Generation

Eric Goubault Dominique Guilbaud
Anne Pacalet Rational Software
Basile Starynkevitch Automated Testing Business Unit
Franck V édrine Le Stratege - Voie La Pyrénéenne
LIST (CEA - Recherche Technologique) BP 10
DTSI-SLA, 91191- Gif-sur-Yvette Cedex, France 31312 Labege Cedex, France
two@aigle.saclay.cea.fr dguilbaud@rational.com
ABSTRACT e &
This paper presents a tool (the® tool) which derives au- _%%E'L‘rnz;l___:w 3

to generatecomplementary test inputs, by abstract interpre-
tation techniques. We first explain why the tool is useful for
a user, who is already used to testing environments. Then we
review part of the theory needed to explain how the analyser
actually works. We discuss implementation matters and end
with the results of experiments and benchmarks.

tomatically the run-time errors of ANSI C programs and tries = “-“‘ - EEE

Keywords
Static analysis, abstract interpretation, test generativeat
detection, ANSI C language, embedded software.

1 INTRODUCTION

In the 4th PCRD framework (project TWO, number 28940),
ATTOL Testware (recently acquired by Rational Software),
Commissariat a I'Energie Atomique (CEA) and INRIA col-
laborated for improving existing testing tools.

In commercial testing tools, users can execute test scripts Figure 1: Interface.

built from input values which they have designed themselves

and measure the corresponding coverage on the program

source. Project TWO aimed at adding some new featuresy THE TOOL

based on Abstract Interpretation. The planned tool targetsa threat is a context of execution (e.g. values of the vari-

both automatic threat detection and automatic test case gengples) which makes the program end up in an erroneous
eration for the ANSI C language, that are seen to be two state. Here is a non exhaustive list of such bugs which can
complementary features. It is integrated in existing tgsti pe detected by the tool as for now: integer variables over-
tools developed and edited by ATTOL Testware. flow, floating variables overflow and underflow, array out

This document presents the planned tool from the user point®f Pounds, non-initialised data, nil or non-initialiseder,
of view. Then, the basic concepts of Abstract Interpreta- Memory leak, dead code, non-termination, division by zero
tion are exposed, focusing on the threat detection and the@nd in general bad arguments to a function (like square root

test case generation. Some considerations on implementa®f & N€gative number etc.).

tion are explained and interprocedural analysis is alsk-tac Thjs |ist includes most of bugs which are type 3 (structural

led. This document ends with benchmarks and a conclusionbugs), 4 (data bugs), 5.1 (coding and typographical bugs)

on the present and future work. and 6 (integration bugs) in the Beizer's taxonomy of bugs.
Statistics studies show that these kinds of bugs are abétit 60
of existing bugs in a project. These kinds of bugs are very
frequent in languages such as C. Despite a well-developed
testing phase, these kinds of bugs may persist because they
appear only in some specific input conditions. Most of the
time, these conditions are not easy to find. The TWO project
aims at giving a practical answer to this kind of needs.

1This part is still under construction The Two tool simply analyses (by an abstract interpretation

Cfiles ‘ oL Test soip gram is the least fixed point of a function@l: p(Env) —
Objective Analyser Lessulte UniTest ——= p(Env). Similarly, given an abstraction as above, the ab-
] Translator file
File stract semantics is the least fixed point of the functional
F'=aoFo~: L — L. The equations defining Galois
Figure 2: External architecture. Connections Imply that the abstract semantic values over-
approximate in a consistent manner the concrete semantic
values.

4 TEST CASE GENERATION
detus consider the following program (whose control flow
graph is given at the right-hand side):

based static analyser) C files and provides results as irefigur
1. The user can select a detected threat and visualize th
conditions leading to this threat on the source code ftself

The test case generation part includes the following featur @

it is based on the same ANSI C code analyser as the one
used by the threat detector, it uses a test objective déiserip
containing structural and functional objectives to reath, (0) while (z< 100)
generates ATTOL UniTest test scripts, and it uses ATTOL (1) if (¢==50)
tools GUI. The external architecture of the tool can be see in
figure 2. (2) then z=105
(3) else @ @
The objective file allows the user to describe one or several (4) x==z+1(5)
control points in the code. A condition can be associated to (6)
each control pointin order to describe an additional praeic
that should be satisfied at this control point. The objective
file can also specify control points that should not be part of @

a path of execution. The generated test cases are translate
into ATTOL UniTest script in order to be directly executable

