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Abstract. The state space of a machine admits the structure of time. For example,
the geometric realization of a precubical set, a generalization of an unlabeled asyn-
chronous transition system, admits a “local preorder” encoding control flow. In the case
where time does not loop, the “locally preordered” state space splits into causally distinct
components. The set of such components often gives a computable invariant of machine
behavior. In the general case, no such meaningful partition could exist. However, as we
show in this note, the locally preordered geometric realization of a precubical set admits
a “locally monotone” covering from a state space in which time does not loop. Thus we
hope to extend geometric techniques in static program analysis to looping processes.

1. Introduction

The possible histories of a machine form a poset whose order encodes the progress of
time. Meaningful machine behavior corresponds to properties of such posets independent
of our measurement of time. As the scales of time shrink, the sizes of posets explode.
This combinatorial explosion often renders state space analyses incomplete in practice.
Figure 1 suggests that certain pospaces, topological spaces equipped with suitable partial
orders, represent the limits of such temporal refinement; chains of machine steps become
monotone paths of evolutions. Although these pospaces now contain an infinitude of
histories, the directed homotopy theory of [Fajstrup et al., 2006] on compact pospaces
- more efficiently than order-theoretic analyses on finite but large posets - can extract
the behavior of finite, terminating machines. A static program analyzer, described in
[Goubault, et al., 2005], flags unsafe machine behavior by calculating component categories
of pospaces.
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Figure 1: From discrete to continuous

1



2

Pa Pb Vb Va

Pb

Pa

Va

Vb

(a) (b)

Figure 2: Tractable descriptions of machine behavior. The arrows in (a) and the lines in
(b) comprise coherent choices of finitely many “representative” machine executions.

In the case where a finite machine does not terminate, its posets of histories are infinite
and its associated pospace is non-compact. Such partially ordered structures often reduce
to a tractable size after the quotienting of histories ending at the same state. We can
recast locally finite posets as acyclic digraphs whose edges encode the partial orders, and
we can enrich certain compact pospaces with the structure of “local preorders.” These
new mathematical structures retain information about time flow after the quotienting
process. As the scales of time shrink, the sizes of digraphs explode. “Locally preordered
spaces” represent the limits of such temporal refinement. We follow [Krishnan, 2008]
in calling these enriched spaces streams. Examples include stream realizations �X � of
precubical sets X. The directed homotopy theory of [Fajstrup et al., 2006], adapted for
compact streams, should circumvent the state space explosion problem in extracting the
essential behavior of finite state machines.

Path-components, the 0-dimensional weak homotopy invariants of topological spaces,
admit no straightforward and meaningful directed analogue. Fundamental groupoids of
finite CW complexes admit finite skeletal subgroupoids whose objects correspond to path-
components, while fundamental categories of streams in nature rarely admit tractable
skeletal subcategories, as observed in [Grandis, 2005]. Yet, Figure 2 suggests that certain
finite subcategories of fundamental categories of compact pospaces in nature appear to
capture all possible subtleties in the dynamics of terminating machines. Generalizations
in [Fajstrup et al., 2004, Goubault, et al., 2007] of isomorphisms in fundamental groupoids
to “causally insignificant” morphisms in certain fundamental categories allow us to define
tractable “dipath-components” of certain pospaces.

No such partitions of general streams could exist: a computer might reach the same
state from different calculations. In the case where the state stream of a machine arises
as the quotient X/G of a pospace X by the transitive, free, and discrete action of a
group G, the group G and the “dipath-components” of X together suffice in constructing
meaningful geometric invariants on X/G. In this note, our main result implies that stream
realizations of connected precubical sets always assume such a form X/G.
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1.1. Theorem 3.12. For each precubical set B, there exists a stream covering

E → �B�

such that the preorder 6E is antisymmetric.

For example, the quotient of the linearly ordered topological space ~R of reals by the
additive action of the group Z of integers yields the state stream ~S of a cyclical process.
We call stream-theoretic analogues of the “locally partially ordered spaces” in [Fajstrup
et al., 2006] vortex-free.

