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ABSTRACT. We study deadlocks using geometric methods based on generalized
process graphs [11], i.e., cubical complexes or Higher-Dimensional Automata
(HDA) [23, 24, 30, 35], describing the semantics of the concurrent system of
interest. A new algorithm is described and fully assessed, both theoretically
and practically and compared with more well-known traversing techniques.
An implementation is available, applied to a toy language. This algorithm not
only computes the deadlocking states of a concurrent system but also the so-
called “unsafe region” which consists of the states which will eventually lead
to a deadlocking state. Its basis is a characterization of deadlocks using dual
geometric properties of the “forbidden region”.

1. INTRODUCTION AND RELATED WORK

This paper deals with the detection of deadlocks motivated by applications in
data engineering, e.g., scheduling in concurrent systems. Many fairly different tech-
niques have been studied in the numerous literature on deadlock detection. Unfor-
tunately, they very often depend on a particular (syntactic) setting, and this makes
1t difficult to compare them. Some authors have tried to classify them and test the
existing software, like [5, 6], but for this, one needs to translate the syntax used by
each of these systems into one another, and different translation choices can make
the picture entirely different. Nevertheless, we will follow their classification to put
our methods in context. Notice that in this article, we go one step beyond and
also derive the “unsafe region”, i.e., the set of states that are bound to run into a
deadlocking state after some time. This analysis is done in order to be applied to
finding schedulers that help circumvent these deadlocking behaviours (and not just
for proving deadlock freedom as most other techniques have been used for). The
first basic technique is a reachability search, i.e., the traversing of some semantic rep-
resentation of a concurrent program, in general in terms of transition systems, but
also sometimes using other models, like Petri nets [29]. Due to the classical problem
of state-space explosion in the verification of concurrent software, such algorithms
are accompanied with state-space reduction techniques, such as wvirtual coarsening
(which coalesce internal actions into adjacent external actions) [33], partial-order
techniques (which alleviate the effects of representation with interleaving by pruning
“equivalent” branches of search) such as sleep sets and permanent (or stubborn) sets
techniques [17], [18], [34], and symmetry techniques (that reduce the state-space by
consideration of symmetry). These techniques only reduce the state-space up to
three or four times except for very particular applications.

The second most well-known technique is based on symbolic model-checking as in
[2, 3, 16]. Deadlocking behaviors are described as a logical formula, that the model-
checker tries to verify. In fact, the way a model-checker verifies such formulae 1s
very often based on clever traversing techniques as well. In this case, the states
of the system are coded in a symbolic manner (BDDs etc.) which enables a fast
search.

Then many of the remaining techniques are a blend of one of these two with some
abstractions, or are compositional techniques [36], or based on dataflow analysis [12],
or on integer programming techniques [1] (but this in general only relies on necessary
conditions for deadlocking behaviors).
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Based on some old ideas [11] and some new semantic grounds [21], [23], [24], [30],
[35], (see §2), we have developped an enhanced sort of reachability search (§2.3).
This should mostly be compared to ordinary reachability analysis and not to virtual
coarsening and symmetry techniques because these can also be used on top of ours.
A first approach in the direction of virtual coarsening has actually been made in [9].
Some assessments about its practical use, based on a first implementation applied
to simple semaphore programs and also based on some general complexity reasons
are made in §3.4 and §5.5.

In some ways, this deadlock detection algorithm (which determines the so-called
“unsafe region” made of all states bound to run some time or another into a
deadlock) is still a combinatorial search, which only takes advantage of the truly-
concurrent representation of actions.

In §4, we propose a new algorithm based on an abstraction (in the sense of
abstract interpretation [7, 8]) of the natural semantics, which takes advantage of
the real geometry of the executions. This one is an entirely different method from
those in the literature.

We believe that this technique, which is assessed in §5.4 and §5.5 both on theo-
retical grounds and on the view of benchmarks, can be applied in the static analysis
of “real” concurrent programs (and not only at the PV language of §3.1) by suitable
compositions and reduced products with other abstract interpretations, as sketched
in §7.1.

As a matter of fact, in recent years, a number of people have used ideas from
geometry and topology to study concurrency: First of all, using geometric models
allows one to use spatial intuition; furthermore, the well-developed machinery from
geometric and algebraic topology can serve as a tool to prove properties of concur-
rent systems. A more detailed description of this point of view can be found in
J. Gunawardena’s paper [24] — including many more references — which contains a
first geometrical description of safety issues. In another direction, techniques from
algebraic topology have been applied by M. Herlihy, S. Rajsbaum, N. Shavit [25, 26]
and others to find new lower bounds and tmpossibility results for distributed and
concurrent computation.

The authors participated in the workshop “New Connections between Mathe-
matics and Computer Science” at the Newton Institute at Cambridge in November
1995. We thank the organizers for the opportunity to get new inspiration. This
paper is the first in a series of papers resulting from the collaboration of two math-
ematicians (L. Fajstrup & M. Raussen) and a computer scientist (E. Goubault). E.
Goubault’s work was also done partly while at C.N.R.S, Ecole Normale Supérieure
and while visiting Aalborg University.

2. MODELS OF CONCURRENT COMPUTATION

2.1. From Discrete to Continuous. A description of deadlocks in terms of the
geometry of the so-called progress graph (cf. Ex. 1) has been given earlier by S. D.
Carson and P. F. Reynolds [4], and we stick to their terminology. The main idea
in [4] is to model a discrete concurrency problem in a continuous geometric set-up:
A system of n concurrent processes will be represented as a subset of Euclidean
space IR" with the usual partial order. Each coordinate axis corresponds to one of
the processes. The state of the system corresponds to a point in R”, whose 1’th
coordinate describes the state (or “local time”) of the i’th processor. An execution
1s then a continuous increasing path within the subset from an initial state to a final
state.

Example 1. Consider a centralized database, which is being acted upon by a finite
number of transactions. Following Dijkstra [11], we think of a transaction as a
sequence of P and V actions known in advance — locking and releasing various
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records. We assume that each transaction starts at (local time) 0 and finishes at
(local time) 1; the P and V actions correspond to sequences of real numbers between
0 and 1, which reflect the order of the P’s and V’s. The initial state is (0,...,0)
and the final state is (1,...,1). An example consisting of the two transactions
Ty = P, PV V, and Ty = P, P, V,V} gives rise to the two dimensional progress graph
of Figure 1.
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FicURE 1. Example of a progress graph

The shaded area represents states, which are not allowed in any execution path,
since they correspond to mutual exclusion. Such states constitute the forbidden
area. An erecution path is a path from the initial state (0,0) to a final state (1, 1) or
Pb, Pa) avoiding the forbidden area and increasing in each coordinate - time cannot
run backwards.

In Ex. 1, the dashed square marked ”Unsafe” represents an unsafe area: There
is no execution path from any state in that area to the final state (1,1). Moreover,
its extent (upper corner) with coordinates (Pb, Pa) represents a deadlock. Likewise,
there are no execution paths starting at the initial state (0,0) entering the unreach-
able area marked ” Unreachable”. Concise definitions of these concepts will be given
in §2.2.

Finding deadlocks and unsafe areas is hence the geometric problem of finding
n-dimensional “corners” as the one in Ex. 1. Back in 1981, W. Lipski and C. H.
Papadimitriou [28] attempted to exploit geometric properties of forbidden regions
to find deadlocks in database-transaction systems. But the algorithm in [28] does
not generalize to systems composed of more than two processes. S. D. Carson and
P. F. Reynolds indicated in [4] an iterative procedure identifying both deadlocks
and unsafe regions for systems with an arbitrary finite number of processes.

In this section, we present a streamlined path to their results in a more gen-
eral situation: Basic properties of the geometry of the state space are captured in
properties of a directed graph — back in a discrete setting. In particular, deadlocks
correspond to local marima in the associated partial order.

This set-up does not only work for semaphore programs: In general, the forbidden
area may represent more complicated relationships between the processes like for
instance general k-semaphores, where a shared object may be accessed by k, but
not k + 1 processes. This is reflected in the geometry of the forbidden area F', that
has to be a union of higher dimensional rectangles or “boxes”.

