
DETECTING DEADLOCKS IN CONCURRENT SYSTEMSLISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENAbstract. We study deadlocks using geometric methods based on generalizedprocess graphs [11], i.e., cubical complexes or Higher-Dimensional Automata(HDA) [23, 24, 30, 35], describing the semantics of the concurrent system ofinterest. A new algorithm is described and fully assessed, both theoreticallyand practically and compared with more well-known traversing techniques.An implementation is available, applied to a toy language. This algorithm notonly computes the deadlocking states of a concurrent system but also the so-called \unsafe region" which consists of the states which will eventually leadto a deadlocking state. Its basis is a characterization of deadlocks using dualgeometric properties of the \forbidden region".1. Introduction and related workThis paper deals with the detection of deadlocks motivated by applications indata engineering, e.g., scheduling in concurrent systems. Many fairly di�erent tech-niques have been studied in the numerous literature on deadlock detection. Unfor-tunately, they very often depend on a particular (syntactic) setting, and this makesit di�cult to compare them. Some authors have tried to classify them and test theexisting software, like [5, 6], but for this, one needs to translate the syntax used byeach of these systems into one another, and di�erent translation choices can makethe picture entirely di�erent. Nevertheless, we will follow their classi�cation to putour methods in context. Notice that in this article, we go one step beyond andalso derive the \unsafe region", i.e., the set of states that are bound to run into adeadlocking state after some time. This analysis is done in order to be applied to�nding schedulers that help circumvent these deadlocking behaviours (and not justfor proving deadlock freedom as most other techniques have been used for). The�rst basic technique is a reachability search, i.e., the traversing of some semantic rep-resentation of a concurrent program, in general in terms of transition systems, butalso sometimes using other models, like Petri nets [29]. Due to the classical problemof state-space explosion in the veri�cation of concurrent software, such algorithmsare accompanied with state-space reduction techniques, such as virtual coarsening(which coalesce internal actions into adjacent external actions) [33], partial-ordertechniques (which alleviate the e�ects of representation with interleaving by pruning\equivalent" branches of search) such as sleep sets and permanent (or stubborn) setstechniques [17], [18], [34], and symmetry techniques (that reduce the state-space byconsideration of symmetry). These techniques only reduce the state-space up tothree or four times except for very particular applications.The second most well-known technique is based on symbolic model-checking as in[2, 3, 16]. Deadlocking behaviors are described as a logical formula, that the model-checker tries to verify. In fact, the way a model-checker veri�es such formulae isvery often based on clever traversing techniques as well. In this case, the statesof the system are coded in a symbolic manner (BDDs etc.) which enables a fastsearch.Then many of the remaining techniques are a blend of one of these two with someabstractions, or are compositional techniques [36], or based on dataow analysis [12],or on integer programming techniques [1] (but this in general only relies on necessaryconditions for deadlocking behaviors). 1



2 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENBased on some old ideas [11] and some new semantic grounds [21], [23], [24], [30],[35], (see x2), we have developped an enhanced sort of reachability search (x2.3).This should mostly be compared to ordinary reachability analysis and not to virtualcoarsening and symmetry techniques because these can also be used on top of ours.A �rst approach in the direction of virtual coarsening has actually been made in [9].Some assessments about its practical use, based on a �rst implementation appliedto simple semaphore programs and also based on some general complexity reasonsare made in x3.4 and x5.5.In some ways, this deadlock detection algorithm (which determines the so-called\unsafe region" made of all states bound to run some time or another into adeadlock) is still a combinatorial search, which only takes advantage of the truly-concurrent representation of actions.In x4, we propose a new algorithm based on an abstraction (in the sense ofabstract interpretation [7, 8]) of the natural semantics, which takes advantage ofthe real geometry of the executions. This one is an entirely di�erent method fromthose in the literature.We believe that this technique, which is assessed in x5.4 and x5.5 both on theo-retical grounds and on the view of benchmarks, can be applied in the static analysisof \real" concurrent programs (and not only at the PV language of x3.1) by suitablecompositions and reduced products with other abstract interpretations, as sketchedin x7.1.As a matter of fact, in recent years, a number of people have used ideas fromgeometry and topology to study concurrency: First of all, using geometric modelsallows one to use spatial intuition; furthermore, the well-developed machinery fromgeometric and algebraic topology can serve as a tool to prove properties of concur-rent systems. A more detailed description of this point of view can be found inJ. Gunawardena's paper [24] { including many more references { which contains a�rst geometrical description of safety issues. In another direction, techniques fromalgebraic topology have been applied by M. Herlihy, S. Rajsbaum, N. Shavit [25, 26]and others to �nd new lower bounds and impossibility results for distributed andconcurrent computation.The authors participated in the workshop \New Connections between Mathe-matics and Computer Science" at the Newton Institute at Cambridge in November1995. We thank the organizers for the opportunity to get new inspiration. Thispaper is the �rst in a series of papers resulting from the collaboration of two math-ematicians (L. Fajstrup & M. Raussen) and a computer scientist (E. Goubault). E.Goubault's work was also done partly while at C.N.R.S, Ecole Normale Sup�erieureand while visiting Aalborg University.2. Models of concurrent computation2.1. From Discrete to Continuous. A description of deadlocks in terms of thegeometry of the so-called progress graph (cf. Ex. 1) has been given earlier by S. D.Carson and P. F. Reynolds [4], and we stick to their terminology. The main ideain [4] is to model a discrete concurrency problem in a continuous geometric set-up:A system of n concurrent processes will be represented as a subset of Euclideanspace Rn with the usual partial order. Each coordinate axis corresponds to one ofthe processes. The state of the system corresponds to a point in Rn, whose i'thcoordinate describes the state (or \local time") of the i'th processor. An executionis then a continuous increasing path within the subset from an initial state to a �nalstate.Example 1. Consider a centralized database, which is being acted upon by a �nitenumber of transactions. Following Dijkstra [11], we think of a transaction as asequence of P and V actions known in advance { locking and releasing various



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 3records. We assume that each transaction starts at (local time) 0 and �nishes at(local time) 1; the P and V actions correspond to sequences of real numbers between0 and 1, which reect the order of the P 's and V 's. The initial state is (0; : : : ; 0)and the �nal state is (1; : : : ; 1). An example consisting of the two transactionsT1 = PaPbVbVa and T2 = PbPaVaVb gives rise to the two dimensional progress graphof Figure 1.
Unsafe Un-reachable(0,0) Pa Pb Vb VaPbPaVaVbT2

T1����������������������������������������������������������������������������������������������������������������������������������������� ��������������������������������� (1,1)-6
Figure 1. Example of a progress graphThe shaded area represents states, which are not allowed in any execution path,since they correspond to mutual exclusion. Such states constitute the forbiddenarea. An execution path is a path from the initial state (0; 0) to a �nal state (1; 1) orPb; Pa) avoiding the forbidden area and increasing in each coordinate - time cannotrun backwards.In Ex. 1, the dashed square marked "Unsafe" represents an unsafe area: Thereis no execution path from any state in that area to the �nal state (1; 1). Moreover,its extent (upper corner) with coordinates (Pb; Pa) represents a deadlock. Likewise,there are no execution paths starting at the initial state (0; 0) entering the unreach-able area marked "Unreachable". Concise de�nitions of these concepts will be givenin x2.2.Finding deadlocks and unsafe areas is hence the geometric problem of �ndingn-dimensional \corners" as the one in Ex. 1. Back in 1981, W. Lipski and C. H.Papadimitriou [28] attempted to exploit geometric properties of forbidden regionsto �nd deadlocks in database-transaction systems. But the algorithm in [28] doesnot generalize to systems composed of more than two processes. S. D. Carson andP. F. Reynolds indicated in [4] an iterative procedure identifying both deadlocksand unsafe regions for systems with an arbitrary �nite number of processes.In this section, we present a streamlined path to their results in a more gen-eral situation: Basic properties of the geometry of the state space are captured inproperties of a directed graph { back in a discrete setting. In particular, deadlockscorrespond to local maxima in the associated partial order.This set-up does not only work for semaphore programs: In general, the forbiddenarea may represent more complicated relationships between the processes like forinstance general k-semaphores, where a shared object may be accessed by k, butnot k+ 1 processes. This is reected in the geometry of the forbidden area F , thathas to be a union of higher dimensional rectangles or \boxes".Furthermore, similar partially ordered sets can be de�ned and investigated inmore general situations than those given by Cartesian progress graphs. By thesame recipe, deadlocks can then be found in concurrent systems with a variable