1.2. Corollary 3.13. Stream realizations of precubical sets are vortex-free.

We start in §2 by reviewing basic directed topology. In §2.1, we recall definitions
and examples of preordered spaces. In §2.3, we recall from [Krishnan, 2008] a convenient
category of streams, spaces equipped with preorderings V 7→6V of their open subsets sat-
isfying properties reminiscent of the sheaf condition. The forgetful functor U : U → T
to the category of spaces is topological. In particular, U is complete and cocomplete.
Moreover, compact pospaces whose maximal chains are connected admit unique compati-
ble structures of streams. In §2.16, we construct fundamental categories of streams, in the
process constructing fundamental monoids τ1(X, x) of based streams (X, x). We adapt
covering space theory to the world of streams in §2.19. A local preorder on a space B pulls
back along a covering map E → B to define a stream covering. The usual path-lifting
properties for coverings imply dipath-lifting properties for stream coverings because U is
topological. In particular, our stream coverings are “dicoverings” in the sense of [Fajstrup,
2003]. A calculation follows.

1.3. Proposition 2.23. For each x ∈ S, deg : τ1(~S, x) ∼= N.

Under mild hypotheses, we identify necessary and sufficient conditions for a universal
cover of a stream to admit no loops in time.

1.4. Proposition 2.24. The following are equivalent for a universal stream covering

E → B

over a path-ordered stream B.

1. The preorder 6E is antisymmetric.

2. Every stream map ~S → B null-homotopic as a continuous function is constant.

In §3, we turn our attention to the state streams of concurrent machines. We review the
basic definitions of precubical sets in §3.1, described in [Goubault, 2002] as generalizations
of unlabeled, asynchronous transition systems. Consider a precubical set X. We enrich
the geometric realization |X|, defined in §3.3 as a certain CW complex, with the structure
of a stream �X� in §3.5. Non-constant cellular dipaths on �X� represent non-trivial cellular
homology classes in H1(|X|; Z), by [Fajstrup, 2003, Example 2.8] and Lemma 3.4. Non-
constant dipaths on �X � admit non-constant cellular approximations by Lemma 3.10.
The stream B = �X � thus satisfies condition (2) of Proposition 2.24. The main result
ensues.
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2. Directed topology

We review basic definitions of preordered spaces in §2.1. We review basic definitions and
properties of the category U of streams in §2.3. We construct fundamental categories
and fundamental monoids in §2.16. Lastly, we adapt covering space theory for streams in
§2.19.

2.1. Preordered spaces. A preordered space is a space X equipped with a preorder
6X .on its points. A pospace is a preordered space X whose preorder is a partial order
whose graph graph(6X) is closed in the standard product topology of X × X. In other
words, a pospace is a poset topologized so that topological limits commute with inequali-
ties. Examples include the the real number line ~R equipped with its standard total order.
Every pospace is Hausdorff by [Gierz, et al., 2003, Proposition VI-1.4].

2.2. Example. A Hausdorff space with its trivial partial order is a pospace.

Fix a preordered space X. A preordered space A is a sub-preordered space of X if
A is a subspace of X and graph(6A) = graph(6X) ∩ (A × A). Examples include the

sub-preordered space ~@[1] of ~R whose underlying space is the unit interval I.
A monotone map is a (weakly) monotone and continuous function between preordered

spaces. Let Q be the category of preordered spaces and monotone maps. Colimits and
limits in Q are created by forgetful functors to suitable categories of spaces and proerdered
sets.

2.3. Streams. We define streams to be spaces equipped with coherent preorderings of
their open subsets. We summarize the basic definitions and properties of streams in this
section, referring the reader to [Krishnan, 2008] for comparisons with the local pospaces
of [Fajstrup et al., 2006] and the d-spaces of [Grandis, 2003].

2.4. Definition. A circulation 6 on a space X is a function assigning to each open
subset V ⊂ X a preorder 6V on V such that for every collection O of open subsets of X,
6S

O is the preorder on
⋃
O with smallest graph containing⋃

V ∈O

graph(6V ).

