
A Simple Abstract Interpreter for Threat Detection and Test Case
Generation

Eric Goubault
Anne Pacalet

Basile Starynkévitch
Franck Védrine

LIST (CEA - Recherche Technologique)
DTSI-SLA, 91191- Gif-sur-Yvette Cedex, France

two@aigle.saclay.cea.fr

Dominique Guilbaud
Rational Software

Automated Testing Business Unit
Le Stratège - Voie La Pyrénéenne

BP 10
31312 Labège Cedex, France

dguilbaud@rational.com

ABSTRACT
This paper presents a tool (the TWO tool) which derives au-
tomatically the run-time errors of ANSI C programs and tries
to generate1 complementary test inputs, by abstract interpre-
tation techniques. We first explain why the tool is useful for
a user, who is already used to testing environments. Then we
review part of the theory needed to explain how the analyser
actually works. We discuss implementation matters and end
with the results of experiments and benchmarks.

Keywords
Static analysis, abstract interpretation, test generation, threat
detection, ANSI C language, embedded software.

1 INTRODUCTION
In the 4th PCRD framework (project TWO, number 28940),
ATTOL Testware (recently acquired by Rational Software),
Commissariat à l’Energie Atomique (CEA) and INRIA col-
laborated for improving existing testing tools.

In commercial testing tools, users can execute test scripts,
built from input values which they have designed themselves,
and measure the corresponding coverage on the program
source. Project TWO aimed at adding some new features
based on Abstract Interpretation. The planned tool targets
both automatic threat detection and automatic test case gen-
eration for the ANSI C language, that are seen to be two
complementary features. It is integrated in existing testing
tools developed and edited by ATTOL Testware.

This document presents the planned tool from the user point
of view. Then, the basic concepts of Abstract Interpreta-
tion are exposed, focusing on the threat detection and the
test case generation. Some considerations on implementa-
tion are explained and interprocedural analysis is also tack-
led. This document ends with benchmarks and a conclusion
on the present and future work.

1This part is still under construction

Figure 1: Interface.

2 THE TOOL
A threat is a context of execution (e.g. values of the vari-
ables) which makes the program end up in an erroneous
state. Here is a non exhaustive list of such bugs which can
be detected by the tool as for now: integer variables over-
flow, floating variables overflow and underflow, array out
of bounds, non-initialised data, nil or non-initialised pointer,
memory leak, dead code, non-termination, division by zero
and in general bad arguments to a function (like square root
of a negative number etc.).

This list includes most of bugs which are type 3 (structural
bugs), 4 (data bugs), 5.1 (coding and typographical bugs)
and 6 (integration bugs) in the Beizer’s taxonomy of bugs.
Statistics studies show that these kinds of bugs are about 60%
of existing bugs in a project. These kinds of bugs are very
frequent in languages such as C. Despite a well-developed
testing phase, these kinds of bugs may persist because they
appear only in some specific input conditions. Most of the
time, these conditions are not easy to find. The TWO project
aims at giving a practical answer to this kind of needs.

The TWO tool simply analyses (by an abstract interpretation

C files

Test suite
file

Test script

file
Objective

File

Analyser
Translator
UniTest
ATTOL

Figure 2: External architecture.

based static analyser) C files and provides results as in figure
1. The user can select a detected threat and visualize the
conditions leading to this threat on the source code itself2.

The test case generation part includes the following features;
it is based on the same ANSI C code analyser as the one
used by the threat detector, it uses a test objective description
containing structural and functional objectives to reach,it
generates ATTOL UniTest test scripts, and it uses ATTOL
tools GUI. The external architecture of the tool can be see in
figure 2.

The objective file allows the user to describe one or several
control points in the code. A condition can be associated to
each control point in order to describe an additional predicate
that should be satisfied at this control point. The objective
file can also specify control points that should not be part of
a path of execution. The generated test cases are translated
into ATTOL UniTest script in order to be directly executable
by the tool.

3 SEMANTICS AND ABSTRACT INTERPRETA-
TION

The framework we use for static analysis is “Abstract Inter-
pretation” as introduced by P. and R. Cousot [5]. The basic
idea is to start with a (concrete forward and/or backward)
semantics of the language we want to analyse (here ANSI
C) and to define a suitable abstraction mechanism, giving us
a computable abstract semantics, focusing on the properties
we want to discover automatically on a program.

