarrow} \mathfrak{F}\left(c^{\prime}\right)
$$

again by currying:

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{D}}\left(d, d^{\prime}\right) \xrightarrow{\Lambda\left(m^{\prime} \circ A p p\right)} \operatorname{Hom}_{\mathcal{D}}\left(d, \mathfrak{F}\left(c^{\prime}\right)\right) \tag{21}
\end{equation*}
$$

We claim that this morphism is monic. Indeed, consider two morphisms f, g such that $\Lambda\left(m^{\prime} \circ A p p\right) \circ f=\Lambda\left(m^{\prime} \circ A p p\right) \circ g$. Applying $A p p \circ\left(_\times \mathrm{id}\right)$ on the left-hand side, we get $A p p \circ\left(\left(\Lambda\left(m^{\prime} \circ A p p\right) \circ f\right) \times \mathrm{id}\right)=A p p \circ\left(\Lambda\left(m^{\prime} \circ A p p \circ(f \times \mathrm{id})\right) \times \mathrm{id}\right)\left(\right.$ by $\left.\left(k^{\prime}\right)\right)$ $=m^{\prime} \circ A p p \circ(f \times \mathrm{id})$ (by $\left.\left(l^{\prime \prime}\right)\right)$. Applying to both sides of the equation, we therefore get $m^{\prime} \circ A p p \circ(f \times \mathrm{id})=m^{\prime} \circ A p p \circ(g \times \mathrm{id})$, therefore $A p p \circ(f \times \mathrm{id})=A p p \circ(g \times \mathrm{id})$, because m^{\prime} is monic. Applying Λ on both sides, the left-hand side simplifies to f and the right-hand side to g by $\left(m^{\prime}\right)$, therefore $f=g$. So $\Lambda\left(m^{\prime} \circ A p p\right)$ is indeed monic.

We now build $\left(d^{\prime \prime}, c^{\prime \prime}, m^{\prime \prime}\right)$ by the following pullback diagram:

where the upper morphism $m^{\prime \prime}$ is monic because pullbacks preserve monics.
Application in the subscone is given by the pair of morphisms $\operatorname{App} \circ(s \times \mathrm{id})$ from $d^{\prime \prime} \times d$ to d^{\prime} and $A p p$ from $c^{\prime \prime} \times c$ to c^{\prime}.

Conversely, given any morphism (u, v) in the subscone from $\left(d_{0}, c_{0}, m_{0}\right) \times(d, c, m)$ to $\left(d^{\prime}, c^{\prime}, m^{\prime}\right)$, we build its curried morphism from $\left(d_{0}, c_{0}, m_{0}\right)$ to $\left(d^{\prime \prime}, c^{\prime \prime}, m^{\prime \prime}\right)$ as follows. Recall that since (u, v) is a morphism, the following square commutes:

The curried version of the morphism (u, v) is then $(\hat{u}, \Lambda(v))$, where \hat{u} is given as the unique morphism that makes the following diagram commute:

where the bottom pullback diagram is given by the definition of internal homs in the subscone. (The outer diagram commutes: $\Lambda\left(m^{\prime} \circ A p p\right) \circ \Lambda(u)=\Lambda\left(m^{\prime} \circ A p p \circ(\Lambda(u) \times\right.$ $\mathrm{id}))\left[\mathrm{by}\left(k^{\prime}\right)\right]=\Lambda\left(m^{\prime} \circ u\right)\left[\mathrm{by}\left(l^{\prime \prime}\right)\right]=\Lambda\left(\mathfrak{F}(v) \circ\left(m_{0} \times m\right)\right)$ since (u, v) is a morphism, while $\Lambda(\mathfrak{F}(A p p) \circ(\mathrm{id} \times m)) \circ \mathfrak{F}(\Lambda(v)) \circ m_{0}=\Lambda\left(\mathfrak{F}(A p p) \circ(\mathrm{id} \times m) \circ\left(\left(\mathfrak{F}(\Lambda(v)) \circ m_{0}\right) \times \mathrm{id}\right)\right)$ $\left[\mathrm{by}\left(k^{\prime}\right)\right]=\Lambda\left(\mathfrak{F}(A p p) \circ(\mathfrak{F}(\Lambda(v)) \times \mathrm{id}) \circ\left(m_{0} \times m\right)\right)=\Lambda\left(\mathfrak{F}(\operatorname{App} \circ(\Lambda(v) \times \mathrm{id})) \circ\left(m_{0} \times m\right)\right)$ [because \mathfrak{F} is a functor that preserves products] $=\Lambda\left(\mathfrak{F}(v) \circ\left(m_{0} \times m\right)\right)\left[\right.$ by $\left.\left.\left(l^{\prime \prime}\right)\right].\right)$
5.4.0.4. Comonad ($\square, \mathbf{d}, \mathbf{s}$). Whereas there is at most one CCC structure on any given category, there are in general many choices for a strict monoidal comonad. A standard choice for defining a comonad on $\mathcal{D} \downharpoonright \mathfrak{F}$ based on a given comonad ($\square, \mathbf{d}, \mathbf{s}$) on \mathcal{D} works by defining $\square(d, c, m)$ as $\left(d^{\prime}, \square c, m^{\prime}\right)$, where d^{\prime} and m^{\prime} are given by the pullback diagram:

This would not work for our purposes: intuitively, if (d, c, m) represents a relation R^{F}, defining $R^{\square F}$ this way as ($d^{\prime}, \square c, m^{\prime}$) would mean replacing the (\square logical) condition by: for every $a, a^{\prime}, a R_{q}^{\square F} a^{\prime}$ if and only if $\partial_{q}^{0} a R_{q}^{F} \partial_{q}^{0} a^{\prime}$. However with this definition $R^{\square F}$ would be too large, and the second implication $M R^{F} a \Longrightarrow$ $M=p_{F}(a)$ of the Bounding Lemma would not hold in general.

