
ALGEBRAIC TOPOLOGY AND CONCURRENCYLISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSEN1. IntroductionThis article is intended to provide some new insights about concurrency theory using ideasfrom geometry, and more speci�cally from algebraic topology. The aim of the paper is two-fold:we justify applications of geometrical methods in concurrency through some chosen examples andwe give the mathematical foundations needed to understand the geometric phenomenon that weidentify. In particular we show that the usual notion of homotopy has to be re�ned to take intoaccount some partial ordering describing the way time goes. This gives rise to some new interestingmathematical problems as well as give some common grounds to computer-scienti�c problems thathave not been precisely related otherwise in the past.The organization of the paper is as follows. In Section 2 we explain to which extent we can usesome geometrical ideas in computer science: we list a few of the potential or well known areas ofapplication and try to exemplify some of the properties of concurrent (and distributed) systemswe are interested in. We �rst explain the interest of using some geometric ideas for semanticalreasons. Then we take the example of concurrent databases with the problem of �nding deadlocksand with some aspects of serializability theory. More general questions about schedules can beasked as well and related to some geometric considerations, even for scheduling micro-instructions(and not only coarse-grained transactions as for databases). The �nal example is the one offault-tolerant protocols for distributed systems, where subtle scheduling properties go into play.In Section 3 we give the �rst few de�nitions needed for modeling the topological spaces arisingfrom Section 2. Basically, we need to de�ne a topological space containing all traces of executionsof the concurrent systems we want to characterize plus the information about how time 
ows.This is the main di�erence with standard topological reasoning in which there is no informationabout relation \in time" among points. The central notion here is that of a local po-space, whichis a topological space with a local partial-order of time on it. Some examples are given, but wewill only see in Section 6 that cubical complexes (or Higher-Dimensional Automata, [27] and [49])give rise naturally to such spaces, hence most \combinatorial" concurrency models are instancesof these local po-spaces. It is worth noting that some models in General Relativity [48] considertimed spaces, and the authors bene�ted from some of these physical concepts when developingthis theory.Section 4 then gives the �rst de�nitions of the new homotopy theory we need in order to de�neequivalence of paths along the intuitions developped in Section 2. A central notion here is thatof homotopy history components, which contains the relevant information for computer-scienti�capplications, as well as for classi�cation of local po-spaces modulo \directed" homotopy. Someexamples are given that show that this directed homotopy is �ner than the usual homotopy theoryin the sense that it can distinguish homotopy equivalent (in the standard sense) topological spaces.We then study a particular subcategory of local po-spaces, those which are locally euclidean,i.e. the local partial order is that of Rn (for some n). A central statement is that we can take\still pictures" of the dynamics on such spaces, i.e. look at cuts which contain points not relatedthrough time, and this can give obstructions to deformation in the directed sense.We carry on by looking at cubical complexes (or HDA) and show they are in some sense acombinatorial counterpart of these local po-spaces (at least of some large subcategory). We referthe reader to [27] or to the more recent [19] for actual semantics of some concurrent systems usingthese cubical complexes. Some of the \combinatorial" deformation theory in cubical complexes is1



2 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENdevelopped and related to the directed homotopy in the continuous case, using in particular thenotion of subdivision, in Section 7.A major application is fully treated in Section 8, the one of concurrent databases presentedinformally in Section 2. It is an application of the preceding theory and a re�nement and extensionof the result in [35].Then some mathematical directions are given in Section 9, some related computer-scienti�cperspectives are listed in Section 10, and �nally we refer the reader to some related papers wherealgebraic topology is at the center of computer-scienti�c modeling and proofs, in Section 11.Part of this was presented by two of the co-authors at the fourteenth conference on the Math-ematical Foundations of Programming Semantics (London, may 1998).2. Motivation and Examples of applications2.1. Semantics and static analyses. Without the ambition to be complete, we can trace backthe use of geometrical models and properties to the beginning of theoretical computer science, inthe use of graph theory, or of partial orders to describe the semantics of systems.For instance, sequential machines can be studied by examining their operational behaviours {that is by looking at their state transition graphs. One of the fundamental properties that wemight want to study is con
uence of the performed computation. This is obviously a propertyof a highly geometric nature: we must be able to complete all non-deterministic applications ofcon
icting reductions by some other reductions that all converge to the same result; i.e. we musthave diamond shapes in the state transition graphs describing the sequences of operations of oursequential machines.For concurrent machines, the geometric properties of computation include those of sequentialmachines but are even more intricate. Purely (interference free) asynchronous executions of twoprocesses are con
uent and therefore recognizable geometrically as diamonds (or squares). Forexample, the operational semantics of the interference free parallel composition of two actions aand b is, s3��b ��� I@@ a@@s1 s2I@@a @@ �� b���s0The �rst problem identi�ed [63] of this semantic description is that it is not stable underre�nement of actions. Re�nement is a property that is interesting when it comes to automaticallyverifying programs. It means that in the case of checking a property for a given program, wewould like to be able to check it on a view of the program that looks directly at some sequencesof actions and not at each \atomic" action composing it. As an example of non-stability here,the parallel composition of A (abstracting the sequential composition of a with b denoted by a:b)and of action c is shown in Figure 1 whereas the parallel composition of a:b with c should be asshown in Figure 2. We see that there are less paths in Figure 1 than in Figure 2. So we might loseinformation in that re�nement process. This practically compels many static analyses of parallelprograms, based on a transition system's semantics, to be of an exponential complexity in thenumber of atomic transitions.A second problem is a purely semantical one. In some cases, we would like to be able to specifythe actual use of shared ressources of a parallel program, like, how many processors are busy oridle, or should a process wait for a shared variable? As you can see in the diagram above, theparallel execution of a with b is identi�ed with the non-deterministic choice between a:b and b:a,called interleaving of a and b. These two should denote entirely di�erent behaviours in fact. Theformer should indicate that actions a and b can overlap in time, whereas the latter should prescribethat a and b are con
icting operations and that one has to be executed before the other. This iscentral to the discussion of mutual exclusion properties for instance.
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bFigure3. NewtracesA �rst solution has been proposed in slightly di�erent forms, asynchronous transition systems[4], concurrent automata [59], transition systems with independence [64] etc. These solutionsvery often consist in adding an independence relation between atomic actions involved in anordinary transition system. In these semantics, the interleaving of two independent actions meanstheir execution in parallel, whereas the interleaving of two non independent actions means theirexecution in mutual exclusion. Unfortunately, in these models, it is di�cult to speak in a naturalmanner of more complex mutual exclusion properties, like shared ressources that one can accessin parallel n times but not n + 1 (n � 2), nor of the number of busy processes at some instantin a distributed system. For instance, given three actions a, b and c, should we understand aand b independent, b and c independent and c and a independent as the same as a, b and c areindependent? This probably is not true if you are considering a, b and c as the requests to printa (di�erent) �le on a printer addressed to a server of printers. If the server controls two printersthen, on the program side, all pairs of actions are independent, whereas three requests cannot betreated at the same time. If the server controls three printers, all three requests are independent.These points are actually crucial in a certain number of applications. In particular, concerning theproof of parallel programs on constrained architectures, or the proof of fault-tolerant distributedprotocols in which the number of busy processors is of primary importance (see Section 10 and11), or for optimization of the use of shared ressources.Most of these aspects are dealt with traditionnally by resorting to Petri nets. But, even ifthe operational meaning of Petri nets is simple, it is not of the same nature as for transitionsystems. For instance, Petri nets are di�cult to use in a compositional way, which is not the caseof transition systems [1].Let us take a closer look at the geometry of transition systems used in concurrency now. Weonly have to think of a concurrent execution of two actions a and b on two processors P1 andP2 as a curve in R2 whose points have abscissa (respectively ordinate) the local time of P1 takento execute a (respectively the local time of P2 taken to execute b). This gives new traces, otherthan just the interleavings, as in Figure 3, which are all increasing paths in the two coordinates(because we cannot invert the time 
ow) included in the square delineated by the interleavings ofa and b.This was �rst proposed in [49] and [62], and further treated in [27]. Now we can understandthe problem of pools of printers explained brie
y above as follows. If we have three printers inthe pool then we allow traces (i.e. paths) that are inside the cube delimited by the three actionsa, b and c whereas if we have only two printers, we do not allow them, but only those whichare on the boundary of the cube (which is a closed surface). Here we are confronted to twopresentations of essentially the same phenomenon. The �rst one is the geometry of continuouspaths (like one could study in mechanics). The second one is a discretization of it, which in generalcomes �rst in the semantics applications (but not in others see Section 10); basically, abstract allpaths inside a n dimensional cube by the interior of the cube itself, then describe the geometry ofexecutions as the amalgamation (or pasting) of all the di�erent k dimensional cubes entering intoplay, as shown in Figure 2.1. This is precisely what is called a cubical complex in combinatorialalgebraic topology (see Section 6) or Higher-Dimensional Automata [49] in computer science. But
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1Figure 4. The glueing of elemen-tary cubes. Figure 5. A 2-semaphore.we are considering cubical complexes with an orientation given by the time 
ow (by orienting thesegments constituting it), whereas in ordinary algebraic topology we do not orient shapes in sucha manner. So the continuous counterpart of such discretizations is more than a topological space,it contains also order relations. This is developped in Section 3 under the name of po-spaces (andlocal po-spaces) whose formalisation and understanding is the main objective of this article.Now, do we gain something by using such geometric concepts? Do we use in particular mathe-matical theorems and techniques to derive a new knowledge on concurrent and distributed systemsthat way? We will try to argue that the answer is yes indeed.2.2. Distributeddatabases. Let us �rst of all take a simple example, �rst given in [35]. Considera distributed database in which transactions T1 to Tn access shared variables a, b,� � � using locks:Pa to lock the exclusive access to a and V a to unlock a so that other transactions can use a. Inorder to simplify the presentation, we can consider that the language of transactions is given bythe actions P and V (on any variable), and that we do not take care of the actual values of thevariables nor of the numerical calculations made. In this abstraction, Pa represents the requestfor a lock on a and V a the action of unlocking it.The semantics of this language, using cubical complexes, is easy to describe (see [19] for acomplete treatment). All executions of a P action can be made in an asynchronous manner { thelock requests, even on the same object, are independent { but the calculations on the same objectare serialized given that one processor, or the other has obtained the lock on the object. This iswhat is shown in Figure 7 where two transactions try to access the same object a for a calculation.A more intricate example is shown in Figure 6. The continuous counterpart of these examples areprocess graphs in the sense of E. W. Dijkstra [16].Now, it is easy to see (at least on these examples) that every continuous deformation of anexecution path (i.e. a path going from the bottom left, ending at the top right, and which isincreasing in each coordinate) does not change the history of accesses to shared variables, hencecannot change the �nal values (at the end of execution) of the shared variables. This implies thatwe can try to characterize traces up to that sort of \homotopy" when we want to determine thepossible outcomes of a concurrent program: in Figure 7, all executions going above and left ofthe hole have the property that T2 modi�es a before T1. In the sequel, a scheduler will be anysequence of actions modulo this homotopy (which will be formally de�ned in Section 4). Thisis very much akin to what is done in Mazurkiewicz trace theory, homotopy does correspond (atleast for paths) to partial commutation rules here. But the theory that we develop in this paperis more general, in particular when it comes to higher dimensions (there is no counterpart in tracetheory).Two classical problems in concurrent databases' theory are (see Section 4 and 8 for a partialtreatment),� Can transactions go into a deadlock? (then how can we properly schedule them?)� Is the transactions systems serializable?
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Figure7. Pa:V a:P c:V c jPa:V a:P b:V b. Figure8. 3diningphiloso-phers. Figure9. Unsafepart.Deadlocks, or more generally unsafe areas containing all points which will eventually lead toa deadlock have a geometric characterization, see [19] (look also at Figure 8 and 9 for a pictureof the three dining philosophers' problem). We will see later on in Section 4 and 8 that thesecorrespond to certain \diconnected components" characterized by homotopy theoretic properties.Let us now have a look at the serialization problem. Consider the following two transactions Rand S put in parallel.R: P A; P B;A:=B+1;V A; V B;P B;B:=3;V B; S: P B;B:=B+2;V B;P A; P B;A:=2*B;P A; P B;When beginning with the initial values A=0, B=0 we can get the following values,R: A=1R: B=3S: B=5-S: A=10- R: A=1S: B=2R: B=3-S: A=6- R: A=1S: B=2S: A=4-R: B=3- S: B=2R: A=3S: A=4-R: B=3- S: B=2R: A=3R: B=3-S: A=6- S: B=2S: A=6R: A=3-R: B=3-Only the �rst trace (with result A=10, B=5) and the last trace (with result A=3, B=3) arecorrect. The other traces are interferences: as a matter of fact we want that all the executiontraces give the same result as a sequential trace, i.e., R then S or S then R in their totality. It isthe property called serializability.