In the abstract interpretation framework, we design an ab-
stract semantics using a Galois connection3: the abstract
(computable) semantics is given by a (in general complete)
lattice(A;�;[;\;?;>) (respectively the domain, the par-
tial ordering, the least upper bound operator, greatest lower
bound operator, bottom element and top element) and a pair
of functions� : }(Env) ! A and : A ! }(Env) whereEnv is the set of possible states of the machine.}(Env) is
itself a (complete) lattice (used for the concrete collecting se-
mantics) with set inclusion (�), union ([), intersection (\),
empty set? andEnv (>). The functions� and must also
form a Galois connection, i.e.,� and must be monotonic
functions,� � � Id, andId � � �.

Now the concrete semantics (forward or backward) of a pro-

2Like the Syntox abstract interpreter [2] which analyses only Pascal pro-
grams with no pointers.

3This is only one of the possible formulations of abstract interpretation,
see for instance [6].

gram is the least fixed point of a functionalF : }(Env) !}(Env). Similarly, given an abstraction as above, the ab-
stract semantics is the least fixed point of the functional~F = � � F � : L ! L. The equations defining Galois
Connections imply that the abstract semantic values over-
approximate in a consistent manner the concrete semantic
values.

4 TEST CASE GENERATION
Let us consider the following program (whose control flow
graph is given at the right-hand side):(0) while (x < 100)(1) if (x == 50)(2) then x = 105(3) else(4) x = x+ 1 (5)(6) 0

1

2

3

4

5

6

Its abstract(forward, respectively backward)semantic equations
(using only intervals here)are:X0 = >X1 = [�1; 99]\ (X0 [X3 [X5)X2 = [50; 50]\X1X3 = [105; 105]X4 = (X1 \ [�1; 49])[(X1 \ [51;1])X5 = X4 +] 1X6 = [100;1]\ (X5 [X3 [X0)X6 = >X5 = ([100;1]\X6) [([�1; 99]\X1)X4 = X5 �] 1X3 = ([100;1]\X6) [([�1; 99]\X1)X2 = > or? if 105 62 X3X1 = ([50; 50]\X2) [([�1; 49]\X4)[([51;1]\X4)X0 = (X1 \ [�1; 99])[(X6 \ [100;1])
The first iterate(in the least fixed point computation of the for-
ward abstract semantics)reaches the fixpoint, which are over-
approximations of the local invariants attached to each con-
trol point (notice that this proves there is no threat here):X1 = [�1; 99], X2 = [50; 50], X3 = [105; 105], X4 =[�1; 99],X5 = [�1; 100] andX6 = [100;1].
Suppose now we want to generate some tests: (A) to reach
(4) and not go through (2), (B) to reach (2) and not go
through (4), and (C) so that we do not want to enter the loop.

The way we do this (it is not currently fully implemented

in the tool), is to start with the local invariants computed
above and generate new backward equations, which are the
intersection of the local invariants with the old ones, plusthe
interpretation of the (structural) test objective4.

In case (A), we impose in “new” backward semantic equa-
tions that the states inX2 andX3 are bottom.

Then the first backward iterate givesX6 = [100;1],X5 =[100; 100],X4 = [99; 99],X1 = [99; 99], andX0 = [99; 99].
We could carry on but this already proves that99 is a good
input value for (A).

We do in a similar manner for iteration (B), givingX3 =[105; 105],X2 = [50; 50],X1 = [50; 50],X0 = [50; 50].
And for iteration C:X6 = [100;1], X5 = ?, X4 = ?,X3 = ?, X2 = ?,X1 = ?, andX0 = (X1 \ [�1; 99])[(X6 \ [100;1]) with obvious iterates (X0 = [100;1]). In
this example we have been quite lucky, in that the upper-
approximations of the semantics using intervals gave us ex-
actly the right domain of input values5. In general this is not
the case, so we also use lower-approximation of the seman-
tics (which in turn can give threats which are sure to hap-
pen), see for instance [10] for some indications about how
this goes.