Instead, we notice that there is a simpler solution as soon as not only \mathfrak{F} preserves \square, \mathbf{d} and \mathbf{s} (we shall say that \mathfrak{F} preserves the comonad $(\square, \mathbf{d}, \mathbf{s})$) but also \square preserves monics. Then letting $\square(d, c, m)$ be ($\square d, \square c, \square m$) defines an object in the subscone. Indeed, $\square m$ is a morphism from $\square d$ to $\square \mathfrak{F}(c)=\mathfrak{F}(\square c)$, and is monic since m is and \square preserves monics. This is what will work here.

Proposition 66. Assume that \mathcal{C} and \mathcal{D} are strict CS4 categories and that $\mathfrak{F}: \mathcal{C} \rightarrow \mathcal{D}$ preserves finite products and the given comonads; assume also that \mathcal{D} is finitely complete and that \square preserves monics.

Then the subscone $\mathcal{D} f \mathfrak{F}$ is a strict CS4 category when equipped with the comonad $(\square, \mathbf{d}, \mathbf{s})$ defined by: on objects, $\square(d, c, m) \hat{=}(\square d, \square c, \square m)$; on morphisms, $\square(u, v)$ $\hat{=}(\square u, \square v) ; \mathbf{d} \hat{=}(\mathbf{d}, \mathbf{d}) ; \mathbf{s} \hat{=}(\mathbf{s}, \mathbf{s})$.

Moreover, the forgetful functor $U: \mathcal{D} \triangleright \mathfrak{F} \longrightarrow \mathcal{C}$ mapping every object (d, c, m) in the subscone to c and every morphism (u, v) to v is a representation of strict CS4 4 categories.

Proof. Straightforward verification.

5.5. The Basic Lemma

Given any functor $\Sigma \stackrel{\tilde{\rho}}{\mathcal{D}} \mathcal{D}\{\mathcal{F}$, we get a functor from Σ to \mathcal{C} by composition with U. By the freeness of \mathcal{S}_{4}, there are unique functors $\mathcal{C} \llbracket \rrbracket \rho$ (where $\rho \hat{=} U \circ \tilde{\rho}$) and $(\mathcal{D}\ulcorner\mathfrak{F}) \llbracket \llbracket \tilde{\rho}$ which make the upper left and upper right triangles in the following
diagram (which is a diagram in the category Cat of categories) commute:

Since U is a representation of strict CS4 categories, $U \circ(\mathcal{D}\lceil\mathfrak{F}) \llbracket-\rrbracket \tilde{\rho}$, too, therefore by the uniqueness of the $\mathcal{C} \llbracket-\rrbracket \rho$ arrow on the right as a representation of strict CS4 categories, we get:

Lemma 67 (Basic Lemma). $U \circ(\mathcal{D} \curvearrowleft \mathfrak{F}) \llbracket-\rrbracket \tilde{\rho}=\mathcal{C} \llbracket-\rrbracket(U \circ \tilde{\rho})$

5.6. The Bounding Lemma

Now we consider the case where \mathcal{C} is of the form $\mathcal{C}_{1} \times \mathcal{D}$, and $\mathfrak{F} \hat{=} \mathfrak{F}_{1} \otimes i d$, where $\mathfrak{F}_{1}: \mathcal{C}_{1} \rightarrow \mathcal{D}$ is a functor that preserves all finite products and the ($\square, \mathbf{d}, \mathbf{s}$) comonad. (Whenever $\mathfrak{F}_{1}: \mathcal{C}_{1} \rightarrow \mathcal{D}, \mathfrak{F}_{2}: \mathcal{C}_{2} \rightarrow \mathcal{D}$, we let $\mathfrak{F}_{1} \otimes \mathfrak{F}_{2}$ be the functor mapping C_{1}, C_{2} to $\mathfrak{F}_{1}\left(C_{1}\right) \times \mathfrak{F}_{2}\left(C_{2}\right)$.)

Typically, \mathcal{C}_{1} will be $\mathcal{S}_{4 \Sigma}, \mathfrak{F}_{1} \hat{=} \operatorname{CRes}_{\mathcal{S}_{4 \Sigma}}, \mathcal{D} \hat{=} \widehat{\Delta}$.
We shall prove:
Lemma 68 (Bounding Lemma). Let \mathcal{C}_{1} and \mathcal{D} be strict $C S S_{4}$ categories, \mathfrak{F}_{1} : $\mathcal{C}_{1} \rightarrow \mathcal{D}$ preserve finite products and the given comonads. Assume also that \mathcal{D} is finitely complete and that \square preserves monics in \mathcal{D}. Fix $\rho_{1}: \Sigma \rightarrow \mathcal{C}_{1}$. Assume finally that for every formulae F and G, $\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}\right), \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right)\right)$ retracts strongly onto $\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \supset G \rrbracket \rho_{1}\right)$, meaning that there is a family of morphisms $\mathfrak{R}_{F \supset G}$ in \mathcal{D} such that the following diagram commutes:

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}\right), \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right)\right) \stackrel{\Lambda\left(\mathfrak{F}_{1}(A p p)\right)}{\longleftrightarrow} \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \supset G \rrbracket \rho_{1}\right) \tag{22}
\end{equation*}
$$

$\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}\right), \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right)\right) \xrightarrow[\mathfrak{R}_{F \supset G}]{\longrightarrow} \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \supset G \rrbracket \rho_{1}\right)$
Let $\rho_{2}: \Sigma \rightarrow \mathcal{D}$ be $\mathfrak{F}_{1} \circ \rho_{1}$, and $\tilde{\rho}: \Sigma \rightarrow \mathcal{D} £\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$ map every $A \in \Sigma$ to $\left(\rho_{2}(A),\left(\rho_{1}(A), \rho_{2}(A)\right),\langle\mathrm{id}, \mathrm{id}\rangle\right)$.

