
Optimal Implementation of Wait-Free Binary RelationsEric Goubault�CNRS & �Ecole Normale Sup�erieureAbstractIn this article we derive an algorithm for computing the\optimal" wait-free program on two processors that imple-ments a given relation from the semantics of a small shared-memory parallel language. This algorithm is compared withthe more general algorithm given in [9, 13] based on the par-ticipated set algorithm of [1]. This work is a natural followup of [7].1 Introduction and Related WorkThe work reported here is concerned with the robust or fault-tolerant implementation of distributed programs. More pre-cisely, we are interested in wait-free implementations on ashared memory biprocessor machine with atomic read/writeregisters (described in Section 2). This means that the pro-cesses executed on the two processors (say P and Q) mustbe as loosely coupled as possible so that even if one failsto terminate, the other will carry on computation and �nda correct partial result. This excludes all mutual exclusionconstructs such as semaphores, monitors etc. Wait-freenessis also intended to help solve an e�ciency problem: if one ofthe processors is much slower than the other, can we still im-plement a given function in such a way that the fast processwill not have to wait too much for the slow one?This �eld of distributed computing has received up to nowconsiderable attention. Typically, one is interested in im-plementing a distributed database in which remote trans-actions do not have to wait for each others. The kindof functions we have to consider then is more like coher-ence relations between the possible local inputs on eachprocessor and the �nal global output of the machine. Forinstance, when two transactions wish to change the sameshared item in the database in an asynchronous manner, onehas to choose which transaction will get the leading rôle, tokeep the database coherent. This is the well known con-sensus problem, or Byzantine generals problem. Formally,if we represent the values of the shared items by integers�LIENS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 ParisCedex 05, FRANCE, email:goubault@dmi.ens.frSubmitted to the ACM Symposium on Principles ofProgramming Languages'97.

then the consensus problem is the input/output relation� � (ZZ � ZZ)� (ZZ � ZZ) de�ned as follows,(a) For all integers i, (i; i)�(i; i),(b) For all i, j, (i; j)�(i; i),(c) For all i, j, (i; j)�(j; j).A pair of integers is a pair of local values on P , Q. Therelation � described above means that (respectively),(a) If P and Q start with the same local input value i,then they must end with the same output value i aswell. This corresponds to the fact that they can onlyagree on the value i in that case.(b) If P and Q start with di�erent local input values, sayi, j, then P and Q can agree on value i.(c) P and Q can also agree on value j.What if now one of the two processors fails to terminate?If we represent failure by the symbol ?, then the coherencerelation � has to be extended so that it expresses the be-haviour of the system in nasty cases,(d) For all i, (i;?)�(i;?).(e) For all j, (?; j)�(?;j).This means (respectively),(d) If Q fails then P must terminate and stick to its localvalue i.(e) If P fails then Q must terminate and stick to its localvalue j.In fact, it is well known that this relation cannot be imple-mented in a wait-free manner on a shared memory machinewith atomic read/write registers [5], whereas the followingapproximate consensus, called pseudo-consensus in [9], hasa solution,(a') For all i, j booleans, (i; j)�(i; i), (i; j)�(j; j). This isthe same as (a), (b) and (c) (for boolean values 0 and1).(b') (0; 1)�(1; 0).

Shared Memory

ProcessesP Q

x y

u, r, ... v, r, ...