Threat Detection
The TWO tool may detect the following threats: non-
initialized variable (and used), overflow, division by zero,
bad argument given to a mathematical function (such as
square root of a negative number, arcsin of a number out-
side[�1; 1] etc.); and for the pointer part, memory leak, null
dereference, index out of bounds (for arrays), illegal deref-
erence (constant addresses, non-initialized pointers). This
is implemented as some form of reduced product [13] of a
lattice of intervals, aliases and error lattice (in a somewhat
similar manner as in [8]).

Threat detection is a complement of test case generation in
the following sense. Take the program:

int compute(int i)
{ int j,k=1;
for (j=i;j>1;j--) k=k*j;
return(k); }

This function computes the factorial of its argument for pos-
itive arguments, and returns one for negative arguments. In
order to test this function, a user just tries a random input
valuei (here 4) and matches the result with what he knows
to be the right result (here 24). Then he can try to look if
his test is reasonable indeed, that is, is achieving a good cov-
erage, of at least all instructions of the C code. The user
can determine that all instructions have been reached with

4They have been defined in the TWO project to be an acyclic automaton
with states of acceptance and refusal.

5In fact this could be seen as a particular instance of abstract testing [9].

the single testi=4. He can also see that all branches of
the test condition in thefor statement have been traversed.
In fact most of the coverage measures that are used would
comfort the user in thinking that his program is correct. If
he had taken (on most compilers available)i=17 then he
would have seen an overflow at run-time, or even worse a
completely wrong result! (on a Sparc workstation, the result
would be -288522240 instead of 34070196128). The TWO
protoype aims at showing potential bugs as this one6, as well
as generating (when possible) test case exemplifying some
execution scenarios.

5 IMPLEMENTATION OF THE TOOL
The TWO tool is made internally of a graphical user interface
front-end (by ATTOL) and a static code analyzer back-end
(by CEA). These are two different LINUX processes, com-
municating on two pipes through a specific textual proto-
col. The static code analyzer can also be run in batch mode
through a command line interface.

A static code analyzer, especially when using abstract inter-
pretation techniques, handles internally lots of complex tem-
porary data structures and shared semantic values. So mem-
ory management was considered a major issue at the begin-
ning of the project. Since the TWO tool was coded inC++7,
explicit manual memory management (new anddelete)
was considered too harsh, therefore a garbage collector [14]
was needed. Although conservative marking garbage collec-
tors such as [1] exist, using them within the TWO tool was
considered risky, because it handles lots of various values
on the C call stack, including floating point numbers. Also,
our analyzer allocates lots of very temporary values of vari-
ous sizes, and memory fragmentation could be an issue. So,
a precise generational copying8 garbage collector was de-
velopped. Using our GC prohibits multiple inheritance, and
needs a common C++ superclass for all objects, explicit reg-
istration of global and local pointer variables, and a write
barrier. Using a garbage collector changed our programming
habits, since allocation was easier, without fearing of miss-
ing delete. So, we did use a more functional, less side-
effecting, coding style.

Initially, the TWO tool parses a set of C preprocessed source
files. The abstract syntax tree is transformed (unfolding of
function calls, complex conditions,for loops...) into aSim-
ple C 9 syntax tree. This tree is transformed into a graph of
control points. An iterator handles this graph to compute the
abstract state fixpoints, storing its results in a context. Con-

6This uses an upper-approximation of the concrete semantics; we could
also use a lower-approximation of the concrete semantics togive sure
threats, as the ADA and C verifiers of Polyspace Technologies.

7The choice ofC++was done for historical reasons. We could also have
used a functional language such asOcaml.

8Our GC is copying for ordinary objects which are moved, and marking
for finalized objects which keep their address.

9In Simple C, the only calls are likev = f(x, y, z); or (void)
p(x); wherev,x,y,z are simple variables (or constants), perhaps tem-
porary and generated.

texts associate a state to a control point and a token (for in-
terprocedural analysis, see section 5 for more explanations).
A state contains alias information and variables’ abstractval-
ues. A scalar variable value is abstracted by an interval. Our
analyzer computes abstract states at each control point of the
analyzed program. Some of the computed states are erro-
neous, and are reported aspossible threatsto the user. Test
cases can be generated from these threats.