6 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENinstructions/cycle 0 1 2 3 4 5add.s U S+A A+R R+S ; ;add.s U S+A A+R R+S ;where U is unpack, S is shift, A is adder and R is round.Figure 10. MIPS R4000 
oating point unit.A solution is given by the 2-phase locking protocol: all processes P accessing to a databaseshould �rst do all the lock operations then the computation then all the unlock operations. Thesame operations programmed using this protocol are the following,R: P A;P B;A:=B+1;B:=3;V B;V A; S: P A;P B;B:=2;A:=2*B;V B;V A;We will see in Section 8 a geometric proof of the serializability of the 2-phase protocol.2.3. Scheduling algorithms. Let us take an example from [36] and [50]. Many modern CPUslike SPARCs or MIPS pipeline instructions. Of course, their functional units, registers or bus areall used in mutual exclusion. Unfortunately the pipelined instructions overlap in time as they usemore than one clock cycle and some of them cannot be executed (otherwise \structural hazards"occur) within a certain number of cycles after some others (see �gure 2.3). We do not want touse the pipeline in mutual exclusion since we would have to empty it after every instruction. Theproblem addressed in [50] is to verify that schedulers for a single process ensure that structuralhazards will not occur (safety). In a concurrent framework, if there are more processes thanprocessors, we can address the new problem of �nding a way to interleave actions from di�erentprocesses executed on the same processor, that verify the constraints while using the pipeline atthe best of its capabilities (this is a view formalised in [3] see example 2.1). Some processors (likeINTEL's Pentium) are even more complex to deal with since some resources may be used by atmost two processes in parallel but not three1.Example 2.1. We see from �gure2 2.3 that Suppose that we want to execute two instructionsadd.s one after the other on the MIPS R4000 
oating point unit Then at cycle 2 the adder A hasto be used by both instructions (coming from the same thread). The same holds at cycle 3 forthe round unit R. We say in that case that there is a hazard on A at cycle 2 and a hazard on Rat cycle 3. A good scheduler should have prevented us from this situation by interleaving the twothreads after the �rst add.s and continue with non-con
icting instructions of the second threadfor the pipeline to be emptied a bit before executing the second add.s.Once again, if we translate this problem by using P and V operations on the shared resources,we see that our problem is to �nd schedules that do not deadlock.2.4. Fault-tolerant distributed protocols. Let us take another simple example. Let two pro-cessors P and P 0 communicate by writing and reading variables in a shared memory. For instance,processor P (respectively P 0) can write, by action scan, a local variable u (respectively u0) in avariable of the shared memory x (respectively x0), and can also copy x and x0 in its local memory,by a update action, in u and v (respectively in u0 and v0). We can also make some choices usinga case statement. A scheme of the underlying concurrent machine is pictured in Figure 11.The processors can also do some calculations in a purely local manner. Such a machine has theproperty that every computation is done in a \wait-free" manner, i.e. there is no synchronisationbetween the processors. This implies that this machine is fault-tolerant to the extent that if one1it has two integer arithmetic units.2taken from [50].
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x x’Figure 11. A simple shared memory concurrent machine.of the two processors is faulty and stops computing, the other can carry on its own computation,with the partial data it possesses.An important application case is, once more, a distributed database. Suppose that transactions,in some remote booths, want to modify the same variable, but with two distinct values. This canbe the case of two customers willing to book the same plane. Can we �nd a practical protocolthat, given the architecture of the distributed database, ensures that only one of the two will haveits ticket booked, whereas the other will be noti�ed of the failure of its transaction? This is whatis called the consensus problem: we want to make two processors agree on a common value.This question is a particular case of a more general one which is to know what this concurrentmachine can compute. In the case of two processors, this was solved in [22]: it is by no meanspossible to solve the consensus problem on our simple machine. But we had to wait until quiterecently for a characterization of what can be computed on our asynchronous machine with nprocessors (for any n). This has been done by methods borrowed from combinatorial algebraictopology (simplicial complexes). This in fact is again a directed homotopy problem, as we explainbelow.Let us take an example of a program Prog having the two following processes in parallel,P = update; P 0 = update;scan; scan;case (u; v) of case (u; v) of(x; y0) : u = x0;update; (x; y0) : v = y;update;default : update default : updateWe have mainly the following three schedules since the only possible interactions are betweenthe scan and update statements,(i) Suppose the scan operation of P is completed before the update operation of P 0 is started:P does not know y so it chooses to write x. Prog ends up with ((P; x); (P 0; y)).(ii) Symmetric case: Prog ends up with ((P; x0); (P 0; y0)).(iii) The scan operation of P is after the update of P 0 and the scan of P 0 is after the update ofP . Prog ends up with ((P; x0); (P 0; y)).Now, we see that each of these three schedules correspond to the reordering of scan and updateoperations.If we represent commutation of two transitions by �lling their interleaving by a 2-transition, andrepresent non-commutation by not �lling the interleaving with 2-transitions, we come up with thethree paths modulo homotopy of the left part of Figure 14. This amounts to identifying the control
ow of our asynchronous language with a semaphore program, for which the pair (scan; update)of actions is identi�ed with an exchange of information, by P=V synchronisation. This is a goodanalogue up to the extent we are only interested by the e�ect of the history of the communicationson the environment, look at Figure 13.We then have mainly two con�gurations3 of \holes" on a square, when we look at the homotopyclasses of directed paths (1-schedules), as shown in Figure 14.In the �rst con�guration, there are three schedules (when the holes are \incomparable"),whereas in the second con�guration, there are four schedules (when the holes are \comparable").Therefore, if you look at some more complex con�guration between many holes, as in Figure 15,its set of schedules is described by a complex tree-like picture (also in Figure 15).3There can be no overlapping of holes as in the case of P=V programs
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4 5Figure 15. A more complex situationAs a matter of fact, we could easily describe a superset of the schedules.Formally, two holes are comparable if there is a directed path from the end of one of theholes to the start of the other hole. Comparability is a partial order, and we can show that anylinearisation of this partial order, by deforming the shape to have the holes in a linear con�guration)gives a superset of the possible schedules. But a chain (under this order, compatible with thecomparability partial order) of holes has exactly the \directed" homotopy type of a binary tree(Figure 16).To any leaf of the tree we can associate a segment in the output graph as follows,� a vertex is any local state, i.e. (P; x) or (P 0; x0),� a segment between (P; x) and (P 0; x0) represents the global state of the two processes,A leaf of the tree corresponds to one of the possible schedules of execution, and can only lead toa unique global state, hence a segment.
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H2 H2 H2 H25Figure 16. The homotopy type of a chain of holesFor instance the example program Prog does map a segment (a global state) to three segmentsas shown in Figure 12. This is a particular case of a more general phenomenon. In the semantics ofthe scan=update language, going from a leaf of the binary tree from the next one, we always shareone vertex (a P vertex or a P 0 vertex), so the graph that is reached by the possible schedulesis connected. We have made this sketch of proof for a superset of possible 1-schedules. Thisdoes not change the connectivity argument, which completes the proof of the following result; letfe1; : : : ; ekg be the set of global states that one can �nd at the end of an execution of a scan=updateprogram starting from of a global state e = ((P; u); (P 0; v0)). Then the graph generated (asmentionned above) by these global states is a connected graph (actually there is a converse tothat, which is by iterating in some manner the example program above [29]).This shows in particular that the consensus problem cannot be solved in our scan=updateprogramming language: starting from a global state ((P; 0); (P 0; 1)) the possible answers we wishto get i.e. f((P; 0); (P 0; 0)); ((P; 1); (P 0; 1))g do not form a connected graph.Many other results can be derived in that style, and one of the objectives of the theory pre-sented in this paper is to be able to derive su�cient knowledge about \schedules" for complexprogramming languages so that we can understand what these languages can compute4.In order to give further and more intricate examples in the sequel, we slightly enhance our toyprogramming languages so that,� shared objects can be \weakly-synchronizing", i.e., they can be shared by k processes but notk+1 at the same time, for any k � 1. Examples of such objects can be redundant functionalunits (for instance, in microprocessors, or in workshop modelisations), or communicationbu�ers of �xed size (in the case of asynchronous message passing), or shared FIFO queues(in shared-memory systems). We choose to think of these objects s in the convenient formof \k-places bu�ers", on which we can do actions push(x,s) where x is any integer valueand read(y,s) where y is any local (to the process executing the instruction) integer arrayvariable.� read(y,s) gives an atomic snapshot of the shared bu�er in the local memory. Then anyarray operation like access at the ith element, y[i] can be performed locally.� push(x,s) corresponds to asking to take one of the free places of the bu�er (in FIFO orderhere): if the bu�er is full then it pushes the values so that the �rst value entered is discarded.If two or more push instructions are executed right at the same time the semantics is notde�ned (anything can happen, in practice at the hardware level if no locks are used, thiscorresponds to some kind of short-circuit). In order to protect the integrity of the messages,we are using instructions Ps and Vs to acquire (respectively relinquish) one of the locks onthe bu�er. One place bu�ers are just the same as ordinary integer variables4It must be noted that most of the approaches about this kind of problemsmake simplifying assumptions aboutthe model of computation (making themmore synchronous than they should) to be able to enumerate the schedulesin a combinatorial manner.



10 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSEN3. DefinitionsWe start with elementary de�nitions and properties of pospaces that are the starting point forformalizing the intuitions of Section 2 (see [25]):De�nition 3.1. 1. A partial order � on a set U is a re
exive, transitive and antisymmetricrelation. We write x < y for (x � y and x 6= y).2. A partial order � on a topological space X is called closed if � is a closed subset of X �Xin the product topology. In that case, (X;�) is called a pospace.The idea is that a po-space is a topological space in which points are ordered globally throughtime. This is sometimes too strong an assumption and will lead us to local po-spaces (De�nition3.3).Remark 3.2. Let (X;�) denote a pospace.1. For every x 2 X, the sets # x = fy 2 Xjy � xg and " x = fy 2 Xjy � xg are closed.2. For every pair of points y1; y2 2 X, the set [y1; y2] = fx 2 Xjy1 � x � y2g =# y2\ " y1 isclosed.3. A partially ordered topological space is a pospace if and only if whenever a 6� b, there existopen sets U and V with a 2 U and b 2 V such that for all x 2 U and y 2 V x 6� y. Hence apospace is Hausdor�.[25].De�nition 3.3. Let X be a topological space.1. A local partial order on X is a covering U of X by open partially ordered sets (U;�U ) suchthat for all (U;�U ) and (V;�V ) in U we have8x; y 2 U \ V : x �U y , x �V y:2. A re�nement of the local partial order (U ; f�UgU2U ) on X consists of a re�nement V of thecovering U with partial orders such that for every V � U; V 2 V; U 2 U and x; y 2 Vx �V y , x �U y:3. Two local partial orders on X are said to be equivalent if they have a common re�nement.4. A topological space X with a local partial order (U ; f�UgU2U ) is called a local pospace ifthere is a re�nement V of the local partial order such that for every V 2 V, (V;�V ) is apospace.What we gain here is the ability to consider loops and points which you can come across in atrace of execution (in�nitely) many times.Remark 3.4. 1. This is a sort of germ or sheaf type de�nition of a local partial order and inparticular of the monotone functions (below).2. The transitive hull of the partial orders given on subsets does not in general give rise to aninteresting relation on X. If X is the circle (3.5) with local partial order given by a chosendirection, then the hull of the relation is the trivial relation x � y for any pair x and y. Thesame is true for the torus.3. By an abuse of notation, we will henceforth denote a locally partially ordered space (X;U)without the �U .4. The equivalence of local partial orders is an equivalence relation. To prove transitivity,suppose U and V have a common re�nement W1 and that W2 is a common re�nement of Vand T . Then W1 \W2 = fW1 \W2jWi 2 Wi; i = 1; 2g is a common re�nement of U and T .The partial orders are de�ned as follows: For all W1 \W2 there are U 2 U and V 2 V suchthatW1 2 U\V and there are V 0 2 V and T 2 T such thatW2 2 V 0\T . For x; y 2W1\W2we have x �U y , x �V y , x �V 0 y , x �T y.Example 3.5. 1. The circle S1 = fei� 2 C g has a local partial order: U1 = fei� 2 S1j0 < � <2�g has a (partial) order given by the order of the � and U2 = fei� 2 S1j� < � < 3�g is(partially) ordered by the order on the �'s.