A stream X is a space equipped with a circulation on it, which we always write as 6.

2.5. Example. For each open subset V of the complex plane C and for all z, z′ ∈ C,
define z 6V z′ if there exist non-decreasing paths α, β : I → R such that αeiβ defines a
path z ; z′ in V . The function V 7→6V turns C into a stream ~C.

2.6. Definition. Consider streams X and Y . A stream map is a continuous function

f : X → Y

satisfying f(x) 6V f(y) whenever x 6f−1V y, for each open subset V ⊂ Y .
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Let U be the category of streams and stream maps between them and T be the cat-
egory of spaces and continuous functions between them. We refer the reader to [Borceux,
1994] for the basic definitions and properties of topological functors.

2.7. Proposition. [Krishnan, 2008, Proposition 5.8] The forgetful functor

U : U → T

is topological.

In particular, U creates limits and colimits by [Borceux, 1994, Proposition 7.3.8], and
U is hence complete and cocomplete.

2.8. Definition. Fix a stream X. A stream A is a substream of X if inclusion defines
a stream map ι : A ↪→ X and each stream map f whose image lies in A corestricts to a
dotted stream map making the following diagram commute.

A
ι // X

B

OO

f

>>}}}}}}}

A stream embedding f : A → X is a stream map which corestricts to an isomorphism
between A and a substream of X.

Fix a stream X. Every subset of X admits the unique structure of a substream of
X, by Proposition 2.7. Generally, substreams of X are difficult to describe explicitly.
However, open substreams of X are open subspaces equipped with suitable restrictions of
the circulation on X.

There exists a concrete forgetful functor Q : U → Q sending each stream X to
its underlying space preordered by 6X . The following observation allows us to calculate
colimits and finite products of streams as colimits and finite products of underlying spaces,
equipped with “point-wise” colimits and finite products of preordered sets.

2.9. Proposition. [Krishnan, 2008, Lemma 5.5, Proposition 5.11] The functor

Q : U → Q

preserves colimits and finite products.

The direct verification of the axioms for streams and stream maps can be tedious. Let
P be the category of pospaces whose maximal chains are connected, and all (weakly)
monotone, continuous functions between them. The following observation, a consequence
of [Krishnan, 2008, Propositions 4.7, 5.4, 5.11] and [Nachbin, 1965, Propositions 1, 2,

Theorem 5], allows us to henceforth treat ~R as a stream and connected sub-pospaces of
~R as substreams.
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2.10. Theorem. There exists a full, concrete, and product-preserving embedding

P ↪→ U (1)

sending each pospace to a unique stream sharing the same underlying space and underlying
preordered set.

Just as locally path-connected spaces are those spaces on which paths detect connect-
edness, path-ordered streams are those streams on which dipaths detect order-theoretic
information. Path-ordered streams essentially are the d-spaces of [Grandis, 2003] satisfy-
ing certain extra properties.

2.11. Definition. Fix a stream X. A dipath on X is a stream map

γ : ~@[1] → X,

written γ : x ; y if x = γ(0) and y = γ(1). A stream is path-ordered if there is a dipath
γ : x ; y on X whose image lies in V whenever x 6V y, for each open subset V ⊂ X
and each pair x, y ∈ V .

2.12. Example. The stream ~C from Example 2.5 is path-ordered.

Colimits of path-ordered streams are path-ordered, because dipaths concatenate. Fol-
lowing [Grandis, 2003], we define a vortex to be the point of a stream having no partially
ordered neighborhood. Vortex-free streams are analogues of the local pospaces of [Fa-
jstrup et al., 2006].

2.13. Definition. Fix a stream X. A vortex in X is a point x ∈ X such that

6V

is not antisymmetric for every open neighborhood V of x in X. Call X vortex-free if it
has no vortices.