WRITEWRITE
READFigure 1: Sketch of a shared memory machine with atomicread/write registers.(c') Same as (d) and (e).We have just slightly relaxed the agreement problem byadding rule (b0) specifying that we could agree except forinput (0; 1) where a minor error is tolerated. We can im-plement this one in a wait-free manner, as will be shown inSection 6.5.We follow here the geometric view on distributed computa-tion used in recent litterature in distributed protocols [2, 3,9, 10, 11, 12, 13, 15] and in some ways in recent litteraturein semantics of concurrency [6, 7, 8, 14, 17]. The idea is thatwait-free relations exhibit some geometrical properties (Sec-tion 5). We give another way of proving this (with respectto the way of M. Herlihy, N. Shavit and S. Rajsbaum), start-ing with a semantics of a shared memory language, bring-ing these considerations close to the semantics and languagepeople.Not only do these relations exhibit certain properties, butconversely any relation which exhibits these properties canbe constructed algorithmically at least in the case of twoprocessors. We derive a di�erent algorithm than the oneof [9, 13] based on the participating set algorithm of [1]directly from the semantics of our language (Section 6). Itsshort proof stems directly from its construction. Then, aftergiving a few examples, we compare both algorithms (Section7) and show that ours gives the programs with the minimumnumber of comparisons and accesses to the shared memoryfor all possible executions, hence produces the most e�cientcode for computing any wait-free relation.The case we are studying in this article (two processors only)should be considered as a demonstration of the non-trivialityof the characterization of what can be computed on a dis-tributed machine. It should also be considered as an inter-esting case when it comes to applications, since we believethat many computer systems are now designed with dupli-cate units, or with a low level of parallelism, just for in-creasing the speed of computation without going into deeptechnical questions due to massive parallelism.2 The machine and languageWe consider a shared memory machine with two processorssuch as the one pictured in Figure 1. The shared memoryis formalized by a collection of registers V = fx; yg. Eachprocessor P;Q has a local memory composed of registers rijin a set Vi (i = P;Q). All reads and writes are done inan asynchronous manner on the shared memory. There isno conict in reads, nor in writes since we ensure that thewrites of distinct processors are made on distinct parts ofthe shared memory (P is only allowed to write on x, Q isonly allowed to write on y).We use the following syntax for the shared memory lan-guage handling this machine. We �rst have a grammar for

instructions I, and then another one for processes P ,I := nilj scanj write(c)j r = f(r1; � � � ; rn)where c is a local register or a value (in ZZ), r; r1; � � � ; rn arethe local registers and f is any partial recursive function.P := Ij case (u1; u2; : : : ; uk) of(a11; a12; : : : ; a1k) : P� � �(an1 ; an2 ; : : : ; ank) : Pdefault : Pj P ;Pwhere r is any local register. Programs are Prog := (P j P)(we are considering programs on two processors only).Our convention for writing programs will be to name rPP , uin P , rPQ, v in P . We will use the same local names in Q,i.e. u for rQP and v for rQQ. In the writing of programs, wewill also shorten the global names xP by x and xQ by y.nil is the instruction that writes the local value of processorPi (i.e. rii) in the shared variable xi. It is in general used asa default action in case statements.scan reads the shared array in one round and stores it intosome of the local registers of the process in which it is exe-cuted. scan executed in Pi stores xj in rij (j being the nameof the other processor). We suppose (for convenience) thatit also writes its local value (rii for processor i) in the sharedvariable xi.write(u) executed in Pi writes u in xi.r = f(r1; � � � ; rn) computes the partial recursive function fwith arguments r1; � � � ; rn and stores the result in r.case is the ordinary case statement on any tuple of localregisters, with any �nite number of branches allowed.; is the sequential composition of processes.j is the parallel composition of processes.3 Concrete SemanticsWe denote both the shared and local stores by � which is afunction from V [([iVi) to ZZ, the domain of values. Thesemantics is given in terms of a transition system generatedby the rules below. The states of the transition system arepairs (fP;Qg; �) where P (respectively Q) is the text of theprogram yet to be executed on the �rst processor (respec-tively second processor) and � is the value of the global andlocal memories at this point of the computation.(nil) (fnil;P 0; Qg; �) nil- (fP 0;Qg; �[x u])(scan)(fscan;P 0;Qg; �) scan- (fP 0;Qg; �[v y; x u])2