Furthermore, similar partially ordered sets can be defined and investigated in
more general situations than those given by Cartesian progress graphs. By the
same recipe, deadlocks can then be found in concurrent systems with a variable
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number of processes involved or with branching (tests) and looping (recursion)
abilities. In that case, one has to consider partial orders on sets of “boxes” of
variable dimensions. This allows the description and detection of deadlocks in the
Higher Dimensional Automata of V. Pratt [30] and R. van Glabbeek [35] (cf. E.
Goubault [21] for an exhaustive treatment).

In the mathematical parts below, i.e., §2.2 and §2.3, the explanations have been
voluntarily simplified. The full treatment of the deadlock detection method is done
entirely in the algorithmic and implementation part, §3.

2.2. The continuous setup. Let I denote the unit interval, and I” = I} x -+ - x I,
the unit cube in n-space. This is going to represent the space of all local times
taken by n processes. We call a subset R = [a1,b1] X - - - X [an, by] a hyperrectangle!,
and we consider a set F = J] R that is a finite union of hyperrectangles R =

[a},bi] x --- x [a},bl]. The interior F of F is the “forbidden region” of I"; its

complement is X = I\ }% Furthermore, we assume that 0 = (0,...,0) € F', and
1=(1,....1)¢F.

Remark 1. We consider the interior of F' as a subspace of I"; e.g. the interior of

R=[1/4,1/2] x [0,1] in I? is R=]1/4,1/2[x[0,1] |

Definition 1. e 1. A continuous path « : I — I” is called a dipath (directed path)
if all compositions a; = pryoa : I = I, 1 < i< n, (pry : I" = I denoting the
projection on the ’th coordinate) are increasing: t; < ts = o;(t1) < ay(ta), 1 <
1< n.

e 2. A pointy € X =1\ }% is in the future 1 x of a point x € X if there 1s a
dipath o : I = X with a(0) = x and «(1) = y. The past | x is defined similarly.

e 3. A point x € "™\ ;7 is called admussible, if 1 €1 x; and unsafe else.

e 4. Let A(F) C I™ denote the admissible region containing all admissible points
in X, and U(F) C I" the unsafe region containing all unsafe points in X.

e 5. A point x € X is a deadlock if T x = {x} and x # 1.

In semaphore programs, the hyperrectangles R’ characterize states where two
transactions have accessed the same record, a situation which is not allowed in such
programs. Such “mutual exclusion”-rectangles have the property that only two of
the defining intervals are proper subintervals of the [;. Furthermore, serial execution
should always be possible, and hence F' should not intersect the 1-skeleton of I™
consisting of all edges in the unit cube. These special features will not be used in
the present paper.

A dipath represents the continuous counterparts of the traces of the concurrent
system, which must not enter the forbidden regions.

2.3. Continuous to discrete - a graph theory approach. We use geometrical
ideas to construct a digraph (i.e., a directed graph) where deadlocks are leaves (i.e.,
the nodes of the digraph, if any, that have no successors) and the unsafe region
is found by an iterative process. The setup is as in §2.2. For 1 < j < n, the set
{a}, b§|1 < i < r} C I; gives rise to a partition of I; into at most (2r+1) subintervals:
I; = |J Ik, with an obvious ordering < on the subintervals ;;. The partition of
intervals gives rise to a partition R of I into hyperrectangles Iy, x - -+ x L5, with
a partial ordering given by

IlklX"'ankngflk’lX"'ank;@IjkjSIjk;a 1<y <n.

Lwhich has the property that all its faces are parallel to the coordinate axes. In dimension 2
this is called an isothetic rectangle [31]
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Remark 2. 1. We will not worry about the fact, that there are nonempty inter-
sections of the hyperrectangles. Defining everything with halfopen intervals
would be an unnecessary complication.

2. Admissibility with respect to the forbidden region F' can be defined in terms of
these hyperrectangles: Two points in the same hyperrectangle of the partition
above are either both admissible or both unsafe points.

3. The hyperrectangle Rq containing 1 is the global mazimum for R, the hyper-
rectangle Ro containing 0 is the global minimum.

The partially ordered set (R, <) can be interpreted as a directed, acyclic graph,
denoted (R,—): Two hyperrectangles R, R' € R are connected by an edge from
R to R' — denoted R — R’ —if R < R' and if R and R’ share a face. R’ is then
called an upper neighbor of R, and R a lower neighbor of R'. A path in the graph
respecting the directions will be denoted a directed path.

For any subset R’ C R we consider the full directed subgraph (R', —). Partic-
ularly important is the subgraph Rz consisting of all hyperrectangles R C X =

[
I"\ F.

Definition 2. Let R’ C R be a subgraph. An element R € R’ is a local maximum
if it has no upper neighbors in R'. Local minima have no lower neighbors. A
hyperrectangle R € Rp is called a deadlock hyperrectangle «f R # R1, and if R
15 a local mazimum with respect to Rp. An unsafe hyperrectangle R € Rp is
characterized by the fact, that any directed path o starting at R hits a deadlock
hyperrectangle sooner or later [4].

Remark 3. 1. An element R € R is a deadlock if R # Rq, and if all its upper
neighbors in R are contained in F'. Deadlocks in R are the maximal corners
of the unsafe regions.

2. Unreachable hyperrectangles can be defined similarly. Local minima (# Ro)
are their minimal corners.

In order to find the set U of all unsafe points — which is the union of all unsafe
hyperrectangles — apply the following. (1) Remove F' from I™ giving rise to the
directed graph (Rp,—). (2) Find the set Sy of all deadlock hyperrectangles (local
maxima distinct from Rq) with respect to Rp. Let F; = FUS;. (3) Let R
denote the full directed subgraph on the set of hyperrectangles in I™ \ F, i.e., after
removing Sy. (4) Find the set Sy of all deadlock hyperrectangles with respect to
Rp,. Let Fy = F1 U Sy, Carry on with the same completion mechanism etc.

Notice that 1t is enough to search among the lower neighbors of elements in F in
step 2, and that the only candidates for deadlocks in step 4 are the lower neighbors
of elements of S;. Since there are only finitely many hyperrectangles, this process
stops after a finite number of steps, ending with S, and yielding the following result:

Theorem 1. e 1. The unsafe region is determined by U(F) = |J] S;.

o 2. The set of admissible points is A(F) = I" \ (}% UU(F)). Moreover, any
directed path in A(F) will eventually reach Ry.

Proof.  Only the last assertion has still to be shown. The set A(F) is non-empty
since it contains the global maximum R;. Now fix any directed path starting
from an arbitrary hyperrectangle in A(F). Tt will run through (finitely many)
hyperrectangles in A(F) until it reaches a local maximum. This local maximum
must be the global maximum Ry, since A(F) does not contain any deadlock. O

In order to show the applicability of the previous method, we explain how to give
semantics of a toy language in terms of these forbidden regions, how to implement
it, and how to implement the deadlock detection algorithm.
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3. IMPLEMENTATION OF THE COMBINATORIAL APPROACH

3.1. The language. We consider in the following the language PV whose syntax is
defined below. Given a set of objects O (like shared memory locations, synchroniza-
tion barriers, semaphores, control units, printers etc.) and a function s : O — IN*t
associating to each object a, the maximum number of processes s(a) > 0 which
can access it at the same time. Any process Proc can try to access an object a by
action Pa or release it by action Va, any finite number of times. In fact, processes
are defined by means of a finite number of recursive equations involving process
variables X in a set V: they are of the form X = Procg where Procy 1s the process
definition formally defined as,

Procy = € | Pa.Procy | Va.Procy
Procy+ Procg | Y

(e being the empty string, a being any object of O, Y being any process variable
in V) A PV program is any parallel combination of these PV processes, Prog =
Proc | (Proc | Proc). The typical example in shared memory concurrent
programs is O being the set of shared variables and for all @ € O, s(a) = 1. The
P action 1s putting a lock and the V' action is relinquishing it. We will suppose in
the sequel that any given process can only access once an object before releasing it.
We also suppose that the recursive equations are “guarded” in the sense that for all
process variables X | Procx does not contain a summand of the form X.7T', T being
any non-empty term.

