
Under consideration for publication in Math. Struct. in Comp. ScienceGeometry and Concurrency: A User's GuideERIC GOUBAULTLETI (CEA - Technologies Avanc�ees)yDEIN-SLA-CEA F 91191 Gif-sur-Yvette Cedex, FranceEmail: Eric.Goubault@cea.frReceived 31 January 2000Geometrical methods in concurrency theory (and in distributed systems theory) haveappeared recently for modelling and analyzing systems' behaviours and also for solvingcomputability and complexity issues. We identify some of the main directions of researchand survey some of the major ideas on which all this is based on (some of which aremore than thirty years old).1. Introduction\Geometry and Concurrency" is not yet a well-established domain of research, but israther made of a collection of seemingly related techniques, algorithms and formal-izations, coming from di�erent application areas, accumulated over a long period oftime. There is currently a certain amount of e�ort made for unifying these (in par-ticular see the article (Gunawardena, 1994)), following the workshop \New Connec-tions between Computer Science and Mathematics" held at the Newton Institute inCambridge, England in November 1995 (and sponsored by HP/BRIMS). More recently,the �rst workshop on the very same subject has been held in Aalborg, Denmark (seehttp://www.math.auc.dk/~raussen/admin/workshop/workshop.html where the arti-cles of this issue, among others, have been �rst sketched.But what is \Geometry and Concurrency" composed of then? It is an area of researchmade of techniques which use geometrical reasoning for describing and solving problemsappearing in concurrent systems. Here geometrical reasoning means mostly using tech-niques from algebraic topologyy, therefore involving an idea of \topological invariance"under some form of homotopy, as will be explained in next section. Graphs and partialorders do include some form of geometric reasoning indeed, but these are now stan-dard techniques in computer science, to which quite a few conferences and journals aredevoted, whereas we will be more interested in \higher-dimensional" phenomena here.These techniques have cropped up in di�erent areas of computer science for over thirtyy Work partly done when the author was at Ecole Normale Sup�erieure, Paris.y More or less abstract, from simple topological notions like connectedness (Spanier, 1966), simplicialcomplexes (May, 1967; Gabriel and Zisman, 1967) etc. to abstract homotopy categories (Baues, 1989).

Eric Goubault 2years now. We have somewhat arti�cially subdivided them into three main strands. Oneis concerned with giving semantics to concurrent machines and languages, for formalizingand analyzing their properties. Another one has been mostly concerned with distributeddatabases and the scheduling of transactions (with a view to their correctness). Finally,the most recent one is in the �eld of fault-tolerant protocols for distributed systems, wherethe main application is the determination of the computability (and then complexity) ofsome \functions" on given distributed architectures. After a brief history in Section 2, wereview the main contributions to date in all three directions. In Sections 3, 4 and 5, wepresent the articles of this issue and how they naturally fall into one of these pre-existingstrands. Finally in Section 6 we give a few directions for future work, in particular someareas of research for which these techniques seem also to have appeared or might beuseful.2. A brief historyThe �rst \algebraic topological" model I am aware of is called progress graph and hasappeared in operating systems theory, in particular for describing the problem of \deadlyembrace"z in \multiprogramming systems". Progress graphs are introduced in (Co�manet al., 1971), but attributed there to E. W. Dijkstra. In fact they also appeared slightlyearlier (for editorial reasons it seems) in (Shoshani and Co�man, 1970).The basic idea is to give a description of what can happen when several processesare modifying shared ressources. Given a shared resource a, we see it as its associatedsemaphore that rules its behaviour with respect to processes. For instance, if a is anordinary shared variable, it is customary to use its semaphore to ensure that only oneprocess at a time can write on it (this is mutual exclusion). Then, given n deterministicsequential processes Q1; : : : ; Qn, abstracted as a sequence of locks and unlocks on sharedobjects, Qi = R1a1i :R2a2i � � �Rnianii (Rk being P or V x), there is a natural way to un-derstand the possible behaviours of their concurrent execution, by associating to eachprocess a coordinate line in IRn. The state of the system corresponds to a point in IRn,whose ith coordinate describes the state (or \local time") of the ith processor.Consider a system with �nitely many processes running altogether. We assume thateach process starts at (local time) 0 and �nishes at (local time) 1; the P and V actionscorrespond to sequences of real numbers between 0 and 1, which reect the order of theP 's and V 's. The initial state is (0; : : : ; 0) and the �nal state is (1; : : : ; 1). An exampleconsisting of the two processes T1 = Pa:Pb:V b:V a and T2 = Pb:Pa:V a:V b gives rise tothe two dimensional progress graph of Figure 1.The shaded area represents states which are not allowed in any execution path, sincethey correspond to mutual exclusion. Such states constitute the forbidden area. An exe-cution path is a path from the initial state (0; : : : ; 0) to the �nal state (1; : : : ; 1) avoidingthe forbidden area and increasing in each coordinate - time cannot run backwards. Wez as E. W. Dijkstra originally put it in (Dijkstra, 1968), now more usually called deadlock.x Using E. W. Dijkstra's notation P and V (Dijkstra, 1968) for respectively acquiring and releasing alock on a semaphore.