A state is an abstract environment with alias information. An
abstract environment is an associative table mapping each
variable to its abstract value which is an interval, for the time
being only. We have tried to build the analyser so that dif-
ferent abstract domains can be plugged in with not too much
effort. This is still to be assessed though. The principle is
that (“abstract”) contexts form a classAContextwhich in-
herits from an “interface class”Latticewhich imposes to
have such lattice functions as union and intersection. They
have all possible interpretation methods, because at the level
of contexts, the control points and the table of symbols of the
whole program are known.

States also form a subclass ofLattice (defined as the se-
mantic values and methods that can apply when we know the
name of the variables but not the control points). A further
subclass is generically built from abstractions of elements,
in particular scalar elements (here only intervals). The prop-
erty of elements (which again form a subclass ofLattice)
is that we can only ask for evaluation of expressions (the
control points and the table of variables are not known).

A subclass ofAContext is the classContext which is
generically built from states as follows. A context is an inter-
nal database (implemented by several hashtables) containing
entries10 made of tokens (see sec. 5 below), control points,
and states. Each context entry also contains its own data,
such as a counter to trigger widenning operations. A context
can be asked to return an array of entries of a given con-
trol point, or of a given token, or the single entry matching
a given token and control point pair, or the array of all its
entries. The iterator mechanism stores intermediate and final
results in an analysiscontext.

Intervals
Let I be the lattice of intervals of reals whose elements
are [a; b] with a; b 2 IR [f1;�1g and whose order is[a; b] � [a0; b0] if a � a0 andb � b0. We identify all [a; b]
with a > b with [1;�1] which we write?. It is the least
element ofI indeed. In fact, the analyser uses intervals of
(double) floating-point numbers when abstracting floating-
point variables, and intervals of (long) integers when ab-
stracting integer variables (orenum or char types).

As the analyser can do some amount of cross-platform anal-
ysis, in which case the scalar types of the program under
analysis may not be the same as the scalar types used by the

10Some parts of which are shared or not even represented, to minimize
memory consumption.

analyser, strict rules have to be enforced. Infinities in the
analyser are mostly used when the types under analysis do
not fit in the types used in the analyser.

Another important feature of these intervals is that it re-
spects the IEEE754-1985 standard for floating-point num-
ber semantics (except it does not take care of NaNs), in a
quite conservative way. Using this semantics, we are able to
find real “subtle” bugs such as for the program:if (x>0)
y=1/x*x, where there might be a division by zero error11

(for instance whenx = 22�2K , whereK is the number of
bits used to code the exponent of the floating-pointnumbers).

Alias analysis
In C programs, scalar variables are not always reached by
a simple names. They can be part of a bigger object such
as a structure or an array, or can be reach by a path through
pointers. This last case means that a data can have several
names :x and*p can for instance refer to the same data
after the instructionp=&x;. To be able to analyse the values
of the scalar elements, alias information is needed. When
interpreting an instruction, each data access can be translated
so that each scalar data has a unique name. The alias analysis
has to provide a upper-approximation of the real situation
because we need to know if a variable can be reached by an
instruction.
To build an approximation of the memory, a location-based
representation has been chosen12. It means that some objects
- the locations - represent the allocated chunk of memory,
and that they are connected in a graph by links - the selectors.
Take for instance the program :

struct {
int a;
struct {int b; int *p; } s;
} str;

int x, *p, tab[10];
...
switch(x) {

case 1 : p = &x; break;
case 2 : p = &(s.a); break;
case 3 : p = &(tab[2]); break;
case 4 : p = &(tab[4]); break;
case 5 : p = NULL; break;
}

str.a.p = &x;

The alias graph after this sequence (assuming thatx 2 [1; 5]
before the sequence is in figure 3:

There are mainly four kinds of locations : the structures, the
arrays, the pointers, and the dynamic allocated memory. This
last kind of locations is not handled yet, but a simple way to
identify those locations is to name them by the control point

11This is an example taken from a seminar by Alain Deutsch in 1998.
12And not a location-free approach as in [17] or [11]. We will probably

test these analyses in future work. The programs of our usersare mostly
critical embarked software and do not use much dynamic allocation, hence
it was less interesting to go for complex - in weakly typed languages such
as C - location-free methods right away.

str

tab scalar0
[0,9]

x
.p

x

scalar1
.b

p
*

(undef), 0x0
x,s.a,tab[2,4],

scalar2
.a

.s

Figure 3: An alias graph

(or the control point plus an abstraction of the environment)
where the allocation takes place, see for instance [15]. Every
block allocated at the same control point are thus identified.