3.2. The semantics. The semantics of the PV language as a graph of hyperrect-
angles is as follows?. An environment is a function p : O — IN, whose value for an
object a represents the number of times a can still be accessed by the processes. A
hyperrectangle or state of the program is a pair (C, p) where C'is an element of the
language, p is a context. Basically, (' represents the program that remains to be
executed and p is the current context in which ' has to be executed.

The representation of the graph of hyperrectangles is done by explicitly repre-
senting the glueing faces which define the “neighboring” relation between hyperrect-
angles (as in §2.3). Look at Figure 2 for an explanation in the case of the semantics
of (Pa.Va | Pa.Va). The collection of faces of each hyperrectangle is separated in
n start faces, here for example for the 2-rectangle (i.e., a hyperrectangle of dimen-
sion 2) A, dJ(A) and dj(A), and n end faces, here d}(A) and di(A). The order
between the different hyperrectangles; as sketched in this example by the graph at
the right-hand side of Figure 2, is generated by the relation “having a d' face equal
to a d° face”. Here A < B because ¢ = dj(B) = d}(A). This encoding is standard
in the HDA framework where faces are (n — 1)-transitions and hyperrectangles are
n-transitions (see [21] for more explanations).

Let us separate out our semantics in two distinct phases. Consider first the
“pure” terms consisting of those terms for which the syntactic tree of each process
begins by a sequential composition of a P or a V with any term. Any set of k
PV processes in parallel X | --- | X may generate k-rectangles according to the
environment it is executed in. Supposing none of these processes are empty, we
write X; = @a;.Y;, 1 <@ <k, where Q; is Por V, a; € O and Y] 1s a process. We

then have the following semantic equation describing the semantics [X; | - - | Xg]p
in environment p. If for all @ € O, p(a) > 0,
[Xo |- [ Xelp=(Xa | | Xgyp)+ Vo[ Xo |- | Xelpr + -
X | | X | Yelpe

2This had already been “pictured” under the name of process graphs by E.W.Dijkstra [11],
Carson and Reynolds [4], J. Gunawardena [24] in the case of terms with no choice operator nor
recursive equations. The formal semantics in terms of this graph of hyperrectangles, or HDA [21]
is new here.
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FIGURE 2. Semantics of (Pa.Va | Pa.Va) as a discretisation of its
geometry (left), as a graph of hyperrectangles (right).

where p;, 1 < i < k is such that p;(b) = p(b) for all b € O, b # a;, and p;(a;) =
pla;) —1if Q; = P or pi(a;) = pla;) + 1if Q; = V. If there is an a € O, p(a) < 0,

[Xo - I Xk lp=Dn [ Xo |- [ Xalpr+ -+ IX | | Xema [ Vil
with the same environments p;, 1 <1 < k.
These equations should be understood as follows. (Xy | -+ | Xg,p) is a k-

rectangle, which is not forbidden if and only if all & processes can progress. This is
not the case if one of the processes is waiting for an object to be released (in the
second case, there is an a € O such that p(a) < 0). If we want to generate only
reachable states, then it is enough to forget the second semantic equation. In the
first case, the k start boundaries and the k& end boundaries of dimension k£ — 1 of this

k-rectangle are®, d%(Xy | -+ | Xp,p) = (X1 | -+ | Xi | -+ | X&,p,4), (the face at
the right-hand side is defined if the hyperrectangle at the left-hand side is defined),
and d} (X1 |- | Xg) = (X1 |-+ | Xi |-+ | Xg,pi,i). This last component for the

faces 1s not needed in general, but it permits to unfold entirely the graph of cubes
(thus the semantics does not create fake unfoldings that the verification algorithms
would believe to be divergences — see the discussion of §3.3.1 and §3.3.2).

Now for the “non-pure” terms, we use the following two rules in order to get pure
terms,

(Elimination of process variables)

X0 VY5 o] Xl = X |- | Proey |- | X
(Elimination of plus)
[0 e Vit 2 | | Xado = X0 1Yo | Xl X |- 22| Xl

The first equation eliminates the process variable Y by its definition Procy.
The second equation eliminates the choice operator in the definition of the ith
process. The plus symbol at the right hand-side of this equation denotes an amal-
gamated sum (i.e., a union) of its two arguments, identifying the face (X | --- |
Yi| - Xk, p, i) with the face (X1 |-+ | Zi | -+ X, p, 0).

Notice that using this semantic definition, we can define directly the n-transitions
of a program consisting of n processes in parallel, generating also the (n — 1)-
transitions, but not the transitions of lower dimension.

3.3. Implementation of the first deadlock algorithm. A general purpose C
library has been written to generate and manipulate graphs of hyperrectangles (in
fact, any HDA). Basically such a graph is described by incidence matrices. To be
more precise, R is represented by a 4uple (R%_ |, RL | R% Rl). R! is the (sparse)
matrix whose rows R! (z) are indexed by the hyperrectangles z (states of dimension

3The notation Xq,--- ,X;, -+ means that we have the collection X1, X5, - except X;.
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F1GURE 3. An example of cyclic behavior and its 1-unfolding

n as described in the semantics), and which contain the corresponding lower (for
i = 0) and upper (for i = 1) boundaries of z. R _, is the co-incidence matrix whose
rows R!_|(y) are indexed by the faces y (states of dimension n — 1) and consist of
the hyperrectangles whose lower boundary (for ¢ = 0) contains y or whose upper
boundary (for ¢ = 1) contains y.

We describe here how to compute the subset D of the set of ascendants of a given
set S of states such that all its descendants finally (only) reach S. We suppose that
S is organized into a FIFO queue ¢q. We can perform operations empty?, eng (for
enqueue) and deq (for dequeue) on it which should have an obvious semantics. We
suppose that S is only composed of hyperrectangles of dimension n, n fixed. It can
be constructed once and for all or it can be constructed on the fly, when bound-
aries are demanded by the algorithm. This corresponds to the deadlock algorithm
sketched in §2.3 when S is taken to be the set of forbidden hyperrectangles.

3.3.1. Cycles as divergences. The standard way of constructing D is to compute
the ascendants as the transitive closure of the “parent” relation (by iteration) and
similarly for the descendants. It is actually quite expensive and is not necessary
in our case. To be more precise, the algorithm below is sound and complete, in
the sense that it computes faithfully D if there is no cycle in the semantics, or if
we consider cycles to represent finite and infinite paths (i.e., cycles contain non-
deadlocking paths). We discuss the case when cycles represent only finite paths in
§3.3.2.

We suppose that an integer m, is associated to each hyperrectangle = generated
by the semantics, such that,

e for any n-cube z in S the integer m, is initialized to 0,

e for any other hyperrectangle, m, is initialized to its number of sons

Then,

e the multiset P, of hyperrectangles, parents of a given hyperrectangle z is the
union of the lists R._,(y) for y € RS ().

e the algorithm for finding D is as follows. D is empty at the beginning, then,
[(1)] if empty? then we have reached the result.
[(2)] decrement m, by one for all z € Pye,.

[(3)] if in this process, one of the z considered has m, equal to zero then add
z to D and eng(z).
[(4)] loop back at point (1).

3.3.2. Clycles as finite iterations. Look at Figure 3 (notice that here, the forbidden
region is represented by the dashed lines). If we use the deadlock algorithm of
§3.3.1 on the picture at the left, then we detect no deadlock nor unsafe region.
Then 2 has my; = 3 because it has two sons in the forbidden region and the third
one is y. Canceling the two forbidden 2-rectangles leaves m; = 1 at the end of
the algorithm and « 1s not detected as an unsafe 2-rectangle. It is true that x has
one non-forbidden son (y) but it allows for a non-deadlocking behaviour only if we
consider infinite paths through  and y. If we are only considering finite paths, then
we are bound to end up blocked by the forbidden region.
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FIGURE 4. unfold once FIGURE 5. unfold twice

In fact there 1s no way to determine unsafe regions in that case without looking
at all unfoldings of the terms, as the following example shows. We will see in Section
7.1 an answer to this problem (in the case of the second algorithm).