Geometry and Concurrency: A User's Guide 3
Unsafe Un-reachable(0,0) Pa Pb Vb VaPbPaVaVbT2

T1��� ��������������������������������� (1,1)-6
Fig. 1. Example of a progress graph a bFig. 2. The corresponding requestgraphcall these paths directed paths or dipaths. This entails that paths reaching the statesin the dashed square underneath the forbidden region, marked \unsafe" are deemed todeadlock, i.e. they cannot possibly reach the allowed terminal state which is (1; 1) here.Similarly, by reversing the direction of time, the states in the square above the forbiddenregion, marked \unreachable", cannot be reached from the initial state, which is (0; 0)here. Also notice that all terminating paths above the forbidden region are \equivalent"in some sense, given that they are all characterized by the fact that T2 gets a and b beforeT1 (as far as resources are concerned, we call this a schedule). Similarly, all paths belowthe forbidden region are characterized by the fact that T1 gets a and b before T2 does.On this picture, one can already recognize many ingredients that are at the center of themain problem of algebraic topology, namely the classi�cation of shapes modulo \elasticdeformation". As a matter of fact, the actual coordinates that are chosen for representingthe times at which P s and V s occur are unimportant, and these can be \stretched" in anymanner, so the properties (deadlocks, schedules etc.) are invariant under some notion ofdeformation, or homotopy. This is a particular kind of homotopy though, and this will beat the center of many di�culties in later work. We call it (in subsequent work) directedhomotopy or dihomotopy in the sense that it should preserve the direction of time. Forinstance, the two homotopic shapes, all of which have two holes, of Figure 3 and Figure 4have a di�erent number of dihomotopy classes of dipaths. In Figure 3 there are essentiallyfour dipaths up to dihomotopy (i.e. four schedules corresponding to all possibilities ofaccesses of resources a and b) whereas in Figure 4, there are essentially three dipaths upto dihomotopy.There is another method to determine deadlocks in such situations, which was of courseknown long ago and was entirely graph-theoretic, known as the request graph. Figure 2depicts the request graph corresponding to the progress graph of Figure 1. Nodes of thisgraph are resources of the concurrent system, i.e. here, semaphores. There is an orientededge from a resource x to a resource y if there is a process which has locked x andneeds to lock y at a given time. A su�cient condition for such systems to be deadlock-

Eric Goubault 4
Pa

Pa

Va

Pb

Vb

Va Pb VbFig. 3. The progress graph correspondingto Pa:V a:Pb:V b j Pa:V a:Pb:V b VbPb Pa Va

Pa

Va

Pb

VbFig. 4. The progress graph correspondingto Pb:V b:Pa:V a j Pa:V a:Pb:V bfree is that their corresponding request graphs be acyclic{. Unfortunately, this is not anecessary condition in general. For instance a request graph cannot capture the notionof n-semaphores, i.e. resources that can be shared by up to n processes but not n + 1(for instance, asynchronous bu�ers of communication of size n which can be \written"on by at most n processes). This in fact really calls for some higher-dimensional versionsof graphs.Starting from progress graphs, the article (Co�man et al., 1971) developed an algo-rithm in O(n2) (n is the number of tasks) to determine freedom from deadlocks. Thenotion of unsafe state was also introduced with the hope to determine automatically theright schedulers that would prevent the whole system from running into a deadlock situ-ation. This was limited to binary semaphores only thoughk. A fully worked out deadlockdetection algorithm on progress graphs (including the determination of the unsafe region)is described in (Carson and Reynolds Jr, 1987) which takes care of this limitation. Thiswas unfortunately not an optimal algorithm.3. Semantics and Analysis of ConcurrencyThe semantics community came back to these geometric considerations with the develop-ment of \truly-concurrent" semantics, as opposed to \interleaving" semantics. The baseof the argument was that interleaving semantics, i.e. the representation of parallelism bynon-determinism ignores real asynchronous behaviours that actually existyy: a j b wherea and b are atomic is represented by the same transition system as the non-deterministicchoice a then b or b then a (see Figure 5).This fact creates problems in particular in static analysis of (asynchronous) concur-rent systems in that interleaving builds a lot of uninteresting states in the modelisation,{ Note that this is a very geometric condition indeed.k There is a way to translate general semaphores into binary semaphores, see (Dijkstra, 1968), but thisuses an encoding with integers which cannot be represented in progress graphs.yy For instance a distributed system which does not have a global clock is such a system.

Geometry and Concurrency: A User's Guide 5
b a

baFig. 5. Interleaving semantics of a j b b

b
c

d

d
cFig. 6. A re�nement of a j bhence inducing a high cost in veri�cation. This is called the state-space explosion prob-lem. Some techniques exist now to circumvent part of the problem, actually mostly de-rived from truly-concurrent considerations (originally Petri nets in (Valmari, 1990) andMazurkiewicz trace theory in (Godefroid and Wolper, 1991)). Another problem is thatre�nement, which is a very convenient technique in program analysis, is very di�cult toapply in interleaving semantics, see (van Glabbeek and Goltz, 1989) for instance: supposethat action a is in fact non-atomic and is composed of two subactions c then d, then a j bin interleaving semantics is no longer equivalent to a then b or b then a. The path c thenb then d is missing there (see Figure 6, the missing part is represented by the dashedline). This implies that interleaving semantics is bound to describe all atomic actions forthe derived analyses to be correct, hence incurring a great complexity.Quite a few models for true-concurrency have appeared (see in particular the accountof (Winskel and Nielsen, 1994)) but it is only in 1991 that geometry is proposed to solvethe problem, in (Pratt, 1991). The diagnosis is that interleaving is only the boundary ofthe real picture. a j b is really the �lled-in square whose boundary is the non-deterministicchoice a then b or b then a (the hollow square). The natural combinatorial notion, exten-sion of transition systems, is that of a cubical set, which is a collection of points (states),edges (transitions), squares, cubes and hypercubes (higher-dimensional transitions rep-resenting the truly-concurrent execution of some number of actions). This is introducedin (Pratt, 1991) as well as possible formalizations using n-categories, and a notion ofhomotopyzz. This is actually a combinatorial view of some kind of progress graph. Lookback to Figure 1. Consider all interleavings of actions Pa, Pb, V a and V b: they form asubgrid of the progress graph. Take as 2-transitions (i.e. squares in the cubical set weare building) the �lled-in squares. Only the forbidden region is really interleaved. Cubi-cal sets generalize progress graphs, in that they allow any amount of non-deterministicchoices as well as dynamic creation of processes. These cubical sets are called Higher-Dimensional Automata (HDA) following (Pratt, 1991) because it really makes sense toconsider a hypercube as some form of transition. Actually at about the same time, abisimulation semantics was given in (van Glabbeek, 1991). Notice that 2-transitions orsquares are nothing but a local commutation relation as in Mazurkiewicz trace theory (),independence relation as in asynchronous transition systems, see (Bednarczyk, 1988) and(Shields, 1985), as in trace automata (as used in e.g. (Kahn, 1974; Kahn and MacQueen,1977)), as in transition systems with independence (Sassone et al., 1994), or (indirectly)as with the \conuence" relation of concurrent transition systems (Stark, 1989). Therezz Which appeared later, see (Fajstrup et al., 1999), not to be completely adequate.