4 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENnumber of processes involved or with branching (tests) and looping (recursion)abilities. In that case, one has to consider partial orders on sets of \boxes" ofvariable dimensions. This allows the description and detection of deadlocks in theHigher Dimensional Automata of V. Pratt [30] and R. van Glabbeek [35] (cf. E.Goubault [21] for an exhaustive treatment).In the mathematical parts below, i.e., x2.2 and x2.3, the explanations have beenvoluntarily simpli�ed. The full treatment of the deadlock detection method is doneentirely in the algorithmic and implementation part, x3.2.2. The continuous setup. Let I denote the unit interval, and In = I1�� � ��Inthe unit cube in n-space. This is going to represent the space of all local timestaken by n processes. We call a subset R = [a1; b1]�� � �� [an; bn] a hyperrectangle1,and we consider a set F = Sr1Ri that is a �nite union of hyperrectangles Ri =[ai1; bi1] � � � � � [ain; bin]. The interior �F of F is the \forbidden region" of In; itscomplement is X = Inn �F . Furthermore, we assume that 0 = (0; : : : ; 0) 62 F , and1 = (1; : : : ; 1) 62 F:Remark 1. We consider the interior of F as a subspace of In; e.g. the interior ofR = [1=4; 1=2]� [0; 1] in I2 is �R=]1=4; 1=2[�[0;1]De�nition 1. � 1. A continuous path � : I ! In is called a dipath (directed path)if all compositions �i = pri � � : I ! I; 1 � i � n; (pri : In ! I denoting theprojection on the i'th coordinate) are increasing: t1 � t2 ) �i(t1) � �i(t2); 1 �i � n.� 2. A point y 2 X = Inn �F is in the future " x of a point x 2 X if there is adipath � : I ! X with �(0) = x and �(1) = y. The past # x is de�ned similarly.� 3. A point x 2 Inn �F is called admissible, if 1 2" x; and unsafe else.� 4. Let A(F ) � In denote the admissible region containing all admissible pointsin X, and U(F ) � In the unsafe region containing all unsafe points in X.� 5. A point x 2 X is a deadlock if " x = fxg and x 6= 1.In semaphore programs, the hyperrectangles Ri characterize states where twotransactions have accessed the same record, a situation which is not allowed in suchprograms. Such \mutual exclusion"-rectangles have the property that only two ofthe de�ning intervals are proper subintervals of the Ij. Furthermore, serial executionshould always be possible, and hence F should not intersect the 1-skeleton of Inconsisting of all edges in the unit cube. These special features will not be used inthe present paper.A dipath represents the continuous counterparts of the traces of the concurrentsystem, which must not enter the forbidden regions.2.3. Continuous to discrete - a graph theory approach. We use geometricalideas to construct a digraph (i.e., a directed graph) where deadlocks are leaves (i.e.,the nodes of the digraph, if any, that have no successors) and the unsafe regionis found by an iterative process. The setup is as in x2.2. For 1 � j � n, the setfaij; bijj1 � i � rg � Ij gives rise to a partition of Ij into at most (2r+1) subintervals:Ij = S Ijk, with an obvious ordering � on the subintervals Ijk. The partition ofintervals gives rise to a partition R of In into hyperrectangles I1k1 �� � �� Inkn witha partial ordering given byI1k1 � � � � � Inkn � I1k01 � � � � � Ink0n , Ijkj � Ijk0j ; 1 � j � n:1which has the property that all its faces are parallel to the coordinate axes. In dimension 2this is called an isothetic rectangle [31]



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 5Remark 2. 1. We will not worry about the fact, that there are nonempty inter-sections of the hyperrectangles. De�ning everything with halfopen intervalswould be an unnecessary complication.2. Admissibilitywith respect to the forbidden region F can be de�ned in terms ofthese hyperrectangles: Two points in the same hyperrectangle of the partitionabove are either both admissible or both unsafe points.3. The hyperrectangle R1 containing 1 is the global maximum for R, the hyper-rectangle R0 containing 0 is the global minimum.The partially ordered set (R;�) can be interpreted as a directed, acyclic graph,denoted (R;!): Two hyperrectangles R;R0 2 R are connected by an edge fromR to R0 { denoted R ! R0 { if R � R0 and if R and R0 share a face. R0 is thencalled an upper neighbor of R, and R a lower neighbor of R0. A path in the graphrespecting the directions will be denoted a directed path.For any subset R0 � R we consider the full directed subgraph (R0;!). Partic-ularly important is the subgraph R �F consisting of all hyperrectangles R � X =Inn �F .De�nition 2. Let R0 � R be a subgraph. An element R 2 R0 is a local maximumif it has no upper neighbors in R0. Local minima have no lower neighbors. Ahyperrectangle R 2 R �F is called a deadlock hyperrectangle if R 6= R1, and if Ris a local maximum with respect to R �F . An unsafe hyperrectangle R 2 R �F ischaracterized by the fact, that any directed path � starting at R hits a deadlockhyperrectangle sooner or later [4].Remark 3. 1. An element R 2 R �F is a deadlock if R 6= R1, and if all its upperneighbors in R are contained in F . Deadlocks in R �F are the maximal cornersof the unsafe regions.2. Unreachable hyperrectangles can be de�ned similarly. Local minima (6= R0)are their minimal corners.In order to �nd the set U of all unsafe points { which is the union of all unsafehyperrectangles { apply the following. (1) Remove F from In giving rise to thedirected graph (R �F ;!). (2) Find the set S1 of all deadlock hyperrectangles (localmaxima distinct from R1) with respect to R �F . Let F1 = F [ S1. (3) Let RF1denote the full directed subgraph on the set of hyperrectangles in In nF1, i.e., afterremoving S1. (4) Find the set S2 of all deadlock hyperrectangles with respect toRF1 . Let F2 = F1 [ S2. Carry on with the same completion mechanism etc.Notice that it is enough to search among the lower neighbors of elements in F instep 2, and that the only candidates for deadlocks in step 4 are the lower neighborsof elements of S1. Since there are only �nitely many hyperrectangles, this processstops after a �nite number of steps, ending with Sr and yielding the following result:Theorem 1. � 1. The unsafe region is determined by U(F ) = Sr1 Si:� 2. The set of admissible points is A(F ) = In n ( �F [U(F )). Moreover, anydirected path in A(F ) will eventually reach R1.Proof. Only the last assertion has still to be shown. The set A(F ) is non-emptysince it contains the global maximum R1. Now �x any directed path startingfrom an arbitrary hyperrectangle in A(F ). It will run through (�nitely many)hyperrectangles in A(F ) until it reaches a local maximum. This local maximummust be the global maximum R1, since A(F ) does not contain any deadlock.In order to show the applicability of the previous method, we explain how to givesemantics of a toy language in terms of these forbidden regions, how to implementit, and how to implement the deadlock detection algorithm.