Hs abstractforward, respectively backwarggmantic equations
(using only intervals heregre:

by the tool.
3 SEMANTICS AND ABSTRACT INTERPRETA- X, = T
TION _ . X1 = [-00,99]N (XoU X3U X5)
The framework we use for static analysis is “Abstract Inter- X, = [50,50]N X,
pretation” as introduced by P. and R. Cousot [5]. The basic Xy = [10’5 105]
idea is _to start with a (concrete forward and/or backward) Xa = (XiN[—00,49])U (X1 N[51,])
semantics of the language we want to analyse (here ANSI s = X4t
C) and to define a suitable abs_tracnon m_echamsm, gvingus . — 100, 00] N (X5 U X3 U Xo)
a computable abstract semantics, focusing on the propertie
we want to discover automatically on a program. Xe = T
In the abstract interpretation framework, we design an ab- X5 = ([100,00] N X¢) U ([-00,99] N X7)
stract semantics using a Galois connectiothe abstract Xy = X5-'1

([100, 00] N X6) U ([—0,99] N X1)
Tor Lif 105 ¢ X3

(computable) semantics is given by a (in general complete) Xs
lattice (4, C,U, N, L, T) (respectively the domain, the par- Xo

tial ordering, the least upper bound operator, greatestdow X1 = ([50,50]N X5) U ([—00,49] N X4)

bound operator, bottom element and top element) and a pair U([51, 00] N X4)

of functionsa : p(Env) — A andy : A — p(Env) where Xo = (X1N[=00,99])U (X6 N [100,00])

Lnv is the set of possible states of the machipglnv) is The first iterate(in the least fixed point computation of the for-
itselfa (complete) lattice (used for the concrete collegie- 514 abstract semanticegaches the fixpoint, which are over-
mantics) with set inclusiond), union (), intersection(), approximations of the local invariants attached to each con
empty setl and £nv (T). The functionsx andy mustalso 6| point (notice that this proves there is no threat here):
form a Galois connection, i.es andy must be monotonic . _ [—00,99], Xo = [50,50], X5 = [105,105], X4 =
functions,a o v C Id,andId CHyoa. [—OO, 99],X5 — [—OO, 100] andX6 — [100’ OO]

Now the concrete semantics (forward or backward) of a pro- Suppose now we want to generate some tests: (A) to reach
(4) and not go through (2), (B) to reach (2) and not go

2Like the Syntox abstract interpreter [2] which analysey ®dscal pro- through (4) and (C) so that we do not want to enter the |00p.

grams with no pointers.
3This is only one of the possible formulations of abstraatiiptetation,

see for instance [6]. The way we do this (it is not currently fully implemented

in the tool), is to start with the local invariants computed the single tesi =4. He can also see that all branches of
above and generate new backward equations, which are thehe test condition in théor statement have been traversed.
intersection of the local invariants with the old ones, gthes In fact most of the coverage measures that are used would
interpretation of the (structural) test objectfe comfort the user in thinking that his program is correct. If
he had taken (on most compilers availaklej1l7 then he
would have seen an overflow at run-time, or even worse a
completely wrong result! (on a Sparc workstation, the resul

In case (A), we impose in “new” backward semantic equa-
tions that the states i, and.Xs are bottom.

Then the first backward iterate givé§ = [100, o0, X5 = would be -288522240 instead of 34070196128). The TWO
[100,100], X4 = [99,99], X1 = [99,99],and.X, = [99, 99]. protoype aims at showing potential bugs as thi€pae well

We could carry on but this already proves thétis a good as generating (when possible) test case exemplifying some
input value for (A). execution scenarios.