Example 2. A=Pa.Vd.Pb.Va.Pd.Vb.Pe.Ve.A
B=Pd.A.Pf.Vd.VE
C=Pf.Pe.Pa.Ve.Pb.Va.Pd.Vb.Pa.Vd.Pb.Va.Pd.Vb.Vd.VEf
PROG=B|C

The unfolding of the term A just once qives Figure . The unfolding of the term
A twice gives Figure 5. The red regions delimit the unsafe regions. Notice how
the unsafe region evolves after each unfolding. The two apparent deadlocks are not
deadlocks - they just force reentrance of the loop, and hence there is no unsafe region.

3.4. Complexity issues. We let the volume Vol(S) of a set S of nodes (hyper-
rectangles) in R be the number of its elements. The dominant part of the algorithm
is the removal of F' and finding the deadlocks. To remove F' and find S; one has to
check for each R € R’ whether it is already marked in F'. Only if the answer is no,
the 2n operations of disconnecting R from its n sons and n parents and possibly,
a single addition (of a parent) to, resp. removal (of R) from, the list of potential
deadlocks, has to be performed. This implies:

Proposition 1. For a pure term (i.e., no + nor any recursion) consisting of n
transactions with a forbidden region F' = |J] R', the worst case complexity of the

algorithm is of order nVol(F) + X7 Vol(R!).

Remark 4. Eramples reaching the worst case have a high amount of global syn-
chronization, which in general should be avoided for good programming practice.
Hence one would expect a much better behaviour in the average situation. In fact,
if nVol(F) is the dominating part, the complexity is at most nN (where N is the
number of states).

4. CONTINUOUS TO DISCRETE - INVOKING THE GEOMETRY

Using the combinatorial geometry of the boundary 0F of the forbidden region,
we are now going to describe the deadlocks in X and the unsafe regions associated
to them in a more efficient way.

Let again ;7C I"™ denote the forbidden region and let X = '\ }% In the sequel,
we need the following genericity property of the hyperrectangles in F:
[ o

If iy # iy and R N Riz# ), then (a;1 = aé? = aé»l = 0 and b;l = bé? = b;l =
1,1<j<n).
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This property (“no interior faces at the same level”) is obviously satisfied for
forbidden regions for “mutually exclusion” models, in particular for PV-models.

We want to include deadlocks on the boundary dI™ into our description: In a
mutual exclusion model, points on 1™ stand for situations where not all processors
have started their execution or where some of them already have terminated. To
circumvent lengthy case studies — and with an eye to implementation — we slightly
change our model in order to include the upper boundary 9, (I") = {x € I"|3; :
x; = 1} of I” into the forbidden region. To this end, let I=1[0,2)and I" C I".

Slightly changing the notation, let Ri = [0,2]°~% x [1,2] x [0,2]"7%, 1 < i < n,
and shifting indices by n, R*t! .. .,15”\:7“ will denote the hyperrectangles used in
the previous model F' of the forbidden region — modified to maintain genericity: If

. . — ~ 0 ~ —~ —
b = 1, then let 07" = 2. Then J} R' = I"\ I", and F = FUU} R = UM Ri

By an abuse of notation, we will from now on write R’ for R and F for F'.

@) 1 2

FIGURE 6. Extending the model

For any nonempty index set J = {i1,...,ix} € {1,...,n+ r} define
RT=Rn...nR™ =[a]  b]] x - x[a],b]]

n»’'n

. J _ y . J _ . y . . . .
with aj = max{a;[i € J} and b5 = min{b%|i € J}. This set is again an n—rectangle
unless it is empty (if a? > bg for some 1 < j < n and k,{ € J). Let a/ =
[af,...,a)] = min R/ denote the minimal point in that hyperrectangle.

For every 1 < j < n, we choose a“f as the “second largest” of the a?’, le., a“f =

aé»s with aé»’ < a;s < a“f for aé»’ + a“f, and consider the “half-open” hyperrectangle
Ul =laf,af] x - x];lz, al]l “below* R7.

Theorem 2. 1. A point x € X is a deadlock if and only if x # 1 and there s

an n-element index set J = {iy,...,in}, with R? # 0 and x = a’ = min R’.

2. Ifx = min R’ is a deadlock, then the “half-open” n — rectangle U7 is unsafe,

V]
i.e., every dipath in I" from a point 'y € U’ will eventually enter F.

Proof.

1. Let x = a’/ = min R/. Every element y = [a{ +¢1,...,a] +¢,], £ > 0 and
0. o
0< ZT ¢; small; 1s contained in at least one of the sets R’¢ and thus in F.

On the other hand, let x = [21,...,2,] € X be a deadlock. Then, for
small values ¢ > 0, the element x* = [zy,...,2; +¢,...,2,] is contained in

V]
one of the sets R/:. Hence, x € R’ with J = {j1,...,jn}. This set contains
V]
n different elements: If, e.g., R/t = R’2 then x! ¢RJ1!
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V]

Moreover, x is an element of the set R/ \ | J R/t consisting of the 2" points
with all coordinates either af or b7. Obviously, the only possible deadlock
point in this set is x = a’ = min R”.

2. Let a: I — X be a dipath with a(ty) € U7 and a(ts) € U7 for some ¢ < ts.
There has to be a maximal value ¢ty <#; < #3 such that a(t;) € U7 . Moreover,
a(ty) € 04U = {y € U713k : yp = af}, and thus a(t; + ¢) is contained in

V]

. [}
one of the sets R’ and thus in F. Contradiction!

O
As an immediate consequence, we get a criterion for deadlockfreeness that is easy
to check:

Corollary 1. A forbidden region F = UTH R' C I™ has a deadlockfree complement
X = 1"\ F if and only if for any index set J = {iy,... i} with |J| =n

R =R*n-..AR" =0 or R = {1} or min R? €F .

Remark 5.

1. In geometric terms, U7 is the “corner under a’” | i.e., a hyperrectangle whose
“upper boundary” d; (U”), i.e., the faces containing a’, consists of faces con-
tained in the “lower boundaries” of the R i € J.

2. In general, the hyperrectangle U7 will be considerably larger than the hyper-
rectangles from the graph algorithm; it will contain several of the hyperrect-
angles in the partition R.

° o
3. It is possible that U7 has non-empty intersection with F — cf. Figure 9.

4. The n points a; = (ai,...,af,...,al) are critical points of coinder I of the

Rt I
sum function f(zy1,...,2,) = #1 + - -+ 2, restricted to JF. We were led to

Thm. 2 by this type of differential geometric considerations.

In general, the hyperrectangle U7 will be considerably larger than the hyperrect-
angles from the graph algorithm; it will contain several of the hyperrectangles in
the partition R. This is where we gain in efficiency: look at Figures 7, 8, 9 and
10. They describe the 3 iterations needed in the following streamlined algorithm,
whereas the first algorithm needed 26 iterations (two for each of the thirteen unsafe
2-rectangles).

In analogy with the graph algorithm we can now describe an algorithm finding
the complete unsafe region U C I™ as follows: Find the set D of deadlocks in X and,
for every deadlock a’ € D, the unsafe hyperrectangle U7. Let F| = FU Uarep U’.
Find the set Dy of deadlocks in X; = X\ F; C X, and, for every deadlock al € D,
the unsafe hyperrectangle U7, Let Fy = I} U UafeD1 Ul ete.

This algorithm stops after a finite number n of loops ending with a set U = F,
and such that A(F) = X, = X \ U does no longer contain any deadlocks. The set
U(F) = U\ I_(U) consists precisely of the forbidden and of the unsafe points.

The example “s2” in Appendix A demonstrates that there may be arbitrarily
many loops in this second algorithm — even in the case of a 2-dimensional forbidden
region associated to a simple PV-program: Obviously, this “staircase” producing
more and more unsafe hyperrectangles can be extended ad libitum by introducing
extra rectangles R’ to I along the “diagonal”.