Eric Goubault 6are two more ingredients with HDA: the elegance and the power of the tools of geometricformalisations, and the natural generalisation to higher-dimensions (i.e. \higher-orderindependence relation" or n-ary independence relations).The later semantic papers on the subject were very much inuenced by (Pratt, 1991).In 1992, homological methods (see (Mac Lane, 1963) for a start) for studying the prop-erties of Higher-Dimensional Automata were advocated in (Goubault and Jensen, 1992)given that they provide computable invariants of homotopy (at least in the usual case).A semantics of CCS was also discussed in a suitable category of HDA (also studied in(Lanzmann, 1993)) together with a notion of bisimulationxx. This homology theory is notthe de�nitive one, in particular it cannot distinguish some situations which are quite sim-ple. Some further work was needed and began in (Gaucher, 1997a) and (Gaucher, 1997b).In \Homotopy invariants of higher-dimensional categories and concurrency in computerscience (I) and (II)" in this issue, P. Gaucher extends his work in using strict globular!-categories (generalizing (Pratt, 1991)) to formalize the execution paths of a parallelautomaton. He also de�nes three new homology theories which are more adequate thanthe one proposed in (Goubault, 1995a). The �rst properties of these theories are proven,in particular Hurewicz morphisms, are constructed, relating homotopy and homology. Itis to be noted that at the very time this was written up, R. Brown from Bangor Univer-sity and R. Steiner from Glasgow University made an important contribution very muchrelated to this, in showing that the category of !-categories is equivalent to the categoryof cubical sets with connections and compositions (see (Brown and Higgins, 1981a) and(Brown and Higgins, 1981b) for an introduction).More general languages were modeled in (Goubault, 1993) with HDAs. Then a fewanalyses of programs by abstract interpretation (see (Cousot and Cousot, 1977) for astart) were designed: some earlier steps in (Cridlig and Goubault, 1993), then the auto-matic determination of a superset of possible schedules from the geometry of executions(i.e. histories of resource usage) in (Goubault, 1995a) and (Goubault, 1995b), some ap-plications to model-checking in 1995 in (Cridlig, 1995) (for shared-memory programminglanguages), and in (Cridlig, 1996) (on CML, i.e. message-passing languages). A proto-type Parallel Pascal Analyser has been implemented along these lines by R. Cridlig, seehttp://www.dmi.ens.fr/~cridlig.In \On the classi�cation of dipaths in geometric models of concurrency" in this issue,M. Raussen focusses on the determination of the dihomotopy classes in cubical complexes,deadlock detection and serializability (see next section) being only special cases. Analgorithm is given for the 2-dimensional case and some ideas are given for solving thegeneral case. In \Loops, Ditopology and Deadlocks" in this issue, L. Fajstrup gives ageometric model of a truly-concurrent PV system of n processes with �nitely many(nested) loops and proves that it su�ces to study a �nite number of deloopings of eachloop to determine the unsafe region and the deadlocks. Hence the previous algorithmon deadlock detection of (Fajstrup et al., 1998) can be applied to these �nitely manydeloopings and give the precise unsafe area in concurrent systems with loops.xx Also there is a way to fully compute the branchings, mergings and deadlocks inductively on thislanguage.