(sync)(fscan;P 0; scan;Q0g; �) sync - (fP 0;Q0g;�[rPP ; rQP x; rPQ; rQQ y])(write)(fwrite(c);P 0;Qg; �) write(c)- (fP 0;Qg; �[x c])(calc)(f(r = f(r1 � � � rn));P 0;Qg; �) calc- (fP 0;Qg; �[r f(r1 : : : rn)])(case)If 9k, 8i, ui = aki ,0BBBBB@8>>>>><>>>>>:0BBBBB@ case (u1 : : : uk) of(a11 : : : a1k) : P1� � �(an1 : : : ank) : Pndefault : P 1CCCCCA ;P 0;Q9>>>>>=>>>>>; ; �1CCCCCA case- (fPk;P 0;Qg; �)Otherwise,0BBBBB@8>>>>><>>>>>:0BBBBB@ case (u1 : : : uk) of(a11 : : : a1k) : P1� � �(an1 : : : ank) : Pndefault : P 1CCCCCA ;P 0;Q9>>>>>=>>>>>; ; �1CCCCCA case- (fP ;P 0;Qg; �)We also add the obvious symmetric rules where we inter-change the rôles of P and Q.In [7], the semantics was given in terms of Higher-DimensionalAutomata (HDA). This played a key rôle in giving the geo-metric characterization of the computable wait-free relations(to be used in Section 5). As we restricted to binary relations(i.e. to biprocessor computations) the geometric propertieswe need to consider are graph-theoretic properties (mainlyabout the number of connected components). This is whywe simpli�ed the HDA semantics to its skeleton of dimen-sion one, i.e. the transition system generated by the rulesabove. Notice however that the (sync) rule is not a rulecaptured by the ordinary interleaving semantics since scanactually encapsulates two \atomic" actions, a write and thena read from memory. This rule is in general formalized as a2-dimensional partial transition (as in [4]).4 Abstraction of the SemanticsFrom the operational semantics of last section, we de�nesome kind of denotational abstraction. We only retain fromthe concrete semantics the relation between the input valueand the output value of each process.Formally, the input and output values are nodes of a graphthat we will call the compatibility graph SZZ = (V;E) de�nedas follows (see Figure 2 for a picture of S[1;M]\ZZ).

(P,1) (P,2) (P,3) ... (P,M)

(Q,1) (Q,2) (Q,3) ... (Q,M)Figure 2: The input graph for values in [1;M] \ ZZ.� its set of vertices is V = fPg � ZZ [fQg � ZZ,� its set of edges is E = f(v1; v2)=v1 = (P; r); v2 =(Q; s)g with the obvious boundaries.Following [7] we de�ne two projections pI and pO onto SZZ.pI only retains the initial value of the local variable u of Pand v of Q. pO only retains the �nal value of x for P and ofy for Q. Formally,� if (fP;Qg; �) is an initial state,pI(fP;Qg; �) = ((P;�(u)); (Q;�(v)))� if (f�; �g; �) is a �nal state (� denoting the empty string),pO(f�; �g; �) = ((P;�(x)); (Q;�(y)))The image by pI of the set of initial states for a programfP;Qg is called the input graph I. The image by pO of theset of �nal states is called the output graph O. They areparticular cases of the input complex and output complex(respectively) of [9]. They were seen as the initial and �nalcuts of the dynamic HDA semantics (respectively) in [7].Now the \denotational" relation � � I�O, or speci�cationgraph, induced by the semantics is de�ned as,(v1; v2)�(v01; v02)if and only if� (v1; v2) = pI(fP;Qg; �), (v01; v02) = pO(f�; �g; �0),� there is a trace in the semantics of P j Q starting atstate (fP;Qg; �) and ending at state (f�; �g; �0).We extend the relation � to nodes of the graph as well.Nodes of the speci�cation graph represent the solo execu-tions of P or Q. We write them as (v1;?) or (P; v1)for thesolo execution of P from state v1, (?; v2) or (Q; v2) for thesolo execution of Q. Then (v1;?)�(v01;?) if and only ifthere is a solo execution of P starting with private (i.e. lo-cal) state v1 and ending with state v01. We have the obvioussimilar de�nition for solo executions of Q.5 Geometric PropertiesSpeci�cation graphs represent the relation computed by pro-grams written in our wait-free language. Conversely, givena binary relation, can we determine whether it can be im-plemented in our language (that is, whether it is a wait-freebinary relation or whether it is the \denotational" semanticsof some program in our language)? The answer is yes, andcould be proved as a particular case of a general theorem3