We now show the applicability of the method by exemplifying it on our toy PV
language.
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FIGURE FIGURE FIGURE FIGURE
7 8 9 10

5. IMPLEMENTATION OF THE GEOMETRIC ALGORITHM

5.1. The semantics. Now we have a dual view on PV terms. Instead of represent-
ing the allowed hyperrectangles, we represent the forbidden hyperrectangles only.
Notice that up to now, we have only implemented the algorithm on pure terms
(i.e. no recursion nor plus operator). The full treatment of the PV language is
postponed until Section 7.1. Let T'= X3 | --- | X, (for some n > 1) be a pure
term (i.e. no recursion nor plus operator) of our language such that all its subterms
are pure as well. We consider here the X; (1 < i < n) to be strings made out of
letters of the form Pa or Vb, (a,b € O). X;(j) will denote the jth letter of the
string X;. Supposing that the length of the strings X; (1 < ¢ < n) are integers I;,
the semantics of Prog is included in [0,4] x --- x [0,1,]. A description of [Prog]
from above can be given by describing inductively what should be digged into this
hyperrectangle. The semantics of our language can be described by the simple rule,
[k1,71] X - X [kn,ra] € [X1 | -+ | Xn]2 if there is a partition of {1,--- n} into
UUV with card(U) = s(a) + 1 for some object a with, X;(k;) = Pa, X;(r;) = Va
foreeU and k; =0, r; =1; for je V.

5.2. The implementation. A general purpose library for manipulating finite unio—
ns of hyperrectangles (for any n) has been implemented in C. A hyperrectangle is
represented as a list of n closed intervals. Regions (like the forbidden region) are
represented as lists of hyperrectangles. We also label some hyperrectangles by as-
sociating a region to them. Labeled regions are then lists of such labeled hyperrect-
angles. Notice that all this is quite naively implemented up to now. Much better
algorithms can be devised (inspired by algorithms on isothetic hyperrectangles [31])
that reduce the complexity of intersection calculations a lot. This will be discussed
in Section 6.

Three arrays are constructed from the syntax in the course of computation of
the forbidden region. For a process named i and an object (semaphore) named
j, tP[i1[j] 1s updated during the traversing of the syntactic tree to be equal to
the ordered list of times at which process i locks semaphore j. Similarly tV[i] [j]
is updated to be equal to the ordered list of times at which process i unlocks
semaphore j. Finally, an array t[i] gives the maximal (local) time that process i
runs.

For all objects a, we build recursively all partitions as in §5.1 of {1,---,n} into
a set U of s(a) + 1 processes that lock @ and V such that U UV = {1,--- n} and
U NV = 0. For each such partition (U, V') we list all corresponding pairs (Pa, Va)
in each process X;, ¢ € U. As we have supposed that in our programs, all processes
must lock exactly once an item before releasing it, these pairs correspond to pairs
(tPLi1 [al;,tV il [al;) for j ranging over the elements of the lists tP[7][a] and
tV[z] [a]. Then we deduce the hyperrectangle in the forbidden region for each
partition and each such pair.
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5.3. Implementation of the second deadlock algorithm. The implementation
uses a global array of labeled regions called pile: pile[0], ..., pile[n-1] (n being
the dimension we are interested in). The idea is that pile[0] contains at first the
initial forbidden region, pile[1] contains the intersection of exactly two distinct
regions of pile[0], etc., pile[n-1] contains the intersection of exactly n distinct
regions of pile[0].

The algorithm is incremental. In order to compute the effect of adding a new
forbidden hyperrectangle S the program calls the procedure complete(S,#). This
calls an auxiliary function derive also described in pseudo-code below, in charge of
computing the unsafe region generated by a possible deadlock created by adding S
to the set of existing forbidden regions. The resulting forbidden and unsafe region
is contained in pile[0].

complete(S,1)
if S is included into an X in pile[0] return
for i=n-2 to 0 by -1 do pilel[i+1]=intersection(pile[i]\1,S)
pile[0]=union(pile[0],S)
for all X in pile[n-1] do pile[n-1]=pile[n-1]\X
derive(X)

The intersection of a labeled region R (such as pile[i] above) with a hyper-
rectangle S gives the union of all intersections of hyperrectangles X in R (which
are also hyperrectangles) labeled with the concatenation of the label of X with S
(which is a region). Therefore labels of elements of regions in pile are the regions
whose intersection is exactly these elements.

Now, derive(X) takes care of deriving an unsafe region from an intersection X
of n forbidden or unsafe distinct hyperrectangles. Therefore X is a labeled hyper-
rectangle, whose labels are X1, ...,Xn (the set of the n hyperrectangles which it is
the intersection of). We call X(i) the projection of X on coordinate i.

derive(X)
for all i do yi=max({Xj(i) / j=1,...,nX\{X(1)})
Y=[y1,X(1)Ix...x[yn,X(n)]
if Y is not included in one of the Xj complete(Y,(X1,...,Xn))

This last check is done when computing all yi. We use for each i a list ri of
indexes j such that yi=Xj(i) (there might be several). If the intersection of all
ri is not empty then Y is included into one of the Xj. It is to be noticed that
this algorithm considers cycles (recursive calls) as representing (unbounded) finite
computations.

5.4. Complexity issues. The entire algorithm consists of 3 parts: The first es-
tablishes the initial list pile[0] of forbidden hyperrectangles, the second works out
the complete array pile — including the deadlocks encoded in pile[n-1] —, and
the third adds pieces of the unsafe regions, recursively.

Let again n denote the number of processes (the dimension of the state space),
and r the number of hyperrectangles. From a complexity viewpoint, the first step
is negligeable; finding the hyperrectangles involves Cg(a)+1 searches in the syntactic
tree for every shared object a —in each of the n coordinates.

The array pile involves the calculation of S(r,n) = > ., C7 intersections, each
of them needing comparisons in n coordinates. Note that these comparisons show
which of the intersections are empty, as well. To find the deadlocks, one has to
compare (n coordinates of) the at most C, non-empty elements in pile[n-1] with
the r elements in pile[0]. Adding pieces of unsafe regions in the third step involves
the same procedures with an increased number 7 of hyperrectangles. The worst-case
figure S(r, n) above can be crudely estimated as follows: S(r,n) < 2" for all n, and
S(r,n) < nC7T for r > 2n — which is a better estimate only for r >> 2n.
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Remark that the algorithm above has a total complexity roughly proportional to
the geometric complexity of the forbidden region. The latter may be expressed in
terms of the number of non-empty intersections of elementary hyperrectangles in the
forbidden region. This figure reflects the degree of synchronization of the processes,
and will be much lower that S(r, n) for a well-written program. We conjecture, that
the number of steps in every algorithm detecting deadlocks and unsafe regions is
bounded below by this geometric complexity. On the other hand, for the analysis
of big concurrent programs, this geometric complexity will be tiny compared to the
number of states to be searched through by a traversing strategy.

5.5. Benchmarks. The program has been written in C and compiled using gcc
-02 on an Ultra Sparc 170E with 496 Mbytes of RAM, 924 Mbytes of cache.

In the following table, dim represents the dimension of the program checked,
#fbd2 is the number of forbidden hyperrectangles found in the semantics of the
program (to be compared with #fbd1, the number of unit cubes forbidden in the
first semantics), t s2 is the time it took to find these forbidden hyperrectangles
(respectively t sl is the time taken for the first semantics, looking at the enabled
transitions), t uns2 is the time it took to find the unsafe region in the second algo-
rithm (respectively in the first algorithm) and #uns is the number of hyperrectan-
gles found to be unsafe (they now encapsulate many of the “unit” hyperrectangles
found by the first deadlock detection algorithm). These measures have been taken
on a first implementation which does not include yet the branching and looping
constructs.

P dim | #fbd2 | #fbdl | t s2 | t sl |t uns2 | t unsl | #uns
ex 2 4 14 0.02 0 0 0 3
s2 2 6 16 0.02 | 0.01 0 0 15
83 3 18 290 | 0.01| 0.18 0 .01 4
83’ 3 6 80 0.03 | 0.64 0 0.02 0
1 3 6 158 | 0.02 | 0.08 0 0 0
3p 3 3 32 0.02 0 0 0 1
4p 4 4 190 | 0.03 | 0.09 0 0 1
5p 5 5 1048 | 0.03 | 0.82 0 0.02 1
6p 6 6 5482 | 0.03 | 5.82 0 0.13 1
p 7 7 27668 | 0.04 | 42.35 0 0.86 1
16p 16 16 NA [0.03| NA 0.03 NA 1
32p 32 32 NA [0.03| NA 0.42 NA 1
64p 64 64 NA [0.04| NA 1.52 NA 1
128p | 128 128 NA |0.10] NA | 26.49 NA 1

6. A SKETCH FOR A BETTER IMPLEMENTATION

The deadlock detection program can be made much more efficient by replacing
the algorithm in charge of reporting the non-trivial intersections of hyperrectangles.
What we have implemented is based on the following simple operations: let R' =
Hi=1 . nla}l,b}] and R? = ;=1 ,[a?, b7] be two hyperrectangles (sometimes called
n-ranges [32]), we check if R' N R? # @ by checking that,

e al <b? and a? < bi,

o al < b2 and a2 < bi,

e ...

e al <02 and aZ <b..