The selectors start at locations, and end at targets which rep-
resent either the possibly pointed objects, either the scalar
data used by the interval analysis, or sub-selectors, accord-
ing to the selector type (pointer, scalar, structure or array).
In the first case, the pointed objects are described by the lo-
cation name and a path in the object if it is a sub-object.
A special target, called(undef) stands for non initialized
pointers. Other values represent scalar initialisation such as
NULL. If the list is composed of only one element, it means
that the pointer surely points on the target. So, this represen-
tation can sometime provide must-alias information. This
precision could be enhanced by using the booleanis-shared
introduced in [16].

From a pointer location can only start a*-selector, and
the target is a list of the possibly pointed objects. From a
structure-location can start field-selectors. They are named
according to the structure field names. The target depend on
the field type. Index-selectors starting from array-locations
are more difficult to handle because the accessed element
is not always known statically. Index-selectors then use
intervals to code index values. Many stategies can be used
to make a partitionning of the index-selectors starting from
a location. The simpler one is implemented at the moment
which is having a unique selector for all the array elements.
Nevertheless, for pointer targets, the accessed index interval
is still keept, but several accesses to the same array are
grouped together.

The interprocedural analysis use the token organisation
explained in section 5. It means that the different calling
sites are always treated as different even if they might lead
to the same analysis. A more suitable algorithm would be to
use hidden variables to code pointer targets as in [12].

This alias analysis is also be used for threat detection. It can

check for instance the valid use of pointers, the out-of-bound
index in an array, potential memory leaks or accesses to freed
memory.

Interprocedural Analysis
Interprocedural analysis in the TWO tool is done by abstrac-
tion of the analyzed program’s call stack (static partition-
ning), the stack token. Each token contains the topmost 2
(or 0-9, a runtime parameter)caller control points. Dynamic
partitionning as in [3] and [4] is implementable by defining
tokens containing state, but is not yet done. A token is built
by pushing a given state and control point on a previous to-
ken (starting from an empty? token).

A procedure or function call has two control points. A point
just before the call, and another one just after. To interpret
the point before, the analyzer prepares the abstract values
(intervals) of actual arguments and computes a new token
from the control point and the actual token. Then the initial
point of the called function13 is considered, a new environ-
ment is built (binding abstract arguments to formal parame-
ters), then interpretation proceeds with the called function’s
body. At last, the final control point of the called function
is reached, which does thereturn. To interpret it, the pre-
vious token (abstracting the call stack just before the call) is
reinstalled, and the return abstract value is bound to the re-
ceiving variable (if any). Then the analysis proceeds as usual
after the call.

Iteration Strategies
Let us take an example:

if (x < 10)
x += 5;

else
x -= 10;

Executing this simpleif instruction
with the description (x 2 [�10; 20])
leads to thethen andelse branch
with the respective descriptions (x 2[�10; 9]) and (x 2 [10; 20]).x will finally be in [�5; 14] after the
if node.

Performing standard execution is impossible and the ana-
lyzer has to choose between thethen and theelse branch
to be first executed. The strategy takes all its importance for
imbricated loops.

The test case generation (section 4) shows the forward and
backward semantic equations. Fixpoint computations solve
these equations by picking up one of them and by simpli-
fying it with the other (next) equations. The good itera-
tion strategies choose appropriate equations and perform ef-
ficient simplifications. We experimented two kinds of for-
ward strategies. Breadth-first strategies iterate on the whole
set of equations and “execute” each equation following their
textual ordering. The process continues until stability.