2.14. Example. In the stream ~C from Example 2.5, 0 is the unique vortex.

An example of a vortex-free stream is ~S, the unit circle S = {z ∈ C | |z| = 1} equipped
with the circulation 6 defined by z 6V z′ if there exist reals θ ≤ θ′ such that z = eiθ,
z′ = eiθ′ , and ei[θ,θ′] ⊂ V . The argument given in [Fajstrup, 2003, Example 2.8] adapts.

2.15. Lemma. [Fajstrup, 2003, Example 2.8] Fix a vortex-free stream X. A stream map

~S → X

is constant if and only if it is homotopic through stream maps to a constant map.

2.16. Fundamental categories. We adapt the construction in [Fajstrup et al., 2006]
of fundamental categories and fundamental monoids, generalizing fundamental groupoids
and fundamental groups.
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2.17. Definition. Fix a stream X. Let T1X be the category having the points of X as
objects, equivalence classes [α] of dipaths homotopic relative {0, 1} through dipaths as the
morphisms, and the functions

s : [α] 7→ α(0), t : [α] 7→ α(1), id : x 7→ [t 7→ x], [β] ◦ [α] = [α ∗ β],

as source s, target t, identity id, and composition ◦ functions, respectively, where α ∗ β
denotes a concatenation of α with β. We call T1X the fundamental category of X.

The construction T1 naturally extends to a functor T1 : U → C to the category C
of small categories and functors. For each stream X and each x ∈ X, let τ1(X, x) be the
endomorphism monoid (T1X)(x, x). Recall that a monoid M is inverse-free if its only
element admitting a left or right inverse is the unit.

2.18. Lemma. For each vortex-free stream X and each x ∈ X, the monoid

τ1(X, x)

is inverse-free.

Proof. A representative dipath α of an element of τ1(X, x) admitting a (left or right)
inverse is constant by Lemma 2.15 because α : x ; x concatenates (on the left or right)
with a dipath β : x ; x on X to form a dipath homotopic through dipaths to a constant
map at x.

The lemma generalizes to arbitrary streams X and points x which are not vortices.
Let U? be the category of based streams and stream maps preserving distinguished

points and T? be the category of based spaces and based continuous functions. The con-
struction τ1 naturally extends to a functor τ1 : U? → M to the category M of monoids
and monoid homomorphisms. The forgetful functor U induces a natural transformation
U∗ : τ1 → π1 ◦ U . Let deg denote both the standard degree map and the dotted homo-
morphism defined by the commutative diagram

τ1(~S, 1)

U∗
��

deg // N

i

��
π1(S, 1)

deg
// Z,

where the right vertical arrow denotes inclusion from the monoid N of natural numbers.

2.19. Coverings. Covering space theory straightforwardly adapts.

2.20. Definition. A stream covering is a surjective stream map

ρ : E → B

such that B admits a cover of open substreams whose preimages under ρ are disjoint
unions of open components on which ρ restricts to define stream embeddings.
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A stream covering is a covering of underlying spaces. Conversely, a circulation on a
space B pulls back along a covering ρ : E → B of spaces to define a circulation on E
turning ρ into a stream covering by Proposition 2.7. The following statements thus follow
from their classical counterparts.

2.21. Lemma. Fix a stream covering ρ : E → B.

1. The stream E is path-ordered if and only if B is path-ordered.

2. For each e ∈ E, every homotopy through dipaths on B starting (ending) at ρ(e) lifts
under ρ to a unique homotopy through dipaths starting (ending) at e.

2.22. Example. Let ~C be the stream from Example 2.5. Let

f : ~R2 → ~C

be the stream map sending (x, y) to xeiy. The map f is not a stream covering because Uf

is not a covering of underlying spaces, even though dipaths on ~C lift under f to dipaths
on ~R2.

Lemma 2.21 allows us to make a non-trivial calculation.