6 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSEN3. Implementation of the combinatorial approach3.1. The language. We consider in the following the language PV whose syntax isde�ned below. Given a set of objects O (like shared memory locations, synchroniza-tion barriers, semaphores, control units, printers etc.) and a function s : O! IN+associating to each object a, the maximum number of processes s(a) > 0 whichcan access it at the same time. Any process Proc can try to access an object a byaction Pa or release it by action V a, any �nite number of times. In fact, processesare de�ned by means of a �nite number of recursive equations involving processvariables X in a set V: they are of the form X = Procd where Procd is the processde�nition formally de�ned as,Procd = � j Pa:Procd j V a:ProcdProcd + Procd j Y(� being the empty string, a being any object of O, Y being any process variablein V) A PV program is any parallel combination of these PV processes, Prog =Proc j (Proc j Proc). The typical example in shared memory concurrentprograms is O being the set of shared variables and for all a 2 O, s(a) = 1. TheP action is putting a lock and the V action is relinquishing it. We will suppose inthe sequel that any given process can only access once an object before releasing it.We also suppose that the recursive equations are \guarded" in the sense that for allprocess variables X, ProcX does not contain a summand of the form X:T , T beingany non-empty term.3.2. The semantics. The semantics of the PV language as a graph of hyperrect-angles is as follows2. An environment is a function � : O! IN, whose value for anobject a represents the number of times a can still be accessed by the processes. Ahyperrectangle or state of the program is a pair (C; �) where C is an element of thelanguage, � is a context. Basically, C represents the program that remains to beexecuted and � is the current context in which C has to be executed.The representation of the graph of hyperrectangles is done by explicitly repre-senting the glueing faces which de�ne the \neighboring" relation between hyperrect-angles (as in x2.3). Look at Figure 2 for an explanation in the case of the semanticsof (Pa:V a j Pa:V a). The collection of faces of each hyperrectangle is separated inn start faces, here for example for the 2-rectangle (i.e., a hyperrectangle of dimen-sion 2) A, d00(A) and d01(A), and n end faces, here d10(A) and d11(A). The orderbetween the di�erent hyperrectangles, as sketched in this example by the graph atthe right-hand side of Figure 2, is generated by the relation \having a d1 face equalto a d0 face". Here A � B because c = d01(B) = d10(A). This encoding is standardin the HDA framework where faces are (n� 1)-transitions and hyperrectangles aren-transitions (see [21] for more explanations).Let us separate out our semantics in two distinct phases. Consider �rst the\pure" terms consisting of those terms for which the syntactic tree of each processbegins by a sequential composition of a P or a V with any term. Any set of kPV processes in parallel X1 j � � � j Xk may generate k-rectangles according to theenvironment it is executed in. Supposing none of these processes are empty, wewrite Xi = Qiai:Yi, 1 � i � k, where Qi is P or V , ai 2 O and Yi is a process. Wethen have the following semantic equation describing the semantics [[X1 j � � � j Xk]]�in environment �. If for all a 2 O, �(a) � 0,[[X1 j � � � j Xk]]� = (X1 j � � � j Xk; �)+ [[Y1 j X2 j � � � j Xk]]�1 + � � �+[[X1 j � � � j Xk�1 j Yk]]�k2This had already been \pictured" under the name of process graphs by E.W.Dijkstra [11],Carson and Reynolds [4], J. Gunawardena [24] in the case of terms with no choice operator norrecursive equations. The formal semantics in terms of this graph of hyperrectangles, or HDA [21]is new here.
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=dFigure 2. Semantics of (Pa:V a j Pa:V a) as a discretisation of itsgeometry (left), as a graph of hyperrectangles (right).where �i, 1 � i � k is such that �i(b) = �(b) for all b 2 O, b 6= ai, and �i(ai) =�(ai) � 1 if Qi = P or �i(ai) = �(ai) + 1 if Qi = V . If there is an a 2 O, �(a) < 0,[[X1 j � � � j Xk]]� = [[Y1 j X2 j � � � j Xk]]�1 + � � �+ [[X1 j � � � j Xk�1 j Yk]]�kwith the same environments �i, 1 � i � k.These equations should be understood as follows. (X1 j � � � j Xk; �) is a k-rectangle, which is not forbidden if and only if all k processes can progress. This isnot the case if one of the processes is waiting for an object to be released (in thesecond case, there is an a 2 O such that �(a) < 0). If we want to generate onlyreachable states, then it is enough to forget the second semantic equation. In the�rst case, the k start boundaries and the k end boundaries of dimension k�1 of thisk-rectangle are3, d0i (X1 j � � � j Xk; �) = (X1 j � � � j X̂i j � � � j Xk; �; i), (the face atthe right-hand side is de�ned if the hyperrectangle at the left-hand side is de�ned),and d1i (X1 j � � � j Xk) = (X1 j � � � j X̂i j � � � j Xk; �i; i). This last component for thefaces is not needed in general, but it permits to unfold entirely the graph of cubes(thus the semantics does not create fake unfoldings that the veri�cation algorithmswould believe to be divergences { see the discussion of x3.3.1 and x3.3.2).Now for the \non-pure" terms, we use the following two rules in order to get pureterms,(Elimination of process variables)[[X1 j � � � j Y:Yi j � � � j Xk]]� = [[X1 j � � � j ProcY :Yi j � � � j Xk]]�(Elimination of plus)[[X1 j � � � j Yi+Zi j � � � j Xk]]� = [[X1 j � � � j Yi j � � � j Xk]]�+i [[X1 j � � � j Zi j � � � j Xk]]�The �rst equation eliminates the process variable Y by its de�nition ProcY .The second equation eliminates the choice operator in the de�nition of the ithprocess. The plus symbol at the right hand-side of this equation denotes an amal-gamated sum (i.e., a union) of its two arguments, identifying the face (X1 j � � � jYi j � � �Xk; �; i) with the face (X1 j � � � j Zi j � � �Xk; �; i).Notice that using this semantic de�nition, we can de�ne directly the n-transitionsof a program consisting of n processes in parallel, generating also the (n � 1)-transitions, but not the transitions of lower dimension.3.3. Implementation of the �rst deadlock algorithm. A general purpose Clibrary has been written to generate and manipulate graphs of hyperrectangles (infact, any HDA). Basically such a graph is described by incidence matrices. To bemore precise, R is represented by a 4uple (R0n�1; R1n�1; R0n; R1n). Rin is the (sparse)matrix whose rows Rin(x) are indexed by the hyperrectangles x (states of dimension3The notation X1; � � � ; X̂i ; � � � means that we have the collectionX1;X2; � � � except Xi.
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yFigure 3. An example of cyclic behavior and its 1-unfoldingn as described in the semantics), and which contain the corresponding lower (fori = 0) and upper (for i = 1) boundaries of x. Rin�1 is the co-incidence matrix whoserows Rin�1(y) are indexed by the faces y (states of dimension n� 1) and consist ofthe hyperrectangles whose lower boundary (for i = 0) contains y or whose upperboundary (for i = 1) contains y.We describe here how to compute the subset D of the set of ascendants of a givenset S of states such that all its descendants �nally (only) reach S. We suppose thatS is organized into a FIFO queue q. We can perform operations empty?, enq (forenqueue) and deq (for dequeue) on it which should have an obvious semantics. Wesuppose that S is only composed of hyperrectangles of dimension n, n �xed. It canbe constructed once and for all or it can be constructed on the y, when bound-aries are demanded by the algorithm. This corresponds to the deadlock algorithmsketched in x2.3 when S is taken to be the set of forbidden hyperrectangles.3.3.1. Cycles as divergences. The standard way of constructing D is to computethe ascendants as the transitive closure of the \parent" relation (by iteration) andsimilarly for the descendants. It is actually quite expensive and is not necessaryin our case. To be more precise, the algorithm below is sound and complete, inthe sense that it computes faithfully D if there is no cycle in the semantics, or ifwe consider cycles to represent �nite and in�nite paths (i.e., cycles contain non-deadlocking paths). We discuss the case when cycles represent only �nite paths inx3.3.2.We suppose that an integer mx is associated to each hyperrectangle x generatedby the semantics, such that,� for any n-cube x in S the integer mx is initialized to 0,� for any other hyperrectangle, mx is initialized to its number of sonsThen,� the multiset Px of hyperrectangles, parents of a given hyperrectangle x is theunion of the lists R1n�1(y) for y 2 R0n(x).� the algorithm for �nding D is as follows. D is empty at the beginning, then,[(1)] if empty? then we have reached the result.[(2)] decrement mz by one for all z 2 Pdeq.[(3)] if in this process, one of the z considered has mz equal to zero then addz to D and enq(z).[(4)] loop back at point (1).3.3.2. Cycles as �nite iterations. Look at Figure 3 (notice that here, the forbiddenregion is represented by the dashed lines). If we use the deadlock algorithm ofx3.3.1 on the picture at the left, then we detect no deadlock nor unsafe region.Then x has mx = 3 because it has two sons in the forbidden region and the thirdone is y. Canceling the two forbidden 2-rectangles leaves mx = 1 at the end ofthe algorithm and x is not detected as an unsafe 2-rectangle. It is true that x hasone non-forbidden son (y) but it allows for a non-deadlocking behaviour only if weconsider in�nite paths through x and y. If we are only considering �nite paths, thenwe are bound to end up blocked by the forbidden region.
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Figure 4. unfold once Figure 5. unfold twiceIn fact there is no way to determine unsafe regions in that case without lookingat all unfoldings of the terms, as the following example shows. We will see in Section7.1 an answer to this problem (in the case of the second algorithm).Example 2. A=Pa.Vd.Pb.Va.Pd.Vb.Pe.Ve.AB=Pd.A.Pf.Vd.VfC=Pf.Pe.Pa.Ve.Pb.Va.Pd.Vb.Pa.Vd.Pb.Va.Pd.Vb.Vd.VfPROG=B|CThe unfolding of the term A just once gives Figure 4. The unfolding of the termA twice gives Figure 5. The red regions delimit the unsafe regions. Notice howthe unsafe region evolves after each unfolding. The two apparent deadlocks are notdeadlocks - they just force reentrance of the loop, and hence there is no unsafe region.3.4. Complexity issues. We let the volume V ol(S) of a set S of nodes (hyper-rectangles) in R be the number of its elements. The dominant part of the algorithmis the removal of F and �nding the deadlocks. To remove F and �nd S1 one has tocheck for each R 2 Ri whether it is already marked in F . Only if the answer is no,the 2n operations of disconnecting R from its n sons and n parents and possibly,a single addition (of a parent) to, resp. removal (of R) from, the list of potentialdeadlocks, has to be performed. This implies:Proposition 1. For a pure term (i.e., no + nor any recursion) consisting of ntransactions with a forbidden region F = Sr1Ri, the worst case complexity of thealgorithm is of order nV ol(F ) + �r1V ol(Ri).Remark 4. Examples reaching the worst case have a high amount of global syn-chronization, which in general should be avoided for good programming practice.Hence one would expect a much better behaviour in the average situation. In fact,if nV ol(F ) is the dominating part, the complexity is at most nN (where N is thenumber of states).4. Continuous to discrete - invoking the geometryUsing the combinatorial geometry of the boundary @F of the forbidden region,we are now going to describe the deadlocks in X and the unsafe regions associatedto them in a more e�cient way.Let again �F� In denote the forbidden region and let X = Inn �F . In the sequel,we need the following genericity property of the hyperrectangles in F :If i1 6= i2 and �Ri1 \ �Ri2 6= ;; then (ai1j = ai2j ) ai1j = 0 and bi1j = bi2j ) bi1j =1; 1 � j � n).