For every formula F, write $\left(\mathcal{D} \llbracket\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket F \rrbracket \tilde{\rho}$ as $\left(D_{F},\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}, \mathcal{D} \llbracket F \rrbracket \rho_{2}\right)\right.$, $\left.\left\langle m_{F}^{\prime}, m_{F}^{\prime \prime}\right\rangle\right)$.

Then there are families of morphisms i_{F} and p_{F} in \mathcal{D}, and monics h_{F}^{1} and h_{F}^{2}
that make the following diagrams commute for each formula F :

Proof. We first build i_{F} and p_{F} for each formula F so that $p_{F} \circ i_{F}=\mathrm{id}$. This is indeed required for the result to hold, since Diagram 23 implies $p_{F} \circ h_{F}^{2} \circ h_{F}^{1}=\mathrm{id}$ and id $\circ h_{F}^{2} \circ h_{F}^{1}=i_{F}$.

When F is a base type $A \in \Sigma$, define i_{A} and p_{A} in \mathcal{D} so that the following diagrams commute:

by just taking i_{A} and p_{A} to be id.
When $F=\square G$, let $i_{\square G} \hat{=} \square i_{G}, p_{\square G} \hat{=} \square p_{G}$, so $p_{\square G} \circ i_{\square G}=\square p_{G} \circ \square i_{G}=\square\left(p_{G} \circ\right.$ $\left.i_{G}\right)=\square \mathrm{id}=\mathrm{id}$. This makes sense because \mathfrak{F}_{1}, hence also $\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket-\rrbracket \rho_{1}\right)$ and $\mathcal{D} \llbracket-\rrbracket \rho_{2}$, preserve \square.

When F is of the form $G \supset H$, we build i_{F} and p_{F} in the unique type-consistent way. I.e., we have the following diagram:

$\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right), \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)\right) \underset{\text { id } \times p_{G}}{ } \underset{\sim}{ } \quad \operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right), \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)\right)$
using i_{H} and p_{G} from the induction hypothesis. Apply Λ to the resulting composite morphism, and compose with $\Lambda\left(\mathfrak{F}_{1}(A p p)\right)$; this yields $i_{G \supset H}$, defined as:

$$
\mathcal{D} \llbracket G \supset H \rrbracket \rho_{2} \underset{\left.\circ\left(i d \times p_{G}\right)\right)}{\stackrel{\Lambda\left(i_{H} \circ A p p\right.}{\underset{\circ(i d}{ }} \quad \begin{aligned}
& \operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right),\right. \Lambda\left(\mathfrak{F}_{1}(A p p)\right) \\
&\left.\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)\right)
\end{aligned} \quad \mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \supset H \rrbracket \rho_{1}\right)}
$$

Similarly, we define a morphism $p_{G \supset H}$ from $\mathcal{D} \llbracket G \supset H \rrbracket \rho_{2}$ to $\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \supset H \rrbracket \rho_{1}\right)$ as the composite:

$$
\left.\mathcal{D} \llbracket G \supset H \rrbracket \rho_{2} \xrightarrow\left[\circ\left(\mathrm{id} \times i_{G}\right)\right)\right]{\substack{ \\
\hline \\
\hline \\
\hline}} \begin{array}{r}
\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}\right),\right. \\
\left.\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)\right)
\end{array} \xrightarrow[\mathfrak{F}_{G \supset H}\left(\mathcal{C}_{1} \llbracket G \supset H \rrbracket \rho_{1}\right)]{ }
$$

Superposing both diagrams, together with (22), we get:

where $i_{G \supset H}$ is the top line, $p_{G \supset H}$ is the bottom line, the right square commutes by (22), and the left square commutes, as calculation shows(left to the reader; hint: use $\left.p_{H} \circ i_{H}=\mathrm{id}, p_{G} \circ i_{G}=\mathrm{id}\right)$. So $p_{G \supset H} \circ i_{G \supset H}=\mathrm{id}$.

We now build h_{F}^{1} and h_{F}^{2}. Note that as soon as Diagram 23 commutes, h_{F}^{1} and h_{F}^{2} will automatically be monic. Indeed, since $p_{F} \circ i_{F}=\mathrm{id}, i_{F}$ is monic; as $i_{F}=m_{F}^{\prime \prime} \circ h_{F}^{1}$, h_{F}^{1} will be monic, too. Similarly, since $\left\langle m_{F}^{\prime}, m_{F}^{\prime \prime}\right\rangle$ is a monic (because it is part of the definition of an object in the subscone), and $\left\langle m_{F}^{\prime}, m_{F}^{\prime \prime}\right\rangle=\left\langle p_{F}, \mathrm{id}\right\rangle \circ h_{F}^{2}, h_{F}^{2}$ will be a monic, too.