2.23. Proposition. For each x ∈ S, deg : τ1(~S, x) ∼= N.

Proof. We take x = 1 without loss of generality. The function t 7→ eπit defines a universal
stream covering ~R → ~S. Dipaths γ starting and ending at 1 lift under this covering to
unique dipaths starting at 0 and ending at deg(γ) by Lemma 2.21. Each pair α, β of

dipaths on ~R starting at 0 and ending at the same integer are homotopic relative {0, 1}
through dipaths ht = (1− t)α + tβ, and therefore

U∗ : τ1(~S, 1) → π1(S, 1) = Z (2)

is injective. The image of (2) is therefore an inverse-free sub-monoid of Z by Lemma 2.18.

The image of (2) contains 1 ∈ Z because the identity on S defines a stream map ~S → ~S.
The calculation follows from the last two observations.

We call a stream covering p universal if the covering Up is universal.

2.24. Proposition. The following are equivalent for a universal stream covering

E → B

over a path-ordered stream B.

1. The preorder 6E is antisymmetric.

2. Every stream map ~S → B null-homotopic as a continuous function is constant.
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Proof. Consider a universal stream covering

ρ : E → B.

Suppose 6E is antisymmetric. Consider a stream map α : ~S → B such that U(α)
is null-homotopic to a constant map. Then U(α) lifts to a continuous function S → E,

which must define a stream map α̃ : ~S → E by Lemma 2.21. Then α̃ must be constant
because 6E is antisymmetric. Thus we conclude α is constant.

Now suppose instead that every stream map ~S → B null-homotopic as a continuous
function is constant. Consider a stream map β : ~S → E. The continuous function U(β),
and hence U(ρ ◦ β), is null-homotopic relative {0, 1} because UE is simply connected.
Thus ρ ◦ β, and hence β, is constant by assumption. The preorder 6E is antisymmetric
because E is path-ordered by Lemma 2.21.

3. Cubical models

We review the definitions of precubical sets in §3.1, investigate cellular chain complexes
of geometric realizations in §3.3, and present our main results in §3.5. We adopt the
integral notation

∫ x

C
F (x, x) for the coend of a functor F : C op × C → D and S · X for

an S-indexed coproduct of an object X.

3.1. Precubical sets. We often model combinatorial polytopes as presheaves over
subcategories of the category P of posets and (weakly) monotone functions. For example,
simplicial sets are presheaves over the full sub-category of P containing the non-empty,
finite ordinals [n] = {0 < · · · < n}. Let 〈�,⊕, [0]〉 be the smallest sub-monoidal category
of the Cartesian monoidal category 〈P,×, [0]〉 containing the functions δ−, δ+ : [0] → [1]
sending 0 to 0 and 1, respectively. Basic assertions about �-morphisms tend to have
inductive proofs. We leave the proof of the lemma below as an exercise.

3.2. Lemma. For each pair ε 6[1]n ε′ of elements, there exist �-morphisms

φ1, . . . , φn ∈ �([1], [1]n)

such that φ1(0) = ε, φn(1) = ε′, and φi(1) = φi+1(0) for i = 1, 2, . . . , n− 1.

Let cS be the functor category of precubical sets, functors �op → S to the category S
of sets and functions; and precubical functions, natural transformations between precubical
sets. Examples of precubical sets include the functors

�[n] = �(−, [1]n) : �op → S , n = 0, 1, 2, . . .

Fix a precubical set X. For each natural number n, we write Xn for X([1]n) and for
each i ∈ {1, 2, . . . , n}, we write d−i, d+i : Xn → Xn−1 for the functions to which X sends
the �-morphisms [1]i−1 ⊕ δ− ⊕ [1]n−i and [1]i−1 ⊕ δ+ ⊕ [1]n−i, respectively. We write σ∗
for the image of an n-cube σ ∈ Xn under the natural bijection

Xn
∼= cS (�[n], X).
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A precubical set A is a sub-precubical set of X if object-wise inclusions define a pre-
cubical function A ↪→ X. For each natural number n and each σ ∈ Xn, let skn(X) and
〈σ〉 be the minimal sub-precubical sets of X satisfying

(skn(X))n = Xn, 〈σ〉n = {σ}

and for later convenience, let sk−1X = ∅.