10 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENThis property (\no interior faces at the same level") is obviously satis�ed forforbidden regions for \mutually exclusion" models, in particular for PV-models.We want to include deadlocks on the boundary @In into our description: In amutual exclusion model, points on @In stand for situations where not all processorshave started their execution or where some of them already have terminated. Tocircumvent lengthy case studies { and with an eye to implementation { we slightlychange our model in order to include the upper boundary @+(In) = fx 2 Inj9j :xj = 1g of In into the forbidden region. To this end, let ~I = [0; 2] and In � ~In.Slightly changing the notation, let fRi = [0; 2]i�1 � [1; 2]� [0; 2]n�i; 1 � i � n,and shifting indices by n, ]Rn+1; : : : ;]Rn+r will denote the hyperrectangles used inthe previous model F of the forbidden region { modi�ed to maintain genericity: Ifbij = 1, then let bi+nj = 2. Then Sn1 fRi = ~Inn �In, and ~F = F [Sn1 fRi = Sn+ri=1 fRi.By an abuse of notation, we will from now on write Ri for fRi and F for ~F .R1R2O 1 212 ~I2. "Fr rFigure 6. Extending the modelFor any nonempty index set J = fi1; : : : ; ikg � f1; : : : ; n+ rg de�neRJ = Ri1 \ � � � \Rik = [aJ1 ; bJ1 ]� � � � � [aJn; bJn]with aJj = maxfaijji 2 Jg and bJj = minfbijji 2 Jg. This set is again an n�rectangleunless it is empty (if akj > blj for some 1 � j � n and k; l 2 J). Let aJ =[aJ1 ; : : : ; aJn] = minRJ denote the minimal point in that hyperrectangle.For every 1 � j � n, we choose faJj as the \second largest" of the ailj , i.e., faJj =aisj with ailj � aisj < aJj for ailj 6= aJj ; and consider the \half-open" hyperrectangleUJ =]faJ1 ; aJ1 ]� � � ��]faJn; aJn] \below\ RJ :Theorem 2. 1. A point x 2 X is a deadlock if and only if x 6= 1 and there isan n-element index set J = fi1; : : : ; ing; with RJ 6= ; and x = aJ = minRJ .2. If x = minRJ is a deadlock, then the \half-open" n� rectangle UJ is unsafe,i.e., every dipath in In from a point y 2 UJ will eventually enter �F .Proof.1. Let x = aJ = minRJ . Every element y = [aJ1 + "1; : : : ; aJn + "n]; "j � 0 and0 <Pn1 "i small, is contained in at least one of the sets �Rji and thus in �F .On the other hand, let x = [x1; : : : ; xn] 2 X be a deadlock. Then, forsmall values " > 0, the element xi = [x1; : : : ; xi + "; : : : ; xn] is contained inone of the sets �Rji. Hence, x 2 RJ with J = fj1; : : : ; jng. This set containsn di�erent elements: If, e.g., Rj1 = Rj2 , then x1 62 �Rj1 !



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 11Moreover, x is an element of the set RJ nS �Rjl consisting of the 2n pointswith all coordinates either aJi or bJi . Obviously, the only possible deadlockpoint in this set is x = aJ = minRJ .2. Let � : I ! X be a dipath with �(t0) 2 UJ and �(t2) 62 UJ for some t0 < t2.There has to be a maximal value t0 � t1 < t2 such that �(t1) 2 UJ . Moreover,�(t1) 2 @+UJ = fy 2 UJ j9k : yk = aJkg, and thus �(t1 + ") is contained inone of the sets �Rji and thus in �F . Contradiction!As an immediate consequence, we get a criterion for deadlockfreeness that is easyto check:Corollary 1. A forbidden region F = Sn+r1 Ri � In has a deadlockfree complementX = In n F if and only if for any index set J = fi1; : : : ; ing with jJ j = nRJ = Ri1 \ � � � \Rin = ; or RJ = f1g or minRJ 2 �F :Remark 5.1. In geometric terms, UJ is the \corner under aJ", i.e., a hyperrectangle whose\upper boundary" @+(UJ ), i.e., the faces containing aJ , consists of faces con-tained in the \lower boundaries" of the Ri; i 2 J .2. In general, the hyperrectangle UJ will be considerably larger than the hyper-rectangles from the graph algorithm; it will contain several of the hyperrect-angles in the partition R.3. It is possible that �UJ has non-empty intersection with �F { cf. Figure 9.4. The n points ai = (aJ1 ; : : : ; âJi ; : : : ; aJn) are critical points of coindex 1 of thesum function f(x1; : : : ; xn) = x1 + � � �+ xn restricted to @F . We were led toThm. 2 by this type of di�erential geometric considerations.In general, the hyperrectangle UJ will be considerably larger than the hyperrect-angles from the graph algorithm; it will contain several of the hyperrectangles inthe partition R. This is where we gain in e�ciency: look at Figures 7, 8, 9 and10. They describe the 3 iterations needed in the following streamlined algorithm,whereas the �rst algorithm needed 26 iterations (two for each of the thirteen unsafe2-rectangles).In analogy with the graph algorithm we can now describe an algorithm �ndingthe complete unsafe region U � In as follows: Find the set D of deadlocks in X and,for every deadlock aJ 2 D, the unsafe hyperrectangle UJ . Let F1 = F [SaJ2D UJ .Find the set D1 of deadlocks in X1 = X nF1 � X, and, for every deadlock aI 2 D1,the unsafe hyperrectangle U I . Let F2 = F1 [SaI2D1 U I etc.This algorithm stops after a �nite number n of loops ending with a set U = Fnand such that A(F ) = Xn = X n U does no longer contain any deadlocks. The setU(F ) = U n @�(U ) consists precisely of the forbidden and of the unsafe points.The example \s2" in Appendix A demonstrates that there may be arbitrarilymany loops in this second algorithm { even in the case of a 2-dimensional forbiddenregion associated to a simple PV-program: Obviously, this \staircase" producingmore and more unsafe hyperrectangles can be extended ad libitum by introducingextra rectangles Ri to F along the \diagonal".We now show the applicability of the method by exemplifying it on our toy PVlanguage.