Also, that h_{F}^{1} and h_{F}^{2} are monic will imply that $\tilde{h}_{F}^{1} \hat{=}\left(h_{F}^{1}\right.$, id $)$ and $\tilde{h}_{F}^{2} \hat{=}\left(h_{F}^{2}\right.$, id $)$ will be monic in $\left(\mathcal{D}\left\lceil\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket F \rrbracket \tilde{\rho}\right.$. Therefore, that Diagram 23 is commutative is equivalent to showing the existence of the following diagram in $\mathcal{D} \Omega\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$:

$$
\tilde{I}_{F} \xlongequal{\left(h_{F}^{1}, \mathrm{id}\right)}\left(\mathcal{D} \sqsubset\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket F \rrbracket \tilde{\rho} \xlongequal{\left(h_{F}^{2}, \mathrm{id}\right)} \tilde{P}_{F}
$$

where

$$
\begin{aligned}
& \tilde{I}_{F} \hat{=}\left(\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}\right),\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}, \mathcal{D} \llbracket F \rrbracket \rho_{2}\right),\left\langle\mathrm{id}, i_{F}\right\rangle\right) \\
& \tilde{P}_{F} \hat{=}\left(\mathcal{D} \llbracket F \rrbracket \rho_{1},\left(\mathcal{C}_{1} \llbracket F \rrbracket \rho_{1}, \mathcal{D} \llbracket F \rrbracket \rho_{2}\right),\left\langle p_{F}, \mathrm{id}\right\rangle\right)
\end{aligned}
$$

We build h_{F}^{1} and h_{F}^{2} by structural induction on F.
If F is a base type A, notice that $i_{A}=p_{A}=m_{A}^{\prime}=m_{A}^{\prime \prime}=\mathrm{id}$, so take $h_{A}^{1} \hat{=} h_{A}^{2} \hat{=} \mathrm{id}$.
If F is a box formula $\square G$. Recall first that $p_{\square G}=\square p_{G}$ and $i_{\square G}=\square i_{G}$. Also, because $\left(\mathcal{D} \llbracket\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket-\rrbracket \tilde{\rho}$ is a representation of strict CS4 categories, it preserves \square. In particular $\left\langle m_{\square G}^{\prime}, m_{\square G}^{\prime \prime}\right\rangle=\square\left\langle m_{G}^{\prime}, m_{G}^{\prime \prime}\right\rangle$. Because \square is strict monoidal, $m_{\square G}^{\prime}=$ $\square m_{G}^{\prime}, m_{\square G}^{\prime \prime}=\square m_{G}^{\prime \prime}$. Therefore it suffices to let $h_{\square G}^{1}$ be $\square h_{G}^{1}, h_{\square G}^{2}$ be $\square h_{G}^{2}$.

If F is an arrow type $G \supset H$. We first build $h_{G \supset H}^{1}$. Construct the morphism:

in \mathcal{D}. For short, let us call this morphism u temporarily.
Also construct the morphism $v \hat{=}(A p p, A p p)$ from $\left(\mathcal{C}_{1} \llbracket G \supset H \rrbracket \rho_{1}, \mathcal{D} \llbracket G \supset H \rrbracket \rho_{2}\right)$ $\times\left(\mathcal{C}_{1} \llbracket G \rrbracket \rho_{1}, \mathcal{D} \llbracket G \rrbracket \rho_{2}\right)$ to $\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}, \mathcal{D} \llbracket H \rrbracket \rho_{2}\right)$ in $\mathcal{C}_{1} \times \mathcal{D}$.

We claim that (u, v) is a morphism in $\mathcal{D} \curvearrowleft\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$ (if so, this is from $\tilde{I}_{G \supset H} \times$ $\left(\mathcal{D} \sqsubset\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket G \rrbracket \tilde{\rho}$ to $\left.\left(\mathcal{D} \sqsubset\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket H \rrbracket \tilde{\rho}\right)$. This requires us to show that the following diagram commutes (where we have split products so as to increase readabil-
ity):

The left square of (24) commutes because $m_{H}^{\prime} \circ h_{H}^{1}$ is the identity on D_{H}, by induction hypothesis, so

$$
m_{H}^{\prime} \circ u=m_{H}^{\prime} \circ h_{H}^{1} \circ \mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right)=\mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right)
$$

For the right square of (24), note that $A p p \circ\left(i_{G \supset H} \times \mathrm{id}\right)=i_{H} \circ \mathfrak{F}_{1}(A p p) \circ(\mathrm{id} \times$ $\left.p_{G}\right)$, by the definition of $i_{G \supset H}$. Composing with id $\times m_{G}^{\prime \prime}$ on the right, it follows $A p p \circ\left(i_{G \supset H} \times m_{G}^{\prime \prime}\right)=i_{H} \circ \mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times\left(p_{G} \circ m_{G}^{\prime \prime}\right)\right)$. However $p_{G} \circ m_{G}^{\prime \prime}=m_{G}^{\prime}$ by induction hypothesis. So we get:

$$
A p p \circ\left(i_{G \supset H} \times m_{G}^{\prime \prime}\right)=i_{H} \circ \mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right)
$$

Since $m_{H}^{\prime \prime} \circ h_{H}^{1}=i_{H}$ by induction hypothesis, the right-hand side is exactly $m_{H}^{\prime \prime} \circ u$, so the right square of (24) commutes.

As (24) commutes, (u, v) is indeed a morphism in $\mathcal{D} \curvearrowleft\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$. We may then curry it in $\mathcal{D} £\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$, getting a morphism from $\tilde{I}_{G \supset H}$ to the internal hom object $\operatorname{Hom}_{\mathcal{D}\left\lceil\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right.}\left(\left(\mathcal{D} £\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket G \rrbracket \tilde{\rho},\left(\mathcal{D} £\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket H \rrbracket \tilde{\rho}\right)$, that is, from $\tilde{I}_{G \supset H}$ to $\left(\mathcal{D} \curvearrowleft\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket G \supset H \rrbracket \tilde{\rho}$.