ALGEBRAIC TOPOLOGY AND CONCURRENCY 112. The torus T 2 is C modulo a lattice z � z+ ip+ q 8(p; q) 2Z�Zand hence it inherits a localpartial order from the standard partial order on C �= R2. This is equivalent to choosing apartial order on each of the two generators of the torus.3. Let X be a disjoint union of four copies of the unit square I2. We get inequivalent globalpartial orders onX by considering X = [0; 1]�[0; 1]S[0; 1]�[4; 5]S[4; 5]�[0; 1]S[4; 5]�[4; 5]or X = [0; 1]� [0; 1]S[0; 1]� [4; 5]S[4; 5]� [0; 1]S[2; 3]� [2; 3] both with the partial orderinduced from R2. Considered as local partial orders, these are equivalent. A commonre�nement is de�ned by letting all 4 copies of I2 have the partial order induced from R2 andno further relations.De�nition 3.6. 1. Let (X;U) and (Y;V) be locally partially ordered spaces. A continuous mapf : X ! Y is called a dimap (directed map) if there are re�nements U 0 of U and V0 of Vsuch that 8U 2 U 0; V 2 V0; x; y 2 U \ f�1(V ) : x �U y ) f(x) �V f(y):2. A dipath in X is a dimap f : I ! X from the unit interval I with the natural (global) order�.What we get here is the mathematical de�nition of traces of executions as we showed in Figures3, 6, 14, 15 and 16.Remark 3.7. 1. Let f1; f2 : I ! X denote two dipaths with f1(1) = f2(0). Their concatenationf1 � f2 is again a dipath. ((f1 � f2)(t) = � f1(t) t � 0:5;f2(2t � 1) t � 0:5: )2. One might look at maps from arbitrary intervals and allow equivalence classes with respectto strictly increasing homeomorphisms between intervals.De�nition 3.8. (Compare [48].) Let X be a locally partially ordered space. We de�ne a newrelation � on X by x � y if there is a dipath from x to y in X.Lemma 3.9. If X has a global partial order, � the relation � is a new partial order.Proof. The relation � is coarser then the relation �, i.e., x � y ) x � y. Hence, � isantisymmetric. Concatenation of dipaths shows the transitivity of �. This is some kind of\reachability" relation which underlines most proofs in semantics.Remark 3.10. If X is locally partially ordered, the relation � is still transitive, but it is notnecessarily antisymmetric as one can see from the example 3.5 with the oriented circle.De�nition 3.11. Let y 2 X;S � X.1. The set J+(y) := fx 2 Xj y � xg is called the future of y; likewise, one de�nes the pastJ�(y). The set J(y) := J�(y) [ J+(y) is called the history.2. J+(S) := Sx2S J+(x); J�(S) := Sx2S J�(x); J(S) := J�(S)[J+(S) are called the future,past, history of S.3. x is called an initial point if J�(x) = fxg; x is called a �nal point if J+(x) = fxg.Remark 3.12. Initial points, resp. �nal points are local maxima, resp. minima with respect to thepartial order �. An initial point is unreachable from any other initial point. A �nal point isunreachable from any other �nal point. Hence a deadlock is a �nal point, which is not among the�nal points representing succesful outcomes of the computations.4. Diconnected spaces, diconnected components, di-1-connected spacesNow we want to formalize the deformations of paths we have been \using" in the introduction,i.e. directed homotopy, and characterize the local po-spaces up to dihomotopy. First, we shouldhave a new notion of connectivity and of connected components since we have to take the 
ow oftime into account.To de�ne di-connected components we have to study the dipaths up to deformation. This seemsvery di�erent from the non-directed topology case. It is however what one would expect, since we
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Figure 17. \A path aroundtwo non-ordered holes". Figure 18. \Room withthree barriers" and 2 non-dihomotopic dipaths.
Figure 19. \Room withthree barriers" (anotherview). Figure 20. \Room withthree barriers" (yet anotherview).have to take the interplay between the partial order and the topology into consideration, and thisis of course re
ected in the dipaths. Throughout this section, (X;�) is supposed to be a locallypartially ordered topological space.De�nition 4.1. A dipath � : I ! X is called inextendible, if there is no dipath � : J ! X suchthat �(I) �6= �(J). The set of all inextendible dipaths in X is denoted as ~P1(X).In other words, since dipaths are compact, an inextendible path � starts at an initial point andends at a �nal point.De�nition 4.2. Let I denote the unit-interval, and let J denote another interval.1. A continuous map H : J � I ! X is called a dihomotopy if every partial map Ht : J !X; t 2 I, is an inextendible dipath.2. Two inextendible dipaths �; � : J ! X are called dihomotopic if there is a dihomotopyH : J � I ! X with H0 = � and H1 = �. We write: � ; �.3. The set of dihomotopy classes of inextendible dipaths in X is denoted as ~�1(X).Remark 4.3. 1. If H0 starts in the initial point x, then (by inextendibility and continuity), allHt have to start in the same point x. Analogously, they have to end in the same �nal point.2. The local partial order need not be preserved wrt. to the variables in I.3. Dihomotopy is obviously an equivalence relation.Example 4.4. 1. Figure 17 represents a path from an initial to a �nal point that cannot behomotoped to a dipath.2. Figures 18, 19 and 20 are di�erent views of an example of two dipaths that are homotopicto each other (relative to the boundary), but not dihomotopic to each other:To explain the meaning of these two paths computer-scienti�cally, consider the followingthree terms.



ALGEBRAIC TOPOLOGY AND CONCURRENCY 13� T1 = Pa:push(a; 1):V a:P b:read(b; u):read(a; v):push(b; u[1]+v):V b:P c:read(b; u):push(c; u[1] + u[2]):V c,� T2 = Pb:read(a; v):push(b; v + 1):V b,� T3 = Pa:push(a; 3):P b:read(a; v):push(b; 0):V a:P c:read(b; u):push(b; u[1]�v):push(c; u[1] + u[2]):V b:V c.Then the �rst dipath (the one below the central hole in Figure 18) corresponds to thefollowing schedule (where T3 gets a before T1 and T2 gets into b after (T1; T3)),T1 T2 T3 V aluesPa � Pa a = 3� � Pb b = (20; 0)� � V aV a � � a = 1Pb � �V b � � b = (1;20)Pc � �V c � � c = 1� � Pc� � V b b = (1; 3)� � V c c = 4� Pb �� V b � b = (2; 1)where \boxed" values (for b) are the places of this bu�er which are holding a lock. Thesecond dipath corresponds to (where T3 gets a before T1 and T1 gets into b after (T2; T3)),T1 T2 T3 V aluesPa � Pa a = 3� � Pb b = (20; 0)� � V a� Pb �� V b � b = (4;20)V a � � a = 1Pb � �V b � � b = (5;20)Pc � �V c � � c = 5� � Pc� � V b b = (5; 15)� � V c c = 20Let us assume the purpose of this program was to give a value for c then we see that thesetwo homotopic (in the classical sense) but not dihomotopic dipaths give di�erent results.De�nition 4.5. 1. The homotopy history of an inextendible dipath � : I ! X is de�ned ash� := fy 2 Xj9 a dipath � through y and � ; �g:2. Two points are homotopy history equivalent ifx 2 h�, y 2 h� for all � 2 ~P1(X):3. The diconnected components of X consists of the connected components (in the classicalsense) of the homotopy history equivalence classes of X.Remark 4.6. 1. Inextendible paths in the same dihomotopy class have the same homotopyhistory.
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Figure 21. The \Swiss 
ag" example. 1
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74 1
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5Figure 22. \Two partiallyordered holes".2. Two points x; y 2 X are history equivalent if and only if every dipath through x is di-homotopic to one through y and every dipath through y is dihomotopic to one throughx.3. If X is compact, the Boolean algebra generated by the homotopy histories is atomic anda homotopy history equivalence class C is an atom, i.e., it contains the points that arecontained in the homotopy histories of certain dihomotopy classes but not in others, i.e.,there is a subset K � ~�1(X) such thatC = [�2K h� n [�=2K h�:Point 3 of the remark above is of primary importance for program analysis. Each h� correspondsto some property of accesses of shared ressources in the PV model. The decomposition of C showsthat there are elementary regions of execution which are separated out by the properties pathsgoing through them can have in the future (and in the past). We give examples below.Example 4.7. 1. The complement of the \Swiss 
ag" in I2 (see Figure 21) has 10 homotopyhistory components. All of them are pathwise connected. This gives the semantics of theprogram having process T1 = Pa:Pb:V b:V a in parallel with T2 = Pb:Pa:V a:V b (where aand b are 1-semaphores). In region 1, we still have all possible futures (all possible accesshistories to a and b). In region 2, we can only go to 4 or to 6, meaning that we are going todeadlock in the future or T2 will get a and b before T1. In region 6, we can only come from 2and go to 9: T2 has got a and b before T1. In region 9, we can \come" from the unreachableregion 7 or from 6. In region 10, we might have come from any history in the past.2. The complement of \two partially ordered holes" in I2 (see Figure 22) has 7 homotopyhistory components. One of them contains both the initial point 0, the �nal point 1, andan area in the middle. This homotopy history class decomposes into three diconnectedcomponents, all the others are pathwise connected. This pictures gives the semantics of theterm Pa:V a:P b:V b j Pa:V a:P b:V b.3. The \room with 3 barriers" in I3 from Ex. 4.4 has 8 homotopy history components. Themiddle region from 2. decomposes into two spacial components.Let again (X;U) be a locally partially ordered topological space, and let A;B � X.De�nition 4.8. 1. A dipath from A to B is a dipath 
 in X with 
(0) 2 A and 
(1) 2 B.2. Two dipaths 
; � in X from A to B are dihomotopic from A to B if there is a homotopyH : J � I ! X with H0 = 
;H1 = � and such that every map Ht is a dipath from A to B.3. Dihomotopy from A to B is obviously an equivalence relation. The equivalence classes(dihomotopy classes) constitute the dihomotopy set ~�1(X;A;B).Remark 4.9. 1. In many relevant cases, A, resp. B will consist of a single point or a �nitenumber of \initial", resp. "�nal" points. If I, resp. F consists of the initial, resp. �nal pointsof X, then ~�1(X) = ~�1(X; I; F ).