Geometry and Concurrency: A User's Guide 7Some proposals have been made to use the scheduling information obtained from theHDA semantics to derive automatic parallelization algorithms.This has been fully treatedfor CCS in (Takayama, 1995), (Takayama, 1996).Most of the models used since V. Pratt's article were based on some form of cubi-cal set. Some more recent work, in (Fajstrup and Raussen, 1996) and (Fajstrup et al.,1998) in particular, introduced topological models, the local po-space models, generalizingthe previous models, for being able to reason in a similar way as in ordinary algebraictopology, i.e. by reasoning directly on \continuous" shapes and not through their com-binatorial representations (simplicial sets in general). Of course, as in the standard case,there is, as shown in (Fajstrup et al., 1999) again, a natural relationship between com-binatorial and topological representations through a pair of adjoint functors, geometricrealization and singular cube functors. The expected applications of this modelization,as well as some of the basic notions about \directed homotopy" and schedules are de-scribed in (Fajstrup et al., 1999). More recently, V. Pratt proposed Chu Spaces (see forinstance (Pratt, 1999)) as a model for concurrency, starting back to the failure identi-�ed in (Pratt, 1991) of the natural duality event/schedule, in interleaving semantics. V.Pratt in \Higher-Dimensional Automata Revisited" in this issue, develops this idea andexpresses the HDA geometric model in terms of Chu spaces.Some potentially related semantic models are the n-categorical formulations of (Buck-land and Johnson, 1996) and some other recent combinatorial or categorical formulationsin (Fiore et al., 1997), (Sassone and Cattani, 1996), (Sokolowski, 1998a), (Sokolowski,1998b), (Sokolowski, 1998c).4. Correctness of Distributed DatabasesAnother strand of research is concerned with distributed databases and in fact, this isvery much related to the \multiprogramming" and \semaphore" strand described before.But the kind of properties which have been studied are slightly di�erent, and the focus hasbeen put on devising optimal algorithms for the analysis of simple transaction models.As a matter of fact, a distributed database can be seen as a shared-memory machine(containing items) on which processes (called transactions) act by reading and writing,getting permissions to do so by using the appropriate functions on attached semaphores.One of the main purposes of this area is to ensure coherence of the distributed databasewhile ensuring good performance, through a de�nition of suitable policies (protocols) fortransactions to perform their own actions (with P and V). This entails that deadlock-freedom of transactions is of importance. Correctness of a distributed database is itselfvery often expressed by some form of a serializability condition. Look for instance atFigure 4. This could describe a database with two transactions T1 = Pb:V b:Pa:V a andT2 = Pa:V a:P b:V b trying to modify two items a and b. All paths of execution above theleft hole are equivalent to a serial execution of transaction T2 then transaction T1. Allpaths of execution below the right hole are equivalent to the serial execution of transactionT1 then T2. The third type of dipath is not a serial dipath: it describes several equivalentcases, for instance: T1 acquires b, T2 acquires a, then T1 acquires a and T2 acquires b.Think of the database to represent airplane tickets (for instance b is the return ticket

Eric Goubault 8corresponding to the one-way ticket a), and the two transactions to represent remotebooking booths, the action between a P and its corresponding V is writing a name onthe ticket. The situation here is that T1 will have reserved its one-way ticket and T2 willhave reserved its return ticket only. This is not an allowed behaviour. It is not equivalentto a purely serial schedule which are the only ones that are speci�ed as correct (only oneof T1 or T2 gets the whole lot of tickets).Testing serializability is unfortunately known to be a NP-complete problem (in (Pa-padimitriou, 1979)), even when the model is only based on simple binary semaphores.The progress graph approach to the study of distributed databases was really initiatedin (Yannakakis et al., 1979) and then in (Papadimitriou, 1983). In (Lipski and Papadim-itriou, 1981) an algorithm for proving the safety through serializability of distributeddatabases with only two transactions expressed as progress graphs was described. Theunderlying algorithmics is relying on proving the connectedness of the closure of theset of forbidden rectangles{{. Of course the real problem in our previous example wasthat the forbidden region was disconnected, allowing dipaths to interleave some of therequests of di�erent transactions. Another algorithm, for proving freedom from deadlockfor two transactions synchronizing with binary semaphores only was also described. Itwas shown to have O(n logn log logn) (where n is the number of forbidden rectangles)time complexity. A notion of \directed homotopy" was also de�ned. The generalization ofsafety conditions to higher-dimensions through the method of (Yannakakis et al., 1979)reducing to 2-dimensional problems, was shown to be in O(nd2d+d2 logn log logn) timecomplexity (d is the dimension, i.e. the number of transactions). Much work has beendone in algorithmics of these geometric problems and the algorithm above for safety isimproved (actually it is optimal then) in (Soisalon-Soininen and Wood, 1985) achievingO(n logn) time and O(n) space complexity for 2 transactions, then relying on M. Yan-nakakis result for the extension to any dimension. This is not the best that can be donein higher dimensions: the next step is achieved in (Fajstrup et al., 1998) where a directmethod for unsafe regions is described and where it is shown that the closure of the for-bidden region in higher-dimension is not a strong enough condition for serializability ingeneral. An application to proving the 2-phase locked protocol is given in (Gunawardena,1994), and, using dihomotopy, in (Fajstrup et al., 1999).5. Computability and Complexity of Fault-Tolerant Distributed ProtocolsThe strand of work here is concerned with the robust or fault-tolerant implementationof distributed programs. More precisely, the interest here is in wait-free or t-resilient(0 � t � n � 1 where n is the number of processors involved, wait-free being n � 1-resilient) implementations on a distributed machine composed of several units communi-cating through a shared memory via atomic read/write or FIFO queues etc. or throughsynchronous/asynchronous message passing. This means that the processes executed onthe n processors must be as loosely coupled as possible so that even if t processors fail{{ Also cited in chapter \The geometry of rectangles" in (Preparata and Shamos, 1993).