Let us call this latter morphism $\tilde{h}_{G \supset H}^{1}$. As recalled in Paragraph 5.4.0.3, this morphism is of the form $(\hat{u}, \Lambda(v))$, where $\Lambda(v)$ is taken in the product category $\mathcal{C}_{1} \times \mathcal{D}$. Since v was application is this category, $\Lambda(v)=\mathrm{id}$. So $\tilde{h}_{G \supset H}^{1}$ is of the required form ($h_{G \supset H}^{1}$, id); i.e., we let $h_{G \supset H}^{1}$ be \hat{u}. Because this is a morphism in $\mathcal{D} £\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$, the following diagram commutes:

This is exactly the left part of the desired diagram:

Let us now build $h_{G \supset H}^{2}$. Define $h_{G \supset H}^{2} \hat{=} m_{G \supset H}^{\prime \prime}$. Adapting the definition of internal homs to the subscone category $\mathcal{D} \downharpoonright\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$, and using a few trivial isomorphisms, $\left(\mathcal{D} \llbracket\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket G \supset H \rrbracket \tilde{\rho}$ is given by the following pullback diagram:

Splitting products, we may rewrite this as:

Take the product with D_{G} :

Putting this above the following diagram:

which is easily seen to commute, we obtain:

Indeed, the leftmost vertical morphism is $A p p \circ\left(\Lambda\left(\mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right)\right) \times \mathrm{id}\right)=$ $\mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right)$, while the rightmost vertical morphism is obtained similarly.

By induction hypothesis $m_{H}^{\prime}=p_{H} \circ m_{H}^{\prime \prime}$. So we may complete Diagram (25) by adding a p_{H} arrow from the lower right $\mathcal{D} \llbracket H \rrbracket \rho_{2}$ to the lower left $\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)$, and get a commutative diagram again. Looking at the leftmost and the rightmost paths from the upper $D_{G \supset H} \times D_{G}$ to the lower left $\mathfrak{F}_{1}\left(\mathcal{C}_{1} \llbracket H \rrbracket \rho_{1}\right)$, it follows:

$$
\mathfrak{F}_{1}(A p p) \circ\left(\mathrm{id} \times m_{G}^{\prime}\right) \circ\left(m_{G \supset H}^{\prime} \times \mathrm{id}\right)=p_{H} \circ A p p \circ\left(\mathrm{id} \times m_{G}^{\prime \prime}\right) \circ\left(m_{G \supset H}^{\prime \prime} \times \mathrm{id}\right)
$$

Composing with id $\times h_{G}^{1}$ on the right and simplifying, we obtain $\mathfrak{F}_{1}(A p p) \circ\left(m_{G \supset H}^{\prime} \times\right.$ $\left.\left(m_{G}^{\prime} \circ h_{G}^{1}\right)\right)=p_{H} \circ \operatorname{App} \circ\left(m_{G \supset H}^{\prime \prime} \times\left(m_{G}^{\prime \prime} \circ h_{G}^{1}\right)\right)$. By induction hypothesis $m_{G}^{\prime} \circ h_{G}^{1}=\mathrm{id}$, and $m_{G}^{\prime \prime} \circ h_{G}^{1}=i_{G}$, so:

$$
\begin{equation*}
\mathfrak{F}_{1}(A p p) \circ\left(m_{G \supset H}^{\prime} \times \mathrm{id}\right)=p_{H} \circ A p p \circ\left(m_{G \supset H}^{\prime \prime} \times i_{G}\right) \tag{26}
\end{equation*}
$$

This entails that $\Lambda\left(p_{H} \circ A p p \circ\left(\mathrm{id} \times i_{G}\right)\right) \circ m_{G \supset H}^{\prime \prime}=\Lambda\left(p_{H} \circ A p p \circ\left(\mathrm{id} \times i_{G}\right) \circ\right.$ $\left.\left(m_{G \supset H}^{\prime \prime} \times \mathrm{id}\right)\right)=\Lambda\left(p_{H} \circ A p p \circ\left(m_{G \supset H}^{\prime \prime} \times i_{G}\right)\right)=\Lambda\left(\mathfrak{F}_{1}(A p p) \circ\left(m_{G \supset H}^{\prime} \times \mathrm{id}\right)\right)$ (using $(26))=\Lambda\left(\mathfrak{F}_{1}(A p p)\right) \circ m_{G \supset H}^{\prime}$. Composing with $\mathfrak{R}_{G \supset H}$ on the left, remembering that $\mathfrak{R}_{G \supset H} \circ \Lambda\left(\mathfrak{F}_{1}(A p p)\right)=\operatorname{id}($ Diagram $(22))$, it obtains:

$$
\Re_{G \supset H} \circ \Lambda\left(p_{H} \circ A p p \circ\left(\mathrm{id} \times i_{G}\right)\right) \circ m_{G \supset H}^{\prime \prime}=m_{G \supset H}^{\prime}
$$

That is, $p_{G \supset H} \circ m_{G \supset H}^{\prime \prime}=m_{G \supset H}^{\prime}$.
On the other hand, recall that $h_{G \supset H}^{2}=m_{G \supset H}^{\prime \prime}$. So we have got the right part of
the desired diagram:

This terminates the implication case.