3.3. Geometric realizations. We can interpret a precubical set as the data of a CW
complex as follows. For each natural number n, let @[n] = In. The assignment [1]n 7→ @[n]
extends to a functor @ : � → T linearly extending each �-morphism [1]m → [1]n to a
continuous function @[m] → @[n]. Let | − | be the functor

| − | =
∫ [1]n

�
−n · @[n] : cS → T .

The functor | − | preserves inclusions. We make the natural identification

(|�[n]|, |skn−1(�[n])|) ∼= (@[n], ∂@[n]),

where ∂@[n] is the subspace of @[n] consisting of all points having at least one coordinate
equal to 0 or 1.

Consider a precubical set X. The space |X| is a CW complex, whose attaching
maps of n-cells correspond to restrictions and corestrictions of |σ∗| to functions ∂@ [n] →
|skn−1(X)|, for n-cubes σ ∈ Xn. Each x ∈ |X| inhabits the interior of a unique closed
n-cell, the realization |〈supp(x)〉| of a sub-precubical set of X generated by a unique cube
supp(x) of X.

We describe pieces of the cellular chain complex C(|X|; Z), whose n-chains correspond
to the free Z-module Z[Xn] over the set Xn of generators. Consider σ ∈ X1. The
differential ∂1 : Z[X1] → Z[X0], up to a sign change, satisfies

∂1(σ) = (d+1σ)− (d−1σ),

We describe ∂2 at the point-set level, following [May, 1999]. Fix homeomorphisms

ς1 : ∂ @ [2] ∼= S, ς2 : @[1]/∂@[1] ∼= S

of various models of the circle by, say, the rules

ς1(x + 1/2, y + 1/2) =
x + iy

|x + iy|
, ς2(t) = e2πit.

For each σ ∈ X1, |σ∗| passes to quotients to define an isomorphism

@[1]/∂@[1] → |〈σ〉|/|sk0〈σ〉|
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whose inverse extends to a continuous function

πX(σ) : |sk1(X)|/|sk0(X)| → @[1]/∂@[1]

sending all other points to the quotiented point. Fix a θ ∈ X2. For each σ ∈ X1, let
λ(θ, σ) be the dotted continuous function making the diagram

S
λ(θ,σ) // S

∂ @ [2]

ς1

OO

// @[2]
|θ∗|

// |sk1(X)| // |sk1(X)|/|sk0(X)|
πX(σ)

// @[1]/∂ @ [1]

ς2

OO

commute, where the first and third bottom arrows denote inclusion and quotienting,
respectively. Straightforward calculations reveal that

deg(λ(θ, d−1θ)) = deg(λ(θ, d+2θ)) = −1, deg(λ(θ, d+1θ)) = deg(λ(θ, d−2θ)) = +1.

The differential operator ∂2 : Z[X2] → Z[X1], up to a sign change, satisfies

∂2(θ) =
∑
σ∈X1

deg(λ(θ, σ))(σ)

= (d+1θ) + (d−2θ)− (d−1θ)− (d+2θ).

Consequently, 1-cycles homologous to 0 are trivial if their coefficients have the same
sign.

3.4. Lemma. Fix a precubical set X. The preimage of 0 under the function

Z1(C(|X|; Z)) ∩ N[X1] → H1(C(|X|; Z))

sending a 1-cycle to its homology class, where Z1(C(|X|; Z)) is the set of 1-cycles of
C(|X|; Z) and N[X1] is the set of 1-chains having non-negative coefficients, is 0.

3.5. Stream realizations. Geometric realizations of precubical sets inherit structure
induced from orientations of the 1-cubes. For each natural number n, let ~@[n] be the
product stream ~@[1])

n
. The assignment [1]n 7→ ~@[n] uniquely extends to a dotted functor

~@ : � → T making the following diagram commute.