Geometry and Concurrency: A User's Guide 9
(P2,0)(P1,0)

(P1,1)(P2,1)

(P1,0)

(P2,1) (P1,1)

(P2,0)

∆

∆

∆

∆Fig. 7. The binary consensus decisionmap from initial global states to �nalglobal states �� ��
��
��
��

��
��
��
��

���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����������

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
�������

����������

���������
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

0,100 1,010

2,001

2,011
1,111

1,0112,111

0,111

0,101

2,101

1,110 0,110Fig. 8. The synchronous protocol complex(for 3 processes) after one roundto terminate, the others will carry on their computation and �nd a correct partial result(as observed on the non-faulty ones).Consider as an example a machine with two processors, P1 and P2, communicating byatomic reads and writes on a shared memory. Each of these processes has a local binaryvariable x1 (for P1) and x2 (for P2) respectively. The binary consensus problem is todesign an algorithm for having P1 and P2 agree on one value, which, moreover, has to bea value that one of them started with. Therefore if x1 = 0 and x2 = 1 at the beginning,we want them to be x1 = 0 and x2 = 0 or x1 = 1 and x2 = 1 at the end. Of coursethis is complicated by the fact that we ask the solution to be wait-free. If one of the twoprocesses fails (the other process being unable to know whether this process is dead orjust very slow) then the non-faulty one must terminate with one of the values P1 or P2started with originally.It is unfortunately proved in (Fisher et al., 1985) that this is not possible { in fact itwas proven for the equivalent case of an asynchronous message-passing system, in thegeneral 1-resilient case. The article used an argument from graph theory (but alreadyquite geometric in nature). It has in fact originated the geometric point of view on this�eld of research as we are going to explainkk.The main argument can be understood in broad terms (\similarity chain") as a con-nectedness result. If we represent the local states of each processor Pi (i = 1; 2), at somepoint of the execution of a program, by a vertex (Pi; xi) and the global states of thesystem by an (un-oriented) edge linking the two local states which compose them, thenit is easy to see that the semantics of atomic reads and writes imposes that the reach-able global states starting from one initial global state have to form a connected graph.There is no way a program on such a machine can \break" connectivity. This impliesthat the binary consensus cannot be implemented here since we must be able to reachfrom the global state ((P1; 0); (P2; 1)) two disconnected global states ((P1; 0); (P2; 0)) and((P1; 1); (P2; 1)) as shown on Figure 7.Further work generalizes this simple geometric argument to the needed higher-dimensio-nal cases. In (Biran et al., 1988) a characterization of a class of problems solvable inkk We refer the reader to the book (Lynch, 1996) to have a avour of the vast amount of results thathave been proven in the �eld of fault-tolerant distributed protocols.

Eric Goubault 10asynchronous message-passing systems in the presence of a single failure was given. Nogeneralization to more failures has since been solved using the same kinds of graphtechniques. It was then a rather shared belief that one would have to use more power-ful techniques in that case. The conjecture (Chaudhuri, 1990) that the k-set agreementproblem (a kind of weak consensus; all is required is that the non-faulty processes even-tually agree on a subset of at most k values taken from the input values) cannot besolved in certain asynchronous systems was �nally proven in three di�erent papers inde-pendently, (Borowsky and Gafni, 1993), (Saks and Zaharoglou, 1993) and (Herlihy andShavit, 1993).The basic idea of (Herlihy and Shavit, 1993) is to generalize such pictures as the oneof Figure 7 using simplicial sets instead of graphs (which are special cases of the former).Simplicial sets are made up of vertices, edges but also triangles, simplexes in generalglued altogether. A simplex of dimension n represents the global state, at some pointof the execution, of n processes. Vertices are still pairs composed of the name of theprocess, together with its local state. Again, given an initial global state, the semanticsof the operations of the distributed machine we want to study is de�ned by the reachableglobal states, at any time. For instance, Figure 8 shows the simplicial set, called protocolcomplex, after one round of communication on a synchronous message-passing machine,which broadcasts the local states to all processes at each step. If there is a simplicial mapfrom it to some suitable set of global states, respecting the speci�cation of the problem,then there exists a corresponding wait-free protocol. This enables us also to compute howmany rounds of communication might be necessary to solve a given problem. Notice thatthe simplexes of the protocol complex are really the schedules, and this should be relatedto the directed homotopy approach of Section 3. This has been hinted in (Goubault,1996a), (Goubault, 1996b), (Goubault, 1997) for simple cases only.It was also proved in (Herlihy and Shavit, 1993) that in a shared-memory model withsingle reader/single writer registers providing atomic read and write operations, k-setagreement requires at least bf=kc + 1 rounds where f is the number of processes thatcan fail.The renaming task (processes must try to agree on a smaller set of names betweeneach other than the original set of names), �rst proposed in (Attiya et al., 1990) wasalso �nally solved in (Herlihy and Shavit, 1993). There is a wait-free protocol for therenaming task in certain asynchronous systems if the output name space is su�cientlylarge. It was already known that there is a wait-free solution for the renaming task for2n+1 or more output names on a system of n+1 asynchronous processors and none forn + 2 or fewer output names. M. Herlihy and N. Shavit re�ned this result and showedthat there was no solution for strictly less that 2n+ 1 output names.Not only impossibility results can be given but also constructive means for �ndingalgorithms follow from this work (see for instance (Herlihy and Shavit, 1994)).More generally, datatypes do matter for computability results. It is known for quite along time that consensus for two processes can be solved with shared memory with atomicreads and writes plus a FIFO queue, or plus an atomic test&set operation. If we de�nethe consensus number of a data type as the maximal number of asynchronous processors(having atomic read and write) on which it can implement wait-free consensus, then,