5.7. Equational Completeness

We can now prove:
Theorem 69 (Equational Completeness). Let \mathcal{D} be a strict CS4 category, $\mathfrak{F}_{1}: \mathcal{S}_{4 \Sigma} \rightarrow \mathcal{D}$ preserve finite products and the given comonads. Assume also that \mathcal{D} is finitely complete, that \square preserves monics in \mathcal{D}, and that for every formulae F and G, $\operatorname{Hom}_{\mathcal{D}}\left(\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket F \rrbracket(\subseteq)\right), \mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket G \rrbracket(\subseteq)\right)\right)$ retracts strongly onto $\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket F \supset G \rrbracket(\subseteq)\right)$, where \subseteq is the canonical inclusion of Σ into $\mathcal{S}_{4 \Sigma}$.

Assume finally that \mathfrak{F}_{1} is faithful on morphisms with domain the empty context.
Then there is a valuation $\rho_{2}: \Sigma \rightarrow \mathcal{D}$ such that, for every $\lambda_{S 4}$-terms M and N of type F under $\Gamma, M \approx N$ if and only if $\mathcal{D} \llbracket M \rrbracket \rho_{2}=\mathcal{D} \llbracket N \rrbracket \rho_{2}$.

Proof. The only if direction is soundness (Lemma 55). Let us deal with the if direction. Without loss of generality, assume M and N ground, and Γ the empty context: if Γ is not empty, say $\Gamma \hat{=} x_{1}: F_{1}, \ldots, x_{n}: F_{n}$, we reduce to the empty case by reasoning on $\lambda x_{1}, \ldots, x_{n} \cdot M$ and $\lambda x_{1}, \ldots, x_{n} \cdot N$ instead of M and N. Take $\mathcal{C}_{1} \hat{=} \mathcal{S} 4 \Sigma, \rho_{1}$ be \subseteq. As in Lemma 68, let ρ_{2} be $\mathfrak{F}_{1} \circ \rho_{1}$, and $\tilde{\rho}$ map $A \in \Sigma$ to $\left(\rho_{2}(A),\left(\rho_{1}(A), \rho_{2}(A)\right),\langle\mathrm{id}, \mathrm{id}\rangle\right)$.

By the Basic Lemma (Lemma 67),

$$
U\left(\left(\mathcal{D} \llbracket\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket F \rrbracket \tilde{\rho}\right)=\left(\mathcal{S}_{4 \Sigma} \llbracket F \rrbracket \rho_{1}, \mathcal{D} \llbracket F \rrbracket \rho_{2}\right)
$$

where the forgetful functor U maps each morphism (u, v) in the subscone to v. Expanding the definition of U in this case, for every type derivation of $\vdash M: F$, the morphism $\left(\mathcal{D}\left\lceil\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket M \rrbracket \tilde{\rho}\right.$ from 1 to $\left(\mathcal{D}\left\lceil\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)\right) \llbracket F \rrbracket \tilde{\rho}\right.$ can be written (u, v), where the Basic Lemma demands that $v=\mathcal{S}_{4 \Sigma} \llbracket M \rrbracket \rho_{1} \times \mathcal{D} \llbracket M \rrbracket \rho_{2}$. Since (u, v) is a morphism in $\mathcal{D} \downharpoonright\left(\mathfrak{F}_{1} \otimes \mathrm{id}\right)$, the following diagram commutes:

That is,

$$
m_{F}^{\prime} \circ u=\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket M \rrbracket \rho_{1}\right) \quad m_{F}^{\prime \prime} \circ u=\mathcal{D} \llbracket M \rrbracket \rho_{2}
$$

By the Bounding Lemma (Lemma 68, Diagram (23)), $p_{F} \circ m_{F}^{\prime \prime}=m_{F}^{\prime}$, so:

$$
\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket M \rrbracket \rho_{1}\right)=p_{F} \circ \mathcal{D} \llbracket M \rrbracket \rho_{2}
$$

As this holds for every M such that $\vdash M: F$ is derivable, it follows immediately that if we take any two such terms M and N, such that $\mathcal{D} \llbracket M \rrbracket \rho_{2}=\mathcal{D} \llbracket N \rrbracket \rho_{2}$, then $\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket M \rrbracket \rho_{1}\right)=\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket N \rrbracket \rho_{1}\right)$. Since \mathfrak{F}_{1} is faithful on morphisms with domain the empty context, $\mathcal{S}_{4 \Sigma} \llbracket M \rrbracket \rho_{1}=\mathcal{S}_{4 \Sigma} \llbracket N \rrbracket \rho_{1}$. Since $\rho_{1}=(\subseteq)$, by Proposition 61, $M \approx N$.

Corollary 70 (Equational Completeness in $\widehat{\Delta}$). There is a valuation $\rho_{2}: \Sigma \rightarrow$ $\widehat{\Delta}$ such that, for every $\lambda_{\mathrm{S} 4}$-terms M and N of type F under $\Gamma, M \approx N$ if and only if $\widehat{\Delta} \llbracket M \rrbracket \rho_{2}=\widehat{\Delta} \llbracket N \rrbracket \rho_{2}$.