12 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENFigure7 Figure8 Figure9 Figure105. Implementation of the geometric algorithm5.1. The semantics. Now we have a dual view on PV terms. Instead of represent-ing the allowed hyperrectangles, we represent the forbidden hyperrectangles only.Notice that up to now, we have only implemented the algorithm on pure terms(i.e. no recursion nor plus operator). The full treatment of the PV language ispostponed until Section 7.1. Let T = X1 j � � � j Xn (for some n � 1) be a pureterm (i.e. no recursion nor plus operator) of our language such that all its subtermsare pure as well. We consider here the Xi (1 � i � n) to be strings made out ofletters of the form Pa or V b, (a; b 2 O). Xi(j) will denote the jth letter of thestring Xi. Supposing that the length of the strings Xi (1 � i � n) are integers li,the semantics of Prog is included in [0; l1] � � � � � [0; ln]. A description of [[Prog]]from above can be given by describing inductively what should be digged into thishyperrectangle. The semantics of our language can be described by the simple rule,[k1; r1] � � � � � [kn; rn] 2 [[X1 j � � � j Xn]]2 if there is a partition of f1; � � � ; ng intoU [ V with card(U ) = s(a) + 1 for some object a with, Xi(ki) = Pa, Xi(ri) = V afor i 2 U and kj = 0, rj = lj for j 2 V .5.2. The implementation. A general purpose library for manipulating�nite unio{ns of hyperrectangles (for any n) has been implemented in C. A hyperrectangle isrepresented as a list of n closed intervals. Regions (like the forbidden region) arerepresented as lists of hyperrectangles. We also label some hyperrectangles by as-sociating a region to them. Labeled regions are then lists of such labeled hyperrect-angles. Notice that all this is quite naively implemented up to now. Much betteralgorithms can be devised (inspired by algorithms on isothetic hyperrectangles [31])that reduce the complexity of intersection calculations a lot. This will be discussedin Section 6.Three arrays are constructed from the syntax in the course of computation ofthe forbidden region. For a process named i and an object (semaphore) namedj, tP[i][j] is updated during the traversing of the syntactic tree to be equal tothe ordered list of times at which process i locks semaphore j. Similarly tV[i][j]is updated to be equal to the ordered list of times at which process i unlockssemaphore j. Finally, an array t[i] gives the maximal (local) time that process iruns.For all objects a, we build recursively all partitions as in x5.1 of f1; � � � ; ng intoa set U of s(a) + 1 processes that lock a and V such that U [ V = f1; � � � ; ng andU \ V = ;. For each such partition (U; V ) we list all corresponding pairs (Pa; V a)in each process Xi, i 2 U . As we have supposed that in our programs, all processesmust lock exactly once an item before releasing it, these pairs correspond to pairs(tP[i][a]j;tV[i][a]j) for j ranging over the elements of the lists tP[i][a] andtV[i][a]. Then we deduce the hyperrectangle in the forbidden region for eachpartition and each such pair.



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 135.3. Implementation of the second deadlock algorithm. The implementationuses a global array of labeled regions called pile: pile[0], ..., pile[n-1] (n beingthe dimension we are interested in). The idea is that pile[0] contains at �rst theinitial forbidden region, pile[1] contains the intersection of exactly two distinctregions of pile[0], etc., pile[n-1] contains the intersection of exactly n distinctregions of pile[0].The algorithm is incremental. In order to compute the e�ect of adding a newforbidden hyperrectangle S the program calls the procedure complete(S,;). Thiscalls an auxiliary function derive also described in pseudo-code below, in charge ofcomputing the unsafe region generated by a possible deadlock created by adding Sto the set of existing forbidden regions. The resulting forbidden and unsafe regionis contained in pile[0].complete(S,l)if S is included into an X in pile[0] returnfor i=n-2 to 0 by -1 do pile[i+1]=intersection(pile[i]\l,S)pile[0]=union(pile[0],S)for all X in pile[n-1] do pile[n-1]=pile[n-1]\Xderive(X)The intersection of a labeled region R (such as pile[i] above) with a hyper-rectangle S gives the union of all intersections of hyperrectangles X in R (whichare also hyperrectangles) labeled with the concatenation of the label of X with S(which is a region). Therefore labels of elements of regions in pile are the regionswhose intersection is exactly these elements.Now, derive(X) takes care of deriving an unsafe region from an intersection Xof n forbidden or unsafe distinct hyperrectangles. Therefore X is a labeled hyper-rectangle, whose labels are X1,...,Xn (the set of the n hyperrectangles which it isthe intersection of). We call X(i) the projection of X on coordinate i.derive(X)for all i do yi=max({Xj(i) / j=1,...,n}\{X(i)})Y=[y1,X(1)]x...x[yn,X(n)]if Y is not included in one of the Xj complete(Y,(X1,...,Xn))This last check is done when computing all yi. We use for each i a list ri ofindexes j such that yi=Xj(i) (there might be several). If the intersection of allri is not empty then Y is included into one of the Xj. It is to be noticed thatthis algorithm considers cycles (recursive calls) as representing (unbounded) �nitecomputations.5.4. Complexity issues. The entire algorithm consists of 3 parts: The �rst es-tablishes the initial list pile[0] of forbidden hyperrectangles, the second works outthe complete array pile { including the deadlocks encoded in pile[n-1] {, andthe third adds pieces of the unsafe regions, recursively.Let again n denote the number of processes (the dimension of the state space),and r the number of hyperrectangles. From a complexity viewpoint, the �rst stepis negligeable; �nding the hyperrectangles involves Cns(a)+1 searches in the syntactictree for every shared object a { in each of the n coordinates.The array pile involves the calculation of S(r; n) =Pni=1Cri intersections, eachof them needing comparisons in n coordinates. Note that these comparisons showwhich of the intersections are empty, as well. To �nd the deadlocks, one has tocompare (n coordinates of) the at most Crn non-empty elements in pile[n-1] withthe r elements in pile[0]. Adding pieces of unsafe regions in the third step involvesthe same procedures with an increased number r of hyperrectangles. The worst-case�gure S(r; n) above can be crudely estimated as follows: S(r; n) � 2r for all n, andS(r; n) � nCrn for r > 2n { which is a better estimate only for r >> 2n.



14 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENRemark that the algorithm above has a total complexity roughly proportional tothe geometric complexity of the forbidden region. The latter may be expressed interms of the number of non-empty intersections of elementary hyperrectangles in theforbidden region. This �gure reects the degree of synchronization of the processes,and will be much lower that S(r; n) for a well-written program. We conjecture, thatthe number of steps in every algorithm detecting deadlocks and unsafe regions isbounded below by this geometric complexity. On the other hand, for the analysisof big concurrent programs, this geometric complexity will be tiny compared to thenumber of states to be searched through by a traversing strategy.5.5. Benchmarks. The program has been written in C and compiled using gcc-O2 on an Ultra Sparc 170E with 496 Mbytes of RAM, 924 Mbytes of cache.In the following table, dim represents the dimension of the program checked,#fbd2 is the number of forbidden hyperrectangles found in the semantics of theprogram (to be compared with #fbd1, the number of unit cubes forbidden in the�rst semantics), t s2 is the time it took to �nd these forbidden hyperrectangles(respectively t s1 is the time taken for the �rst semantics, looking at the enabledtransitions), t uns2 is the time it took to �nd the unsafe region in the second algo-rithm (respectively in the �rst algorithm) and #uns is the number of hyperrectan-gles found to be unsafe (they now encapsulate many of the \unit" hyperrectanglesfound by the �rst deadlock detection algorithm). These measures have been takenon a �rst implementation which does not include yet the branching and loopingconstructs.P dim #fbd2 #fbd1 t s2 t s1 t uns2 t uns1 #unsex 2 4 14 0.02 0 0 0 3s2 2 6 16 0.02 0.01 0 0 15s3 3 18 290 0.01 0.18 0 .01 4s3' 3 6 80 0.03 0.64 0 0.02 0l 3 6 158 0.02 0.08 0 0 03p 3 3 32 0.02 0 0 0 14p 4 4 190 0.03 0.09 0 0 15p 5 5 1048 0.03 0.82 0 0.02 16p 6 6 5482 0.03 5.82 0 0.13 17p 7 7 27668 0.04 42.35 0 0.86 116p 16 16 NA 0.03 NA 0.03 NA 132p 32 32 NA 0.03 NA 0.42 NA 164p 64 64 NA 0.04 NA 1.52 NA 1128p 128 128 NA 0.10 NA 26.49 NA 16. A sketch for a better implementationThe deadlock detection program can be made much more e�cient by replacingthe algorithm in charge of reporting the non-trivial intersections of hyperrectangles.What we have implemented is based on the following simple operations: let R1 =�i=1;::: ;n[a1i ; b1i ] andR2 = �i=1;::: ;n[a2i ; b2i ] be two hyperrectangles (sometimes calledn-ranges [32]), we check if R1 \R2 6= ; by checking that,� a11 � b21 and a21 � b11,� a12 � b22 and a22 � b12,� : : :� a1n � b2n and a2n � b1n.Each time we want to add one forbidden hyperrectangle to a forbidden region com-posed of N forbidden hyperrectangles, we check these 2n inequalities up to N times.If we suppose that the coordinates of the hyperrectangles are independent randomvariables, the average number of operations needed is O(nN ) inequalities. If we