The example page 2 performs(0 ! 1 ! 2 ! 3 !
13The called function is always known, because we do not deal yet with

function pointers. To handle function pointers, we just have to consider
the finite set of all their possible values (i.e. the set of functions of same
signature).

4 ! 5 ! 6) � ((widen =4) + (narrow =1)) = 35 iterations.
Advantage: The abstract interpretation practice applies well
with widening and narrowing [7] (except on combinations of
loops and recursive functions), without code source recom-
pilation (computation of a single fixpoint). Inconvenience:
First equations (quickly stable) often execute, implying ade-
creasing execution time, even if stable equations are quickly
handled. Some precision is lost on imbricated loops since all
the loops are stabilised during the same process.

Depth-first strategy follows the code execution and not its
textual form. A set of continuations stores the multiple in-
structions to be interpreted. The iterator extracts the most
delayed continuation and interprets it for a better synchro-
nization. Deepest continuations are first extracted (depth-
first iterations), so function calls are handled before the func-
tion itself. The example page 2 performs(0 ! (1 ! 4) �(widen =3) + (1! 2! 3! 4! 5! 6) � (widen+ narrow) =21 iterations. Advantage: Less iterations on code with non
imbricated loops for the same result, and a better precision
on imbricated loops. Inconvenience: Imbricated loops need
more iterations since many imbricated local stabilisationpro-
cesses replace one global stabilisation process. Theoretic
problems appear when stabilisation processes interfere, be-
cause narrowing may follow the wrong fixpoint. The first
part of [2] arrange loops in order to imbricate them. Back-
ward strategies (not tested) then propagate errors to the start
of main in order to define possible tests leading to an error
mode.

6 EXPERIMENTS AND BENCHMARKS
In the TWO project, we had three end-users in charge of
testing and assessing the tool: SPACEBEL, ELSAG, and
SIEMENS AUTOMOTIVE. A few versions were released, we
only give benchmarks concerning the last two of these (so-
called Jensen release and our current snapshot). The proto-
type is now in a quite robust state.

For instance, we used for our experiments a program
B dyn.c from SPACEBEL, which is automatically gener-
ated, and which has about 1500 “global variables” and con-
sists of about 7000 lines of C code14. It is mainly one big
function, with many complicated tests and computations, but
with no loops, which is not real code, but plausible con-
trol/command code. It is analyzed in about 3 minutes and
20 seconds on a Pentium 3, 600 MHz and with about 100
Mega Bytes of memory used with Jensen. Our current snap-
shot needs about 2 minutes and 10 seconds on the same
machine, and about 13 Mega Bytes of memory used (with
a “sparse representation” of contexts). Unfortunately, the
TWO tool generates 841 threats (mostly overflows) on this
program: we believe that most of them are actual threats
given that input values are not at all specified. They are prob-
ably not “dangerous” in that the actual (restricted) valuesthat
are used for inputs will not create runtime errors.

14Which crashes the gcc 2-95.2 compiler on a Sun UltraSparc.

Another example by one of our end-users, program
demo2.c by ELSAG, which makes image manipulations,
consists of 9938 lines of C code and about a hundred func-
tions, with loops, floating-point computations, arrays, point-
ers, but few variables known at each control point. It needs
only 10 seconds (and about 8Mb of memory used for Jensen)
for the analysis and reports 51 threats. Some of them due to
the non-knowledge of some input variables (approximated
to top), some others to the bad treatment of array indexes. It
compared well with Rational Purify (dynamic) analyser and
showed to be even “better” for reporting arithmetic errors
such as overflows.

7 CONCLUSION AND FUTURE WORK
The feedback of the end-users evaluation is very positive on
these features. Nevertheless, the threat detection seems is not
so obvious to interpret because of the difficulty to trace back
the causes of the bugs. On the other hand, the test case gener-
ation is very useful for the component tester because it helps
him to quickly create a large number of relevant test cases.
ATTOL Testware has recently decided to industrialise this
last feature, adding a better integration in ATTOL UniTest
and ATTOL Coverage and supporting a larger C syntax in
order to focus a large range of cross-compilers. CEA is also
using the TWO tool to test new abstract interpretation do-
mains, such as some dealing with the precision analysis of
floating-point calculations (this is part of on-going work of
RTD Project IST-1999-20527 “DAEDALUS” of the Euro-
pean FP5 programme). The static analyser is also going to
be used together with a Hoare prover (CAVEAT) developped
at CEA, for treating alias information in particular (and help-
ing the tool with local invariants in loops).