(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(P,0) (Q,0)

∆

∆

∆

∆

Figure 3: The speci�cation of the binary pseudo-consensus.
(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆Figure 4: The speci�cation of the binary consensus.by M. Herlihy and N. Shavit [12]. The criterion in our caseis as follows. Suppose that P and Q ran alone (i.e. withthe other process not being �red in parallel) are the identityfunctions on their inputs, and that the allowed initial statesare such that �(x) = �(y) = ?, then,Lemma 1 Let fe1; : : : ; ekg be the image of a segment e =((P; u); (Q; v)) of the input graph under the relation �, i.e.the set of segments e0 such that e�e0. Then e1; : : : ; ek is apath from (P; u) to (Q; v) in the output graph.Sketch of proof. Looking at the semantics one can provethat we can only change one value at a time (i.e. x or y)making a connected path of value changes. Formally this isproved by induction on the operational semantics. 2This geometric condition is satis�ed for the pseudo-consensusrelation as one can see by looking at the speci�cation graphof Figure 3.The situation is not quite the same with binary consensus(Figure 4). An easy inspection shows that the image ofthe segment ((P; 0); (Q; 1)) is a set of two disconnected seg-ments, thus violating Lemma 1. Therefore, binary consensuscannot be implemented in a wait-free manner. The intuitionbehind this result is quite simple. Consensus requires thata process can tell whether it is the �rst or last to choose,because otherwise there is no way to be sure that the twoprocesses will agree on any value. This means it needs asynchronization, a break of the connexity of the cuts of thedynamics [7]. This is of course impossible in a wait-freelanguage.Similarly, if the input is given locally to the processes as wesupposed in Lemma 1, parallel or (or ordered binary consen-sus, see the speci�cation graph, Figure 5) cannot be imple-mented in a wait-free manner. There is though a wait-freesolution for parallel or if the input is stored in the sharedmemory right from the beginning:

(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆

Figure 5: The speci�cation of parallel or.Prog = P j QP = scan; Q = scan;case v of case u of1 : write(1) 1 : write(1)default : nil default : nil6 AlgorithmicsWe will derive the algorithm from Lemma 1. First of all wewill try to meet the requirements of the lemma. This willbe the aim of Sections 6.1 and 6.2. Then we will �nd a wayto describe in a recursive manner all paths e1; : : : ; ek thatappear in the lemma as image of a segment e. This is theaim of Sections 6.3.1 and 6.3.2. Finally we will recap thealgorithm in Section 6.4.6.1 Rotation of the speci�cation graphWe wish here to construct part of the code in charge ofensuring that we are left with solving a speci�cation problem� such that (u;?)�(u;?) and (?; v)�(?; v).Suppose (u;?)�(f(u);?) and (?; v)�(?;g(v)). By Church'sthesis, f and g are partial recursive functions. Then the pro-gram Prog = P (f) j Q(g) with P (f) and Q(g) de�ned belowsolves the speci�cation � if and only if P j Q solves the spec-i�cation �0 with (f(u);?)�0(f(u);?), (?;g(v))�0(?; g(v))and (f(u); g(v))�0(f(u0); g(v0)) whenever (u; v)�(u0; v0).P (f) = u = f(u); Q(g) = v = f(v);P QSketch of proof. The line of code before the calls toP and Q only acts on the local memory of each processor,hence there is no other action than the one deduced from thepurely sequential behaviour of P (f) and Q(g) respectively.26.2 Minimal unfolding of the output graphWe now suppose that we have to solve a speci�cation prob-lem with a relation which is such that it is the identity rela-4