We do in a similar manner for iteration (B), givings = 5 IMPLEMENTATION OF THE TOOL

[105,105], X5 = [50,50], X1 = [50,50], Xo = [50, 50]. The Two tool is made internally of a graphical user interface

front-end (by ATTOL) and a static code analyzer back-end
(by CEA). These are two differentihux processes, com-
Xz=1,X=1X =1 andX, = (X; N[00, 99]) U municating on two pipes through a specific textual proto-

(X6 N [100, oc]) with obvious iterates.{o = [100, oc]). In col. The static code analyzer can also be run in batch mode
this example we have been quite lucky, in that the upper- through a command line interface.

approximations of the semantics using intervals gave us ex-

actly the right domain of input valugsin general thisis not A static code analyzer, especially when using abstract-inte
the case, so we also use lower-approximation of the seman-pretation techniques, handles internally lots of compéem-t

tics (which in turn can give threats which are sure to hap- porary data structures and shared semantic values. So mem-
pen), see for instance [10] for some indications about how ory management was considered a major issue at the begin-
this goes. ning of the project. Since theWo tool was coded ifC++7,
explicit manual memory managememtefv and del et e)

was considered too harsh, therefore a garbage collectpr [14
was needed. Although conservative marking garbage collec-
tors such as [1] exist, using them within thev® tool was
considered risky, because it handles lots of various values
on the C call stack, including floating point numbers. Also,
our analyzer allocates lots of very temporary values of-vari
ous sizes, and memory fragmentation could be an issue. So,
a precise generational copyfhgarbage collector was de-
velopped. Using our GC prohibits multiple inheritance, and
needs a common C++ superclass for all objects, explicit reg-
istration of global and local pointer variables, and a write
Threat detection is a complement of test case generation inbarrier. Using a garbage collector changed our programming
the following sense. Take the program: habits, since allocation was easier, without fearing ofsmis
ing del et e. So, we did use a more functional, less side-
effecting, coding style.

And for iteration C:Xs = [100,00], X5 = L, Xy = 1,

Threat Detection

The Two tool may detect the following threats: non-
initialized variable (and used), overflow, division by zero
bad argument given to a mathematical function (such as
square root of a negative number, arcsin of a number out-
side[—1, 1] etc.); and for the pointer part, memory leak, null
dereference, index out of bounds (for arrays), illegal Here
erence (constant addresses, non-initialized pointergjs T
is implemented as some form of reduced product [13] of a
lattice of intervals, aliases and error lattice (in a somewh
similar manner as in [8]).

int conmpute(int i)

{ int j,k=1; Initially, the Two tool parses a set of C preprocessed source
for (j=i;j>1;j--) k=k*j; files. The abstract syntax tree is transformed (unfolding of
return(k); } function calls, complex conditionkpr loops...) into &8im-

ple C° syntax tree. This tree is transformed into a graph of

This function computes the factorial of its argument forpos control points. An iterator handles this graph to compuée th
itive arguments, and returns one for negative arguments. Inabstract state fixpoints, storing its results in a contexin-C
order to test this function, a user just tries a random input

valuei (here 4) and matches the result with what he knows ®This uses an upper-approximation of the concrete semantizsould

to be the right result (here 24)_ Then he can try to look if also use a lower-approximation of the concrete semantiogivte sure

. threats, as the ADA and C verifiers of Polyspace Technologies
his test is reasonable indeed, that s, is aChleVIng a gODd co "The choice ofc++ was done for historical reasons. We could also have

erage, of at least all instructions of the C code. The user ysed a functional language suchGesan .
can determine that all instructions have been reached with 80ur GC is copying for ordinary objects which are moved, andsing
for finalized objects which keep their address.
4They have been defined in the TWO project to be an acyclic aattam %In Simple C, the only calls are like = f(x, y, z); or(void)
with states of acceptance and refusal. p(x); wherev, X, y, z are simple variables (or constants), perhaps tem-
5In fact this could be seen as a particular instance of atigesiing [9]. porary and generated.

texts associate a state to a control point and a token (for in-analyser, strict rules have to be enforced. Infinities in the
terprocedural analysis, see section 5 for more explarg@tion analyser are mostly used when the types under analysis do
A state contains alias information and variables’ abstralst not fit in the types used in the analyser.