Geometry and Concurrency: A User's Guide 11| atomic read/write registers have consensus number 1,| test&set and fetch&add registers, queues, and stacks have consensus number 2,| n-register assignment has consensus number 2n� 2,| load-locked, store-conditional and compare-and-swap registers have consensus number1.These facts motivated the introduction of the following general problem, dealing withthe power of the architecture of distributed machines. We say that a datatype, or object,is an (m; j)-consensus object if it allows any set of m processes to solve j-set agreementtasks. Herlihy and Rajsbaum in (Herlihy and Rajsbaum, 1994) (see also (Borowsky andGafni, 1993)) proved that is is impossible to implement (n+1; k)-consensus using (m; j)-consensus objects if n=k > m=j.Further work on this can be found in (Jayanti, 1993), (Jayanti, 1997) and (Schenk,1997). In particular, the problem identi�ed in (Jayanti, 1997) is that the hierarchy ofdata objects as briey sketched above is not robust, in the sense that it is possibleto implement some datatypes with consensus number k using several datatypes withconsensus numbers strictly less than k.This of course is due to some subtle interactions between the use of these data objectsand we could hope that the more general study of the schedules with such datatypescould lead to some better classi�cations.In \Algebraic Spans" in this issue, M. Herlihy and S. Rajsbaum introduce a new tool(related to the one described in (Herlihy and Rajsbaum, 1995) for proving impossibilityresults, based on a core theorem of algebraic topology, the acyclic carrier theorem, whichuni�es, generalizes and extends earlier results.6. Some perspectivesThere are numerous perspectives in static analysis of concurrent programs, computabil-ity and complexity issues in fault-tolerant distributed systems as well as in concurrentdatabase theory, as I have been trying to explain in the previous sections. The aim hereis not to list the possible research that could be carried on in these directions (goodreferences for this are (Fajstrup et al., 1999) and (Herlihy and Rajsbaum, 1999)), but tolook at other possible use of these techniques. For instance, Squier's theorem in rewritingsystems theory, which gives a necessary condition for the existence of a presentation ofa given monoid by a �nite canonical rewriting system in terms of its homology (mustbe of �nite dimension), seems very much related to the techniques presented above.It is de�nitely a computability result, as we have in fault-tolerant distributed systemstheory, but for something which looks sequential (rewriting). As hinted in (Goubault,1995a), this can be understood as a problem of concurrency theory in that the studyof the conuence of rewriting systems is related to parallel reduction techniques (as in(L�evy, 1978) for instance). The resolutions used in most of the proofs of this theorem,like in (Kobayashi, 1990), (Groves, 1991), (Anick, 1986), (Farkas, 1992) and (Lafont andProut�e, 1990) are very much like a Knuth-Bendix completion procedure, where higher-dimensional objects are �lling in possible defects of local conuence. This looks likebuilding higher-dimensional transitions implementing the parallel (conuent) reductions

Eric Goubault 12(see in particular (Groves, 1991) where the resolution is a cubical complex and in dimen-sion one it is generated by the transition system coming from the reduction relation).Some other proof techniques use something which is very much like some kind of directedhomotopy, as in (Squier et al., 1994) for instance. Other interesting relations should bestudied concerning \higher-dimensional" word problems, as in (Burroni, 1991). A hope isthat geometry can also give some insight in logics, especially modal logics as in (Goubault-Larrecq and Goubault, 1999). Finally, there is some intuition from theoretical physicsthat seems relevant to semantics, in particular concerning time and dynamical systems.Some of the concepts of M. Raussen's and L. Fasjtrup's articles in this issue are basedon similar notions as in (Penrose, 1972): some areas of physics (not classical mechanicsthough) have to consider time as non-reversible, hence have to construct some kind ofdirected topology.AcknowledgmentsI feel very much indebted to Giuseppe Longo who gave me the opportunity to act asa guest editor of this special issue, and who very kindly helped me through the manydi�erent steps that editing necessitates. My very warm thanks to the authors who dida very nice job, in a relatively short time. Finally, I wish to thank the referees of thisissue, who sometimes found \bugs" that I would not have found, and who suggested veryuseful improvements to the authors. The referees were, Nir Shavit, Stefan Sokolowski,Christophe Tabacznyj, Jean Goubault-Larrecq, Arnaud Venet, Ronnie Brown and TimPorter as well as some of the authors who cross-checked other authors' articles, PhilippeGaucher, Martin Raussen and Lisbeth Fajstrup.ReferencesAnick, D. J. (1986). On the homology of associative algebras. Transactions of the AmericanMathematical Society, 296:641{659.Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., and Reischuk, R. (1990). Renaming in an asyn-chronous environment. Journal of the ACM, 37(3):524{548.Baues, H. J. (1989). Algebraic homotopy. In Cambridge Studies in Advanced Mathematics,volume 15. Cambridge University Press.Bednarczyk, M. A. (1988). Categories of asynchronous systems. PhD thesis, University ofSussex.Biran, O., Moran, S., and Zaks, S. (1988). A combinatorial characterization of the distributedtasks which are solvable in the presence of one faulty processor. In Proc. 7th Annual ACMSymposium on Principles of Distributed Computing, pages 263{275. ACM Press.Borowsky, E. and Gafni, E. (1993). Generalized FLP impossibility result for t-resilient asyn-chronous computations. In Proc. of the 25th STOC. ACM Press.Brown, R. and Higgins, P. J. (1981a). Colimit theorems for relative homotopy groups. Journalof Pure and Applied Algebra, (22):11{41.Brown, R. and Higgins, P. J. (1981b). On the algebra of cubes. Journal of Pure and AppliedAlgebra, (21):233{260.