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 15want reporting but also the actual hyperrectangles at the intersection, we need toadd up 2nK operations, where K is the number of intersections found. In fact,there is theoretically a way that makes the reporting of all new intersections foundof order O(log2(N )) and of order O(log2(N )+2nK) if we want their values as well.Practically, the best algorithms known report intersections when adding an hyper-rectangle in time of order O(logd2(N )) [31, 32]. As a matter of fact, we need morethan just reporting of intersections between two hyperrectangles, namely intersec-tions between at most n hyperrectangles. So the complexity of the algorithm we usefor that purpose (using pile) is of order O(nPi=0;::: ;n�1Ni) where N0 = N andNi is the number of of intersections of exactly i + 1 distinct hyperrectangles. Theworst case is Ni = Ci+1N = N !(i+1)!(N�i�1)! and worst case complexity (attained bythe N philosophers' problem) is bounded by nO(2N ). In fact there is a much betteralgorithm for reporting the intersections between i hyperrectangles (i � n) whoseheart is in the algorithms of H. W. Six, D. Wood and H. Edelsbrunner [13, 32]. Thestructure involved in this algorithm is an \interval tree" or \segment tree" that weslightly customize for our purpose.De�nition 3. An interval tree is a rooted binary tree whose nodes u contain aninterval I(u), and verifying the following conditions, given that ul and ur are re-spectively the left son and right son of a node u,(a) I(ul) \ I(ur) is a singleton,(b) I(u) = I(ul) [ I(ur),(c) 8x 2 I(ul), 8y 2 I(ur), x � y.In fact, we will have in the future to relax conditions (a) and (b) a bit. Thisde�nition corresponds to a \static" interval tree (as used in [32, 31]) a \dynamic"version needs condition (a) to be deleted and condition (b) to be understood asthe union [ being the convex union of the intervals (the least upper bound in thelattice of intervals). This will enable us to use only the bounds of the intervals thatare actually given by the forbidden hyperrectangles. But in this report we will onlyuse the \static" interval trees. We refer the reader to [13] for some hints about adynamic version.We need some information associated to the nodes of interval trees, therefore wehave to make the following de�nition,De�nition 4. A labeled interval tree is an interval tree together with labels l(u)associated with each node u.In the following we will use labels of the form l(u) = fku; (Ri1; : : : ; Riku )g whereRi1 ; : : : ; Riku is a set of distinct hyperrectangles (coming from the forbidden region),and ku is its cardinal. We use a list notation since for implementation matters wewill order the collection of names of hyperrectangles in such sets using the orderon their indexes. This means that we will require i1 < i2 < : : : < iku. This willenable fast comparisons of such sets. Also for the same purpose, we can add to thelabel l(u) an entry hu given by a hash function H on the sequence i1; : : : ; iku, like,H(i1; : : : ; iku) =Pj=1;::: ;ku Bij mod C, where B and C are two integers (relativelyprime in general).Let us �rst explain what happens when n = 1 in order to describe the basicoperations on the labeled interval trees.Suppose we are given a labeled interval tree T and an interval Rk. We want toinsert Rk into T . The di�erent steps of the insertion algorithm are,(1) Begin with node u equal to the root of T ,(2) If I(u) � Rk then insert Rk in the list l(u), set ku = ku + 1, update hu (byadding Bk mod C in our example). Add similarly Rk to the lists l(v) wherev is any son of u in T .
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{1,2} {1}Figure14(3) If I(u) 6� Rk then we should do at least one and maybe both of the following,(i) If I(ul) \Rk 6= ;, go to (2) with u = ul,(ii) If I(ur) \Rk 6= ;, go to (2) with u = ur,For use of this structure for our deadlock algorithm, at the beginning we generatethe static interval trees Ti whose root nodes ui are such that I(ui) are the intervalsof local times we are using for giving the semantics of process Pi (i = 1; : : : ; n).Then we generate the forbidden intervals Rji (for each process Pi) and insert themin the corresponding Ti.This ensures the following property,Lemma 1. � Suppose l(u) = fk; fl1; : : : ; lkg; hg for a node u in Ti, then, I(u) �\j=l1;::: ;lkRji ,� Suppose that we have inserted rectangles Rji in a (originally empty) labeledinterval tree T , such that \j=l1;::: ;lkRji 6= ;. Then there is a node v of T withl(u) = fk; fl1; : : : ; lkg; hg (for some h).Then, to detect deadlocks, it is enough to do the following,(1) When inserting hyperrectangles Rji , detect (using the labelling of nodes) if wehave a possible intersection of n distinct intervals at node u of Ti,(2) If so, put the corresponding node in a list Li (ordered by the hash value) ofplausible candidates for deadlocks,(3) Traverse the lists Lk, k 6= i to �nd nodes with the hash value equal to thehash value of node u. If it fails, the node u does not represent a deadlock. Ifnot, we see if the labels of the nodes found is the same as the label of u. If itis so for all i, then we have a deadlock.(4) Then if we have a deadlock we generate a new hyperrectangle, and then wego back to (1).Lemma 1 ensures the correctness of this variant of the deadlock algorithm.Example 3. Consider the program,X=Px.Py.Vx.VyY=Py.Px.Vy.VxPROG=X|YWe generate T1 (for process X) and T2 (for process Y) so that I(u1) = [0; 4] andI(u2) = [0; 4]. Thus at �rst, they are the same and look like what is pictured inFigure 11. Then the semantics of the PV language prescribes that the forbiddenregion is F = fR1 = [1; 3]� [2; 4]; R2 = [2; 4] � [1; 3]g. We �rst add R11 = [1; 3]to T1. We �nd the interval tree pictured in Figure 12 (we have written the labelassociated to nodes when it was not empty, ignoring the hash number and the countnumber).After adding up R12 to T2 we add up R21 to T1 generating the list L1 = (u; u0) whereu and u0 are shown in Figure 13. Finally when adding R22, we �nd L2 = (v; v0),where v and v0 are shown in Figure 14. It appears instantly that l(u) = l(v) leadingto a deadlock.This algorithm has not been tested yet but we expect much better performancesfrom programs handling a big number of processes.