ues. A scalar variable value is abstracted by an interval. Ou Another important feature of these intervals is that it re-
analyzer computes abstract states at each control poiné of t P . .
analyzed program. Some of the computed states are errO_Spects the IEEE754-1985 standard for floating-point num-

neous, and are reported passible threatso the user. Test ber semantics (except it does not take care of NaNs), in a
cases ,can be generated from these threats quite conservative way. Using this semantics, we are able to

find real “subtle” bugs such as for the progranfi: (x>0)

A state is an abstract environment with alias information. A y=1/ x* x, where there might be a division by zero etfor
abstract environment is an associative table mapping each(for instance when: = 22-2" \whereK is the number of
variable to its abstract value which is an interval, for fihast bits used to code the exponent of the floating-pointnumbers)
being only. We have tried to build the analyser so that dif-

ferent abstract domains can be plugged in with not too much 'IA‘I'aS analysis I bl | hed b
effort. This is still to be assessed though. The principle is n C programs, scalar vaniables are not always reached by

that (“abstract”) contexts form a clad€ont ext which in- a simple names. They can be part of a bigger object such
herits from an “interface clasd’at t i ce which imposes to asa structur_e or an array, or can be reach by a path through
have such lattice functions as union and intersection. TheyPOINters. This last case means that a data can have several

. * H
have all possible interpretation methods, because atvhE le names :x and* p can for instance refer to the same data

of contexts, the control points and the table of symbols ef th after the instructiop=&x; . _TO l_)e able t(.) an_alyse the values
whole program are known. of the scalar elements, alias information is needed. When

interpreting an instruction, each data access can be éteds|
States also form a subclassladt t i ce (defined as the se- so that each scalar data has a unique name. The alias analysis
mantic values and methods that can apply when we know thehas to provide a upper-approximation of the real situation
name of the variables but not the control points). A further because we need to know if a variable can be reached by an
subclass is generically built from abstractions of element instruction.
in particular scalar elements (here only intervals). Ttappr To build an approximation of the memory, a location-based

erty of elements (which again form a subclastafti ce) representation has been cho$grit means that some objects
is that we can only ask for evaluation of expressions (the - the locations - represent the allocated chunk of memory,
control points and the table of variables are not known). and that they are connected in a graph by links - the selectors

A subclass ofACont ext is the clasCont ext which is Take for instance the program :

generically built from states as follows. A context is areint

nal database (implemented by several hashtables) camgaini st ! zft a‘,{

entried® made of tokens (see sec. 5 below), control points, struct {int b; int *p; } s:
and states. Each context entry also contains its own data, } str;

such as a counter to trigger widenning operations. A context int x, *p, tab[10];

can be asked to return an array of entries of a given con- 'S\'M'tch(x) (

trol point, or of a given token, or the single entry matching case 1 : p = &; break;

a given token and control point pair, or the array of all its case 2 : p = &s.a); break;
entries. The iterator mechanism stores intermediate aad fin case 2 - P = gg::g{i”f E:ggtf
results in an analysisontext case 5 - E = NULL: break: ’
Intervals !

i i str.a.p = &;
Let 7 be the lattice of intervals of reals whose elements

are [a,b] with a,b € TR U {co, —c0} and whose order is)))
[a,b] < [a,b]if a > o andb < ¥'. We identify all a, 5] The alias graph after this sequence (assumingdthef1, 5]
with @ > b with [0, —oc] which we write L. Itis the least ~ Pefore the sequence is in figure 3:

element off indeed. In fact, the analyser uses intervals of There are mainly four kinds of locations : the structures, th

(doubl e)floating-pointnumbers when abstracting floating- arrays, the pointers, and the dynamic allocated memorg Thi
point variables, and intervals of ¢ng) integers when ab- |55t kind of locations is not handled yet, but a simple way to
stracting integer variables (enumor char types). identify those locations is to name them by the control point

AS_ th? anal_yser can do some amount of cross-platform anal- 117pjg i an example taken from a seminar by Alain Deutsch ir8199
ysis, in which case the scalar types of the program under 12and not a location-free approach as in [17] or [11]. We wilbpably

analysis may not be the same as the scalar types used by thigst these analyses in future work. The programs of our usersostly

critical embarked software and do not use much dynamicatioe, hence

105ome parts of which are shared or not even represented, imizén it was less interesting to go for complex - in weakly typedjlaages such
memory consumption. as C - location-free methods right away.