ALGEBRAIC TOPOLOGY AND CONCURRENCY 152. Concatenation of dipaths factors to yield concatenation on the level of dihomotopy classes~�1(X;A;B) � ~�1(X;B;C)! ~�1(X;A;C):De�nition 4.10. 1. S is called di-1-connected from A to B if ~�1(S;A;B) consists of a singledihomotopy class.5. Parameterized and Euclidean partial ordersIn this section, we look at a particular subcategory of local po-spaces, where locally, the timeordering is the component-wise ordering in Rn. These spaces are a special case of parameterizedspaces in which it is possible to cut transversally to time to determine, using ordinary homotopytheory, obstructions to directed homotopy.De�nition 5.1. Let U be a set with a partial order �. A subset V � U is called achronal if forall x; y 2 V : x � y ) x = y; compare [48].De�nition 5.2. Let (X;�) denote a pospace.1. We call (X;�) parameterized if there is a (parameter) dimap F : X ! R such that Xt :=F�1(t) is achronal for every t 2 R.2. We call � Euclidean if there are �nitely many dimaps fi : X ! R such that8x; y 2 X : x < y , 8i : fi(x) � fi(y); 9i : fi(x) < fi(y):3. A local partial order on a topological space X is called parameterized, resp. Euclidean if it(or a re�nement of it) consists of parameterized, resp. Euclidean partial orders.Remark 5.3. For a Euclidean partial order the relation is given by comparison with the naturalpartial order on Euclidean space Rn, de�ned for x = [x1; : : : ; xn];y = [y1; : : : ; yn] 2 Rn:x � y , 8i : xi � yi:Lemma 5.4. 1. A parameterized po-space gives rise to a new partial order �0 de�ned by: x �0y , F (x) � F (y) 2 R.2. A Euclidean partial order is parameterized.Proof.1. Antisymmetry follows from the achronality of the Xt.2. Let X and fi : X ! R be given as in Def. 5.2.2. The function F = P fi : U ! R is adimap, and for every t 2 R, the preimage Xt := F�1(t) � X is achronal.For the rest of this section, let (X;�; F ) denote a parameterized pospace foliatingX into \cuts"Xt; t 2 R. We shall moreover use F to reparameterize dipaths and dihomotopies to yield newparameterizations matching with that foliation:De�nition 5.5. 1. A dipath � : I ! X is called well-parameterized if F (�(t)) = t for everyt 2 I.2. A dihomotopyH : J�I ! X is called well-parameterized if every dipath Hs : I ! X; s 2 Jis well-parameterized.3. A dipath � : I0 ! X is called a reparameterization of another dipath � if there is a strictlymonotonic map h : I0 ! I such that � = � � h.Almost as in any course on elementary di�erential geometry, we get easily:Proposition 5.6. 1. To any dipath � : I ! X, there is (exactly one) well-parameterizedreparameterization � : I 0 ! X.2. To any dihomotopy H : J � I ! X there is (exactly one) well-parameterized reparameteri-zation �H : J � I0 ! X.Proof. The map s := F �� : I ! R is strictly increasing and continuous with image an intervalI0 � R. Let t : I 0 ! I denote the (strictly monotonic and continuous) map inverse to s. Obviously,� := � � t : I 0 ! X is (the only) well-parameterized reparameterization of �. The same argumentgoes through (levelwise) for a dihomotopy.



16 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENRemark 5.7. 1. In fact, the proof for Prop. 5.6 needs to start with a regular dipath: t1 < t2 )�(t1) 6= �(t2). But if a dipath is not regular, (i.e., constant on subintervals), one may �rstreparameterize it such that it gets regular by shortening the interval of de�nition.2. In 2., one might have to use that X is a Hausdor� space. This is alright by Rem. 3.2.4.The cuts Xt := F�1(t) will in general decompose into (classical) connected components. Thesecan be used to obtain obstructions to dihomotopy:Proposition 5.8. Let H : J � I ! X denote a well-parameterized dihomotopy between two well-parameterized dipaths �; �0 : I ! X. For every t 2 I, �(t) and �0(t) are contained in the samecomponent of Xt.Proof. The map H(�; t) : J ! Xt is a path from �(t) to �0(t).Unfortunately, this criterion is not enough to describe, even in this restricted subcategory, whatdirected homotopy is, as we show in next example.Example 5.9. Let X be the subset [0; 3] � [0; 3] � [0; 3] n [1; 2] � [1; 2] � [0; 3] in R3 with thestandard partial order. There are two dihomotopy classes of paths from (0; 0; 0) to (3; 3; 3), butthe cuts induced by F (x; y; z) = x + y + z are all connected. Hence to get full informationabout dihomotopy classes, it does not su�ce to study just one family of cuts. We conjecture thatfor cubical complexes (treated in next section), it su�ces to know all families of cuts and theirconnected components, i.e., that cuts give all the obstructions to dihomotopy equivalence.6. Cubical complexes as local po-spacesCubical complexes were de�ned by J.-P.Serre [54] and a theoretical framework is developpedby R. Brown and P. J. Higgins [8], see also [27] for their use as models for higher dimensionalautomata (HDA). We show here that they are the natural combinatorial counterpart of local po-spaces (the centre of this is Theorem 6.24 and Proposition 6.37). This makes the link with morestandard combinatorial techniques for reasoning about concurrent systems (interleaving ones ortruly-concurrent ones like HDA).6.1. Cubical complexes. We start here with elementary de�nitions of cubical complexes, asfound in e.g. Brown et al. [7] and [8]. We have added up a notion of \semi-cubical" complex(analogous to \semi-simplicial" complexes) which is the common part of all cubical complexesintroduced by many authors (for a di�erent category of cubical complexes, see [18]).De�nition 6.1. A semi-cubical complex M is a family of sets fMnjn � 0g with face maps @ki :Mn !Mn�1 (1 � i � n, k = 0; 1) satisfying the semi-cubical relations:@ki @lj = @lj�1@ki (i < j)De�nition 6.2. A cubical complex K is a semi-cubical complex with degeneracy maps �i :Kn�1 ! Kn (1 � i � n) satisfying the cubical relations:�i�j = �j+1�i (i � j)@ki �j = 8<: �j�1@ki (i < j)�j@ki�1 (i > j)Id (i = j)De�nition 6.3. Let M and N be two semi-cubical sets, and f a family fn : Mn ! Nn offunctions. f is a morphism of semi-cubical sets iffn � @0i = @0i � fn+1fn � @1i = @1i � fn+1for all n 2 IN and 1 � i � n+ 1.This de�nes the category �sr of semi-cubical sets.We write �nsr for the full subcategory of �sr consisting of semi-cubical sets whose elements arecubes of dimension less than or equal to n.



ALGEBRAIC TOPOLOGY AND CONCURRENCY 176.2. The geometric realization of a semi-cubical set. Let 2n be the standard cube in Rn(n � 0), 2n = f(t1; : : : ; tn)j8i; 0 � ti � 1g20 = f0gand let �ki : 2n�1 ! 2n, 1 � i � n, k = 1; 2, be the continuous functions (n � 1),2n < �0i 2n�1^�1i2n�1de�ned by, �ki (t1; : : : ; tn�1) = (t1; : : : ; ti�1; k; ti; : : : ; tn�1)Then,Lemma 6.4. �ki �lj = �lj+1�ki (i � j)Proof. Let i � j, and (t1; : : : ; tn) 2 2n. Then,�ki (�lj (t1; : : : ; tn)) = �ki (t1; : : : ; tj�1; l; tj; : : : ; tn)= (t1; : : : ; ti�1; k; : : : ; l; tj; : : : ; tn)= �lj+1(�ki (t1; : : : ; tn))We notice that �k verify the dual equations that @k verify in all semi-cubical sets.Consider now, for a semi-cubical set M , the set R(M ) = ǹ Mn � 2n. The sets Mn have thediscrete topology and 2n is topologized as a subset of Rn with the standard topology thus R(M )is a topological space with the disjoint sum topology.Let � be the equivalence relation induced by the identities:8k; i; n; 8x 2Mn+1; 8t 2 2n; n � 0; (@ki (x); t) � (x; �ki (t))Let j M j= R(M )= � have the quotient topology. The topological space j M j is called thegeometric realization of M . And moreover, M can be thought of as a labelling of a subdivision ofj M j into cubes. An element ym 2 Mm is the label of an m-cube in j M j. Let p 2j M j, thenthere is a minimal cube in the subdivision of j M j containing p, namely the unique cube x� 2kwhich has p in the interior. We call x the carrier of p.De�nition 6.5. The open star of a point p 2jM j with respect to the subdivision M isSt(p;M ) = fq 2jM j jcarrier (p) is a face of carrier (q)gFor a cube x 2Mn we de�ne the open starSt(x;M ) = fy 2M j9(k1; l1); : : : ; (ki; li); @k1l1 : : :@kili (y) = xgThe upper star of x is St+(x;M ) = fy 2M j9l1; : : : ; li; @0l1 : : :@0li (y) = xgThe lower star is St�(x;M ) = fy 2M j9l1; : : : ; li; @1l1 : : : @1li(y) = xg



18 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENRemark 6.6. 1. If x 2Mn is the carrier of p 2jM j, then St(p;M ) is the union of the interiors ofcubes in jM j which are labelled by an element of St(x;M ). We de�ne the upper and lowerstar of p as the union of the interior of cubes in jM j labeled by elements from respectivelythe upper and lower star of x.2. By an abuse of notation, we will omit M and write St(p) and St(x)if there is no risk ofconfusion.3. If p and q in j M j have the same carrier, i.e., if they are in the interior of the same cube,then St(p) = St(q)6.3. The geometric realization functor and locally po-spaces. First we have to de�ne sometechnical intermediary steps.De�nition 6.7. Let M be a semi-cubical complex and y an element of M . Then x 2M is a faceof y if there exists a collection of indices k1; � � � ; k1 being 0 or 1 and l1; � � � ; li integers such thatx = @k1l1 � � �@kili y. This is equivalent to saying that y is in the star of x (y 2 St(x;M )).To take advantage of the geometrical intuition, we will consider the realization jM j. Hencegiven y 2Mn and its tree of boundaries @k1l1 : : :@kmlm y we may think of this as the n-cube 2n in jM jlabelled y and its iterated boundaries. To be precise, x = @ki y means that the n � 1-cube 2n�1labelled x is identi�ed with f(t1; : : : ; tn) 2 2njti = kg. The commutator rules for the boundariesensures that this works for iterated boundaries:Lemma 6.8. Let x = @k1l1 : : : @kmlm y. Then there is a (not necessarily unique) canonical form@k01l01 : : : @k0ml0m y with l01 < l02 < : : : < l0m, and x is identi�ed with f(t1; : : : ; tn) 2 2njtl0i = ki for i =1; : : : ;mg,Proof. Use the commutator relations.To support this view, we prove that the combinatorial model of the iterated boundaries is\right".De�nition 6.9. Let D[n] be the free semi-cubical complex generated by a unique n-cube I[n], i.e.the semi-cubical complex of faces of I[n] which is formally,� (D[n])j = f@k1l1 � � �@kn�jln�j (I[n]) j ki = 0; 1; l1 < � � � < ln�jg,� The boundary operations are concatenations of the operator and of the element of D[n] itself.Then,Lemma 6.10. � j D[n] j is homeomorphic to the space 2n with the usual topology in Rn,� Any morphism of semi-cubical complexes � : D[n] !M (we call this a singular cube) inducesa continuous map j � j: 2n !jM j.Proof. Let us consider the following map:fI[n] : j D[n] j ! 2n(@k1l1 � � �@kili (I[n]); v) ! �kili � � � �k1l1 (v)In j D[n] j we identify points of the form (@kl @k1l1 � � �@kili (I[n]); v) with (@k1l1 � � �@kili (I[n]); �kl (v)). Byde�nition f(@kl @k1l1 � � �@kili (I[n]); v) = �kili � � ��k1l1 �kl (v) = f(@k1l1 � � �@kili (I[n]); �kl (v)). This implies thatf is well de�ned.To see, that f is injective, suppose we have two points in D[n], x = (@k1l1 � � �@kili (I[n]); v) andy = (@k01l01 � � �@k0i0l0i0 (I[n]); v0) such that fI[n] (x) = fI[n] (y). We assume without lack of generality, thatv 2 �2n�i and v0 2 �2n�i0 . Using the commutator rules (which is ok by the identi�cations made inthe geometric realisation), we may also assume that li < � � � < l1 and l0i0 < � � � < l01.With these assumptions, f(x) = f(y), i.e., �kili � � ��k1l1 (v) = �k0i0l0 i0 � � � �k0i0l01 (v) = (t1; : : : ; tn) 2 2nmeans tj = 1 if and only if there is a � and a �0 such that l� = l�0 = j and k� = k�0 = 1 Similarlyfor tj = 0. Thus i0 = i and lj = l0j and kj = k0j for j = 1; : : : ; i