Proof. Let us check all hypotheses. First, $\widehat{\Delta}$ is a strict CS4 category using Definition 49. Take $\mathfrak{F}_{1} \hat{=} \mathcal{S}_{4}[-]$ (alternatively, the contracting resolution functor CRes $\mathcal{S}_{4 \Sigma}$). By Lemma 62, \mathfrak{F}_{1} preserves all finite products and the ($\square, \mathbf{d}, \mathbf{s}$) comonad, and is faithful. $\widehat{\Delta}$ is finitely complete (in fact a topos). And \square preserves monics: recall that a monic in $\widehat{\Delta}$ is an a.s. map $\left(f_{q}\right)_{q \geqslant-1}$ such that every f_{q} is one-to-one ([15] 1.462); it follows that \square, which maps $\left(f_{q}\right)_{q \geqslant-1}$ to $\left(f_{q+1}\right)_{q \geqslant-1}$, preserves monics in $\widehat{\Delta}$. Finally, by Corollary $47, \operatorname{Hom}_{\widehat{\Delta}}\left(\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket F \rrbracket(\subseteq)\right), \mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket G \rrbracket(\subseteq)\right)\right)$ retracts strongly onto $\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket F \supset G \rrbracket(\subseteq)\right)$ (observe that $\mathfrak{F}_{1}\left(\mathcal{S}_{4 \Sigma} \llbracket F \rrbracket(\subseteq)\right)=\mathcal{S}_{4}[F]$, and similarly for G).

The case of topological spaces, and of the equational completeness of $\lambda_{S 4}$ with respect to the strict CS4 category CGHaus, is still open. (Note to the referees: We hoped to include this result as well, however our proof for it broke at the last minute. In case we manage to find a proof, this will appear in the long version of this paper, a research report of the LSV [see http://www.lsv.ens-cachan.fr/ Publis/publis-y3-2001.html]. In turn, this may or may not be included in the final version of the paper.)

Acknowledgments

The first author wishes to thank the people attending the Types'98 workshop, where he talked about a few ideas that eventually led to this work; among which Michael Mendler, Healfdene Goguen and James McKinna. We would also like to thank Tim Porter and Rajeev Goré for fruitful discussions, and Dana Scott, Sergei Artëmov, Eugenio Moggi, Grigori Mints and Valeria de Paiva for their remarks. We acknowledge Paul Taylor, whose diagrams packages was used to draw the diagrams in this paper.