Acknowledgements
This work was partially supported by RTD project 28940
“TWO” of the European FP4 programme.

REFERENCES

[1] a Garbage Collector for C and C++ Hans J.
BOEHM, Alan J. DEMERS - software on http:

//www.hpl.hp.com/personal/Hans_Boehm/gc/

[2] François Bourdoncle.Sémantiques des Langages Im-
pératifs d’Ordre Supérieur et Interprétation Abstraite.
PhD thesis,́Ecole Polytechnique, november 1992.

[3] F. Bourdoncle. Abstract interpretation by dynamic parti-
tioning. Journal of Functional Programming, 2(4):407–
435, 1992.

[4] F. Bourdoncle. Efficient chaotic iteration strategies with
widenings. Lecture Notes in Computer Science, 735,
1993.

[5] P. Cousot and R. Cousot. Abstract interpretation: A uni-
fied lattice model for static analysis of programs by con-
struction of approximations of fixed points.Principles
of Programming Languages 4, pages 238–252, 1977.

[6] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–
547, August 1992.

[7] P. Cousot and R. Cousot. Comparing the Galois con-
nection and widening/narrowing approaches to abstract
interpretation, invited paper. In M. Bruynooghe and
M. Wirsing, editors,Proceedings of the International
Workshop Programming Language Implementation and
Logic Programming, PLILP ’92,, Leuven, Belgium, 13–
17 August 1992, Lecture Notes in Computer Science
631, pages 269–295. Springer-Verlag, Berlin, Germany,
1992.

[8] P. Cousot. The Calculational Design of a Generic Ab-
stract Interpreter. In M. Broy and R. Steinbrüggen (eds.):
Calculational System Design. NATO ASI Series F. Am-
sterdam: IOS Press, 1999.

[9] P. Cousot and R. Cousot. Abstract Interpretation Based
Program Testing. InProceedings of the SSGRR 2000
Computer & eBusiness International Conference, Com-
pact disk paper 248, L’Aquila, Italy, July 31 – August 6
2000. Scuola Superiore G. Reiss Romoli.

[10] R. Cridlig. Semantic analysis of shared-memory con-
current languages using abstract model-checking. In
Proc. of PEPM’95, La Jolla, June 1995. ACM Press.

[11] A. Deutsch, Interprocedural may-alias analysis for
pointers: Beyondk-limiting, Proc. of PLDI’94, 1994,
pp. 230–241.

[12] Maryam Emami. A Practical Interprocedural Alias
Analysis for an Optimizing/Parallelizing C Compiler.
PhD thesis, School of Computer Science McGill Uni-
versity, Montreal, September 1993.

[13] P. Granger. Improving the results of static analyses
of programs by local decreasing iterations. In Rudrap-
atna Shyamasundar, editor,Proceedings of Foundations
of Software Technology and Theoretical Computer Sci-
ence, volume 652 ofLNCS, pages 68–79, Berlin, Ger-
many, December 1992. Springer.

[14] Richard JONES, Rafael LINS, Garbage Collection(al-
gorithms for automatic memory management)Wiley, 1996

[15] N. D. Jones and S. S. Muchnick. A flexible approach
to interprocedural flow analysis and programs with re-
cursive data structures. InProceedings of the 9th ACM
Symposium on Principles of Programming Languages,
Albuquerque, NM, New York, NY, 1982. ACM.

[16] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Solving shape-analysis problems in languages with de-
structive updating. In ACM, editor,Conference record
of POPL ’96, 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages: pa-
pers presented at the Symposium: St. Petersburg Beach,

Florida, 21–24 January 1996, pages 16–31, New York,
NY, USA, 1996. ACM Press.

[17] A. Venet. Automatic analysis of pointer aliasing for
untyped programs.Science of Computer Programming,
35(2–3):223–248, November 1999.