ALGEBRAIC TOPOLOGY AND CONCURRENCY 19f is also surjective in an easy manner, therefore f is a bijection. Furthermore, f is continuouson each face (@k1l1 � � �@kili (I[n])); v) (v 2 �2n�i) of j D[n] j with value in a face of 2n. This impliesthat f is continuous and it is easy to see that f�1 is also continuous: f is an homeomorphism.Then, given �, it su�ces to see that �(I[n]) = x 2 Mn is an n-cube of M and that j � j is fx,thus is a continuous map.The non uniqueness of the canonical form in Lemma 6.8 arises when M has other identi�cationsof the faces of y than the ones induced by the commutator relations, and hence in jM j we gluefaces of the same cube to eachother. To avoid this, we de�neDe�nition 6.11. Let M a semi-cubical complex. M is a non singular cubical complex if for allits n-cubes x, @kl (x) = @k0l0 (x) implies k 6= k0.Remark 6.12. In the geometric realization j M j, the requirement that M is non singular ensuresthat two faces of an n-cube are identi�ed only if one is an upper face and the other is a lower face,thus giving rise to a loop.De�nition 6.13. Let M a semi-cubical complex. M is a non self-linked cubical complex if for allits n-cubes x, @kl (x) = @k0l0 (x) implies k = k0 and l = l0.Remark 6.14. One may still have loops in j M j, but they will always consist of more than onecube. Hence each y 2Mn has a full subtree of iterated boundaries with 2�nk� vertices in Mn�k,as does indeed an n-cube and its iterated boundaries.Now the canonical form is unique:Lemma 6.15. Let M be a non self-linked cubical complex, and x; y be elements of M . Suppose xis a face of y. Then x can be written in a unique manner as,� x = @k1l1 � � �@kili y with k1; � � � ; ki = 0; 1 and l1 < l2 < � � � < li (\canonical form").� x = @0l01 � � �@0l0j@1l0j+1 � � �@1l0iy with l01 < l02 < � � � < l0j and l0j+1 < l0j+2 < � � � < l0i.All other \decompositions" of x as a face of y, x = @u1v1 � � �@uivi y verify the following: let K0(x; y)(respectively K1(x; y)) be the cardinal of the set fj=1 � j � i; kj = 0g (respectively fj=1 � j �i; kj = 1g), then K0(x; y) (respectively K1(x; y)) is also the cardinal of fj=1 � j � i; uj = 0g(respectively fj=1 � j � i; uj = 1g).Proof. By induction on i (the length of the decomposition). The statement about K0 andK1 follows from the fact that these are invariant under commutation following the commutatorrules.Lemma 6.16. Let M be a non self-linked cubical complex, x and y two of its elements. Therelation x is a face of y (\x <F y") is a partial order.Proof. It is re
exive indeed.Now, if x <F y and y <F x then x = @k1l1 � � �@kili y and y = @k01l01 � � �@k0jl0j x by de�nition. Sox = @k1l1 � � �@kili @k01l01 � � �@k0jl0j x and K0(x; x) = K0(x; y) +K0(y; x) and K1(x; x) = K1(x; y) +K1(y; x)by Lemma 6.15. But K0(x; x) = K1(x; x) = 0 again by Lemma 6.15 so are K0(x; y), K1(x; y),K0(y; x) and K1(y; x). Therefore x = y.Finally, if x <F y and y <F z then x = @k1l1 � � �@kili y and y = @k01l01 � � �@k0jl0j z. So x = @k1l1 � � �@kili @k01l01 � � �@k0jl0j z and x <F z.Lemma 6.17. Let M be a non self-linked cubical complex, x, y and z three elements of M . Thenx <F y <F z implies K0(x; z) = K0(x; y) +K0(y; z) and K1(x; z) = K1(x; y) +K1(y; z).Proof. If x <F y and y <F z then x = @k1l1 � � �@kili y and y = @k01l01 � � �@k0jl0j z. So x = @k1l1 � � �@kili @k01l01 � � �@k0jl0j z and the number of km or k0m equal to 0 (respectively 1) in the decomposition above is the



20 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENnumber of km equal to 0 (respectively 1) plus the number of k0m equal to 0 (respectively 1), hencethe result.The face ordering has nice properties that we will exploit later on.Lemma 6.18. Let M be a non-singular cubical complex and x, y be two elements of M such thatx <F y. Then there is a projection operator (which is a dimap) pyx of cube j y j in j M j whosecarrier is y on the cube j x j such that, if x = @k1l1 � � �@kjlj y, pyx(y; �kjlj � � � �k1l1 v) = (x; v).Proof. In j M j, points (x; t) are identi�ed with (y; �kjlj � � � �k1l1 (t)). Let p be the projectionfrom Rn to Rm (if y 2 Mn, x 2 Mm, we have t 2 Rm and �kjlj � � ��k1l1 (t) 2 Rn) which projectsout coordinates l1; � � � ; lj. Then set pyx(y; u) = (x; p(u)), then pyx(y; �kjlj � � � �k1l1 v) = (x; v) thuspyx(x; v) = (x; v). p is continuous and monotonic so pyx is a dimap.Lemma 6.19. Let M be a non self-linked cubical complex. Then for all y 2 M , for all faces band b0 of y in M , we have only two possibilities,� b and b0 have no face in common (we write b \ b0 = ;),� or b and b0 have a maximal (with respect to the partial order <F ) face in common (that wewrite b \ b0), which is a face of y).Proof. Since M is non self-intersecting and we study iterated boundaries of y 2 Mn, we canconsider this a study of the n-cube 2n with no identi�cations of boundaries except the ones givenby the geometry.Two boundaries b and b0 are then considered as subsets of f(t1; : : : ; tn) 2 2ng. We writeb = @k1l1 � � �@kjlj y and b0 = @k01l01 � � �@k0j0l0j0 y on canonical form. Then b = f(t1; : : : ; tn) 2 2njtli =ki for i = 1 : : : jg and b = f(t1; : : : ; tn) 2 2njtl0i = k0i for i = 1 : : : j0g and the intersectionb \ b0 = f(t1; : : : ; tn) 2 2njtli = ki for i = 1 : : : j and tl0i = k0i for i = 1 : : : j0g.If for some i 2 f1; : : : ; jg and i0 2 f1; : : : j0g li = l0i0 and ki 6= k0i0 , then b \ b0 = ;. Otherwise,the description as a subset of 2n gives that b \ b0 is a face.Let us �x M a non self-linked cubical complex now. Its geometric realization jM j is made upof equivalence classes of points (x; t), x 2Mn, t 2 2n under the relations (@kl (x); t) = (x; �kl (t)).We give a local partial order on j M j. Any point p in j M j has a unique representative (x; t)where x = carrier (p) and t 2 �2n (for some n). We prove that there is a partial order �x on theopen neighborhood Ux = St(p;M ) of p whenever x is a vertex of M and that the covering bythese partial orders gives rise to a local partial order. First, in the case where x is not necessarilya vertex, we can partially order any (y; u) 2 Ux (again, we choose a representative such that y isthe carrier of the point) with any (x; t). We have x = @k1l1 : : :@kili (y) because y 2 St(x;M ), so (x; t)is identi�ed with (y; �kili : : : �k1l1 (t)).De�nition 6.20. We set, (x; t) �Ux (y; u) if �kili : : : �k1l1 (t) � u in 2n+i(y; u) �Ux (x; t) if �kili : : : �k1l1 (t) � u in 2n+iThis is well-de�ned since the decomposition of x as a boundary of y is unique, because M isnon self-linked.Lemma 6.21. � Suppose (x; t) �Ux (y; u) and x 6= y, then necessarily, x = @0l1 : : : @0ljy (wherej � 0). This implies that K0(x; y) > 0 and K1(x; y) = 0.� Suppose (y; u) �Ux (x; t) and x 6= y, then necessarily, x = @1l1 : : :@1ljy (where j � 0). Thisimplies that K0(x; y) = 0 and K1(x; y) > 0.



ALGEBRAIC TOPOLOGY AND CONCURRENCY 21Proof. We only prove the �rst statement since the proof of the other is similar. y 2 St(x;M )so there is a collection of indices such that x = @k0l0 : : : @kjlj y (j � �1). j cannot be equal to -1since x 6= y. Suppose now that there is an index ki (0 � i � j) which is equal to one. Then u 2 �2n(n � 1 since n = 0 is only possible when x is a vertex and x = y), therefore all coordinates ui of uare strictly less than 1, so in particular uli < (�kili (t))li = 1 by de�nition of the operator �kili . Thisis a contradiction with the de�nition of �Ux .We now de�ne another useful relation on the points of the geometric realization of M .De�nition 6.22. Let x be a vertex of M and let (z; v) be a point in Ux with carrier z. We say(z; v) �x (y; u) if there exists b in the star of x and t such that (z; v) �Ub (b; t) �Ub (y; u).This relation subsumes the relation Ux in an obvious manner and can be characterized asfollows,Lemma 6.23. Suppose (z; v) �x (y; u), that is, 9(b; t), b 2 St(x;M ), (z; v) �Ub (b; t) �Ub (y; u).Then we have the following cases,(a): b = @1l1 : : : @1lj z, for some collection of indices and K1(b; z) = j � 1 (K0(b; z) = 0);b = @0l01 : : :@0l0j0 y, for some collection of indices and K0(b; y) = j0 � 1 (K1(b; y0) = 0).(b): b = z, b = @0l01 : : :@0l0jy, for some collection of indices and K0(b; y) = j � 1 (K1(b; y0) = 0),and the relation above shrinks down to (z; v) �Uz (y; u).(c): b = y, b = @1l1 : : :@1lj z, for some collection of indices and K1(b; z) = j � 1 (K0(b; z) = 0),and the relation above shrinks down to (z; v) �Uy (y; u).(d): y = z and the relation above shrinks down to v � u.Proof. This is entailed by Lemma 6.21.We will say in the sequel that (z; b; u) is in case (a), (b), (c) or (d) according to the criteriaabove. In order to simplify the proofs we will write in brief (for all cases (a), (b), (c) and (d))b = @1� z and b = @0�y where * means a multiindex, 1 = (1; 1; : : : ; 1), 0 = (0; 0; : : : ; 0) and theymay all be empty. Now we can state,Theorem 6.24. The geometric realization of a non self-linked cubical complex M de�nes a locallypo-space with covering being fSt(x;M )=x 2M0g and local partial order �x on St(x;M ).Proof. We check that �x is a partial order indeed for all x in M . First, the re
exivity isobvious.Then we check the antisymmetry: suppose (z; v) �x (y; u) and (y; u) �x (z; v). This meansthere are (b; t) and (b0; t0) with b 2 St(x;M ) and b0 2 St(x;M ) such that,(z; v) �Ub (b; t) �Ub (y; u) �Ub0 (b0; t0) �Ub0 (z; v)b = @1� z; b = @0�y; b0 = @1� y; b0 = @0� zand moreover x = @��b; x = @��b0where * means a multiindex, 1 = (1; 1; : : : ; 1), 0 = (0; 0; : : : ; 0) and they may all be empty. Hencecomposing boundary maps we see that the following equalities hold:1. K0(x; z) = K0(x; b) and K0(x; z) = K0(x; b0) +K0(b0; z)2. K0(x; y) = K0(x; b) +K0(b; y) and K0(x; y) = K0(x; b0)3. K1(x; y) = K1(x; b) and K1(x; y) = K1(x; b0) +K1(b0; y)4. K1(x; z) = K1(x; b) +K1(b; z) and K1(x; z) = K1(x; b0)Now 1 and 2 imply K0(b; y) +K0(b0; z) = 0 and thus both are 0 which give b = y and b0 = z.Similarly 2 and 3 imply that K1(b0; y) + K1(b; z) = 0 and thus b0 = y and b = z. This meansthat (z; b; y) is in case (d) and (y; b0; z) is in case (d). We have y = z, v � u and u � v. Thus(z; v) = (y; u).
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b’Figure 23. Illustration of the proof.We check the transitivity now. Suppose (z; v) �x (y; u) �x (a;w). This means there are (b; t)and (b0; t0) with b 2 St(x;M ) and b0 2 St(x;M ) such that,(z; v) �Ub (b; t) �Ub (y; u) �Ub0 (b0; t0) �Ub0 (a;w)with b = @1� z; b = @0�y; b0 = @1� y; b0 = @0�aand moreover x = @��b; x = @��b0where * means a multiindex, 1 = (1; 1; : : : ; 1), 0 = (0; 0; : : : ; 0) and they may all be empty.By Lemma 6.19, the intersection of b and b0 is a face c of y containing x (see Figure 23).The inclusion of c into b and b0 (which are compositions of [dual] boundary operators �kl ) de�neprojections p and p0 of points in b and b0 onto points of c by Lemma 6.18. De�ne d = p(t).Necessarily (looking at the coordinates in y, as p is a dimap), p(t0) � d. Now it is enough to seethat, (z; v) �Uc (c; d) �Uc (a;w)(hence the transitivity in that case). The �rst inequality is implied by the fact that (b; t) �Uc (c; d)since c is an end boundary of b and d is the corresponding projection of t. The second is impliedby the fact that (c; d) �Uc (b0; t0) since c is a start boundary of b0 and p(t0) � d.To see that these partial orders give rise to a local partial order, notice that for p; q 2jM j, theintersection St(p) \ St(q) is the interior of a cube 2N which has the carrier x of p and the carriery of q on the boundary. For any pair of points in this intersection, the partial orders�x and �yare both given by the partial order on the cube 2N .To give an idea of some of the locally po-spaces we can construct consider this;Example 6.25. Let M be the cubical complexM2 = A;B;C;D;M1 = a; b; c; d; e; f; g; h;M0 = p; q; r; sd01A = d01C = a; d02A = d02B = b; d01B = d01D = c; d02D = d02C = dd11A = d11D = e; d12A = d12D = f; d11B = d11C = g; d12B = d12C = hd01a = d01b = d01c = d01d = p; d11a = d11c = d01f = d01h = q;d11b = d11d = d01e = d01g = r; d11e = d11f = d11g = d11h = sThen jM j is the projective plane, and one can give cubical models for projective spaces of alldimensions in the same way.Remark 6.26. Notice that we only need a covering with opens of the form St(x;M ) for x verticesof M and that �x is de�ned also for x vertices, whereas the relation �Ub has to be de�ned for bbeing any n-cube of M .