a

b

a

b

cFigure 6: Example of a speci�cation graph.
c a

b

a

a

b

c 1

2

3Figure 7: Minimal unfolding (right) of the graph (left).tion when restricted to the vertices of the graph. We ful�llnow the hypotheses of Lemma 1.Let e = ((P;u); (Q; v)) be any segment of the input graph,and Ge be the subgraph of the output graph (connected byLemma 1), image of e by the speci�cation relation �. Let Gebe the directed graph generated by Ge where each segmenthas an inverse. To exemplify the whole process describedin this section, look at Figure 6 for the speci�cation graphcorresponding to a segment e = (a; b) (the graph Ge is atthe right-hand side of the picture), and to the left of Figure7 for a picture of Ge. An unfolding of Ge is any path p from(u;?) to (?; v) in Ge such that p traverses all segments ofGe. The minimal unfolding is the shortest of such paths.Its interest lies in the fact that from there we will be able togenerate a code for P and Q that will implement this subpartof the speci�cation graph. We will see in next section and inSection 7.2 that the length of this code is linearly related tothe length of this unfolding, hence the usefulness of �ndingthe shortest path to get the most e�cient code.An algorithm for determining such a minimal unfolding isbased on a breadth-�rst traversing strategy [16] of the graph,the traversing being complete when the criterion \havinggone through all non-oriented segments and ending at (?; v)"is met. For instance, this algorithm constructs the minimalunfolding of Ge which is pictured at the right of Figure 7.6.3 Main codeWe can now suppose that all paths image by � of any seg-ment of the input graph are made of distinct segments (oneshould say, oriented segments). We can also still supposethat � restricted to vertices is the identity relation.6.3.1 Subdivision of a segment into threesegmentsThe program Prog = P [nil] j Q[nil] with P and Q de�nedbelow (being programs with one hole [] in which we can plugany other program) implements the speci�cation graph ofFigure 8 (the segments not being pictured are mapped ontothemselves).

(P,x)

(Q,y’) (Q,y’)

(P,x’)

(Q,y)

(P,x)Figure 8: Subdivision of a segment into three segments.P = scan Q = scancase (u; v) of case (u; v) of(x; y0) : write(x0); [] (x; y0) : write(y); []default : nil default : nilSketch of proof. Using the semantics, we have the fol-lowing three possibilities, since the only possible interactionsare between the scan statements (the rest of the processesonly act on their local memory),(i) Suppose the scan operation of P is completed be-fore the scan operation of Q is started: P does notknow y so it chooses to write x. Prog ends up with((P; x); (Q; y)).(ii) Symmetric case: Prog ends up with ((P;x0); (Q; y0)).(iii) The scan operations of P and Q are simulaneous. Us-ing the sync rule we can show that Prog ends up with((P; x0); (Q; y)).2Example 1 - The binary pseudo-consensus whose speci�-cation graph is given in Figure 3 is precisely this programwith x = 0, x0 = 1, y = 0, y0 = 1.- We can carry on the example speci�ed in Figure 6, set-ting for instance a = (P;x), b = (Q; y0) and c = (Q; y)the program implementing the speci�cation (i.e. the sub-division of the segment (a; b) into the minimal unfolding((a; c); (c; a); (a; b))) is Prog = P j Q with,P = scan Q = scancase (u; v) of case (u; v) of(x; y0) : write(x) (x; y0) : write(y)default : nil default : nil6.3.2 Subdivision of a segment into a pathThe programProg = P (x1; y1; � � � ; xn; yn) j Q(x1; y1; � � � ; xn; yn)with P and Q de�ned below, implements the speci�cationgraph of Figure 9.P (x1; y1; � � � ; xn; yn) = P (x1; y1; xn; yn)[P (xn; yn�1; � � � ; x2; y1)]Q(x1; y1; � � � ; xn; yn) = Q(x1; y1; xn; yn)[Q(xn; yn�1; � � � ; x2; y1)]5

(P,x)

(Q,y’)

(P,x)

(Q,y)

(Q,y)

(Q,y)

(Q,y)

(P,x)

(P,x)

(P,x)
1

2

n-1

n

n

3

2Figure 9: Subdivision of a segment into a path.
(P,0)

(Q,1)

(Q,0)

(P,1)(Q,1)