Each time we want to add one forbidden hyperrectangle to a forbidden region com-
posed of N forbidden hyperrectangles, we check these 2n inequalities up to N times.
If we suppose that the coordinates of the hyperrectangles are independent random
variables, the average number of operations needed is O(nN) inequalities. If we
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want reporting but also the actual hyperrectangles at the intersection, we need to
add up 2nK operations, where K is the number of intersections found. In fact,
there 1s theoretically a way that makes the reporting of all new intersections found
of order O(log2(N)) and of order O(log2(N)+2nK) if we want their values as well.
Practically, the best algorithms known report intersections when adding an hyper-
rectangle in time of order O(logg(N)) [31, 32]. As a matter of fact, we need more
than just reporting of intersections between two hyperrectangles, namely intersec-
tions between at most n hyperrectangles. So the complexity of the algorithm we use
for that purpose (using pile) is of order O(n> ., ,_;N;) where Ny = N and
N; is the number of of intersections of exactly ¢ + 1 distinct hyperrectangles. The
worst case 18 N; = Cﬁ'l = W and worst case complexity (attained by
the N philosophers’ problem) is bounded by nO(2%). In fact there is a much better
algorithm for reporting the intersections between ¢ hyperrectangles (i < n) whose
heart is in the algorithms of H. W. Six, D. Wood and H. Edelsbrunner [13, 32]. The
structure involved in this algorithm is an “interval tree” or “segment tree” that we
slightly customize for our purpose.

Definition 3. An interval tree is a rooted binary tree whose nodes u contain an
interval I(u), and verifying the following conditions, given that w; and u, are re-
spectively the left son and right son of a node u,

(a) I'(w) N I(uy) is a singleton,

(b) I(u) = I(ug) U I(u),

(c) Yo € I(w), Yy € I(uy), x < y.

In fact, we will have in the future to relax conditions (a) and (b) a bit. This
definition corresponds to a “static” interval tree (as used in [32, 31]) a “dynamic”
version needs condition (a) to be deleted and condition (b) to be understood as
the union U being the convex union of the intervals (the least upper bound in the
lattice of intervals). This will enable us to use only the bounds of the intervals that
are actually given by the forbidden hyperrectangles. But in this report we will only
use the “static” interval trees. We refer the reader to [13] for some hints about a
dynamic version.

We need some information associated to the nodes of interval trees, therefore we
have to make the following definition,

Definition 4. A labeled interval tree is an interval tree together with labels (u)
associated with each node u.

In the following we will use labels of the form {(u) = {k%, (R, ... R%**)} where
Riv ... R is aset of distinct hyperrectangles (coming from the forbidden region),
and k" is its cardinal. We use a list notation since for implementation matters we
will order the collection of names of hyperrectangles in such sets using the order

on their indexes. This means that we will require 73 < 45 < ... < #4«. This will
enable fast comparisons of such sets. Also for the same purpose, we can add to the
label I(u) an entry A" given by a hash function H on the sequence iy,. .., i;u, like,

Hiy, ... igu) = Zj:l,m,k” B mod C, where B and C are two integers (relatively
prime in general).
Let us first explain what happens when n = 1 in order to describe the basic
operations on the labeled interval trees.
Suppose we are given a labeled interval tree 7' and an interval R*. We want to
insert R¥ into 7'. The different steps of the insertion algorithm are,
(1) Begin with node u equal to the root of T
(2) If I(u) C R* then insert R* in the list {(u), set k* = k¥ + 1, update h* (by
adding B* mod C in our example). Add similarly R* to the lists {(v) where
v 1s any son of v in 7.
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(3) If I(u) € R* then we should do at least one and maybe both of the following,
(1) If I(w) N R* # 0, go to (2) with u = w,
(ii) If I(u,) N R* £ 0, go to (2) with u = u,,

For use of this structure for our deadlock algorithm, at the beginning we generate
the static interval trees T; whose root nodes u; are such that I(w;) are the intervals
of local times we are using for giving the semantics of process P; (i = 1,...,n).
Then we generate the forbidden intervals R‘Z (for each process F;) and insert them
in the corresponding T;.

This ensures the following property,

Lemma 1. o Supposel(u) ={k,{l1,... , lx}, h} for a node w inT;, then, I(u) C
Nj=ts,... 1 R, '
e Suppose that we have inserted rectangles R} in a (originally empty) labeled
interval tree T', such that N;=;, . 1, R‘Z + 0. Then there is a node v of T with
W) ={k,{l1,... s}, h} (for some h).

Then, to detect deadlocks, it is enough to do the following,

(1) When inserting hyperrectangles R‘Z, detect (using the labelling of nodes) if we
have a possible intersection of n distinct intervals at node u of T3,

(2) TIf so, put the corresponding node in a list L; (ordered by the hash value) of
plausible candidates for deadlocks,

(3) Traverse the lists Ly, k& # ¢ to find nodes with the hash value equal to the
hash value of node u. If it fails, the node u does not represent a deadlock. If
not, we see if the labels of the nodes found is the same as the label of u. If it
1s so for all ¢, then we have a deadlock.

(4) Then if we have a deadlock we generate a new hyperrectangle, and then we

go back to (1).

Lemma 1 ensures the correctness of this variant of the deadlock algorithm.

Example 3. Consider the program,

X=Px.Py.Vx.Vy
Y=Py.Px.Vy.Vx
PROG=X|Y
We generate Ty (for process X) and Ta (for process Y) so that I(uy) = [0,4] and
I(uz) = [0,4]. Thus at first, they are the same and look like what is pictured in
Figure 11. Then the semantics of the PV language prescribes that the forbidden
region is F = {R' = [1,3] x [2,4], R? = [2,4] x [1,3]}. We first add Rt = [1,3]
to Ty. We find the interval tree pictured in Figure 12 (we have written the label
associated to nodes when it was not empty, ignoring the hash number and the count
number).

After adding up R} to Ty we add up R? to Ty generating the list L1 = (u, u’) where
u and u' are shown in Figure 13. Finally when adding R3, we find Ly = (v,v'),
where v and v' are shown in Figure 14. It appears instantly that [(u) = l(v) leading
to a deadlock.

This algorithm has not been tested yet but we expect much better performances
from programs handling a big number of processes.
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7. ABSTRACTION OF FORBIDDEN REGIONS

Here we state a few preliminary ideas about how to generalize the geometric
approach to more complex languages, that include in particular branchings and
loops.

7.1. A simple framework. We want to formalize here how we can (upper-) ap-
proximate safely the unsafe regions in the cases where we cannot hope for an exact
computation (in particular when we are dealing with recursive processes etc.). A
first application will be detailed in Section 7.2.

Proposition 2. Let F' = Uizly...ykRi be a set of forbidden hyperrectangles in R".
Suppose we are given S', for i = 1 to m, hyperrectangles such that ' C S =
Ui=1,... mS;. Then,

U(F) C U(5)
where U(F') denotes the union of the unsafe regions of F' with F.

Proof.
Let 2 € U(F). Then,

o if # € S then z € U(S5),

e otherwise, z ¢ F'. Suppose we have a dipath v starting at z and reaching the
final point 1 without entering 5. This means in particular v is a dipath from
z reaching the final point without going through F. This contradicts the fact
that « is in the unsafe region of F.

O
Now, the second deadlock algorithm can be applied to the set of “abstract”
hyperrectangles .S and this will give an upper-approximation of the unsafe region.

7.2. An abstraction: Regular Expressions. The object of this section is to
treat “non-pure” terms of our PV language by defining a suitable abstraction of
forbidden regions. We already know that with these “non-pure” terms we should
unfold as much as possible the executions to determine the unsafe region. An answer
is to abstract the unfoldings by a finite number of abstract hyperrectangles. For
this we will motivate and define the use of regular expressions.