=

?

X,s.a,tab[2, 4],

(undef), 0x0

.a

str scal ar2
.S

scal arl
X —— X
:

[0,9]

scal ar0

Figure 3: An alias graph

(or the control point plus an abstraction of the environent
where the allocation takes place, see for instance [15]n/Eve
block allocated at the same control point are thus identified

The selectors start at locations, and end at targets whieh re
resent either the possibly pointed objects, either theascal
data used by the interval analysis, or sub-selectors, @ecor
ing to the selector type (pointer, scalar, structure orydrra
In the first case, the pointed objects are described by the lo-
cation name and a path in the object if it is a sub-object.
A special target, calleflundef) stands for non initialized
pointers. Other values represent scalar initialisatiamnsas
NULL. If the list is composed of only one element, it means
that the pointer surely points on the target. So, this repres
tation can sometime provide must-alias information. This
precision could be enhanced by using the boolssshared
introduced in [16].

From a pointer location can only start*aselector, and
the target is a list of the possibly pointed objects. From a
structure-location can start field-selectors. They areathm

according to the structure field names. The target depend on

the field type. Index-selectors starting from array-lomai
are more difficult to handle because the accessed elemen
is not always known statically. Index-selectors then use

check for instance the valid use of pointers, the out-ofrabu
index in an array, potential memory leaks or accesses td free
memory.

Interprocedural Analysis

Interprocedural analysis in thento tool is done by abstrac-
tion of the analyzed program’s call stack (static partition
ning), the stack token. Each token contains the topmost 2
(or 0-9, a runtime parametecaller control points. Dynamic
partitionning as in [3] and [4] is implementable by defining
tokens containing state, but is not yet done. A token is built
by pushing a given state and control point on a previous to-
ken (starting from an empty token).

A procedure or function call has two control points. A point
just before the call, and another one just after. To intérpre
the point before, the analyzer prepares the abstract values
(intervals) of actual arguments and computes a new token
from the control point and the actual token. Then the initial
point of the called functiol? is considered, a new environ-
ment is built (binding abstract arguments to formal parame-
ters), then interpretation proceeds with the called fomsi
body. At last, the final control point of the called function
is reached, which does tmeet ur n. To interpret it, the pre-
vious token (abstracting the call stack just before the &zl
reinstalled, and the return abstract value is bound to the re
ceiving variable (if any). Then the analysis proceeds aalusu
after the call.

Iteration Strategies

Let us take an example:

Executing this simpléef instruction
with the description¥ € [—10, 20])

' (X_< .10) leads to thé hen andel se branch
X += 5; . . o

el se with the respective descriptions €
X -= 10 [—10,9])and & € [10, 20]).

z will finally be in [—5, 14] after the

i f node.

Performing standard execution is impossible and the ana-
lyzer has to choose between thigen and theel se branch

to be first executed. The strategy takes all its importance fo

intervals to code index values. Many stategies can be usedmbricated loops.

to make a partitionning of the index-selectors startingrfro

The test case generation (section 4) shows the forward and

a location. The simpler one is implemented at the moment packward semantic equations. Fixpoint computations solve
which is having a unique selector for all the array elements. {nege equations by picking up one of them and by simpli-
Nevertheless, for pointer targets, the accessed indewaite fying it with the other (next) equations. The good itera-
is still keept, but several accesses to the same array argjgn strategies choose appropriate equations and perfiorm e
grouped together. ficient simplifications. We experimented two kinds of for-
ward strategies. Breadth-first strategies iterate on thalevh
The interprocedural analysis use the token organisationSet Of equations and “execute” each equation followingthei
explained in section 5. It means that the different calling {€xtual ordering. The process continues until stability.
sites are always treated as different even if they might lead The example page 2 perforns — 1 — 2 — 3 —
to the same analysis. A more suitable algorithm would be to
use hidden variables to code pointer targets as in [12]. 13The called function is always known, because we do not deakifie
function pointers. To handle function pointers, we justé&v consider
the finite set of all their possible values (i.e. the set ofctions of same

This alias analysis is also be used for threat detectiorant ¢ signature).