(P,0)Figure 10: A speci�cation graph.where P (x1; y1; xn; yn) j Q(x1; y1; xn; yn) is the program oflast section with x = x1, y = y1, x0 = xn and y0 = yn.Sketch of proof. The idea is to subdivide the segment(x1; yn) in a recursive manner (see Figure 9). First subdivide(x1; yn) into f(x1; y1); (xn; y1); (xn; yn)g by using the pro-gram P (x1; y1; xn; yn) j Q(x1; y1; xn; yn). Then subdividerecursively (xn; y1) into the path of length n�1 (xn; yn�1; : : : ;x2; y1) using P ((xn; yn�1; : : : ; x2; y1) j Q(xn; yn�1; : : : ; x2; y1).Prog works since (as all the segments (xi; yi) are distinct)there is no interference between P (x1; y1; xn; yn) and Q(xn; yn�1;: : : ; x2; y1) nor between Q(x1; y1; xn; yn) and P ((xn; yn�1; : : : ;x2; y1). 2Example 2 Consider the speci�cation graph pictured in Fig-ure 10. The minimal unfolding is shown in two di�erentways in Figure 11. Using the result above, the code for imple-menting it is Prog = P j Q with P = P (0; 0; 0; 0)[P (0; 0; 1; 0)[P (1; 1; 1; 0)]] and Q = Q(0; 0; 0; 0)[Q(0; 0; 1; 0)[Q(1; 1; 1; 0)]].6.4 The algorithmThe speci�cation graph is given. The algorithm terminateswith an error (if the relation speci�ed is not wait-free) or
1

6

7
3

4

5
2 =

(P,0)

(P,1)

(P,1)

(P,0)

(Q,0)

(Q,1)

(Q,0)

(Q,0)Figure 11: The corresponding minimal unfolding and mini-mal path.

with the text of the two processes that implements the re-lation. The algorithm is as follows,� Determine the rotation code (Section 6.1),� For all segments e = ((P;u); (Q; v)) of the input graph,do,{ determine the connected subgraph Ge of the out-put graph, image of e under the speci�cation re-lation �,{ determine the minimal unfolding ((P;x1) : : : (P; xn);(Q; yn)) of Ge (Section 6.2),{ The program up to that point isProge = P (x1; : : : ; yn) j Q(x1; : : : ; yn)of Section 6.3.2,� Mix the code for all segments.We saw all the material needed in the previous sections ex-cept the \mixing" of the code for all segments. As a matterof fact, we have shown how to derive a code for the speci�-cation of just one input (a segment). Now we have to mixthe codes for all inputs.The idea here is quite simple: Mix(Prog1; Prog2) (Prog1 =P1 j Q1, Prog2 = P2 j Q2) is essentially a program whoseprocesses are Mix(P1; P2) and Mix(Q1;Q2) such that alltheir case entries are the union of the case entries of P1and P2 (respectively of Q1 and Q2). Formally, Mix is anoperation on processes that can be de�ned inductively whenapplied to the processes that subdivide segmentsif (x; y0) 6= (X;Y 0),Mix(P (x;y; x0; y0)[P1];P (X;Y;X 0; Y 0)[P2]) =scan;case (u; v) of(x; y0) : write(x0);P1(X;Y 0) : write(X 0);P2default : nilThere should also be shortcuts for representing more gen-eral programs, with loop constructs and parameterized casestatements. This is beyond the scope of this paper.6.5 Example, the binary caseAs in [7] we might be interested in the case where the valuesof the registers are booleans, i.e. 0 or 1. There is then aneasy classi�cation theorem of all binary wait-free relations,on which we can examplify our algorithmic construction.By Lemma 1 we know that all four segments of the inputgraph must be mapped onto paths of the output complex,between the respective images of the vertices. We also knowthat the output graph must be a subgraph of the binary2-sphere (which is the graph pictured in Figure 12).Therefore we have the three possibilities (a), (b), and (c) ofFigure 13 for the output graphs (up to \rotation").There are actually many more possibilities for the allowedrelations between the input and output complexes.6

Figure 12: The binary 2-sphere
(P,0) (Q,0)

(Q,1) (P,1)