ALGEBRAIC TOPOLOGY AND CONCURRENCY 23These results actually applies to more cubical spaces since we have the following lemmas, usingthe concept of subdivision.De�nition 6.27. Let K be a cubical complex and K0 be another cubical complex. Then K0 isa subdivision of K if there is a dihomeomorphim f :j K0 j!j K j (meaning that f and f�1 aredimaps) such that,� 8x 2 K0n, 9y 2 Kn, f(x;2n) � (y;2m),� 8y 2 K, 9x1; � � � ; xk 2 K0, (y;2m) = Si=1;��� ;k f(xi;2ni).De�nition 6.28. We call standard n-dicube the topological space 2n with the coveringU = f2ngand local partial order �2n being the partial order induced by the pointwise ordering in Rn. Then-dicube is then a locally po-space.De�nition 6.29. Let M be a locally po-space. A singular n-dicube is any dimap from thestandard n-dicube to M .Lemma 6.30. Let K be a cubical complex. The \barycentric subdivision" of K is de�ned asfollows. Consider the singular n-dicubes of j K j, �x : 2n !j K j, �x(t) = (x; t), and the 2nfunctions, sb1;��� ;bn : 2n ! 2nfor (b1; � � � ; bn) 2 f0; 1gn withsb1 ;��� ;bn(t1; � � � ; tn) = �t1 + b12 ; � � � ; tn + bn2 �Then the subcomplex SdK of j K j with,(SdK)n = f�x � sb1;��� ;bn=x 2 K; (b1; � � � ; bn) 2 f0; 1gngis a subdivision of K, called the barycentric subdivision of K.Proof. Let f :j SdK j!jK j de�ned as follows. Elements of j SdK j are of the form x = (u; v)with u 2 (SdK)n, i.e. u = �y � sb1;��� ;bn (bi = 0; 1, y 2 Kn), and v 2 �2n. We set f(x) = (y; w)with w 2 �2n and wi = vi+bi2 (i = 1; � � � ; n).For all such x = (u; v) 2 SdK, f(x) 2 (y;2n) with the y de�ned above. Also for the same y,(y;2n) = Sb1;��� ;bn=0;1 f(�y � sb1;��� ;bn ;2n).Let now g :j K j!j SdK j de�ned as follows. Points of j K j are of the form z = (y; w)with y 2 Kn and w 2 �2n. Set g(z) = (�y � sb1 ;��� ;bn ; 2wi � bi) with bi = � 0 if 0 � wi < 121 if 12 � wi � 1(i = 1; � � � ; n). Then f and g are continuous maps, f � g = Id = g � f .Lemma 6.31. Let M be a non singular cubical complex. Then Sd(M ) is non self-linked.Proof. Let j M j be the realization of the cubical complex j M j. Then for x 2 Mn the map�x : 2n !jM j is injective on the interior of 2n by construction of jM j.On the boundary of 2n there may be identi�cations corresponding to @ki (x) = @lj(x). Whenk 6= l, this will identify boundaries of di�erent cubes in the barycentric subdivision: @ki (�x �sb1;::: ;bk�1 ;k;bk+1;::: ;bn) = @lj(�x � sb1;::: ;bk�1;l;bk+1 ::: ;bn)Now using both Lemma 6.31 and Theorem 6.24 we can give a local po-space structure to anynon-singular cubical complex.6.4. The singular cube functor and locally po-spaces. Notice �rst that geometric realizationis a functor. We are going to construct a right-adjoint to it in this section.Lemma 6.32. Let f : X �! Y be a morphism between the two semi-cubical sets X and Y. Thenf induces a continuous map j f j from j X j to j Y j.Proof. De�ne R(f) : R(X) �! R(Y ) by: R(f)((x; t)) = (f(x); t). It is obviously a continuousmap.Suppose (x; t) � (y; s). Then there exists (y1; s1); :::; (yu; su) such that (y1; s1) = (x; t),(yu; su) = (y; s) and 8g, 9k; j, dkj (yg) = yh and sg = �kj (sh) with h = g + 1 or h+ 1 = g.



24 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENWe show by induction on u that R(f)((x; t)) � R(f)((y; s)), thus inducing a map from j X j toj Y j. It holds trivially for u = 1. To prove the inductionstep it su�ces to see that R(f)((x; t)) �R(f)((y2; s2)).Suppose 9k; j, @kj (x) = y2 and t = �kj (s2). But @kj (f(x)) = f(@kj (x)). Thus, @kj (f(x)) = f(y2)and t=�kj (s2), which proves the result.Then the geometric realization is still a functor when used with value in locally po-spaces.Proposition 6.33. Let f : M ! N be a morphism of semi-cubical sets. Then j f j:j M j!j N jis a dimap.Proof. Recall that j f j (x; t) = (f(x); t) for all x 2 Mn and t 2 2n (and for all n). Considerthe \partial order" �Ux �rst. Suppose (x; t) �Ux (y; u). This means that x = @k1l1 : : :@kili (y) and�kili : : : �k1l1 (t) � u. But f is a morphism of cubical complexes so f(x) = @k1l1 : : : @kili (f(y)). So(f(x); t) �Uf(x) (f(y); u). Then it is easy to check that more generally z �x y implies f(z) �f(x)f(y).Not surprisingly, the geometric realization represents n-cubes by the standard n-dicube.Proposition 6.34. � j D[n] j is in fact (a re�nement of) the po-space 2n with the componen-twise partial order in Rn,� any singular cube �x : D[n] ! M induces a dimap j �x j: 2n !j M j (i.e. a singularn-dicube).Proof. The unique n-cube I[n] of D[n] is geometrically realized as the interior of 2n with theright partial order since inside the n-cube the local partial-order is de�ned by case (d) of Lemma6.23. Let us consider again the mapfI[n] : j D[n] j ! 2n(@k1l1 � � �@kili (I[n]); v) ! �kili � � � �k1l1 (v)We know by Lemma 6.10 that f is an homeomorphism. We now have to see that f and f�1 aredimaps as well.Let y be a face of I[n], i.e. any element of D[n] and x a face of y, fI[n] (x; t) � f[n](y; u)(respectively fI[n] (y; u) � fI[n] (x; t)) is equivalent to (x; t) �Ux (y; u) (respectively (y; u) �Ux(x; t)). To see this, let y = @u1v1 � � �@ujvj (I[n]) and x = @k1l1 : : :@kili (y). (x; t) �Ux (y; u) is equivalentto �kili : : : �k1l1 (t) � u then to fI[n] (y; �kili � � � �k1l1 (t)) � fI[n] (y; u) by monotony of f . But fI[n] (x; t) =fI[n] (y; �kili � � � �k1l1 (t)) so this is equivalent to fI[n] (x; t) � fI[n] (y; u).Let us consider now (z; v) and (y; u) be any element of j D[n] j. Suppose (z; v) �x (y; u) forsome vertex x of D[n]. Then there exists (b; t) 2j D[n] j such that (z; v) �Ub (b; t) �Ub (y; u),hence fI[n] (z; v) � fI[n] (b; t) � fI[n] (y; u). Inversely, suppose that we have (z; v) and (y; u) suchthat fI[n] (z; v) � fI[n] (y; u) and z and y belong to St(x;D[n]) for some vertex x of D[n]. Thenby Lemma 6.19 there exists a maximal common face b between y and z since they are both facesof I[n]. Furthermore this maximal face is such that K0(b; y) = 0 and K1(b; z) = 0, so b canbe decomposed as b = @1f1 � � �@1fk(y) and b = @0f 01 � � �@0f 0k0 (z). So we have u � �1fk � � ��1f1pyb (u), i.e.(y; u) �Ub (b; pyb(u)) (using the projection de�ned in Lemma 6.18). We also have �0f 0k0 � � ��0f 01pzbv � vthus (b; pzb(v)) �Ub (z; v). Now, pyb (u) � pzb(v) because otherwise, looking at the coordinates off(y; u) and f(z; v) we cannot have f(y; u) � f(z; v). Therefore (y; u) �Ub (b; pybu) �Ub (z; v)hence (y; u) �x (z; v).The second statement is obvious since j �x j is fx.We are now ready for the de�nition of the singular cube functor.Lemma 6.35. Let (M;�) be a locally partially ordered topological space. De�ne S(M ) to be thefollowing graded set. For n 2 IN, S(M )n is the set of singular n-dicubes of M together with theoperators @kl such that @kl (f) = f � �kl . This gives S(M ) the structure of a semi-cubical complex.



ALGEBRAIC TOPOLOGY AND CONCURRENCY 25Proof. This is a standard proof [27].Similarly,Lemma 6.36. Let (M;�) and (N;�) be two locally partially ordered topological spaces and letf : M ! N be a dimap. Then S(f) : S(M ) ! S(N ) de�ned by, for all x : 2n ! M 2 S,f(x) = f �x : 2n ! N , is a map of semi-cubical complexes. S de�nes a functor from the categoryof locally partially-ordered topological spaces to the category of semi-cubical complexes.Proof. This is obvious (the composition of dimaps is a dimap).Proposition 6.37. j : j is left-adjoint to S.Proof. We prove that there exist two natural transformations� : Id! S(j : j)� :j S j! Id(respectively the unit and counit of the adjunction) such thatS �S> S(j S j) S�> Sj � j j � j �> j S(j � j) j � j � j> j � jare the identity.We can �rst show that: (A) : M ,! S(j M j)(B) : j S(X) j,!Xin a natural manner for all M semi-cubical complex and X any local po-space. We begin by (A).For all n, we have the identity arrows on 2n which induce the isomorphisms: for all x, Id : 2n !(x;2n). These in turn induce injective morphisms fx : 2n !jM j, because M is an amalgamatedsum of the (x;2n). The (fx)x form a subset N of S(j M j). It is an easy exercise to show thatN is closed under the action of the �ki . Thus N is a sub-semi-cubical complex of S(j M j). Thenaturality of the inclusion arrow M ,! S(j M j) is most obvious. This de�nes what is to be theunit of the adjunction.Now, we come to (B). Elements of S(X)n are f : 2n ! X. Now, j S(X) j is an amalgamatedsum of (x;2n), x 2 S(X)n . The x induce on x̀ (x;2n) and then on j S(X) j an injective morphismin the category of local po-spaces. It is an easy exercice to show that these arrows are natural inX. This de�nes what is to be the counit of the adjunction.Then, we have to verify that two compositions of natural transformations are the identity. Thisis easy veri�cation. 7. Combinatorial dihomotopyIn this section, we prove that dihomotopy can be studied combinatorially or geometricallywhenever most convenient, at least when it comes to dipaths.De�nition 7.1. Let N be a cubical complex. A dipath in N is any sequence p = (p1; � � � ; pk) ofelements of N1 such that for all i, 1 � i < k, @11(pi) = @01(pi+1). @01(p1) is the initial point of p.@11(pk) is the �nal point of p.De�nition 7.2. Let N be a cubical complex and p, q two dipaths in N with the same initial and�nal points. We say that p and q are elementary dihomotopic if there exists A in N2, k and j inIN such that,(1) p = (p1; � � � ; pk) and q = (q1; � � � ; qk),(2) for all i, 1 � i < j, pi = qi, and for all i, j + 1 < i � k, pi = qi,(3) pj = @01(A), pj+1 = @12(A), qj = @02(A), qj+1 = @11(A).