4 = 5 — 6) * ((widen=4) + (narow=1)) = 35 iterations. Another example by one of our end-users, program
Advantage: The abstract interpretation practice appligs w denp2. ¢ by ELSAG, which makes image manipulations,
with widening and narrowing [7] (except on combinations of consists of 9938 lines of C code and about a hundred func-
loops and recursive functions), without code source recom- tions, with loops, floating-point computations, arraysinpo
pilation (computation of a single fixpoint). Inconvenience ers, but few variables known at each control point. It needs
First equations (quickly stable) often execute, implyirtga only 10 seconds (and about 8Mb of memory used for Jensen)
creasing execution time, even if stable equations are tyuick for the analysis and reports 51 threats. Some of them due to
handled. Some precision is lost on imbricated loops sirice al the non-knowledge of some input variables (approximated
the loops are stabilised during the same process. to top), some others to the bad treatment of array indexes. It
compared well with Rational Purify (dynamic) analyser and
showed to be even “better” for reporting arithmetic errors
such as overflows.

Depth-first strategy follows the code execution and not its
textual form. A set of continuations stores the multiple in-
structions to be interpreted. The iterator extracts thetmos
delayed continuation and interprets it for a better synchro 7 CONCLUSION AND FUTURE WORK

nization. Deepest continuations are first extracted (depth The feedback of the end-users evaluation is very positive on
first iterations), so function calls are handled before thnef these features. Nevertheless, the threat detection seemos i

tion itself. The example page 2 perforrfts — (1 — 4) so obvious to interpret because of the difficulty to tracekbac
(widen=3) + (1 =2 —3 54 — 5 — 6) * (widen+ narrow) = the causes of the bugs. On the other hand, the test case gener-
21 iterations. Advantage: Less iterations on code with non ation is very useful for the component tester because ishelp
imbricated loops for the same result, and a better precisionhim to quickly create a large number of relevant test cases.
on imbricated loops. Inconvenience: Imbricated loops need ATTOL Testware has recently decided to industrialise this
more iterations since many imbricated local stabilisgpiana last feature, adding a better integration in ATTOL UniTest
cesses replace one global stabilisation process. Theoretiand ATTOL Coverage and supporting a larger C syntax in
problems appear when stabilisation processes interfere, b order to focus a large range of cross-compilers. CEA is also
cause narrowing may follow the wrong fixpoint. The first using the o tool to test new abstract interpretation do-
part of [2] arrange loops in order to imbricate them. Back- mains, such as some dealing with the precision analysis of
ward strategies (not tested) then propagate errors todhe st floating-point calculations (this is part of on-going work o

of mai n in order to define possible tests leading to an error RTD Project IST-1999-20527 “DAEDALUS” of the Euro-
mode. pean FP5 programme). The static analyser is also going to

6 EXPERIMENTS AND BENCHMARKS be used together with a Hoare prover (CAVEAT) developped

In the TWO project, we had three end-users in charge of _atCEA, for treating alias information in particular (andgie

testing and assessing the tool:PAREBEL, ELSAG, and ing the tool with local invariants in loops).

SIEMENS AUTOMOTIVE. A few versions were released, we Acknowledgements

only give benchmarks concerning the last two of these (so- This work was partially supported by RTD project 28940
called Jensen release and our current snapshot). The protd“TWQO” of the European FP4 programme.