(a) (b) (c)Figure 13: The three possible output graphs for wait-freebinary relations� A typical \type (a)" program is the identity for pro-cesses P and Q. The relation in this case is thereforethe identity relation on the binary 2-sphere. Noticethat there are other kinds of programs of this type.For instance the relation shown in Figure 14 can beimplemented as follows,Prog = P j QP = scan; Q = scan;nil case u of1 : write(not v)default : nil� Typical \type (b)" program is pseudo-consensus.� Typical \type (c)" programs are two constant pro-cesses in parallel.In fact all these can be seen to have a normal form of the typeMix(P (0; y0; x0; 0); P (0; y00; x00; 1); P (1; y1; x1; 0); P (1; y01; x01; 1)).
(P,0) (Q,0)

(Q,1) (P,1) (Q,1) (P,1)

(Q,0)(P,0)

∆

∆

∆

∆

∆Figure 14: A non-identity wait-free relation on the binary2-sphere

7 Comparison with related work7.1 The participating set and Herlihy's al-gorithmThe participating set algorithm aims at solving the simplexagreement task of [9], that is, a generalization to any numberof processors of the speci�cation graph of Figure 8. Whenparticularized to two processors, it can be written as follows,in pseudo Pascal (all arrays are in shared memory),procedure segment agree (i : proc id;my vertex : vertex value;k : refinement);input[i] := my vertex;for r := 1 to k doS[r][i] := particip set(i; f [r]);if r = 1then vertex[j;1] := hi; finput[k] j k 2 S[j; 1]gielse vertex[j; r] := hi; fvertex[k; r � 1] j k 2 S[j; r]gireturn(vertex(i; k));end segment agreeprocedure particip set (i : proc id;f : shared array);repeatf [i] := f [i]� 1;scan;S := fj j rij � f [i]g;until j S j� f [i];return(S);end particip setThe intuition behind this algorithm is to subdivide all seg-ments of the input graph, in a uniform manner, and enoughso that all the subdivisions of the segments we need to im-plement the relation can be deduced from it. As a matter offact, if we have subdivided a segment into N segments, thenall subdivisions into M segments, M � N can be deducedfrom it by just identifying the points in the �ner subdivisionwhich are not needed. The e�ect of the iterated participat-ing set algorithm is (as shown in Figure 15) to create atiteration i a subdivision of all segments into 3i segments.7.2 Complexity mattersAs one might have already noticed, we have a strong rela-tionship between the length of the minimal unfoldings, thenumber of times the program has to test the values of itsvariables, and the number of reads in the main memory.Let t(e) be the maximum number of tests that Prog has tomake for all executions starting at segment e. Let s(e) bethe maximum number of scan that Prog has to execute forall executions starting at segment e. Then, calling p(e) theminimal unfolding of Ge,7

etc.

i=1

i=2Figure 15: Herlihy's iterated subdivision on the binarysphere.
etc.

(Q,y’)

(Q,y’)

(P,x)(P,x)Figure 16: The worst complexity case for a speci�cationgraph.Lemma 2 s(e) = t(e) = length(p(e)) � 12Sketch of proof. Looking at the algorithm of Section 6,we see that all paths are recursively decomposed using theprograms of type P (x;y; x0; y0)[] j Q(x; y; x0; y0)[] such thatat iteration x, we have subdivided e into a path of length1 + 2x. The cost in terms of tests and accesses to the mainmemory of each iteration is one. This entails the result. 2Whereas in case of Herlihy's algorithm we have up to 3 �maxe(s(e)) accesses to the shared memory. In the case whenall segments are mapped onto a segment except for one (likethe one of Figure 16), the cost of computation is the samefor all inputs and can be quite enormous.The algorithm proposed in this article is optimal in the sensethat it minimizes s(e) and t(e) for all e whereas Herlihy's onesubdivides all segments a power of three times uniformly.Notice that the maximal complexity of the computation ofwait-free relations on [0;M] \ ZZ is not very high and isattained by our implementation for the speci�cation graphshown in Figure 16 (for all input segments). It is such thatfor all inputs e, s(e) = t(e) is asymptotically �M2 with12 � � � 1.Sketch of proof. In all Ge there areM2 segments. Hencean unfolding of Ge has at least M2 segments and at most2M2 segments. We use Lemma 2 to conclude. 2