26 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENDihomotopyof (cubical) dipaths is the re
exive and transitive closure of elementary dihomotopy.Using the local po-space structure de�ned in the previous theorems, we have also the followinglink with the combinatorial structure of M ,Proposition 7.3. � Any combinatorial dipath p in M induces a (topological) dipath j p j injM j,� Any combinatorial dihomotopy between two paths p and q in M induces a (topological) di-homotopy between j p j and j q j.Proof. Let p = (p1; � � � ; pk) be a dipath in N . Let x : I !j N j de�ned by, 8i, 0 � i � k � 1,8t 2 I, ik � t � i+1k , x(t) = �pi+1; k �t� ik�� 2j N j.Then x is a dimap (the local partial order in j N j being de�ned as in Theorem 6.24),� around each point in (pi; �21) (for some i), the local partial order is the same as the one in I,� around each \glueing point" @10(pi), the partial order is the same as the one in I since@00(pi+1) = @10(pi).� also, for all t such that ik < t < i+2k , x(t) 2 St(@01(pi+1);20) = St(@11(pi);20).We set j p j= x.It is enough to prove now that if p and q are elementary dihomotopic, then j p j and j q jare dihomotopic. We suppose that we have A 2 N2, k, l 2 IN such that p = (p1; � � � ; pk),q = (p1; � � � ; pl�1; ql; ql+1; pl+2; � � � ; pk) and @00(A) = pl, @01(A) = ql, @10(A) = ql+1, @11(A) = pl+1.Now, de�ne H(�; t) for � 2 I, t 2 I to be the map,� for 0 � t � l�1k and l+1k � t � 1, H(�; t) =j p j (t) =j q j (t),� for l�1k � t � lk , H(�; t) = (A; (�(kt� l + 1); (1� �)(kt� l + 1))) 2j N j,� for lk � t � l+1k , H(�; t) = (A; ((1� �)(kt� l) + �; �(kt� l) + 1� �)) 2j N j.Then H is the desired dihomotopy between j p j and j q j.Now we would like to prove some converse of this Proposition. Can we transfer geometricproofs made in the local po-space framework to the combinatorial world (hence more relevant tocomputer-scienti�c applications)? We need the concept of \approximation" to answer positivelyto this question.De�nition 7.4. Let K and L be two semi-cubical complexes and let h :j K j!j L j be a dimap.f : K ! L is called a semi-cubical approximation of h if,� f is a map of semi-cubical complexes,� for all v 2 K0, h(Stv) � Stf(v).The general approximation theorem is more complex than in the simplicial case. We choose toprove only a weak version that is enough for linking (topological) dipaths in jM j with combina-torial dipaths in M .First, we de�ne general subdivisions of D[1].De�nition and lemma 7.5. Any semi-cubical complex Sk of the form,� Sk0 = fv0; : : : ; vkg,� Sk1 = fu1; : : : ; ukg and @00(ui) = vi�1, @10(ui) = vi.is a non self-linked cubical complex and is a subdivision of D[1].Proof. It is non self-linked since all vi are distinct.De�nition 7.6. Let L be a semi-cubical complex. Let h be a dimap from j Sk j to j L j. hsatis�es the star condition if,� for all i = 0; : : : ; k, there exists wi 2 L0 such that h(Stvi) � Stwi,� for all i = 0; : : : ; k�1, wi = wi+1 or there exists zi 2 L1 with @00(zi) = wi and @10(zi) = wi+1.Remark 7.7. The usual star condition is not enough for semi-cubical complexes. Look at Figure24: we have pictured a non self-linked cubical complex M , h(v0) to h(v3) where h : S3 ! M andcorresponding wi (when we forget about the second requirement), on the left, and the same witha �ner subdivision, with h : S4 ! M . We can see that the wi on the left do not give rise to aconvenient cubical approximation.
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v0=w0 v0=w0

w3

v4=w4

v3

v2Figure 24. The \cubical star condition" illustrated.Lemma 7.8. Let h :j Sk j! L (L any semi-cubical complex). Then if h satis�es the star conditionthere h admits a semi-cubical approximation.Proof. Let f : Sk ! L with,� f(vi) = wi (wi is given by De�nition 7.6),� f(ui) = zi (zi is given by De�nition 7.6).Then f is obviously a map of semi-cubical complexes and is a semi-cubical approximation of h.Theorem 7.9. Let L be a �nite semi-cubical complex and h be a dipath in j L j (i.e. a dimapfrom 21 to j L j). Then there exists a cubical approximation f : Sk ! L of h (seen also as a dimapfrom j Sk j!j L j since j Sk j is dihomeomorphic to 21). Moreover, f de�nes a (combinatorial)dipath (f(u1); : : : ; f(uk)) which we denote by ~f and that we call the semi-cubical approximationof dipath h and, j f j is homeomorphic to j ~f j,Proof. By Lemma 7.8 we only need to show that there exists a subdivision Sk of D[1] suchthat h seen as a dimap from j Sk j to L satis�es the star condition.Cover now j L j by opens in A which are intersections of elements of fh�1(St(w;L)) j w 2 L0gand of fh�1(St(a; L)) j a 2 L1g. j L j is compact metric since L is a �nite complex (whoserealization is included into some Rn). Therefore there exists � > 0 (the Lebesgue number) suchthat any set of diameter less than � lies in one of the elements of A.Let us consider the d1 metric on Rn. Then the diameter of a singular n-cube c is diam c =max(x;y)2c2d1(x; y) and we have diam (c � sb1;��� ;bn) = diam c2 . Therefore, given � > 0, 9Nsuch that SdND[1] has all its n-cubes of diameter less than �. Choose � = �2 , and SdND[1] is asubdivision Sk for some k. Then each star of a vertex in Sk has diameter strictly less that � sois included in some h�1(St(w;M )) and also @00(h(ui)) is equal to @10(h(ui)) or there is a segmentai 2 L1 such that these two points are boundaries of ai (for all i in 1; � � � ; k). This entails thath :j Sk j!j L j satis�es the star condition.This entails that reasoning combinatorially on a cubical complex or geometrically on its topo-logical realization is equivalent when it comes to dihomotopy. In particular, in dimension 2, thismeans that local commutation rules are the same as dihomotopy. This also makes a link with [27].8. 2phase locking is safe; a modification of J. Gunawardena's proof8.1. Introduction. This section gives an example of the applicability of our general approach.We obtain a new conceptual proof of safety for the "2-phase-locking" strategy in scheduling prob-lems in data engineering from the study of speci�c dimaps and "dicontractions" : this schedulingstrategy ensures that a concurrent program has the same e�ect as a serial execution of the in-dividual programs as explained in the introduction. Consider several shared objects of memorythat only a restricted number of processors can read and update concurrently (mutual exclusion,a generalisation of semaphore programs, cf. [15]). To avoid a situation where more processes workon one such object than allowable (at a given time), the transactions have to acquire locks to any



28 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENobject before working on it. The 2-phase locking strategy requires that every transaction mustaquire all its locks before relinquishing any. In [35], J. Gunawardena gave geometric arguments(using dipaths and homotopies between them) to show that any execution in a 2-phase lockedschedule is serializable. In a geometric language, this corresponds to the fact that any dipath inthe associated \process graph" [15] is homotopic to a dipath on the 1-skeleton of the boundaryof that model. See J. Gunawardena's very nice paper [35] explaining the connection with dataengineering background and Dijkstra's process graph [15] in detail.The aim of this section is twofold. First of all, we want to give a modi�cation of Gunawardena'sreasoning in the more general framework of the present paper. Our proof is certainly more techni-cal, but it seems to have several advantages: First of all, we avoid J. Gunawardena's \wobbling"problems (cf. [35], p. 189): in his construction, he has to consider intermediate paths that arenot dipaths { and to replace them by such. Secondly, our proof does not only work in the caseof semaphore programs, but for general \mutual exclusion" programs { a �xed number a � 1 oftransactions can acquire a lock to the same shared object at the same time. Finally, we hopethat this proof can be a prototype of a more general van Kampen theorem for calculating �1 of adispace from the difundamental monoids of suitably chosen subspaces (compare with e.g. [33] inordinary topology).8.2. Blockwise starshaped sets. First, we modify the concept of a "star-shaped" set in a vectorspace (used in [35]) in the presence of a partial order:De�nition 8.1. 1. For x; c 2 R let I(x; c) denote the interval [x; c][ [c; x].2. For x = (x1; : : : ; xn); c = (c1; : : : ; cn) 2 Rn let I(x; c) = Q I(xi; ci), cf. Fig. 25.3. Let c 2 F � Rn. The set F is called blockwise starshaped with respect to c if and only ifI(x; c) � F for every x 2 F .Since the block I(x; c) is convex, a set that is blockwise starshaped with respect to c is alsostarshaped with respect to c in the classical sense.Example 8.2. 1. An n-cube R (n-rectangle in [19]) is blockwise starshaped with respect toevery point in R. A Euclidean ball is blockwise starshaped with respect to its center.2. A union F of n-cubes is starshaped with respect to every point in their intersection. Theforbidden region in a process graph is modelled by such a union of n-cubes. It has a nonempty\central" intersection if it is a model of a 2-phase locked transaction system.3. The triangle T = f(x1; x2) 2 R2jxi � 0; x1 + x2 � 1g is starshaped with respect to every ofits points. It is not blockwise starshaped with respect to any point (c1; c2) 2 T apart from(c1; c2) = (0; 0).What are the properties of complements of blockwise starshaped sets? Let I = [a; b]; F � Inand X = In n F .De�nition 8.3. 1. For x; c 2 I = [a; b] de�ne the interval J(x; c) � I byJ(x; c) = 8<: [a; x]; x < c[x; b]; x > c[a; b]; x = c:2. For x = [x1; : : : ; xn]; c = [c1; : : : ; cn] 2 Rn let J(x; c) = Q J(xi; ci), cf. Fig. 25.Lemma 8.4. Let F � In = [a; b]n be blockwise starshaped with respect to c 2 F . Let X = In nF .Then J(y; c) � X for every y 2 X.Proof. Assume x 2 J(y; c) \ F . Then y 2 I(x; c) � F . Contradiction!8.3. Partitions and Contractions. Suppose c 2 �F� In and F blockwise starshaped with re-spect to c. We want to study dipaths in X = In n F from a = (a; : : : ; a) to b = (b; : : : ; b).In order to get formulas that are easy to verify and to overlook, we apply a dihomeomorphism	 : [a; b]n ! [�1; 1]n with 	(c) = 0. This dihomeomorphism should be chosen as a product of
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I F

c

x

J J

y yFigure 25. Sets F; I(x; c); I(y; c)maps that are increasing in each coordinate. This ensures that 	(F ) is blockwise starshaped withrespect to 0. For c = 0, we can describe the I- and J-set above as follows:I(x;0) = f(y1; : : : ; yn) 2 Injsgn(xi) = sgn(yi) = sgn(xi � yi)g;J(x;0) = f(y1; : : : ; yn) 2 Injxi 6= 0) sgn(xi) = sgn(yi) = sgn(yi � xi)g:From now on, let I = [�1; 1]. We study the classi�cation of dipaths using a subdivision of Inwith respect to 0. The decomposition of the interval Ii = Ii�1 [ Ii1; = [�1; 0] [ [0; 1] induces adecomposition of In into 2n sub-n-rectangles I� = I�1 :::�n = Q Ii�i . There is an obvious partialorder between those subrectangles giving rise to n! directed paths from I�1����1 to I1:::1. We needthe following subsets of I�:De�nition 8.5. Given � 2 f�1; 1gn with �i = 1 and �j= -1. Then1. Ii;j� = fx 2 I�j(xi; xj) 6= (0; 0)g:2. Ii;j�0 = fx 2 Ii;j� jxi = 0g; Ii;j�1 = fx 2 Ii;j� jxj = 0g:3. J i;j� = fx 2 I�jxk = �k; k 6= i; j; xj = �1 or xi = 1g:4. The latter is a 1-complex with endpoints pi;j�0 and pi;j�1 with(pi;j��)k = �k; k 6= i; j; (pi;j�0)i = 0; (pi;j�0)j = �1; ; (pi;j�1)i = 1; (pi;j�1)j = 0.In fact, Ii;j� is one of the 2n sub-n-rectangles mentioned above with a 2-codimensional faceremoved; Ii;j�0 and Ii;j�1 represent two of its faces; J i;j� represents a (totally ordered) 1 complex inits boundary from pi;j�0 to pi;j�1.
(0,0) P       =(1,0)