Geometry and Concurrency: A User's Guide 13Buckland, R. and Johnson, M. (1996). ECHIDNA: A system for manipulating explicit choicehigher dimensional automata. In AMAST'96: Fifth Int. Conf. on Algebraic Methodology andSoftware Technology, Munich.Burroni, A. (1991). Higher dimensional word problem. Lecture notes in computer science, (530).Carson, S. D. and Reynolds Jr, P. F. (1987). The geometry of semaphore programs. ACMTransactions on Programming Languages and Systems, 9(1):25{53.Chaudhuri, S. (1990). Agreement is harder than consensus: set consensus problems in totallyasynchronous systems. In Proc. of the 9th Annual ACM Symposium on Principles of Dis-tributed Computing, pages 311{334. ACM Press.Co�man, E. G., Elphick, M. J., and Shoshani, A. (1971). System deadlocks. Computing Surveys,3(2):67{78.Cousot, P. and Cousot, R. (1977). Abstract interpretation: A uni�ed lattice model for staticanalysis of programs by construction of approximations of �xed points. Principles of Pro-gramming Languages 4, pages 238{252.Cridlig, R. (1995). Semantic analysis of shared-memory concurrent languages using abstractmodel-checking. In Proc. of PEPM'95, La Jolla. ACM Press.Cridlig, R. (1996). Semantic analysis of Concurrent ML by abstract model-checking. In Pro-ceedings of the LOMAPS Workshop.Cridlig, R. and Goubault, E. (1993). Semantics and analyses of Linda-based languages. In Proc.of WSA'93, number 724 in LNCS. Springer-Verlag.Dijkstra, E. (1968). Cooperating Sequential Processes. Academic Press.Fajstrup, L., Goubault, E., and Raussen, M. (1998). Detecting deadlocks in concurrent systems.In Proceedings of the 9th International Conference on Concurrency Theory, also available athttp://www.dmi.ens.fr/~goubault. Springer-Verlag.Fajstrup, L., Goubault, E., and Raussen, M. (1999). Algebraic topology and concurrency. sub-mitted to Theoretical Computer Science, also technical report, Aalborg University.Fajstrup, L. and Raussen, M. (1996). Detecting deadlocks in concurrent systems. Technicalreport, BRICS Research Report, Aalborg University.Farkas, D. R. (1992). The Anick resolution. Journal of Pure and Applied Algebra, 79.Fiore, M., Plotkin, G., and Power, J. (1997). Complete cuboidal sets in axiomatic domain theory(extended abstract). In Proceedings, Twelth Annual IEEE Symposium on Logic in ComputerScience, pages 268{279, Warsaw, Poland. IEEE Computer Society Press.Fisher, M., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed commit withone faulty process. Journal of the ACM, 32(2):374{382.Gabriel, P. and Zisman, M. (1967). Calculus of fractions and homotopy theory. In Ergebnisseder Mathematik und ihrer Grenzgebiete, volume 35. Springer Verlag.Gaucher, P. (1997a). Connexion de ux d'information en alg�ebre homologique. Technical report,IRMA, Strasbourg, available at http://irmasrv1.u-strasbg.fr/~gaucher/activite.html.Gaucher, P. (1997b). Etude homologique des chemins de dimension 1 d'un automate. Technicalreport, IRMA, Strasbourg, available at http://irmasrv1.u-strasbg.fr/~gaucher/activite. html.Godefroid, P. and Wolper, P. (1991). Using partial orders for the e�cient veri�cation of deadlockfreedom and safety properties. In Proc. of the Third Workshop on Computer Aided Veri�ca-tion, volume 575, pages 417{428. Springer-Verlag, Lecture Notes in Computer Science.Goubault, E. (1993). Domains of higher-dimensional automata. In Proc. of CONCUR'93,Hildesheim. Springer-Verlag.Goubault, E. (1995a). The Geometry of Concurrency. PhD thesis, Ecole Normale Sup�erieure.also available at http://www.dmi.ens.fr/~goubault.

Eric Goubault 14Goubault, E. (1995b). Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, LaJolla. ACM Press, also available at http://www.dmi.ens.fr/~goubault.Goubault, E. (1996a). The dynamics of wait-free distributed computations. Technical report,Research Report LIENS-96-26.Goubault, E. (1996b). A semantic view on distributed computability and complexity. In Pro-ceedings of the 3rd Theory and Formal Methods Section Workshop. Imperial College Press,also available at http://www.dmi.ens.fr/~goubault.Goubault, E. (1997). Optimal implementation of wait-free binary relations. In Proceedings ofthe 22nd CAAP. Springer Verlag.Goubault, E. and Jensen, T. P. (1992). Homology of higher-dimensional automata. In Proc. ofCONCUR'92, Stonybrook, New York. Springer-Verlag.Goubault-Larrecq, J. and Goubault, E. (1999). Order-theoretic, geometric and combinatorialmodels of intuitionistic s4 proofs. In proceedings of IMLA'99.Groves, J. R. J. (1991). Rewriting systems and homology of groups. In Kovacs, L. G., edi-tor, Groups { Canberra 1989, number 1456, pages 114{141. Lecture notes in Mathematics,Springer-Verlag.Gunawardena, J. (1994). Homotopy and concurrency. In Bulletin of the EATCS, number 54,pages 184{193.Herlihy, M. and Rajsbaum, S. (1994). Set consensus using arbitrary objects. In Proc. of the13th Annual ACM Symposium on Principles of Distributed Computing. ACM Press.Herlihy, M. and Rajsbaum, S. (1995). Algebraic spans (preliminary version). In Proceedingsof the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pages90{99, Ottawa, Ontario, Canada.Herlihy, M. and Rajsbaum, S. (1999). New perspectives in distributed computing. In Kutylowski,M., Pacholski, L., and Wierzbicki, T., editors, 24th International Symposium on MathematicalFoundations of Computer Science, volume LNCS 1672, pages 170{186. Springer-Verlag.Herlihy, M. and Shavit, N. (1993). The asynchronous computability theorem for t-resilient tasks.In Proc. of the 25th STOC. ACM Press.Herlihy, M. and Shavit, N. (1994). A simple constructive computability theorem for wait-freecomputation. In Proceedings of STOC'94. ACM Press.Jayanti, P. (1993). On the robustness of Herlihy's hierarchy. In Proceedings of the Twelth AnnualACM Symposium on Principles of Distributed Computing, pages 145{157, Ithaca, New York,USA.Jayanti, P. (1997). Robust wait-free hierarchies. Journal of the ACM, 44(4):592{614.Kahn, G. (1974). The semantics of a simple language for parallel programming. InformationProcessing, (74).Kahn, G. and MacQueen, D. B. (1977). Coroutines and networks of parallel processes. Infor-mation Processing, (77).Kobayashi, Y. (1990). Complete rewriting systems and homology of monoid algebras. Journalof Pure and Applied Algebra, 65:263{275.Lafont, Y. and Prout�e, A. (1990). Church-Rosser property and homology of monoids. Technicalreport, Ecole Normale Sup�erieure.Lanzmann, E. (1993). Automates d'ordre sup�erieur. Master's thesis, Universit�e d'Orsay.L�evy, J.-J. (1978). R�eductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,Universit�e Paris VII.Lipski and Papadimitriou (1981). A fast algorithm for testing for safety and detecting deadlocksin locked transaction. ALGORITHMS: Journal of Algorithms.Lynch, N. (1996). Distributed Algorithms. Morgan-Kaufmann.