8 ConclusionWe have shown that wait-free binary relations could be con-structed algorithmically and implemented in a small shared-memory language, giving another proof of the results of [13].This new proof is interesting since it comes directly, throughsimple transformation steps and geometric intuitions, fromthe semantics of the language. It is also interesting since itgives an optimal implementation of these relations in termsof the number of tests and read/write operations in the main(shared) memory the processes have to execute (a similar re-sult would hold for a message-passing paradigm).Numerous generalizations of this work should be considered.We have been trying to keep things as simple as possible inthis article for making the main ideas clear. A straightfor-ward generalization would be the construction of 1-resilientn-ary relations (i.e. relations on n processors whose imple-mentation can tolerate up to one failure of a process) sinceit involves the same sort of geometric phenomena on graphs.A far less straightforward generalization would be the con-struction of t-resilient n-ary relations with t � 2 (and inparticular the wait-free n-ary relations with n � 3 as donein [13]) since this involves higher-dimensional geometry.Acknowledgements Many thanks to Patrick Cousot,R�egis Cridlig, Franck V�edrine. Diagram macros from PaulTaylor.References[1] E. Borowsky. Capturing the power of resiliency andset consensus in distributed systems. Technical report,University of California in Los Angeles, 1995.[2] E. Borowsky and E. Gafni. Generalized FLP impossi-bility result for t-resilient asynchronous computations.In Proc. of the 25th STOC. ACM Press, 1993.[3] S. Chaudhuri. Agreement is harder than consensus: setconsensus problems in totally asynchronous systems. InProc. of the 9th Annual ACM Symposium on Principlesof Distributed Computing, pages 311{334. ACM Press,August 1990.[4] R. Cridlig. Semantic analysis of shared-memory concur-rent languages using abstract model-checking. In Proc.of PEPM'95, La Jolla, June 1995. ACM Press.[5] M. Fisher, N. A. Lynch, and M. S. Paterson. Impos-sibility of distributed commit with one faulty process.Journal of the ACM, 32(2):374{382, April 1985.[6] E. Goubault. Schedulers as abstract interpretations ofHDA. In Proc. of PEPM'95, La Jolla, June 1995. ACMPress, also available at http://www.ens.fr/~goubault.[7] E. Goubault. A semantic view on distributedcomputability and complexity. In Proceedings ofthe 3rd Theory and Formal Methods Section Work-shop. Imperial College Press, also available athttp://www.ens.fr/~goubault, 1996.[8] E. Goubault. The Geometry of Concurrency. PhD the-sis, Ecole Normale Sup�erieure, to be published, 1995,also available at http://www.ens.fr/~goubault.8

[9] M. Herlihy. A tutorial on algebraic topology and dis-tributed computation. Technical report, presented atUCLA, 1994.[10] M. Herlihy and S. Rajsbaum. Set consensus using arbi-trary objects. In Proc. of the 13th Annual ACM Sym-posium on Principles of Distributed Computing. ACMPress, August 1994.[11] M. Herlihy and S. Rajsbaum. Algebraic topology anddistributed computing, a primer. Technical report,Brown University, 1995.[12] M. Herlihy and N. Shavit. The asynchronous com-putability theorem for t-resilient tasks. In Proc. of the25th STOC. ACM Press, 1993.[13] M. Herlihy and N. Shavit. A simple constructive com-putability theorem for wait-free computation. In Pro-ceedings of STOC'94. ACM Press, 1994.[14] V. Pratt. Modeling concurrency with geometry. InProc. of the 18th ACM Symposium on Principles ofProgramming Languages. ACM Press, 1991.[15] M. Saks and F. Zaharoglou. Wait-free k-set agreementis impossible: The topology of public knowledge. InProc. of the 25th STOC. ACM Press, 1993.[16] Bob Sedgewick. Algorithms. Addison-Wesley, 1988.[17] R. van Glabbeek. Bisimulation semantics for higherdimensional automata. Technical report, Stan-ford University, Manuscript available on the web ashttp://theory.stanford.edu/~rvg/hda, 1991.

9