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 177. Abstraction of forbidden regionsHere we state a few preliminary ideas about how to generalize the geometricapproach to more complex languages, that include in particular branchings andloops.7.1. A simple framework. We want to formalize here how we can (upper-) ap-proximate safely the unsafe regions in the cases where we cannot hope for an exactcomputation (in particular when we are dealing with recursive processes etc.). A�rst application will be detailed in Section 7.2.Proposition 2. Let F = [i=1;::: ;kRi be a set of forbidden hyperrectangles in Rn.Suppose we are given Si, for i = 1 to m, hyperrectangles such that F � S =[i=1;::: ;mSi. Then, U(F ) � U(S)where U(F ) denotes the union of the unsafe regions of F with F .Proof.Let x 2 U(F ). Then,� if x 2 S then x 2U(S),� otherwise, x 62 F . Suppose we have a dipath  starting at x and reaching the�nal point 1 without entering S. This means in particular  is a dipath fromx reaching the �nal point without going through F . This contradicts the factthat x is in the unsafe region of F .Now, the second deadlock algorithm can be applied to the set of \abstract"hyperrectangles S and this will give an upper-approximation of the unsafe region.7.2. An abstraction: Regular Expressions. The object of this section is totreat \non-pure" terms of our PV language by de�ning a suitable abstraction offorbidden regions. We already know that with these \non-pure" terms we shouldunfold as much as possible the executions to determine the unsafe region. An answeris to abstract the unfoldings by a �nite number of abstract hyperrectangles. Forthis we will motivate and de�ne the use of regular expressions.We consider regular expression on the alphabet made of Px and V x where x isany variable name (in the set O). We recall that regular expressions on an alphabetA are made up of elements of A plus 1 and 0 and stable under the followingoperations,� concatenation \.". 1 is the neutral element for concatenation,� union \+" (for which 0 is the neutral element),� star \(:)�".Regular expressions form a dioid (i.e. an idempotent semi-ring with + and :).A regular expression has a meaning in terms of subsets of strings on the alphabetA. We recall that,� [[X + Y ]] = [[X]][ [[Y ]],� [[X:Y ]] = fx:y=x 2 [[X]]; y 2 [[Y ]]g,� [[X�]] = [i�0Xn where Xn = X:Xn�1 for n � 1 and X0 = f1g,� [[a]] = fag where a 2 A,� [[1]] = f1g,� [[0]] = ;.There is also a relation between regular expressions and graphs.A (labeled, directed) graph on an alphabet A is G = (N;E) consisting of,� a set of node N ,� a set of edges E � N �A �N between nodes.



18 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENA labeled graph has a representation as a matrix of elements in the dioid freelygenerated by A. Given G = (N;E), the corresponding matrix MG is a squarematrix of size cardinal of N , such that the entry corresponding to the pair of nodes(n; n0) is, MGn;n0 = � a if (n0; a; n) 2 E0 otherwiseThen the matrix (MG)+ =MG+(MG)2+: : :+(MG)k+: : : has as entries (MG)+n;n0a regular expression denoting the set of paths of length at least one from n0 to n inthe graph G. Even more, (MG)+ is the solution of the equation MG(Id+X) = Xwhich can be algorithmically solved by a classical version of Gauss' algorithm (see[20]),Lemma 2. Let A be an n � n matrix with coe�cients in a complete4 dioid andA0; : : : ; An be the matrices de�ned by,A0 = AAki;j = Ak�1i;j + Ak�1i;k �Ak�1k;k �� Ak�1k;j i; j = 1; : : : ; n k = 1; : : : ; nThen An = A+.We are now considering again our full PV programming language. It is easy tosee that terms derivable with the grammar of PV processes is exactly the same asregular expressions on our alphabet A. Therefore dipaths in the semantics of PVterms project on each coordinate on regular expressions on A (\local times") asde�ned below.Given any PV program composed of k processes P1; : : : ; Pk, we do the following,(A) construct the graph of transitions Gi for process Pi (i = 1; : : : ; k). This isdone using the following semantics,{ [[X]] = [[Procd]] if X = Procd is a valid de�nition,{ [[Px:Q]] is a graph with initial node Px:Q and transition from it to thenode Q of [[Q]], labeled Px,{ [[V x:Q]] is a graph with initial node V x:Q and transition from it to thenode Q of [[Q]], labeled V x,{ [[P +Q]] is the union of the graphs [[P ]] and [[Q]] quotiented by P = Q.We also minimize the graph (by classical minimalization of automata),(B) construct the incidence matrices MGi , i = 1; : : : ; n,(C) compute (MGi)+, i = 1; : : : ; n using Gauss' algorithmEvery graph Gi built as above has a well identi�ed \initial node" Ii (whose nameis Procd the process de�nition corresponding to Pi). The \local time" correspond-ing to Ii is no longer 0 since we might go through it over and over again. It isstraightforward to see that the good candidate to represent such a local time is nowan element of the dioid on A which is the regular expression of paths from Ii toitself, i.e. (MGi)�Ii;Ii. Similarly, the local time corresponding to any other node n is(MGi)�n;Ii. The order on the local times is not the dioid order but the usual pre�xordering (lifted to the powerset of strings on A). This pre�x ordering can be testeddirectly on the graphs Gi. Notice that as Gi are all deterministic graphs (as theyare minimal) distinct nodes have distinct local times. Let us exemplify all this ona simple example �rst.Example 4. Consider the following program,X=Px.Vx.Py.Vy.XY=Py.Vy.Px.Vx.YProg=X | Y4This is in particular the case of the dioids we are considering in this paper.
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VxFigure 15. Graphs G1 and G2Let P1 be the process corresponding to the �rst equation (dealing with X) and P2 bethe process corresponding to the second equation (dealing with Y). The correspondinggraphs are pictured in Figure 4 (vertices Xi are represented as a circled i). Thecorresponding matrices are,MG1 = 0BB@ 0 0 0 V yPx 0 0 00 V x 0 00 0 Py 0 1CCA MG2 = 0BB@ 0 0 0 V xPy 0 0 00 V y 0 00 0 Px 0 1CCATherefore, by using Gauss' algorithm, the local times for G1 are,� corresponding to X1 is (Px:V x:Py:V y)�,� corresponding to X2 is (Px:V x:Py:V y)�:Px,� corresponding to X3 is (Px:V x:Py:V y)�:Px:V x,� corresponding to X4 is (Px:V x:Py:V y)�:Px:V x:Py.and for G2,� corresponding to X1 is (Py:V y:Px:V x)�,� corresponding to X2 is (Py:V y:Px:V x)�:P y,� corresponding to X3 is (Py:V y:Px:V x)�:P y:V y,� corresponding to X4 is (Py:V y:Px:V x)�:P y:V y:Px.Now, for each graph Gi we are constructing the list of intervals of local timescomprising the states where a lock has been acquired on a given object x and whenthis lock has been released. But intervals of local times do not represent accuratelywhat we want: [a�; a�:b] does represent the set of intervals f[1; b]; [1; a:b]; : : : ; [a; a:b],[a; a2: b]; : : :g. What we need to represent is in general a set like f[1; b]; [a; a:b]; [a2; a2:b]; : : :g. This is representable exactly in the regular interval expressions. As amatter of fact the intervals on regular expressions form a monoid with [a; b]:[c; d] =[a:c; b:d]. Therefore we can construct regular interval expressions and the latter setof intervals is then [a; a]�:[1; b]. Notice here that [a; a]� is distinct from [a�; a�]. Wecan use a particular form of regular interval expressions for our algorithm,De�nition 5. A regular term-interval is any expression of the form,Xi=1;::: ;kXi:[1; Bi]where Xi and Bi are regular expressions.The order on regular term-intervals is derived from the order on regular intervalexpressions which in term is the set inclusion order.The regular term-intervals abstracting (in the sense of Section 7.1) the forbiddenhyperrectangles projected on the ith coordinate for variable x, are determined asfollows,(D) Determine the set of nodes of Gi onto which goes an edge labeled Px. Callthis set NP ,
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PxVyVxFigure 16. Graph for process Y(E) Determine the set of node of Gi onto which goes an edge labeled V x. Callthis set NV ,(F) The set of intervals we are seeking is Li;x withL =Xf(MGi)�n;Ii :[1;Kn;n0]=n 2 NP ; n0 2 NV gwhere Kn;n0 is the regular expression corresponding to the paths from n to n0not going through any Px: Kn;n0 = (MGi)�n0;nnA�:Px:A�.Let us continue with our example,Example 5. We �nd,� For G1,{ For x, NP = fX2g, NV = fX3g and L1;x = (Px:V x:Py:V y)�:Px:[1; Vx],{ For y, NP = fX4g, NV = fX1g and L1;y = (Px:V x:Py:V y)�:Px:V x:Py:[1; V y].� For G2,{ For x, NP = fX4g, NV = fX1g and L2;x = (Py:V y:Px:V x)�:P y:V y:Px:[1; V x],{ For y, NP = fX2g, NV = fX3g and L2;y = (Py:V y:Px:V x)�:P y:[1; V y].Now, as usual we only have to carry on with the usual algorithm to �nd theunsafe region (an upper-approximation of it in fact).Example 6. We have here two \families" of forbidden regions,� R1 = (Px:V x:Py:V y)�:Px:[1; V x]� (Py:V y:Px:V x)�:P y:V y:Px:[1; V x],� R2 = (Px:V x:Py:V y)�:Px:V x:Py:[1; V y] � (Py:V y:Px:V x)�:P y:[1; V y].Our deadlock algorithm remains valid on this abstract representation of the for-bidden region since we are in the hypothesis of Proposition 2. The interest is thatwe have fast algorithms for manipulating regular expressions.Example 7. We compute R1 \R2 = ;A more intricate example to end up this section,Example 8. X=Py.Vx.Px.Vy.XY=Px.X.VxZ=Px.VxPROG=Y | ZThen the graph for process Y is represented in Figure 16 and variable x entersa critical region for times between X2 and X4 and between X5 and X4 and betweenX5 and X6 and between X2 and X6. This gives the four following regular intervalexpressions,� R1 = Px:[1; Py:V x]� Px:[1; V x] = [Px; Px:Py:V x]� Px:[1; V x],� R2 = Px:(Py:V x:Px:V y)�:P y:V x:Px:[1; V y:Py:V x]� Px:[1; Vx],� R3 = Px:(Py:V x:Px:V y)�:P y:V x:Px:[1; V y:V x]� Px:[1; V x],� R4 = [Px; Px:V x]� Px:[1; V x].