U

U
��

�

~@
>>

@
// T

Thus the functor �−�, defined by

�−�=
∫ [1]n

�
−n · ~@[n] : cS → U ,
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lifts | − | along U in the commutative diagram

U

U
��

cS

�−�
==

|−|
// T ,

by Proposition 2.7 and Theorem 2.10.

3.6. Definition. The stream realization of a precubical set X is �X�.

3.7. Lemma. Stream realizations of precubical sets are path-ordered.

Proof. Stream realizations are colimits of the path-ordered streams ~@[n].

The 1-skeleton of a precubical set encodes the order-theoretic relationships between
vertices in a stream realization. We record a special case. For each partial order 4X on
a set X and each subset A ⊂ X, let (4X)�A denote the partial order on A having graph
graph(4X) ∩ (A× A).

3.8. Lemma. For each natural number n,

(6��[n]�)� �sk0(�[n])� = (6�sk1(�[n])�)��sk0(�[n])�.

Proof. The lemma follows from Proposition 2.9 and Lemma 3.2 because

6[1]n= (6~@[n])�[1]n .

Dipaths on stream realizations admit cellular approximations. Our proofs resemble
the arguments used in [Fajstrup, 2005].

3.9. Lemma. Fix an integer n > 0 and a dipath α on ��[n]�. There is a dipath

β : supp(α(0))∗(0, . . . , 0) ; supp(α(1))∗(0, . . . , 0)

on ��[n]� such that U(β) is cellular. Moreover, β is non-constant if supp(α(1)) inhabits
skn−1(�[n]) and 〈supp(α(1/2))〉 = �[n].

Proof. Let χS be the characteristic function of a subset S ⊂ [0, 1]. Let πi : @[n] → @[1]
be the ith projection function. For each i,

πi(supp(α(0))∗(0, . . . , 0)) = χ{1}(πi(α(0)))

6[1]n χ{1}(πi(α(1)))

= πi(supp(α(1))∗(0, . . . , 0)).

Lemmas 3.7 and 3.8 imply that there exists a cellular path defining a dipath

β : supp(α(0))∗(0, . . . , 0) ; supp(α(1))∗(0, . . . , 0).
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Assume the hypothesis of the second sentence in the statement of the lemma. Then
β(0) = (0, . . . , 0) because for each i, πi(α(0)) ≤ πi(α(1/2)) < 1. For each i, 0 <
πi(α(1/2)) ≤ πi(α(1)). There exists a j such that πj(α(1)) ∈ {0, 1}, and hence πj(α(1)) =
1. Thus β(1) 6= β(0).

3.10. Lemma. Fix a precubical set X and a dipath α on �X�. There is a dipath

β : supp(α(0))∗(0, . . . , 0) ; supp(α(1))∗(0, . . . , 0)

on �X� such that U(β) is cellular and U(α) ∼ U(β). We can take β to be non-constant
if α is non-constant and α(0) = α(1).

Proof. By reparametrization of α, we assume that there exists an integer k > 0 such that
for each i = 1, . . . , k, there exist natural number di and σi ∈ Xdi

, such that α(i−1/k, i/k) ⊂
|〈σi〉| \ |skdi−1〈σ〉|. We take k to be minimal without loss of generality. Let αi be the
restriction of α to the substream [i/k, i+1/k] of ~@[1].

There exist unique continuous functions α̃i making the diagrams

��[di]�

�(σi)∗�
��

[i−1/k, i/k]

α̃i

99

αi

// �X�

of underlying spaces commute. The restrictions of the α̃i’s to the sub-preordered spaces
(i−1/k, i/k) of Q[i−1/k, i/k] are monotone because the corestrictions ��[di]�→�〈σi〉� of the
�(σi)∗�’s restrict and corestrict to isomorphisms ��[di]� \�skdi

�[di]� →�〈σi〉� \ �skdi
〈σi〉�

of open substreams by Proposition 2.9. The α̃i’s define monotone maps Q[i−1/k, i/k] →
Q ��[di]� because the α̃i× α̃i’s send dense subsets of the compact spaces graph(6[i−1/k,i/k])
into the compact and Hausdorff spaces graph(6��[di]�). Thus the α̃i’s in fact define stream
maps by Theorem 2.10.