JP       =(0,-1)

I

(1,-1)1

(1,-1)0

(1,-1)1

1,-1

1,2

1,-1

I
1,2

1,2

1,2
1,2

(1,-1)0

1,2
I Figure 26. Subrectangle with faces



30 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSENNext comes a de�nition of a dimap��;i;j = (��;i;j1 ; : : :��;i;jn ) : (Ii;j� ; Ii;j�0; Ii;j�1)! (J i;j� ;pi;j�0;pi;j�1) :De�nition 8.6. 1. ��;i;jk (x) = �k for k 6= i; j:2. ��;i;ji (x) = xi�xj and ��;i;jj (x) = �1 for xi � �xj .3. ��;i;ji (x) = 1 and ��;i;jj (x) = xjxi for xi � �xj.There is a directed version of deformation retracts (cf.[17]) in the dispace world, too:De�nition 8.7. Let A � X denote an inclusion of two di-spaces. The subspace A is called astrong deformation di-retract of X if there exists a dimap � : X ! A restricting to the identityon A and a dihomotopy H : X � I ! X between � and the identity map on X which restricts tothe trivial homotopy on A: HtjA = id; t 2 I.Using the map ��;i;j above, we can then show:Proposition 8.8. 1. The subcomplex J i;j� is a strong deformation di-retract of Ii;j� . Moreprecisely, ��;i;j is a dimap extending the identity on J i;j� . It is dihomotopic to the identitymap on Ii;j� via a dihomotopy that �xes J i;j� pointwise.2. If 0 2 �F and F is blockwise starshaped with respect to 0, then ��;i;j(x) 2 J(x; c) � X = InnFfor every x 2 X. Furthermore, J i;j� n F is a strong deformation di-retract of Ii;j� n F .3. For � = (�1; : : : ; �n) as above and �0 = (�01; : : : ; �0n) with �0k = �k for k 6= j; �0j = 1; �l =�0l = �1, the maps ��;i;j and ��0;j;l agree on the intersection of their domains of de�nition.The same is true for the homotopies from 2. above.
(0,0)

A
12Figure 27. The dimap ��;i;jProof.1. The dimap property depends only on the (xi; xj)-coordinates. In that projection, the map��;i;j \stretches" every wedge in Fig. 27 out on the boundary. In particular, points un-der/over the \antidiagonal" fxi = �xjg are mapped to points in subsequent 1-simplices. Itis elementary to see that ��;i;j is a dimap \under", resp. "over" that antidiagonal.The self-dihomotopy Hi;j on Ii;j� : given by Hi;j(x; t) = (1� t)x + t��;i;j(x) connects xto ��;i;j(x) linearly; in particular, all of the maps Ht are di-maps.2. We have to show that the dihomotopy ��;i;j restricts to a self-dihomotopy on Ii;j� n F . Byde�nition, ��;i;jk (x) � xk for �k = 1 and ��;i;jk (x) � xk for �k = �1. Similarly for Ht.3. On the intersection Ii;j�1\Ij;k�0 , the maps ��;i;j and ��0;j;l are constant with value pi;j�1 = pj;l�0:



ALGEBRAIC TOPOLOGY AND CONCURRENCY 31We need special care for the minimal and maximal subrectangles I�� , resp. I�+ correspondingto �� = (�1; : : : ;�1) and �+ = (1; : : : ; 1). Let Ii�� = fx 2 I�� jxk = �1; k 6= i; xi = 0g,J i�� = fx 2 I�� jxk = �1; k 6= ig, and (pi�� )k = �1; k 6= i; (pi�� )i = 0. Then, we de�ne���;i : (I�� ; Ii��)! (J i�� ;pi��); ���;i(x) = � �1; k 6= i;xi; k = i:Proposition 8.9. The analogue of Prop. 8.8 holds in these cases as well. 2To formulate the corollary, we need notation about sequences of and unions of the subrectanglesI� above: Let � 2 �n denote a permutation of the integers f1; : : : ; ng. Let ��(k) = (�1; : : : ; �n)be given by �i = 1 if i 2 f�(1); : : :�(k)g and �i = �1 otherwise. Then ��(0); : : : ;��(n) is anascending chain of sub-rectangles from �� to �+. LetI� = I�� [ n�1[k=1 I�(k);�(k+1)��(k) [ I�+; J� = J�(1)�� [ n�1[k=1 J�(k);�(k+1)��(k) [ J�(n)�+denote a union of (n+1)-subrectangles (without certain 2-dimensional subsets) in an ascendingchain, resp. a totally ordered 1-dimensional subcomplex in the boundary. Glueing the dimaps anddihomotopies from Prop. 8.8 and Prop. 8.9 together, we obtainCorollary 8.10. 1. The 1-complex J� is a strong deformation di-retract of the complex I�.2. If 0 2 �F and F is blockwise starshaped with respect to 0, then J� is a strong deformationdi-retract of the complex I� n F .Remark 8.11. A dispace with a 1-subcomplex as a strong deformation di-retract is the analogueto a contractable space in ordinary topology. Hence, one might call such a dispace dicontractable.The strategy of the proof was thus to subdivide the underlying dispace into dicontractable pieceswith control on the intersection. We hope that this strategy can be generalised to an adaption ofvan Kampen's theorem (see [33]) to the di-space category.8.4. Application to dipaths and serializability. As an application, we obtain the followingresult about dipaths generalizing J. Gunawardena's result. Remark that the forbidden region ina process graph is blockwise starshaped with respect to a central point (see Ex. 8.2).Theorem 8.12. Let 0 2 �F and F be blockwise starshaped with respect to 0. Every dipath inX = In nF from �1 = (�1; : : : ;�1) to 1 = (1; : : : ; 1) is dihomotopic to a dipath on the 1-skeleton(@In)1 of the boundary @In = f(x1; : : : ; xn)j 9k : xi = �1; i 6= kg of In.Proof. Let � = f(x1; : : :xn) 2 Inj xi = xj = 0 for 1 � i < j � ng � In denote the \singularset". Every dipath in In nF avoiding � is contained in one of the complexes I� for a permutation� 2 �n and thus dihomotopic in X = In n F to a dipath in J� � (@In)1 by Cor. 8.10.How can one handle dipaths intersecting �? We can apply a (locally linear) transversalityargument to see that every dipath in X is dihomotopic to one avoiding �. Alternatively, We maygive X the structure of a cubical complex in such a way that no 1-cube intersects �, and thenargue that every dipath is dihomotopic to a dipath on the 1-skeleton of X. If X is the \forbiddenregion" corresponding to \mutual exclusion" in a process graph (cf.[35, 19]), the subdivision willhave that non-intersection property by construction.9. Open Mathematical ProblemsWe tried in this paper to state only the de�nitions and theorems that should be the basis forthe theory of directed homotopy. We believe that the following properties should be investigatedmore closely,(M1) There is a natural order on the set of diconnected components, induced by the local partialorder. How does this graph relate to the dihomotopy classes of dipaths? We believe thatthis gives the whole information about these dihomotopy classes.



32 LISBETH FAJSTRUP, ERIC GOUBAULT AND MARTIN RAUSSEN(M2) What are the dihomotopy classes of dipaths of the union X (not necessarily disjoint!) of twolocally po-spaces A and B when we know the dihomotopy classes of dipaths in A and in B?To solve this problem, we obviously need to have some information about how A and B areglued together. What we really want is an analogous of the Seifert/Van Kampen theoremof the usual homotopy theory. But we believe that the necessary glueing information isnot in the form of the usual function induced by the homotopy functors by the inclusionmorphisms of A and B into X, but would rather be in the form of the functions induced bythe \dihomotopy functors" by some kind of restriction morphisms from X to A and B.(M3) What is the convenient category of locally po-spaces? We would like to have cartesianclosedness, so that we can de�ne the higher-order homotopies in a simple inductive way.(M4) What would be the structure on these higher-order homotopy sets then?(M5) One of the aims of this theory is to study locally po-spaces up to dihomotopy equivalence.What would be the counterpart of the classi�cation theorem that we have for surfaces inordinary homotopy theory? We believe that the usual notion of orientability does not playa role. For instance, the Moebius strip can be given the structure of a locally po-space. Theprojective plane can also be given such structure (see 6.25). Also, looking at Figure 14 wesee that the usual classi�cation is re�ned in some ways by considering dihomotopy.(M6) What is the relationship between dihomotopy and the homology theory de�ned in [27],constructed from a bicomplex naturally arising from cubical sets? We believe that thishomology theory is an invariant for dihomotopy indeed but that it is not characterizingdihomotopy exactly. For instance the two dipaths in Figure 18 are (di-) homologous but notdihomotopic.(M7) How could symmetry group actions on a locally po-space inform us about the possibledihomotopy classes of dipaths?10. Open Computer-Scientific ProblemsWe tried in this paper to motivate the mathematics by some examples and concepts taken fromseveral areas of computer science. Some new applications, or some new results could be derivedfrom this theory in the following sense,(CS1) How can we exploit (M1) so that we can derive the \essential schedules" of a concurrent sys-tems? A nice application has already been made for a small subset of the set of diconnectedcomponents, namely the unsafe region and the unreachable region in simple cases, see [19].This would be important since these schedules describe �ne (safety) properties of concurrentsystems (about the possible orderings on accesses to shared ressources for instance) that forinstance encompass serializability issues. (M2) would make possible the di�cult problem ofreasoning about schedules of a system compositionally, i.e. inductively on the knowledge ofits subparts. This would be of a great algorithmic value for program analysis for instance.(CS2) (M3) and (M4) would make it possible to consider more re�ned properties of fault-tolerantsystems and make the complete link with M. Herlihy, S. Rajsbaum and N. Shavit theories.Basically the aim is to give the semantic foundations to a computability and complexitytheory for fault-tolerant distributed systems. (M5) would help understand what are thebasic fundamental synchronisation models that one can imagine for concurrent systems.(CS3) (M6) would make it possible to have good algorithms (from linear algebra) giving someinformation about schedules of concurrent programs. This was already hinted in [28].(CS4) The whole theory should give some better invariants for the problem of knowing whichmonoids can be presented by �nite canonical term rewriting systems [58]. More generally,we could ask ourself what can be computed in more general structures [47]. This is verymuch linked to (CS2).(CS5) We think that better algorithms could be designed for distributed databases schedulers (likebetter \path-pushing" algorithms) and for micro-instructions schedulers using ideas fromthis theory. (M7) would also help simplify these algorithms in some speci�c cases.
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