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 21The only intersection is,R2 \R3 = Px:(Py:V x:Px:V y)�:P y:V x:Px:[1; V y]� Px:[1; V x]This does not give rise to a deadlock - after all there is only one shared object.This example shows we are only computing an upper-approximation and not theexact unsafe region. We believe in the case of the PV language (with no valuesinvolved) that it is possible to compute the exact unsafe region. This is left forfuture work.In fact, as one can guess, we can interpret the forbidden regions in any intervalsof abstract local times, which are elements of a given dioid. Some examples offurther generalizations follow.8. Some future extensions8.1. Non-regular languages. Based on some mathematical ideas (unitary-pre�xmonomial relations of [14]) and of their applications in alias analysis as in [10], wecan generalize the ideas of the previous section in order to handle more preciselywhat can happen when we consider languages with values.Instead of considering regular interval languages to abstract the forbidden re-gion, we can use irregular description of in�nite forbidden regions. If we carry onwith the PV example (with this time values associated to objects, and conditionalstatements upon these values), we can choose as underlying lattice (or dioid) of theone which contains local times of the form (Pu1)k1 :(V u2)k2 : : : : :(Pul)kl : : : : withu1, u2,: : : ,ul objects and k1, k2, : : : , kl integers, together with a value k0 in anabstract numerical lattice, like M. Karr's [27] linear equations lattice for instancedescribing the relations between the integers k1, k2, : : : , kl. This is left for futurework.8.2. Other synchronizers. Let us consider another kind of synchronization whichis very much used in shared memory concurrent languages, and which also modelsrendez-vous message passing (i.e., blocking sends and receives).Syntactically, we add new actions to processes, that we write B(P;Q; :::) withany number of processes in P , Q etc. as arguments. A process P executing theaction B(P;Q; :::) must wait for the processes Q etc. to have reached the samesynchronisation barrier B(P;Q; :::). When all processes have reached the samepoint, they can resume execution. This is a form of global synchronisation for asubset of the set of processes. The semantics of these actions can be described ina simple manner. Suppose (as for the second semantics of our PV language) thata process is a string of actions, some of which being of the form B(Pi1 ; : : : ; Pik)(1 � i1 < i2 < : : : < ik � n). Given n such processes P1, : : : , Pn, of respectivelengths (as strings) l1 to ln we can describe the forbidden region associated to agiven synchronisation barrier B(Pi1 ; : : : ; Pik) as follows.Suppose processes Pi1 , : : : , Pik can execute B(Pi1 ; : : : ; Pik) at "local time" (i.e.the position in the string here) Xi1 , respectively : : : , Xik (with the conventionXik = 0 if Pik cannot execute the barrier). Then the corresponding forbiddenhyperrectangle is R whose ith projection Xi is,� if i = ij (j = 1; : : : ; k) then Xi = [Xij ; li],� otherwise Xi = [0; li].An example in dimension two is given in Figure 17.The algorithms we have developped in this report can still be applied.The full description of other synchronisation primitives is left for future work.
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B(P1,P2) P1

P2

Forbid

Forbid

B(P1,P2)Figure 17. A synchronisation barrier8.3. Safety properties. A �rst natural idea is (following in particular [19]) toprove more complex properties of a system than deadlock freedom, for instancelike properties on paths of executions (like the ones which can be expressed witha suitable temporal logics), by composing the system with a new process (whichwe can call a tester) and relating the deadlocks of the new composed system withproperties of the traces of the old one.This could be done by slighly extending the automata theoretic framework todeal with Higher-Dimensional Automata. Unfortunately this can only be devel-opped for the �rst deadlock algorithm. The criterion looks like something dealingwith a \suspension" of the shape representing our system. As a matter of fact,as already proposed in [22] and [24] we are trying to prove properties about thepossible scheduling of actions, which then correspond to properties of the paths ofexecutions modulo a form of homotopy. This idea will be expanded in a forthcomingreport.If we want to use the second deadlock algorithm, we can only relate a very speci�cclass of properties of traces with the deadlock problem.Among them are \Serializability" properties; in concurrent database theory anexecution (i.e., a dipath if we represent the database transactions like processgraphs) is serial if it is \equivalent" to an execution of all processes one after an-other in some order. Geometrically this has been shown (see [28]) to be equivalentto proving that the forbidden region is connected. Good algorithms for provingthat a union of hyperrectangles is connected should be studied in the future. A �rstpossibility is to check that each new hyperrectangle we are adding to the semanticsof a system has a non-empty intersection with some other hyperrectangle alreadyin the list (or in the interval tree) containing the forbidden region.Comparison and PerspectivesTraditional deadlock detection algorithms rely on a clever exploration of thestate space. The overall idea for both the algorithms proposed in this paper isto take advantage of its complement, the forbidden region, and to exploit duality.Compared to the state space, the forbidden region is easier to describe geometricallyand combinatorially. Moreover, in realistic situations, its size (volume) will beconsiderably minor.The �rst algorithm only uses the fact that the state space has a model (abstrac-tion) as the complement of a subdigraph in a digraph. Thus it can be applied insituations that are much more general than the process graphs and PV languagesdescribed here. The range of applications encompasses at least HDAs with cubicalcomplexes as their geometric model.



DETECTING DEADLOCKS IN CONCURRENT SYSTEMS 23Figure18 Figure19. Close-up Figure20. Turningaround Figure21. ExitThe second algorithm takes decisively advantage of the combinatorial geometryof the forbidden region as a subcomplex in a hyperrectangle. This is why it canhave a much better performance for our PV-language and a range of extensions ofit that we are about to explore. On the other hand, there might be situations withless geometrical information to which it cannot be generalised.As the second algorithm is based on an abstract interpretation of the semantics,it should be developed for the use on real concurrent languages in conjunction withother well-known abstract interpretations. This is for future work. Also this shouldbe linked with a full description of \schedules" and veri�cation of safety properties ofconcurrent programs as hinted in [15, 22, 24] using the geometric notions developedin this article.Acknowledgments. We used Geomview, see the Web pagehttp://freeabel.geom.umn.edu/software/download/geomview.html/to make the 3D pictures of this article (in a fully automated way).Appendix A. The examples detailedYou can check the implementations and the examples at http://www.dmi.ens.fr/{~goubault/analyse.html.� The dining philosophers' problem. The source below is for three philosophers,the next one is for �ve. The way others of these examples are generated shouldbe obvious from these examples./* 3 philosophers ``3p'' */A=Pa.Pb.Va.VbB=Pb.Pc.Vb.VcC=Pc.Pa.Vc.Va� This is example of Figure 7./* ``example'' */A=Pa.Pb.Vb.Pc.Va.Pd.Vd.VcB=Pb.Pd.Vb.Pa.Va.Pc.Vc.Vd� This is the classical Lipsky/Papadimitriou example (see [24] and Figure 18 toFigure 21) which produces no deadlock./* ``l'' */A=Px.Py.Pz.Vx.Pw.Vz.Vy.VwB=Pu.Pv.Px.Vu.Pz.Vv.Vx.VzC=Py.Pw.Vy.Pu.Vw.Pv.Vu.Vv� This is a staircase (worst complexity case for the second algorithm).
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