type is now in a quite robust state. REFERENCES

For instance, we used for our experiments a program
B.dyn. ¢ from SPACEBEL, which is automatically gener- [1] @ Garbage Collector for C and C++Hans J.
ated, and which has about 1500 “global variables” and con- ~ BOEHM, Alan J. DEMERS - software on htt p:
sists of about 7000 lines of C code It is mainly one big /1w hpl . hp. cont per sonal / Hans_Boehnt gc/
function, with many complicated tests and computations, bu 2]
with no loops, which is not real code, but plausible con-
trol/command code. It is analyzed in about 3 minutes and
20 seconds on a Pentium 3, 600 MHz and with about 100
Mega Bytes of memory used with Jensen. Our current snap-[3] F. Bourdoncle. Abstract interpretation by dynamic part
shot needs about 2 minutes and 10 seconds on the same tioning. Journal of Functional Programmin@(4):407—
machine, and about 13 Mega Bytes of memory used (with 435, 1992.
a “sparse representation” of contexts). Unfortunatelg, th
Two tool generates 841 threats (mostly overflows) on this [4] o0 X .
program: we believe that most of them are actual threats widenings. Lecture Notes in Computer Sciencss,
given that input values are not at all specified. They are{prob 1993.
ably not*dangerous” inthat the actual (restricted) vathe$ 5] p. Cousot and R. Cousot. Abstract interpretation: A uni-
are used for inputs will not create runtime errors. fied lattice model for static analysis of programs by con-
struction of approximations of fixed point&rinciples
4which crashes the gcc 2-95.2 compiler on a Sun UltraSparc. of Programming Languages pages 238-252, 1977.

Francois Bourdoncle.Sémantiques des Langages Im-
pératifs d’Ordre Supérieur et Interprétation Abstmit
PhD thesisEcole Polytechnique, november 1992.

F. Bourdoncle. Efficient chaotic iteration strategieghw

[6] P. Cousot and R. Cousot. Abstract interpretation frame- Florida, 21—-24 January 1996ages 16-31, New York,
works. Journal of Logic and Computatior2(4):511— NY, USA, 1996. ACM Press.

547, August 1992. _ _ : o
[17] A. Venet. Automatic analysis of pointer aliasing for

[7] P. Cousot and R. Cousot. Comparing the Galois con- untyped programsScience of Computer Programming
nection and widening/narrowing approaches to abstract =~ 35(2-3):223-248, November 1999.
interpretation, invited paper. In M. Bruynooghe and
M. Wirsing, editors,Proceedings of the International
Workshop Programming Language Implementation and
Logic Programming, PLILP 92 Leuven, Belgium, 13—
17 August 1992, Lecture Notes in Computer Science
631, pages 269-295. Springer-Verlag, Berlin, Germany,
1992.

[8] P. Cousot. The Calculational Design of a Generic Ab-
stract Interpreter. In M. Broy and R. Steinbriiggen (eds.):
Calculational System DesigiNATO ASI Series F. Am-
sterdam: 10S Press, 1999.

[9] P. Cousot and R. Cousot. Abstract Interpretation Based
Program Testing. IProceedings of the SSGRR 2000
Computer & eBusiness International ConferenCem-
pact disk paper 248, L'Aquila, Italy, July 31 — August 6
2000. Scuola Superiore G. Reiss Romoli.

[10] R. Cridlig. Semantic analysis of shared-memory con-
current languages using abstract model-checking. In
Proc. of PEPM’95 La Jolla, June 1995. ACM Press.

[11] A. Deutsch, Interprocedural may-alias analysis for
pointers: Beyond:-limiting, Proc. of PLDI'94, 1994,
pp. 230-241.

[12] Maryam Emami. A Practical Interprocedural Alias
Analysis for an Optimizing/Parallelizing C Compiler
PhD thesis, School of Computer Science McGill Uni-
versity, Montreal, September 1993.

[13] P. Granger. Improving the results of static analyses
of programs by local decreasing iterations. In Rudrap-
atna Shyamasundar, edit®roceedings of Foundations
of Software Technology and Theoretical Computer Sci-
ence volume 652 ofLNCS pages 68-79, Berlin, Ger-
many, December 1992. Springer.

[14] Richard HNES Rafael LNs, Garbage Collectiorfal-
gorithms for automatic memory managemanfjey, 1996

[15] N. D. Jones and S. S. Muchnick. A flexible approach
to interprocedural flow analysis and programs with re-
cursive data structures. Proceedings of the 9th ACM
Symposium on Principles of Programming Languages,
Albuquerque, NVNew York, NY, 1982. ACM.

[16] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Solving shape-analysis problems in languages with de-
structive updating. In ACM, editoConference record
of POPL '96, 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages: pa-
pers presented at the Symposium: St. Petersburg Beach,