Geometry and Concurrency: A User's Guide 15Mac Lane, S. (1963). Homology. In Die Grundlehren der Mathematischen Wissenschaften inEinzeldarstellungen, volume 114. Springer Verlag.May, J. P. (1967). Simplicial objects in algebraic topology. D. van Nostrand Company, inc.Papadimitriou, C. H. (1979). The serializability of concurrent database updates. Journal of theACM, 26(4):631{653.Papadimitriou, C. H. (1983). Concurrency control by locking. SIAM Journal on Computing,12(2):215{226.Penrose, R. (1972). Techniques of Di�erential Topology in Relativity, volume 7 of ConferenceBoard of the Mathematical Sciences, Regional Conference Series in Applied Ma thematics.SIAM, Philadelphia, USA.Pratt, V. (1991). Modeling concurrency with geometry. In Proc. of the 18th ACM Symposiumon Principles of Programming Languages. ACM Press.Pratt, V. (1999). Chu spaces. In Course notes for the School in Category Theory and Applica-tions. Coimbra, Portugal.Preparata, F. P. and Shamos, M. I. (1993). Computational Geometry, an Introduction. Springer-Verlag.Saks, M. and Zaharoglou, F. (1993). Wait-free k-set agreement is impossible: The topology ofpublic knowledge. In Proc. of the 25th STOC. ACM Press.Sassone, V. and Cattani, G. L. (1996). Higher-dimensional transition systems. In Proceedingsof LICS'96.Sassone, V., Nielsen, M., and Winskel, G. (1994). Relationships between models of concurrency.In Proceedings of the Rex'93 school and symposium.Schenk, E. (1997). The consensus hierarchy is not robust. In Proceedings of the SixteenthAnnual ACM Symposium on Principles of Distributed Computing, page 279, Santa Barbara,California.Shields, M. (1985). Concurrent machines. Computer Journal, 28.Shoshani, A. and Co�man, E. G. (1970). Sequencing tasks in multiprocess systems to avoiddeadlocks. In Conference Record of 1970 Eleventh Annual Symposium on Switching andAutomata Theory, pages 225{235, Santa Monica, California. IEEE.Soisalon-Soininen, E. and Wood, D. (1985). An optimal algorithm for testing for safety anddetecting deadlocks in locked transaction systems. In Symposium on Principles of DatabaseSystems (PODS '82), pages 108{116.Sokolowski, S. (1998a). Homotopy in concurrent processes. Technical report, Institute of Com-puter Science, Gdansk Division.Sokolowski, S. (1998b). Investigation of concurrent processes by means of homotopy functors.Technical report, Institute of Computer Science, Gdansk Division.Sokolowski, S. (1998c). Point glueing in cpo-s. Technical report, Institute of Computer Science,Gdansk Division.Spanier, E. J. (1966). Algebraic Topology. McGraw Hill.Squier, C. C., Otto, F., and Kobayashi, Y. (1994). A �niteness condition for rewriting systems.Theoretical Computer Science, 131:271{294.Stark, A. (1989). Concurrent transition systems. Theoretical Computer Science, 64:221{269.Takayama, Y. (1995). Cycle �lling as parallelization with expansion law. In submitted to publi-cation.Takayama, Y. (1996). Extraction of concurrent processes from higher-dimensional automata. InProceedings of CAAP'96, pages 72{85.Valmari, A. (1990). A stubborn attack on state explosion. In Proc. of CAV'90. Springer Verlag,LNCS.

Eric Goubault 16van Glabbeek, R. (1991). Bisimulation semantics for higher dimensional au-tomata. Technical report, Stanford University, Manuscript available on the web ashttp://theory.stanford.edu/~rvg/hda.van Glabbeek, R. and Goltz, U. (1989). Partial order semantics for re�nement of actions. Bulletinof the EATCS, (34).Winskel, G. and Nielsen, M. (1994). Models for concurrency, volume 3 of Handbook of Logic inComputer Science, pages 100{200. Oxford University Press.Yannakakis, M., Papadimitriou, C. H., and Kung, H. T. (1979). Locking policies: Safety andfreedom from deadlock. In 20th Annual Symposium on Foundations of Computer Science,pages 286{297, San Juan, Puerto Rico. IEEE.