We consider regular expression on the alphabet made of Pz and Vz where z is
any variable name (in the set Q). We recall that regular expressions on an alphabet
A are made up of elements of A plus 1 and 0 and stable under the following
operations,

e concatenation “.”. 1 is the neutral element for concatenation,
e union “4” (for which 0 is the neutral element),
o star “(.)*”.

Regular expressions form a dioid (i.e. an idempotent semi-ring with 4+ and .).
A regular expression has a meaning in terms of subsets of strings on the alphabet
A. We recall that,
o [X+Y]=[X]u[Y],
[X.Y] = {ey/x € [X],y € [V}
[X*] = Ui>o X" where X" = X.X""! for n > 1 and X° = {1},
[a] = {a} where a € A
[1]=1{1},
[0] = 0.
There is also a relation between regular expressions and graphs.
A (labeled, directed) graph on an alphabet A is G = (N, E) consisting of,

e aset of node NV,
e aset of edges £ C N x A x N between nodes.
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A labeled graph has a representation as a matrix of elements in the dioid freely
generated by A. Given ¢ = (N, E), the corresponding matrix M is a square
matrix of size cardinal of N, such that the entry corresponding to the pair of nodes
(n,n’) is,

ue  — { a if(n';a,n)er
™1 0 otherwise

Then the matrix (M%)t = MY+ (M%) 2 4. . + (M%) +... has as entries (MF)+
a regular expression denoting the set of paths of length at least one from n’ to n in
the graph . Even more, (M %)% is the solution of the equation M (Id + X) = X

which can be algorithmically solved by a classical version of Gauss’ algorithm (see
[20)),

Lemma 2. Let A be an n x n matriz with coefficients in a complete dioid and
A% .. A" be the matrices defined by,

A0 = A
Al o= AT A (Ah) AR =1 k=10
Then A™ = AT

We are now considering again our full PV programming language. It is easy to
see that terms derivable with the grammar of PV processes is exactly the same as
regular expressions on our alphabet A. Therefore dipaths in the semantics of PV
terms project on each coordinate on regular expressions on A (“local times”) as
defined below.

Given any PV program composed of k processes P1, ..., Py, we do the following,

(A) construct the graph of transitions G; for process P; (i = 1,...,k). This is
done using the following semantics,
— [X] = [Proc4] if X = Procy is a valid definition,
— [P«.Q] is a graph with initial node Pz.@Q) and transition from it to the
node @ of [Q], labeled P,
— [V2.Q] is a graph with initial node Vz.Q) and transition from it to the
node @ of [Q], labeled Vz,
— [P+ Q] is the union of the graphs [P] and [Q] quotiented by P = Q.
We also minimize the graph (by classical minimalization of automata),
(B) construct the incidence matrices M i =1,... n,
(C) compute (M%)t i=1,... n using Gauss’ algorithm
Every graph G built as above has a well identified “initial node” I; (whose name
is Procg the process definition corresponding to P;). The “local time” correspond-
ing to I; is no longer 0 since we might go through it over and over again. It is
straightforward to see that the good candidate to represent such a local time is now
an element of the dioid on A which is the regular expression of paths from /; to
itself, i.e. (MG’)?“I’. Similarly, the local time corresponding to any other node n is
(%),
ordering (lifted to the powerset of strings on A). This prefix ordering can be tested
directly on the graphs GG;. Notice that as G; are all deterministic graphs (as they
are minimal) distinct nodes have distinct local times. Let us exemplify all this on
a simple example first.

7, The order on the local times is not the dioid order but the usual prefix

Example 4. Consider the following program,

X=Px.Vx.Py.Vy.X
Y=Py.Vy.Px.Vx.Y
Prog=X | Y

4This is in particular the case of the dioids we are considering in this paper.
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FiGure 15. Graphs GG; and G

Let Py be the process corresponding to the first equation (dealing with X) and Py be
the process corresponding to the second equation (dealing with Y). The corresponding
graphs are pictured in Figure 4 (vertices X; are represented as a circled i). The
corresponding matrices are,

0 0 0 Vy 0 0 0 Ve
Pz 0 0 0 Py 0 0 0
Gy — Gy

M o 0 Ve 0 0 M o 0 Vy 0 0
0 0 Py O 0 0 Pz 0

Therefore, by using Gauss’ algorithm, the local times for Gy are,

o corresponding to Xy is (Px.Ve.Py.Vy)*,

o corresponding to X is (Px.Va.Py.Vy)*.Px,

o corresponding to Xz is (Px.Va.Py.Vy)* .Pe.Ve,

o corresponding to X4 is (Px.Va.Py.Vy)* .Px.Vz.Py.

and for G,

corresponding to Xy is (Py.Vy.Pe.Va)*,
corresponding to Xo is (Py.Vy.Pe.Va)*. Py,
corresponding to Xs is (Py.Vy.Pe.Va)*. Py Vy,
corresponding to X4 is (Py.Vy.Pe.Va)*.PyVy. Px.

Now, for each graph G; we are constructing the list of intervals of local times
comprising the states where a lock has been acquired on a given object & and when
this lock has been released. But intervals of local times do not represent accurately

what we want: [a*, a*.b] does represent the set of intervals {[1,b],[1,a.b],...  [a,a.b],
[a,a?. b],...}. What we need to represent is in general a set like {[1, 8], [a, a.b], [a?, a*
.b],...}. This is representable exactly in the regular interval expressions. As a

matter of fact the intervals on regular expressions form a monoid with [a, b].[¢c, d] =
[a.c,b.d]. Therefore we can construct regular interval expressions and the latter set
of intervals is then [a, a]*.[1,8]. Notice here that [a, a]* is distinct from [a*, a*]. We

can use a particular form of regular interval expressions for our algorithm,

Definition 5. A regqular term-interval is any expression of the form,

> Xi[1,B]

i=1,...,k

where X; and B; are reqular expressions.

The order on regular term-intervals is derived from the order on regular interval
expressions which in term is the set inclusion order.

The regular term-intervals abstracting (in the sense of Section 7.1) the forbidden
hyperrectangles projected on the ith coordinate for variable z, are determined as
follows,

(D) Determine the set of nodes of GG; onto which goes an edge labeled Px. Call
this set Np,
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FicURE 16. Graph for process Y

(E) Determine the set of node of (i; onto which goes an edge labeled V. Call
this set Ny,
(F) The set of intervals we are seeking is L; , with

L= {(M%); (1, Knwl/n € Np,n' € Ny}

where K, s is the regular expression corresponding to the paths from n to n’
not going through any Pp: K, ,» = (MG’);/VH\A*.Pl‘.A*.

Let us continue with our example,

Example 5. We find,
e For Gy,
— Forx, Np = {Xs}, Nv = {X3} and L1 , = (Pe. Ve . Py.Vy)* . Pz.[l,Vz],
— Fory, Np = {X4}, Nv = {Xa} and L y = (P2.Vz.Py.Vy)* .Px.Va Py.
(1, Vyl.
o For (G,
— Forx, Np = {X4}, Nv ={X} and Ly, = (Py.Vy.PxVa)* PyVy.Pz.
[1,v2),
— Fory, Np ={X»}, Nv = {X3} and Lo, = (Py.Vy.Pe.Va)* . Py.[l, Vyl.

Now, as usual we only have to carry on with the usual algorithm to find the
unsafe region (an upper-approximation of it in fact).

Example 6. We have here two “families” of forbidden regions,

o R = (P2.Va.PyVy)*.Pr.[l,Vr] x (Py.Vy.Px.Vr) . PyVyPz.[l,Vz],
o R? = (Px.Va.PyVy)* Pz.Vz.Py[l,Vy] x (Py.Vy.Px.Vz)*.Py[l,Vy].

Our deadlock algorithm remains valid on this abstract representation of the for-
bidden region since we are in the hypothesis of Proposition 2. The interest is that
we have fast algorithms for manipulating regular expressions.