References

[1] Moez Alimohamed, A characterization of lambda definability in categorical models of implicit polymorphism, Theoretical Computer Science 146 (1995), no. 1-2, 5-23.
[2] Henk Barendregt, The lambda calculus, its syntax and semantics, Studies in Logic and the Foundations of Mathematics, vol. 103, North-Holland Publishing Company, Amsterdam, 1984.
[3] Kalyan Basu, The geometry of sequential computation I: A simplicial geometry of interaction, Institutsbericht, Technische Universitaet Muenchen, Institut fuer Informatik, August 1997.
[4] , The geometry of sequential computation II: Full abstraction for PCF, Institutsbericht, Technische Universitaet Muenchen, Institut fuer Informatik, August 1997.
[5] Alan Bawden and Jonathan Rees, Syntactic closures, 1988 ACM Conference on Lisp and Functional Programming, 1988, pp. 86-95.
[6] P. Nick Benton, Gavin M. Bierman, and Valeria C. V. de Paiva, Computational types from a logical perspective, Journal of Functional Programming 8 (1998), no. 2, 177-193.
[7] Gavin M. Bierman and Valeria de Paiva, Intuitionistic necessity revisited, Logic at Work (Amsterdam, the Netherlands), 1992, Revised version, Technical Report CSR-96-10, University of Birmingham, June 1996.
[8] Anders Björner, Topological methods, Handbook of Combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), vol. 2, Elsevier Science B.V., 1995, pp. 1819-1872.
[9] Stephen Brookes and Shai Geva, Computational comonads and intensional semantics, Applications of Categories in Computer Science, Proceedings of the LMS Symposium (Durham) (M. P. Fourman, P. T. Johnstone, and A. M. Pitts, eds.), London Mathematical Society Lecture Notes, 1991.
[10] Pierre-Louis Curien, Categorical combinators, sequential algorithms, and functional programming, 2nd ed., Progress in Theoretical Computer Science, Birkhäuser, Boston, 1993.
[11] Rowan Davies and Frank Pfenning, A modal analysis of staged computation, 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 21-24 January 1996, pp. 258-270.
[12] Nachum Dershowitz, Termination of rewriting, Journal of Symbolic Computation 3 (1987), 69-116.
[13] Nachum Dershowitz and Jean-Pierre Jouannaud, Rewrite systems, Handbook of Theoretical Computer Science (Jan van Leeuwen, ed.), Elsevier Science Publishers b.v., 1990, pp. 243-320.
[14] Philip J. Ehlers and Tim Porter, Joins for (augmented) simplicial sets, Bangor Maths Preprint 98.07, Bangor University, February 1998, Submitted to the Journal of Pure and Applied Algebra.
[15] Peter J. Freyd and Andre Scedrov, Categories, allegories, North-Holland Mathematical Library, vol. 39, North-Holland, Amsterdam, 1990.
[16] Harvey Friedman, Equality between functionals., Logic Colloquium 1972-73 (Rohit Parikh, ed.), Lecture Notes in Mathematics, vol. 453, Springer-Verlag, 1975, pp. 22-37.
[17] Jean-Yves Girard, Linear logic, Theoretical Computer Science 50 (1987), 1102.
[18] Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and types, Cambridge Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press, 1989.
[19] Healfdene Goguen and Jean Goubault-Larrecq, Sequent combinators: A Hilbert system for the lambda calculus, Mathematical Structures in Computer Science 10 (2000), no. 1, 1-79.
[20] Jean Goubault-Larrecq, On computational interpretations of the modal logic S4 I. Cut elimination, Interner Bericht 1996-35, University of Karlsruhe, 1996.
[21] , On computational interpretations of the modal logic S4 II. The λ ev Q-calculus, Interner Bericht 1996-34, University of Karlsruhe, 1996.
[22] Jean Goubault-Larrecq and Éric Goubault, Order-theoretic, geometric and combinatorial models of intuitionistic $S 4$ proofs, Presented at the 1st Workshop on Intuitionistic Modal Logics and Applications, Trento, Italy; also at the 1st Workshop on Geometric Methods in Concurrency Theory, Aalborg, Denmark. Available at http://www.dyade.fr/fr/actions/vip/jgl/top.ps.gz, June 1999.
[23] Timothy G. Griffin, A formulas-as-types notion of control, Proceedings of the 17th Annual ACM Symposium on Principles of Programming Languages (San Francisco, California), January 1990, pp. 47-58.
[24] Mauric Herlihy and Sergio Rajsbaum, Algebraic topology and distributed computing-A primer, Computer Science Today, Recent Trends and Developments (Jan van Leeuwen, ed.), Lecture Notes in Computer Science, vol. 1000, Springer-Verlag, 1995, pp. 203-217.
[25] Jonathan P. Hindley and J. Roger Seldin, Introduction to combinators and λ-calculus, London Mathematical Society Student Texts, vol. 1, Cambridge University Press, 1988.
[26] William A. Howard, The formulae-as-types notion of construction, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J. R. Hindley and J. P. Seldin, eds.), Academic Press, 1980, pp. 479-490.
[27] Gérard P. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer Science 1 (1975), 27-57.
[28] Jean-Pierre Jouannaud and Claude Kirchner, Solving equations in abstract algebras: a rule-based survey of unification, Tech. report, LRI, CNRS UA 410: Al Khowarizmi, March 1990.
[29] Satoshi Kobayashi, Monad as modality, Theoretical Computer Science 175 (1997), no. 1, 29-74.
[30] Joachim Lambek and Phil J. Scott, Introduction to higher order categorical logic, Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge University Press, 1986.
[31] Pierre Leleu, A modal lambda calculus with iteration and case constructs, Technical Report RR-3322, Institut National de Recherche en Informatique et en Automatique (Inria), France, 1997.
[32] John Mac Carthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin, LISP 1.5 programmer's manual, MIT Press, 1962.
[33] Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971.
[34] Simone Martini and Andrea Masini, A modal view of linear logic, Journal of Symbolic Logic 59 (1994), no. 3, 888-899.
[35] , A computational interpretation of modal proofs, Proof Theory of Modal Logic (H. Wansing, ed.), Kluwer, 1996, pp. 213-241.
[36] J. Peter May, Simplicial objects in algebraic topology, Chicago Lectures in Mathematics, The University of Chicago Press, 1967.
[37] John C. Mitchell, Foundations for programming languages, MIT Press, 1985.
[38] John C. Mitchell and Andre Scedrov, Notes on sconing and relators, Computer Science Logic '92, Selected Papers (E. Boerger et al., ed.), 1993, Available by anonymous ftp from host ftp.cis.upenn.edu and the file pub/papers/scedrov/rel.dvi, pp. 352-378.
[39] Michel Parigot, $\lambda \mu$-calculus: an algorithmic interpretation of classical natural deduction, 3rd International Conference on Logic Programming and Automated Reasoning (Saint-Petersburg, USSR), Lecture Notes in Computer Science, vol. 417, Springer Verlag, July 1992.
[40] Frank Pfenning and Rowan Davies, A judgmental reconstruction of modal logic, Invited talk, 1st Workshop on Intuitionistic Modal Logics and Applications, Trento, Italy., July 1999, Submitted to Mathematical Structures in Computer Science. Available at http://www-2.cs.cmu.edu/~~fp/papers/ mscs00.ps.gz.
[41] Frank Pfenning and Hao-Chi Wong, On a modal λ-calculus for S4, 11th Conference on Mathematical Foundations of Programming Semantics, 1995, Extended Abstract.
[42] Gordon Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoretical Computer Science 1 (1975), no. 2, 125-159.
[43] Tim Porter, Letter to the authors and Rajeev Goré, August 04th 1999, Available from T. Porter or the authors.
[44] Dag Prawitz, Natural deduction, a proof-theoretical study, Almqvist and Wiskell, Stockholm, 1965.
[45] M. E. Szabo, The collected papers of Gerhard Gentzen, North-Holland Publishing Company, Amsterdam, 1969.
[46] Philip Wickline, Peter Lee, and Frank Pfenning, Modal types as staging specifications for run-time code generation, ACM SIGPLAN Notices 33 (1998), no. 5, 224-235.
[47] Frank Wolter and Michael Zakharyashev, Intuitionistic modal logic, Tech. report, The Institute of Computer Science, January 1999, To appear in Logic in Florence, 1995. Available at http://www.informatik.uni-leipzig.de/ ~wolter/paper11.ps.
[48] Houman Zolfaghari and Gonzalo E. Reyes, Topos-theoretic approaches to modality, Category Theory, Lecture Notes in Mathematics, vol. 1488, Springer-Verlag, Como, Italy, 1990, pp. 359-378.

Jean Goubault-Larrecq goubault@lsv.ens-cachan.fr
http://www.lsv.ens-cachan.fr/~goubault
LSV/CNRS UMR 8643 \& ENS Cachan
61 , av. du président-Wilson
F-94235 Cachan Cedex

Éric Goubault goubault@aigle.saclay.cea.fr
http://www.di.ens.fr/~goubault
CEA (Recherche Technologique)
LIST/DTSI/SLA
F-91191 Gif-sur-Yvette