There exist stream maps β̃i : [i−1/k, i/k] →��[di]� such that

β̃i(i−1/k, i/k) ⊂�sk1�[di]�, β̃i(i+ε−1/k) = supp(α̃i(i+ε−1/k))∗(0, . . . , 0), ε = 0, 1

by Lemma 3.9. Let h̃i : U(α̃i) ∼ U(β̃i) be the homotopies defined by

h̃i(x, t) = (1− t)α̃i(x) + tβ̃i(x).

The composites βi = |(σi)∗| ◦ β̃i agree on their overlap because

βi(i/k) = |(σi)∗|(supp(α̃i(i/k))∗(0, . . . , 0))

= supp(αi(i/k))∗(0, . . . , 0)

= supp(αi+1(i/k))∗(0, . . . , 0)

= |(σi)∗|(supp(α̃i+1(i/k))∗(0, . . . , 0))

= βi+1(i/k).
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Thus the composites hi = |(σi)∗|◦ h̃i agree on their overlap to define our desired homotopy
h.

Suppose α is non-constant and α(0) = α(1). Then α̃1(1/k) ∈ |skd1−1�[d1]| because:
in the case k = 1, α1(0) = α1(1); in the case k > 1, 〈σ1〉 ∩ 〈σ2〉 ⊂ skd1−1〈σ1〉 by the
minimality of k. And 〈supp(α̃1(1/2))〉 = �[d1] by our assumption on α. Thus β̃1, and
hence h(−, 1), are non-constant by Lemma 3.9.

We can translate properties of cellular 1-cycles of |X| having positive coefficients into
order-theoretic properties of �X�.

3.11. Lemma. Consider a precubical set X. A stream map

γ : ~S →�X�,

is constant if and only if U(γ) : S → |X| is null-homotopic.

Proof. Suppose U(γ) is non-constant. We give S the structure of a CW complex with
one vertex at 1, and we can take U(γ) to be cellular by Lemma 3.10. For each σ ∈ X1,
let λ′(γ, σ) be the dotted stream map making the diagram

~S
λ′(γ,σ) //

γ

��

~S

�sk1(X)� // �sk1(X)� /|sk0(X)|
~πX(σ)

// ~@[1]/∂ @ [1]

~ς2

OO

commute, where the bottom left arrow is a quotient stream map and ~ς2, ~πX(σ) are the
stream maps defined by the respective functions ς2, πX(σ) of underlying spaces. For
each σ ∈ X1, λ′(γ, σ)(1) = 1 because γ is cellular and deg(λ′(γ, σ)) is non-negative by
Proposition 2.23. Let

c(γ) =
∑
σ∈X1

deg(λ′(γ, σ))(σ) ∈ Z1(C(|X|; Z)) ∩ N[X1].

There exists σ0 such that deg(λ′(γ, σ0)) 6= 0 by Lemma 2.15, because γ is non-constant.
If U(γ) were null-homotopic, then c(γ) would be homologous to 0 by the homotopy
invariance of cellular homology, contradicting Lemma 3.4.

The main result follows from Proposition 2.24 and Lemmas 3.7, 3.11.

3.12. Theorem. For each precubical set B, there exists a stream covering

E → �B�

such that the preorder 6E is antisymmetric.

3.13. Corollary. Stream realizations of precubical sets are vortex-free.
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4. Conclusion

We have thus observed that the connected state spaces of generalized asynchronous tran-
sition systems form the orbit streams of pospaces equipped with transitive, free, and
discrete actions of groups. Consider a connected such state stream B, choose a basepoint
b ∈ B, and let G = π1(UB, b). There exists a universal covering E → B such that 6E

is antisymmetric by Theorem 3.12. In later work, we hope to extract meaningful ma-
chine dynamics from B as the G-orbits of a G-algebraic gadget I(E), constructed on the
G-pospace E.
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