Example 7. We compute R'NR? =10
A more intricate example to end up this section,

Example 8. X=Py.Vx.Px.Vy.X
Y=Px.X.Vx
Z=Px.Vx
PROG=Y | Z

Then the graph for process Y 1is represented in Figure 16 and variable x enters
a critical region for times between Xo and X4 and between X5 and X4 and between
X5 and Xg and between X9 and Xg. This gives the four following regular interval
exrpresstons,

R' = Pz.[1, Py.Vz] x Px.[1,Vz] = [Px, Px.Py.Vz] x Px.[1,Vz],
R? = Px.(Py.Vz.Px.Vy)* .Py.Vz.Pz[l,Vy.PyVz] x Pz.[l, V],
R3 = Pz.(Py.Vz.Pe.Vy)* PyVe.Pz[l,Vy.Vza] x Px.[l,Vz],

RY =[Pz, Pz.Vrx] x Pz.[1,Vz].
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The only intersection is,
R*N R?® = Px.(Py.Ve.Pr.Vy)* PyVe Pz[1,Vy] x Pz.[l,Vz]
This does not give rise to a deadlock - after all there is only one shared object.

This example shows we are only computing an upper-approximation and not the
exact unsafe region. We believe in the case of the PV language (with no values
involved) that it is possible to compute the exact unsafe region. This is left for
future work.

In fact, as one can guess, we can interpret the forbidden regions in any intervals
of abstract local times, which are elements of a given dioid. Some examples of
further generalizations follow.

8. SOME FUTURE EXTENSIONS

8.1. Non-regular languages. Based on some mathematical ideas (unitary-prefix
monomial relations of [14]) and of their applications in alias analysis as in [10], we
can generalize the ideas of the previous section in order to handle more precisely
what can happen when we consider languages with values.

Instead of considering regular interval languages to abstract the forbidden re-
gion, we can use irregular description of infinite forbidden regions. If we carry on
with the PV example (with this time values associated to objects, and conditional
statements upon these values), we can choose as underlying lattice (or dioid) of the
one which contains local times of the form (Puy)*.(Vug)*z. ... (Pw)* . ... with
U1, Us,...,u objects and ki, ks, ..., k; integers, together with a value &’ in an
abstract numerical lattice, like M. Karr’s [27] linear equations lattice for instance
describing the relations between the integers k1, k2, ..., k;. This is left for future
work.

8.2. Other synchronizers. Let us consider another kind of synchronization which
is very much used in shared memory concurrent languages, and which also models
rendez-vous message passing (i.e., blocking sends and receives).

Syntactically, we add new actions to processes, that we write B(P,(Q,...) with
any number of processes in P, ) etc. as arguments. A process P executing the
action B(P,Q,...) must wait for the processes @ etc. to have reached the same
synchronisation barrier B(P,(Q,...). When all processes have reached the same
point, they can resume execution. This is a form of global synchronisation for a
subset of the set of processes. The semantics of these actions can be described in
a simple manner. Suppose (as for the second semantics of our PV language) that
a process is a string of actions, some of which being of the form B(F;,, ..., P;,)
(1 <ip <y <...< i <n). Given n such processes Py, ..., P,, of respective
lengths (as strings) /5 to !, we can describe the forbidden region associated to a
given synchronisation barrier B(F;,, ..., F;, ) as follows.

Suppose processes P;,, ..., P;, can execute B(P;,, ..., F;,) at "local time” (i.e.
the position in the string here) X;,, respectively ..., X;, (with the convention
X;, = 0if P, cannot execute the barrier). Then the corresponding forbidden
hyperrectangle is R whose ¢th projection Xj is,

o ifi = ij (_] = 1,... ,k’) then Xz' = [Xij,li],
e otherwise X; = [0,/;].
An example in dimension two is given in Figure 17.

The algorithms we have developped in this report can still be applied.
The full description of other synchronisation primitives is left for future work.
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P2

Forbid

B(PL,P2)

Forbid

B(PLP2) P1

F1GURE 17. A synchronisation barrier

8.3. Safety properties. A first natural idea is (following in particular [19]) to
prove more complex properties of a system than deadlock freedom, for instance
like properties on paths of executions (like the ones which can be expressed with
a suitable temporal logics), by composing the system with a new process (which
we can call a tester) and relating the deadlocks of the new composed system with
properties of the traces of the old one.

This could be done by slighly extending the automata theoretic framework to
deal with Higher-Dimensional Automata. Unfortunately this can only be devel-
opped for the first deadlock algorithm. The criterion looks like something dealing
with a “suspension” of the shape representing our system. As a matter of fact,
as already proposed in [22] and [24] we are trying to prove properties about the
possible scheduling of actions, which then correspond to properties of the paths of
executions modulo a form of homotopy. This idea will be expanded in a forthcoming
report.

If we want to use the second deadlock algorithm, we can only relate a very specific
class of properties of traces with the deadlock problem.

Among them are “Serializability” properties; in concurrent database theory an
execution (i.e., a dipath if we represent the database transactions like process
graphs) is serial if it is “equivalent” to an execution of all processes one after an-
other in some order. Geometrically this has been shown (see [28]) to be equivalent
to proving that the forbidden region is connected. Good algorithms for proving
that a union of hyperrectangles is connected should be studied in the future. A first
possibility is to check that each new hyperrectangle we are adding to the semantics
of a system has a non-empty intersection with some other hyperrectangle already
in the list (or in the interval tree) containing the forbidden region.

COMPARISON AND PERSPECTIVES

Traditional deadlock detection algorithms rely on a clever exploration of the
state space. The overall idea for both the algorithms proposed in this paper is
to take advantage of its complement, the forbidden region, and to exploit duality.
Compared to the state space, the forbidden region is easier to describe geometrically
and combinatorially. Moreover, in realistic situations, its size (volume) will be
considerably minor.

The first algorithm only uses the fact that the state space has a model (abstrac-
tion) as the complement of a subdigraph in a digraph. Thus it can be applied in
situations that are much more general than the process graphs and PV languages
described here. The range of applications encompasses at least HDAs with cubical
complexes as their geometric model.
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The second algorithm takes decisively advantage of the combinatorial geometry
of the forbidden region as a subcomplex in a hyperrectangle. This is why it can
have a much better performance for our PV-language and a range of extensions of
it that we are about to explore. On the other hand, there might be situations with
less geometrical information to which it cannot be generalised.

As the second algorithm is based on an abstract interpretation of the semantics,
it should be developed for the use on real concurrent languages in conjunction with
other well-known abstract interpretations. This is for future work. Also this should
be linked with a full description of “schedules” and verification of safety properties of
concurrent programs as hinted in [15, 22, 24] using the geometric notions developed
in this article.

Acknowledgments. We used Geomview, see the Web page
http://freeabel.geom.umn.edu/software/download/geomview.html/
to make the 3D pictures of this article (in a fully automated way).

APPENDIX A. THE EXAMPLES DETAILED

You can check the implementations and the examples at http://www.dmi.ens.fr/—
“goubault/analyse.html.

e The dining philosophers’ problem. The source below is for three philosophers,
the next one is for five. The way others of these examples are generated should

be obvious from these examples.
/* 3 philosophers ¢‘3p’’ */
A=Pa.Pb.Va.Vb

B=Pb.Pc.Vb.Vc v T
C=Pc.Pa.Vc.Va !/Y [ k /
\\ J \\ J

e This is example of Figure 7.
/* ‘‘example’’ */
A=Pa.Pb.Vb.Pc.Va.Pd.Vd.Vc
B=Pb.Pd.Vb.Pa.Va.Pc.Vc.Vd

e This is the classical Lipsky/Papadimitriou example (see [24] and Figure 18 to
Figure 21) which produces no deadlock.
Jk 100 %/
A=Px.Py.Pz.Vx.Pw.Vz.Vy.Vw
B=Pu.Pv.Px.Vu.Pz.Vv.Vx.Vz
C=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv

e This is a staircase (worst complexity case for the second algorithm).
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/* ¢ S2 PIP] */
A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.Vf
B=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va
e This is a 3-dimensional staircase. Notice that if you declare all semaphores
used (a, b, ¢, d, e and f) to be initialized to 2 (example “s3”’), there is no

3-deadlock.

/* ((53)) */

A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.Vf
B=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va
C=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va
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